WO2018157480A1 - 一种恒功率正弦线性led驱动电路及led驱动装置 - Google Patents

一种恒功率正弦线性led驱动电路及led驱动装置 Download PDF

Info

Publication number
WO2018157480A1
WO2018157480A1 PCT/CN2017/085392 CN2017085392W WO2018157480A1 WO 2018157480 A1 WO2018157480 A1 WO 2018157480A1 CN 2017085392 W CN2017085392 W CN 2017085392W WO 2018157480 A1 WO2018157480 A1 WO 2018157480A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
input
resistor
operational amplifier
Prior art date
Application number
PCT/CN2017/085392
Other languages
English (en)
French (fr)
Inventor
宋利军
Original Assignee
深圳市稳先微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市稳先微电子有限公司 filed Critical 深圳市稳先微电子有限公司
Publication of WO2018157480A1 publication Critical patent/WO2018157480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the technical field of LED driving, in particular to a constant power sinusoidal linear LED driving circuit and an LED driving device.
  • FIG. 1 is a simplified schematic diagram of a conventional multi-segment linear LED driver circuit, including a rectifier bridge connected to an input AC voltage, an LED load, a number of current sinks connected to the LED load, and a number of current sinks. Sampling resistor.
  • Figure 1 shows an example of a four-segment linear LED driver circuit with four current sinks connected to the midpoint of the LED load and the LED load.
  • the current sink 3 When the current sink 3 is turned on, the current sink 4 is turned off.
  • the current sink 2 is turned on, the current sink 3 and the current sink 4 are turned off.
  • the current sink 1 is turned on, the current sink 2, the current sink 3, and the current sink 4 are turned off.
  • the input AC voltage is a sine wave, the current sinks 1, the current sinks 2, the current sinks 3 and the current sinks 4, so that the LEDs are loaded in each input sinusoidal cycle, and the most LEDs are turned on, thereby achieving the purpose of improving efficiency.
  • the current sink When the input AC voltage amplitude is high, the current sink produces a large voltage drop, which reduces the efficiency of the drive circuit and generates a large amount of heat on the current sink, which easily causes the system to overheat and fail.
  • an object of the present invention is to provide a constant power sinusoidal linear LED driving circuit and an LED driving device, which can achieve constant input power of LED lamps under different input AC voltage amplitudes.
  • the input current is sinusoidal, achieving the goal of constant power drive, high power factor and low total harmonic distortion.
  • a constant power sinusoidal linear LED driving circuit comprising an LED load, a rectifier bridge connected to an input AC voltage, and a current sampling resistor for sampling a current of the LED load, and a constant current driving module for driving the LED load, for a voltage sampling module for sampling an AC input voltage, wherein the first voltage current converter for converting the instantaneous value of the AC input voltage into a first current is used to convert the voltage of the current sampling resistor into a second ratio a second voltage current converter of the current, and a compensation control module for adjusting the second current according to the change of the first current, the compensation control module is further configured to output an input voltage of the constant current driving module;
  • the positive output end of the rectifier bridge is connected to the positive pole of the LED load and the input end of the voltage sampling module, and the negative pole of the LED load is connected to one end of the current sampling resistor through the constant current driving module; the output end of the voltage sampling module is connected to the first An input end of the voltage current converter, an output end of the first voltage current converter is connected to an output end of the second voltage current converter and a compensation control module; and an input end of the second voltage current converter is connected to the current sampling resistor At one end, the other end of the current sampling resistor is grounded.
  • the constant current driving module includes at least one power tube connected to the LED load and the current sampling resistor, and the number corresponding to the power tube and connected to the power tube and the current sampling resistor Operational amplifier.
  • the constant power sinusoidal linear LED driving circuit further includes a multiplier, a first input end of the multiplier is connected to an output end of the voltage sampling module, and a second input end of the multiplier is connected to the compensation control module, The output of the multiplier is connected to an operational amplifier.
  • the constant power sinusoidal linear LED driving circuit further includes a plurality of voltage dividing resistors, wherein the plurality of voltage dividing resistors are connected in series and connected to the output end of the multiplier, and the midpoints of the adjacent voltage dividing resistors are correspondingly connected.
  • the non-inverting input of each operational amplifier is a plurality of voltage dividing resistors, wherein the plurality of voltage dividing resistors are connected in series and connected to the output end of the multiplier, and the midpoints of the adjacent voltage dividing resistors are correspondingly connected.
  • the drains of the respective power tubes are connected to the LED loads, the sources of the respective power tubes are grounded through a current sampling resistor, and the gates of the respective power tubes are connected to the output ends of one operational amplifier; The inverting input of the operational amplifier is connected to one end of the current sampling resistor.
  • the voltage sampling module includes a first resistor and a second resistor, one end of the first resistor is connected to a positive output end of the rectifier bridge, and the other end of the first resistor is connected The input of the first voltage to current converter is also grounded through a second resistor.
  • the first voltage current converter includes a first operational amplifier, a first signal tube and a third resistor, and the non-inverting input of the first operational amplifier is connected to the voltage sampling An output end of the module, an inverting input end of the first operational amplifier is connected to a source of the first signal tube, and is also grounded through a third resistor, and an output end of the first operational amplifier is connected to a gate of the first signal tube, The drain of the first operational amplifier is coupled to the output of the second voltage current converter and the compensation control module.
  • the second voltage current converter includes a second operational amplifier, a second signal tube and a fourth resistor, and the non-inverting input terminal of the second operational amplifier is connected to the current sampling resistor One end, the inverting input end of the second operational amplifier is connected to the source of the second signal tube, and is also grounded through the fourth resistor, and the output end of the second operational amplifier is connected to the gate of the second signal tube; The drain of the two signal tubes is connected to the compensation control module.
  • the compensation control module includes a reference current source, a first switch and a compensation capacitor, and one end of the compensation capacitor is connected to the reference current source and the first voltage current through the first switch An output of the converter, an output of the second voltage current converter, and a second input of the multiplier, the other end of the compensation capacitor is grounded.
  • An LED driving device includes a casing in which a PCB board is disposed, wherein the PCB board is provided with a constant power sinusoidal linear LED driving circuit as described above.
  • the constant power sinusoidal linear LED driving circuit includes an LED load, a rectifier bridge connected to an input AC voltage, and a current to the LED load.
  • a current sampling resistor for sampling further comprising a constant current driving module for driving the LED load, a voltage sampling module for sampling the AC input voltage, for converting the instantaneous value of the AC input voltage into a first current proportionally a first voltage current converter, a second voltage current converter for converting the voltage of the current sampling resistor into a second current, and for adjusting the second power according to the change of the first current
  • the compensation control module of the flow, the compensation control module is further configured to output an input voltage of the constant current driving module, and by intelligently controlling the current of the driving circuit, the input power of the LED lamp can be realized under different input AC voltage amplitudes. It is kept constant while the input current is sinusoidal, achieving constant power drive, high power factor and low total harmonic distortion.
  • FIG. 1 is a schematic diagram of a conventional four-segment linear LED constant current driving circuit.
  • FIG. 2 is a circuit diagram of a constant power sinusoidal linear LED driving circuit provided by the present invention.
  • 3 is a circuit operating current waveform of a constant power sinusoidal linear LED driving circuit provided by the present invention.
  • the object of the present invention is to provide a constant power sinusoidal linear LED driving circuit and an LED driving device, which can realize different input and communication.
  • the input power of the LED lamp is kept constant, and the input current is sinusoidal, achieving the purpose of constant power drive, high power factor and low total harmonic distortion.
  • the constant power sinusoidal linear LED driving circuit comprises an LED load 10, a rectifier bridge 20 connected to the input AC voltage, and a current sampling resistor R0 for sampling the current of the LED load 10, and also for driving the LED.
  • a constant current driving module 11 of the load 10 a voltage sampling module 12 for sampling the alternating current input voltage, and a first voltage current converter 13 for converting the instantaneous value of the alternating current input voltage into a first current for the first current
  • a second voltage current converter 14 that converts the voltage of the current sampling resistor R0 into a second current
  • a compensation control module 15 for adjusting the second current according to the change of the first current
  • the compensation control module 15 is also used to output the input voltage of the constant current driving module 11.
  • the input source is an AC sine wave
  • the input source is connected to the input end of the rectifier bridge 20, and the positive output end of the rectifier bridge 20 is connected to the anode of the LED load 10 and the input end of the voltage sampling module 12, and the negative output of the rectifier bridge 20
  • the end of the LED load 10 is connected to one end of the current sampling resistor R0 through the constant current driving module 11;
  • the output end of the voltage sampling module 12 is connected to the input end of the first voltage current converter 13,
  • An output end of the first voltage current converter 13 is connected to an output end of the second voltage current converter 14 and a compensation control module 15;
  • an input end of the second voltage current converter 14 is connected to one end of the current sampling resistor R0, the current The other end of the sampling resistor R0 is grounded.
  • the LED load 10 can be divided into several segments, typically 3-4 segments, and the inter-segment midpoint of the LED load 10 is connected to the constant current driving module 11.
  • the following embodiments illustrate the four-segment LED load 10 as an example.
  • the embodiment of the present invention is not limited to four segments, and can be flexibly set according to actual needs, which is not limited by the present invention.
  • the constant current driving module 11 includes at least one power tube connected to the LED load 10 and the current sampling resistor R0, and an operational amplifier corresponding to the power tube and connected to the power tube and the current sampling resistor R0.
  • the drains of the respective power tubes are connected to the midpoints of the segments of the LED load 10.
  • the sources of the respective power tubes are grounded through the current sampling resistor R0, and the gates of the respective power tubes are connected to the output terminals of an operational amplifier;
  • the phase input terminal is connected to one end of the current sampling resistor R0.
  • the number of power tubes and operational amplifiers in the constant current driving module 11 is four, corresponding to the number of segments of the LED load 10.
  • the constant current driving module 11 includes a power tube. 1.
  • the source stages of the power tubes are connected to each other and connected to the circuit reference ground through a current sampling resistor R0.
  • the gates of the four power tubes are driven by the outputs of the four operational amplifiers, wherein the power tube 1 is connected to the operational amplifier 1, the power The tube 2 is connected to the operational amplifier 2, the power tube 3 is connected to the operational amplifier 3, and the power tube 4 is connected to the operational amplifier 4.
  • the inverting input terminals of the four operational amplifiers are connected to each other and connected to the current sampling resistor R0, four operational amplifiers. The non-inverting input voltage is driven by the control circuit.
  • the compensation control module 15 includes a reference current source Iref, a first switch S1 and a compensation capacitor C1, and one end of the compensation capacitor C1 passes through the first switch S1 is connected to the reference current source Iref, the output of the first voltage current converter 13, the output of the second voltage current converter 14, and the second input of the multiplier 16, and the other end of the compensation capacitor C1 is grounded.
  • the invention intelligently controls the current of the constant current driving circuit by using a compensation capacitor C1, so that the overall power consumption of the system is constant, the current on the compensation capacitor C1 is the sum of the three currents, and the compensation capacitor C1 is integrated on the compensation capacitor C1.
  • the three currents are a reference current (which is a fixed value), an output current of the first voltage current converter 13, and an output current of the second voltage current converter 14.
  • the input end of the first voltage-current converter 13 is connected to the output end of the voltage sampling module 12, the voltage sampling module 12 includes a first resistor R1 and a second resistor R2, and one end of the first resistor R1 serves as a voltage sampling module.
  • the input end of 12 is connected to the positive output end of the rectifier bridge 20, and the other end of the first resistor R1 serves as the output end of the voltage sampling module 12, is connected to the input end of the first voltage current converter 13, and also passes through the second resistor R2. Ground.
  • the first voltage current converter 13 converts the instantaneous value of the AC input voltage into a first current that is extracted from the compensation capacitor C1.
  • the input end of the second voltage-current converter 14 is connected to one end of the current sampling resistor R0, the input end is the voltage of the current sampling resistor R0, and the second voltage current converter 14 converts the voltage of the current sampling resistor R0 into a second ratio.
  • the current reflects the current of the LED load 10, which draws current from the compensation capacitor C1.
  • the voltage on the compensation capacitor C1 is used to control the non-inverting input voltage of the above four operational amplifiers.
  • a multiplier 16 is used, and the first input of the multiplier 16 is connected to the output of the voltage sampling module 12, The second input end of the multiplier 16 is connected to the compensation control module 15, The output of the multiplier 16 is connected to an operational amplifier.
  • the two input voltages of the multiplier 16 are: the voltage on the compensation capacitor C1 and the output voltage of the voltage sampling module 12.
  • the voltage change on the compensation capacitor C1 is small, which is approximately regarded as a DC voltage
  • the output voltage of the voltage sampling module 12 reflects the instantaneous value (sinusoidal) of the input AC voltage, and the output voltage of the multiplier 16 It is a sine wave shape.
  • the output voltage of the multiplier 16 controls four operational amplifiers, which in turn control the currents of the four power transistors, so that the sum of the currents of the four power transistors is approximately sinusoidal, increasing the power factor, reducing the total harmonic distortion and the grid. Interference and pollution.
  • the constant power sinusoidal linear LED driving circuit provided by the present invention further includes a plurality of voltage dividing resistors.
  • the number of the voltage dividing resistors in the embodiment is four, and the plurality of voltage dividing resistors are sequentially connected in series and connected to the multiplication method.
  • the midpoint of each adjacent voltage dividing resistor is connected to the non-inverting input of each operational amplifier.
  • one end of the first voltage dividing resistor R11 is connected to the non-inverting input terminal of the operational amplifier 1, and the first voltage dividing resistor R11 and the second voltage dividing resistor R12 are mainly connected to the non-inverting input terminal of the operational amplifier 2, and the second voltage dividing resistor R12 and the first
  • the focus of the three-dividing resistor R13 is connected to the non-inverting input terminal of the operational amplifier 3, and the third voltage dividing resistor R13 and the fourth voltage dividing resistor R14 are mainly connected to the non-inverting input terminal of the operational amplifier 4 to realize the voltage of the non-inverting input terminal of the operational amplifier 1.
  • the voltage of the non-inverting input terminal of the operational amplifier 2 is greater than the voltage of the non-inverting input terminal of the operational amplifier 2, and the voltage of the non-inverting input terminal of the operational amplifier 3 is greater than the voltage of the non-inverting input terminal of the operational amplifier 4.
  • the compensation control module 15 is further connected by using the first switch S1 and the compensation capacitor C1.
  • the switch When the control circuit supplies sufficient power, the switch is turned on, and the compensation capacitor C1 realizes the function of current integration; when the control circuit supplies insufficient power, the When the switch is turned off and the current of the compensation capacitor C1 is zero, the voltage of the compensation capacitor C1 remains unchanged.
  • the first voltage current converter 13 includes a first operational amplifier A10, a first signal transistor Q1 and a third resistor R3, and the non-inverting input terminal of the first operational amplifier A10 serves as the first voltage current converter 13.
  • An input terminal connected to the output of the voltage sampling module 12 The inverting input end of the first operational amplifier A10 is connected to the source of the first signal tube Q1, and is also grounded through the third resistor R3.
  • the output end of the first operational amplifier A10 is connected to the gate of the first signal tube Q1.
  • the drain of the first operational amplifier A10 serves as an output of the first voltage current converter 13, and is connected to the output of the second voltage current converter 14 and the compensation control module 15.
  • the second voltage current converter 14 includes a second operational amplifier A20, a second signal transistor Q2, and a fourth resistor R4, and the non-inverting input terminal of the second operational amplifier A20 serves as the second voltage current converter 14.
  • the input terminal is connected to one end of the current sampling resistor R0, the inverting input terminal of the second operational amplifier A20 is connected to the source of the second signal tube Q2, and is also grounded through the fourth resistor R4, and the output of the second operational amplifier A20
  • the terminal is connected to the gate of the second signal tube Q2; the drain of the second signal tube Q2 serves as the output of the second voltage current converter 14, and is connected to the compensation control module 15.
  • the third resistor R3 and the fourth The voltage on the resistor R4 is equal to the input terminal voltages of the first voltage current converter 13 and the second voltage current converter 14, respectively, and the currents on the third resistor R3 and the fourth resistor R4 respectively flow through the first signal tube Q1 and the first The two signal tubes Q2 are proportional to the input voltages of the first voltage current converter 13 and the second voltage current converter 14.
  • the average voltage of the midpoints of the first resistor R1 and the second resistor R2 also changes, so that the average current of the output of the first voltage-current converter 13 also changes, when the circuit is closed.
  • the output average current of the second voltage current converter 14 must complement or subtract the output average current variation of the first voltage current converter 13. Because the second voltage current converter 14 reflects the current of the LED load 10, the average current of the LED load 10 changes, and this change is opposite to the magnitude change of the input AC voltage, thereby keeping the input power of the system substantially constant.
  • the average voltage of the midpoints of the first resistor R1 and the second resistor R2 is also increased by 15%, so the current drawn by the first voltage current converter 13 from the compensation capacitor C1 is also increased by 15 %, when the circuit is closed, the average current on the compensation capacitor C1 is zero. Therefore, the current drawn by the second voltage-current converter 14 from the compensation capacitor C1 needs to be reduced by 15%, and the average current of the LED load 10 is reduced by 15%, so the input power of the system remains substantially unchanged, by intelligently controlling the current of the driving circuit.
  • the system's overall power consumption is constant, and overheating and power reduction can be avoided under a wide input voltage.
  • FIG. 3 it is a circuit operating current waveform of a constant power sinusoidal linear LED driving circuit provided by the present invention.
  • the power tube 3 When the power tube 3 is turned on, the power tube 4 is turned off.
  • the power tube 2 When the power tube 3 and the power tube 4 are turned off.
  • the power tube 1 When the power tube 2, the power tube 3, and the power tube 4 are turned off.
  • the sum of the currents of the four power tubes is the input current of the system, and the input current realizes a sine wave, achieving the purpose of high power factor and low total harmonic distortion.
  • the invention further provides an LED driving device, comprising a casing, wherein the casing is provided with a PCB board, wherein the PCB board is provided with the constant power sinusoidal linear LED driving circuit described above, since the above has been
  • the constant power sinusoidal linear LED driver circuit is described in detail and will not be described in detail here.
  • the constant power sinusoidal linear LED driving circuit includes an LED load, a rectifier bridge connected to an input AC voltage, and a current of the LED load.
  • the current sampling resistor further includes a constant current driving module for driving the LED load, and a voltage sampling module for sampling the AC input voltage, for converting the instantaneous value of the AC input voltage into a first ratio of the first current a voltage-current converter, a second voltage current converter for converting the voltage of the current sampling resistor into a second current, and a compensation control for adjusting the second current according to the change of the first current a module
  • the compensation control module is further configured to output an input voltage of the constant current driving module, and by intelligently controlling the current of the driving circuit, the input power of the LED lamp is kept constant under different input AC voltage amplitudes, and at the same time
  • the input current is sinusoidal, achieving constant power drive, high power factor, and low total harmonic distortion.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Rectifiers (AREA)

Abstract

一种恒功率正弦线性LED驱动电路及LED驱动装置。LED驱动电路包括LED负载(10)、连接输入交流电压的整流桥(20)和对LED负载的电流进行采样的电流采样电阻(R0),用于驱动LED负载的恒流驱动模块(11),用于对交流输入电压进行采样的电压采样模块(12),用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器(13),用于将电流采样电阻的电压等比例转换为第二电流的第二电压电流转换器(14),用于根据第一电流的变化调节第二电流的补偿控制模块(15),通过智能地控制驱动电路的电流,可实现在不同的输入交流电压幅值情况下,LED灯的输入功率保持恒定,同时输入电流为正弦波,达到恒功率驱动、高功率因数以及低总谐波失真的目的。

Description

一种恒功率正弦线性LED驱动电路及LED驱动装置 技术领域
本发明涉及LED驱动技术领域,特别涉及一种恒功率正弦线性LED驱动电路及LED驱动装置。
背景技术
在LED驱动领域,如图1所示的是一种传统的多段线性LED驱动电路的简化示意图,包括连接于输入交流电压的整流桥,LED负载,连接LED负载的若干电流沉以及若干电流沉的采样电阻。图1所示为四段线性LED驱动电路的范例,四个电流沉连接于LED负载及LED负载的若干中点。当电流沉3导通时,电流沉4关闭。当电流沉2导通时,电流沉3和电流沉4关闭。当电流沉1导通时,电流沉2、电流沉3和电流沉4关闭。输入交流电压为一正弦波,电流沉1,电流沉2,电流沉3和电流沉4使LED负载在每个输入正弦周期中,有最多的LED导通,从而实现提高效率的目的。
这种LED驱动电路主要缺点为:
1、在输入交流电压幅值较高的情况下,电流沉产生较大的压降,使驱动电路的效率降低,并在电流沉上产生较大的热量,容易造成系统过热失效。
2、在输入交流电压幅值较低的情况下,LED负载的有效电流也随之较低,使LED灯的亮度下降。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种恒功率正弦线性LED驱动电路及LED驱动装置,可以实现在不同的输入交流电压幅值情况下,LED灯的输入功率保持恒定,同时输入电流为正弦波,达到恒功率驱动、高功率因数以及低总谐波失真的目的。
为了达到上述目的,本发明采取了以下技术方案:
一种恒功率正弦线性LED驱动电路,包括LED负载、连接输入交流电压的整流桥和对LED负载的电流进行采样的电流采样电阻,还包括用于驱动LED负载的恒流驱动模块,用于对交流输入电压进行采样的电压采样模块,用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器,用于将所述电流采样电阻的电压等比例转换为第二电流的第二电压电流转换器,以及用于根据所述第一电流的变化调节所述第二电流的补偿控制模块,所述补偿控制模块还用于输出恒流驱动模块的输入电压;
所述整流桥的正输出端连接LED负载的正极和电压采样模块的输入端,所述LED负载的负极通过恒流驱动模块连接电流采样电阻的一端;所述电压采样模块的输出端连接第一电压电流转换器的输入端,所述第一电压电流转换器的输出端连接第二电压电流转换器的输出端和补偿控制模块;所述第二电压电流转换器的输入端连接电流采样电阻的一端,所述电流采样电阻的另一端接地。
所述的恒功率正弦线性LED驱动电路中,所述恒流驱动模块包括至少一个与LED负载和电流采样电阻连接的功率管,以及数量与所述功率管对应、与功率管和电流采样电阻连接的运算放大器。
所述的恒功率正弦线性LED驱动电路中,还包括乘法器,所述乘法器的第一输入端连接电压采样模块的输出端,所述乘法器的第二输入端连接补偿控制模块,所述乘法器的输出端连接运算放大器。
所述的恒功率正弦线性LED驱动电路中,还包括若干个分压电阻,所述若干个分压电阻依次串联且连接所述乘法器的输出端,各相邻分压电阻的中点对应连接各个运算放大器的同相输入端。
所述的恒功率正弦线性LED驱动电路中,各个功率管的漏极连接LED负载,各个功率管的源极通过电流采样电阻接地,各个功率管的栅极对应连接一个运算放大器的输出端;所述运算放大器的反相输入端连接电流采样电阻的一端。
所述的恒功率正弦线性LED驱动电路中,所述电压采样模块包括第一电阻和第二电阻,所述第一电阻的一端连接整流桥的正输出端,所述第一电阻的另一端连接第一电压电流转换器的输入端、还通过第二电阻接地。
所述的恒功率正弦线性LED驱动电路中,所述第一电压电流转换器包括第一运算放大器、第一信号管和第三电阻,所述第一运算放大器的同相输入端连接所述电压采样模块的输出端,所述第一运算放大器的反相输入端连接第一信号管的源极、还通过第三电阻接地,所述第一运算放大器的输出端连接第一信号管的栅极,所述第一运算放大器的漏极连接第二电压电流转换器的输出端和补偿控制模块。
所述的恒功率正弦线性LED驱动电路中,所述第二电压电流转换器包括第二运算放大器、第二信号管和第四电阻,所述第二运算放大器的同相输入端连接电流采样电阻的一端,所述第二运算放大器的反相输入端连接第二信号管的源极、还通过第四电阻接地,所述第二运算放大器的输出端连接第二信号管的栅极;所述第二信号管的漏极连接补偿控制模块。
所述的恒功率正弦线性LED驱动电路中,所述补偿控制模块包括参考电流源、第一开关和补偿电容,所述补偿电容的一端通过所述第一开关连接参考电流源、第一电压电流转换器的输出端、第二电压电流转换器的输出端和乘法器的第二输入端,所述补偿电容的另一端接地。
一种LED驱动装置,包括外壳,所述外壳内设置有PCB板,其中,所述PCB板上设置有如上所述的恒功率正弦线性LED驱动电路。
相较于现有技术,本发明提供的恒功率正弦线性LED驱动电路及LED驱动装置中,所述恒功率正弦线性LED驱动电路包括LED负载、连接输入交流电压的整流桥和对LED负载的电流进行采样的电流采样电阻,还包括用于驱动LED负载的恒流驱动模块,用于对交流输入电压进行采样的电压采样模块,用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器,用于将所述电流采样电阻的电压等比例转换为第二电流的第二电压电流转换器,以及用于根据所述第一电流的变化调节所述第二电 流的补偿控制模块,所述补偿控制模块还用于输出恒流驱动模块的输入电压,通过智能地控制驱动电路的电流,可实现在不同的输入交流电压幅值情况下,LED灯的输入功率保持恒定,同时输入电流为正弦波,达到恒功率驱动、高功率因数以及低总谐波失真的目的。
附图说明
图1为传统的四段线性LED恒流驱动电路示意图。
图2为本发明提供的恒功率正弦线性LED驱动电路的电路图。
图3为本发明提供的恒功率正弦线性LED驱动电路的电路工作电流波形。
具体实施方式
鉴于现有技术中由于输入交流电压的幅值变化会到时系统输入功率变化等缺点,本发明的目的在于提供一种恒功率正弦线性LED驱动电路及LED驱动装置,可以实现在不同的输入交流电压幅值情况下,LED灯的输入功率保持恒定,同时输入电流为正弦波,达到恒功率驱动、高功率因数以及低总谐波失真的目的。
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图2,本发明提供的恒功率正弦线性LED驱动电路包括LED负载10、连接输入交流电压的整流桥20和对LED负载10的电流进行采样的电流采样电阻R0,还包括用于驱动LED负载10的恒流驱动模块11,用于对交流输入电压进行采样的电压采样模块12,用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器13,用于将所述电流采样电阻R0的电压等比例转换为第二电流的第二电压电流转换器14,以及用于根据所述第一电流的变化调节所述第二电流的补偿控制模块15,所述补偿控制模块15还用于输出恒流驱动模块11的输入电压。
其中,输入源为交流正弦波,输入源连接于整流桥20的输入端,整流桥20的正输出端连接LED负载10的阳极和电压采样模块12的输入端,所述整流桥20的负输出端为电路参考地,所述LED负载10的负极通过恒流驱动模块11连接电流采样电阻R0的一端;所述电压采样模块12的输出端连接第一电压电流转换器13的输入端,所述第一电压电流转换器13的输出端连接第二电压电流转换器14的输出端和补偿控制模块15;所述第二电压电流转换器14的输入端连接电流采样电阻R0的一端,所述电流采样电阻R0的另一端接地。
具体实施时,所述LED负载10可以分为若干段,典型如3-4段,LED负载10的段间中点连接恒流驱动模块11,以下实施方式说明均以4段LED负载10为例,但本发明的实施方式不限于4段,可根据实际需要灵活设置,本发明对此不作限定。
具体地,所述恒流驱动模块11包括至少一个与LED负载10和电流采样电阻R0连接的功率管,以及数量与所述功率管对应、与功率管和电流采样电阻R0连接的运算放大器。各个功率管的漏极连接LED负载10的段间中点,各个功率管的源极通过电流采样电阻R0接地,各个功率管的栅极对应连接一个运算放大器的输出端;所述运算放大器的反相输入端连接电流采样电阻R0的一端。
本实施例中,所述恒流驱动模块11内的功率管和运算放大器数量均为四个,与LED负载10的段数相对应,如图2所示,所述恒流驱动模块11包括功率管1、功率管2、功率管3、功率管4、运算放大器1、运算放大器2、运算放大器3和运算放大器4,分别记为A1、A2、A3、A4、M1、M2、M3和M4,四个功率管的源级互相连接,并通过电流采样电阻R0连接到电路参考地,四个功率管的栅极由四个运算放大器的输出端所驱动,其中功率管1对应连接运算放大器1,功率管2对应连接运算放大器2,功率管3对应连接运算放大器3,功率管4对应连接运算放大器4,四个运算放大器的反相输入端互相连接并且连接到电流采样电阻R0,四个运算放大器的 同相输入端电压为控制电路所驱动。
优选地,本发明提供的恒功率正弦线性LED驱动电路中,所述补偿控制模块15包括参考电流源Iref、第一开关S1和补偿电容C1,所述补偿电容C1的一端通过所述第一开关S1连接参考电流源Iref、第一电压电流转换器13的输出端、第二电压电流转换器14的输出端和乘法器16的第二输入端,所述补偿电容C1的另一端接地。
本发明通过采用一补偿电容C1智能控制恒流驱动电路的电流,使系统整体功耗恒定,该补偿电容C1上的电流为三个电流之和,并且在该补偿电容C1上积分得到补偿电容C1上的电压。三个电流分别为参考电流(其为固定值)、第一电压电流转换器13的输出电流和第二电压电流转换器14的输出电流。
其中,第一电压电流转换器13的输入端连接电压采样模块12的输出端,所述电压采样模块12包括第一电阻R1和第二电阻R2,所述第一电阻R1的一端作为电压采样模块12的输入端,连接整流桥20的正输出端,所述第一电阻R1的另一端作为电压采样模块12的输出端,连接第一电压电流转换器13的输入端、还通过第二电阻R2接地。当输入交流电压幅值变化时,第一电阻R1和第二电阻R2中点的平均电压也随之变化,因此第一电压电流转换器13的输入端的电压也会随之变化,实时反映了交流输入电压的瞬时值,第一电压电流转换器13将交流输入电压的瞬时值等比例转换为第一电流,所述第一电流从补偿电容C1中抽取电流。
而第二电压电流转换器14的输入端连接电流采样电阻R0的一端,其输入端为电流采样电阻R0的电压,第二电压电流转换器14将电流采样电阻R0的电压等比例转换为第二电流,反映了LED负载10的电流,所述第二电流从补偿电容C1中抽取电流。
补偿电容C1上的电压用以控制上述四个运算放大器的同相输入端电压,优选地,使用一乘法器16,所述乘法器16的第一输入端连接电压采样模块12的输出端,所述乘法器16的第二输入端连接补偿控制模块15,所 述乘法器16的输出端连接运算放大器。该乘法器16的两个输入电压分别为:补偿电容C1上的电压、电压采样模块12的输出电压。在一个工频周期中,补偿电容C1上的电压变化较小,近似认为为直流电压,电压采样模块12的输出电压则反映了输入交流电压的瞬时值(正弦),则乘法器16的输出电压为正弦波形状。乘法器16的输出电压控制四个运算放大器,继而控制四个功率管的电流,从而四个功率管的电流之和近似为正弦波,提高了功率因数,降低了总谐波失真和对电网的干扰及污染。
进一步地,本发明提供的恒功率正弦线性LED驱动电路还包括若干的分压电阻,本实施例所述分压电阻的数量为四个,所述若干个分压电阻依次串联且连接所述乘法器16的输出端,各相邻分压电阻的中点对应连接各个运算放大器的同相输入端。即第一分压电阻R11的一端连接运算放大器1的同相输入端,第一分压电阻R11和第二分压电阻R12的重点连接运算放大器2的同相输入端,第二分压电阻R12和第三分压电阻R13的重点连接运算放大器3的同相输入端,第三分压电阻R13和第四分压电阻R14的重点连接运算放大器4的同相输入端,以实现运算放大器1的同相输入端电压大于运算放大器2的同相输入端电压,运算放大器2的同相输入端电压大于运算放大器3的同相输入端电压,运算放大3的同相输入端电压大于运算放大器4的同相输入端电压。由此结构,实现当功率管3导通时,功率管4关闭。当功率管2导通时,功率管3和功率管4关闭。当功率管1导通时,功率管2、功率管3和功率管4关闭,以提高驱动电路的效率。
优选地,所述补偿控制模块15还采用第一开关S1和补偿电容C1连接,当控制电路供电充足时,该开关导通,补偿电容C1实现电流积分的作用;当控制电路供电不足时,该开关关闭,补偿电容C1的电流为零,则补偿电容C1的电压维持不变。
进一步地,所述第一电压电流转换器13包括第一运算放大器A10、第一信号管Q1和第三电阻R3,所述第一运算放大器A10的同相输入端作为第一电压电流转换器13的输入端,连接所述电压采样模块12的输出端, 所述第一运算放大器A10的反相输入端连接第一信号管Q1的源极、还通过第三电阻R3接地,所述第一运算放大器A10的输出端连接第一信号管Q1的栅极,所述第一运算放大器A10的漏极作为第一电压电流转换器13的输出端,连接第二电压电流转换器14的输出端和补偿控制模块15。
类似地,所述第二电压电流转换器14包括第二运算放大器A20、第二信号管Q2和第四电阻R4,所述第二运算放大器A20的同相输入端作为第二电压电流转换器14的输入端,连接电流采样电阻R0的一端,所述第二运算放大器A20的反相输入端连接第二信号管Q2的源极、还通过第四电阻R4接地,所述第二运算放大器A20的输出端连接第二信号管Q2的栅极;所述第二信号管Q2的漏极作为第二电压电流转换器14的输出端,连接补偿控制模块15。
所述第一电压电流转换器13和第二电压电流转换器14中,当信号管的漏极电压充足时,运算放大器的同相输入端和反相输入端相等,所以第三电阻R3和第四电阻R4上的电压分别等于第一电压电流转换器13和第二电压电流转换器14的输入端电压,则第三电阻R3和第四电阻R4上的电流分别流经第一信号管Q1和第二信号管Q2,并且等比例于第一电压电流转换器13和第二电压电流转换器14的输入端电压。
当输入交流电压幅值变化时,第一电阻R1和第二电阻R2中点的平均电压也随之变化,从而第一电压电流转换器13的输出平均电流也随之变化,在电路闭环时,为了满足补偿电容C1的平均输入电流为零,可以得出,第二电压电流转换器14的输出平均电流必须补足或减去第一电压电流转换器13的输出平均电流变化。因为第二电压电流转换器14反映了LED负载10的电流,从而LED负载10的平均电流发生变化,并且,该变化和输入交流电压的幅值变化相反,从而使得系统的输入功率保持基本恒定。
例如,当输入交流电压幅值增加15%时,第一电阻R1和第二电阻R2中点的平均电压也增加15%,所以第一电压电流转换器13从补偿电容C1抽取的电流也增加15%,在电路闭环时,补偿电容C1上的平均电流为零, 所以第二电压电流转换器14从补偿电容C1抽取的电流需要减少15%,则LED负载10的平均电流减少15%,所以系统的输入功率保持基本不变,通过智能地控制驱动电路的电流,使得系统整体功耗恒定,在较宽的输入电压情况下,可避免过热以及功率降低等问题。
具体地,如图3所示,其为本发明提供的恒功率正弦线性LED驱动电路的电路工作电流波形。当功率管3导通时,功率管4关闭。当功率管2导通时,功率管3和功率管4关闭。当功率管1导通时,功率管2、功率管3和功率管4关闭。并且,四个功率管的电流之和为系统的输入电流,输入电流实现正弦波,达到高功率因数和低总谐波失真的目的。
本发明还相应提供一种LED驱动装置,包括外壳,所述外壳内设置有PCB板,其中,所述PCB板上设置有上所述的恒功率正弦线性LED驱动电路,由于上文已对所述恒功率正弦线性LED驱动电路进行了详细介绍,此处不再详述。
综上所述,本发明提供的恒功率正弦线性LED驱动电路及LED驱动装置中,所述恒功率正弦线性LED驱动电路包括LED负载、连接输入交流电压的整流桥和对LED负载的电流进行采样的电流采样电阻,还包括用于驱动LED负载的恒流驱动模块,用于对交流输入电压进行采样的电压采样模块,用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器,用于将所述电流采样电阻的电压等比例转换为第二电流的第二电压电流转换器,以及用于根据所述第一电流的变化调节所述第二电流的补偿控制模块,所述补偿控制模块还用于输出恒流驱动模块的输入电压,通过智能地控制驱动电路的电流,可实现在不同的输入交流电压幅值情况下,LED灯的输入功率保持恒定,同时输入电流为正弦波,达到恒功率驱动、高功率因数以及低总谐波失真的目的。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种恒功率正弦线性LED驱动电路,包括LED负载、连接输入交流电压的整流桥和对LED负载的电流进行采样的电流采样电阻,其特征在于,还包括用于驱动LED负载的恒流驱动模块,用于对交流输入电压进行采样的电压采样模块,用于将交流输入电压的瞬时值等比例转换为第一电流的第一电压电流转换器,用于将所述电流采样电阻的电压等比例转换为第二电流的第二电压电流转换器,以及用于根据所述第一电流的变化调节所述第二电流的补偿控制模块,所述补偿控制模块还用于输出恒流驱动模块的输入电压;
    所述整流桥的正输出端连接LED负载的正极和电压采样模块的输入端,所述LED负载的负极通过恒流驱动模块连接电流采样电阻的一端;所述电压采样模块的输出端连接第一电压电流转换器的输入端,所述第一电压电流转换器的输出端连接第二电压电流转换器的输出端和补偿控制模块;所述第二电压电流转换器的输入端连接电流采样电阻的一端,所述电流采样电阻的另一端接地。
  2. 根据权利要求1所述的恒功率正弦线性LED驱动电路,其特征在于,所述恒流驱动模块包括至少一个与LED负载和电流采样电阻连接的功率管,以及数量与所述功率管对应、与功率管和电流采样电阻连接的运算放大器。
  3. 根据权利要求2所述的恒功率正弦线性LED驱动电路,其特征在于,还包括乘法器,所述乘法器的第一输入端连接电压采样模 块的输出端,所述乘法器的第二输入端连接补偿控制模块,所述乘法器的输出端连接运算放大器。
  4. 根据权利要求3所述的恒功率正弦线性LED驱动电路,其特征在于,还包括若干个分压电阻,所述若干个分压电阻依次串联且连接所述乘法器的输出端,各相邻分压电阻的中点对应连接各个运算放大器的同相输入端。
  5. 根据权利要求2所述的恒功率正弦线性LED驱动电路,其特征在于,各个功率管的漏极连接LED负载,各个功率管的源极通过电流采样电阻接地,各个功率管的栅极对应连接一个运算放大器的输出端;所述运算放大器的反相输入端连接电流采样电阻的一端。
  6. 根据权利要求1所述的恒功率正弦线性LED驱动电路,其特征在于,所述电压采样模块包括第一电阻和第二电阻,所述第一电阻的一端连接整流桥的正输出端,所述第一电阻的另一端连接第一电压电流转换器的输入端、还通过第二电阻接地。
  7. 根据权利要求1所述的恒功率正弦线性LED驱动电路,其特征在于,所述第一电压电流转换器包括第一运算放大器、第一信号管和第三电阻,所述第一运算放大器的同相输入端连接所述电压采样模块的输出端,所述第一运算放大器的反相输入端连接第一信号管的源极、还通过第三电阻接地,所述第一运算放大器的输出端连接第一信号管的栅极,所述第一运算放大器的漏极连接第二电压电流转换器的输出端和补偿控制模块。
  8. 根据权利要求1所述的恒功率正弦线性LED驱动电路,其特征在于,所述第二电压电流转换器包括第二运算放大器、第二信号管和第四电阻,所述第二运算放大器的同相输入端连接电流采样电阻的一端,所述第二运算放大器的反相输入端连接第二信号管的源极、还通过第四电阻接地,所述第二运算放大器的输出端连接第二信号管的栅极;所述第二信号管的漏极连接补偿控制模块。
  9. 根据权利要求3所述的恒功率正弦线性LED驱动电路,其特征在于,所述补偿控制模块包括参考电流源、第一开关和补偿电容,所述补偿电容的一端通过所述第一开关连接参考电流源、第一电压电流转换器的输出端、第二电压电流转换器的输出端和乘法器的第二输入端,所述补偿电容的另一端接地。
  10. 一种LED驱动装置,包括外壳,所述外壳内设置有PCB板,其特征在于,所述PCB板上设置有如权利要求1-9任意一项所述的恒功率正弦线性LED驱动电路。
PCT/CN2017/085392 2017-03-01 2017-05-22 一种恒功率正弦线性led驱动电路及led驱动装置 WO2018157480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710117621.1A CN106900109B (zh) 2017-03-01 2017-03-01 一种恒功率正弦线性led驱动电路及led驱动装置
CN201710117621.1 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018157480A1 true WO2018157480A1 (zh) 2018-09-07

Family

ID=59184898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085392 WO2018157480A1 (zh) 2017-03-01 2017-05-22 一种恒功率正弦线性led驱动电路及led驱动装置

Country Status (2)

Country Link
CN (1) CN106900109B (zh)
WO (1) WO2018157480A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109835141A (zh) * 2019-01-18 2019-06-04 北京理工大学 一种驻车加热器火花塞的恒功率控制系统
CN109884384A (zh) * 2019-04-03 2019-06-14 深圳市佳运通电子有限公司 一种兼容电流和电压输入的信号采集电路
CN110580076A (zh) * 2019-09-24 2019-12-17 华南理工大学 一种用于超高压汞灯的降压电路及控制方法
CN111865298A (zh) * 2019-04-08 2020-10-30 华润矽威科技(上海)有限公司 积分电路及积分方法
CN113260116A (zh) * 2020-02-13 2021-08-13 华润微集成电路(无锡)有限公司 自适应电流纹波滤除电路、市电固态led照明系统及方法
CN113726157A (zh) * 2020-12-18 2021-11-30 佛山市新芯微电子有限公司 一种同步直流转换器
CN114285316A (zh) * 2021-12-30 2022-04-05 吉林大学 一种高稳定度脉冲电流源装置
CN115309228A (zh) * 2022-08-10 2022-11-08 上海精积微半导体技术有限公司 一种源表及其精度控制方法
CN116634626A (zh) * 2023-01-16 2023-08-22 深圳新摩尔半导体有限公司 一种用于led灯的恒流控制电路和led灯

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055722A (zh) * 2017-12-06 2018-05-18 浙江富德思精密电子有限公司 一种多电流路径控制开关的单级反向buck型led驱动电路
CN108318719A (zh) * 2018-01-30 2018-07-24 国网上海市电力公司 一种无级调整纯阻性交流负载
CN108318847A (zh) * 2018-01-30 2018-07-24 国网上海市电力公司 一种自动恒流的纯阻性交流负载
CN109168216B (zh) * 2018-09-13 2023-10-27 深圳市崧盛电子股份有限公司 恒功率led驱动电路及led驱动电源
CN109348581B (zh) * 2018-11-20 2024-06-21 华南理工大学 一种四通道交流驱动芯片电路
CN111642042B (zh) * 2019-03-01 2023-02-28 华润微集成电路(无锡)有限公司 线性led驱动电路及其驱动方法
CN110139424A (zh) * 2019-04-16 2019-08-16 上海新进芯微电子有限公司 线性led驱动系统及效率补偿电路
CN111122946A (zh) * 2020-01-06 2020-05-08 科博达技术股份有限公司 用于感性负载驱动电路的电流采样电路
CN111312128B (zh) * 2020-02-26 2023-08-29 歌尔光学科技有限公司 驱动电路及数字光处理投影仪
CN114205953B (zh) * 2021-12-13 2023-11-03 英飞特电子(杭州)股份有限公司 一种led灯驱动系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185484A (zh) * 2011-05-10 2011-09-14 成都芯源系统有限公司 开关电源及其控制电路和控制方法
CN103841730A (zh) * 2014-03-21 2014-06-04 深圳市梓晶微科技有限公司 一种用于led驱动的线电压补偿电路
CN104270874A (zh) * 2014-10-27 2015-01-07 无锡华润矽科微电子有限公司 分段式led驱动电路
CN106385734A (zh) * 2016-10-26 2017-02-08 杰华特微电子(杭州)有限公司 一种电压采样电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616524B (zh) * 2009-07-29 2012-11-28 广州复旦奥特科技股份有限公司 一种市电led照明驱动器
CN104244538B (zh) * 2014-10-10 2017-04-12 无锡华润矽科微电子有限公司 智能功率控制电路
CN105392261B (zh) * 2015-12-14 2018-04-10 深圳市明微电子股份有限公司 恒功率线性恒流led驱动电路
CN105991053B (zh) * 2016-05-19 2019-02-05 上海莱狮半导体科技有限公司 用于恒流驱动的开关电源系统
CN106061045B (zh) * 2016-08-09 2024-01-09 中山市昌捷光电科技有限公司 一种led线性驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185484A (zh) * 2011-05-10 2011-09-14 成都芯源系统有限公司 开关电源及其控制电路和控制方法
CN103841730A (zh) * 2014-03-21 2014-06-04 深圳市梓晶微科技有限公司 一种用于led驱动的线电压补偿电路
CN104270874A (zh) * 2014-10-27 2015-01-07 无锡华润矽科微电子有限公司 分段式led驱动电路
CN106385734A (zh) * 2016-10-26 2017-02-08 杰华特微电子(杭州)有限公司 一种电压采样电路

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109835141A (zh) * 2019-01-18 2019-06-04 北京理工大学 一种驻车加热器火花塞的恒功率控制系统
CN109835141B (zh) * 2019-01-18 2024-02-27 北京理工大学 一种驻车加热器火花塞的恒功率控制系统
CN109884384A (zh) * 2019-04-03 2019-06-14 深圳市佳运通电子有限公司 一种兼容电流和电压输入的信号采集电路
CN109884384B (zh) * 2019-04-03 2024-02-06 深圳市佳运通电子有限公司 一种兼容电流和电压输入的信号采集电路
CN111865298B (zh) * 2019-04-08 2023-08-29 华润微集成电路(无锡)有限公司 积分电路及积分方法
CN111865298A (zh) * 2019-04-08 2020-10-30 华润矽威科技(上海)有限公司 积分电路及积分方法
CN110580076A (zh) * 2019-09-24 2019-12-17 华南理工大学 一种用于超高压汞灯的降压电路及控制方法
CN110580076B (zh) * 2019-09-24 2024-05-03 华南理工大学 一种用于超高压汞灯的降压电路及控制方法
CN113260116A (zh) * 2020-02-13 2021-08-13 华润微集成电路(无锡)有限公司 自适应电流纹波滤除电路、市电固态led照明系统及方法
CN113260116B (zh) * 2020-02-13 2023-08-22 华润微集成电路(无锡)有限公司 自适应电流纹波滤除电路、市电固态led照明系统及方法
CN113726157B (zh) * 2020-12-18 2023-04-04 佛山市新芯微电子有限公司 一种同步直流转换器
CN113726157A (zh) * 2020-12-18 2021-11-30 佛山市新芯微电子有限公司 一种同步直流转换器
CN114285316B (zh) * 2021-12-30 2023-08-15 吉林大学 一种高稳定度脉冲电流源装置
CN114285316A (zh) * 2021-12-30 2022-04-05 吉林大学 一种高稳定度脉冲电流源装置
CN115309228B (zh) * 2022-08-10 2023-09-29 上海精积微半导体技术有限公司 一种源表及其精度控制方法
CN115309228A (zh) * 2022-08-10 2022-11-08 上海精积微半导体技术有限公司 一种源表及其精度控制方法
CN116634626A (zh) * 2023-01-16 2023-08-22 深圳新摩尔半导体有限公司 一种用于led灯的恒流控制电路和led灯
CN116634626B (zh) * 2023-01-16 2024-05-28 深圳新摩尔半导体有限公司 一种用于led灯的恒流控制电路和led灯

Also Published As

Publication number Publication date
CN106900109B (zh) 2019-04-30
CN106900109A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2018157480A1 (zh) 一种恒功率正弦线性led驱动电路及led驱动装置
WO2018210166A1 (zh) Led驱动装置及其恒功率调光电路、调光方法
TWI492503B (zh) 一種電流控制系統和方法及其信號產生電路
CN101572984B (zh) 驱动多路发光二极管的镜像比例恒流源电路
CN105827123B (zh) 电源变换电路及其驱动控制电路
CN104270874B (zh) 分段式led驱动电路
US20110279044A1 (en) High efficiency power drive device enabling serial connection of light emitting diode lamps thereto
US9179514B2 (en) Control circuit for reducing of total harmonic distortion (THD) in the power supply to an electric load
KR20130129957A (ko) Led 구동부를 위한 동기 조절부
US8901832B2 (en) LED driver system with dimmer detection
CN102821509A (zh) 交直流两用发光二极管驱动电路
CN106919211B (zh) 电子装置
CN106304492B (zh) 一种双路恒流电路及电源装置
CN103648202A (zh) 有源功率因数校正控制电路、芯片及led驱动电路
WO2018094970A1 (zh) 一种led线性恒流驱动电路及led照明装置
TW201511458A (zh) 電源轉換裝置
CN102938953A (zh) 一种平均线性led驱动电路
Liang et al. A novel line frequency multistage conduction LED driver with high power factor
WO2012129836A1 (zh) 一种负载驱动电路
US9560709B2 (en) LED driver and LED lighting device
CN201426197Y (zh) 驱动多路发光二极管的镜像比例恒流源电路
CN108541111B (zh) 用于led灯照明驱动的恒流输出控制电路、方法及led装置
CN206402492U (zh) 一种电流纹波消除电路
CN113260116B (zh) 自适应电流纹波滤除电路、市电固态led照明系统及方法
CN112654108B (zh) 调光控制电路、控制芯片、电源转换装置以及调光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898462

Country of ref document: EP

Kind code of ref document: A1