WO2018157677A1 - 一种基于介电弹性体的斯特林发电机及发电方法 - Google Patents

一种基于介电弹性体的斯特林发电机及发电方法 Download PDF

Info

Publication number
WO2018157677A1
WO2018157677A1 PCT/CN2018/073910 CN2018073910W WO2018157677A1 WO 2018157677 A1 WO2018157677 A1 WO 2018157677A1 CN 2018073910 W CN2018073910 W CN 2018073910W WO 2018157677 A1 WO2018157677 A1 WO 2018157677A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
dielectric elastomer
gas
power
power piston
Prior art date
Application number
PCT/CN2018/073910
Other languages
English (en)
French (fr)
Inventor
王成龙
邱志伟
曾庆良
陈萌
刘志海
马凡凡
杨扬
孟昭胜
冯鹏超
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2018157677A1 publication Critical patent/WO2018157677A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to a Stirling generator and a power generation method, in particular to a Sterling generator based on a dielectric elastomer and a power generation method.
  • the working fluid is not directly involved in the combustion, nor is it replaced, and no harmful gas is emitted.
  • any high-temperature heat source such as solar energy, geothermal energy and other green energy sources, or waste heat from automobiles, air conditioners, and thermal power plants.
  • the existing Stirling engine is a power generating device that uses an engine, and the engine is converted into a rotary motion to drive a rotating generator to generate electricity.
  • the engine and the generator are connected through a transmission shaft, and the volume is large; there is motion death when the engine is running.
  • Point generally through the inertia of the flywheel or the elasticity of the elastomer to cross the dead point, prone to crashes.
  • the object of the present invention is to provide a Sterling generator and a power generation method based on a dielectric elastomer, which utilizes a method of crossing a dead point to generate electricity, no longer generates power by outputting a rotary motion, is not easy to crash, and improves work efficiency;
  • the linear motor is started, and all the workflows are integrated to achieve integration and effectively reduce the generator volume.
  • the Stirling generator of the present invention comprises: a starting device, a power generating device and a power device; the starting device, the power generating device and the power device are sequentially connected in one body.
  • the starting device comprises: a stator core, a winding, a mover magnetic pole and a permanent magnet; the winding is embedded in the stator core, the mover magnetic pole is embedded in the permanent magnet; the permanent magnet is placed in the stator core, the mover magnetic pole and The electrodes formed by the windings correspond.
  • the power generating device includes: a first air-displacement piston dielectric elastomer, a second air-displacement piston dielectric elastomer, a power piston dielectric elastomer holder, a first power piston dielectric elastomer, a first wire, and a first a current collecting device, a second electric wire, a second current collecting device, a second power piston dielectric elastomer, a third electric wire, a third current collecting device, a fourth electric wire, and a fourth collecting device; the first air moving piston
  • the electroelastic body and the second gas-displacement piston dielectric elastomer are sequentially connected between the gas-moving piston of the power unit and the gas-moving piston shaft; and the first power piston dielectric is connected to both ends of the power piston dielectric elastomer holder
  • the power device comprises: a hot end cylinder, a gas displacement piston shell, a regenerator, a gas displacement piston, a gas displacement piston shaft, a heat sink, a power piston cylinder, a casing, a power piston shaft, a power piston, a locking bolt, and a fixing a plate, a fixing bolt, a cold end and a hot end;
  • the gas displacement piston casing is located in the hot end cylinder, and a regenerator is connected between the hot end cylinder and the gas displacement piston casing, and one end of the hot end cylinder and the gas displacement piston casing are The open end; the closed end of the hot end cylinder is a hot end, the open end of the hot end cylinder is sleeved with a heat sink, and the hot end cylinder at the position of the heat sink is a cold end; the center of the heat sink is connected with a gas displacement piston shaft and a gas displacement piston The shaft extends through the air-moving piston into the outer casing of the air-moving piston; the
  • Power generation method Start the Stirling generator through the built-in linear motor. After the start, the Stirling generator enters the self-running stage.
  • the self-running operation is divided into four stages: isothermal expansion, isovolumetric heat release, isothermal compression and equal volume. Endothermic.
  • the first step of isothermal expansion when most of the working medium is at the hot end, it is in contact with the high temperature heat source, the working medium is heated and then expanded, and the gas moving piston moves to the leftmost side of the stroke, the first gas moving piston dielectric elastomer and the first The second gas-moving piston dielectric elastomer is stretched to the left side, and the first gas-moving piston dielectric elastomer and the second gas-moving piston dielectric elastomer stretched to the left side are deformed, and the deformation stores the elastic potential energy on the one hand.
  • the deformation of the dielectric elastomer converts mechanical energy into electrical energy, and is transported to the outside through the third current collecting device and the fourth collecting device and the third electric wire and the fourth electric wire; at this time, the working medium volume of the hot end has reached the maximum state.
  • the power piston is at the far right of the stroke, the first power piston dielectric elastomer and the second power piston dielectric elastomer are already stretched to the right, and the working medium volume at the cold end is at a minimum state.
  • the heated working medium is flushed into the cold end through the regenerator, and at this time, the power piston moves under the action of the elastic potential energy of the first power piston dielectric elastomer and the second power piston dielectric elastomer
  • the piston moves to the left, and the first power piston dielectric elastomer and the second power piston dielectric elastomer coaxially connected to the power piston are stretched to the left side, and the first power piston dielectric elastomer stretched to the left side
  • the wire and the second wire are transported to the outside, and the process is an isothermal expansion stage;
  • the second step is equal heat release: after the heated working medium is flushed into the cold end, it is in contact with the heat sink of the cold end, and the high temperature working medium reduces the temperature, because the first power piston dielectric elastomer and the second power piston dielectric
  • the elastic potential energy stored by the elastomer, the first gas-displacement piston dielectric elastomer and the second gas-exchanging piston dielectric elastomer begins to be released, that is, the power piston and the gas-moving piston start to the right under the action of the elastic potential energy and the gas pressure decrease. Movement, the working medium of the hot end begins to be compressed, and the process is near the isovolumic exothermic stage;
  • the third step is isothermal compression: most of the working medium entering the cold end is sufficiently cooled by the heat sink, the working medium passes through the regenerator, the temperature of the working medium is further lowered, the pressure at the cold end begins to decrease, and the dielectric elasticity through the first power piston
  • the elastic potential of the body and the second power piston dielectric elastomer enables the power piston to move to the right, and the working medium at the cold end is compressed, at which stage the first power piston dielectric elastomer and the second power piston dielectric elastomer are Under the action of pressure reduction and elastic potential energy, the first power piston dielectric elastomer and the second power piston dielectric elastomer are stretched to the right side, and the first power piston dielectric elastomer and the first stretched to the right side
  • the second dynamic piston dielectric elastomer is deformed, and the deformation stores the elastic potential energy on the one hand, and the dielectric elastomer transforms the mechanical energy into electrical energy on the other hand, the first current
  • the first gas-displacement piston dielectric elastomer and the second gas-exchanging piston dielectric elastomer are deformed, and the deformation stores the elastic potential energy on the one hand, and the dielectric elastomer deformation converts the mechanical energy into electrical energy through the third current collection.
  • the device and the fourth current collecting device are transported to the outside with the third electric wire and the fourth electric wire, and the process is approximately an isothermal compression stage;
  • the fourth step isometric heat absorption: at this time, the gas volume in the whole device is the smallest, and the working medium at the hot end is heated to start to expand, because the first power piston dielectric elastomer, the second power piston dielectric elastomer, the first gas removal
  • the elastic potential energy stored by the piston dielectric elastomer and the second gas-exchanging piston dielectric elastomer begins to be released, that is, the power piston and the gas-moving piston start to move to the left under the action of the elastic potential energy and the gas pressure, and the gas at the hot end begins to expand. , return to the first isothermal expansion state, this process is approximately equal volume endotherm.
  • the beneficial effect is that, by adopting the above scheme, the engine and the generator are integrated, and the power is no longer converted into a rotary motion and then the rotary generator is used to generate electricity, but the Stirling engine is used to generate electricity through the dead point.
  • the electroelastic body is used to complete the death point, wherein the dielectric elastomer deforms when the Sterling engine passes the energy of the dead point, and the dielectric elastomer itself undergoes the movement of ions when the deformation occurs, so that the dielectric elastomer Power generation.
  • the power generation and power are integrated, and the engine is used to generate electricity beyond the dead point, and the built-in linear motor is used for starting, reducing the overall size and highly integrated.
  • the integration of the power generation device and the power device reduces the intermediate mechanical transmission link and improves the energy utilization rate
  • the noise is small when generating electricity
  • Figure 1 is a cross-sectional structural view of the present invention.
  • Figure 2 is a diagram showing the external structure of the present invention.
  • Embodiment 1 The Stirling generator of the present invention comprises: a starting device, a power generating device and a power device; the starting device, the power generating device and the power device are sequentially connected in one body.
  • the starting device comprises: a stator core 15, a winding 16, a mover pole 17 and a permanent magnet 18; the winding 16 is embedded in the stator core 15, the mover pole 17 is embedded in the permanent magnet 18; the permanent magnet 18 is placed In the stator core 15, the mover magnetic pole 17 corresponds to the electrode formed by the winding 16.
  • the power generating device includes: a first air moving piston dielectric elastic body 4, a second air moving piston dielectric elastic body 5, a power piston dielectric elastic body fixing frame 11, a first power piston dielectric elastic body 12, and a first a wire 13, a first current collecting device 14, a second electric wire 19, a second current collecting device 20, a second power piston dielectric elastic body 21, a third electric wire 28, a third current collecting device 29, a fourth electric wire 30, and a fourth current collecting device 31;
  • the first air moving piston dielectric elastomer 4 and the second air moving piston dielectric elastic body 5 are sequentially connected between the air moving piston 6 of the power unit and the air moving piston shaft 7;
  • a first power piston dielectric elastomer 12 and a second power piston dielectric elastomer 21 are connected to the two ends of the dielectric elastomer holder 11, and the first power piston dielectric elastomer 12 and the second power piston dielectric elastomer The center of 21 is connected to the power piston shaft 22 of the power unit, and the
  • the power piston 23, the power piston shaft 22, the permanent magnet 18, and the mover magnetic pole 17 constitute a moving member that has a relative motion with the power piston cylinder 9 and the outer casing 10.
  • the power device includes: a hot end cylinder 1, a gas displacement piston casing 2, a regenerator 3, a gas displacement piston 6, a gas displacement piston shaft 7, a heat sink 8, a power piston cylinder 9, a casing 10, and a power piston shaft 22.
  • the air moving piston housing 2 is located in the hot end cylinder 1, in the hot end cylinder 1 and the air moving piston housing 2
  • the closed end of the hot end cylinder 1 is a hot end 32, and the open end of the hot end cylinder 1 is sleeved with a heat sink 8,
  • the hot end cylinder 1 at the position of the fins 8 is a cold end 27;
  • a displacement piston shaft 7 is connected at the center of the fins 8, and the displacement piston shaft 7 extends through
  • the regenerator 3 is fixed to the inner wall of the hot end cylinder 1; the gas repellent piston housing 2 is fixed to the outside of the gas transfer piston 6; the center of the first gas transfer piston dielectric elastomer 4 and the second gas transfer piston dielectric elastomer 5 is fixed On the displacement piston shaft 7, the outer circumference is fixed on the displacement piston 6, and the displacement piston 6 and the displacement piston housing 2 constitute a moving part and the displacement piston shaft 7 and the regenerator 3 have relative movement; the heat sink 8 Fixed on the outer side of the hot end cylinder 1, the hot end cylinder 1 is fixed together with the displacement piston shaft 7, and the displacement piston shaft 7, the power piston cylinder 9, the outer casing 10 and the power piston dielectric elastomer fixing frame 11 are fixed together; A center of the power piston dielectric elastomer 12 and the second power piston dielectric elastomer 21 is fixed to the outer circumference of the power piston shaft 22, and the outer circumference is fixed to the power piston dielectric elastomer holder 11.
  • Power generation method Start the Stirling generator through the built-in linear motor. After the start, the Stirling generator enters the self-running stage.
  • the self-running operation is divided into four stages: isothermal expansion, isovolumetric heat release, isothermal compression and equal volume. Endothermic.
  • the first step of isothermal expansion when most of the working medium is located at the hot end 32, a large area contact with the high temperature heat source, the working medium is heated and expanded, and the gas moving piston 6 moves to the leftmost side of the stroke, the first gas moving piston dielectric elastomer 4 and the second gas-exchanging piston dielectric elastomer 5 is stretched to the left side, and the first gas-moving piston dielectric elastomer 4 and the second gas-moving piston dielectric elastomer 5 stretched to the left side are deformed, and the deformation is performed.
  • the aspect stores the elastic potential energy, and on the other hand, the deformation of the dielectric elastomer converts the mechanical energy into electrical energy, and is transported to the outside through the third collecting device 29 and the fourth collecting device 30 and the third electric wire 28 and the fourth electric wire 19;
  • the first power piston dielectric elastomer 12 and the second power piston dielectric elastomer 21 are already stretched to the right.
  • the working medium volume of the cold end 27 is at a minimum state, at which time the heated working medium in the hot end 32 is flushed into the cold end 27 through the regenerator 3, and at this time the power piston 23 is in the first power piston dielectric elastomer 12 And second power piston dielectric bomb
  • the power piston 23 moves to the left under the action of the elastic potential of the body 21, and the first power piston dielectric elastic body 12 and the second power piston dielectric elastic body 21 coaxially connected to the power piston 23 are stretched to the left side, to the left.
  • the first power piston dielectric elastomer 12 and the second power piston dielectric elastomer 21 that are stretched side are deformed, and the deformation stores the elastic potential energy on the one hand, and the mechanical energy is converted into electrical energy by the deformation of the dielectric elastomer.
  • the first power collecting device 14 and the second power collecting device 20 are transported to the outside through the first power collecting device 14 and the second power collecting device 20, and the process is an isothermal expansion phase;
  • the second step is equal heat release: after the heated working medium is flushed into the cold end 27, it is in contact with the heat sink 8 of the cold end 27 in a large area, and the high temperature working medium lowers the temperature due to the first power piston dielectric elastomer 12,
  • the elastic potential energy stored by the second power piston dielectric elastomer 21, the first air moving piston dielectric elastomer 4 and the second air moving piston dielectric elastomer 5 begins to be released, that is, the dynamic potential energy of the power piston 23 and the air moving piston 6
  • the gas pressure begins to move to the right under the action of the decrease of the gas pressure, and the working medium of the hot end 32 begins to be compressed, and the process is near the isovolumic heat release stage;
  • the third step is isothermal compression: most of the working medium entering the cold end 27 is sufficiently cooled by the heat sink 8, the working medium passes through the regenerator 3, the temperature of the working medium is further lowered, the pressure of the cold end 27 begins to decrease, and the The elastic potential of a power piston dielectric elastomer 12 and a second power piston dielectric elastomer 21 causes the power piston 23 to move to the right, and the working medium at the cold end 27 is compressed, at this stage the first power piston dielectric elasticity
  • the body 12 and the second power piston dielectric elastomer 21 are stretched to the right by the pressure reduction and the elastic potential energy, and the first power piston dielectric elastomer 12 and the second power piston dielectric elastomer 21 are stretched to the right.
  • the first power piston dielectric elastomer 12 and the second power piston dielectric elastomer 21 that are stretched side are deformed, and the deformation stores the elastic potential energy on the one hand, and the mechanical energy is converted into electrical energy by the deformation of the dielectric elastomer.
  • the first current collecting device 14 and the second current collecting device 20 are transported to the outside with the first electric wire 13 and the second electric wire 19; the working piston 6 is in the compressed working medium and the first air moving piston dielectric elastic body 4 and Two gas displacement piston
  • the electroelastic body 5 moves to the right and is fixed to the gas-displacement piston shaft 7.
  • the first gas-displacement piston dielectric elastomer 4 and the second gas-exchanging piston dielectric elastomer 5 are transformed from the stretched state to the left side.
  • the first gas-exchanging piston dielectric elastomer 4 and the second gas-moving piston dielectric elastomer 5 that are stretched to the right side are deformed, and the deformation stores the elastic potential energy on the one hand and the dielectric energy on the other hand.
  • the deformation of the elastomer converts mechanical energy into electrical energy, and is transported to the outside through the third current collecting device 29 and the fourth collecting device 30 and the third electric wire 28 and the fourth electric wire 19, and the process is approximately an isothermal compression stage;
  • the fourth step isometric heat absorption: at this time, the gas volume in the entire device is the smallest, and the working medium of the hot end 32 is heated to start to expand, because the first power piston dielectric elastomer 12, the second power piston dielectric elastomer 21,
  • the elastic potential energy stored in the first gas-displacement piston dielectric elastomer 4 and the second gas-exchanging piston dielectric elastomer 5 starts to be released, that is, the power piston 23 and the gas-moving piston 6 start to move under the action of the elastic potential energy and the gas pressure.
  • the gas at the hot end 32 begins to expand, returning to the first isothermal expansion state, which is approximately equal volume heat absorption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种基于介电弹性体的斯特林发电机及发电方法,属于斯特林发电机及发电方法。发电机包括:启动装置、发电装置和动力装置;启动装置、发电装置和动力装置顺序连接成一体;发电方法:通过内置的直线电机启动斯特林发电机,启动后的斯特林发电机进入自行运转阶段,自行运转分为四个阶段步骤:等温膨胀、等容放热、等温压缩和等容吸热。优点:启动装置、动力装置和发电装置为一体化;利用介电弹性体的弹性实现发动机连续运转并且有效利用其产生的形变用于发电;发电装置与动力装置集成化,减少中间机械传递环节,提高了能量利用率;利用直线电机实现发动机的启动;适用于各种高温热源;发电时噪声小;有效减少有害气体排放;有效提高高温热源利用率。

Description

一种基于介电弹性体的斯特林发电机及发电方法 技术领域
本发明涉及一种斯特林发电机及发电方法,特别是一种基于介电弹性体的斯特林发电机及发电方法。
背景技术
随着全球能源危机的发展与环境的恶化,传统的化石燃料日益枯竭,且燃烧的排放物造成了温室效应、雾霾天气及极端的气候等人为的灾害,为了地球的可持续发展和人类生活水平的改善,人们清楚地认识到开发利用新能源的重要性。其中,绿色能源的利用越来越广泛,绿色能源对环境无害或危害极小,且资源广泛。越来越多的国家采取鼓励生产和使用绿色能源的政策和措施,中国也确立了到年绿色能源占总能源比重的目标。斯特林发动机作为一种外燃机,外燃机是指在汽缸外燃烧的发动机,热能通过加热器传给工质,工质不直接参与燃烧,也不更换,无需排放有害气体,几乎可以使用任何高温热源,如太阳能,地热能等绿色能源或汽车、空调、热电厂的废冷废热等。
目前,现有的斯特林发动机是使用发动机的发电装置,通过发动机转变为旋转运动,带动旋转发电机进行发电,发动机与发电机要通过传动轴连接,体积庞大;发动机运转时存在有运动死点,一般是通过飞轮的惯性或弹性体的弹性来越过死点,容易发生死机。发明内容
本发明的目的是要提供一种基于介电弹性体的斯特林发电机及发电方法,利用越过死点的方式进行发电,不再通过输出旋转运动进行发电,不易死机,提高工作效率;内置直线电机进行启动,所有工作流程集成在一起,实现集成化,有效的减小发电机体积。
本发明的目的是这样实现的:本发明的斯特林发电机包括:启动装置、发电装置和动力装置;启动装置、发电装置和动力装置顺序连接成一体。
所述的启动装置包括:定子铁芯、绕组、动子磁极和永磁体;绕组嵌在定子铁芯内,动子磁极嵌在永磁体内;永磁体置于定子铁芯内,动子磁极与绕组构成的电极相对应。
所述的发电装置包括:第一移气活塞介电弹性体、第二移气活塞介电弹性体、动力活塞介电弹性体固定架、第一动力活塞介电弹性体、第一电线、第一集电装置、第二电线、第二集电装置、第二动力活塞介电弹性体、第三电线、第三集电装置、第四电线和第四集电装置;第一移气活塞介电弹性体和第二移气活塞介电弹性体顺序连接在动力装置的移气活塞和移气活塞轴之间;在动力活塞介电弹性体固定架内两端连接有第一动力活塞介电弹性体和第二动力活塞介电弹性体,第一动力活塞介电弹性体和第二动力活塞 介电弹性体的中心连接在动力装置的动力活塞轴上,在动力活塞轴内芯序连接有第一电线、第一集电装置、第二电线和第二集电装置;启动装置的永磁体连接在动力装置的动力活塞轴上,位于动力活塞介电弹性体固定架、第一动力活塞介电弹性体和第二动力活塞介电弹性体的空间内;在动力装置的移气活塞轴的轴芯内顺序连接有第三电线、第三集电装置、第四电线和第四集电装置。
所述的动力装置包括:热端缸、移气活塞外壳、回热器、移气活塞、移气活塞轴、散热片、动力活塞缸、外壳、动力活塞轴、动力活塞、锁紧螺栓、固定板、固定螺栓、冷端和热端;移气活塞外壳位于热端缸内,在热端缸和移气活塞外壳之间连接有回热器,热端缸和移气活塞外壳的一端均为开口端;热端缸封闭端为热端,热端缸的开口端套接有散热片,散热片位置的热端缸为冷端;在散热片内中心连接有移气活塞轴,移气活塞轴穿过移气活塞伸入到移气活塞外壳内;移气活塞套接在移气活塞外壳的开端;动力活塞缸连接在散热片和外壳之间;发电装置和启动装置位于外壳内;动力活塞轴一端穿过外壳的底端,一端插入到动力活塞中,动力活塞通过锁紧螺栓、固定板和固定螺栓连接在动力活塞轴的端部。
发电方法:通过内置的直线电机启动斯特林发电机,启动后的斯特林发电机进入自行运转阶段,自行运转分为四个阶段步骤:等温膨胀、等容放热、等温压缩和等容吸热。
具体步骤为:
第一步等温膨胀:当多数工作介质位于热端时,与高温热源大面积接触,工作介质被加热后膨胀,移气活塞运动到行程最左侧,第一移气活塞介电弹性体和第二移气活塞介电弹性体向左侧拉伸,向左侧拉伸的第一移气活塞介电弹性体和第二移气活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置和第四集电装置与第三电线和第四电线输送到外界;这时热端的工作介质体积已经达到最大状态,而动力活塞处于行程最右侧,第一动力活塞介电弹性体和第二动力活塞介电弹性体已经处于向右侧拉伸状态,冷端的工作介质体积处于最小状态,这时热端中被加热的工作介质通过回热器冲入冷端,并且此时动力活塞在第一动力活塞介电弹性体和第二动力活塞介电弹性体弹性势能的作用下动力活塞向左运动,与动力活塞同轴连接的第一动力活塞介电弹性体和第二动力活塞介电弹性体向左侧拉伸,向左侧被拉伸的第一动力活塞介电弹性体和第二动力活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第一集电装置和第二集电装置与第一电线和第二电线输送到外界,此过程为等温膨胀阶段;
第二步等容放热:加热后的工作介质冲入冷端后,与冷端的散热片大面积接触,高温工作介质降低温度,由于第一动力活塞介电弹性体、第二动力活塞介电弹性体、第一移气活塞介电弹性体和第二移气活塞介电弹性体储存的弹性势能开始释放,即动力活塞和移气活塞在弹性势能和气体压强减小的作用下开始向右运动,热端的工作介质开始被压缩,此过程近等容放热阶段;
第三步等温压缩:大部分进入冷端的工作介质经过散热片的充分冷却,工作介质通过回热器,工作介质的温度进一步降低,冷端的压强开始减小,并且通过第一动力活塞介电弹性体和第二动力活塞介电弹性体的弹性势能使动力活塞向右运动,在冷端的工作介质被压缩,在这一阶段第一动力活塞介电弹性体和第二动力活塞介电弹性体在压强减小和弹性势能作用下,第一动力活塞介电弹性体和第二动力活塞介电弹性体向右侧被拉伸,向右侧被拉伸的第一动力活塞介电弹性体和第二动力活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,第一集电装置和第二集电装置与第一电线和第二电线输送到外界;移气活塞在被压缩的工作介质与第一移气活塞介电弹性体和第二移气活塞介电弹性体作用下向右运动,被固定在移气活塞轴上第一移气活塞介电弹性体和第二移气活塞介电弹性体由向左侧拉伸状态转变为向右侧拉伸状态,向右侧被拉伸的第一移气活塞介电弹性体和第二移气活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置和第四集电装置与第三电线和第四电线输送到外界,此过程近似为等温压缩阶段;
第四步等容吸热:此时整个装置内气体体积最小,热端的工作介质被加热后开始膨胀,由于第一动力活塞介电弹性体、第二动力活塞介电弹性体、第一移气活塞介电弹性体和第二移气活塞介电弹性体储存的弹性势能开始释放,即动力活塞和移气活塞在弹性势能和气体压强增大的作用下开始向左运动,热端的气体开始膨胀,回到第一步等温膨胀状态,此过程近似为等容吸热。
有益效果,由于采用了上述方案,将发动机与发电机进行集成,而且不再将动力转变为旋转运动再带动旋转发电机发电,而是通过斯特林发动机越过死点的方式进行发电,通过介电弹性体来完成越过死点,其中介电弹性体在存储斯特林发动机越过死点的能量时要发生形变,介电弹性体本身在发生形变时会发生离子的移动,从而介电弹性体进行发电。总之,将发电与动力集成化,并且利用发动机越过死点的方式进行发电,并且采用了内置直线电机进行启动,缩小整体尺寸,高度集成化。
优点:
1、启动装置、动力装置和发电装置实现一体化;
2、利用介电弹性体的弹性实现发动机连续运转并且有效利用其产生的形变用于发电;
3、发电装置与动力装置的集成化,减少中间机械传递环节,提高了能量利用率;
4、利用直线电机实现发动机的启动;
5、适用于各种高温热源;
6、发电时噪声小;
7、有效减少有害气体排放;
8、有效提高高温热源的利用率。
附图说明:
图1是本发明的剖视结构图。
图2是本发明的外部结构图。
图中,1、热端缸;2、移气活塞外壳;3、回热器;4、第一移气活塞介电弹性体;5、第二移气活塞介电弹性体;6、移气活塞;7、移气活塞轴;8、散热片;9、动力活塞缸;10、外壳;11、动力活塞介电弹性体固定架;12、第一动力活塞介电弹性体;13、第一电线;14、第一集电装置;15、定子铁芯;16、绕组;17、动子磁极;18、永磁体;19、第二电线;20、第二集电装置;21、第二动力活塞介电弹性体;22、动力活塞轴;23、动力活塞;24、锁紧螺栓;25、固定板;26、固定螺栓;27、冷端;28、第三电线;29、第三集电装置;30、第四电线;31、第四集电装置;32、热端。
具体实施方式
实施例1:本发明的斯特林发电机包括:启动装置、发电装置和动力装置;启动装置、发电装置和动力装置顺序连接成一体。
所述的启动装置包括:定子铁芯15、绕组16、动子磁极17和永磁体18;绕组16嵌在定子铁芯15内,动子磁极17嵌在永磁体18内;永磁体18置于定子铁芯15内,动子磁极17与绕组16构成的电极相对应。
所述的发电装置包括:第一移气活塞介电弹性体4、第二移气活塞介电弹性体5、动力活塞介电弹性体固定架11、第一动力活塞介电弹性体12、第一电线13、第一集电装置14、第二电线19、第二集电装置20、第二动力活塞介电弹性体21、第三电线28、第三集电装置29、第四电线30和第四集电装置31;第一移气活塞介电弹性体4和第二移气 活塞介电弹性体5顺序连接在动力装置的移气活塞6和移气活塞轴7之间;在动力活塞介电弹性体固定架11内两端连接有第一动力活塞介电弹性体12和第二动力活塞介电弹性体21,第一动力活塞介电弹性体12和第二动力活塞介电弹性体21的中心连接在动力装置的动力活塞轴22上,在动力活塞轴22内芯序连接有第一电线13、第一集电装置14、第二电线19和第二集电装置20;启动装置的永磁体18连接在动力装置的动力活塞轴22上,位于动力活塞介电弹性体固定架11、第一动力活塞介电弹性体12和第二动力活塞介电弹性体21的空间内;在动力装置的移气活塞轴7的轴芯内顺序连接有第三电线28、第三集电装置29、第四电线30和第四集电装置31。
动力活塞23、动力活塞轴22、永磁体18、动子磁极17组成运动部件与动力活塞缸9和外壳10存在相对运动。
所述的动力装置包括:热端缸1、移气活塞外壳2、回热器3、移气活塞6、移气活塞轴7、散热片8、动力活塞缸9、外壳10、动力活塞轴22、动力活塞23、锁紧螺栓24、固定板25、固定螺栓26、冷端27和热端32;移气活塞外壳2位于热端缸1内,在热端缸1和移气活塞外壳2之间连接有回热器3,热端缸1和移气活塞外壳2的一端均为开口端;热端缸1封闭端为热端32,热端缸1的开口端套接有散热片8,散热片8位置的热端缸1为冷端27;在散热片8内中心连接有移气活塞轴7,移气活塞轴7穿过移气活塞6伸入到移气活塞外壳2内;移气活塞6套接在移气活塞外壳2的开端;动力活塞缸9连接在散热片8和外壳10之间;发电装置和启动装置位于外壳10内;动力活塞轴22一端穿过外壳10的底端,一端插入到动力活塞23中,动力活塞23通过锁紧螺栓24、固定板25和固定螺栓26连接在动力活塞轴22的端部。
回热器3固定在热端缸1内壁;移气活塞外壳2固定在移气活塞6外侧;第一移气活塞介电弹性体4和第二移气活塞介电弹性体5的中心处固定在移气活塞轴7上,外圆处固定在移气活塞6上,移气活塞6和移气活塞外壳2组成运动部件与移气活塞轴7和回热器3存在相对运动;散热片8固定在热端缸1的外侧,热端缸1固定在移气活塞轴7一起,移气活塞轴7、动力活塞缸9、外壳10和动力活塞介电弹性体固定架11固定在一起;第一动力活塞介电弹性体12和第二动力活塞介电弹性体21的中心处固定在动力活塞轴22圆周外侧,外圆处固定在动力活塞介电弹性体固定架11上。
发电方法:通过内置的直线电机启动斯特林发电机,启动后的斯特林发电机进入自行运转阶段,自行运转分为四个阶段步骤:等温膨胀、等容放热、等温压缩和等容吸热。
具体步骤为:
第一步等温膨胀:当多数工作介质位于热端32时,与高温热源大面积接触,工作介质被加热后膨胀,移气活塞6运动到行程最左侧,第一移气活塞介电弹性体4和第二移气活塞介电弹性体5向左侧拉伸,向左侧拉伸的第一移气活塞介电弹性体4和第二移气活塞介电弹性体5发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置29和第四集电装置30与第三电线28和第四电线19输送到外界;这时热端32的工作介质体积已经达到最大状态,而动力活塞23处于行程最右侧,第一动力活塞介电弹性体12和第二动力活塞介电弹性体21已经处于向右侧拉伸状态,冷端27的工作介质体积处于最小状态,这时热端32中被加热的工作介质通过回热器3冲入冷端27,并且此时动力活塞23在第一动力活塞介电弹性体12和第二动力活塞介电弹性体21弹性势能的作用下动力活塞23向左运动,与动力活塞23同轴连接的第一动力活塞介电弹性体12和第二动力活塞介电弹性体21向左侧拉伸,向左侧被拉伸的第一动力活塞介电弹性体12和第二动力活塞介电弹性体21发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第一集电装置14和第二集电装置20与第一电线13和第二电线19输送到外界,此过程为等温膨胀阶段;
第二步等容放热:加热后的工作介质冲入冷端27后,与冷端27的散热片8大面积接触,高温工作介质降低温度,由于第一动力活塞介电弹性体12、第二动力活塞介电弹性体21、第一移气活塞介电弹性体4和第二移气活塞介电弹性体5储存的弹性势能开始释放,即动力活塞23和移气活塞6在弹性势能和气体压强减小的作用下开始向右运动,热端32的工作介质开始被压缩,此过程近等容放热阶段;
第三步等温压缩:大部分进入冷端27的工作介质经过散热片8的充分冷却,工作介质通过回热器3,工作介质的温度进一步降低,冷端27的压强开始减小,并且通过第一动力活塞介电弹性体12和第二动力活塞介电弹性体21的弹性势能使动力活塞23向右运动,在冷端27的工作介质被压缩,在这一阶段第一动力活塞介电弹性体12和第二动力活塞介电弹性体21在压强减小和弹性势能作用下,第一动力活塞介电弹性体12和第二动力活塞介电弹性体21向右侧被拉伸,向右侧被拉伸的第一动力活塞介电弹性体12和第二动力活塞介电弹性体21发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,第一集电装置14和第二集电装置20与第一电线13和第二电线19输送到外界;移气活塞6在被压缩的工作介质与第一移气活塞介电弹性体4和第二移气活塞介电弹性体5作用下向右运动,被固定在移气活塞轴7上第一移气活塞介 电弹性体4和第二移气活塞介电弹性体5由向左侧拉伸状态转变为向右侧拉伸状态,向右侧被拉伸的第一移气活塞介电弹性体4和第二移气活塞介电弹性体5发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置29和第四集电装置30与第三电线28和第四电线19输送到外界,此过程近似为等温压缩阶段;
第四步等容吸热:此时整个装置内气体体积最小,热端32的工作介质被加热后开始膨胀,由于第一动力活塞介电弹性体12、第二动力活塞介电弹性体21、第一移气活塞介电弹性体4和第二移气活塞介电弹性体5储存的弹性势能开始释放,即动力活塞23和移气活塞6在弹性势能和气体压强增大的作用下开始向左运动,热端32的气体开始膨胀,回到第一步等温膨胀状态,此过程近似为等容吸热。

Claims (6)

  1. 一种基于介电弹性体的斯特林发电机,其特征是:斯特林发电机包括:启动装置、发电装置和动力装置;启动装置、发电装置和动力装置顺序连接成一体。
  2. 根据权利要求1所述的一种基于介电弹性体的斯特林发电机,其特征是:所述的启动装置包括:定子铁芯、绕组、动子磁极和永磁体;绕组嵌在定子铁芯内,动子磁极嵌在永磁体内;永磁体置于定子铁芯内,动子磁极与绕组构成的电极相对应。
  3. 根据权利要求1所述的一种基于介电弹性体的斯特林发电机,其特征是:所述的发电装置包括:第一移气活塞介电弹性体、第二移气活塞介电弹性体、动力活塞介电弹性体固定架、第一动力活塞介电弹性体、第一电线、第一集电装置、第二电线、第二集电装置、第二动力活塞介电弹性体、第三电线、第三集电装置、第四电线和第四集电装置;
    第一移气活塞介电弹性体和第二移气活塞介电弹性体顺序连接在动力装置的移气活塞和移气活塞轴之间;在动力活塞介电弹性体固定架内两端连接有第一动力活塞介电弹性体和第二动力活塞介电弹性体,第一动力活塞介电弹性体和第二动力活塞介电弹性体的中心连接在动力装置的动力活塞轴上,在动力活塞轴内芯序连接有第一电线、第一集电装置、第二电线和第二集电装置;启动装置的永磁体连接在动力装置的动力活塞轴上,位于动力活塞介电弹性体固定架、第一动力活塞介电弹性体和第二动力活塞介电弹性体的空间内;
    在动力装置的移气活塞轴的轴芯内顺序连接有第三电线、第三集电装置、第四电线和第四集电装置。
  4. 根据权利要求1所述的一种基于介电弹性体的斯特林发电机,其特征是:所述的动力装置包括:热端缸、移气活塞外壳、回热器、移气活塞、移气活塞轴、散热片、动力活塞缸、外壳、动力活塞轴、动力活塞、锁紧螺栓、固定板、固定螺栓、冷端和热端;
    移气活塞外壳位于热端缸内,在热端缸和移气活塞外壳之间连接有回热器,热端缸和移气活塞外壳的一端均为开口端;热端缸封闭端为热端,热端缸的开口端套接有散热片,散热片位置的热端缸为冷端;在散热片内中心连接有移气活塞轴,移气活塞轴穿过移气活塞伸入到移气活塞外壳内;移气活塞套接在移气活塞外壳的开端;动力活塞缸连接在散热片和外壳之间;发电装置和启动装置位于外壳内;
    动力活塞轴一端穿过外壳的底端,一端插入到动力活塞中,动力活塞通过锁紧螺栓、固定板和固定螺栓连接在动力活塞轴的端部。
  5. 根据权利要求1所述的一种基于介电弹性体的斯特林发电机的发电方法,其特征是:通过内置的直线电机启动斯特林发电机,启动后的斯特林发电机进入自行运转阶段, 自行运转分为四个阶段步骤:等温膨胀、等容放热、等温压缩和等容吸热。
  6. 根据权利要求5所述的一种基于介电弹性体的斯特林发电机的发电方法,其特征是:具体步骤为:
    第一步等温膨胀:当多数工作介质位于热端时,与高温热源大面积接触,工作介质被加热后膨胀,移气活塞运动到行程最左侧,第一移气活塞介电弹性体和第二移气活塞介电弹性体向左侧拉伸,向左侧拉伸的第一移气活塞介电弹性体和第二移气活塞介电弹性体5发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置和第四集电装置与第三电线和第四电线输送到外界;这时热端的工作介质体积已经达到最大状态,而动力活塞处于行程最右侧,第一动力活塞介电弹性体和第二动力活塞介电弹性体已经处于向右侧拉伸状态,冷端的工作介质体积处于最小状态,这时热端中被加热的工作介质通过回热器冲入冷端,并且此时动力活塞在第一动力活塞介电弹性体和第二动力活塞介电弹性体弹性势能的作用下动力活塞向左运动,与动力活塞同轴连接的第一动力活塞介电弹性体和第二动力活塞介电弹性体向左侧拉伸,向左侧被拉伸的第一动力活塞介电弹性体和第二动力活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第一集电装置和第二集电装置与第一电线和第二电线输送到外界,此过程为等温膨胀阶段;
    第二步等容放热:加热后的工作介质冲入冷端后,与冷端的散热片大面积接触,高温工作介质降低温度,由于第一动力活塞介电弹性体、第二动力活塞介电弹性体、第一移气活塞介电弹性体和第二移气活塞介电弹性体储存的弹性势能开始释放,即动力活塞和移气活塞在弹性势能和气体压强减小的作用下开始向右运动,热端的工作介质开始被压缩,此过程近等容放热阶段;
    第三步等温压缩:大部分进入冷端的工作介质经过散热片的充分冷却,工作介质通过回热器,工作介质的温度进一步降低,冷端的压强开始减小,并且通过第一动力活塞介电弹性体和第二动力活塞介电弹性体的弹性势能使动力活塞向右运动,在冷端的工作介质被压缩,在这一阶段第一动力活塞介电弹性体和第二动力活塞介电弹性体在压强减小和弹性势能作用下,第一动力活塞介电弹性体和第二动力活塞介电弹性体向右侧被拉伸,向右侧被拉伸的第一动力活塞介电弹性体和第二动力活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,第一集电装置和第二集电装置与第一电线和第二电线输送到外界;移气活塞在被压缩的工作介质与第一移气活塞介电弹性体和第二移气活塞介电弹性体作用下向右运动,被固定在移气活塞轴上第一移气活塞介电弹性体和第二移气活塞介电弹性体由向左侧拉伸状态转变为 向右侧拉伸状态,向右侧被拉伸的第一移气活塞介电弹性体和第二移气活塞介电弹性体发生形变,形变一方面储存了弹性势能,另一方面介电弹性体的变形将机械能转化为电能,通过第三集电装置和第四集电装置与第三电线和第四电线输送到外界,此过程近似为等温压缩阶段;
    第四步等容吸热:此时整个装置内气体体积最小,热端的工作介质被加热后开始膨胀,由于第一动力活塞介电弹性体、第二动力活塞介电弹性体、第一移气活塞介电弹性体和第二移气活塞介电弹性体储存的弹性势能开始释放,即动力活塞和移气活塞在弹性势能和气体压强增大的作用下开始向左运动,热端的气体开始膨胀,回到第一步等温膨胀状态,此过程近似为等容吸热。
PCT/CN2018/073910 2017-03-01 2018-01-24 一种基于介电弹性体的斯特林发电机及发电方法 WO2018157677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710118194.9A CN106762211B (zh) 2017-03-01 2017-03-01 一种基于介电弹性体的斯特林发电机及发电方法
CN201710118194.9 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018157677A1 true WO2018157677A1 (zh) 2018-09-07

Family

ID=58959658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073910 WO2018157677A1 (zh) 2017-03-01 2018-01-24 一种基于介电弹性体的斯特林发电机及发电方法

Country Status (2)

Country Link
CN (1) CN106762211B (zh)
WO (1) WO2018157677A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762211B (zh) * 2017-03-01 2018-10-30 山东科技大学 一种基于介电弹性体的斯特林发电机及发电方法
CN108361122B (zh) * 2018-04-09 2023-09-22 杨厚成 一种用于声能发电机的膨胀气缸
CN110206657B (zh) * 2019-07-03 2023-12-19 中国科学院理化技术研究所 一种热滞后型自由活塞斯特林发电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147061A (ja) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd フリーピストン型スターリングエンジン
CN101782053A (zh) * 2008-10-03 2010-07-21 通用汽车环球科技运作公司 利用形状记忆激活来获取、存储和转换能量
CN102684221A (zh) * 2012-05-14 2012-09-19 大连宏海新能源发展有限公司 一种并网式斯特林发电机组控制方法及系统
US20140216026A1 (en) * 2011-09-16 2014-08-07 Isuzu Motors Limited Free-piston type stirling engine
CN104791129A (zh) * 2014-01-17 2015-07-22 上海冠图防雷科技有限公司 一种船舶废热利用π型斯特林发电机系统
CN104929803A (zh) * 2015-05-22 2015-09-23 南京航空航天大学 带磁流体发电的自由活塞斯特林发动机及工作方法
CN106762211A (zh) * 2017-03-01 2017-05-31 山东科技大学 一种基于介电弹性体的斯特林发电机及发电方法
CN206753758U (zh) * 2017-03-01 2017-12-15 山东科技大学 一种基于介电弹性体的斯特林发电机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839230A (zh) * 2009-03-18 2010-09-22 中国科学院理化技术研究所 一种热压缩机系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147061A (ja) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd フリーピストン型スターリングエンジン
CN101782053A (zh) * 2008-10-03 2010-07-21 通用汽车环球科技运作公司 利用形状记忆激活来获取、存储和转换能量
US20140216026A1 (en) * 2011-09-16 2014-08-07 Isuzu Motors Limited Free-piston type stirling engine
CN102684221A (zh) * 2012-05-14 2012-09-19 大连宏海新能源发展有限公司 一种并网式斯特林发电机组控制方法及系统
CN104791129A (zh) * 2014-01-17 2015-07-22 上海冠图防雷科技有限公司 一种船舶废热利用π型斯特林发电机系统
CN104929803A (zh) * 2015-05-22 2015-09-23 南京航空航天大学 带磁流体发电的自由活塞斯特林发动机及工作方法
CN106762211A (zh) * 2017-03-01 2017-05-31 山东科技大学 一种基于介电弹性体的斯特林发电机及发电方法
CN206753758U (zh) * 2017-03-01 2017-12-15 山东科技大学 一种基于介电弹性体的斯特林发电机

Also Published As

Publication number Publication date
CN106762211B (zh) 2018-10-30
CN106762211A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018157677A1 (zh) 一种基于介电弹性体的斯特林发电机及发电方法
CN102797589B (zh) 超临界流体式外燃热机
CN105781783A (zh) 一种自由活塞斯特林热机
CN102287347B (zh) 一种太阳能定压加热热气流发动机发电系统
CN109653898B (zh) 电反馈对置式自由活塞斯特林发电机
CN109915278A (zh) 一种多级自由活塞热声斯特林发电机
CN105225715A (zh) 一种基于斯特林循环的行李箱式核能发电装置
US20160377025A1 (en) Thermal Energy Recovery System
CN110131070A (zh) 一种基于自由活塞斯特林发动机的冷电联产系统及其工作方法
CN104405529A (zh) 基于斯特林循环的发动机废气能量转化装置
Kim et al. Performance characterization of sunpower free-piston stirling engines
CN103670975B (zh) 一种同时利用冷源和热源的热声发电系统
CN109473696A (zh) 一种自由活塞式热力学燃料电池系统
KR101045871B1 (ko) 선형 열기관
CN112211743A (zh) 低温差新型斯特林发动机
CN206753758U (zh) 一种基于介电弹性体的斯特林发电机
CN209687620U (zh) 一种多级自由活塞热声斯特林发电机
CN215633395U (zh) 共腔体对置的分置式自由活塞斯特林发动机
CN103485931A (zh) 一种热声驱动的斯特林发动机
JP2009198084A (ja) パルス管型蓄熱機関
CN203515854U (zh) 一种热声驱动的斯特林发动机
CN110307066B (zh) 一种基于脉管发电机的汽车尾气余热回收充电装置
US9291122B1 (en) Directionally reversible hot air engine system
CN202181998U (zh) 太阳能斯特林直线发电装置
CN104421043B (zh) 带外平衡阀的超临界流体单缸外驱动外燃热机发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760635

Country of ref document: EP

Kind code of ref document: A1