WO2018158832A1 - Cross current detection device, cross current detection method, and rotor - Google Patents

Cross current detection device, cross current detection method, and rotor Download PDF

Info

Publication number
WO2018158832A1
WO2018158832A1 PCT/JP2017/007842 JP2017007842W WO2018158832A1 WO 2018158832 A1 WO2018158832 A1 WO 2018158832A1 JP 2017007842 W JP2017007842 W JP 2017007842W WO 2018158832 A1 WO2018158832 A1 WO 2018158832A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cross current
torque
load motor
stator
Prior art date
Application number
PCT/JP2017/007842
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 鶴見
米谷 晴之
正樹 亀山
啓宇 川崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017539696A priority Critical patent/JP6249433B1/en
Priority to PCT/JP2017/007842 priority patent/WO2018158832A1/en
Publication of WO2018158832A1 publication Critical patent/WO2018158832A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention relates to a cross current detection device, a cross current detection method, and a rotor, and more particularly to a cross current detection device, a cross current detection method, and a rotation of a detection target for testing a rotor of a squirrel-cage induction machine. It is about the child.
  • a rotor is used in a rotating electric machine such as an electric motor or a generator.
  • the rotor is subjected to a conformance test to detect whether it is a good product before shipment. If the performance test is performed in a state in which the rotor is incorporated in the rotating electrical machine during the conformance test, the quality can be determined sufficiently. However, since such a test takes time and labor, it is practically impossible to inspect all the rotors.
  • Patent Document 1 an apparatus for performing a rotor compatibility test without being incorporated in a rotating electrical machine has been developed (see, for example, Patent Document 1 and Patent Document 2).
  • the rotor is rotated in a state where the rotor to be tested is inserted into the stator, the torque value at that time, and the power supply to the stator are supplied. Based on the current value of the stator when connected, the non-defective and defective rotors are selected.
  • the present invention has been made to solve such a problem, and provides a rotor, a cross current detection device, and a cross current detection method capable of clearly and easily detecting a cross current of the rotor.
  • the purpose is to get.
  • the present invention has a stator iron core and a stator winding wound around the stator iron core, and a stator jig capable of inserting a rotor to be measured therein, and the inside of the stator jig.
  • a voltage source that applies a voltage that generates a rotating magnetic field to the stator winding, a load motor that rotates the rotor inserted in the stator jig, and a characteristic value of the load motor
  • a determinator for determining whether or not a cross current is generated in the rotor based on a characteristic value of the load motor measured by the measuring machine.
  • the characteristic value of the load motor is measured in the reverse rotation region, which is the rotation in the direction opposite to the rotation direction of the rotating magnetic field of the stator, and the characteristic value is compared with the threshold value.
  • FIG. 1 It is a perspective view which shows the structure of an example of the holding mechanism support part provided in the cross current detection apparatus which concerns on Embodiment 1 of this invention. It is a flowchart which shows the flow of a process of the cross current detection method in the cross current detection apparatus which concerns on Embodiment 1 of this invention. It is a perspective view which shows the structure of the rotor core of the measuring object of the cross current detection apparatus which concerns on Embodiment 1 of this invention. It is a perspective view which shows the structure of the rotor of a measuring object of the cross current detection apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the difference in the torque characteristic by the magnitude of the cross current detected by the cross current detection apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 1 of the present invention.
  • the rotor 1 to be measured is inserted into the stator jig 2 and is rotatably held by the stator jig 2.
  • the rotor 1 is composed of a rotor iron core and a secondary conductor provided around the rotor iron core.
  • the secondary conductor 38 shown in FIG. 13 is provided around the rotor core 31 of the rotor 1 shown in FIG. 9 or the rotor 1 as shown in FIG. 12 is generated.
  • the rotor 1 for example, an ordinary cage rotor used in a cage induction machine will be described as an example. However, the embodiment is not limited thereto.
  • the cross current detection device according to the first embodiment can be applied to all rotors used in all squirrel-cage induction machines such as deep groove rotators and double squirrel-cage rotors.
  • the rotating shaft 7 of the rotor 1 is supported by two holding mechanism support portions 14 via the holding mechanism 3.
  • two holding mechanism support portions 14 are provided in FIG. 1, any number may be used as long as it is two or more.
  • the holding mechanism 3 is composed of, for example, a ball bearing or a slide bearing. Alternatively, the holding mechanism 3 that is assembled to the rotor 1 may be used.
  • the stator jig 2 is composed of a stator core 4 and a stator winding 5.
  • the stator core 4 is formed of a laminated steel plate in which a plurality of core plates pressed in an annular shape are stacked.
  • the stator winding 5 is wound around the stator core 4.
  • a voltage source 6 is connected to the stator winding 5.
  • the voltage source 6 is composed of, for example, a three-phase voltage source.
  • the voltage source 6 is not limited to this, and any voltage source can be used as long as the voltage source 6 can generate a voltage waveform that generates a rotating magnetic field inside the stator jig 2. Also good.
  • the voltage source 6 may be a single-phase AC voltage source.
  • the rotating shaft 7 of the rotor 1 is connected to the rotating shaft 11 of the load motor 10 via a coupling 8 and a torque meter 9.
  • the load motor 10 is connected to the controller 12.
  • the controller 12 controls the speed of the load motor 10.
  • the controller 12 is composed of a servo amplifier, for example.
  • the load motor 10 is provided with a measuring device for measuring the characteristic value of the load motor 10. In the example of FIG. 1, a torque meter 9 is provided as the measuring machine.
  • the torque meter 9 functions as a measuring machine that measures the torque of the load motor 10.
  • a determination device 13 is connected to the torque meter 9.
  • the torque value of the load motor 10 measured by the torque meter 9 is input to the determinator 13.
  • the holding mechanism 3 is supported by the holding mechanism support part 14.
  • the stator jig 2 is supported by the stator jig support 15.
  • the torque meter 9 is supported by the torque meter support portion 16.
  • the load motor 10 is supported by the load motor support portion 17.
  • These support portions 14 to 17 are fixed to the device base portion 18.
  • the direction of arrangement of the cross current detection device can be changed according to the production line.
  • the cross current detection device is arranged so that the rotating shafts 7 and 11 are horizontal.
  • the present invention is not limited thereto, and for example, the cross current detection device may be arranged so that the rotation shafts 7 and 11 are vertical.
  • the stator jig support portion 15 is arranged in the axial direction of the rotary shaft 7, that is, in the horizontal direction in FIG. It can also be made movable.
  • a moving device for moving the stator jig support 15 with respect to the device base 18.
  • a moving device composed of a ball screw 19 and a ball screw drive motor 20 is installed.
  • the ball screw driving motor 20 rotates the ball screw 19 to move the stator jig support 15.
  • the moving device is not limited to the example shown in FIG. 2, and the moving device may be constituted by a linear motor, an air cylinder, a hydraulic cylinder, a hydraulic cylinder, or the like.
  • the holding mechanism support part 14 is comprised from one plate-shaped member, for example.
  • a hole for inserting the holding mechanism 3, that is, a through hole is provided at the center of the plate-like member.
  • the upper portion 21 is separated from the lower portion 22 by lifting the upper portion 21 as shown in FIG. 3. Thereby, it becomes easy to insert the rotor 1.
  • the plate-like member constituting the holding mechanism support portion 14 may be constituted by three gripping components 26 arranged in three directions as shown in FIG. In that case, when inserting the rotor 1 into the holding mechanism support part 14, the gripping component 26 is spread outward in three directions to facilitate the insertion of the rotor 1. Further, after inserting the rotor 1, the rotor 1 is gripped by the gripping component 26 from three directions. As described above, by configuring the holding mechanism support portion 14 as shown in any of FIGS. 3 to 6, it is possible to provide a gap in which the rotor 1 can be easily inserted in the holding mechanism support portion 14. .
  • FIG. 6 is a modification of FIG. In FIG. 5 described above, an example in which the plate-like member constituting the holding mechanism support portion 14 is constituted by three gripping components 26 is shown.
  • the holding mechanism support portion 14 includes a single plate-like member provided with a hole 27 in the central portion, and three gripping components 26 provided in the holes 27 of the plate-like member. It is composed of FIG. 6 shows a state where the three gripping parts 26 are spread outward. In this state, the tips of the three gripping parts 26 are aligned with an inner diameter 28 indicated by a broken line.
  • the inner diameter 28 is larger than the outer peripheral surface of the rotor 1, and the inner diameter 28 and the outer peripheral surface of the rotor 1 do not interfere with each other. Therefore, the rotor 1 can be inserted also from the axial direction of the rotating shaft 7. Thereby, the freedom degree of arrangement
  • the cross current detection device is configured as described above.
  • the rotor 1 is rotated in the reverse direction, and in this state, the torque of the load motor 10 is measured by the torque meter 9.
  • the reverse rotation refers to rotation in which the rotation direction of the rotor 1 is opposite to the rotation direction of the rotating magnetic field generated inside the stator jig 2.
  • the torque value thus obtained is transmitted from the torque meter 9 to the determinator 13.
  • the determinator 13 compares the torque value input from the torque meter 9 with a preset threshold value, and determines that the rotor 1 is a rotor that generates a cross current when the torque value exceeds the threshold value.
  • the threshold value may be an arbitrary value that exists in a range between two torque values by creating a rotor that does not generate a cross current and a rotor that generates the torque and measuring each torque value.
  • FIG. 7 is a flowchart showing a processing flow of the cross current detection device from the start of measurement to the end of determination.
  • step S ⁇ b> 1 the rotor 1 is attached to the holding mechanism support portion 14 via the holding mechanism 3 and is inserted into the stator jig 2.
  • step S ⁇ b> 2 a voltage having a voltage waveform that generates a rotating magnetic field inside the stator jig 2 is applied from the voltage source 6 to the stator winding 5 of the stator jig 2. .
  • step S 3 the controller 12 drives the load motor 10 to rotate the rotor 1 through the coupling 8 and the torque meter 9.
  • step S4 the torque of the load motor 10 in the reverse rotation state is measured using the torque meter 9 connected to the rotor 1 and the load motor 10 through the coupling 8.
  • step S3 and step S4 may be interchanged.
  • the torque of the load motor 10 is measured by changing the rotation speed of the rotor 1 with the load motor 10 until the rotation is reversed, that is, until s> 1. By doing this, the measurement result at the time of forward rotation, that is, 0 ⁇ s ⁇ 1, and the measurement result at the time of reverse rotation, that is, when s> 1 are obtained.
  • the rotor 1 When the measurement result at the time of forward rotation obtained in this way is compared with the threshold for forward rotation and the difference from the threshold for forward rotation is larger than a predetermined ratio, the rotor 1 is defective. Can be detected.
  • the threshold value for forward rotation will be described.
  • the torque of the load motor 10 is measured in advance using the rotor 1 having the secondary conductor 38 properly formed by die casting without any problem, and the measurement result is stored as a threshold value for forward rotation. In this way, it is possible to detect whether the rotor 1 is a non-defective product or a defective product by comparing the measurement result obtained when the rotor to be measured is rotated forward and the threshold for forward rotation.
  • the defective product in this case is, for example, a case where the secondary conductor 38 of the rotor 1 contains a void and the secondary resistance is higher than the design value, or the secondary conductor 38 of the rotor 1 is configured.
  • the conductor rod 33 is cut and a gel guess phenomenon occurs.
  • what is necessary is just to set the arbitrary values which can be accept
  • step S5 the measurement result of the torque meter 9 at the time of reverse rotation is taken into the determinator 13, and the torque of the measurement result is compared with a preset reverse rotation threshold value. If the measured torque is less than or equal to the reverse rotation threshold, the process proceeds to step S6. If the measured torque is greater than the reverse rotation threshold, the process proceeds to step S7.
  • step S6 since the torque of the measurement result is equal to or less than the reverse rotation threshold value, it is determined that there is no cross current.
  • step S7 since the measured torque is larger than the reverse rotation threshold, it is determined that there is a cross current.
  • FIG. 8 is a perspective view of the rotor core 31 of the rotor 1 used in this experiment.
  • a cage rotor will be described as an example of the rotor 1.
  • the rotor core 31 is composed of a laminated steel plate in which a plurality of iron core plates obtained by press-punching electromagnetic steel plates in an annular shape are laminated.
  • the rotor 1 is formed by providing a secondary conductor 38 formed by die-casting aluminum on the outer periphery of the rotor core 31. A perspective view of the rotor 1 thus formed is shown in FIG. As shown in FIG.
  • a short-circuit ring 32 is provided at the upper end portion and the lower end portion of the rotor core 31, and the outer periphery of the rotor core 31 is composed of a plurality of conductor rods 33.
  • a secondary conductor 38 is provided.
  • the rotor 1 in the state of FIG. 9 was subjected to a total of two heat treatments for heating to 500 ° C. and cooling. The results of measuring the relationship between slip and torque before and after heat treatment are shown in FIG. In FIG. 10, the horizontal axis represents the slip of the rotor 1 to be measured, and the vertical axis represents the torque measured by the torque meter 9. In addition, in FIG.
  • the plot “ ⁇ ” indicates the measurement result of the “cross current large” rotor before the heat treatment
  • the plot “ ⁇ ” indicates the measurement of the “cross current small” rotor after the heat treatment. Results are shown.
  • the slip is expressed by the following formula (1).
  • Fig. 11 shows the relationship between slip and efficiency.
  • the horizontal axis represents the slip of the rotor 1 to be measured, and the vertical axis represents the efficiency.
  • the plot “ ⁇ ” shows the measurement result of the rotor with “large cross current” before the heat treatment, and the plot “ ⁇ ” shows the measurement result of the rotor with “low cross current” after the heat treatment.
  • slip s 1.3 in FIG. 11, the efficiency in the case of the “cross current small” rotor with heat treatment exceeds the efficiency in the case of the “large cross current large” rotor without heat treatment by 4.3%. .
  • the torque value of the “cross current small” rotor subjected to the heat treatment twice is assumed to be no cross current
  • the torque value of the “cross current large” rotor without heat treatment is assumed to be that of the cross current.
  • an arbitrary value existing within a range between two torque values is set as the reverse rotation threshold value, it can be determined whether the rotor to be measured has a cross current or not.
  • the conductor bars 33 adjacent to the secondary conductor 38 were forcibly short-circuited.
  • the first is a rotor in which the adjacent conductor rods 33 are short-circuited once around the central portion in the axial direction of the conductor rod 33 (hereinafter referred to as the rotor 1A), and the second is the axial direction of the conductor rod 33.
  • FIG. 12 shows a perspective view of the rotor 1A that is short-circuited in the central portion in the axial direction. Moreover, the shape of the secondary conductor of the rotor 1A is shown in FIG. As shown in the enlarged view of FIG. 13, a short-circuit portion 34 is connected between adjacent conductor bars 33. What is necessary is just to form the short circuit part 34 from the same material as the conductor rod 33.
  • the short circuit part 34 should just be comprised by die-casting simultaneously with the conductor rod 33.
  • FIG. As shown in FIGS. 12 and 13, the short-circuit portion 34 is disposed on the entire circumference of the rotor 1 ⁇ / b> A.
  • the short-circuit portion 34 is arranged on the entire circumference of the rotor 1B.
  • the short-circuit portions 34 are provided at two places in total, that is, 1/3 and 2/3 of the entire length of the conductor rod 33.
  • the rotor 1A and the rotor 1B are subjected to the same heat treatment as described above twice, respectively, and the torque values at the time of reverse rotation are measured, respectively, and those torque values and the torque value of the rotor 1 without the short-circuit portion shown in FIG.
  • FIG. 14 shows the result of the comparison.
  • the rotor 1 without a short-circuit portion is “low cross current”
  • the rotor 1A short-circuited around the center in the axial direction is “cross current half-current”
  • the rotor is short-circuited at two locations in the axial direction.
  • 1B was defined as “large cross current”.
  • the horizontal axis represents the slip of the induction machine to be measured, and the vertical axis represents the torque measured by the torque meter.
  • the plot “ ⁇ ” shows the measurement result of the rotor “1B” having two short-circuited portions and heat-treated, and the plot “ ⁇ ” has one short-circuited portion and heat-treated.
  • the measurement result of the rotor 1A with “medium current in the cross current” is shown, and the plot “ ⁇ ” shows the measurement result of the rotor 1 with “small cross current” without heat short circuit and heat treatment. From FIG. 14, it can be seen that the torque at the time of reverse rotation of the rotors 1A and 1B provided with the short circuit portion 34 increases, and the torque at the time of reverse rotation increases as the cross current increases.
  • the torque in the case of the rotor 1B having “large cross current” is reduced by about 4.1% with respect to the torque in the case of the rotor 1 having “small cross current”.
  • the rate of increase in torque during reverse rotation is about 12.4 times greater than the rate of decrease in torque during normal rotation, so it is appropriate to check the cross current with the torque value during reverse rotation. Sex can be confirmed.
  • a spatial fifth-order antiphase harmonic that rotates in a direction opposite to the fundamental wave with a spatial distribution five times the fundamental wave is generated.
  • a spatial seventh-order positive harmonic that rotates in the same direction as the fundamental wave with a spatial distribution seven times the fundamental wave is also generated.
  • FIG. 15 shows a conceptual diagram of the relationship between slip and torque.
  • a solid line 35 is a torque curve of a fundamental wave
  • a dotted line 36 is a torque curve of a fifth-order antiphase harmonic.
  • the torque generated by the fifth-order antiphase harmonic is called harmonic asynchronous torque.
  • the harmonic asynchronous torque is smaller than the fundamental torque.
  • the rotor core 31 of the rotor and the secondary conductor 38 are brought into conduction, current flows not only in the direction of the conductor rod 33 but also in the circumferential direction, so that the effect of skew on harmonics is reduced. Then, a large harmonic asynchronous torque is generated.
  • an induced voltage of the fifth-order anti-phase harmonic magnetic flux is induced in the short circuit portion 34 in FIG. 12, and a cross current flows.
  • This cross current flows not only in the secondary conductor having a relatively low resistance, but also in a high resistance laminated steel sheet and a conductive portion having a small cross section, and therefore the resistance becomes high.
  • the slip s with respect to the fundamental wave is greater than 1.2, the secondary resistance becomes higher with respect to the spatial fifth-order anti-harmonic, so that it is always large in the region of slip s> 1.2 as shown in FIG. Torque is generated.
  • the above cross current detection process needs to be carried out with attention to the temperature rise of the rotor.
  • the thermal expansion coefficient of the aluminum constituting the secondary conductor 38 and the electrical steel sheet constituting the rotor core 31 are different, the secondary conductor 38 and the rotor core 31 are changed in accordance with the temperature change of the rotor 1.
  • the contact situation changes.
  • the cross current generation state may change.
  • the voltage applied from the voltage source 6 to the stator jig 2 may be lowered so that the temperature of the rotor 1 does not rise. The reason is that when the applied voltage is lowered, the secondary copper loss generated in the rotor 1 is also lowered. Further, the time for applying the voltage can be shortened, and the measurement can be performed before the temperature of the rotor 1 rises.
  • the voltage application time can be minimized by applying the voltage after the rotor 1 is rotated in reverse at a predetermined rotation speed in advance and the rotation speed is reached before the voltage is applied to the stator jig 2. .
  • the determination can be made by operating only at the rotational speed at which the reverse rotational torque is maximum and measuring the torque at the rotational speed. it can.
  • the voltage value and the application time to be applied to the stator jig 2 are determined in advance by performing a reverse rotation test of the rotor 1 in which a cross current is generated, and at a rated rotation speed of the rotor 1 in which a cross current is not generated. It is sufficient that the temperature is lower than the specified temperature.
  • the temperature may be determined by directly measuring the temperature of the surface of the rotor 1 at the rated rotational speed, or it may be determined at a temperature determined by the allowable coil temperature increase value or the allowable bearing temperature increase value of the stator jig 2. May be.
  • the determinator 13 compares the characteristic value of the load motor 10 measured with the measuring instrument when the rotor 1 is rotating in reverse with the threshold value. It is determined whether or not a cross current is generated in the rotor 1. Thus, the cross current of the rotor 1 can be detected clearly and easily by measuring the characteristic value of the load motor 10 in the reverse rotation region.
  • the voltage value and the application time are desirably set so that the temperature of the rotor 1 is equal to or lower than a predetermined temperature. In that case, when the temperature rise is below a certain level, the contact state between the secondary conductor 38 of the rotor 1 and the rotor core 31 can be made equal to that during rated operation.
  • FIG. FIG. 16 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 2 of the present invention.
  • an ammeter 29 is installed on the electric wire between the load motor 10 and the controller 12 instead of the torque meter 9 of the first embodiment.
  • the determination device 13 is connected to the ammeter 29.
  • the ammeter 29 constitutes a measuring machine for measuring the characteristic value of the load motor 10.
  • the ammeter 29 functions as a measuring instrument that measures the total current flowing through the load motor 10.
  • the current value measured by the ammeter 29 is input to the determinator 13.
  • the determining device 13 can easily calculate the torque from the total current. Therefore, a threshold is set in advance for the torque calculated by the determiner 13, and the presence or absence of the cross current is determined by comparing the threshold with the calculated torque, as in the first embodiment. Can do.
  • the use of the torque meter 9 having a movable part improves durability and maintainability in the mass production line.
  • the proportional relationship between the total current and the torque does not hold. It should be used only in the region where the proportional relationship between the total current and torque is established. For this reason, the rated torque of the load motor 10 is made sufficiently larger than the torque handled by the cross current detector. Further, the voltage applied to the stator jig 2 may be adjusted according to the rated torque of the load motor 10.
  • Embodiment 2 the same effect as in the first embodiment can be obtained. Furthermore, in Embodiment 2, the durability and maintainability in the mass production line are improved by not using the torque meter 9 having a movable part.
  • FIG. 17 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 3 of the present invention. Instead of the ammeter 29 of the second embodiment, a wattmeter 30 is installed. Since other configurations are the same as those in the second embodiment, description thereof is omitted here.
  • the wattmeter 30 constitutes a measuring machine for measuring the characteristic value of the load motor 10.
  • the wattmeter 30 functions as a measuring instrument that measures input power to the load motor 10.
  • the value of input power measured by the wattmeter 30 is input to the determinator 13.
  • the load motor 10 is a permanent magnet motor. If the loss of the permanent magnet motor, such as mechanical loss, copper loss, and iron loss, is sufficiently smaller than the input power, the value obtained by dividing the input power by the number of revolutions per second is the torque, so input at the same number of revolutions. Electric power is proportional to torque. Therefore, the input power is measured by the wattmeter 30 and the threshold value set in advance for the input power is compared with the measured input power by the determiner 13 to detect whether or not the rotor 1 is defective. be able to.
  • the loss of the permanent magnet motor such as mechanical loss, copper loss, and iron loss
  • the determining device 13 can easily calculate the torque from the input power. Therefore, a threshold is set in advance for the torque calculated by the determiner 13, and the presence or absence of the cross current is determined by comparing the threshold with the calculated torque, as in the first embodiment. Can do.
  • the use of the torque meter 9 having a movable part improves durability and maintainability in a mass production line.
  • the rated torque of the load motor 10 is made sufficiently larger than the torque handled by the cross current detector. Further, the voltage applied from the voltage source 6 to the stator jig 2 may be adjusted according to the rated torque of the load motor 10.
  • FIG. FIG. 18 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 4 of the present invention.
  • a load angle measuring device 37 is installed instead of the ammeter 29 of the second embodiment. Since other configurations are the same as those in the second embodiment, description thereof is omitted here.
  • the load angle measuring device 37 constitutes a measuring machine for measuring the characteristic value of the load motor 10.
  • the load angle measuring device 37 calculates a load angle that is a phase difference between the induced voltage and the terminal voltage.
  • the load angle obtained by the load angle measuring device 37 is input to the determinator 13.
  • the load motor 10 is a PM motor.
  • the load angle ⁇ can be calculated by the following equation (2) based on the induced voltage E, the terminal voltage V, and the primary reactance voltage I ⁇ Xs.
  • the value measured in advance is used for the primary reactance Xs.
  • the induced voltage E can be calculated from the back electromotive force constant and angular velocity of the PM motor. What is necessary is just to measure the input current I to PM motor with the ammeter built in the load angle measuring device 37 which calculates a load angle.
  • the determination device 13 can determine the presence or absence of the cross current by providing a threshold value for the load angle in advance and comparing the obtained load angle with the threshold value.
  • the output P of the load motor 10 is based on the induced voltage E, the terminal voltage V, the primary reactance Xs, and the load angle ⁇ . ).
  • the torque of the load motor 10 can be obtained by dividing the output P by the number of revolutions per second.
  • the presence or absence of the cross current of the rotor 1 can be determined by providing a threshold in advance for the calculated output P and torque. Can be easily determined.
  • the same effect as in the first embodiment can be obtained.
  • the determination device 13 calculates the output and torque of the load motor 10 using the load angle measured by the load angle measuring device 37, so the error due to copper loss is reduced.
  • the cross current can be measured with high accuracy.
  • Embodiment 5 Using the cross current detection devices according to Embodiments 1 to 4 described above, a rotor whose torque increases during reverse rotation can be selected based on the measurement results shown in FIG. 10 or FIG. For example, if the rotor 1A shown in FIGS. 12 and 13 is created in order to increase the torque during reverse rotation, the maximum torque during reverse rotation is greater than the maximum torque during normal rotation.
  • torque is generated in the direction opposite to the rotation direction, that is, a braking force is generated, which is useful for preventing reverse rotation of the rotating electrical machine.
  • fans with wind pressure, pumps with air pressure, water pressure, hydraulic pressure, etc., reverse rotation prevention of compressors, etc., and elevators, escalators etc. due to their own weight and user or counterweight weight It can be used for prevention of sliding up, prevention of reverse movement when starting on a hill on trains and automobiles, prevention of reverse rotation of hoists and cranes, prevention of reverse rotation of ship screws, and the like.
  • the slip of the rotor 1 shown in the first to fourth embodiments is larger than 1.2, that is, when the torque of the load motor 10 during reverse rotation is less than 1, That is, if the torque is configured to be greater than the maximum torque during forward rotation, the reverse rotation of the rotating electrical machine can be prevented by generating torque in the reverse rotation region in the reverse direction.

Abstract

Provided is a cross current detection device comprising: a stator jig 2 into which a rotor 1, which is the object of measurement, can be inserted; a voltage source 6 that applies a voltage to a stator coil 5; and a load motor 10 that rotates the rotor 1. A torque meter 9 measures a feature value of the load motor 10 when the rotor 1 is rotating in the direction opposite to the rotation direction of a rotating magnetic field generated inside the stator jig 2, and a determination device 13 determines that a cross current has occurred in the rotor 1 if the feature value measured by the torque meter 9 exceeds a preset threshold.

Description

横流電流検出装置、横流電流検出方法、および、回転子Cross current detection device, cross current detection method, and rotor
 この発明は横流電流検出装置、横流電流検出方法、および、回転子に関し、特に、かご形誘導機の回転子の試験を行うための横流電流検出装置及び横流電流検出方法、および、検出対象の回転子に関するものである。 The present invention relates to a cross current detection device, a cross current detection method, and a rotor, and more particularly to a cross current detection device, a cross current detection method, and a rotation of a detection target for testing a rotor of a squirrel-cage induction machine. It is about the child.
 一般に、電動機、発電機などの回転電機には、回転子が用いられている。回転子は、出荷前に、良品か否かを検出するための適合試験が行われる。適合試験の際に、回転子を回転電機に組み込んだ状態で性能検査を行えば、十分に良否の判定を行うことができる。しかしながら、そのような試験には、時間も手間もかかるため、回転子を全数検査することは、実用上不可能である。 Generally, a rotor is used in a rotating electric machine such as an electric motor or a generator. The rotor is subjected to a conformance test to detect whether it is a good product before shipment. If the performance test is performed in a state in which the rotor is incorporated in the rotating electrical machine during the conformance test, the quality can be determined sufficiently. However, since such a test takes time and labor, it is practically impossible to inspect all the rotors.
 そのため、回転電機に組み込まずに回転子の適合試験を行うための装置が開発されている(例えば特許文献1や特許文献2参照)。 Therefore, an apparatus for performing a rotor compatibility test without being incorporated in a rotating electrical machine has been developed (see, for example, Patent Document 1 and Patent Document 2).
 特許文献1および特許文献2に記載の従来の装置においては、試験対象の回転子を固定子に挿入させた状態で、回転子を回転させ、その時のトルクの値、および、固定子に電源を接続した時の固定子の電流値に基づいて、回転子の良品と不良品とを選別する。 In the conventional devices described in Patent Literature 1 and Patent Literature 2, the rotor is rotated in a state where the rotor to be tested is inserted into the stator, the torque value at that time, and the power supply to the stator are supplied. Based on the current value of the stator when connected, the non-defective and defective rotors are selected.
実開昭62-42082号公報Japanese Utility Model Publication No. 62-42082 特開昭62-290339号公報Japanese Patent Laid-Open No. 62-290339
 特許文献1および特許文献2に記載の従来の試験装置においては、固定子の回転磁界の回転方向と同じ方向の回転である正回転の領域でのみ、回転子のトルクおよび固定子の電気特性を測定している。そのため、当該試験装置における試験においては、横流電流の有無によるトルクの差異が現れにくく、横流電流の発生を明確に検出することができなかった。ここで、横流電流について説明する。例えば、スキュー付きの回転子を持つかご形誘導電動機が通電駆動されている場合に、回転子の2次導体を構成する導体棒において、隣接する導体棒間に電位差が発生する。その電位差により、回転子鉄心を周方向に流れる電流を、横流電流という。 In the conventional test apparatuses described in Patent Document 1 and Patent Document 2, the torque of the rotor and the electrical characteristics of the stator are obtained only in the positive rotation region, which is the rotation in the same direction as the rotation direction of the rotating magnetic field of the stator. Measuring. Therefore, in the test using the test apparatus, a difference in torque due to the presence or absence of a cross current is difficult to appear, and the generation of a cross current cannot be clearly detected. Here, the cross current will be described. For example, when a squirrel-cage induction motor having a skewed rotor is energized and driven, a potential difference is generated between adjacent conductor bars in a conductor bar constituting the secondary conductor of the rotor. A current flowing in the circumferential direction through the rotor core due to the potential difference is referred to as a cross current.
 この発明は、かかる問題点を解決するためになされたものであり、回転子の横流電流を明確かつ容易に検出することが可能な、回転子、横流電流検出装置、および、横流電流検出方法を得ることを目的としている。 The present invention has been made to solve such a problem, and provides a rotor, a cross current detection device, and a cross current detection method capable of clearly and easily detecting a cross current of the rotor. The purpose is to get.
 この発明は、固定子鉄心と前記固定子鉄心に巻回された固定子巻線とを有し、測定対象の回転子を内部に挿入可能な固定子冶具と、前記固定子冶具の前記内部に回転磁界を発生させる電圧を前記固定子巻線に印加する電圧源と、前記固定子冶具の前記内部に挿入された状態の前記回転子を回転させる負荷用モータと、前記負荷用モータの特性値を測定する測定機と、前記測定機が測定した前記負荷用モータの特性値に基づいて、前記回転子に横流電流が発生しているか否かを判定する判定機とを備え、前記判定機は、前記回転子の回転方向が前記回転磁界の回転方向と逆向きの逆回転のときに前記測定機で測定した前記負荷用モータの特性値を、予め設定された閾値と比較することで、前記横流電流の発生の有無を判定する、横流電流検出装置である。 The present invention has a stator iron core and a stator winding wound around the stator iron core, and a stator jig capable of inserting a rotor to be measured therein, and the inside of the stator jig. A voltage source that applies a voltage that generates a rotating magnetic field to the stator winding, a load motor that rotates the rotor inserted in the stator jig, and a characteristic value of the load motor And a determinator for determining whether or not a cross current is generated in the rotor based on a characteristic value of the load motor measured by the measuring machine. By comparing the characteristic value of the load motor measured by the measuring machine when the rotation direction of the rotor is the reverse rotation opposite to the rotation direction of the rotating magnetic field with a preset threshold value, Cross current detection to determine the occurrence of cross current It is the location.
 この発明によれば、固定子の回転磁界の回転方向と反対方向の回転である逆回転領域で、負荷用モータの特性値を測定して、特性値と閾値とを比較することにより、明確かつ容易に回転子の横流電流を検出することができるという顕著な効果を奏する。 According to the present invention, the characteristic value of the load motor is measured in the reverse rotation region, which is the rotation in the direction opposite to the rotation direction of the rotating magnetic field of the stator, and the characteristic value is compared with the threshold value. There is a remarkable effect that the cross current of the rotor can be easily detected.
この発明の実施の形態1に係る横流電流検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置の変形例の構成を示す構成図である。It is a block diagram which shows the structure of the modification of the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置に設けられた保持機構支持部の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of the holding mechanism support part provided in the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置に設けられた保持機構支持部の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of the holding mechanism support part provided in the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置に設けられた保持機構支持部の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of the holding mechanism support part provided in the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置に設けられた保持機構支持部の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of the holding mechanism support part provided in the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置における横流電流検出方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the cross current detection method in the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置の測定対象の回転子鉄心の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor core of the measuring object of the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置の測定対象の回転子の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor of a measuring object of the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置で検出した横流電流の大小によるトルク特性の違いを示す図である。It is a figure which shows the difference in the torque characteristic by the magnitude of the cross current detected by the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る横流電流検出装置で検出した横流電流の大小による効率特性の違いを示す図である。It is a figure which shows the difference in the efficiency characteristic by the magnitude of the cross current detected by the cross current detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1および5に係る横流電流が発生する回転子の斜視図である。It is a perspective view of the rotor which generate | occur | produces the cross current which concerns on Embodiment 1 and 5 of this invention. この発明の実施の形態1および5に係る横流電流が発生する回転子の二次導体の斜視図である。It is a perspective view of the secondary conductor of the rotor which generate | occur | produces the cross current which concerns on Embodiment 1 and 5 of this invention. 回転子の短絡箇所数に起因するトルク特性の違いを示す図である。It is a figure which shows the difference in the torque characteristic resulting from the short circuit location number of a rotor. 基本波と5次逆相高調波によるトルク特性の図である。It is a figure of the torque characteristic by a fundamental wave and a fifth-order antiphase harmonic. この発明の実施の形態2に係る横流電流検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the cross current detection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る横流電流検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the cross current detection apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る横流電流検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the cross current detection apparatus which concerns on Embodiment 4 of this invention.
 以下、図面を用いて、この発明の実施の形態に係る横流電流検出装置について説明する。 Hereinafter, a cross current detection device according to an embodiment of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、この発明の実施の形態1による横流電流検出装置の構成を示す概略図である。測定対象の回転子1は、固定子冶具2の内部に挿入され、固定子冶具2により回転自在に保持されている。回転子1は、回転子鉄心と、回転子鉄心の周囲に設けられた2次導体とから構成されている。回転子1の構成については後述するが、簡単に説明すると、図8に一例を示す回転子1の回転子鉄心31の周囲に、図13に一例を示す2次導体38を設けることで、図9または図12に示すような回転子1が生成される。実施の形態1においては、回転子1として、例えば、かご形誘導機に用いられる普通かご形回転子を例に挙げて説明するが、それに限定されるものではない。実施の形態1に係る横流電流検出装置は、深溝形回転子、二重かご形回転子などの全てのかご形誘導機で使用される回転子全般に適用可能である。
Embodiment 1 FIG.
1 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 1 of the present invention. The rotor 1 to be measured is inserted into the stator jig 2 and is rotatably held by the stator jig 2. The rotor 1 is composed of a rotor iron core and a secondary conductor provided around the rotor iron core. Although the configuration of the rotor 1 will be described later, in brief explanation, the secondary conductor 38 shown in FIG. 13 is provided around the rotor core 31 of the rotor 1 shown in FIG. 9 or the rotor 1 as shown in FIG. 12 is generated. In the first embodiment, as the rotor 1, for example, an ordinary cage rotor used in a cage induction machine will be described as an example. However, the embodiment is not limited thereto. The cross current detection device according to the first embodiment can be applied to all rotors used in all squirrel-cage induction machines such as deep groove rotators and double squirrel-cage rotors.
 回転子1の回転軸7は、保持機構3を介して、2つの保持機構支持部14に支持されている。保持機構支持部14は、図1においては、2つ設けられているが、2以上であれば任意の個数でよい。保持機構3は、例えば、ボールベアリングまたはすべり軸受けから構成される。あるいは、保持機構3は、回転子1に組付けられているものを用いても良い。 The rotating shaft 7 of the rotor 1 is supported by two holding mechanism support portions 14 via the holding mechanism 3. Although two holding mechanism support portions 14 are provided in FIG. 1, any number may be used as long as it is two or more. The holding mechanism 3 is composed of, for example, a ball bearing or a slide bearing. Alternatively, the holding mechanism 3 that is assembled to the rotor 1 may be used.
 固定子冶具2は、固定子鉄心4と固定子巻線5とから構成されている。固定子鉄心4は、円環状にプレス打抜きされた鉄心板を複数枚積層した積層鋼板から形成されている。固定子巻線5は、固定子鉄心4に巻き回されている。固定子巻線5には、電圧源6が接続される。電圧源6は、例えば三相電圧源から構成される。しかしながら、その場合に限らず、電圧源6は、固定子冶具2の内部に回転磁界が発生するような電圧波形を発生させることが可能な電圧源であれば、いずれの電圧源から構成してもよい。例えば固定子冶具2の固定子巻線5がコンデンサモータの構成になっている場合は、電圧源6は単相交流の電圧源から構成しても良い。 The stator jig 2 is composed of a stator core 4 and a stator winding 5. The stator core 4 is formed of a laminated steel plate in which a plurality of core plates pressed in an annular shape are stacked. The stator winding 5 is wound around the stator core 4. A voltage source 6 is connected to the stator winding 5. The voltage source 6 is composed of, for example, a three-phase voltage source. However, the voltage source 6 is not limited to this, and any voltage source can be used as long as the voltage source 6 can generate a voltage waveform that generates a rotating magnetic field inside the stator jig 2. Also good. For example, when the stator winding 5 of the stator jig 2 has a capacitor motor configuration, the voltage source 6 may be a single-phase AC voltage source.
 回転子1の回転軸7は、カップリング8とトルク計9とを介して、負荷用モータ10の回転軸11と接続されている。負荷用モータ10は、制御機12に接続されている。制御機12は、負荷用モータ10の速度を制御する。制御機12は、例えば、サーボアンプから構成される。負荷用モータ10には、負荷用モータ10の特性値を測定するための測定機が設置される。図1の例では、当該測定機として、トルク計9が設けられている。トルク計9は、負荷用モータ10のトルクを計測する測定機として機能する。トルク計9には、判定機13が接続されている。トルク計9で計測された負荷用モータ10のトルク値は、判定機13に入力される。 The rotating shaft 7 of the rotor 1 is connected to the rotating shaft 11 of the load motor 10 via a coupling 8 and a torque meter 9. The load motor 10 is connected to the controller 12. The controller 12 controls the speed of the load motor 10. The controller 12 is composed of a servo amplifier, for example. The load motor 10 is provided with a measuring device for measuring the characteristic value of the load motor 10. In the example of FIG. 1, a torque meter 9 is provided as the measuring machine. The torque meter 9 functions as a measuring machine that measures the torque of the load motor 10. A determination device 13 is connected to the torque meter 9. The torque value of the load motor 10 measured by the torque meter 9 is input to the determinator 13.
 保持機構3は、保持機構支持部14に支持されている。また、固定子冶具2は、固定子冶具支持部15に支持されている。トルク計9は、トルク計支持部16に支持されている。負荷用モータ10は、負荷用モータ支持部17に支持されている。これらの支持部14~17は、装置基部18に固定されている。横流電流検出装置の配置の方向は、製造ラインに合わせて変更可能である。図1においては、回転軸7,11が水平になるように横流電流検出装置が配置されている。しかしながら、それに限らず、例えば回転軸7,11が垂直になるように横流電流検出装置を配置してもよい。その場合には、支持部14~17の2つの端部のうち、装置基部18に接合している一端と、自由端となっている他端との間で応力の偏りが生じないように、支持部14~17の両端を保持するように、装置基部18を2個設置することが可能である。このように、状況に応じて、装置基部18を2個以上設置して、支持部14~17の少なくとも両端を保持するようにしてもよい。また、回転子1の固定子冶具2内への挿入が容易になるように、図2に示すように、固定子冶具支持部15を、回転軸7の軸方向、すなわち、図1の水平方向に、移動可能にすることもできる。その場合には、装置基部18に対して、固定子冶具支持部15を移動させるための移動装置を設置する必要がある。図2の例においては、ボールねじ19とボールねじ駆動モータ20とから構成された移動装置が設置されている。当該移動装置においては、ボールねじ駆動モータ20がボールねじ19を回転させることで、固定子冶具支持部15を移動させる。なお、移動装置は、図2の例に限定されることはなく、移動装置を、リニアモータ、エアーシリンダー、油圧シリンダー、水圧シリンダーなどから構成するようにしても良い。 The holding mechanism 3 is supported by the holding mechanism support part 14. The stator jig 2 is supported by the stator jig support 15. The torque meter 9 is supported by the torque meter support portion 16. The load motor 10 is supported by the load motor support portion 17. These support portions 14 to 17 are fixed to the device base portion 18. The direction of arrangement of the cross current detection device can be changed according to the production line. In FIG. 1, the cross current detection device is arranged so that the rotating shafts 7 and 11 are horizontal. However, the present invention is not limited thereto, and for example, the cross current detection device may be arranged so that the rotation shafts 7 and 11 are vertical. In that case, out of the two ends of the support portions 14 to 17, a stress is not biased between one end joined to the device base 18 and the other end serving as a free end. Two device bases 18 can be installed so as to hold both ends of the support portions 14-17. Thus, depending on the situation, two or more device bases 18 may be installed to hold at least both ends of the support parts 14-17. Further, in order to facilitate insertion of the rotor 1 into the stator jig 2, as shown in FIG. 2, the stator jig support portion 15 is arranged in the axial direction of the rotary shaft 7, that is, in the horizontal direction in FIG. It can also be made movable. In that case, it is necessary to install a moving device for moving the stator jig support 15 with respect to the device base 18. In the example of FIG. 2, a moving device composed of a ball screw 19 and a ball screw drive motor 20 is installed. In the moving device, the ball screw driving motor 20 rotates the ball screw 19 to move the stator jig support 15. The moving device is not limited to the example shown in FIG. 2, and the moving device may be constituted by a linear motor, an air cylinder, a hydraulic cylinder, a hydraulic cylinder, or the like.
 次に、保持機構支持部14の構成について説明する。保持機構支持部14は、例えば、1枚の板状部材から構成する。当該板状部材の中央部には、保持機構3が挿入するための孔、すなわち貫通穴が設けられている。あるいは、保持機構支持部14を構成する板状部材を、図3に示すように、孔の位置で上部21と下部22とに分割されている2枚の板から構成するようにしてもよい。その場合には、回転子1を保持機構支持部14に挿入する際に、図3に示すように、上部21を持ち上げることで、上部21を下部22から離間させる。これにより、回転子1が挿入しやすくなる。あるいは、図4に示すように、上部24と下部25とを蝶番23で結合させておき、回転子1を保持機構支持部14に挿入する際に、図4に示すように、蝶番23で上部24を下部25に対して開放する。さらに、保持機構支持部14を構成する板状部材を、図5に示すように、3方向に配置された3つの把持部品26から構成するようにしてもよい。その場合には、回転子1を保持機構支持部14に挿入する際には、把持部品26を3方向外側に広げて、回転子1を挿入しやすくする。また、回転子1の挿入後は、回転子1を3方向から把持部品26で把持する。このように、保持機構支持部14を図3~図6のいずれかに示した構成とすることで、保持機構支持部14に回転子1を容易に挿入可能な隙間を設けることが可能となる。 Next, the configuration of the holding mechanism support unit 14 will be described. The holding mechanism support part 14 is comprised from one plate-shaped member, for example. A hole for inserting the holding mechanism 3, that is, a through hole is provided at the center of the plate-like member. Or you may make it comprise the plate-shaped member which comprises the holding mechanism support part 14 from the two board | plates divided | segmented into the upper part 21 and the lower part 22 in the position of a hole, as shown in FIG. In that case, when the rotor 1 is inserted into the holding mechanism support portion 14, the upper portion 21 is separated from the lower portion 22 by lifting the upper portion 21 as shown in FIG. 3. Thereby, it becomes easy to insert the rotor 1. Alternatively, as shown in FIG. 4, when the upper portion 24 and the lower portion 25 are coupled with a hinge 23 and the rotor 1 is inserted into the holding mechanism support portion 14, as shown in FIG. 24 is opened to the lower part 25. Further, the plate-like member constituting the holding mechanism support portion 14 may be constituted by three gripping components 26 arranged in three directions as shown in FIG. In that case, when inserting the rotor 1 into the holding mechanism support part 14, the gripping component 26 is spread outward in three directions to facilitate the insertion of the rotor 1. Further, after inserting the rotor 1, the rotor 1 is gripped by the gripping component 26 from three directions. As described above, by configuring the holding mechanism support portion 14 as shown in any of FIGS. 3 to 6, it is possible to provide a gap in which the rotor 1 can be easily inserted in the holding mechanism support portion 14. .
 図6は、図5の変形例である。上記の図5では、保持機構支持部14を構成する板状部材を3つの把持部品26から構成する例について示した。これに対し、図6においては、保持機構支持部14が、中央部に孔27が設けられた1枚の板状部材と、当該板状部材の孔27に設けられた3つの把持部品26とから構成されている。図6では、3つの把持部品26を外側に広げた状態を示している。この状態においては、3つの把持部品26の先端は、破線で示される内径28に揃っている。このとき、内径28は回転子1の外周面よりも大きく、内径28と回転子1の外周面とは互いに干渉しない。そのため、回転子1を回転軸7の軸方向からも挿入可能となる。これにより、横流電流検出装置を製造ラインへ設置する際の横流電流検出装置の配置の自由度が向上する。 FIG. 6 is a modification of FIG. In FIG. 5 described above, an example in which the plate-like member constituting the holding mechanism support portion 14 is constituted by three gripping components 26 is shown. On the other hand, in FIG. 6, the holding mechanism support portion 14 includes a single plate-like member provided with a hole 27 in the central portion, and three gripping components 26 provided in the holes 27 of the plate-like member. It is composed of FIG. 6 shows a state where the three gripping parts 26 are spread outward. In this state, the tips of the three gripping parts 26 are aligned with an inner diameter 28 indicated by a broken line. At this time, the inner diameter 28 is larger than the outer peripheral surface of the rotor 1, and the inner diameter 28 and the outer peripheral surface of the rotor 1 do not interfere with each other. Therefore, the rotor 1 can be inserted also from the axial direction of the rotating shaft 7. Thereby, the freedom degree of arrangement | positioning of a cross current detection device at the time of installing a cross current detection device in a manufacturing line improves.
 本実施の形態1に係る横流電流検出装置は、以上のように構成されている。回転子1を逆回転させ、その状態で、トルク計9により負荷用モータ10のトルクを計測する。なお、逆回転とは、回転子1の回転方向が、固定子冶具2の内部に発生する回転磁界の回転方向と逆向きの回転のことをいう。そうして得られたトルク値をトルク計9から判定機13に送信する。判定機13では、トルク計9から入力されたトルク値とあらかじめ設定された閾値とを比較し、トルク値が閾値を超えた場合に、回転子1を、横流電流が発生する回転子と判断する。閾値は、横流電流の発生しない回転子と発生する回転子とを作成し、それぞれのトルク値を測って、2つのトルク値の間の範囲内に存在する任意の値とすればよい。 The cross current detection device according to the first embodiment is configured as described above. The rotor 1 is rotated in the reverse direction, and in this state, the torque of the load motor 10 is measured by the torque meter 9. Note that the reverse rotation refers to rotation in which the rotation direction of the rotor 1 is opposite to the rotation direction of the rotating magnetic field generated inside the stator jig 2. The torque value thus obtained is transmitted from the torque meter 9 to the determinator 13. The determinator 13 compares the torque value input from the torque meter 9 with a preset threshold value, and determines that the rotor 1 is a rotor that generates a cross current when the torque value exceeds the threshold value. . The threshold value may be an arbitrary value that exists in a range between two torque values by creating a rotor that does not generate a cross current and a rotor that generates the torque and measuring each torque value.
 図7に、測定開始から判定終了に至るまでの横流電流検出装置の処理の流れを示すフローチャートを示す。 FIG. 7 is a flowchart showing a processing flow of the cross current detection device from the start of measurement to the end of determination.
 まず、ステップS1においては、回転子1を、保持機構3を介して保持機構支持部14に取り付けるとともに、固定子冶具2に挿入する。 First, in step S <b> 1, the rotor 1 is attached to the holding mechanism support portion 14 via the holding mechanism 3 and is inserted into the stator jig 2.
 次に、ステップS2においては、電圧源6から、固定子冶具2の固定子巻線5に対して、固定子冶具2の内部に回転磁界を発生させるような電圧波形を持った電圧を印加する。 Next, in step S <b> 2, a voltage having a voltage waveform that generates a rotating magnetic field inside the stator jig 2 is applied from the voltage source 6 to the stator winding 5 of the stator jig 2. .
 次に、ステップS3においては、制御機12が、負荷用モータ10を駆動することで、カップリング8とトルク計9を介して回転子1を回転させる。制御機12は、回転子1が固定子冶具2が発生する回転磁界と同じ速度で回転する無負荷状態、すなわち、滑りsが、s=0の状態から、逆回転すなわちs>1の状態になるまで、負荷用モータ10で回転子1の回転速度を変化させていく。 Next, in step S 3, the controller 12 drives the load motor 10 to rotate the rotor 1 through the coupling 8 and the torque meter 9. The controller 12 changes the rotor 1 from the unloaded state where the rotor 1 rotates at the same speed as the rotating magnetic field generated by the stator jig 2, that is, the slip s from the state of s = 0 to the state of reverse rotation, that is, s> 1. Until this happens, the rotational speed of the rotor 1 is changed by the load motor 10.
 ステップS4においては、カップリング8を介して回転子1と負荷用モータ10とに接続されたトルク計9を用いて、逆回転の状態の負荷用モータ10のトルクを測定する。 In step S4, the torque of the load motor 10 in the reverse rotation state is measured using the torque meter 9 connected to the rotor 1 and the load motor 10 through the coupling 8.
 なお、ステップS3とステップS4との順番は入れ替えても良い。その場合には、回転子1が、固定子冶具2が発生する回転磁界と同じ速度で回転する無負荷状態、すなわち、滑りsがs=0の状態から、負荷用モータ10のトルクの測定を開始し、逆回転すなわちs>1の状態になるまで、負荷用モータ10で回転子1の回転速度を変化させて、負荷用モータ10のトルクを測定する。こうすることで、正回転すなわち0<s≦1の時の測定結果および逆回転すなわちs>1の時の両方の測定結果が得られる。そうして得られた正回転の時の測定結果と正回転用閾値とを比較して、正回転用閾値との差異が予め定めた割合より大きい場合に、回転子1が不良品であると検出することができる。なお、ここで、正回転用閾値について説明する。ダイカストで問題なく適正に形成された2次導体38を有する回転子1を用いて、負荷用モータ10のトルクを予め測定して、当該測定結果を正回転用閾値として記憶しておく。こうして、測定対象の回転子を正回転させたときの測定結果と正回転用閾値とを比較することで、回転子1が良品か不良品かを検出することができる。この場合の不良品とは、例えば、回転子1の2次導体38に鬆が入って二次抵抗が設計値よりも高くなっている場合、あるいは、回転子1の2次導体38を構成する導体棒33が切れてゲルゲス現象が発生している場合などが挙げられる。なお、上記の方法では、逆回転の時のトルクを測定して横流電流の発生を検出する前に、回転子1の2次導体の不良を検出することも可能となる。なお、正回転用閾値との差異に対して予め定めておく上記割合は、良品として許容できる任意の値を設定すればよい。 Note that the order of step S3 and step S4 may be interchanged. In that case, the torque of the load motor 10 is measured from the unloaded state where the rotor 1 rotates at the same speed as the rotating magnetic field generated by the stator jig 2, that is, the state where the slip s is s = 0. The torque of the load motor 10 is measured by changing the rotation speed of the rotor 1 with the load motor 10 until the rotation is reversed, that is, until s> 1. By doing this, the measurement result at the time of forward rotation, that is, 0 <s ≦ 1, and the measurement result at the time of reverse rotation, that is, when s> 1 are obtained. When the measurement result at the time of forward rotation obtained in this way is compared with the threshold for forward rotation and the difference from the threshold for forward rotation is larger than a predetermined ratio, the rotor 1 is defective. Can be detected. Here, the threshold value for forward rotation will be described. The torque of the load motor 10 is measured in advance using the rotor 1 having the secondary conductor 38 properly formed by die casting without any problem, and the measurement result is stored as a threshold value for forward rotation. In this way, it is possible to detect whether the rotor 1 is a non-defective product or a defective product by comparing the measurement result obtained when the rotor to be measured is rotated forward and the threshold for forward rotation. The defective product in this case is, for example, a case where the secondary conductor 38 of the rotor 1 contains a void and the secondary resistance is higher than the design value, or the secondary conductor 38 of the rotor 1 is configured. For example, the conductor rod 33 is cut and a gel guess phenomenon occurs. In the above method, it is also possible to detect a defect in the secondary conductor of the rotor 1 before measuring the torque during reverse rotation and detecting the occurrence of a cross current. In addition, what is necessary is just to set the arbitrary values which can be accept | permitted as good goods for the said ratio previously determined with respect to the difference with the threshold value for normal rotation.
 次に、ステップS5においては、逆回転の時のトルク計9の測定結果を判定機13に取り込み、測定結果のトルクと予め設定された逆回転用閾値とを比較する。測定結果のトルクが逆回転用閾値以下の場合はステップS6に進み、測定結果のトルクが逆回転用閾値より大きい場合はステップS7に進む。 Next, in step S5, the measurement result of the torque meter 9 at the time of reverse rotation is taken into the determinator 13, and the torque of the measurement result is compared with a preset reverse rotation threshold value. If the measured torque is less than or equal to the reverse rotation threshold, the process proceeds to step S6. If the measured torque is greater than the reverse rotation threshold, the process proceeds to step S7.
 ステップS6では、測定結果のトルクが逆回転用閾値以下であるため、横流電流無しと判断する。 In step S6, since the torque of the measurement result is equal to or less than the reverse rotation threshold value, it is determined that there is no cross current.
 ステップS7では、測定結果のトルクが逆回転用閾値より大きいため、横流電流有りと判断する。 In step S7, since the measured torque is larger than the reverse rotation threshold, it is determined that there is a cross current.
 横流電流の検出において、逆回転時の電気特性の測定が有用な事を確認するため、以下に実験結果を示す。図8に、今回の実験で使用した回転子1の回転子鉄心31の斜視図を示す。ここでは、回転子1として、かご形回転子を例に挙げて説明する。回転子鉄心31は、電磁鋼板を円環状にプレス打抜きした鉄心板を複数枚積層した積層鋼板から構成されている。回転子鉄心31の外周部に、アルミニウムをダイカストして作成した2次導体38を設けることで、回転子1が形成される。そうして形成された回転子1の斜視図を図9に示す。図9に示すように、回転子1においては、回転子鉄心31の上端部および下端部に短絡環32が設けられ、回転子鉄心31の外周部に、複数の導体棒33から構成された2次導体38が設けられている。図9の状態の回転子1を、500℃まで加熱して冷却する熱処理を、計2回施した。熱処理前と熱処理後に滑りとトルクの関係を測定した結果を図10に示す。図10において、横軸は、測定対象の回転子1の滑りを表わし、縦軸は、トルク計9で測定されたトルクを示す。また、図10において、プロット「×」が、熱処理をする前の“横流電流 大”の回転子の測定結果を示し、プロット「〇」が、熱処理をした“横流電流 小”の回転子の測定結果を示す。また、ここで、滑りは、下記の式(1)で表される。 In order to confirm that it is useful to measure the electrical characteristics during reverse rotation in the detection of cross current, the following experimental results are shown. FIG. 8 is a perspective view of the rotor core 31 of the rotor 1 used in this experiment. Here, a cage rotor will be described as an example of the rotor 1. The rotor core 31 is composed of a laminated steel plate in which a plurality of iron core plates obtained by press-punching electromagnetic steel plates in an annular shape are laminated. The rotor 1 is formed by providing a secondary conductor 38 formed by die-casting aluminum on the outer periphery of the rotor core 31. A perspective view of the rotor 1 thus formed is shown in FIG. As shown in FIG. 9, in the rotor 1, a short-circuit ring 32 is provided at the upper end portion and the lower end portion of the rotor core 31, and the outer periphery of the rotor core 31 is composed of a plurality of conductor rods 33. A secondary conductor 38 is provided. The rotor 1 in the state of FIG. 9 was subjected to a total of two heat treatments for heating to 500 ° C. and cooling. The results of measuring the relationship between slip and torque before and after heat treatment are shown in FIG. In FIG. 10, the horizontal axis represents the slip of the rotor 1 to be measured, and the vertical axis represents the torque measured by the torque meter 9. In addition, in FIG. 10, the plot “×” indicates the measurement result of the “cross current large” rotor before the heat treatment, and the plot “◯” indicates the measurement of the “cross current small” rotor after the heat treatment. Results are shown. Here, the slip is expressed by the following formula (1).
  滑り=((固定子の回転磁界の回転速度)-(回転子の回転速度))
             /(固定子の回転磁界の回転速度)  (1)
Slip = ((Rotational speed of the rotating magnetic field of the stator) − (Rotational speed of the rotor))
/ (Rotational speed of the rotating magnetic field of the stator) (1)
 図10のグラフから、熱処理をした“横流電流 小”の回転子は、熱処理をする前の“横流電流 大”の回転子よりも、逆回転時のトルクが低下していることが分かる。これは、2次導体38を構成するアルミニウムと回転子鉄心31を構成する電磁鋼板との熱膨張率の違いにより、熱処理によって加熱された2次導体38と回転子鉄心31との導通が切断されて、横流電流が小さくなったためと考えられる。 From the graph of FIG. 10, it can be seen that the “cross current current small” rotor after heat treatment has lower torque during reverse rotation than the “cross current large” rotor before heat treatment. This is because the conduction between the secondary conductor 38 heated by the heat treatment and the rotor core 31 is cut off due to the difference in thermal expansion coefficient between the aluminum constituting the secondary conductor 38 and the electrical steel sheet constituting the rotor core 31. This is probably because the cross current has become smaller.
 また、図11に、滑りと効率との関係を示す。図11において、横軸は、測定対象の回転子1の滑りを表わし、縦軸は、効率を示す。また、プロット「×」が、熱処理をする前の“横流電流 大”の回転子の測定結果を示し、プロット「〇」が、熱処理をした“横流電流 小”の回転子の測定結果を示す。図11における滑りs=1.3の時には、熱処理ありの“横流電流 小”の回転子の場合の効率は、熱処理なしの“横流電流 大”の回転子の場合の効率を4.3%上回る。上記の実験結果から、熱処理を2回施した“横流電流 小”の回転子のトルク値を横流電流無しの場合とし、熱処理なしの“横流電流 大”の回転子のトルク値を横流電流有りの場合として、2つのトルク値の間の範囲内に存在する任意の値を逆回転用閾値とすれば、測定対象の回転子が横流電流有りか無しかを判定することができる。 Fig. 11 shows the relationship between slip and efficiency. In FIG. 11, the horizontal axis represents the slip of the rotor 1 to be measured, and the vertical axis represents the efficiency. In addition, the plot “×” shows the measurement result of the rotor with “large cross current” before the heat treatment, and the plot “◯” shows the measurement result of the rotor with “low cross current” after the heat treatment. In the case of slip s = 1.3 in FIG. 11, the efficiency in the case of the “cross current small” rotor with heat treatment exceeds the efficiency in the case of the “large cross current large” rotor without heat treatment by 4.3%. . From the above experimental results, the torque value of the “cross current small” rotor subjected to the heat treatment twice is assumed to be no cross current, and the torque value of the “cross current large” rotor without heat treatment is assumed to be that of the cross current. As an example, if an arbitrary value existing within a range between two torque values is set as the reverse rotation threshold value, it can be determined whether the rotor to be measured has a cross current or not.
 また、今回の実験において、図9に示す回転子の他に、2次導体38の隣接する導体棒33間を強制的に短絡した回転子を2種類作成した。1つ目は、導体棒33の軸方向の中央部において、隣接する導体棒33間を一周短絡させた回転子(以下、回転子1Aとする)、2つ目は、導体棒33の軸方向の一方の端部から全長の1/3の部分と2/3の部分の合計2箇所において、隣接する導体棒33間を一周短絡させた回転子(以下、回転子1Bとする)とした。軸方向の中央部において短絡させた回転子1Aの斜視図を図12に示す。また、回転子1Aの2次導体の形状を、図13に示す。図13の拡大図に示されるように、隣接する導体棒33間に、短絡部34が接続されている。短絡部34は、導体棒33と同じ材料から形成すればよい。また、短絡部34は、導体棒33と同時に、ダイカストにより構成すればよい。図12および図13に示されるように、短絡部34が回転子1Aの全周に配置されている。なお、回転子1Bでも同様に、短絡部34が回転子1Bの全周に配置されている。但し、回転子1Bでは、短絡部34が、導体棒33の全長の1/3の部分と2/3の部分の合計2箇所に設けられている。 Further, in this experiment, in addition to the rotor shown in FIG. 9, two types of rotors were created in which the conductor bars 33 adjacent to the secondary conductor 38 were forcibly short-circuited. The first is a rotor in which the adjacent conductor rods 33 are short-circuited once around the central portion in the axial direction of the conductor rod 33 (hereinafter referred to as the rotor 1A), and the second is the axial direction of the conductor rod 33. A rotor (hereinafter referred to as “rotor 1 </ b> B”) in which the adjacent conductor rods 33 are short-circuited once in a total of two places, that is, a の portion and a / portion of the entire length from one end portion of the above. FIG. 12 shows a perspective view of the rotor 1A that is short-circuited in the central portion in the axial direction. Moreover, the shape of the secondary conductor of the rotor 1A is shown in FIG. As shown in the enlarged view of FIG. 13, a short-circuit portion 34 is connected between adjacent conductor bars 33. What is necessary is just to form the short circuit part 34 from the same material as the conductor rod 33. FIG. Moreover, the short circuit part 34 should just be comprised by die-casting simultaneously with the conductor rod 33. FIG. As shown in FIGS. 12 and 13, the short-circuit portion 34 is disposed on the entire circumference of the rotor 1 </ b> A. Similarly, in the rotor 1B, the short-circuit portion 34 is arranged on the entire circumference of the rotor 1B. However, in the rotor 1 </ b> B, the short-circuit portions 34 are provided at two places in total, that is, 1/3 and 2/3 of the entire length of the conductor rod 33.
 回転子1Aおよび回転子1Bに、上記と同様の熱処理をそれぞれ2回施し、逆回転時のトルク値をそれぞれ測定し、それらのトルク値と図9に示す短絡部の無い回転子1のトルク値とを比較した結果を図14に示す。図14において、短絡部無しの回転子1を“横流電流 小”とし、軸方向中央部を一周短絡させた回転子1Aを“横流電流 中”とし、軸方向2箇所を一周短絡させた回転子1Bを“横流電流 大”とした。図14において、横軸は、測定対象の誘導機の滑りを表わし、縦軸は、トルク計で測定されたトルクを示す。また、プロット「×」が、2つの短絡部を有し、熱処理をした“横流電流 大”の回転子1Bの測定結果を示し、プロット「△」が、1つの短絡部を有し、熱処理をした“横流電流 中”の回転子1Aの測定結果を示し、プロット「〇」が、短絡部が無く、熱処理をした“横流電流 小”の回転子1の測定結果を示す。図14から、短絡部34を設けた回転子1A,1Bの逆回転時のトルクが上昇しており、横流電流が多いほど逆回転時のトルクが大きくなることが分かる。“横流電流 大”の回転子1Bの場合の滑りs=1.3のトルクは、“横流電流 小”の回転子1の場合の滑りs=1.3のトルクに対して約51%増加する。一方、滑りs=0.25の時には、“横流電流 大”の回転子1Bの場合のトルクは、“横流電流 小”の回転子1の場合のトルクに対して約4.1%減少する。 The rotor 1A and the rotor 1B are subjected to the same heat treatment as described above twice, respectively, and the torque values at the time of reverse rotation are measured, respectively, and those torque values and the torque value of the rotor 1 without the short-circuit portion shown in FIG. FIG. 14 shows the result of the comparison. In FIG. 14, the rotor 1 without a short-circuit portion is “low cross current”, the rotor 1A short-circuited around the center in the axial direction is “cross current half-current”, and the rotor is short-circuited at two locations in the axial direction. 1B was defined as “large cross current”. In FIG. 14, the horizontal axis represents the slip of the induction machine to be measured, and the vertical axis represents the torque measured by the torque meter. Also, the plot “×” shows the measurement result of the rotor “1B” having two short-circuited portions and heat-treated, and the plot “Δ” has one short-circuited portion and heat-treated. The measurement result of the rotor 1A with “medium current in the cross current” is shown, and the plot “◯” shows the measurement result of the rotor 1 with “small cross current” without heat short circuit and heat treatment. From FIG. 14, it can be seen that the torque at the time of reverse rotation of the rotors 1A and 1B provided with the short circuit portion 34 increases, and the torque at the time of reverse rotation increases as the cross current increases. The torque of slip s = 1.3 in the case of the rotor 1B with “large cross current” increases by about 51% with respect to the torque of slip s = 1.3 in the case of the rotor 1 with “small cross current”. . On the other hand, when the slip s = 0.25, the torque in the case of the rotor 1B having “large cross current” is reduced by about 4.1% with respect to the torque in the case of the rotor 1 having “small cross current”.
 以上の実験により、正回転時のトルクの減少割合に比べて、逆回転時のトルクの増加割合が約12.4倍大きくなるため、横流電流を逆回転時のトルク値で検査することの妥当性が確認できる。 From the above experiment, the rate of increase in torque during reverse rotation is about 12.4 times greater than the rate of decrease in torque during normal rotation, so it is appropriate to check the cross current with the torque value during reverse rotation. Sex can be confirmed.
 なお、上記の現象は物理的に以下のように説明できる。まず、横流電流の発生しない回転子を考える。回転子1が、スキューされた複数の導体棒33を有すると、空間的に分布する高調波磁束により、それらの導体棒33に生じる誘起電圧が打ち消される。例えば、電気角72°のスキューでは、空間5次高調波磁束から生じる誘起電圧を打ち消すことができる。これにより、空間5次高調波磁束が原因で発生する高調波損失、電磁振動・電磁騒音、後述する非同期高調波トルクなどの発生を低減することができる。実際の回転電機では、固定子の起磁力高調波により基本波以外の高調波も発生する。例えば、3相交流が通電される固定子では、基本波の他に、基本波の5倍の空間分布で基本波とは逆方向に回転する空間5次逆相高調波が発生する。また、基本波の7倍の空間分布で基本波と同じ方向に回転する空間7次正相高調波も発生する。ここで、空間5次逆相高調波に着目すれば、5次逆相高調波に対する同期回転速度は、基本波に対する滑りs=1.2の回転速度となる。 The above phenomenon can be physically explained as follows. First, consider a rotor that does not generate a cross current. When the rotor 1 has a plurality of skewed conductor bars 33, the induced voltage generated in the conductor bars 33 is canceled out by the spatially distributed harmonic magnetic flux. For example, with an electrical angle of 72 ° skew, the induced voltage generated from the spatial fifth-order harmonic magnetic flux can be canceled. Thereby, generation | occurrence | production of the harmonic loss generate | occur | produced by the space 5th harmonic magnetic flux, electromagnetic vibration and electromagnetic noise, the asynchronous harmonic torque mentioned later, etc. can be reduced. In an actual rotating electrical machine, harmonics other than the fundamental wave are also generated by magnetomotive force harmonics of the stator. For example, in a stator to which a three-phase alternating current is applied, in addition to the fundamental wave, a spatial fifth-order antiphase harmonic that rotates in a direction opposite to the fundamental wave with a spatial distribution five times the fundamental wave is generated. In addition, a spatial seventh-order positive harmonic that rotates in the same direction as the fundamental wave with a spatial distribution seven times the fundamental wave is also generated. Here, paying attention to the spatial fifth-order anti-harmonic, the synchronous rotation speed for the fifth-order anti-harmonic becomes a rotation speed of slip s = 1.2 with respect to the fundamental wave.
 図15に、滑りとトルクの関係の概念図を示す。図15において、実線35が基本波のトルクカーブであり、点線36が5次逆相高調波のトルクカーブである。この5次逆相高調波が発生させるトルクを高調波非同期トルクと呼ぶ。一般的に回転子のスキューで空間高調波が発生させる二次電流が小さくなるため、高調波非同期トルクは基本波のトルクよりも小さくなる。しかし、回転子の回転子鉄心31と2次導体38が導通すると、導体棒33の方向だけでなく周方向にも電流が流れるようになるため、高調波に対するスキューの効果が減じられる。すると、大きな高調波非同期トルクが発生することになる。ここで、空間5次逆相高調波に着目すれば、図12の短絡部34に5次逆相高調波磁束の誘起電圧が誘導され、横流電流が流れることになる。この横流電流は、比較的低抵抗の2次導体だけでなく、高抵抗の積層鋼板、および、微小断面の導通部にも流れるため、抵抗が高くなる。基本波に対する滑りsが1.2より大きくなると、空間5次逆相高調波に対して二次抵抗が高い特性となるため、図10のように滑りs>1.2の領域で、常に大きなトルクが発生することになる。また、短絡部34に加わる基本波の誘起電圧も滑りが大きくなると、横流電流により見かけ上スキューが小さくなるだけでなく、2次抵抗が高くなると見なせることから、トルクが大きくなる。このため、0<s<1.2の領域では、5次高調波と基本波に対する効果が相殺されて、トルクの変化が少なくなる。 FIG. 15 shows a conceptual diagram of the relationship between slip and torque. In FIG. 15, a solid line 35 is a torque curve of a fundamental wave, and a dotted line 36 is a torque curve of a fifth-order antiphase harmonic. The torque generated by the fifth-order antiphase harmonic is called harmonic asynchronous torque. In general, since the secondary current generated by the spatial harmonics due to the rotor skew is reduced, the harmonic asynchronous torque is smaller than the fundamental torque. However, when the rotor core 31 of the rotor and the secondary conductor 38 are brought into conduction, current flows not only in the direction of the conductor rod 33 but also in the circumferential direction, so that the effect of skew on harmonics is reduced. Then, a large harmonic asynchronous torque is generated. Here, if attention is paid to the spatial fifth-order anti-phase harmonic, an induced voltage of the fifth-order anti-phase harmonic magnetic flux is induced in the short circuit portion 34 in FIG. 12, and a cross current flows. This cross current flows not only in the secondary conductor having a relatively low resistance, but also in a high resistance laminated steel sheet and a conductive portion having a small cross section, and therefore the resistance becomes high. When the slip s with respect to the fundamental wave is greater than 1.2, the secondary resistance becomes higher with respect to the spatial fifth-order anti-harmonic, so that it is always large in the region of slip s> 1.2 as shown in FIG. Torque is generated. Further, when the induced voltage of the fundamental wave applied to the short-circuited portion 34 also increases in slip, not only the skew is apparently reduced due to the cross current, but also the secondary resistance is increased, so that the torque is increased. For this reason, in the region of 0 <s <1.2, the effects on the fifth harmonic and the fundamental wave are canceled out, and the change in torque is reduced.
 上記の横流電流の検出処理は、回転子の温度上昇に注意して実施する必要がある。前記の通り、2次導体38を構成するアルミニウムと回転子鉄心31を構成する電磁鋼板との熱膨張率は異なるため、回転子1の温度変化に伴って2次導体38と回転子鉄心31との接触状況が変化する。一方、回転電機の逆回転時には、大きな2次銅損が発生することが知られており、特に横流電流が流れる部分は接触抵抗が存在するため、損失が大きい。横流電流による損失で横流電流発生部分の温度が上昇し、2次導体38と回転子鉄心31との接触状況が一時的に変わってしまうために、横流電流発生状況が変化してしまう恐れがある。この課題に対処するためには、回転子1の温度が上昇しないように、電圧源6から固定子冶具2に印加する電圧を低くすれば良い。その理由は、印加電圧を下げると、回転子1で発生する2次銅損も低下するためである。また、電圧を印加する時間も短くして、回転子1の温度が上昇する前に測定することもできる。更に、固定子冶具2への電圧印加前に、予め回転子1を既定の回転数で逆回転させて、回転速度に達した後に電圧を印加すれば、電圧の印加時間は最低限に抑えられる。図15では、滑り1.3付近のトルクに最も大きな差が出ているため、この逆回転トルクが最大となる回転数だけで運転してその回転数におけるトルクを測定しても判定することができる。固定子冶具2に印加する電圧値や印加時間の決定は、横流電流が発生する回転子1の逆回転試験を実施して、横流電流が発生しない回転子1の定格回転数での予め定められた温度以下となるようにすればよい。温度は定格回転数での回転子1の表面の温度を直接測って決定してもよいし、あるいは、固定子冶具2のコイル温度上昇許容値または軸受温度上昇許容値で定められる温度に決定しても良い。 The above cross current detection process needs to be carried out with attention to the temperature rise of the rotor. As described above, since the thermal expansion coefficient of the aluminum constituting the secondary conductor 38 and the electrical steel sheet constituting the rotor core 31 are different, the secondary conductor 38 and the rotor core 31 are changed in accordance with the temperature change of the rotor 1. The contact situation changes. On the other hand, it is known that a large secondary copper loss occurs at the time of reverse rotation of the rotating electrical machine. Particularly, a portion where a cross current flows flows has a large loss because of the contact resistance. Since the temperature of the portion where the cross current is generated rises due to the loss due to the cross current, and the contact state between the secondary conductor 38 and the rotor core 31 changes temporarily, the cross current generation state may change. . In order to cope with this problem, the voltage applied from the voltage source 6 to the stator jig 2 may be lowered so that the temperature of the rotor 1 does not rise. The reason is that when the applied voltage is lowered, the secondary copper loss generated in the rotor 1 is also lowered. Further, the time for applying the voltage can be shortened, and the measurement can be performed before the temperature of the rotor 1 rises. Further, the voltage application time can be minimized by applying the voltage after the rotor 1 is rotated in reverse at a predetermined rotation speed in advance and the rotation speed is reached before the voltage is applied to the stator jig 2. . In FIG. 15, since the largest difference is found in the torque near the slip 1.3, the determination can be made by operating only at the rotational speed at which the reverse rotational torque is maximum and measuring the torque at the rotational speed. it can. The voltage value and the application time to be applied to the stator jig 2 are determined in advance by performing a reverse rotation test of the rotor 1 in which a cross current is generated, and at a rated rotation speed of the rotor 1 in which a cross current is not generated. It is sufficient that the temperature is lower than the specified temperature. The temperature may be determined by directly measuring the temperature of the surface of the rotor 1 at the rated rotational speed, or it may be determined at a temperature determined by the allowable coil temperature increase value or the allowable bearing temperature increase value of the stator jig 2. May be.
 以上のように、本実施の形態1によれば、判定機13が、回転子1が逆回転しているときに測定機で測定した負荷用モータ10の特性値を閾値と比較することで、回転子1の横流電流の発生の有無を判定する。このように、逆回転領域で、負荷用モータ10の特性値を測定することにより、明確かつ容易に回転子1の横流電流を検出することができる。 As described above, according to the first embodiment, the determinator 13 compares the characteristic value of the load motor 10 measured with the measuring instrument when the rotor 1 is rotating in reverse with the threshold value. It is determined whether or not a cross current is generated in the rotor 1. Thus, the cross current of the rotor 1 can be detected clearly and easily by measuring the characteristic value of the load motor 10 in the reverse rotation region.
 さらに、実施の形態1において、回転子1を逆回転させて回転子1の回転速度が予め設定された回転速度に達した時点以降に、電圧源6から固定子巻線5に印加される電圧の電圧値および印加時間は、回転子1の温度が予め定められた温度以下となるように設定することが望ましい。その場合には、温度上昇が一定以下となることにより、回転子1の2次導体38と回転子鉄心31との接触状況を定格運転時と等しくすることができる。 Furthermore, in the first embodiment, the voltage applied from the voltage source 6 to the stator winding 5 after the time when the rotor 1 is reversely rotated and the rotation speed of the rotor 1 reaches a preset rotation speed. The voltage value and the application time are desirably set so that the temperature of the rotor 1 is equal to or lower than a predetermined temperature. In that case, when the temperature rise is below a certain level, the contact state between the secondary conductor 38 of the rotor 1 and the rotor core 31 can be made equal to that during rated operation.
 実施の形態2.
 図16は、この発明の実施の形態2に係る横流電流検出装置の構成を示す概略図である。図16に示すように、実施の形態2では、上記の実施の形態1のトルク計9の代わりに、負荷用モータ10と制御機12との間の電線に電流計29が設置されている。電流計29には、判定機13が接続されている。
Embodiment 2. FIG.
FIG. 16 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 2 of the present invention. As shown in FIG. 16, in the second embodiment, an ammeter 29 is installed on the electric wire between the load motor 10 and the controller 12 instead of the torque meter 9 of the first embodiment. The determination device 13 is connected to the ammeter 29.
 実施の形態2においては、電流計29が、負荷用モータ10の特性値を測定するための測定機を構成している。電流計29は、負荷用モータ10に流れる総電流を計測する測定機として機能する。電流計29で測定された電流値は、判定機13に入力される。 In the second embodiment, the ammeter 29 constitutes a measuring machine for measuring the characteristic value of the load motor 10. The ammeter 29 functions as a measuring instrument that measures the total current flowing through the load motor 10. The current value measured by the ammeter 29 is input to the determinator 13.
 なお、図16においては、図1に示したトルク計9を設けていないため、トルク計支持部16も設けられていない。また、図1においては、回転軸7と回転軸11との間にトルク計9が設けられていたため、カップリング8が2つ必要であったが、図16においては、カップリング8は1つだけで良い。 In FIG. 16, since the torque meter 9 shown in FIG. 1 is not provided, the torque meter support portion 16 is not provided. In FIG. 1, the torque meter 9 is provided between the rotating shaft 7 and the rotating shaft 11, so that two couplings 8 are necessary. However, in FIG. Just good.
 他の構成については、図1と同じであるため、ここでは、その説明を省略する。 Since other configurations are the same as those in FIG. 1, the description thereof is omitted here.
 実施の形態2では、負荷用モータ10を永久磁石モータとする。また、負荷用モータ10の制御方式を、d軸電流Idを常に0に保つ「Id=0制御」とすると、負荷用モータ10の総電流は、負荷用モータ10のトルクに比例するため、総電流を電流計29で測定し、総電流に対して予め設定した閾値と、測定した総電流とを判定機13で比較することにより、回転子1が不良品か否かを検出することができる。 In the second embodiment, the load motor 10 is a permanent magnet motor. If the control method of the load motor 10 is “Id = 0 control” in which the d-axis current Id is always kept at 0, the total current of the load motor 10 is proportional to the torque of the load motor 10. It is possible to detect whether the rotor 1 is defective or not by measuring the current with the ammeter 29 and comparing the threshold value set in advance with respect to the total current and the measured total current with the determiner 13. .
 また、総電流はトルクに比例するため、判定機13で容易に総電流からトルクを算定することができる。そのため、判定機13で算出されるトルクに対して予め閾値を設けておき、当該閾値と算出されるトルクとの比較により、上記の実施の形態1と同様に、横流電流の有無を判定することができる。 Further, since the total current is proportional to the torque, the determining device 13 can easily calculate the torque from the total current. Therefore, a threshold is set in advance for the torque calculated by the determiner 13, and the presence or absence of the cross current is determined by comparing the threshold with the calculated torque, as in the first embodiment. Can do.
 実施の形態2では、上記の実施の形態1と異なり、可動部を持つトルク計9を使用しないことにより、量産ラインでの耐久性・メンテナンス性が向上する。 In the second embodiment, unlike the first embodiment, the use of the torque meter 9 having a movable part improves durability and maintainability in the mass production line.
 なお、実施の形態2において、負荷用モータ10のトルクが大きくなって、回転子鉄心31が磁気飽和してくると、総電流とトルクとの比例関係が成り立たなくなるため、負荷用モータ10は、総電流とトルクとの比例関係が成り立つ領域でのみ使用しなければならない。そのため、負荷用モータ10の定格トルクは、横流電流検出装置で扱うトルクに比べて、十分大きなものにする。また、固定子冶具2に印加する電圧を負荷用モータ10の定格トルクに合わせて調整しても良い。 In the second embodiment, when the torque of the load motor 10 increases and the rotor core 31 is magnetically saturated, the proportional relationship between the total current and the torque does not hold. It should be used only in the region where the proportional relationship between the total current and torque is established. For this reason, the rated torque of the load motor 10 is made sufficiently larger than the torque handled by the cross current detector. Further, the voltage applied to the stator jig 2 may be adjusted according to the rated torque of the load motor 10.
 以上のように、実施の形態2においても、上記の実施の形態1と同様の効果が得られる。さらに、実施の形態2では、可動部を持つトルク計9を使用しないことにより、量産ラインでの耐久性・メンテナンス性が向上する。 As described above, also in the second embodiment, the same effect as in the first embodiment can be obtained. Furthermore, in Embodiment 2, the durability and maintainability in the mass production line are improved by not using the torque meter 9 having a movable part.
 実施の形態3.
 図17は、この発明の実施の形態3による横流電流検出装置の構成を示す概略図である。上記の実施の形態2の電流計29の代わりに、電力計30が設置されている。他の構成については、上記の実施の形態2と同じであるため、ここでは、その説明を省略する。
Embodiment 3 FIG.
FIG. 17 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 3 of the present invention. Instead of the ammeter 29 of the second embodiment, a wattmeter 30 is installed. Since other configurations are the same as those in the second embodiment, description thereof is omitted here.
 実施の形態3においては、電力計30が、負荷用モータ10の特性値を測定するための測定機を構成している。電力計30は、負荷用モータ10への入力電力を計測する測定機として機能する。電力計30で測定された入力電力の値は、判定機13に入力される。 In the third embodiment, the wattmeter 30 constitutes a measuring machine for measuring the characteristic value of the load motor 10. The wattmeter 30 functions as a measuring instrument that measures input power to the load motor 10. The value of input power measured by the wattmeter 30 is input to the determinator 13.
 実施の形態3では、実施の形態2と同様に、負荷用モータ10を永久磁石モータとしている。永久磁石モータの損失、例えば機械損、銅損、鉄損が入力電力に比べて十分小さい場合、入力電力を1秒あたりの回転数で除した値がトルクとなるため、同一回転数での入力電力はトルクに比例する。そのため、入力電力を電力計30で測定し、入力電力に対して予め設定した閾値と、測定した入力電力とを判定機13で比較することにより、回転子1が不良品か否かを検出することができる。 In the third embodiment, as in the second embodiment, the load motor 10 is a permanent magnet motor. If the loss of the permanent magnet motor, such as mechanical loss, copper loss, and iron loss, is sufficiently smaller than the input power, the value obtained by dividing the input power by the number of revolutions per second is the torque, so input at the same number of revolutions. Electric power is proportional to torque. Therefore, the input power is measured by the wattmeter 30 and the threshold value set in advance for the input power is compared with the measured input power by the determiner 13 to detect whether or not the rotor 1 is defective. be able to.
 また、入力電力はトルクに比例するため、判定機13で、容易に、入力電力からトルクを算定できる。そのため、判定機13で算出されるトルクに対して予め閾値を設けておき、当該閾値と算出されるトルクとの比較により、上記の実施の形態1と同様に、横流電流の有無を判定することができる。 Also, since the input power is proportional to the torque, the determining device 13 can easily calculate the torque from the input power. Therefore, a threshold is set in advance for the torque calculated by the determiner 13, and the presence or absence of the cross current is determined by comparing the threshold with the calculated torque, as in the first embodiment. Can do.
 実施の形態3では、上記の実施の形態1と異なり、可動部を持つトルク計9を使用しないことにより、量産ラインでの耐久性・メンテナンス性が向上する。 In the third embodiment, unlike the first embodiment, the use of the torque meter 9 having a movable part improves durability and maintainability in a mass production line.
 負荷用モータ10の定格トルクに比べて、検出中のトルクが大きくなると、銅損や鉄損が増加して誤差が生じる。そのため、実施の形態3においても、実施の形態2と同じく、負荷用モータ10の定格トルクは、横流電流検出装置で扱うトルクに比べて十分大きなものにする。また、電圧源6から固定子冶具2に印加する電圧を負荷用モータ10の定格トルクに合わせて調整しても良い。 When compared with the rated torque of the load motor 10, if the torque being detected is increased, copper loss and iron loss increase and an error occurs. Therefore, also in the third embodiment, as in the second embodiment, the rated torque of the load motor 10 is made sufficiently larger than the torque handled by the cross current detector. Further, the voltage applied from the voltage source 6 to the stator jig 2 may be adjusted according to the rated torque of the load motor 10.
 以上のように、実施の形態3においても、上記の実施の形態1と同様の効果が得られる。また、実施の形態3では、可動部を持つトルク計9を使用しないことにより、量産ラインでの耐久性・メンテナンス性が向上する。 As described above, also in the third embodiment, the same effect as in the first embodiment can be obtained. Moreover, in Embodiment 3, durability and maintainability in a mass production line are improved by not using the torque meter 9 having a movable part.
 実施の形態4.
 図18は、この発明の実施の形態4に係る横流電流検出装置の構成を示す概略図である。実施の形態4においては、上記の実施の形態2の電流計29の代わりに、負荷角計測器37が設置されている。他の構成については、上記の実施の形態2と同じであるため、ここでは、その説明を省略する。
Embodiment 4 FIG.
FIG. 18 is a schematic diagram showing a configuration of a cross current detection device according to Embodiment 4 of the present invention. In the fourth embodiment, a load angle measuring device 37 is installed instead of the ammeter 29 of the second embodiment. Since other configurations are the same as those in the second embodiment, description thereof is omitted here.
 実施の形態4においては、負荷角計測器37が、負荷用モータ10の特性値を測定するための測定機を構成している。負荷角計測器37は、誘起電圧と端子電圧の位相差である負荷角を計算する。負荷角計測器37で求められた負荷角は、判定機13に入力される。 In the fourth embodiment, the load angle measuring device 37 constitutes a measuring machine for measuring the characteristic value of the load motor 10. The load angle measuring device 37 calculates a load angle that is a phase difference between the induced voltage and the terminal voltage. The load angle obtained by the load angle measuring device 37 is input to the determinator 13.
 実施の形態4では、負荷用モータ10をPMモータとしている。このとき、負荷角δは、誘起電圧Eと端子電圧Vと1次リアクタンス電圧I×Xsとに基づいて、下記の式(2)により計算できる。 In the fourth embodiment, the load motor 10 is a PM motor. At this time, the load angle δ can be calculated by the following equation (2) based on the induced voltage E, the terminal voltage V, and the primary reactance voltage I × Xs.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 1次リアクタンスXsは、あらかじめ測定した値を用いる。また、誘起電圧EはPMモータの逆起電力定数と角速度から算出することができる。PMモータへの入力電流Iは、負荷角を計算する負荷角計測器37に内蔵した電流計で測定すればよい。 The value measured in advance is used for the primary reactance Xs. The induced voltage E can be calculated from the back electromotive force constant and angular velocity of the PM motor. What is necessary is just to measure the input current I to PM motor with the ammeter built in the load angle measuring device 37 which calculates a load angle.
 同一回転数の場合、トルクが増加すると負荷角も増加する。従って、負荷角に対して閾値を予め設けて、求めた負荷角と閾値とを比較することで、横流電流の有無を判定機13で判定することができる。 ¡In the case of the same rotation speed, the load angle increases as the torque increases. Therefore, the determination device 13 can determine the presence or absence of the cross current by providing a threshold value for the load angle in advance and comparing the obtained load angle with the threshold value.
 また、負荷用モータ10が3相のPMモータの場合、負荷用モータ10の出力Pは、誘起電圧Eと端子電圧Vと1次リアクタンスXsと負荷角δとに基づいて、以下の式(3)により計算することができる。 When the load motor 10 is a three-phase PM motor, the output P of the load motor 10 is based on the induced voltage E, the terminal voltage V, the primary reactance Xs, and the load angle δ. ).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さらに、出力Pを1秒あたりの回転数で除算することで、負荷用モータ10のトルクを求めることもできる。 Furthermore, the torque of the load motor 10 can be obtained by dividing the output P by the number of revolutions per second.
 このように、判定機13で容易に負荷用モータ10の出力Pおよびトルクを算定できるため、算出した出力Pやトルクに対して予め閾値を設けておくことで、回転子1の横流電流の有無を容易に判定することもできる。 As described above, since the output P and the torque of the load motor 10 can be easily calculated by the determiner 13, the presence or absence of the cross current of the rotor 1 can be determined by providing a threshold in advance for the calculated output P and torque. Can be easily determined.
 この場合、負荷用モータ10の銅損の影響を受けにくいため、正確に出力やトルクを求めることができ、高精度に横流電流の検出をすることができる。 In this case, since it is difficult to be affected by the copper loss of the load motor 10, the output and torque can be obtained accurately, and the cross current can be detected with high accuracy.
 以上のように、実施の形態4においても、上記の実施の形態1と同様の効果が得られる。実施の形態4では、可動部を持つトルク計9を使用しないことにより、量産ラインでの耐久性・メンテナンス性が向上する。さらに、実施の形態4では、判定機13で、負荷角計測器37で測定した負荷角を用いて負荷用モータ10の出力およびトルクを算定するようにしたので、銅損による誤差が小さくなり、高精度に横流電流の測定を行うことができる。 As described above, also in the fourth embodiment, the same effect as in the first embodiment can be obtained. In the fourth embodiment, by not using the torque meter 9 having a movable part, durability and maintainability in the mass production line are improved. Furthermore, in the fourth embodiment, the determination device 13 calculates the output and torque of the load motor 10 using the load angle measured by the load angle measuring device 37, so the error due to copper loss is reduced. The cross current can be measured with high accuracy.
 実施の形態5.
 上記の実施の形態1~4に係る横流電流検出装置を用いて、図10または図14に示される測定結果に基づいて、逆回転時にトルクが大きくなる回転子を選別することもできる。例えば、逆回転時にトルクを大きくするために、図12及び図13に示す回転子1Aを作成すれば、正回転時の最大トルクよりも、逆回転時の最大トルクが大きくなる。逆回転時には、トルクは回転方向と逆向きに、すなわち制動力を発生することから、回転電機の逆転防止に有用である。例えば、風圧がかかっているファン、気圧、水圧、または、油圧等が加わっているポンプ、コンプレッサーなどの逆回転防止、そして、エレベーター、エスカレータ等の自重および利用者またはつり合い錘の重量によるずり落ちまたはずり上がりの防止、電車および自動車の坂道発進時の後退防止、ホイストおよびクレーンの逆回転防止、船のスクリューの逆回転防止等に用いることができる。
Embodiment 5 FIG.
Using the cross current detection devices according to Embodiments 1 to 4 described above, a rotor whose torque increases during reverse rotation can be selected based on the measurement results shown in FIG. 10 or FIG. For example, if the rotor 1A shown in FIGS. 12 and 13 is created in order to increase the torque during reverse rotation, the maximum torque during reverse rotation is greater than the maximum torque during normal rotation. During reverse rotation, torque is generated in the direction opposite to the rotation direction, that is, a braking force is generated, which is useful for preventing reverse rotation of the rotating electrical machine. For example, fans with wind pressure, pumps with air pressure, water pressure, hydraulic pressure, etc., reverse rotation prevention of compressors, etc., and elevators, escalators etc. due to their own weight and user or counterweight weight It can be used for prevention of sliding up, prevention of reverse movement when starting on a hill on trains and automobiles, prevention of reverse rotation of hoists and cranes, prevention of reverse rotation of ship screws, and the like.
 以上のように、実施の形態1~4で示した回転子1を、滑りが1.2より大きいとき、すなわち、逆回転のときの負荷用モータ10のトルクが、滑りが1より小さいとき、すなわち、正回転のときの最大トルクよりも大きくなるように構成すれば、逆回転領域で、回転方向と逆向きのトルクを発生させることにより、回転電機の逆転防止の効果を持つことができる。 As described above, when the slip of the rotor 1 shown in the first to fourth embodiments is larger than 1.2, that is, when the torque of the load motor 10 during reverse rotation is less than 1, That is, if the torque is configured to be greater than the maximum torque during forward rotation, the reverse rotation of the rotating electrical machine can be prevented by generating torque in the reverse rotation region in the reverse direction.
 1 回転子、2 固定子冶具、3 保持機構、4 固定子鉄心、5 固定子巻線、6 電圧源、7 回転軸、8 カップリング、9 トルク計、10 負荷用モータ、11 回転軸、12 制御機、13 判定機、14 保持機構支持部、15 固定子冶具支持部、16 トルク計支持部、17 負荷用モータ支持部、18 装置基部、19 ボールねじ、20 ボールねじ駆動モータ、29 電流計、30 電力計、31 回転子鉄心、32 短絡環、33 導体棒、34 短絡部、37 負荷角計測器。 1 rotor, 2 stator jig, 3 holding mechanism, 4 stator core, 5 stator winding, 6 voltage source, 7 rotating shaft, 8 coupling, 9 torque meter, 10 load motor, 11 rotating shaft, 12 Controller, 13 Judgment machine, 14 Holding mechanism support section, 15 Stator jig support section, 16 Torque meter support section, 17 Load motor support section, 18 Device base, 19 Ball screw, 20 Ball screw drive motor, 29 Ammeter , 30 wattmeter, 31 rotor core, 32 short circuit ring, 33 conductor rod, 34 short circuit part, 37 load angle measuring instrument.

Claims (9)

  1.  固定子鉄心と前記固定子鉄心に巻回された固定子巻線とを有し、測定対象の回転子を内部に挿入可能な固定子冶具と、
     前記固定子冶具の前記内部に回転磁界を発生させる電圧を前記固定子巻線に印加する電圧源と、
     前記固定子冶具の前記内部に挿入された状態の前記回転子を回転させる負荷用モータと、
     前記負荷用モータの特性値を測定する測定機と、
     前記測定機が測定した前記負荷用モータの特性値に基づいて、前記回転子に横流電流が発生しているか否かを判定する判定機と
     を備え、
     前記判定機は、前記回転子の回転方向が前記回転磁界の回転方向と逆向きの逆回転のときに前記測定機で測定した前記負荷用モータの特性値を、予め設定された閾値と比較することで、前記横流電流の発生の有無を判定する、
     横流電流検出装置。
    A stator jig having a stator core and a stator winding wound around the stator core, and capable of inserting a rotor to be measured inside;
    A voltage source that applies to the stator winding a voltage that generates a rotating magnetic field inside the stator jig;
    A load motor for rotating the rotor in a state of being inserted into the stator jig;
    A measuring instrument for measuring the characteristic value of the load motor;
    A determination device for determining whether or not a cross current is generated in the rotor based on a characteristic value of the load motor measured by the measuring device;
    The determinator compares the characteristic value of the load motor measured by the measuring machine with a preset threshold value when the rotation direction of the rotor is reverse rotation opposite to the rotation direction of the rotating magnetic field. By determining whether or not the cross current is generated,
    Cross current detector.
  2.  前記測定機は、前記負荷用モータのトルクを検出するトルク計から構成される、
     請求項1に記載の横流電流検出装置。
    The measuring machine is composed of a torque meter that detects the torque of the load motor.
    The cross current detection device according to claim 1.
  3.  前記測定機は、前記負荷用モータに流れる電流を測定する電流計から構成される、
     請求項1に記載の横流電流検出装置。
    The measuring machine is composed of an ammeter that measures the current flowing through the load motor.
    The cross current detection device according to claim 1.
  4.  前記測定機は、前記負荷用モータへ入力される電力を測定する電力計から構成される、
     請求項1に記載の横流電流検出装置。
    The measuring machine is composed of a wattmeter that measures power input to the load motor.
    The cross current detection device according to claim 1.
  5.  前記測定機は、前記負荷用モータの誘起電圧と端子電圧との位相差である負荷角を測定する負荷角計測器から構成される、
     請求項1に記載の横流電流検出装置。
    The measuring device includes a load angle measuring device that measures a load angle that is a phase difference between an induced voltage of the load motor and a terminal voltage.
    The cross current detection device according to claim 1.
  6.  前記回転子を逆回転させて前記回転子の回転速度が予め設定された回転速度に達した時点以降に、前記電圧源から前記固定子巻線に印加される電圧の電圧値および印加時間は、前記回転子の温度が予め定められた温度以下となるように設定される、
     請求項1から5までのいずれか1項に記載の横流電流検出装置。
    The voltage value and the application time of the voltage applied from the voltage source to the stator winding after the time when the rotor rotates in reverse and the rotation speed of the rotor reaches a preset rotation speed are: The temperature of the rotor is set to be equal to or lower than a predetermined temperature.
    The cross current detection device according to any one of claims 1 to 5.
  7.  前記回転子は、前記逆回転のときの前記負荷用モータのトルクが、前記回転子の回転方向が前記回転磁界の回転方向と同じ正回転のときの最大トルクよりも大きくなるように構成されている、
     請求項1から6までのいずれか1項に記載の横流電流検出装置。
    The rotor is configured such that the torque of the load motor during the reverse rotation is larger than the maximum torque when the rotation direction of the rotor is the same as the rotation direction of the rotating magnetic field. Yes,
    The cross current detection device according to any one of claims 1 to 6.
  8.  測定対象の回転子を固定子冶具の内部に挿入するステップと、
     前記固定子冶具の前記内部に回転磁界を発生させる電圧を、前記固定子冶具に印加するステップと、
     前記回転子を負荷用モータで回転させるステップと、
     前記負荷用モータの特性値を測定するステップと、
     前記回転子の回転方向が前記回転磁界の回転方向と逆向きの状態において測定した前記負荷用モータの前記特性値を予め設定された閾値と比較することで、前記回転子に横流電流が発生しているか否かを判定するステップと
     を備えた、横流電流検出方法。
    Inserting the rotor to be measured into the stator jig;
    Applying a voltage that generates a rotating magnetic field inside the stator jig to the stator jig;
    Rotating the rotor with a load motor;
    Measuring a characteristic value of the load motor;
    A cross current is generated in the rotor by comparing the characteristic value of the load motor measured in a state where the rotation direction of the rotor is opposite to the rotation direction of the rotating magnetic field with a preset threshold value. A method for detecting a cross current comprising: a step for determining whether or not the current flows.
  9.  回転電機の固定子の内部に挿入されて用いられる回転子であって、
     前記回転子の回転方向が前記固定子の内部に発生する回転磁界の回転方向と逆向きの逆回転のときの前記回転電機のトルクが、前記回転子の回転方向が前記回転磁界の回転方向と同じ正回転のときの前記回転電機の最大トルクよりも大きくなるように構成されている、回転子。
    A rotor used by being inserted into a stator of a rotating electric machine,
    The torque of the rotating electrical machine when the rotation direction of the rotor is reverse rotation opposite to the rotation direction of the rotating magnetic field generated inside the stator, and the rotation direction of the rotor is the rotation direction of the rotating magnetic field. A rotor configured to be larger than a maximum torque of the rotating electrical machine at the same forward rotation.
PCT/JP2017/007842 2017-02-28 2017-02-28 Cross current detection device, cross current detection method, and rotor WO2018158832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017539696A JP6249433B1 (en) 2017-02-28 2017-02-28 Cross current detection device, cross current detection method, and rotor
PCT/JP2017/007842 WO2018158832A1 (en) 2017-02-28 2017-02-28 Cross current detection device, cross current detection method, and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007842 WO2018158832A1 (en) 2017-02-28 2017-02-28 Cross current detection device, cross current detection method, and rotor

Publications (1)

Publication Number Publication Date
WO2018158832A1 true WO2018158832A1 (en) 2018-09-07

Family

ID=60685695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007842 WO2018158832A1 (en) 2017-02-28 2017-02-28 Cross current detection device, cross current detection method, and rotor

Country Status (2)

Country Link
JP (1) JP6249433B1 (en)
WO (1) WO2018158832A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472116B1 (en) * 2021-06-16 2022-12-05 주식회사 에이치엔디멀티랩 Apparatus for measuring cogging torque or counter electro-motive force of motor and method thereof
WO2024079932A1 (en) * 2022-10-12 2024-04-18 三菱重工機械システム株式会社 Conveyance device, detection device, and phase shift determination method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045279B (en) * 2018-01-17 2021-06-29 深圳市优必选科技有限公司 Method and system for calibrating proportional relation between torque and current of motor and terminal equipment
KR102097730B1 (en) * 2018-12-11 2020-04-06 김병국 system for inspection of high speed motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133821A (en) * 1991-11-15 1993-05-28 Matsushita Electric Ind Co Ltd Method for measuring stray load loss of rotar
JP2001251703A (en) * 2000-03-02 2001-09-14 Hitachi Ltd Hybric electric vehicle using permanent magnet rotating electric machine
JP2006149031A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Vehicle drive system and vehicle equipped with it
JP2010014534A (en) * 2008-07-03 2010-01-21 Asmo Co Ltd Cogging torque measurement method and cogging torque measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133821A (en) * 1991-11-15 1993-05-28 Matsushita Electric Ind Co Ltd Method for measuring stray load loss of rotar
JP2001251703A (en) * 2000-03-02 2001-09-14 Hitachi Ltd Hybric electric vehicle using permanent magnet rotating electric machine
JP2006149031A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Vehicle drive system and vehicle equipped with it
JP2010014534A (en) * 2008-07-03 2010-01-21 Asmo Co Ltd Cogging torque measurement method and cogging torque measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472116B1 (en) * 2021-06-16 2022-12-05 주식회사 에이치엔디멀티랩 Apparatus for measuring cogging torque or counter electro-motive force of motor and method thereof
WO2024079932A1 (en) * 2022-10-12 2024-04-18 三菱重工機械システム株式会社 Conveyance device, detection device, and phase shift determination method

Also Published As

Publication number Publication date
JP6249433B1 (en) 2017-12-20
JPWO2018158832A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6249433B1 (en) Cross current detection device, cross current detection method, and rotor
Lee et al. A new strategy for condition monitoring of adjustable speed induction machine drive systems
Ying Characteristic performance analysis of squirrel cage induction motor with broken bars
Rosero et al. Study on the permanent magnet demagnetization fault in permanent magnet synchronous machines
JP2016073200A (en) Method and system for determining core losses in permanent magnet synchronous motor
Stumberger et al. Direct comparison of induction motor and line-start IPM synchronous motor characteristics for semi-hermetic compressor drives
Gilson et al. Design of a cost-efficient high-speed high-efficiency PM machine for compressor applications
KR101151244B1 (en) Apparatus and method for monitoring of airgap eccentricity of induction motors, and a medum having computer readable program for executing the method
Lee et al. A stator-core quality-assessment technique for inverter-fed induction machines
Sarwito et al. Analysis of three phases asynchronous slip ring motor performance feedback type 243
KR101142974B1 (en) Method for detecting rotor faults of inverter-fed induction motor, and a medium having computer readable program for executing the method
Salah et al. Monitoring and damping unbalanced magnetic pull due to eccentricity fault in induction machines: A review
CN105227026B (en) Axial flux permanent magnet motor condition monitoring
Jiang et al. Electromagnetic Force and Mechanical Response of Turbo-Generator End Winding under Electromechanical Faults
Fonseca et al. On-line stator fault diagnosis in line-start permanent magnet synchronous motors
JP6223915B2 (en) Compressor and driving device thereof
An et al. Loss measurement of a 30 kW high speed permanent magnet synchronous machine with active magnetic bearings
JP2017078687A (en) Measuring method and measuring device for no-load loss of permanent magnet type rotary electric machine
Kumar et al. Average Rotor Slot Size Variation Measurement in Induction Motor Using Variable Q-Factor Transforms and Regression Algorithms
Mlot et al. Effect of rotor/stator misalignment on the performance of a permanent magnet axial-flux motor
Neti et al. Motor current signature analysis during accelerated life testing of form wound induction motors
Chuan et al. Mitigating unbalanced magnetic pull in induction machines using active control method
Torkaman Rotor fault analysis and diagnosis in three-phase outer-rotor switched reluctance motor
Lateb et al. Indirect testing to determine losses of high speed synchronous permanent magnets motors
Tulicki et al. Application of the 2D field model to determine the axial flux signal for the purpose of diagnosing induction motors

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017539696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898877

Country of ref document: EP

Kind code of ref document: A1