WO2018158616A1 - Valve with sub-valve for minimum-flow control, redirecting and reverse control - Google Patents

Valve with sub-valve for minimum-flow control, redirecting and reverse control Download PDF

Info

Publication number
WO2018158616A1
WO2018158616A1 PCT/IB2017/051236 IB2017051236W WO2018158616A1 WO 2018158616 A1 WO2018158616 A1 WO 2018158616A1 IB 2017051236 W IB2017051236 W IB 2017051236W WO 2018158616 A1 WO2018158616 A1 WO 2018158616A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
duct
sub
flow
flow control
Prior art date
Application number
PCT/IB2017/051236
Other languages
Spanish (es)
French (fr)
Inventor
Alfonso VALENZUELA ACOSTA
Original Assignee
Valenzuela Acosta Alfonso
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valenzuela Acosta Alfonso filed Critical Valenzuela Acosta Alfonso
Priority to PCT/IB2017/051236 priority Critical patent/WO2018158616A1/en
Publication of WO2018158616A1 publication Critical patent/WO2018158616A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls

Definitions

  • the invention of the present valve belongs to the civil engineering branch, especially with regard to household water supply connections and flow management in water, air or liquid fluid conduction networks for re-addressing and reverse flow control with sub - minimum fluid flow control valve.
  • suction cups to expel air from fluid conduction networks and avoid high pressures within the networks is currently known.
  • the non-return valves are also known, also called single-flow valves or "check" valves that are intended to completely close the passage of circulating fluid, either gaseous fluid or liquid in one direction and free it in the direction contrary.
  • check valves single-flow valves or "check" valves that are intended to completely close the passage of circulating fluid, either gaseous fluid or liquid in one direction and free it in the direction contrary.
  • multiple devices have been created that provide a different solution to the problems of pressure and fluid withdrawal, whether gaseous or liquid, but there is no solution for gas redirection, reverse flow control, selective flow of liquids automatic way, closing of flow of manual form, expulsion of air and protection of equipment of measurement of liquids by wear when they measure gases and no liquids.
  • a solution close to the redirection and flow control of the present invention is the Colombian patent with certificate Number 29950 "Valve for redirection and reverse flow control" whose inventor is the same applicant for the present invention Alfonso Valenzuela Acosta, which proposes a solution for six operations in a single mechanism with re-addressing and reverse flow control, whose function is to prevent the passage of air to the measuring equipment that present inconsistencies in the reading of the water flow automatically, since the equipment Flow measurement does not distinguish between water volume and air volume when counting, mainly in household aqueducts.
  • the new invention is a valve with sub-valve that performs seven operations in a single mechanism, which in addition to a seal so that the air does not pass, re-directs the air and controls the reverse flows that have already passed through the interior of the mechanism for that do not return to the main network, has manual closing of the flow for protection of the equipment of liquid measurement, has opening and automatic closing; It has particularly as a solution to the control of minimum flow of liquid fluids a sub-valve element in a duct of its structure, which regulates the so-called "vital minimum" of water consumption for a home service.
  • the new valve with sub-valve reduces the flow rate to restrict the normal passage of drinking water in the household connections at the time that the service operator requires, thus allowing only the passage of flow calculated for different purposes and guarantee the "vital minimum" of consumption for a human being.
  • the valve for re-addressing and reverse flow control with a sub-valve for controlling the minimum flows of liquid fluids has seven effects in a mechanism consisting of a solid structural box with six threaded holes, where each of the holes determines a specific feature within manufacturing and internal function for the management of gas and liquid flows.
  • the solid structural box has internal ducts that begin or end in each of the six perforations, where each duct varies its diameter and level in its tour to fulfill a function.
  • each duct varies its diameter and level in its tour to fulfill a function.
  • the terminal part of the path there is a sphere with a spring that is activated by pressure to allow the passage of liquid, a sphere that when it does not receive liquid pressure is at a lower level controlling the reverse flow.
  • the sphere when in its lower level position is a blockage for the passage of air that is expelled by the air ejection duct from the upper part and which can be complemented with a known suction cup.
  • a sub-valve that slides horizontally over a guide and a stop, accompanied by a spring that is compressed to ensure the flow into the sub-valve according to the pressure exerted by the liquid flow .
  • Figure 1 Shows the valve for re-addressing and reverse flow control with the sphere blocking the air passage and the sub-valve reducing the air flow.
  • Figure 2 Shows the valve for re-addressing and reverse flow control with the sphere allowing the passage of restricted liquid to a minimum that the internal duct of the sub-valve controls.
  • Figure 3 Shows the valve in a perspective cut-off of the valve for redirection and reverse flow control with the sub-valve on its travel stop guide and its components.
  • Figure 4 It shows the sub-valve in a longitudinal section where the flow reducing duct, the stop and the upper rectangular mouth of liquid are appreciated.
  • Figure 5 Shows the sub-valve in a frontal plane with the slide stop.
  • Figure 6 Shows the sub-valve in its top view where the upper liquid outlet mouth is observed reduced to the minimum of fluid.
  • the sub-valve (23) called the "minimum vital" is an additional support element within the solid structure (12) of a main valve for redirection and reverse flow control.
  • This sub-valve (23) has an axially associated helical compression spring (24), which serves as a flow reducer to restrict the normal passage of drinking water in the household connections at the time that the service operator requires, allowing thus, only one step of the calculated flow.
  • helical compression spring 24
  • This step is obtained under normal operating conditions of the home aqueduct system, with an average of 1,200 +/- 100 liters per hour, with a maximum pressure of 600 kPa in pipes of 1, 27cm in diameter (1/2 ")
  • the passage of the water flow through the sub-valve (23) is modified by reforming the physical properties of the helical compression compression spring (24), on the in-line pressure of the connection. lateral axial movement, from left to right and from right to left.
  • the sub-valve (23) has a cylindrical shape with a limit stop (25) that allows the flow of liquid and prevents the total closing of the flow of liquid.
  • This sub-valve (23) works with assisted axial movement through a helical auxiliary compression spring (24) in stainless steel located in the protuberance (29).
  • This helical auxiliary spring (23) is compressed at higher line pressure a maximum of 600 kPa and gradually expands or returns to its original state at lower line pressure of about 400 kPa or less kPa; where the expansion and compression of the helical auxiliary spring (23) generates a lateral axial movement of the sub-valve (23) from left to right and vice versa on a guide (26) of the left lateral lower duct (4) of the solid body (12 ) of the main valve.
  • the sub-valve (23) has a flow reducing duct (28) half its length and an upper rectangular mouth (27) of restricted flow of liquid.
  • the upper rectangular mouth (27) of restricted flow of liquid through which the flow flows restricts the flow of the liquid flow when the axial spring (24) is compressed and increases the flow of the liquid flow when the axial spring (24) expands or return to its original state; that is to say that it has an inverse relationship between the in-line pressure and the flow rate: the higher the line pressure, the lower the flow rate and the lower the line pressure the greater the flow rate; where the stop (25) confers the maximum flow allowed by the mouth (27) fully open when the sub-valve (23) slides to the stop (25), and the axial spring (24) confers the minimum allowed flow through the mouth (27) when the sub-valve (23) slides to the limit allowed by the axial spring pressure (24) that partially closes the mouth (27) with the walls of the lower horizontal duct (4).
  • the solid structural box (12) is observed, which on its right side has a flow inlet connection (1) and on its opposite side the liquid outlet (7) for connection to a conventional flow measurement equipment.
  • the cover (6) of the lower horizontal passage duct (4) that supports the pressure of an auxiliary helical compression spring (24), the sub-valve (23) and its helical auxiliary compression spring (24) ) axially associated, the manual sealing mechanism (1 1) of the second vertical seal duct (18) and the connection of a conventional suction cup (13) that is connected to the air outlet of the first vertical duct (14) in its portion higher.
  • Figure 2 is a section of the solid structural box (12) showing the internal wall (5), the perforations, ducts and characteristic accessories for the execution of the valve.
  • an internal seal sphere (8) with its internal seal spring (9) that is automatically activated by liquid pressure (16) and not by air pressure (17).
  • the lower horizontal passage duct (4) is at a lower level than the upper horizontal inlet duct (15) and at a lower level than the upper horizontal outlet duct (10) and between both levels the sphere (8) is housed when it is made the stamp.
  • the lower horizontal passage duct (4) is a portion of the path where liquid (16) and air (17) are driven through the upper horizontal inlet duct (15); where the lower horizontal passage duct (4) houses the sub-valve (23) and allows its movement from left to right and vice versa on a guide (26). It is also observed that the liquid (16) represented by the dark continuous arrows flows in only one direction, while the air (17) represented by the dotted dates flows in two directions as seen in Figure 1. The air (17) returns through the lower horizontal passage duct (4) through the upper rectangular mouth (27) and through the flow reducing duct (28) ends its path in the first vertical air discharge duct (14) in its upper portion to be expelled by a conventional suction cup (13) into the atmosphere.
  • the liquid (16) that enters along with the air (17) in the upper horizontal inlet duct (15) follows its path through the lower horizontal passage duct (4), enters the flow reducing duct ( 28) half the length of the sub-valve (23) and continues its journey through the upper rectangular mouth (27) of restricted flow of liquid to push the seal sphere (8) and pass to the upper horizontal outlet duct (10) as shown in Figure 2, where the liquid outlet (7) is connected to the conventional flow measurement equipment.
  • the second vertical duct (18) has the manual seal mechanism (1 1) to interrupt the flow of fluids when required within the hydraulic network.
  • the manual seal mechanism (1 1) consists of a safety screw (2), a plunger (3), a guide (5) to slide the plunger (3) and some gaskets (19) that seal the space between the internal walls of the manual seal mechanism (1 1) and the plunger (3).
  • the prismatic solid structure (12) is taken and the perforations are made to create the five ducts with their characteristic shapes, creating three horizontal ducts and two vertical ducts that vary their diameter and shape for a specific function.
  • the internal ducts of the valve are: an upper horizontal inlet duct (15), an upper horizontal outlet duct (10), a lower horizontal duct (4) with a guide (26), a first vertical duct (14 ) air expulsion and second vertical seal pipe (18).
  • the valve for re-addressing and reverse flow control will take a flow from left to right of the plane as shown in figure 1 and figure and in figure 2.
  • the inlet of liquid flows (16) and inlet of Air (17) begins on the right side of the valve, where the flows enter through the upper horizontal inlet duct (15) which is a perforation that runs one third of the solid structural box (12) from left to right.
  • the upper horizontal inlet duct (15) is located in the upper half of the solid structural box (12) and ends when it meets the first vertical duct (14).
  • the first vertical duct (14) is perpendicular to the upper horizontal inlet duct (15) and ends its path upwards in the air expulsion connection (22) of a conventional suction cup (13) and down with the lower horizontal duct of Step 4) passing through the sub-valve (23) and compressing the axial helical compression spring (24) axially associated to restrict the flow rate.
  • the lower horizontal passage duct (4) is located in the lower half of the solid structural box (12), that is below the level of the upper horizontal inlet duct (15) and below the level an upper horizontal outlet duct ( 10), taking into account that the upper horizontal inlet duct (15) is at the same level as the upper horizontal outlet duct (10), but above the level of the lower horizontal passage duct (4).
  • the lower horizontal passage duct (4) is perpendicular to the first vertical duct (14) and begins with the termination of the first vertical duct (14).
  • the lower horizontal passage duct (4) runs two thirds of the solid structural box (12) and ends with the lid (6).
  • perpendicularly is the second vertical seal duct (18), which ends its path upwards with the connection of the manual seal mechanism (1 1) and in its intermediate perpendicularly it is connected to the upper horizontal outlet duct (10), a duct through which only liquid passes to a flow measurement device.
  • valve supports flow pressures of liquids and gases, it is constructed by vertical and horizontal perforations in the solid structural box (12), so that each of the five ducts is constructed with a perforation at a certain depth as observed in figure 1, figure 2, and figure 3 presenting cross-sectional views showing the ducts.
  • the upper horizontal inlet duct (15) maintains the same diameter in its path, in the same way as the lower horizontal duct (4).
  • the first vertical duct (14) has a larger diameter portion in its upper part for the expulsion of air and threaded connection of a conventional suction cup, and has a smaller diameter portion in the lower part where it is connected with the lower horizontal passage duct (4).
  • the second seal duct (18) has a larger diameter portion in its upper part that houses the seal spring (9) and the seal sphere (8), and in its lower part has a smaller diameter portion which is a stop for the seal sphere (8) that is housed there.
  • the second seal pipe (18) It changes diameter in a countersunk ring path (20) that houses the sphere (8) and performs the seal when there is no liquid pressure.
  • the upper horizontal outlet duct (10) also changes in diameter in a countersunk termination (21) of a ring of smaller diameter that prevents the sphere (8) from coming out and contributing to the formation of the ring path (20) countersinking of the second seal pipe (18).
  • valve for redirection and reverse flow control When the invention is executed, the valve for redirection and reverse flow control manually executes the first effect:
  • the valve for re-addressing and reverse control of seven-effect flows releases a high flow of air while the pipeline is filling, thus preventing the passage of air through the measuring equipment.
  • the valve opens introducing atmospheric air to the minimum depression in the network In this way, it avoids crushing damage and when the liquid passes to the measuring equipment, automatic closing is carried out for reverse flows.
  • the valve for re-routing and reverse flow control must be installed in a horizontal hydraulic conduction network as shown in figure 2 because it is its technical form for the correct operation of expulsion and air access, in addition to the upper horizontal inlet duct (15) must be at the same level of the upper horizontal outlet duct (10) and above the level of the lower horizontal passage duct (4) for the sphere (8) to automatically seal.
  • the pressure between 0.5000 kg / m2 to 0.650 kg / m2 necessary to close is created and when the liquid (16) has passed to the upper horizontal outlet duct (10), the seal sphere (8) is at a lower level below the upper horizontal outlet duct (10), that is to say that the liquid overpressure (16) it stops, the flow liquid is returned and the seal sphere (8) lowers again to close and prevent the reverse flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

The invention relates to a valve for the redirection and reverse control of flows with a sub-valve for minimum-flow control of liquid fluids for hydraulic and home networks with seven effects, the valve being formed by: a solid prismatic structure with horizontal ducts and vertical ducts that vary in diameter and shape for a specific function, supplemented with a sub-valve for reducing and controlling liquid fluid by means of pressure; a guide and a horizontal sub-valve spring; a sphere and a vertical spring, with an automatic seal based on overpressure of liquids, a manual seal with a plunger and a safety screw, automatic direction for expelling air, a flow seal for preventing passage to measuring equipment, and stoppage of reverse flows and control of the passage of the minimum amount of fluid, called the "vital minimum".

Description

VALVULA CON SUB-VALVULA DE CONTROL DE FLUJOS MINIMOS, REDIRECCIONAMIENTO Y CONTROL INVERSO  VALVE WITH MINIMUM FLOW, REDIRECTION AND REVERSE CONTROL SUB-VALVE
Esfera Tecnológica Technology Sphere
La invención de la presente válvula pertenece a la rama de la ingeniería civil, especialmente en lo referente a acometidas de acueductos domiciliarios y manejo de flujos en redes de conducción de agua, aire o fluidos líquidos para re-direccionamiento y control inverso de flujos con sub-válvula de control de mínimo de flujo de fluidos líquidos. The invention of the present valve belongs to the civil engineering branch, especially with regard to household water supply connections and flow management in water, air or liquid fluid conduction networks for re-addressing and reverse flow control with sub - minimum fluid flow control valve.
Estado de la Técnica State of the Art
Actualmente se conoce el uso de las ventosas para expulsar aire de las redes de conducción de fluidos y evitar altas presiones dentro de las redes. Por otra parte también se conocen las válvulas anti-retorno, también llamadas válvulas uniflujo o válvulas "check" que tienen por objetivo cerrar por completo el paso del fluido en circulación, bien sea fluido gaseoso o líquido en un sentido y dejarlo libre en el sentido contrario. Respecto a estos antecedentes se han creado múltiples dispositivos que dan solución diferente a los problemas de presión y retroceso de fluidos ya sean gaseosos o líquidos, pero no existe una solución para re-direccionamiento de gases, control inverso de flujos, paso selectivo de líquidos de manera automática, cierre de caudal de forma manual, expulsión de aire y protección de equipos de medición de líquidos por desgaste cuando miden gases y no líquidos.  The use of suction cups to expel air from fluid conduction networks and avoid high pressures within the networks is currently known. On the other hand, the non-return valves are also known, also called single-flow valves or "check" valves that are intended to completely close the passage of circulating fluid, either gaseous fluid or liquid in one direction and free it in the direction contrary. Regarding this background, multiple devices have been created that provide a different solution to the problems of pressure and fluid withdrawal, whether gaseous or liquid, but there is no solution for gas redirection, reverse flow control, selective flow of liquids automatic way, closing of flow of manual form, expulsion of air and protection of equipment of measurement of liquids by wear when they measure gases and no liquids.
Una solución cercana al re direccionamiento y control de flujo de la presente invención es la patente colombiana con certificado Número 29950 "Válvula para redireccionamiento y control inverso de flujos" cuyo inventor es el mismo solicitante de la presente invención Alfonso Valenzuela Acosta, que propone una solución para seis operaciones en un solo mecanismo con re-direccionamiento y control inverso de flujos, cuya función es la de impedir el paso de aire hacia los equipos de medida que presentan inconsistencias en la lectura del caudal de agua de forma automática, ya que los equipos de medida de flujo no distinguen entre volumen de agua y volumen de aire al realizar el conteo, principalmente en acueductos domiciliarios. La nueva invención es una válvula con sub-válvula que realiza siete operaciones en un solo mecanismo, que además de sello para que el aire no pase, re-direcciona el aire y controla los flujos inversos que ya han pasado por el interior del mecanismo para que no retornen a la red principal, tiene cierre manual del caudal para protección de los equipos de medición de líquido, tiene apertura y cierre automático; tiene particularmente como solución al control de mínimo de flujo de fluidos líquidos un elemento de sub-válvula en un ducto de paso de su estructura, que regula el denominado "mínimo vital" de consumo de agua para un servicio domiciliario. Además de las soluciones existentes para control de flujo, la nueva válvula con sub- válvula reduce el caudal para restringir el paso normal de agua potable en las acometidas domiciliarias en el momento que el operador del servicio lo requiera, permitiendo así, solamente el paso del caudal calculado para diferentes fines y garantizar el "mínimo vital" de consumo para un ser humano. A solution close to the redirection and flow control of the present invention is the Colombian patent with certificate Number 29950 "Valve for redirection and reverse flow control" whose inventor is the same applicant for the present invention Alfonso Valenzuela Acosta, which proposes a solution for six operations in a single mechanism with re-addressing and reverse flow control, whose function is to prevent the passage of air to the measuring equipment that present inconsistencies in the reading of the water flow automatically, since the equipment Flow measurement does not distinguish between water volume and air volume when counting, mainly in household aqueducts. The new invention is a valve with sub-valve that performs seven operations in a single mechanism, which in addition to a seal so that the air does not pass, re-directs the air and controls the reverse flows that have already passed through the interior of the mechanism for that do not return to the main network, has manual closing of the flow for protection of the equipment of liquid measurement, has opening and automatic closing; It has particularly as a solution to the control of minimum flow of liquid fluids a sub-valve element in a duct of its structure, which regulates the so-called "vital minimum" of water consumption for a home service. In addition to the existing solutions for flow control, the new valve with sub-valve reduces the flow rate to restrict the normal passage of drinking water in the household connections at the time that the service operator requires, thus allowing only the passage of flow calculated for different purposes and guarantee the "vital minimum" of consumption for a human being.
Esta solución no satisfecha en el estado de la técnica, garantiza un mínimo de flujo de agua denominado "mínimo vital" mediante la configuración de una estructura maciza para condiciones de funcionamiento en acueductos domiciliarios, entregando un promedio de 1.000 litros/hora hasta 1 .300 litros/hora, con una presión máxima de 500kPa hasta 700 kPa en tubería de 12.7mm (1/2"). No obstante, el paso o entrega del caudal de agua por la sub-válvula del mínimo de flujo puede ser modificado reformando las propiedades físicas un resorte auxiliar helicoidal de compresión, sobre la presión en línea de la acometida según sean sus condiciones con accionamiento de la sub-válvula de movimiento axial lateral, de izquierda a derecha y de derecha a izquierda. This solution, not satisfied in the state of the art, guarantees a minimum of water flow called "minimum vital" by configuring a solid structure for operating conditions in household aqueducts, delivering an average of 1,000 liters / hour up to 1 .300 liters / hour, with a maximum pressure of 500kPa up to 700 kPa in 12.7mm (1/2 ") pipe. However, the passage or delivery of the water flow through the sub-valve of the minimum flow can be modified by reforming the physical properties a helical compression compression spring, on the in-line pressure of the connection according to its conditions with the operation of the lateral axial movement sub-valve, from left to right and from right to left.
Descripción detallada de la invención Detailed description of the invention
La válvula para re-direccionamiento y control inverso de flujos con sub-válvula de control de flujos mínimos de fluidos líquidos tiene siete efectos en un mecanismo conformado por una caja estructural maciza con seis perforaciones con terminación roscada, donde cada una de las perforaciones determina una característica especifica dentro de la fabricación y función interna para el manejo de flujos de gas y líquido.  The valve for re-addressing and reverse flow control with a sub-valve for controlling the minimum flows of liquid fluids has seven effects in a mechanism consisting of a solid structural box with six threaded holes, where each of the holes determines a specific feature within manufacturing and internal function for the management of gas and liquid flows.
La caja estructural maciza tiene unos ductos internos que comienzan o terminan en cada una de las seis perforaciones, donde cada ducto varía su diámetro y nivel en su recorrido para cumplir una función. En la parte terminal del recorrido se encuentra una esfera con un resorte que se activa por presión para permitir el paso de líquido, esfera que cuando no recibe presión de líquido se encuentra en un nivel inferior controlando el flujo inverso. De igual manera, la esfera cuando está en su posición de nivel inferior es un bloqueo para el paso de aire que es expulsado por el ducto de expulsión de aire de la parte superior y que se puede complementar con una ventosa conocida. The solid structural box has internal ducts that begin or end in each of the six perforations, where each duct varies its diameter and level in its tour to fulfill a function. In the terminal part of the path there is a sphere with a spring that is activated by pressure to allow the passage of liquid, a sphere that when it does not receive liquid pressure is at a lower level controlling the reverse flow. Similarly, the sphere when in its lower level position is a blockage for the passage of air that is expelled by the air ejection duct from the upper part and which can be complemented with a known suction cup.
En la parte intermedia del recorrido esta una sub-válvula que se desliza horizontalmente sobre una guía y un tope, acompañada por un resorte que se comprime para garantizar el flujo al interior de la sub-válvula conforme a la presión ejercida por el flujo de líquido. In the intermediate part of the path is a sub-valve that slides horizontally over a guide and a stop, accompanied by a spring that is compressed to ensure the flow into the sub-valve according to the pressure exerted by the liquid flow .
Breve Descripción de Figuras Brief Description of Figures
Figura 1 : Muestra la válvula para re direccionamiento y control inverso de flujos con la esfera bloqueando el paso de aire y la sub-valvula reduciendo el flujo de aire.  Figure 1: Shows the valve for re-addressing and reverse flow control with the sphere blocking the air passage and the sub-valve reducing the air flow.
Figura 2: Muestra la válvula para re direccionamiento y control inverso de flujos con la esfera permitiendo el paso de líquido restringido a un mínimo que el ducto interior de la sub-válvula controla.  Figure 2: Shows the valve for re-addressing and reverse flow control with the sphere allowing the passage of restricted liquid to a minimum that the internal duct of the sub-valve controls.
Figura 3: Muestra la válvula en un corte en perspectiva de la válvula para re direccionamiento y control inverso de flujos con la sub-válvula sobre su guía tope de desplazamiento y sus componentes.  Figure 3: Shows the valve in a perspective cut-off of the valve for redirection and reverse flow control with the sub-valve on its travel stop guide and its components.
Figura 4: Muestra la sub-válvula en un corte longitudinal donde se aprecia el ducto reductor de flujo, el tope y la boca rectangular superior de líquido.  Figure 4: It shows the sub-valve in a longitudinal section where the flow reducing duct, the stop and the upper rectangular mouth of liquid are appreciated.
Figura 5: Muestra la sub-válvula en un plano frontal con el tope de deslizamiento. Figure 5: Shows the sub-valve in a frontal plane with the slide stop.
Figura 6: Muestra la sub-válvula en su vista superior donde se observa la boca superior de salida de líquido reducido al mínimo de fluido. Figure 6: Shows the sub-valve in its top view where the upper liquid outlet mouth is observed reduced to the minimum of fluid.
La sub-válvula (23) denominada "mínimo vital" es un elemento de apoyo adicional dentro de la estructura maciza (12) de una la válvula principal de re direccionamiento y control inverso de flujos. Esta sub-válvula (23) tiene un resorte auxiliar helicoidal de compresión (24) asociado axialmente, que sirve como reductor de caudal para restringir el paso normal de agua potable en las acometidas domiciliarias en el momento que el operador del servicio lo requiera, permitiendo así, solamente un paso del caudal calculado. Por ejemplo, con la sub-válvula (23) se puede regular el paso del caudal de agua de máximo de 200 +/- 20 litros en 24 horas; o 6.000 +/- 600 litros cúbicos en 30 días. -13. Este paso se obtiene en condiciones normales de funcionamiento del sistema de acueductos domiciliarios, con un promedio de 1 .200 +/- 100 litros hora, con una presión máxima de 600 kPa en tubería de 1 ,27cm de diámetro (1/2"). No obstante, el paso del caudal de agua por la sub-válvula (23) ser modificado reformando las propiedades físicas del resorte auxiliar helicoidal de compresión (24), sobre la presión en línea de la acometida. La sub-válvula trabaja con un movimiento axial lateral, de izquierda a derecha y de derecha a izquierda. The sub-valve (23) called the "minimum vital" is an additional support element within the solid structure (12) of a main valve for redirection and reverse flow control. This sub-valve (23) has an axially associated helical compression spring (24), which serves as a flow reducer to restrict the normal passage of drinking water in the household connections at the time that the service operator requires, allowing thus, only one step of the calculated flow. For example, with the sub-valve (23) it is possible to regulate the passage of the maximum water flow of 200 +/- 20 liters in 24 hours; or 6,000 +/- 600 cubic liters in 30 days. -13. This step is obtained under normal operating conditions of the home aqueduct system, with an average of 1,200 +/- 100 liters per hour, with a maximum pressure of 600 kPa in pipes of 1, 27cm in diameter (1/2 ") However, the passage of the water flow through the sub-valve (23) is modified by reforming the physical properties of the helical compression compression spring (24), on the in-line pressure of the connection. lateral axial movement, from left to right and from right to left.
La sub-válvula (23) tiene forma cilindrica con un tope de final de carrera (25) que permite el paso de flujo de líquido y evita el cierre total de paso de flujo de líquido. Esta sub-válvula (23) trabaja con un movimiento axial asistido a través de un resorte auxiliar helicoidal (24) de compresión en acero inoxidable ubicado en la protuberancia (29). Este resorte auxiliar helicoidal (23) se comprime a mayor presión en línea un máximo de 600 kPa y se expande o retorna gradualmente a su estado original a menor presión en línea de unos 400 kPa o menos kPa; donde la expansión y compresión del resorte auxiliar helicoidal (23) genera un movimiento axial lateral de la sub-válvula (23) de izquierda a derecha y viceversa sobre una guía (26) del ducto inferior lateral izquierdo (4) del cuerpo macizo (12) de la válvula principal. The sub-valve (23) has a cylindrical shape with a limit stop (25) that allows the flow of liquid and prevents the total closing of the flow of liquid. This sub-valve (23) works with assisted axial movement through a helical auxiliary compression spring (24) in stainless steel located in the protuberance (29). This helical auxiliary spring (23) is compressed at higher line pressure a maximum of 600 kPa and gradually expands or returns to its original state at lower line pressure of about 400 kPa or less kPa; where the expansion and compression of the helical auxiliary spring (23) generates a lateral axial movement of the sub-valve (23) from left to right and vice versa on a guide (26) of the left lateral lower duct (4) of the solid body (12 ) of the main valve.
La sub-válvula (23) tiene un ducto reductor de flujo (28) de la mitad de su longitud y una boca rectangular superior (27) de flujo restringido de líquido. La boca rectangular superior (27) de flujo restringido de líquido por donde fluye el caudal restringe el paso del caudal de líquido cuando el resorte axial (24) se comprime y aumenta el paso del caudal de líquido cuando el resorte axial (24) expande o regrese a su estado original; es decir que presenta una relación inversa entre la presión en línea y el caudal: a mayor presión en línea menor caudal y a menor presión en línea mayor caudal de paso; donde el tope (25) confiere el máximo de caudal permitido por la boca (27) totalmente abierta cuando la sub-válvula (23) se desliza hasta el tope (25), y el resorte axial (24) confiere el mínimo de caudal permitido por la boca (27) cuando la sub-válvula (23) se desliza hasta el tope permitido por las presión resorte axial (24) que cierra parcialmente la boca (27) con las paredes del ducto horizontal inferior (4). De acuerdo con la Figura 1 y la figura 2 se observa la caja estructural maciza (12), que en su costado derecho tiene una conexión de entrada de flujos (1 ) y en su costado opuesto la salida de líquido (7) para conexión a un equipo de medida de flujos convencional. De igual manera se observa la tapa (6) del ducto horizontal inferior de paso (4) que soporta la presión de un resorte auxiliar helicoidal de compresión (24), la sub-válvula (23) y su resorte auxiliar helicoidal de compresión (24) asociado axialmente, el mecanismo de selle manual (1 1 ) del segundo ducto vertical de sello (18) y la conexión de una ventosa convencional (13) que se conecta a la salida de aire del primer ducto vertical (14) en su porción superior. The sub-valve (23) has a flow reducing duct (28) half its length and an upper rectangular mouth (27) of restricted flow of liquid. The upper rectangular mouth (27) of restricted flow of liquid through which the flow flows restricts the flow of the liquid flow when the axial spring (24) is compressed and increases the flow of the liquid flow when the axial spring (24) expands or return to its original state; that is to say that it has an inverse relationship between the in-line pressure and the flow rate: the higher the line pressure, the lower the flow rate and the lower the line pressure the greater the flow rate; where the stop (25) confers the maximum flow allowed by the mouth (27) fully open when the sub-valve (23) slides to the stop (25), and the axial spring (24) confers the minimum allowed flow through the mouth (27) when the sub-valve (23) slides to the limit allowed by the axial spring pressure (24) that partially closes the mouth (27) with the walls of the lower horizontal duct (4). In accordance with Figure 1 and Figure 2, the solid structural box (12) is observed, which on its right side has a flow inlet connection (1) and on its opposite side the liquid outlet (7) for connection to a conventional flow measurement equipment. Similarly, the cover (6) of the lower horizontal passage duct (4) that supports the pressure of an auxiliary helical compression spring (24), the sub-valve (23) and its helical auxiliary compression spring (24) ) axially associated, the manual sealing mechanism (1 1) of the second vertical seal duct (18) and the connection of a conventional suction cup (13) that is connected to the air outlet of the first vertical duct (14) in its portion higher.
La figura 2 es un corte de la caja estructural maciza (12) que muestra la pared interna (5), las perforaciones, ductos y accesorios característicos para la ejecución de la válvula. En la parte final de los ductos de la válvula se encuentra una esfera de sello interno (8) con su resorte de sello interno (9) que se activa automáticamente por presión de líquido (16) y no por presión de aire (17). El ducto horizontal inferior de paso (4) está en un nivel inferior al ducto horizontal superior de entrada (15) y en nivel inferior al ducto horizontal superior de salida (10) y entre ambos niveles se aloja la esfera (8) cuando se realiza el sello. Se observa que el ducto horizontal inferior de paso (4) es una porción de trayecto por donde se conduce líquido (16) y aire (17) que ha entrado por el ducto horizontal superior de entrada (15); donde el ducto horizontal inferior de paso (4) aloja la sub-válvula (23) y permite su movimiento de izquierda a derecha y viceversa sobre una guía (26). También se observa que el líquido (16) representado por las flechas continuas oscuras fluye en una sola dirección, mientras que el aire (17) representado por las fechas punteadas fluye en dos direcciones como se observa en la figura 1 . El aire (17) retorna por el ducto horizontal inferior de paso (4) por la boca rectangular superior (27) y por el ducto reductor de flujo (28) termina su recorrido en el primer ducto vertical (14) de expulsión de aire en su porción superior para ser expulsado por una ventosa convencional (13) a la atmósfera. Figure 2 is a section of the solid structural box (12) showing the internal wall (5), the perforations, ducts and characteristic accessories for the execution of the valve. In the final part of the valve ducts is an internal seal sphere (8) with its internal seal spring (9) that is automatically activated by liquid pressure (16) and not by air pressure (17). The lower horizontal passage duct (4) is at a lower level than the upper horizontal inlet duct (15) and at a lower level than the upper horizontal outlet duct (10) and between both levels the sphere (8) is housed when it is made the stamp. It is observed that the lower horizontal passage duct (4) is a portion of the path where liquid (16) and air (17) are driven through the upper horizontal inlet duct (15); where the lower horizontal passage duct (4) houses the sub-valve (23) and allows its movement from left to right and vice versa on a guide (26). It is also observed that the liquid (16) represented by the dark continuous arrows flows in only one direction, while the air (17) represented by the dotted dates flows in two directions as seen in Figure 1. The air (17) returns through the lower horizontal passage duct (4) through the upper rectangular mouth (27) and through the flow reducing duct (28) ends its path in the first vertical air discharge duct (14) in its upper portion to be expelled by a conventional suction cup (13) into the atmosphere.
Por su parte, el líquido (16) que entra junto con el aire (17) en el ducto horizontal superior de entrada (15) sigue su recorrido por el ducto horizontal inferior de paso (4), entra en el ducto reductor de flujo (28) de la mitad de longitud de la sub-válvula (23) y continua su recorrido por la boca rectangular superior (27) de flujo restringido de líquido para empujar la esfera de sello (8) y pasar al ducto horizontal superior de salida (10) como se muestra en la figura 2, donde la salida de líquido (7) se conecta al equipo de medida de flujo convencional. El segundo ducto vertical (18) tiene el mecanismo de sello manual (1 1 ) para interrumpir el paso de fluidos cuando se requiera dentro de la red hidráulica. El mecanismo de sello manual (1 1 ) está compuesto por un tornillo de seguridad (2), un émbolo (3), una guía (5) para deslizar el émbolo (3) y unos empaques (19) que sellan el espacio existente entre las paredes internas del mecanismo de sello manual (1 1 ) y el émbolo (3). On the other hand, the liquid (16) that enters along with the air (17) in the upper horizontal inlet duct (15) follows its path through the lower horizontal passage duct (4), enters the flow reducing duct ( 28) half the length of the sub-valve (23) and continues its journey through the upper rectangular mouth (27) of restricted flow of liquid to push the seal sphere (8) and pass to the upper horizontal outlet duct (10) as shown in Figure 2, where the liquid outlet (7) is connected to the conventional flow measurement equipment. The second vertical duct (18) has the manual seal mechanism (1 1) to interrupt the flow of fluids when required within the hydraulic network. The manual seal mechanism (1 1) consists of a safety screw (2), a plunger (3), a guide (5) to slide the plunger (3) and some gaskets (19) that seal the space between the internal walls of the manual seal mechanism (1 1) and the plunger (3).
Para la fabricación de la válvula para re-direccionamiento y control inverso de flujos se toma la estructura maciza (12) prismática y se realizan las perforaciones para crear los cinco ductos con sus formas características, creando tres ductos horizontales y dos ductos verticales que varían su diámetro y forma para una función específica. Los ductos internos de la válvula son: un ducto horizontal superior de entrada (15), un ducto horizontal superior de salida (10), un ducto horizontal inferior de paso (4) con una guía (26), un primer ducto vertical (14) de expulsión de aire y segundo ducto vertical de sello (18). For the manufacture of the valve for re-addressing and reverse flow control, the prismatic solid structure (12) is taken and the perforations are made to create the five ducts with their characteristic shapes, creating three horizontal ducts and two vertical ducts that vary their diameter and shape for a specific function. The internal ducts of the valve are: an upper horizontal inlet duct (15), an upper horizontal outlet duct (10), a lower horizontal duct (4) with a guide (26), a first vertical duct (14 ) air expulsion and second vertical seal pipe (18).
Para la descripción la válvula para re direccionamiento y control inverso de flujos se tomará un flujo de izquierda a derecha del plano como se muestra en la figura 1 y figura y en la figura 2. La entrada de flujos de líquido (16) y entrada de aire (17) comienza en el costado derecho de la válvula, donde los flujos entran por el ducto horizontal superior de entrada (15) que es una perforación que recorre un tercio de la caja estructural maciza (12) de izquierda a derecha. En la presente descripción, el ducto horizontal superior de entrada (15) está ubicado en la mitad superior de la caja estructural maciza (12) y termina al encontrarse con el primer ducto vertical (14). For the description, the valve for re-addressing and reverse flow control will take a flow from left to right of the plane as shown in figure 1 and figure and in figure 2. The inlet of liquid flows (16) and inlet of Air (17) begins on the right side of the valve, where the flows enter through the upper horizontal inlet duct (15) which is a perforation that runs one third of the solid structural box (12) from left to right. In the present description, the upper horizontal inlet duct (15) is located in the upper half of the solid structural box (12) and ends when it meets the first vertical duct (14).
El primer ducto vertical (14) es perpendicular al ducto horizontal superior de entrada (15) y termina su recorrido hacia arriba en la conexión para expulsión de aire (22) de una ventosa convencional (13) y hacia abajo con el ducto horizontal inferior de paso (4) pasando por la sub-válvula (23) y comprimiendo el resorte auxiliar helicoidal de compresión (24) asociado axialmente para restringir el pase del caudal. The first vertical duct (14) is perpendicular to the upper horizontal inlet duct (15) and ends its path upwards in the air expulsion connection (22) of a conventional suction cup (13) and down with the lower horizontal duct of Step 4) passing through the sub-valve (23) and compressing the axial helical compression spring (24) axially associated to restrict the flow rate.
El ducto horizontal inferior de paso (4) está ubicado en la mitad inferior de la caja estructural maciza (12), es decir por debajo del nivel del ducto horizontal superior de entrada (15) y debajo del nivel un ducto horizontal superior de salida (10), teniendo en cuenta que el ducto horizontal superior de entrada (15) está al mismo nivel del ducto horizontal superior de salida (10), pero por encima del nivel del ducto horizontal inferior de paso (4). The lower horizontal passage duct (4) is located in the lower half of the solid structural box (12), that is below the level of the upper horizontal inlet duct (15) and below the level an upper horizontal outlet duct ( 10), taking into account that the upper horizontal inlet duct (15) is at the same level as the upper horizontal outlet duct (10), but above the level of the lower horizontal passage duct (4).
El ducto horizontal inferior de paso (4) es perpendicular al primer ducto vertical (14) y comienza con la terminación del primer ducto vertical (14). El ducto horizontal inferior de paso (4) recorre dos terceras partes de la caja estructural maciza (12) y termina con la tapa (6). En la parte media del ducto horizontal inferior de paso (4), perpendicularmente se encuentra el segundo ducto vertical de sello (18), que termina su recorrido hacia arriba con la conexión del mecanismo de sello manual (1 1 ) y en su intermedio perpendicularmente se conecta con el ducto horizontal superior de salida (10), ducto por el que solamente pasa líquido a un equipo de medida de flujos. Debido a que la válvula soporta presiones de flujo de líquidos y gases está construida mediante perforaciones verticales y horizontales en la caja estructural maciza (12), por lo que cada uno de los cinco ductos se construye con una perforación a una determinada profundidad como se observa en la figura 1 , figura 2, y figura 3 que presentan vistas de corte transversales mostrando los ductos. The lower horizontal passage duct (4) is perpendicular to the first vertical duct (14) and begins with the termination of the first vertical duct (14). The lower horizontal passage duct (4) runs two thirds of the solid structural box (12) and ends with the lid (6). In the middle part of the lower horizontal passage duct (4), perpendicularly is the second vertical seal duct (18), which ends its path upwards with the connection of the manual seal mechanism (1 1) and in its intermediate perpendicularly it is connected to the upper horizontal outlet duct (10), a duct through which only liquid passes to a flow measurement device. Because the valve supports flow pressures of liquids and gases, it is constructed by vertical and horizontal perforations in the solid structural box (12), so that each of the five ducts is constructed with a perforation at a certain depth as observed in figure 1, figure 2, and figure 3 presenting cross-sectional views showing the ducts.
Se observa que el ducto horizontal superior de entrada (15) mantiene igual diámetro en su recorrido, de igual forma que el ducto horizontal inferior de paso (4). Por otro lado, el primer ducto vertical (14) tiene una porción de mayor diámetro en su parte superior para la expulsión de aire y conexión mediante roscado de una ventosa convencional, y tiene una porción de menor diámetro en la parte inferior donde se conecta con el ducto horizontal inferior de paso (4). El segundo ducto de sello (18) tiene una porción de mayor diámetro en su parte superior que aloja el resorte de sello (9) y la esfera de sello (8), y en su parte inferior tiene una porción de menor diámetro que es un tope para la esfera de sello (8) que se aloja allí. Se observa que el segundo ducto de sello (18) cambia de diámetro en una trayectoria de anillo (20) avellanado que aloja la esfera (8) y realiza el sello cuando no hay presión de líquido. El ducto horizontal superior de salida (10) también cambia de diámetro en una terminación avellanada (21 ) de un aro de menor diámetro que evita que la esfera (8) se salga y que contribuye a la formación de la trayectoria de anillo (20) avellanado del segundo ducto de sello (18). It is observed that the upper horizontal inlet duct (15) maintains the same diameter in its path, in the same way as the lower horizontal duct (4). On the other hand, the first vertical duct (14) has a larger diameter portion in its upper part for the expulsion of air and threaded connection of a conventional suction cup, and has a smaller diameter portion in the lower part where it is connected with the lower horizontal passage duct (4). The second seal duct (18) has a larger diameter portion in its upper part that houses the seal spring (9) and the seal sphere (8), and in its lower part has a smaller diameter portion which is a stop for the seal sphere (8) that is housed there. It is observed that the second seal pipe (18) It changes diameter in a countersunk ring path (20) that houses the sphere (8) and performs the seal when there is no liquid pressure. The upper horizontal outlet duct (10) also changes in diameter in a countersunk termination (21) of a ring of smaller diameter that prevents the sphere (8) from coming out and contributing to the formation of the ring path (20) countersinking of the second seal pipe (18).
A continuación, se presentan los siete efectos de la válvula para re direccionamiento y control inverso de flujos: Cuando se ejecuta la invención válvula para re direccionamiento y control inverso de flujos de manera manual se ejecuta el primer efecto: The seven effects of the valve for redirection and reverse flow control are presented below: When the invention is executed, the valve for redirection and reverse flow control manually executes the first effect:
1 . Cierre de caudal de flujos con el émbolo (3) que se ejecuta cuando se atornilla el tornillo de seguridad (2) para que el émbolo (3) se deslice por la guía (5) y empuje la esfera de sello (8) a su posición de sellado sobre la trayectoria de anillo (20).  one . Closing the flow of flows with the piston (3) that is executed when the safety screw (2) is screwed so that the piston (3) slides through the guide (5) and pushes the seal sphere (8) to its sealing position on the ring path (20).
Cuando se ejecuta la invención de manera automática se ejecutan seis efectos a saber:When the invention is executed automatically, six effects are executed:
2. Direccionamiento de aire (17) a la válvula de escape de aire o ventosa convencional (13). 2. Air routing (17) to the conventional air exhaust valve or suction cup (13).
3. Sello para que los flujos de aire (17) no pasen al equipo de medida de flujos por la válvula de taponamiento para que el aire no se escape.  3. Seal so that the air flows (17) do not pass the flow measurement equipment through the plugging valve so that the air does not escape.
4. Detención de los flujos inversos cuando la esfera (8) está a un nivel inferior del ducto horizontal superior de salida (10).  4. Stop the reverse flows when the sphere (8) is at a lower level of the upper horizontal outlet duct (10).
5. Evita que entre aire (17) a los ductos hidráulicos para que la red hidráulica no colapse  5. Prevents air (17) from entering the hydraulic ducts so that the hydraulic network does not collapse
6. Protección de equipos de medida por deterioro, debido a que cuentan aire cuya velocidad es veintinueve veces mayor que la del agua. 6. Protection of measuring equipment due to deterioration, because they have air whose speed is twenty-nine times greater than that of water.
7. Control y reductor de caudal para restringir el paso de agua potable en las 7. Control and flow reducer to restrict the passage of drinking water in the
acometidas domiciliarias para garantizar el flujo mínimo o "mínimo vital" con la sub- válvula (23)  household connections to guarantee the minimum or "minimum vital" flow with the sub-valve (23)
La válvula para re direccionamiento y control inverso de flujos de siete efectos libera un alto caudal de aire mientras la tubería se está llenando, evitando así el paso de aire por los equipos de medida. En condiciones de presiones negativas, es decir, en vacío la válvula se abre introduciendo aire atmosférico a la mínima depresión en la red hidráulica, evita de esta manera que la acometida sufra daños por aplastamiento y cuando pasa el líquido a los equipos de medida se realiza cierre automático para flujos inversos. La válvula para re direccionamiento y control inverso de flujos se deben instalar en una red de conducción hidráulica horizontalmente como se muestra en la figura 2 porque es su forma técnica para el correcto funcionamiento de expulsión y accesos de aire, además el ducto horizontal superior de entrada (15) debe estar al mismo nivel del ducto horizontal superior de salida (10) y por encima del nivel del ducto horizontal inferior de paso (4) para que la esfera (8) selle automáticamente. The valve for re-addressing and reverse control of seven-effect flows releases a high flow of air while the pipeline is filling, thus preventing the passage of air through the measuring equipment. In conditions of negative pressures, that is to say, in vacuum the valve opens introducing atmospheric air to the minimum depression in the network In this way, it avoids crushing damage and when the liquid passes to the measuring equipment, automatic closing is carried out for reverse flows. The valve for re-routing and reverse flow control must be installed in a horizontal hydraulic conduction network as shown in figure 2 because it is its technical form for the correct operation of expulsion and air access, in addition to the upper horizontal inlet duct (15) must be at the same level of the upper horizontal outlet duct (10) and above the level of the lower horizontal passage duct (4) for the sphere (8) to automatically seal.
Cuando los fluidos han recorrido el ducto horizontal superior de entrada (15) pasan al primer ducto vertical (14) de expulsión de aire (17) los fluidos continúan el recorrido hasta el ducto horizontal inferior de paso (4), al llegar al final del ducto horizontal inferior de paso (4) los fluidos encuentran la sub-válvula (23) y en la parte superior la esfera de sello (8) presionada por el resorte de sello (9). El aire (17) es expulsado por el primer ducto vertical (14) como se muestra en la figura 2 por medio de una conexión de una ventosa convencional (13). Cuando la ventosa convencional (13) hace sobre presión por flujo de líquido (16), la nueva válvula para re direccionamiento y control inverso de flujos abre el paso de la esfera sello (8), retrae el resorte de sello (9) y dejar pasar el fluido de líquido (16) al ducto horizontal superior de salida (10) como se muestra en la figura 2. When the fluids have crossed the upper horizontal inlet duct (15) they pass to the first vertical duct (14) of air expulsion (17) the fluids continue the journey to the lower horizontal duct of passage (4), at the end of the Lower horizontal passage duct (4) the fluids find the sub-valve (23) and in the upper part the seal sphere (8) pressed by the seal spring (9). The air (17) is expelled by the first vertical duct (14) as shown in Figure 2 by means of a connection of a conventional suction cup (13). When the conventional suction cup (13) presses on liquid flow pressure (16), the new valve for redirection and reverse flow control opens the passage of the seal sphere (8), retracts the seal spring (9) and leaves pass the liquid fluid (16) to the upper horizontal outlet duct (10) as shown in Figure 2.
Con la configuración del resorte (9) y la esfera de sello (8) en el segundo ducto vertical de sello (18) se crea la presión entre 0,5000 kg/m2 a 0,650 kg/m2 necesaria para realizar el cierre y cuando el líquido (16) ha pasado al ducto horizontal superior de salida (10), la esfera de sello (8) está en un nivel inferior por debajo del ducto horizontal superior de salida (10), es decir que la sobrepresión del líquido (16) se detiene, el líquido del flujo se devuelve y la esfera de sello (8) baja de nuevo para efectuar el cierre y evitar el flujo inverso. With the configuration of the spring (9) and the seal sphere (8) in the second vertical seal duct (18), the pressure between 0.5000 kg / m2 to 0.650 kg / m2 necessary to close is created and when the liquid (16) has passed to the upper horizontal outlet duct (10), the seal sphere (8) is at a lower level below the upper horizontal outlet duct (10), that is to say that the liquid overpressure (16) it stops, the flow liquid is returned and the seal sphere (8) lowers again to close and prevent the reverse flow.

Claims

Reivindicaciones Claims
1 . Válvula para re-direccionamiento y control inverso de flujos para redes hidráulicas y domiciliarias con sub-válvula de control de flujos mínimos de fluidos de siete efectos CARACTERIZADA por una estructura maciza (12) prismática con un ducto horizontal superior de entrada (15), un ducto horizontal superior de salida (10), un ducto horizontal inferior de paso (4) con guía (26) ubicado debajo del ducto horizontal superior de entrada (15) y debajo del ducto horizontal superior de salida (10) con una esfera de sello (8) que se aloja entre ambos niveles; un primer ducto vertical (14) de expulsión de aire y segundo ducto vertical de sello (18) con un mecanismo de sello manual (1 1 ); un resorte (9), una esfera de sello (8), una sub-válvula (23) con su ducto reductor de flujo (28) ubicada en el ducto horizontal inferior de paso (4), un tope (25), una boca rectangular superior (27) y resorte auxiliar helicoidal de compresión (24) asociado axialmente para restringir el paso del caudal. one . Valve for re-addressing and reverse flow control for hydraulic and home networks with seven-effect minimum fluid flow control sub-valve CHARACTERIZED by a solid prismatic structure (12) with an upper horizontal inlet duct (15), a upper horizontal outlet duct (10), a lower horizontal passageway (4) with guide (26) located below the upper horizontal inlet duct (15) and below the upper horizontal outlet duct (10) with a seal sphere (8) that is housed between both levels; a first vertical air duct (14) and second vertical seal duct (18) with a manual seal mechanism (1 1); a spring (9), a seal sphere (8), a sub-valve (23) with its flow reducing duct (28) located in the lower horizontal passage duct (4), a stop (25), a mouth upper rectangular (27) and helical compression compression spring (24) axially associated to restrict the flow rate.
2. Válvula para re-direccionamiento y control inverso de flujos con sub-válvula de control de flujos mínimos de fluidos de acuerdo con la reivindicación 1 CARACTERIZADA porque cada uno de los ductos tiene una terminación para conexión o sello, donde del ducto horizontal superior de entrada (15) tiene una conexión a la entrada (1 ); el ducto horizontal superior de salida (10) tiene una conexión a un equipo de medida convencional; el primer ducto vertical (14) de expulsión de aire tiene conexión (20) a una ventosa convencional; el segundo ducto vertical de sello (18) tiene una conexión con un mecanismo de sello manual (1 1 ); y el ducto horizontal inferior de paso (4) tiene una guía (26) que aloja el tope (25) de la sub-válvula (23) y tiene una tapa (6) que soporta la presión de un resorte auxiliar helicoidal de compresión (24). 2. Valve for re-addressing and reverse flow control with minimum fluid flow control sub-valve according to claim 1 CHARACTERIZED because each of the ducts has a termination for connection or seal, where the upper horizontal duct of input (15) has a connection to input (1); the upper horizontal outlet duct (10) has a connection to a conventional measuring device; the first vertical air discharge duct (14) has connection (20) to a conventional suction cup; the second vertical seal duct (18) has a connection with a manual seal mechanism (1 1); and the lower horizontal passage duct (4) has a guide (26) that houses the stop (25) of the sub-valve (23) and has a cover (6) that supports the pressure of an auxiliary helical compression spring ( 24).
3. Válvula para re-direccionamiento y control inverso de flujos con sub-válvula de control de flujos mínimos de fluidos de acuerdo con la reivindicación 1 caracterizada porque la sub-válvula (23) es cilindrica y tiene un ducto reductor de flujo (28) de la mitad de su longitud y una boca rectangular superior (27) de flujo restringido de líquido; donde la boca rectangular superior (27) de flujo restringido de líquido restringe el paso del caudal de líquido cuando el resorte axial (24) se comprime y aumenta el paso del caudal de líquido cuando el resorte axial (24) expande o regresa a su estado original. 3. Valve for re-addressing and reverse flow control with minimum fluid flow control sub-valve according to claim 1 characterized in that the sub-valve (23) is cylindrical and has a flow reducing duct (28) half its length and an upper rectangular mouth (27) of restricted flow of liquid; where the upper rectangular mouth (27) of restricted flow of liquid restricts the flow of liquid flow when the spring axial (24) compresses and increases the flow rate of the liquid when the axial spring (24) expands or returns to its original state.
4. Válvula para re-direccionamiento y control inverso de flujos con sub-válvula de control de flujos mínimos de fluidos de acuerdo con la reivindicación 1 caracterizada porque la sub-válvula (23) se desliza de izquierda a derecha y viceversa sobre la guía (26) con sus topes de deslizamiento delimitados por el resorte axial (24) y el tope (25); donde el deslizamiento al tope (25) confiere el máximo de caudal permitido por la boca (27) totalmente abierta, y el deslizamiento permitido por la presión del resorte axial (24) confiere el mínimo de caudal permitido por la boca (27) cerrada parcialmente por las paredes del ducto horizontal inferior (4). 4. Valve for re-addressing and reverse flow control with minimum fluid flow control sub-valve according to claim 1 characterized in that the sub-valve (23) slides from left to right and vice versa on the guide ( 26) with its sliding stops delimited by the axial spring (24) and the stop (25); where the sliding to the stop (25) confers the maximum flow allowed by the mouth (27) fully open, and the sliding allowed by the pressure of the axial spring (24) confers the minimum flow allowed by the mouth (27) partially closed through the walls of the lower horizontal duct (4).
5. Válvula para re direccionamiento y control inverso de flujos de acuerdo con la reivindicación 1 caracterizada porque el resorte auxiliar helicoidal (24) se ubica entre la protuberancia (29) de la sub-válvula (23) y la tapa (6), y dicho resorte auxiliar helicoidal (24) se comprime a mayor presión en línea un máximo de 600 kPa y se expande o retorna gradualmente a su estado original a menor presión en línea a menos de 400 kPa. 5. Valve for re-addressing and reverse flow control according to claim 1 characterized in that the helical auxiliary spring (24) is located between the protuberance (29) of the sub-valve (23) and the cover (6), and said helical auxiliary spring (24) is compressed at higher line pressure a maximum of 600 kPa and gradually expands or returns to its original state at lower line pressure at less than 400 kPa.
PCT/IB2017/051236 2017-03-03 2017-03-03 Valve with sub-valve for minimum-flow control, redirecting and reverse control WO2018158616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/051236 WO2018158616A1 (en) 2017-03-03 2017-03-03 Valve with sub-valve for minimum-flow control, redirecting and reverse control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/051236 WO2018158616A1 (en) 2017-03-03 2017-03-03 Valve with sub-valve for minimum-flow control, redirecting and reverse control

Publications (1)

Publication Number Publication Date
WO2018158616A1 true WO2018158616A1 (en) 2018-09-07

Family

ID=63370407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/051236 WO2018158616A1 (en) 2017-03-03 2017-03-03 Valve with sub-valve for minimum-flow control, redirecting and reverse control

Country Status (1)

Country Link
WO (1) WO2018158616A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9504993A (en) * 1995-11-30 1997-05-31 Diego Garcia Pena Air eliminating, liquid flow gauge protective, and inverse flow preventive valve.
CO6930064A1 (en) * 2013-04-22 2014-04-28 Acosta Alfonso Valenzuela Valve for redirection and reverse flow control
ES2557653T3 (en) * 2012-02-09 2016-01-27 Greiner S.P.A. Valve with a bypass channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9504993A (en) * 1995-11-30 1997-05-31 Diego Garcia Pena Air eliminating, liquid flow gauge protective, and inverse flow preventive valve.
ES2557653T3 (en) * 2012-02-09 2016-01-27 Greiner S.P.A. Valve with a bypass channel
CO6930064A1 (en) * 2013-04-22 2014-04-28 Acosta Alfonso Valenzuela Valve for redirection and reverse flow control

Similar Documents

Publication Publication Date Title
BRPI0606105A (en) reverse outlet valve and method for operating a reverse outlet valve
EP2554847A3 (en) An integrated microfluidic check valve and device including such a check valve
CA2666533A1 (en) Double check back flow prevention device
WO2004112866A3 (en) Fluid handling device and method of making same
JP7221883B2 (en) electric valve
ES2190346B2 (en) AUTOMATIC DISCHARGE VALVE OF THE TYPE OF PUMP THAT HAS A DERIVATION WITH TRIPLE FILTER.
RU2013125004A (en) INTERNAL SAFETY VALVE INTENDED FOR APPLICATION IN FLUID REGULATORS
CN101680563B (en) Flow controlled actuator apparatus for use with self-closing stop valves
CN202326110U (en) Combined admission valve of air compressor
US10352473B2 (en) Membrane valve for controlling flow and pressure relief
RU2016115747A (en) PREVENTING UNDESIRABLE ODORES DRAINAGE VALVE WITH RETURN VALVE AND AIR INTAKE VALVE
ES2733761T3 (en) A pulsating spray device
ATE372425T1 (en) FLOW RATE LIMITER
WO2018158616A1 (en) Valve with sub-valve for minimum-flow control, redirecting and reverse control
CN208935470U (en) A kind of one-way throttle valve
WO2013144960A3 (en) Fuel-vapour valve system and components therefor
CN102943907B (en) Ball check valve
CN210831428U (en) Gas bidirectional non-return control valve
CN208687996U (en) A kind of press-bearing water tank protective device
CN106288547B (en) A kind of heating power expansion valve of the unidirectionally controlled function of band
FI108473B (en) Arrangements in connection with a circulation lubrication system
CN109185501A (en) A kind of one-way throttle valve
CN220227876U (en) Flat gate valve with shearing function
RU122739U1 (en) VALVE RETURN FREEZING
RU2016123077A (en) Device for sealing the inner cavity of a turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898993

Country of ref document: EP

Kind code of ref document: A1