WO2018157300A1 - 一种以太网供电设备合法性检测方法、供电设备及系统 - Google Patents

一种以太网供电设备合法性检测方法、供电设备及系统 Download PDF

Info

Publication number
WO2018157300A1
WO2018157300A1 PCT/CN2017/075247 CN2017075247W WO2018157300A1 WO 2018157300 A1 WO2018157300 A1 WO 2018157300A1 CN 2017075247 W CN2017075247 W CN 2017075247W WO 2018157300 A1 WO2018157300 A1 WO 2018157300A1
Authority
WO
WIPO (PCT)
Prior art keywords
pse
ethernet port
measurement
current
impedance
Prior art date
Application number
PCT/CN2017/075247
Other languages
English (en)
French (fr)
Inventor
王海飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/075247 priority Critical patent/WO2018157300A1/zh
Publication of WO2018157300A1 publication Critical patent/WO2018157300A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for detecting legality of a power-supply device, a power supply device, and a system.
  • PoE Power over Ethernet
  • PSE Power Sourcing Equipment
  • PD Powered Device
  • the process of obtaining the power is as shown in FIG. 1 , which may include: detection, classification, powerup, operation, and disconnection. .
  • the classification phase is optional.
  • the specific process of the power supply of the PD is that, in the detection phase, the PSE detects whether the device accessing the PSE belongs to a legal PD, and enters the next stage when detecting that the device accessing the PSE belongs to a legal PD.
  • the PSE determines the power level of the PD based on the power consumption of the PD.
  • the PSE supplies power to the PD.
  • the PSE performs Real Time Protection (RTP) and performs Power Management (PM).
  • RTP Real Time Protection
  • PM Power Management
  • the PSE detects if the PD is disconnected from the PSE.
  • the PSE determines whether the device accessing the PSE belongs to a legitimate PD by detecting the impedance of the Ethernet port (the Ethernet port is the port used to access the PD).
  • the PSE can detect the impedance of the Ethernet port by outputting two levels of voltage or a single stage voltage.
  • the embodiment of the invention provides a method for detecting the legality of a power-supply device, a power supply device and a system, and solves the problem that the legality of the PD is detected and recognized due to the common mode noise of the voltage output by the PSE.
  • the embodiment of the present invention adopts the following technical solutions:
  • a first aspect of the embodiments of the present invention provides a method for detecting a legality of a power-supply device, including:
  • the PSE When the PSE detects the PD access, the PSE continuously outputs the first measurement current through the Ethernet port for the first time period, and detects the first measurement voltage of the Ethernet port when the first measurement current is output, and then the PSE according to the A measurement current and a first measurement voltage determine a measured impedance of the Ethernet port, and determine whether the PD accessing the PSE is a legitimate PD according to the measured impedance of the Ethernet port.
  • the PSE When the PSE detects that there is a PD access, the PSE continuously outputs the first measurement current in the first time period, and detects the first measurement voltage, and detects the first measurement voltage, and Determining the measured impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and then determining whether the PD accessing the PSE is a legal PD according to the determined measurement impedance of the Ethernet port.
  • the PSE detects the impedance of the Ethernet port by adopting the output current, thereby effectively avoiding the problem of detecting and identifying the legitimacy of the PD due to the common mode noise of the voltage outputted by the PSE. This avoids the occurrence of device damage caused by the illegal PD being identified as a legitimate PD, and avoids the situation that the PD cannot be powered by the legitimate PD.
  • the method for detecting the legitimacy of the power-over device may further include: the PSE is connected through the Ethernet port.
  • the second measurement voltage is continuously outputted during the two time periods, and the second measurement current of the Ethernet port is detected when the second measurement voltage is output; at this time, the corresponding PSE determines the Ethernet port according to the first measurement current and the first measurement voltage.
  • Measuring the impedance may specifically include: determining, by the PSE, the first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determining the second impedance of the Ethernet port according to the second measurement voltage and the second measurement current, and then according to The first impedance of the Ethernet port and the second impedance of the Ethernet port determine the measured impedance of the Ethernet port.
  • the method for detecting the legitimacy of the power-over device may further include: if the PSE passes through the Ethernet port During the continuous output of the first measurement current in the first time period, the PSE detects that the returned current is different from the first measurement current, and the PSE continues to output the first measurement current at the cutoff time of the first time period;
  • the PSE detects that the returned current is different from the first measurement current during the first time period in which the PSE continues to output the first measurement current through the Ethernet port, the PSE re-detects the Ethernet when the first measurement current is output.
  • the first measured voltage of the network port at which time, the corresponding PSE determines the measured impedance of the Ethernet port according to the first measured current and the first measured voltage, including: the PSE is based on the first measured current, the first measured voltage, and the re-detected The first measurement voltage determines the measured impedance of the Ethernet port.
  • the PSE performs voltage detection before current detection, the PSE detects the returned current and the first time during the first time period when the PSE continues to output the first measurement current through the Ethernet port. When a measurement current is different, the PSE re-detects the first measurement voltage of the Ethernet port when the first measurement current is output.
  • the PSE determines the measured impedance of the Ethernet port according to the first measurement current and the first measurement voltage, which may specifically include: Determining a first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, determining a second impedance of the Ethernet port according to the second measurement voltage and the second measurement current, and according to the first measurement current and the re-detected A measurement voltage determines a third impedance of the Ethernet port, and then the PSE determines the measured impedance of the Ethernet port based on the first impedance of the Ethernet port, the second impedance of the Ethernet port, and the third impedance of the Ethernet port.
  • the PSE determines whether the PD that accesses the PSE is a legal PD according to the measured impedance of the Ethernet port, and specifically includes: the PSE determines the Ethernet.
  • the measured impedance of the port includes: the resistance of the Ethernet port and the capacitance of the Ethernet port; the preset condition is: the resistance of the Ethernet port is greater than or equal to 19 kilo ohms and less than or equal to 26.5 kilo ohms, and the ether The capacitance of the network port is less than 0.150 microfarads.
  • the powering device legality detection may further include: if the PSE determines that the PD accessing the PSE is a legal PD, the PSE supplies power to the PD. Or, if the PSE determines that the PD accessing the PSE is a legal PD, the PSE, after determining the power level of the PD, supplies power to the PD according to the determined power level of the PD, so as to implement power supply to the PD.
  • a second aspect of the embodiments of the present invention provides a PSE, including: a detecting unit, an output unit, and a determining unit;
  • a detecting unit configured to detect whether a powered device PD is accessed
  • An output unit configured to continuously output the first measurement current through the Ethernet port during the first time period when the detecting unit detects that the PD is accessed;
  • the detecting unit is further configured to detect a first measurement voltage of the Ethernet port when the output unit outputs the first measurement current;
  • a determining unit configured to determine a measured impedance of the Ethernet port according to the first measurement current output by the output unit and the first measurement voltage detected by the detecting unit, and determine, according to the measured impedance of the Ethernet port, whether the PD accessing the PSE is a legal PD .
  • the output unit is further configured to continuously output the second measurement voltage in the second time period through the Ethernet port; the detecting unit is further configured to detect the second output in the output unit a second measurement current of the Ethernet port when the voltage is measured; the determining unit is configured to determine the first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determine the ether according to the second measurement voltage and the second measurement current The second impedance of the network port; determining the measured impedance of the Ethernet port based on the first impedance of the Ethernet port and the second impedance of the Ethernet port.
  • the output unit is further configured to: when continuously outputting the first measurement current in the first time period through the Ethernet port, detecting The unit detects that the returned current is different from the first measurement current, and continues to output the first measurement current at the cutoff time of the first time period; or, the detecting unit is further configured to be in the first time period when passing through the Ethernet port During the continuous output of the first measurement current, detecting that the returned current is different from the first measurement current, re-detecting the first measurement voltage of the Ethernet port when the first measurement current is output; the determining unit is specifically configured according to the first The measured current, the first measured voltage, and the re-detected first measured voltage determine the measured impedance of the Ethernet port.
  • the determining unit is specifically configured to determine that the PD accessing the PSE is a legal PD when determining that the measured impedance of the Ethernet port meets the preset condition.
  • the measured impedance of the Ethernet port includes: the resistance of the Ethernet port and the capacitance of the Ethernet port;
  • the condition is: the resistance of the Ethernet port is greater than or equal to 19 kilo ohms and less than or equal to 26.5 kilo ohms, and the capacitance of the Ethernet port is less than 0.150 microfarads.
  • the method further includes: a power supply unit, and a power supply unit, configured to: if the determining unit determines that the PD accessing the PSE is a legal PD, powering the PD; Alternatively, the determining unit is further configured to determine a power level of the PD if the PD that accesses the PSE is a legal PD, and the power supply unit is configured to supply power to the PD according to the power level of the PD determined by the determining unit.
  • a third aspect of the embodiments of the present invention provides a PSE, including: a measuring device, an Ethernet port, a power supply circuit, a processor, and a bus.
  • the measuring device is connected to an Ethernet port, and the measuring device is further connected to the power supply circuit, and the power supply circuit is further Connected to an Ethernet port, the processor is connected to the measuring device, the Ethernet port, and the power supply circuit through the bus;
  • a power supply circuit for continuously outputting the first measurement current through the Ethernet port during the first time period
  • a measuring device for detecting whether the Ethernet port has a PD access, and detecting a first measurement voltage of the Ethernet port when the first measurement current is output;
  • a processor configured to determine a measured impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determine whether the PD accessing the PSE is a legal PD according to the measured impedance of the Ethernet port.
  • the power supply circuit is further configured to continuously output the second measurement voltage in the second time period through the Ethernet port;
  • the measuring device is further configured to detect a second measurement current of the Ethernet port when the second measurement voltage is output;
  • a processor configured to determine a first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determine a second impedance of the Ethernet port according to the second measurement voltage and the second measurement current, according to the Ethernet port The first impedance and the second impedance of the Ethernet port determine the measured impedance of the Ethernet port.
  • the measuring device is further configured to be used in the process of continuously outputting the first measurement current in the first time period through the Ethernet port through the Ethernet port. Detecting that the returned current is different from the first measurement current; the power supply circuit is configured to continue to output the first measurement current at a cutoff time of the first time period when the measurement device detects that the returned current is different from the first measurement current;
  • the measuring device is further configured to: when the power supply circuit continuously outputs the first measurement current through the Ethernet port for a first period of time, detecting that the returned current is different from the first measurement current, re-detecting at the output a first measurement voltage of the Ethernet port when the current is measured; the processor is configured to determine the measured impedance of the Ethernet port according to the first measurement current, the first measurement voltage, and the re-detected first measurement voltage.
  • a fourth aspect of the embodiments of the present invention provides a power over Ethernet system, including:
  • the PSE is a remote hub (RHUB), the PD is a Pico Radio Remote Unit (pRRU), or the PSE is a primary hub (Main Hub), the PD is a Remote Antenna Unit (RAU); or, the PSE is a LAN switch, and the PD is an Access Point (AP); or, the PSE is a switch, and the PD is a light bulb.
  • RHUB remote hub
  • pRRU Pico Radio Remote Unit
  • RAU Remote Antenna Unit
  • AP Access Point
  • the PSE is a switch
  • the PD is a light bulb.
  • a fifth aspect of the embodiments of the present invention provides a PSE, where the PSE may include: at least one processor, a memory, an Ethernet interface, and a bus;
  • At least one processor is connected to the memory and the Ethernet interface through a bus, and the memory is configured to store the computer execution instructions.
  • the processor executes the memory stored computer execution instructions to enable the PSE to perform the first aspect or the first aspect.
  • the method for detecting the legitimacy of a power over Ethernet device according to any one of the implementation modes.
  • a sixth aspect of the embodiments of the present invention provides a computer storage medium for storing the foregoing PSE.
  • Computer software instructions comprising a program designed to perform the above-described method for detecting the legitimacy of a power over Ethernet device.
  • FIG. 1 is a schematic flowchart of acquiring power when a PD accesses a PSE according to the prior art
  • FIG. 2 is a schematic diagram of a common mode noise interference voltage of an Ethernet port according to an embodiment of the present invention
  • FIG. 3 is a simplified schematic diagram of a system architecture to which an embodiment of the present invention is applied according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a specific implementation of a system architecture according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another implementation of a system architecture according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another implementation of a system architecture according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another implementation of a system architecture according to an embodiment of the present invention.
  • FIG. 8 is a simplified schematic diagram of another system architecture to which an embodiment of the present invention is applied according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a PSE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of a method for detecting legality of a power-supply device according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of insertion (extraction) of an Ethernet cable to interfere with an Ethernet port voltage according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of changes in voltage, current, and impedance during a detection phase according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another implementation of a system architecture according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another PSE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another PSE according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another PSE according to an embodiment of the present invention.
  • the PSE can detect the impedance of the Ethernet port by outputting two levels of voltage or a single-stage voltage in the detection phase of the process of acquiring the power of the PD, thereby determining the device that accesses the PSE according to the detected impedance. Whether it is a legal PD. However, as shown in Figure 2, due to the common mode noise of the PSE output voltage, this will cause the Ethernet port current of the PSE detection to be interfered, which may result in the PD's legality detection and recognition error. For example, the illegal PD is recognized as legal. PD, or identify a legitimate PD as an illegal PD.
  • the embodiment of the present invention provides a method for detecting the legality of the power supply device of the power supply.
  • the basic principle is: When the PD is connected, the PSE uses the output current to detect the impedance of the Ethernet port. Specifically, the PSE continuously outputs the first measurement current through the Ethernet port during the first time period, and detects when the first measurement current is output. The first measured voltage of the Ethernet port, and then determining the measured impedance of the Ethernet port according to the first measured current and the first measured voltage, and finally determining the access PSE according to the determined measured impedance of the Ethernet port Whether the PD is a legitimate PD.
  • the PSE detects the impedance of the Ethernet port by adopting the output current, thereby effectively avoiding the problem of detecting and identifying the legitimacy of the PD due to the common mode noise of the voltage outputted by the PSE. .
  • This avoids the occurrence of device damage caused by the illegal PD being identified as a legitimate PD, and avoids the situation that the PD cannot be powered by the legitimate PD.
  • FIG. 3 is a simplified schematic diagram of a system architecture to which embodiments of the present invention may be applied.
  • the system architecture may include: PSE 11 and PD 12.
  • PSE 11 and PD 12 can be connected by an Ethernet cable.
  • the network data can be transmitted between the PSE 11 and the PD 12 via an Ethernet cable, and the PSE 11 can supply power to the PD 12 via an Ethernet cable, that is, charge the PD 12.
  • the PSE 11 may be a RHUB and the PD 12 is a pRRU.
  • the system architecture may further include: a Baseband Unit (BBU).
  • BBU Baseband Unit
  • the BBU and RHUB are connected by a fiber.
  • the PSE 11 is a Main Hub
  • the PD 12 is a RAU.
  • the system architecture may further include: a BBU, a remote radio unit (RRU), and an antenna (Antenna).
  • the BBU and the RRU are connected by a fiber
  • the RRU and the Main Hub are connected by a radio frequency (RF) cable.
  • RF radio frequency
  • the PSE 11 is a LAN switch and the PD 12 is an AP.
  • the system architecture may also include: an Internet Protocol (IP) router.
  • IP Internet Protocol
  • the PSE 11 is a switch and the PD 12 is a light bulb.
  • system architecture may further include: a network switch 13.
  • Network data can be transmitted between the network switch 13 and the PCE 11.
  • FIG. 9 is a schematic diagram of a composition of a PSE according to an embodiment of the present invention.
  • the PSE may include at least one processor 21, a memory 22, an Ethernet interface 23, and a communication bus 24.
  • the processor 21 is a control center of the PSE, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors Digital Signal Processors, DSPs
  • FPGAs Field Programmable Gate Arrays
  • the processor 21 can perform various functions of the PSE by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the PSE may include multiple processors, such as shown in FIG. Processor 21 and processor 25.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 22 may be present independently and coupled to processor 21 via communication bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is used to store a software program that executes the solution of the present invention, and is controlled by the processor 21.
  • the Ethernet interface 23 can be used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • the Ethernet interface 23 can also be used to charge the PD.
  • the communication bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the device structure illustrated in Figure 9 does not constitute a definition of a PSE, and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 10 is a flowchart of a method for detecting the legality of a power-supply device according to an embodiment of the present invention. As shown in FIG. 10, the method may include:
  • the PSE When the PSE detects that there is a PD access, the PSE continues to output the second measurement voltage through the Ethernet port for a second period of time.
  • the PSE can detect the access of the PD.
  • the PSE can perform voltage detection first, that is, the second measurement voltage can be continuously output through the Ethernet port for the second time period.
  • the second measured voltage is 2.8V (volts) to 10V, and the voltage polarity is consistent with -48V.
  • the value of the second time period may be less than or equal to 500 milliseconds (ms).
  • the specific value of the second time period may be set according to the requirements of the actual application scenario, and is pre-configured in the PSE.
  • the PSE detects a second measurement current of the Ethernet port when the second measurement voltage is output.
  • the PSE may sample the current of the Ethernet port to obtain the second measurement current.
  • the sampling time and the number of sampling times of the PSE may be set according to the requirements of the actual application scenario, and the embodiment of the present invention is not specifically limited herein.
  • the PSE can pair the ether at three different sampling times during the output of the second measured voltage.
  • the current of the network port is sampled to obtain three second measurement currents.
  • the PSE continuously outputs the first measurement current through the Ethernet port during the first time period.
  • the PSE when the PSE outputs the second measurement voltage at the end of the second time period, the PSE can perform current detection, that is, continue to output the first measurement current through the Ethernet port for the first time period.
  • the specific value of the first time period can be set according to the requirements of the actual application scenario and pre-configured in the PSE.
  • the PSE detects a first measured voltage of the Ethernet port when the first measurement current is output.
  • the PSE may sample the voltage of the Ethernet port to obtain the first measurement voltage.
  • the sampling time and the number of sampling times of the PSE may be set according to the requirements of the actual application scenario, and the embodiment of the present invention is not specifically limited herein.
  • the PSE can sample the voltage of the Ethernet port at two different sampling instants during the output of the first measured current to obtain two first measured voltages.
  • the PSE can output the measurement current multiple times in different time periods, that is, perform multiple current detections (where the measurement currents of multiple outputs may be the same or different), and the PSE The voltage of the Ethernet port is sampled during each current detection.
  • the number of times of current detection in a specific implementation is not specifically limited, and may be set according to requirements of an application scenario.
  • the PSE can increase the post-processing, for example, to extend the current detection time to filter out the jitter, or Increase the number of samples in the process of outputting the first measurement current to regain the impedance of the Ethernet port. Specifically: if the PSE detects that the returned current is different from the first measurement current during the first time period in which the PSE continues to output the first measurement current through the Ethernet port, the PSE is at the cutoff time of the first time period. Continue to output the first measurement current. Alternatively, if the PSE detects that the returned current is different from the first measurement current during the first time period in which the PSE continues to output the first measurement current through the Ethernet port, the PSE re-detects the Ethernet when the first measurement current is output. The first measured voltage of the network port. At this time, the PSE may determine the measured impedance of the Ethernet port according to the first measurement current, the first measurement voltage, the re-detected first measurement voltage, and the second measurement voltage and the second measurement current.
  • current detection may be performed first, and then voltage detection may be performed.
  • the embodiment of the present invention does not specifically limit the execution sequence of the current detection and the voltage detection.
  • the execution sequence of the current detection and the voltage detection may be selected according to the requirements of the actual application scenario.
  • the voltage, current, and impedance of the Ethernet port for performing current detection are performed in a desired state.
  • the PSE continuously outputs the second measurement voltage (V1) through the Ethernet port during the period of t0-t1.
  • the second measurement current of the corresponding Ethernet port is at t0-t1.
  • the change during this time is shown in Figure 12(b), and the measured impedance of the Ethernet port changes during t0-t1 as shown in Figure 12(c).
  • the PSE continuously outputs the first measurement current (A1) through the Ethernet port during the period t1-t2, at this time, the phase
  • the change of the first measurement voltage of the Ethernet end during the period from t1 to t2 is shown in Figure 12(a), and the measured impedance of the Ethernet port changes during the period from t0 to t1. See Figure 12 (c) is shown.
  • the PSE can sample the current of the Ethernet port during the voltage detection phase, that is, during t0-t1, to obtain the measurement current, and can be in the current detection phase, that is, during the period of t1-t2.
  • the voltage of the network port is sampled to obtain the measured voltage, and finally the measured impedance is obtained. It should be noted that, in FIG.
  • the PSE determines a first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determines a second impedance of the Ethernet port according to the second measurement voltage and the second measurement current.
  • the PSE may determine the first impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and determine according to the second measurement voltage and the second measurement current.
  • the second impedance of the Ethernet port may be obtained when the PSE performs multiple current detections.
  • the PSE can obtain the impedance of each current detection and average the impedance obtained during each current detection to obtain the first impedance.
  • the impedance obtained at each current detection is directly taken as the first impedance, and is output to step 406.
  • the PSE may determine the second impedance of the Ethernet port according to the obtained three second measurement currents and the second measurement voltage, and according to the obtained two first measurement voltages and the first The measurement current determines the first impedance of the Ethernet port.
  • the PSE determines the measured impedance of the Ethernet port according to the first impedance of the Ethernet port and the second impedance of the Ethernet port.
  • the PSE can average the first impedance of the Ethernet port and the second impedance of the Ethernet port to obtain the measured impedance of the Ethernet port.
  • the PSE determines, according to the measured impedance of the Ethernet port, whether the PD accessing the PSE is a legal PD.
  • the PSE determines the measured impedance of the Ethernet port, it can determine whether the PD that accesses the PSE is a legal PD according to the determined measurement impedance, and only performs when the PD that accesses the PSE is a legal PD.
  • the PSE determines that the PD accessing the PSE is a legal PD when determining that the measured impedance of the Ethernet port meets the preset condition.
  • determining that the measured impedance of the Ethernet port does not meet the preset condition, determining that the PD accessing the PSE is not Legal PD.
  • the measured impedance of the Ethernet port includes: the resistance of the Ethernet port and the capacitance of the Ethernet port; the preset condition may be: the resistance of the Ethernet port is greater than or equal to 19 kilo ohms and less than or equal to 26.5 kilo ohms, and the Ethernet port The capacitance is less than 0.150 microfarads.
  • the PSE determines the power level of the PD.
  • the PSE When the PSE determines that the PD accessing the PSE is a legal PD, the PSE can enter the classification phase, that is, the PSE can determine the power level of the PD by detecting the power output current to complete the classification of the PD.
  • the voltage output by the PSE through the Ethernet port is 15.5V to 20.5V, and the voltage polarity is consistent with -48V.
  • the PSE supplies power to the PD according to the determined power level of the PD.
  • the PSE determines that the PD accessing the PSE is a legal PD, and after completing the classification of the PD, the PSE can supply power to the PD according to the determined power level of the PD, that is, output a voltage of -48V. And, in During the PSE power supply to the PD, the PSE can perform real-time monitoring and power management. In addition, it is also possible to detect whether the PD disconnects from the PSE.
  • step 408 is an optional step, that is, when the PSE determines that the PD accessing the PSE is a legal PD, the PSE can directly supply power to the PD.
  • the specific process of the embodiment of the present invention is briefly introduced by taking the PSE as the RHUB and the PD as the pRRU as an example.
  • An example of performing voltage detection and primary current detection is described.
  • the RHUB includes a power source, a PSE module, and a network port
  • the pRRU includes a network port and a PD module.
  • the PHUB When the RHUB recognizes that the cable is plugged into the network port at both ends of the RHUB and pRRU, the PHUB enters the detection phase.
  • the PSE module of the RHUB first continuously outputs the second measurement voltage through the network port during the second time period, and detects the second measurement current of the network port during the process of outputting the second measurement voltage. Then, the PHU module of the RHUB continuously outputs the first measurement current through the Ethernet port during the first time period, and detects the first measurement voltage of the network port during the process of outputting the first measurement current.
  • the RHUB can determine the impedance of the network port according to the first measurement current, the first measurement voltage, the second measurement voltage, and the second measurement current, thereby determining whether the accessed pRRU is a legal PD according to the impedance. And when it is determined that the accessed pRRU is a legal PD, it supplies power to the pRRU.
  • the PSE When the PSE detects that there is a PD access, the PSE continuously outputs the first measurement current in the first time period, and detects the first measurement voltage, and detects the first measurement voltage, and Determining the measured impedance of the Ethernet port according to the first measurement current and the first measurement voltage, and then determining whether the PD accessing the PSE is a legal PD according to the determined measurement impedance of the Ethernet port.
  • the PSE detects the impedance of the Ethernet port by adopting the output current, thereby effectively avoiding the problem of detecting and identifying the legitimacy of the PD due to the common mode noise of the voltage outputted by the PSE. . This avoids the occurrence of device damage caused by the illegal PD being identified as a legitimate PD, and avoids the situation that the PD cannot be powered by the legitimate PD.
  • the jitter is filtered by increasing the post-processing, for example, extending the current detection time, or by increasing the output of the first measurement current.
  • the number of sampling times in the process to regain the impedance of the Ethernet port effectively avoids the problem of detecting and identifying the legitimacy of the PD due to the inherent jitter in the insertion (extraction) of the Ethernet cable.
  • the PSE includes corresponding hardware structures and/or software modules for performing various functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module into the PSE according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. Formal realization. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 14 is a schematic diagram showing a possible composition of the PSE involved in the foregoing and the embodiments.
  • the PSE may include: a detecting unit 51, and an output. Unit 52, determining unit 53.
  • the detecting unit 51 is configured to support the PSE to perform the PD access, step 402, and step 404 in step 401 of the method for detecting the legality of the power-providing device shown in FIG.
  • the output unit 52 is configured to support the PSE to perform the step of outputting the second measurement voltage in the second time period by the PSE in step 401 of the method for detecting the legality of the power-providing device shown in FIG. 10, step 403.
  • the determining unit 53 is configured to support the PSE to perform step 405, step 406, step 407, and step 408 in the method for detecting the legitimacy of the power-providing device shown in FIG.
  • the PSE may further include: a power supply unit 54.
  • the power supply device 54 is configured to support the PSE to perform step 409 in the method for detecting the legality of the power-over device shown in FIG.
  • the PSE provided by the embodiment of the present invention is configured to perform the foregoing method for detecting the legality of the power-supply device, so that the same effect as the method for detecting the legitimacy of the power-over device of the foregoing power supply can be achieved.
  • Fig. 15 shows another possible composition diagram of the PSE involved in the above embodiment.
  • the PSE includes a processing module 61 and a communication module 62.
  • the processing module 61 is configured to perform control and management on the action of the PSE.
  • the processing module 81 is configured to support the PSE to perform step 401, step 402, step 403, step 404, step 405, step 406, step 407, and step 408 in FIG. 10 .
  • Communication module 62 is used to support communication of the PSE with other network entities, such as with the functional modules or network entities shown in Figures 3-8.
  • the PSE may also include a storage module 63 for storing program code and data of the PSE.
  • the processing module 61 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 62 can be a transceiver, a transceiver circuit, or an Ethernet interface or the like.
  • the storage module 63 can be a memory.
  • the processing module 61 is a processor
  • the communication module 62 is an Ethernet interface
  • the storage module 63 is a memory
  • the PSE involved in the embodiment of the present invention may be the PSE shown in FIG.
  • Fig. 16 is a diagram showing another possible composition of the PSE involved in the above embodiment.
  • the PSE may include a measuring device 71, an Ethernet port 72, a power supply circuit 73, a processor 74, and a bus 75.
  • the measuring device 71 is connected to the Ethernet port 72, the measuring device 71 is also connected to the power supply circuit 73, the power supply circuit 73 is also connected to the Ethernet port 72, and the processor 74 is connected to the measuring device 71, the Ethernet port 72, and the power supply via the bus 75. Circuit 73 is connected.
  • the power supply circuit 73 is configured to continuously output the first measurement current through the Ethernet port 72 for a first period of time.
  • the measuring device 71 is configured to detect whether the Ethernet port 72 has PD access, and detect a first measurement voltage of the Ethernet port when the first measurement current is output.
  • the processor 74 is configured to determine the measured impedance of the Ethernet port 72 according to the first measurement current and the first measurement voltage, and determine whether the PD accessing the PSE is a legal PD according to the measured impedance of the Ethernet port 72.
  • the power supply circuit 73 is further configured to continuously output the second measurement voltage through the Ethernet port 72 for the second time period.
  • the measuring device 71 is further configured to detect a second measured current of the Ethernet port 72 when the second measured voltage is output.
  • the processor 74 is configured to determine a first impedance of the Ethernet port 72 according to the first measurement current and the first measurement voltage, and determine a second impedance of the Ethernet port 72 according to the second measurement voltage and the second measurement current, according to the Ethernet The first impedance of the network port 72 and the second impedance of the Ethernet port determine the measured impedance of the Ethernet port 72.
  • the measuring device 71 is further configured to detect that the returned current is different from the first measurement current during the first time period in which the power supply circuit 73 continues to output the first measurement current through the Ethernet port 72; the power supply circuit 73. For detecting that the returned current is different from the first measurement current when the measuring device 71 is different from the first measurement current, continuing to output the first measurement current at the cutoff time of the first time period; or, the measuring device 71 is further used for the power supply circuit 73.
  • the processor 74 is specifically configured to determine the measured impedance of the Ethernet port 72 according to the first measured current, the first measured voltage, and the re-detected first measured voltage.
  • the PSE provided by the embodiment of the present invention is configured to perform the foregoing method for detecting the legality of the power-supply device, so that the same effect as the method for detecting the legitimacy of the power-over device of the foregoing power supply can be achieved.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, may be located in one place, or may be located in one place. To distribute to many different places. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种以太网供电设备合法性检测方法、供电设备及系统,涉及通信领域,用于以太网供电设备合法性检测的过程中,解决了由于PSE(11)输出的电压存在共模噪声,导致的PD(12)的合法性检测识别错误的问题。在PSE(11)检测到有PD(12)接入时,通过以太网端口在第一时间段内持续输出第一测量电流,检测在输出第一测量电流时以太网端口的第一测量电压,根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,根据以太网端口的测量阻抗确定接入PSE(11)的PD(12)是否为合法PD。

Description

一种以太网供电设备合法性检测方法、供电设备及系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种以太网供电设备合法性检测方法、供电设备及系统。
背景技术
以太网供电(Power over Ethernet,PoE)是一种利用以太网电缆(Ethernet cable)同时传送网络数据和电力的技术。其中,电力是指被提供的电(electricity)。PoE设备包括供电设备(Power Sourcing Equipment,PSE)和受电设备(Powered Device,PD)两类。PSE可以通过以太网电缆为PD提供电力。
PD接入PSE时,其获取电源的流程如图1所示,具体的可以包括:检测(Detection),分类(Classification),供电(Powerup),运行(Operation),断开(Disconnection)五个阶段。其中,分类阶段是可选的。PD获取电源的具体过程为,在检测阶段,PSE检测接入PSE的设备是否属于合法的PD,并在检测到接入PSE的设备属于合法的PD时,进入下一个阶段。在分类阶段,PSE根据PD的功耗确定PD的功率等级。在供电阶段,PSE给PD供电。在运行阶段,PSE进行实时监控(Real Time Protection,RTP),并进行电源管理(Power Management,PM)。在断开阶段,PSE检测PD是否断开与PSE的连接。目前在检测阶段,PSE是通过检测以太网端口(该以太网端口是用于接入PD的端口)的阻抗来判断接入PSE的设备是否属于合法的PD的。在现有技术中,PSE可以采用输出两级电压或单级电压的方式来检测以太网端口的阻抗。
现有技术中至少存在如下问题:由于PSE输出的电压存在共模噪声,这会导致PSE检测得到的以太网端口电压受到干扰,从而导致PD的合法性检测识别错误。
发明内容
本发明实施例提供一种以太网供电设备合法性检测方法、供电设备及系统,解决了由于PSE输出的电压存在共模噪声,导致的PD的合法性检测识别错误的问题。
为达到上述目的,本发明实施例采用如下技术方案:
本发明实施例的第一方面,提供一种以太网供电设备合法性检测方法,包括:
在PSE检测到有PD接入时,PSE通过以太网端口在第一时间段内持续输出第一测量电流,并检测在输出第一测量电流时以太网端口的第一测量电压,然后PSE根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,并根据以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。
本发明实施例提供的以太网供电设备合法性检测方法,在PSE检测到有PD接入时,通过以太网端口在第一时间段内持续输出第一测量电流,检测得到第一测量电压,并根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,然后根据确定出的以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。这样,由于共 模电压分量没有电流回路,因此PSE通过采用输出电流的方式来检测以太网端口的阻抗,有效避免了由于PSE输出的电压存在共模噪声导致的PD的合法性检测识别错误的问题。这样避免了将非法PD识别为合法PD导致的设备损坏的情况出现,并避免了将合法PD识别为非法PD导致的无法为PD供电的情况出现。
结合第一方面,在一种可能的实现方式中,为了能够实现对电路中的AC电容或寄生电容的快速充电,该以太网供电设备合法性检测方法还可以包括:PSE通过以太网端口在第二时间段内持续输出第二测量电压,并检测在输出第二测量电压时以太网端口的第二测量电流;此时,相应的PSE根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,具体的可以包括:PSE根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口的第二阻抗,然后根据以太网端口的第一阻抗和以太网端口的第二阻抗,确定以太网端口的测量阻抗。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,由于PD接入(拔出)PSE的过程中,以太网电缆的插入(拔出)会存在固有的抖动,这会导致PSE检测得到的阻抗存在抖动,从而导致PD的合法性检测识别错误。为了避免由于以太网电缆插入(拔出)过程中存在固有的抖动导致的PD的合法性检测识别错误的问题出现,该以太网供电设备合法性检测方法还可以包括:若在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流与第一测量电流不同,则PSE在第一时间段的截止时刻,继续输出第一测量电流;
或者,若在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流与第一测量电流不同,则PSE重新检测在输出第一测量电流时以太网端口的第一测量电压,此时,相应的PSE根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,包括:PSE根据第一测量电流、第一测量电压以及重新检测到的第一测量电压确定以太网端口的测量阻抗。
当然,若在进行电流侦测之前,PSE还进行了电压侦测,那么当在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流与第一测量电流不同时,PSE重新检测在输出第一测量电流时以太网端口的第一测量电压,此时PSE根据第一测量电流和第一测量电压确定以太网端口的测量阻抗具体的可以包括:根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,根据第二测量电压和第二测量电流确定以太网端口的第二阻抗,并根据第一测量电流和重新检测到的第一测量电压确定以太网端口的第三阻抗,然后PSE根据以太网端口的第一阻抗、以太网端口的第二阻抗和以太网端口的第三阻抗,确定以太网端口的测量阻抗。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,PSE根据以太网端口的测量阻抗确定接入PSE的PD是否为合法PD,具体的可以包括:PSE在确定以太网端口的测量阻抗满足预设条件时,确定接入PSE的PD是合法PD;PSE在确定以太网端口的测量阻抗不满足预设条件时,确定接入PSE的PD不是合法PD;其中,以太网端口的测量阻抗包括:以太网端口的电阻和以太网端口的电容;预设条件为:以太网端口的电阻大于或等于19千欧姆且小于或等于26.5千欧姆,且以太 网端口的电容小于0.150微法拉。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该以太网供电设备合法性检测还可以包括:若PSE确定接入PSE的PD是合法PD,则PSE为PD供电;或者,若PSE确定接入PSE的PD是合法PD,则PSE在确定出PD的功率等级之后,根据确定出的PD的功率等级为PD供电,以便实现对PD的供电。
本发明实施例的第二方面,提供一种PSE,包括:检测单元、输出单元和确定单元;
检测单元,用于检测是否有受电设备PD接入;
输出单元,用于在检测单元检测到有PD接入时,通过以太网端口在第一时间段内持续输出第一测量电流;
检测单元,还用于检测在输出单元输出第一测量电流时以太网端口的第一测量电压;
确定单元,用于根据输出单元输出的第一测量电流和检测单元检测到的第一测量电压确定以太网端口的测量阻抗,并根据以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。
结合第二方面,在一种可能的实现方式中,输出单元,还用于通过以太网端口在第二时间段内持续输出第二测量电压;检测单元,还用于检测在输出单元输出第二测量电压时以太网端口的第二测量电流;确定单元,具体用于根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口的第二阻抗;根据以太网端口的第一阻抗和以太网端口的第二阻抗,确定以太网端口的测量阻抗。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,输出单元,还用于若在通过以太网端口在第一时间段内持续输出第一测量电流的过程中,检测单元检测到返回的电流与第一测量电流不同,则在第一时间段的截止时刻,继续输出第一测量电流;或者,检测单元,还用于若在通过以太网端口在第一时间段内持续输出第一测量电流的过程中,检测到返回的电流与第一测量电流不同,则重新检测在输出第一测量电流时以太网端口的第一测量电压;确定单元,具体用于根据第一测量电流、第一测量电压以及重新检测到的第一测量电压确定以太网端口的测量阻抗。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,确定单元,具体用于在确定以太网端口的测量阻抗满足预设条件时,确定接入PSE的PD是合法PD;在确定以太网端口的测量阻抗不满足预设条件时,确定接入PSE的PD不是合法PD;其中,以太网端口的测量阻抗包括:以太网端口的电阻和以太网端口的电容;预设条件为:以太网端口的电阻大于或等于19千欧姆且小于或等于26.5千欧姆,且以太网端口的电容小于0.150微法拉。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:供电单元;供电单元,用于若确定单元确定接入PSE的PD是合法PD,则为PD供电;或者,确定单元,还用于若确定接入PSE的PD是合法PD,则确定PD的功率等级,供电单元,用于根据确定单元确定出的PD的功率等级为PD供电。
本发明实施例的第三方面,提供一种PSE,包括:测量器件、以太网端口,供电电路、处理器和总线,测量器件与以太网端口连接,测量器件还与供电电路连接,供电电路还与以太网端口连接,处理器通过总线与测量器件、以太网端口以及供电电路连接;
供电电路,用于通过以太网端口在第一时间段内持续输出第一测量电流;
测量器件,用于检测以太网端口是否有PD接入,检测在输出第一测量电流时以太网端口的第一测量电压;
处理器,用于根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,并根据以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。
结合第三方面,在另一种可能的实现方式中,供电电路,还用于通过以太网端口在第二时间段内持续输出第二测量电压;
测量器件,还用于检测在输出第二测量电压时以太网端口的第二测量电流;
处理器,具体用于根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口的第二阻抗,根据以太网端口的第一阻抗和以太网端口的第二阻抗,确定以太网端口的测量阻抗。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,测量器件,还用于若在供电电路通过以太网端口在第一时间段内持续输出第一测量电流的过程中,检测到返回的电流与第一测量电流不同;供电电路,用于在测量器件检测到返回的电流与第一测量电流不同时,在第一时间段的截止时刻,继续输出第一测量电流;
或者,测量器件,还有用于若在供电电路通过以太网端口在第一时间段内持续输出第一测量电流的过程中,检测到返回的电流与第一测量电流不同,则重新检测在输出第一测量电流时以太网端口的第一测量电压;处理器,具体用于根据第一测量电流、第一测量电压以及重新检测到的第一测量电压确定以太网端口的测量阻抗。
本发明实施例的第四方面,提供一种以太网供电系统,包括:
如第二方面或第二方面的可能实现方式中,或者第三方面或第三方面的可能实现方式中任一所述的PSE,以及通过以太网电缆接入PSE的PD。
结合第四方面,在一种可能的实现方式中,PSE为远端集线器(Remote Hub,RHUB),PD为微微射频拉远单元(Pico Radio Remote Unit,pRRU);或者,PSE为主集线器(Main Hub),PD为远端天线单元(Remote Antenna Unit,RAU);或者,PSE为局域网交换机(Lan Switch),PD为接入点(Access Point,AP);或者,PSE为交换机,PD为灯泡。
本发明实施例的第五方面,提供一种PSE,该PSE可以包括:至少一个处理器,存储器、以太网接口和总线;
至少一个处理器与存储器、以太网接口通过总线连接,存储器用于存储计算机执行指令,当PSE运行时,处理器执行存储器存储的计算机执行指令,以使PSE执行第一方面或第一方面的可能的实现方式中任一所述的以太网供电设备合法性检测方法。
本发明实施例的第六方面,提供一种计算机存储介质,用于存储上述PSE所用 的计算机软件指令,该计算机软件指令包含用于执行上述以太网供电设备合法性检测方法所设计的程序。
附图说明
图1为现有技术提供的一种PD接入PSE时获取电源的流程示意图;
图2为本发明实施例提供的一种共模噪声干扰以太网端口的电压的示意图;
图3为本发明实施例提供的一种应用本发明实施例的系统架构的简化示意图;
图4为本发明实施例提供的一种应用本发明实施例的系统架构的具体实现组成示意图;
图5为本发明实施例提供的另一种应用本发明实施例的系统架构的具体实现组成示意图;
图6为本发明实施例提供的另一种应用本发明实施例的系统架构的具体实现组成示意图;
图7为本发明实施例提供的另一种应用本发明实施例的系统架构的具体实现组成示意图;
图8为本发明实施例提供的另一种应用本发明实施例的系统架构的简化示意图;
图9为本发明实施例提供的一种PSE的组成示意图;
图10为本发明实施例提供的一种以太网供电设备合法性检测方法的流程示意图;
图11为本发明实施例提供的一种以太网电缆的插入(拔出)干扰以太网端口的电压的示意图;
图12为本发明实施例提供的一种侦测阶段中电压、电流及阻抗的变化示意图;
图13为本发明实施例提供的另一种应用本发明实施例的系统架构的具体实现组成示意图;
图14为本发明实施例提供的另一种PSE的组成示意图;
图15为本发明实施例提供的另一种PSE的组成示意图;
图16为本发明实施例提供的另一种PSE的组成示意图。
具体实施方式
在PD接入PSE时,PD获取电源的流程中的检测阶段,PSE可以采用输出两级电压或单级电压的方式来检测以太网端口的阻抗,从而根据检测到的阻抗判断接入PSE的设备是否属于合法的PD。但是,如图2所示,由于PSE输出的电压存在共模噪声,这会导致PSE检测得到的以太网端口电流受到干扰,从而导致PD的合法性检测识别错误,如,将非法PD识别为合法PD,或将合法PD识别为非法PD。为了避免由于PSE输出的电压存在共模噪声,导致PD的合法性检测识别错误的问题出现,本发明实施例提供一种以太网供电设备合法性检测方法,其基本原理是:在PSE检测到有PD接入时,PSE采用输出电流的方式来检测以太网端口的阻抗,具体的为:PSE通过以太网端口在第一时间段内持续输出第一测量电流,并检测在输出第一测量电流时以太网端口的第一测量电压,然后根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,最后根据确定出的以太网端口的测量阻抗确定接入PSE的 PD是否为合法PD。这样,由于共模电压分量没有电流回路,因此PSE通过采用输出电流的方式来检测以太网端口的阻抗,有效避免了由于PSE输出的电压存在共模噪声导致的PD的合法性检测识别错误的问题。这样避免了将非法PD识别为合法PD导致的设备损坏的情况出现,并避免了将合法PD识别为非法PD导致的无法为PD供电的情况出现。
下面将结合附图对本发明实施例的实施方式进行详细描述。
图3示出的是可以应用本发明实施例的系统架构的简化示意图。如图3所示,该系统架构可以包括:PSE 11和PD 12。
其中,PSE 11和PD 12可以通过以太网电缆连接。PSE 11和PD 12之间可以通过以太网电缆进行网络数据的传输,且PSE 11可以通过以太网电缆为PD 12提供电力,即给PD 12充电。
在一种具体实现中,如图4所示,PSE 11可以为RHUB,PD 12为pRRU。且该系统架构还可以包括:基带处理单元(Baseband Unit,BBU)。BBU和RHUB通过光纤(fiber)连接。
或者,在另一种具体实现中,如图5所示,PSE 11为Main Hub,PD 12为RAU。且该系统架构还可以包括:BBU,射频拉远单元(remote radio unit,RRU)和天线(Antenna)。BBU和RRU通过fiber连接,RRU和Main Hub通过射频(Radio Frequency,RF)cable连接。
或者,在另一种具体实现中,如图6所示,PSE 11为局域网交换机(Lan Switch),PD 12为AP。且该系统架构还可以包括:互联网协议(Internet Protocol,IP)路由器(Router)。
或者,在另一种具体实现中,如图7所示,PSE 11为交换机,PD 12为灯泡。
在本发明实施例中,进一步的,如图8所示,该系统架构还可以包括:网络交换机(network switch)13。该网络交换机13与PCE 11之间可以进行网络数据的传输。
图9为本发明实施例提供的一种PSE的组成示意图,如图9所示,PSE可以包括至少一个处理器21,存储器22、以太网接口23、通信总线24。
下面结合图9对PSE的各个构成部件进行具体的介绍:
处理器21是PSE的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行PSE的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图9中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,PSE可以包括多个处理器,例如图9中所示 的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过通信总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,所述存储器22用于存储执行本发明方案的软件程序,并由处理器21来控制执行。
以太网接口23,可以用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。以太网接口23还可以用于为PD充电。
通信总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图9中示出的设备结构并不构成对PSE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图10为本发明实施例提供的一种以太网供电设备合法性检测方法的流程图,如图10所示,该方法可以包括:
401、在PSE检测到有PD接入时,PSE通过以太网端口在第二时间段内持续输出第二测量电压。
其中,在PD接入PSE时,PSE可以检测到PD的接入,此时PSE可以先进行电压侦测,即可以先通过以太网端口在第二时间段内持续输出第二测量电压。该第二测量电压为2.8V(伏)~10V,电压极性与-48V一致。其中,第二时间段的取值可以小于或等于500毫秒(ms)。另外,该第二时间段的具体取值可以根据实际应用场景的需求进行设置,并预先配置在PSE中。
402、PSE检测在输出第二测量电压时以太网端口的第二测量电流。
其中,在PSE通过以太网端口在第二时间段内持续输出第二测量电压的过程中,PSE可以对以太网端口的电流进行采样,以获得第二测量电流。在具体实现中,PSE的采样时刻和采样次数可以根据实际应用场景的需求进行设置,本发明实施例在此不做具体限制。
例如,PSE可以在输出第二测量电压的过程中,在三个不同的采样时刻对以太 网端口的电流进行采样,以获得三个第二测量电流。
403、PSE通过以太网端口在第一时间段内持续输出第一测量电流。
其中,在PSE在第二时间段输出第二测量电压结束时,PSE可以进行电流侦测,即继续通过以太网端口在第一时间段内持续输出第一测量电流。该第一时间段的具体取值可以根据实际应用场景的需求进行设置,并预先配置在PSE中。
404、PSE检测在输出第一测量电流时以太网端口的第一测量电压。
其中,在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE可以对以太网端口的电压进行采样,以获得第一测量电压。在具体实现中,PSE的采样时刻和采样次数可以根据实际应用场景的需求进行设置,本发明实施例在此不做具体限制。
例如,PSE可以在输出第一测量电流的过程中,在两个不同的采样时刻对以太网端口的电压进行采样,以获得两个第一测量电压。
需要说明的是,在具体实现中,PSE可以在不同的时间段内多次输出测量电流,即进行多次电流侦测(其中,多次输出的测量电流可以相同,也可以不同),且PSE在每次电流侦测的过程中,对以太网端口的电压进行采样。在本发明实施例中对具体实现时电流侦测的次数不做具体限制,可以根据应用场景的需求进行设置。
如图11所示,由于PD接入(拔出)PSE的过程中,以太网电缆的插入(拔出)会存在固有的抖动,这会导致PSE检测得到的阻抗存在抖动,从而导致PD的合法性检测识别错误。为了避免由于以太网电缆插入(拔出)过程中存在固有的抖动导致的PD的合法性检测识别错误的问题出现,进一步的,若在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流(该返回的电流可以通过ADC采样获得)与第一测量电流不同,PSE可以增加后处理,如,延长电流侦测的时间来滤除抖动,或者增加输出第一测量电流的过程中的采样次数来重新获取以太网端口的阻抗。具体的:若在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流与第一测量电流不同,则PSE在第一时间段的截止时刻,继续输出第一测量电流。或者,若在PSE通过以太网端口在第一时间段内持续输出第一测量电流的过程中,PSE检测到返回的电流与第一测量电流不同,则PSE重新检测在输出第一测量电流时以太网端口的第一测量电压。此时,PSE可以根据第一测量电流、第一测量电压、重新检测到的第一测量电压,以及第二测量电压和第二测量电流确定以太网端口的测量阻抗。
需要说明的是,在本发明实施例中,也可以先进行电流侦测,再进行电压侦测。本发明实施例在此对电流侦测和电压侦测的执行先后顺序不做具体限制,电流侦测和电压侦测的执行先后顺序可以根据实际应用场景的需求进行选择。
例如,如图12所示,为先执行一次电压侦测,再进行一次电流侦测的以太网端口的电压、电流及阻抗在理想状态下的变化示意图。具体的,参见图12(a),PSE通过以太网端口在t0-t1这段时间内持续输出第二测量电压(V1),此时,相应的以太网端口的第二测量电流在t0-t1这段时间内的变化参见图12(b)所示,且以太网端口的测量阻抗在t0-t1这段时间内的变化参见图12(c)所示。另外,参见图12(b),PSE通过以太网端口在t1-t2这段时间段内持续输出第一测量电流(A1),此时,相 应的,以太网端的第一测量电压在t1-t2这段时间段内的变化参见图12(a)所示,且以太网端口的测量阻抗在t0-t1这段时间内的变化参见图12(c)所示。PSE可以在电压侦测阶段,即在t0-t1这段时间内对以太网端口的电流进行采样,以获得测量电流,并可以在电流侦测阶段,即在t1-t2这段时间段内以太网端口的电压进行采样,以获得测量电压,最终得到测量阻抗。需要说明的是,图12中仅是对侦测过程中电压、电流以及阻抗的变化进行了简单的示例,并未限定在电压侦测过程中PSE输出的侦测电压的具体值,也并未限定在电流侦测过程中PSE输出的侦测电流的具体值。
405、PSE根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口的第二阻抗。
其中,在PSE检测到第二测量电流和第一测量电压之后,PSE可以根据第一测量电流和第一测量电压确定以太网端口的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口的第二阻抗。当然,当PSE进行了多次电流侦测时,PSE可以获取每次电流侦测时的阻抗,并将得到的每次电流侦测时的阻抗求平均,以得到第一阻抗。或者,将每次电流侦测时获得的阻抗直接作为第一阻抗,并输出到步骤406中。
例如,按照步骤402和步骤404中的例子,PSE可以根据获得的三个第二测量电流和第二测量电压确定以太网端口的第二阻抗,并根据获得的两个第一测量电压和第一测量电流确定以太网端口的第一阻抗。
406、PSE根据以太网端口的第一阻抗和以太网端口的第二阻抗,确定以太网端口的测量阻抗。
例如,PSE可以求取以太网端口的第一阻抗和以太网端口的第二阻抗的平均值,以得到以太网端口的测量阻抗。
407、PSE根据以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。
其中,在PSE确定出以太网端口的测量阻抗之后,可以根据确定出的测量阻抗,判断接入PSE的PD是否为合法PD,并仅在确定接入PSE的PD为合法PD时,才会执行下一步操作。具体的:PSE在确定以太网端口的测量阻抗满足预设条件时,确定接入PSE的PD是合法PD,在确定以太网端口的测量阻抗不满足预设条件时,确定接入PSE的PD不是合法PD。
以太网端口的测量阻抗包括:以太网端口的电阻和以太网端口的电容;预设条件可以为:以太网端口的电阻大于或等于19千欧姆且小于或等于26.5千欧姆,且以太网端口的电容小于0.150微法拉。
408、若PSE确定接入PSE的PD是合法PD,则PSE确定PD的功率等级。
其中,在PSE确定接入PSE的PD是合法PD时,进入分类阶段,即PSE可以通过检测电源输出电流来确定PD的功率等级,以完成为该PD的分类。其中,在分类阶段,PSE通过以太网端口输出的电压大小为15.5V~20.5V,电压极性与-48V一致。
409、PSE根据确定出的PD的功率等级为PD供电。
其中,在PSE确定接入PSE的PD是合法PD,并且在完成对PD的分类之后,PSE可以根据确定出的PD的功率等级为PD供电,即输出-48V的电压。并且,在 PSE为PD供电的过程中,PSE可以进行实时监控,并进行电源管理。另外,还可以检测PD是否断开与PSE的连接。
需要说明的是,在本发明实施例中,步骤408为可选步骤,也就是说,在PSE确定接入PSE的PD是合法PD时,PSE可以直接为PD供电。
为了便于本领域技术人员的理解,本发明实施例以PSE为RHUB,PD为pRRU为例,对本发明实施例的具体过程进行简单介绍。且以进行一次电压侦测和一次电流侦测为例进行介绍。如图13所示,RHUB包括电源(Power),PSE模块和网口,pRRU包括网口和PD模块。
在RHUB识别到电缆被插入到RHUB和pRRU两端的网口上时,PHUB进入检测阶段。在该检测阶段,RHUB的PSE模块先在第二时间段内通过网口持续输出第二测量电压,并检测在输出第二测量电压的过程中网口的第二测量电流。然后,RHUB的PSE模块在第一时间段内通过以太网端口持续输出第一测量电流,并检测在输出第一测量电流的过程中网口的第一测量电压。这样,RHUB便可以根据第一测量电流、第一测量电压、第二测量电压和第二测量电流确定网口的阻抗,从而根据阻抗确定接入的pRRU是否为合法的PD。并在确定接入的pRRU是合法PD时,为pRRU供电。
本发明实施例提供的以太网供电设备合法性检测方法,在PSE检测到有PD接入时,通过以太网端口在第一时间段内持续输出第一测量电流,检测得到第一测量电压,并根据第一测量电流和第一测量电压确定以太网端口的测量阻抗,然后根据确定出的以太网端口的测量阻抗确定接入PSE的PD是否为合法PD。这样,由于共模电压分量没有电流回路,因此PSE通过采用输出电流的方式来检测以太网端口的阻抗,有效避免了由于PSE输出的电压存在共模噪声导致的PD的合法性检测识别错误的问题。这样避免了将非法PD识别为合法PD导致的设备损坏的情况出现,并避免了将合法PD识别为非法PD导致的无法为PD供电的情况出现。
并且,在PSE在电流侦测过程中,检测到返回的电流与第一测量电流不同时,通过增加后处理,如,延长电流侦测的时间来滤除抖动,或者通过增加输出第一测量电流的过程中的采样次数来重新获取以太网端口的阻抗的方式,有效避免了由于以太网电缆插入(拔出)过程中存在固有的抖动导致的PD的合法性检测识别错误的问题出现。
上述主要从各个PSE的角度对本发明实施例提供的方案进行了介绍。可以理解的是,PSE为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对PSE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的 形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述和实施例中涉及的PSE的一种可能的组成示意图,如图14所示,该PSE可以包括:检测单元51、输出单元52、确定单元53。
其中,检测单元51,用于支持PSE执行图10所示的以太网供电设备合法性检测方法中的步骤401中检测到有PD接入、步骤402、步骤404。
输出单元52,用于支持PSE执行图10所示的以太网供电设备合法性检测方法中的步骤401中PSE通过以太网端口在第二时间段内持续输出第二测量电压、步骤403。
确定单元53,用于支持PSE执行图10所示的以太网供电设备合法性检测方法中的步骤405、步骤406、步骤407、步骤408。
在本发明实施例中,进一步的,如图14所示,该PSE还可以包括:供电单元54。
供电设备54,用于支持PSE执行图10所示的以太网供电设备合法性检测方法中的步骤409。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的PSE,用于执行上述以太网供电设备合法性检测方法,因此可以达到与上述以太网供电设备合法性检测方法相同的效果。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的PSE的另一种可能的组成示意图。如图15所示,该PSE包括:处理模块61和通信模块62。
处理模块61用于对PSE的动作进行控制管理,例如,处理模块81用于支持PSE执行图10中的步骤401、步骤402、步骤403、步骤404、步骤405、步骤406、步骤407、步骤408、步骤409、和/或用于本文所描述的技术的其它过程。通信模块62用于支持PSE与其他网络实体的通信,例如与图3-图8中示出的功能模块或网络实体之间的通信。PSE还可以包括存储模块63,用于存储PSE的程序代码和数据。
其中,处理模块61可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块62可以是收发器、收发电路或以太网接口等。存储模块63可以是存储器。
当处理模块61为处理器,通信模块62为以太网接口,存储模块63为存储器时,本发明实施例所涉及的PSE可以为图9所示的PSE。
图16示出了上述实施例中所涉及的PSE的另一种可能的组成示意图。如图16所示,该PSE可以包括:测量器件71、以太网端口72,供电电路73、处理器74和总线75。
其中,测量器件71与以太网端口72连接,测量器件71还与供电电路73连接,供电电路73还与以太网端口72连接,处理器74通过总线75与测量器件71、以太网端口72以及供电电路73连接。
在具体实现中:
供电电路73,用于通过以太网端口72在第一时间段内持续输出第一测量电流。
测量器件71,用于检测以太网端口72是否有PD接入,检测在输出第一测量电流时以太网端口的第一测量电压。
处理器74,用于根据第一测量电流和第一测量电压确定以太网端口72的测量阻抗,并根据以太网端口72的测量阻抗确定接入PSE的PD是否为合法PD。
进一步的,供电电路73,还用于通过以太网端口72在第二时间段内持续输出第二测量电压。
测量器件71,还用于检测在输出第二测量电压时以太网端口72的第二测量电流。
处理器74,具体用于根据第一测量电流和第一测量电压确定以太网端口72的第一阻抗,并根据第二测量电压和第二测量电流确定以太网端口72的第二阻抗,根据以太网端口72的第一阻抗和以太网端口的第二阻抗,确定以太网端口72的测量阻抗。
进一步的,测量器件71,还用于若在供电电路73通过以太网端口72在第一时间段内持续输出第一测量电流的过程中,检测到返回的电流与第一测量电流不同;供电电路73,用于在测量器件71检测到返回的电流与第一测量电流不同时,在第一时间段的截止时刻,继续输出第一测量电流;或者,测量器件71,还有用于若在供电电路73通过以太网端口72在第一时间段内持续输出第一测量电流的过程中,检测到返回的电流与第一测量电流不同,则重新检测在输出第一测量电流时以太网端口的第一测量电压;处理器74,具体用于根据第一测量电流、第一测量电压以及重新检测到的第一测量电压确定以太网端口72的测量阻抗。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的PSE,用于执行上述以太网供电设备合法性检测方法,因此可以达到与上述以太网供电设备合法性检测方法相同的效果。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可 以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种以太网供电设备合法性检测方法,其特征在于,包括:
    在供电设备PSE检测到有受电设备PD接入时,通过以太网端口在第一时间段内持续输出第一测量电流;
    所述PSE检测在输出所述第一测量电流时所述以太网端口的第一测量电压;
    所述PSE根据所述第一测量电流和所述第一测量电压确定所述以太网端口的测量阻抗;
    所述PSE根据所述以太网端口的测量阻抗确定接入所述PSE的PD是否为合法PD。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述PSE通过所述以太网端口在第二时间段内持续输出第二测量电压;
    所述PSE检测在输出所述第二测量电压时所述以太网端口的第二测量电流;
    所述PSE根据所述第一测量电流和所述第一测量电压确定所述以太网端口的测量阻抗,包括:
    所述PSE根据所述第一测量电流和所述第一测量电压确定所述以太网端口的第一阻抗,并根据所述第二测量电压和所述第二测量电流确定所述以太网端口的第二阻抗;
    所述PSE根据所述以太网端口的第一阻抗和所述以太网端口的第二阻抗,确定所述以太网端口的测量阻抗。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    若在所述PSE通过所述以太网端口在所述第一时间段内持续输出所述第一测量电流的过程中,所述PSE检测到返回的电流与所述第一测量电流不同,则所述PSE在所述第一时间段的截止时刻,继续输出所述第一测量电流;
    或者,若在所述PSE通过所述以太网端口在所述第一时间段内持续输出所述第一测量电流的过程中,所述PSE检测到返回的电流与所述第一测量电流不同,则所述PSE重新检测在输出所述第一测量电流时所述以太网端口的第一测量电压;所述PSE根据所述第一测量电流和所述第一测量电压确定所述以太网端口的测量阻抗,包括:所述PSE根据所述第一测量电流、所述第一测量电压以及重新检测到的第一测量电压确定所述以太网端口的测量阻抗。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述PSE根据所述以太网端口的测量阻抗确定接入所述PSE的PD是否为合法PD,包括:
    所述PSE在确定所述以太网端口的测量阻抗满足预设条件时,确定接入所述PSE的PD是合法PD;
    所述PSE在确定所述以太网端口的测量阻抗不满足所述预设条件时,确定接入所述PSE的PD不是合法PD;
    其中,所述以太网端口的测量阻抗包括:所述以太网端口的电阻和所述以太网端口的电容;所述预设条件为:所述以太网端口的电阻大于或等于19千欧姆且小于或等于26.5千欧姆,且所述以太网端口的电容小于0.150微法拉。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,还包括:
    若所述PSE确定接入所述PSE的PD是合法PD,则所述PSE为所述PD供电;
    或者,若所述PSE确定接入所述PSE的PD是合法PD,则所述PSE在确定出所述PD的功率等级之后,根据确定出的所述PD的功率等级为所述PD供电。
  6. 一种供电设备PSE,其特征在于,包括:检测单元、输出单元和确定单元;
    所述检测单元,用于检测是否有受电设备PD接入;
    所述输出单元,用于在所述检测单元检测到有PD接入时,通过以太网端口在第一时间段内持续输出第一测量电流;
    所述检测单元,还用于检测在所述输出单元输出所述第一测量电流时所述以太网端口的第一测量电压;
    所述确定单元,用于根据所述输出单元输出的所述第一测量电流和所述检测单元检测到的所述第一测量电压确定所述以太网端口的测量阻抗,并根据所述以太网端口的测量阻抗确定接入所述PSE的PD是否为合法PD。
  7. 根据权利要求6所述的PSE,其特征在于,
    所述输出单元,还用于通过所述以太网端口在第二时间段内持续输出第二测量电压;
    所述检测单元,还用于检测在所述输出单元输出所述第二测量电压时所述以太网端口的第二测量电流;
    所述确定单元,具体用于:
    根据所述第一测量电流和所述第一测量电压确定所述以太网端口的第一阻抗,并根据所述第二测量电压和所述第二测量电流确定所述以太网端口的第二阻抗;
    根据所述以太网端口的第一阻抗和所述以太网端口的第二阻抗,确定所述以太网端口的测量阻抗。
  8. 根据权利要求6或7所述的PSE,其特征在于,
    所述输出单元,还用于若在通过所述以太网端口在所述第一时间段内持续输出所述第一测量电流的过程中,所述检测单元检测到返回的电流与所述第一测量电流不同,则在所述第一时间段的截止时刻,继续输出所述第一测量电流;
    或者,所述检测单元,还用于若在通过所述以太网端口在所述第一时间段内持续输出所述第一测量电流的过程中,检测到返回的电流与所述第一测量电流不同,则重新检测在输出所述第一测量电流时所述以太网端口的第一测量电压;所述确定单元,具体用于根据所述第一测量电流、所述第一测量电压以及重新检测到的第一测量电压确定所述以太网端口的测量阻抗。
  9. 根据权利要求6-8中任一项所述的PSE,其特征在于,所述确定单元,具体用于:
    在确定所述以太网端口的测量阻抗满足预设条件时,确定接入所述PSE的PD是合法PD;
    在确定所述以太网端口的测量阻抗不满足所述预设条件时,确定接入所述PSE的PD不是合法PD;
    其中,所述以太网端口的测量阻抗包括:所述以太网端口的电阻和所述以太网端口的电容;所述预设条件为:所述以太网端口的电阻大于或等于19千欧姆且小于或等于26.5千欧姆,且所述以太网端口的电容小于0.150微法拉。
  10. 根据权利要求6-9中任一项所述的PSE,其特征在于,还包括:供电单元;
    所述供电单元,用于若所述确定单元确定接入所述PSE的PD是合法PD,则为所述PD供电;
    或者,所述确定单元,还用于若确定接入所述PSE的PD是合法PD,则确定所述PD的功率等级,所述供电单元,用于根据所述确定单元确定出的所述PD的功率等级为所述PD供电。
  11. 一种供电设备PSE,其特征在于,包括:测量器件、以太网端口,供电电路、处理器和总线,所述测量器件与所述以太网端口连接,所述测量器件还与所述供电电路连接,所述供电电路还与所述以太网端口连接,所述处理器通过所述总线与所述测量器件、所述以太网端口以及所述供电电路连接;
    所述供电电路,用于通过所述以太网端口在第一时间段内持续输出第一测量电流;
    所述测量器件,用于检测所述以太网端口是否有受电设备PD接入,检测在输出所述第一测量电流时所述以太网端口的第一测量电压;
    所述处理器,用于根据所述第一测量电流和所述第一测量电压确定所述以太网端口的测量阻抗,并根据所述以太网端口的测量阻抗确定接入所述PSE的PD是否为合法PD。
  12. 一种以太网供电系统,其特征在于,包括:
    如权利要求6-11中任一项所述的供电设备PSE,以及通过以太网电缆接入所述PSE的受电设备PD。
PCT/CN2017/075247 2017-02-28 2017-02-28 一种以太网供电设备合法性检测方法、供电设备及系统 WO2018157300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075247 WO2018157300A1 (zh) 2017-02-28 2017-02-28 一种以太网供电设备合法性检测方法、供电设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075247 WO2018157300A1 (zh) 2017-02-28 2017-02-28 一种以太网供电设备合法性检测方法、供电设备及系统

Publications (1)

Publication Number Publication Date
WO2018157300A1 true WO2018157300A1 (zh) 2018-09-07

Family

ID=63369558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075247 WO2018157300A1 (zh) 2017-02-28 2017-02-28 一种以太网供电设备合法性检测方法、供电设备及系统

Country Status (1)

Country Link
WO (1) WO2018157300A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129545A1 (zh) * 2019-12-28 2021-07-01 华为技术有限公司 带滤波检测装置、供电设备和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371492A (zh) * 2006-01-17 2009-02-18 美国博通公司 以太网供电控制器集成电路架构
US8412961B2 (en) * 2010-04-16 2013-04-02 Silicon Laboratories Inc. Circuit and method for detecting a legacy powered device in a power over Ethernet system
CN103488268A (zh) * 2013-09-05 2014-01-01 华为技术有限公司 一种存储装置及存储装置的供电方法
CN105634750A (zh) * 2014-10-30 2016-06-01 华为技术有限公司 一种供电设备芯片、以太网供电设备和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371492A (zh) * 2006-01-17 2009-02-18 美国博通公司 以太网供电控制器集成电路架构
US8412961B2 (en) * 2010-04-16 2013-04-02 Silicon Laboratories Inc. Circuit and method for detecting a legacy powered device in a power over Ethernet system
CN103488268A (zh) * 2013-09-05 2014-01-01 华为技术有限公司 一种存储装置及存储装置的供电方法
CN105634750A (zh) * 2014-10-30 2016-06-01 华为技术有限公司 一种供电设备芯片、以太网供电设备和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, JIANYU ET AL.: "Design of a 90W high power power-over-Ethernet System", CHINESE JOURNAL OF POWER SOURCES, vol. 39, no. 7, 20 July 2015 (2015-07-20), pages 1493 - 1494 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129545A1 (zh) * 2019-12-28 2021-07-01 华为技术有限公司 带滤波检测装置、供电设备和系统

Similar Documents

Publication Publication Date Title
TWI614601B (zh) 充放電方法、非暫態電腦可讀儲存媒體、對一電池系統進行充放電的系統
US9727518B2 (en) Communication control pins in a dual row connector
US20110022736A1 (en) Methods and apparatus dynamic management of multiplexed phys in a serial attached scsi domain
US20210240240A1 (en) Providing power to a server
US8533300B2 (en) Storage device, controller, and address management method
US9891678B2 (en) Systems and methods for remotely resetting management controller via power over ethernet switch
US9654458B1 (en) Unauthorized device detection in a heterogeneous network
US9547573B2 (en) Serial communication over communication control pin
US8432981B1 (en) High frequency and idle communication signal state detection
US11329886B2 (en) Automatic classification of network devices in a network
WO2011137843A2 (zh) 设备标识信息的获取方法及装置
US11496454B2 (en) System and method for providing comprehensive remote authorized access to multiple equipment in a datacenter
US20160020952A1 (en) Selective Single-Ended Transmission for High Speed Serial Links
US11632431B2 (en) Policy-based connection provisioning using domain name system (DNS) requests
US20150026503A1 (en) Appliances powered over sas
US20140359177A1 (en) Delayed physical link activation in serial attached small computer system interface devices that utilize smart cabling
US9250673B2 (en) Power over Ethernet parameter storage
TW201705007A (zh) 擴充的訊息信號中斷(msi)訊息資料
WO2018157300A1 (zh) 一种以太网供电设备合法性检测方法、供电设备及系统
US9548974B2 (en) Network system, network device and connection control method
US8391420B1 (en) Low frequency communication signal state detection
US8489781B1 (en) Detection system and methods
US10448438B2 (en) Wireless communication between a management controller and one or more drives
CN110741359A (zh) 改变共享总线上集成电路的从属标识的系统和方法
CN211044232U (zh) 一种基于iic扩展方式的服务器数据监控装置及服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898593

Country of ref document: EP

Kind code of ref document: A1