WO2018155943A1 - Dehydration process for controlling moisture content of bio-sulfur suspension - Google Patents

Dehydration process for controlling moisture content of bio-sulfur suspension Download PDF

Info

Publication number
WO2018155943A1
WO2018155943A1 PCT/KR2018/002231 KR2018002231W WO2018155943A1 WO 2018155943 A1 WO2018155943 A1 WO 2018155943A1 KR 2018002231 W KR2018002231 W KR 2018002231W WO 2018155943 A1 WO2018155943 A1 WO 2018155943A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosulfur
moisture content
dehydrator
imhoff
vehicle speed
Prior art date
Application number
PCT/KR2018/002231
Other languages
French (fr)
Korean (ko)
Inventor
송효순
김영민
임동원
이평수
남경식
Original Assignee
에코바이오홀딩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코바이오홀딩스 주식회사 filed Critical 에코바이오홀딩스 주식회사
Priority to CN201880013553.7A priority Critical patent/CN110418765A/en
Publication of WO2018155943A1 publication Critical patent/WO2018155943A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0243Other after-treatment of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/0205Separation of sulfur from liquids, e.g. by coalescence

Definitions

  • the present invention relates to a dehydration drying process for controlling the biosulfur moisture content, which is the final stage of the biosulfur production process.
  • the present invention aims to appropriately control the water content of the bio-sulfur produced by adjusting the main factors of the dehydration process for commercial production of the bio-sulfur produced through the settler and the dehydrator in the bio-sulfur production process.
  • the present invention relates to a technology that can adjust the water content of the biosulfur product to a certain range by adjusting the main factors of the dehydration process.
  • the present invention is an essential process technology for converting sulfur compounds contained in biogas and landfill gas into elemental sulfur using a biological process, and commercially selling the generated sulfur.
  • Sulfur has traditionally been a toxic substance from various waste treatment processes, but biosulfur, unlike conventional industrial sulfur, has high solubility in water, harmless to humans, and no damage to crops. Most likely. In addition, there is no toxicity, and there are various applications such as cosmetics, medicines, fungicides and fertilizers. Biosulfur is also advantageous because it is close to neutral ingredients and does not require additional processing such as adding chemicals to be used as fertilizers and pesticides.
  • Bio-sulfur is produced during the removal of sulfur oxide (SOx), one of the causes of fine dust, and because it is small in particle size and can be produced in liquid phase, it can not only replace the existing chemical fertilizer but also can be used as a pesticide raw material. This is considered very high.
  • SOx sulfur oxide
  • TSS Total Suspended Solids
  • Imhoff in a settler volume of solids that settle in a volume (1000 ml) of process water over a period of time (1 hour)-closely related to S-load and microbial activity
  • Dehydrator supply flow rate (adjust with pump)
  • Main motor rpm ball rpm: It is the rotational speed of the external ball of the dehydrator.When operating at the maximum speed, the separability of the solids increases, so that the water content decreases.
  • Vehicle speed value Expressed as (main motor speed, vehicle speed motor speed) / (deceleration ratio), the vehicle speed motor rotates slightly slower than the main motor and the direction of rotation is reversed.
  • the moisture content of the biosulfur can be controlled by adjusting the main process control factors listed above. Among them, the moisture content of the biosulfur can be optimally adjusted by adjusting the Imhoff value and the vehicle speed value.
  • the TSS and Imhoff values of the settling tank can be adjusted through the optimization of the overall process, but can be controlled primarily through the feed pump.
  • the settling tank is a settling tank, not a special machine, and the TSS and Imhoff values can be adjusted by adjusting the residence time (sedimentation time).
  • the dehydrator used in the biosulfur dehydration step is a centrifugal dehydrator, as shown schematically in FIGS. 1 and 2.
  • the rotor (ball) of the dehydrator rotates at a constant speed (approximately 3,100 rpm), and the screw driven by the vehicle speed motor rotates at a slightly lower speed than the rotor, and the direction of rotation is reversed. Separation, and the solid material attached to the outer wall of the ball 13 through the screw 15 is transferred to the solids discharge portion 16 is a system for discharging. At this time, the value obtained by dividing the speed difference between the main motor 1 and the vehicle speed motor 2 by the reduction ratio is defined as the vehicle speed value.
  • the problem to be solved by the present invention is to provide a dehydration process for constantly adjusting the biosulfur moisture content in the drying process of biosulfur.
  • the Imhoff value may change according to the change in the flow rate flowing into the process, the process of maintaining the bio-sulfur moisture content by adjusting the dehydrator vehicle speed value according to the change of the Imhoff value To provide.
  • the present invention is to provide a method for producing a bio-sulfur generated as a by-product from landfill gas power generation facilities as a commercial product to maintain a constant water content through the development of such a bio-sulfur dehydration process.
  • the biosulfur moisture content in the range of 45 to 55% on average by adjusting the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process and the vehicle speed value of the dehydrator for drying the biosulfur. .
  • the device When the water content is less than 45%, various problems occur.
  • the device itself is caused by problems such as reduced durability of the device due to an increase in load of the dehydration system, a decrease in uptime, and a decrease in stability due to a trip caused by a sudden increase in load. Has difficulty in operation.
  • the solid matter (sulfur) is more than 60% (the water content is less than 40%) due to the nature of bio-sulfur, it is difficult to manage because it is classified as dangerous goods.
  • the moisture content is too low, problems arise during the transfer of the produced biosulfur for the post-stage process.
  • biosulfur moisture content by maintaining the Imhoff value of the biosulfur-containing liquid introduced into the dehydration process and the vehicle speed value of the dehydrator for the biosulfur drying within a predetermined range as in the following equation.
  • the value of Imhoff (ml / L) / vehicle speed (rpm) is less than 3 as a result of the process operation, despite the high biosulfur moisture content flowing into the dehydrator, the residence time in the dehydrator is reduced, so that the desired moisture content of the biosulfur can be obtained. It is not desirable because it cannot.
  • the Imhoff (ml / L) / vehicle value (rpm) exceeds 27, the biosulfuric material on the inner wall of the dehydrator body is maintained because the residence time in the dehydrator is kept longer than necessary even though the biosulfuric suspension is sufficiently dehydrated. This sticking occurs and there is a high possibility of clogging the dehydrator, which leads to an overload of the dehydrator device itself, resulting in equipment damage.
  • biosulfur moisture content by maintaining the dehydrator vehicle speed value of the dehydration process in a certain range satisfying the following equation for the biosulfur drying.
  • Equation 2 15 ⁇ vehicle speed value (rpm) ⁇ 30
  • the dehydrator flow rate must be reduced to increase the residence time inside the dehydrator.
  • the Imhoff (ml / L) value is less than 100, it means that the concentration of the biosulfur containing suspension (actual amount containing biosulfur) is low. This may occur due to the problem of the entire process system, which is caused by the release of more biosulfur than the amount of biosulfur introduced into the process. If the value is less than 100, it is unreasonable to adjust the moisture content to the vehicle speed value in the dehydration process, and biosulfur having a relatively high moisture content or an inconsistent moisture content is produced.
  • biosulfur moisture content by maintaining the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process for drying the biosulfuric acid within a predetermined range satisfying the following equation.
  • Equation 4 150 ⁇ Imhoff (ml / L) ⁇ 300
  • the water content of the bio-sulfur produced through the above process in the range of 47 to 52% on average. Maintaining the moisture content of such biosulfur not only enables stable process operation, but also stabilizes physical properties of the product to produce high quality biosulfur products.
  • the present invention by controlling the main factor of the dehydration process by controlling the moisture content of the bio-sulfur finally produced, it is possible to reduce the operating cost of the entire process and stable operation of the desulfurization facility.
  • bio-sulfur is treated as waste, the processing cost of about 150,000 won / ton is incurred, but if it is produced as a commercial product through an appropriate refining process, it is possible to further profit into a high value-added industry.
  • 2 is a process operation data graph in which the moisture content is adjusted by changing the vehicle speed value while maintaining the dehydrator flow rate, TSS, and Imhoff constant.
  • 3 is a process operation data graph showing that the Imhoff value decreases and the water content increases accordingly when increasing the flow rate flowing into the dehydrator while the dehydrator vehicle speed value is kept constant.
  • 5 is a process operation data graph showing that even if the sedimentation tank Imhoff value changes within a certain range, the moisture content of the biosulfur can be properly maintained by adjusting the dehydrator vehicle speed value.
  • FIG. 6 is a process operation data graph showing that when the dehydrator vehicle speed value is maintained within an appropriate range, the moisture content of the biosulfur can be maintained within a certain range by adjusting the Imhoff value by adjusting the flow rate.
  • S-load sulfur load
  • the dehydration drying process was designed to produce biosulfur products containing appropriate moisture after reduction of hydrogen sulfide to biosulfur, an elemental sulfur.
  • the key device of the dehydration drying process is the dehydrator, which maintains the proper moisture content of the biosulfur by controlling the dehydration rate of the dehydrator and the flow rate supplied to the dehydrator.
  • the flow rate supplied to the dehydrator can be adjusted through the inverter of the pump, the flow rate supplied to the dehydrator can be adjusted in the range of 4 ⁇ 20m3 / hr.
  • the dehydrator is equipped with a main motor and a vehicle speed motor, and the speed change (vehicle speed value) of the dehydrator main motor and the vehicle speed motor can be adjusted even during operation.
  • the main motor was operated at about 3,100 RPM by starting the inverter at maximum operation. It was adjusted to about 80-100%.
  • the vehicle speed value can be adjusted in the range of 0.5 to 32, and the optimum range was set to adjust the biosulfur moisture content according to the sulfur load.
  • the moisture content can be effectively controlled by adjusting only the vehicle speed value of the dehydrator.
  • the dehydrator has a function to automatically change the vehicle speed value, driving control becomes very easy.
  • Table 1 is a part of the graph data of FIG. 2 as the moisture content change according to the dehydrator flow rate change when Imhoff is constant.
  • Table 2 is a part of the graph data of FIG. 3 as the moisture content change according to the Imhoff value change when the dehydrator vehicle speed value is constant.
  • the flow rate of the dehydrator increases, the absolute amount of the solids supplied to the dehydrator increases, thereby decreasing the solid-liquid separation efficiency and increasing the biosulfur water content.
  • the flow rate flowing into the dehydrator and the settling time of the sedimentation tank are inversely related. For example, when the dehydrator flow rate is increased, the process time settling time of the settling tank is reduced, resulting in a decrease in the Imhoff value. Therefore, when the dehydrator flow rate was adjusted in an appropriate range to maintain a constant Imhoff, biosulfur could be produced at a constant moisture content.
  • Table 3 is the data of the graph shown in FIG. 4 as the settling tank Imhoff value and the dehydrator flow rate change.
  • the Imhoff value of the sedimentation tank is maintained within a predetermined range before the process water is introduced into the dehydrator (150 ⁇ 300mL / L), by adjusting the vehicle speed value of the dehydrator to produce a bio-sulfur having a proper moisture content Confirmed that it can.
  • the Imhoff value can vary greatly depending on the S-load and microbial conditions, but can be managed within a certain range by adjusting the flow rate. Within such managed Imhoff values, the biosulfur moisture content can be controlled by adjusting the dehydrator speed. I could adjust it.
  • Table 4 is graph data shown in FIG. 5 as a change in moisture content according to a change in vehicle speed value when a certain level of Imhoff value is maintained.
  • Table 5 is graph data shown in FIG. 6 as a change in moisture content according to the Imhoff value change when a certain level of vehicle speed is maintained.
  • Table 6 shows the data of the graph shown in FIG. 7 as the biosulfur moisture content change according to the sulfur load.
  • Table 7 shows the change of Imhoff (ml / L) / vehicle speed (rpm) when the proper moisture content is maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The present invention relates to a dehydration process for controlling the moisture content of bio-sulfur to an average range of 45-55% by controlling the vehicle speed value of a dehydrator and the Imhoff value of a bio-sulfur-containing solution that is introduced into the dehydration process in order to dry the bio-sulfur. The present invention has an effect whereby operation costs for the entire process may be reduced and a desulfurization facility may be operated in a stable manner by controlling the moisture content of the final produced bio-sulfur by controlling the main factors of the dehydration process.

Description

바이오황 현탁액 함수율 조절을 위한 탈수 공정Dehydration Process for Controlling Biosulfur Suspension Water Content
본 발명은 바이오황 생산 공정의 마지막 단계인 바이오황 함수율 조절을 위한 탈수건조 공정에 관한 것이다.The present invention relates to a dehydration drying process for controlling the biosulfur moisture content, which is the final stage of the biosulfur production process.
즉, 본 발명은 바이오황 생산 공정에서 침전조(settler) 및 탈수기를 거쳐 생산되는 바이오황의 상업 생산을 위하여 탈수공정의 주요인자를 조절하여, 생산되는 바이오황의 함수율을 적절하게 조절하는데 목적이 있다.That is, the present invention aims to appropriately control the water content of the bio-sulfur produced by adjusting the main factors of the dehydration process for commercial production of the bio-sulfur produced through the settler and the dehydrator in the bio-sulfur production process.
바이오황을 생산하기 위해서는 쓰레기 매립지에서 발생하는 메탄가스에 포함된 황화수소를 원소 황(S)으로 전환하여야 하는데, 높은 황부하량(S-load)을 처리하여야 함에 따라 대규모 설비가 필요하며 황부하량 증가에 따른 바이오황 발생량 역시 증가하였다. 이로 인하여, 발생되는 바이오황을 처리하지 않고서는 매립가스를 원료로 한 발전설비를 가동하는 것에 어려움이 있으며, 바이오황을 폐기물로 처분하기 위해서는 추가로 많은 운영비가 투입되어 큰 문제가 된다.In order to produce bio-sulfur, hydrogen sulfide contained in methane gas from landfills needs to be converted to elemental sulfur (S), which requires large-scale facilities due to the high sulfur load (S-load) process. The biosulfur production also increased. As a result, it is difficult to operate a power generation facility based on landfill gas without treating the generated biosulfur, and in order to dispose of biosulfur as waste, a large amount of operating costs are added, which is a big problem.
그러므로, 매립가스를 원료로 한 발전설비 운전의 효율화를 위해서도 바이오황을 적절하게 가공, 정제 및 판매하기 위해서는 일정한 함수율을 갖는 제품을 생산해야만 한다. 따라서, 본 발명은 탈수공정의 주요 인자를 조절하여, 바이오황 생산품의 함수율을 일정범위로 조절할 수 있는 기술에 관한 것이다.Therefore, in order to efficiently process, purify, and sell biosulfur in order to efficiently operate a power generation facility using landfill gas as a raw material, a product having a constant moisture content must be produced. Therefore, the present invention relates to a technology that can adjust the water content of the biosulfur product to a certain range by adjusting the main factors of the dehydration process.
즉, 본 발명은 바이오가스 및 매립지 가스(Land Fill Gas) 등에 포함된 황화합물을 생물학적공정을 이용하여 원소황으로 전환하고, 생성된 황을 상업적으로 판매하기 위하여 필수적인 공정 기술이다.That is, the present invention is an essential process technology for converting sulfur compounds contained in biogas and landfill gas into elemental sulfur using a biological process, and commercially selling the generated sulfur.
황은 전통적으로는 각종 폐기물 처리 과정에서 나오는 유해물질에 불과했지만 바이오황은 기존의 산업용 황과는 달리 물에 대한 용해도가 높고, 사람에게도 무해하며 작물에도 별다른 피해가 없는 등의 장점이 있어서 친환경 작물 제재로서 가능성이 높다. 또한 유독성이 없어 화장품, 의약품, 살균제, 비료 등 활용처가 다양하다. 또한 바이오황은 성분이 중성에 가까우며, 비료 및 농약 등으로 활용하기 위해서 화학물을 첨가하는 등의 추가 가공 과정이 필요 없는 장점이 있어서 유리하다.Sulfur has traditionally been a toxic substance from various waste treatment processes, but biosulfur, unlike conventional industrial sulfur, has high solubility in water, harmless to humans, and no damage to crops. Most likely. In addition, there is no toxicity, and there are various applications such as cosmetics, medicines, fungicides and fertilizers. Biosulfur is also advantageous because it is close to neutral ingredients and does not require additional processing such as adding chemicals to be used as fertilizers and pesticides.
국제연합식량농업기구(FAO)에 따르면 전 세계 비료 시장은 오는 2018년까지 약 290조원, 농약 시장은 77조원 규모로 성장할 것으로 관측되고 있다.According to the United Nations Food and Agriculture Organization (FAO), the global fertilizer market is expected to grow by about 290 trillion won and the pesticide market by 77 trillion won by 2018.
바이오황은 미세먼지 발생 원인 중 하나인 황산화물(SOx) 제거 과정에서 생산되며, 입자가 작고 액상으로 생산이 가능하므로 기존 화학 비료를 대체할 수 있을 뿐만 아니라, 농약원료로도 사용될 수 있어서 그 잠재성이 매우 높은 것으로 평가받고 있다.Bio-sulfur is produced during the removal of sulfur oxide (SOx), one of the causes of fine dust, and because it is small in particle size and can be produced in liquid phase, it can not only replace the existing chemical fertilizer but also can be used as a pesticide raw material. This is considered very high.
이와 같은 바이오황을 상업적 용도로 활용하기 위해서는 최종 정제 단계에서 황의 수분 함량을 조절하는 탈수건조 공정의 최적화가 매우 중요하다.In order to utilize such biosulfur for commercial use, it is very important to optimize the dehydration drying process to control the moisture content of sulfur in the final purification step.
그러나, 기존의 티오팍(Thiopaq) 공정은 황부하량(S-load)이 적어서 발생되는 바이오황을 폐기물로 처분하였으므로, 발생되는 바이오황의 함수율 등을 일정하게 유지할 필요가 없었으며 따라서, 바이오황 함수율 조절을 위한 공정은 제대로 확립되어 있지 않았다.However, the conventional Thiopaq process disposes biosulfur generated due to low sulfur load (S-load) as waste, and thus it is not necessary to maintain a constant moisture content of biosulfur generated. The process for this was not well established.
한편, 탈수공정의 주요 공정 조절 인자는
Figure PCTKR2018002231-appb-I000001
) 침전조(settler)에서의 TSS(Total SuspendedSolids): 공정수 중 총 고형물의 양,
Figure PCTKR2018002231-appb-I000002
) 침전조(settler)에서의 Imhoff: 일정시간(1시간)동안, 일정부피(1000ml)의 공정수 중 침강되는 고형물의 부피 - 황부하량(S-load) 및 미생물의 활동과 밀접한 관계가 있음
Figure PCTKR2018002231-appb-I000003
) 탈수기 공급유량(펌프로 조절),
Figure PCTKR2018002231-appb-I000004
) 주모터 rpm(볼 rpm): 탈수기 외부 볼의 회전속도로서 최대 속도로 가동할 경우 고형물의 분리성이 높아져서 함수율이 낮아짐,
Figure PCTKR2018002231-appb-I000005
) 차속값: (주모터 속도 차속모터 속도)/(감속비)로 나타내어내며, 차속모터는 주모터 보다 약간 느리게 회전하며 회전방향은 반대이다.
On the other hand, the main process control factors of the dehydration process
Figure PCTKR2018002231-appb-I000001
) Total Suspended Solids (TSS) in the settler: the total solids in the process water,
Figure PCTKR2018002231-appb-I000002
Imhoff in a settler: volume of solids that settle in a volume (1000 ml) of process water over a period of time (1 hour)-closely related to S-load and microbial activity
Figure PCTKR2018002231-appb-I000003
) Dehydrator supply flow rate (adjust with pump),
Figure PCTKR2018002231-appb-I000004
) Main motor rpm (ball rpm): It is the rotational speed of the external ball of the dehydrator.When operating at the maximum speed, the separability of the solids increases, so that the water content decreases.
Figure PCTKR2018002231-appb-I000005
) Vehicle speed value: Expressed as (main motor speed, vehicle speed motor speed) / (deceleration ratio), the vehicle speed motor rotates slightly slower than the main motor and the direction of rotation is reversed.
위에 열거된 주요 공정 조절 인자를 조절함으로써 바이오황의 함수율을 조절할 수 있는데, 그 중 특히 Imhoff값 및 차속값을 조절하여 바이오황의 함수율을 최적으로 조절할 수 있다.The moisture content of the biosulfur can be controlled by adjusting the main process control factors listed above. Among them, the moisture content of the biosulfur can be optimally adjusted by adjusting the Imhoff value and the vehicle speed value.
한편, 침전조의 TSS 및 Imhoff 값은 전체 공정의 최적화를 통하여 조절할 수 있으나, 1차적으로 공급펌프를 통하여 조절이 가능하다. 침전조는 특별한 기계장치가 아닌 침전조로서 체류시간(침전시간)을 조절함으로써 TSS 및 Imhoff값의 조절이 가능하다.On the other hand, the TSS and Imhoff values of the settling tank can be adjusted through the optimization of the overall process, but can be controlled primarily through the feed pump. The settling tank is a settling tank, not a special machine, and the TSS and Imhoff values can be adjusted by adjusting the residence time (sedimentation time).
그리고, 바이오황 탈수공정에 사용되는 탈수기는 원심탈수기이며, 도 1 및 도 2에 모식적으로 나타낸 바와 같다.The dehydrator used in the biosulfur dehydration step is a centrifugal dehydrator, as shown schematically in FIGS. 1 and 2.
탈수기의 회전체(볼)는 일정속도(약 3,100 rpm)으로 회전하며 차속모터로 구동되는 스크류는 회전체보다 약간 낮은 속도로 회전하며 회전방향은 반대이고, 회전체 중간으로 공급된 처리 대상물을 원심력으로 분리하고, 스크류(15)를 통하여 볼(13) 외벽에 붙은 고형물을 고형물배출부(16)로 이송하여 배출하는 시스템이다. 이때 주모터(1)와 차속모터(2)의 속도차이를 감속비로 나눈 값을 차속값으로 정의한다.The rotor (ball) of the dehydrator rotates at a constant speed (approximately 3,100 rpm), and the screw driven by the vehicle speed motor rotates at a slightly lower speed than the rotor, and the direction of rotation is reversed. Separation, and the solid material attached to the outer wall of the ball 13 through the screw 15 is transferred to the solids discharge portion 16 is a system for discharging. At this time, the value obtained by dividing the speed difference between the main motor 1 and the vehicle speed motor 2 by the reduction ratio is defined as the vehicle speed value.
본 발명이 해결하고자 하는 과제는, 바이오황의 건조 공정에 있어서 바이오황 함수율을 일정하게 조절하기 위한 탈수 공정을 제공하는 것이다.The problem to be solved by the present invention is to provide a dehydration process for constantly adjusting the biosulfur moisture content in the drying process of biosulfur.
또한, 본 발명이 해결하기 위한 다른 과제는 공정에 유입되는 유량의 변화에 따라 Imhoff 값이 변화할 수 있는데, 그러한 Imhoff 값의 변화에 따라 탈수기 차속값을 조절하여 바이오황 함수율을 일정하게 유지하는 공정을 제공하는 것이다. In addition, another problem to be solved by the present invention is that the Imhoff value may change according to the change in the flow rate flowing into the process, the process of maintaining the bio-sulfur moisture content by adjusting the dehydrator vehicle speed value according to the change of the Imhoff value To provide.
또한 본 발명은 이러한 바이오황 탈수공정 개발을 통해 매립가스 발전설비에서 부산물로 발생하는 바이오황을 일정 수준의 함수율을 유지하는 상업제품으로 생산하는 방법을 제공하기 위한 것이다. In another aspect, the present invention is to provide a method for producing a bio-sulfur generated as a by-product from landfill gas power generation facilities as a commercial product to maintain a constant water content through the development of such a bio-sulfur dehydration process.
본 발명의 과제를 해결하기 위해서는 바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff 값 및 탈수기의 차속값을 조절하여 바이오황 함수율을 평균적으로 45 내지 55% 범위로 조절하는 것이 바람직하다.In order to solve the problem of the present invention, it is preferable to adjust the biosulfur moisture content in the range of 45 to 55% on average by adjusting the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process and the vehicle speed value of the dehydrator for drying the biosulfur. .
함수율이 45% 미만으로 되면 여러가지 문제가 발생하는데, 첫째는, 탈수시스템의 부하증가로 인한 기기의 내구연한 감소, 가동시간 감소, 갑작스런 부하증가로 인한 Trip 발생에 따른 안정성 감소 등의 문제로 기기 자체의 운영에 어려움이 있다. 둘째는, 바이오황 특성상 고형물(황)이 60% 이상(함수율이 40%이하)일 경우, 위험물로 분류되어 관리에 어려움이 있다. 세 번째는 너무 낮은 농도의 함수율을 가질 경우, 생산된 바이오황의 후단공정을 위한 이송시에 문제가 발생한다. When the water content is less than 45%, various problems occur. First, the device itself is caused by problems such as reduced durability of the device due to an increase in load of the dehydration system, a decrease in uptime, and a decrease in stability due to a trip caused by a sudden increase in load. Has difficulty in operation. Second, if the solid matter (sulfur) is more than 60% (the water content is less than 40%) due to the nature of bio-sulfur, it is difficult to manage because it is classified as dangerous goods. Thirdly, if the moisture content is too low, problems arise during the transfer of the produced biosulfur for the post-stage process.
또한 함수율이 55%를 초과하게 되면, 황 현탁액상태의 밀도가 감소하고, 황현탁액에 포함되어 있는 바이오황의 양이 감소하게 되므로 상품으로써의 가치가 떨어진다.In addition, when the water content exceeds 55%, the density of the sulfur suspension is reduced, the amount of bio-sulfur contained in the sulfur suspension is reduced, so the value as a commodity falls.
그리고, 바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff 값 및 탈수기의 차속값을 다음 식과 같이 일정범위 내로 유지하여 바이오황 함수율을 조절하는 것이 바람직하다. In addition, it is preferable to control the biosulfur moisture content by maintaining the Imhoff value of the biosulfur-containing liquid introduced into the dehydration process and the vehicle speed value of the dehydrator for the biosulfur drying within a predetermined range as in the following equation.
[수식 1] 3 ≤ Imhoff(㎖/L)/차속값(rpm) ≤ 27 Equation 1 3? Imhoff (ml / L) / vehicle speed value (rpm)? 27
공정 운전 결과 Imhoff(ml/L)/차속값(rpm)의 값이 3미만이면, 탈수기로 유입되는 바이오황 수분 함량이 높음에도 불구하고, 탈수기 내부의 체류시간을 줄이게 되므로 원하는 바이오황의 함수율을 얻을 수 없어서 바람직하지 못하다. 이에 반해 Imhoff(ml/L)/차속값(rpm)이 27을 초과하면 바이오황 현탁액이 충분히 탈수되었음에도 불구하고 탈수기 내부의 체류시간을 필요 이상 길게 유지하는 결과가 되므로, 탈수기 몸체 내벽에 바이오황 건조물이 들러붙는 현상이 발생하여 탈수기 막힘 현상의 가능성이 높으며, 그것은 탈수기 기기 자체의 과부하로 이어져 기기손상의 우려가 있다.If the value of Imhoff (ml / L) / vehicle speed (rpm) is less than 3 as a result of the process operation, despite the high biosulfur moisture content flowing into the dehydrator, the residence time in the dehydrator is reduced, so that the desired moisture content of the biosulfur can be obtained. It is not desirable because it cannot. On the contrary, if the Imhoff (ml / L) / vehicle value (rpm) exceeds 27, the biosulfuric material on the inner wall of the dehydrator body is maintained because the residence time in the dehydrator is kept longer than necessary even though the biosulfuric suspension is sufficiently dehydrated. This sticking occurs and there is a high possibility of clogging the dehydrator, which leads to an overload of the dehydrator device itself, resulting in equipment damage.
한편, 바이오황 건조를 위하여 탈수 공정의 탈수기 차속값을 다음 식을 만족하는 일정범위 내로 유지하여 바이오황 함수율을 조절하는 것이 더욱 바람직하다.On the other hand, it is more preferable to control the biosulfur moisture content by maintaining the dehydrator vehicle speed value of the dehydration process in a certain range satisfying the following equation for the biosulfur drying.
[수식 2] 15 ≤ 차속값(rpm) ≤ 30 Equation 2 15 ≤ vehicle speed value (rpm) ≤ 30
일반적으로 적정 Imhoff 값을 유지할 때, 차속값이 15rpm 미만일 경우 탈수기 내부에서 바이오황 고형물을 너무 늦게 밀어내게 되어 과도한 탈수가 진행된다. 따라서, 함수율이 너무 낮은 바이오황이 생산되며 전체적으로 탈수시스템 부하의 증가를 가져올 수 있어서 바람직하지 못하다.In general, when maintaining a proper Imhoff value, if the vehicle speed value is less than 15 rpm, the biosulfuric solids are pushed out too late in the dehydrator, causing excessive dehydration. Thus, biosulfur is produced with a very low moisture content and is undesirable because it can lead to an increase in the dehydration system load as a whole.
이에 반해 차속값이 30rpm을 초과할 경우, 탈수기 내부에서 너무 빠른 속도로 바이오황 고형물을 밀어내게 되어 탈수 효과가 떨어진다. 따라서, 함수율이 과도하게 높은 바이오황이 생성되므로 바람직하지 못하다. 이러한 경우, 탈수기 유량을 감소시켜 탈수기 내부의 체류시간을 증가시켜야 한다.On the other hand, if the vehicle speed exceeds 30rpm, the desulfurization effect is reduced because the biosulfur solids are pushed out too quickly inside the dehydrator. Therefore, it is not preferable because biosulfur is produced with excessively high moisture content. In this case, the dehydrator flow rate must be reduced to increase the residence time inside the dehydrator.
그리고, 바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff값을 다음 식을 만족하는 일정범위 내로 유지하는 것이 바람직하다.In addition, it is preferable to keep the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process for drying the biosulfuric acid within a predetermined range satisfying the following equation.
[수식 3] 100 ≤ Imhoff(㎖/L) ≤ 400[Equation 3] 100 <Imhoff (ml / L) <400
Imhoff(ml/L)값이 100미만일 경우에는 바이오황 함유 현탁액의 농도(바이오황이 포함된 실제 양)가 낮다는 것을 의미한다. 이것은 전체공정시스템의 문제로부터 기인하여 발생하기도 하는데, 공정에 유입되는 바이오황의 양보다 많은 양의 바이오황이 유출되어 나가기 때문에 발생하는 문제이다. 100미만의 값을 유지할 경우, 탈수 공정에서 차속값으로 함수율을 조정하는 것에는 무리가 있으며, 다소 높은 함수율을 가지거나, 일정하지 않은 함수율의 바이오황이 생산된다.If the Imhoff (ml / L) value is less than 100, it means that the concentration of the biosulfur containing suspension (actual amount containing biosulfur) is low. This may occur due to the problem of the entire process system, which is caused by the release of more biosulfur than the amount of biosulfur introduced into the process. If the value is less than 100, it is unreasonable to adjust the moisture content to the vehicle speed value in the dehydration process, and biosulfur having a relatively high moisture content or an inconsistent moisture content is produced.
반면, Imhoff(ml/L)값이 400을 초과해 매우 높은 농도로 유지될 경우에는, 설치된 탈수기의 처리용량을 초과하여 바이오황이 유입되는 것이므로, 탈수기 내에서 체류시간이 부족하게 되어 일정한 상태, 일정 함수율을 갖는 바이오황을 생산하는 것이 어렵다. 따라서, 이러한 경우에는 공정으로 유입되는 공정수의 유량 자체를 낮추어서 운전하여야 한다.On the other hand, when the Imhoff (ml / L) value is maintained at a very high concentration exceeding 400, since the biosulfur is introduced in excess of the capacity of the installed dehydrator, the residence time in the dehydrator becomes insufficient and is constant. It is difficult to produce biosulfur having a water content. Therefore, in this case, it is necessary to lower the flow rate of the process water flowing into the process itself.
또한, 바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff값을 다음 식을 만족하는 일정범위 내로 유지하여 바이오황 함수율을 조절하는 것이 더욱 바람직하다.In addition, it is more preferable to control the biosulfur moisture content by maintaining the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process for drying the biosulfuric acid within a predetermined range satisfying the following equation.
[수식 4] 150 ≤ Imhoff(㎖/L) ≤ 300 Equation 4 150 ≤ Imhoff (ml / L) ≤ 300
이러한 범위 내에서 운전하면 더욱 안정적인 조건 하에서 바이오황의 함수율을 유지할 수 있어서 공정에 주는 부담이 적고 생산되는 바이오황 물성도 안정화될 수 있다.Operating within this range can maintain the moisture content of bio-sulfur under more stable conditions, thereby reducing the burden on the process and stabilizing the bio-sulfur properties produced.
그리고, 상기와 같은 공정을 통해 생산되는 바이오황의 함수율을 평균적으로 47 내지 52%의 범위로 유지하는 것이 더욱 바람직하다. 이와 같은 바이오황의 함수율을 유지하면 안정적인 공정 운전이 가능할 뿐만 아니라, 제품의 물성도 안정화가 되어 고품질의 바이오황 제품을 생산할 수 있다.And, it is more preferable to maintain the water content of the bio-sulfur produced through the above process in the range of 47 to 52% on average. Maintaining the moisture content of such biosulfur not only enables stable process operation, but also stabilizes physical properties of the product to produce high quality biosulfur products.
한편, Imhoff값이 감소하면 탈수기 차속값을 감소시켜 바이오황의 함수율을 일정하게 유지하는 것이 바람직하고, Imhoff값이 증가하면 탈수기 차속값을 증가시켜 바이오황의 함수율을 일정하게 유지하는 것이 바람직하다.On the other hand, when the Imhoff value decreases, it is desirable to keep the moisture content of the biosulfur constant by decreasing the dehydrator vehicle speed value, and when the Imhoff value increases, it is preferable to increase the dehydrator vehicle speed value and keep the moisture content of the biosulfur constant.
본 발명은 탈수공정 주요인자를 조절하여 최종 생산되는 바이오황의 함수율을 조절 함으로써, 전체 공정의 운전비 절감 및 탈황설비의 안정적인 운영이 가능하도록 한다. 또한, 바이오황을 폐기물로 처리 할 경우, 약 15만원/톤의 처리비용이 발생하나 적절한 정제 공정을 통해 상업 제품으로 생산하는 경우 고부가가치 산업으로 추가 수익이 가능하다.The present invention by controlling the main factor of the dehydration process by controlling the moisture content of the bio-sulfur finally produced, it is possible to reduce the operating cost of the entire process and stable operation of the desulfurization facility. In addition, if bio-sulfur is treated as waste, the processing cost of about 150,000 won / ton is incurred, but if it is produced as a commercial product through an appropriate refining process, it is possible to further profit into a high value-added industry.
이와 같이 본 발명의 탈수 공정을 통해 일정한 범위의 함수율을 갖는 바이오황 제품을 생산할 수 있으며, 친환경 농약, 비료 등에 응용할 경우 제품의 품질에도 좋은 영향을 미칠 수 있다.Thus, through the dehydration process of the present invention it is possible to produce a bio-sulfur product having a water content of a certain range, when applied to environmentally friendly pesticides, fertilizers, etc. may have a good effect on the quality of the product.
도 1은 탈수기의 단면 및 각 부분의 명칭을 나타낸 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the cross section of a dehydrator and the name of each part.
도 2는 탈수기 유량 및 TSS, Imhoff를 일정하게 유지시킨 상태에서 차속값을 변화시켜 함수율을 조절한 공정 운전 데이터 그래프이다.2 is a process operation data graph in which the moisture content is adjusted by changing the vehicle speed value while maintaining the dehydrator flow rate, TSS, and Imhoff constant.
도 3은 탈수기 차속값은 일정하게 유지한 상태에서 탈수기로 유입되는 유량을 증가시킬 경우 Imhoff 값이 감소하게 되고 그에 따라 함수율이 증가하는 것을 나타낸 공정 운전 데이터 그래프이다.3 is a process operation data graph showing that the Imhoff value decreases and the water content increases accordingly when increasing the flow rate flowing into the dehydrator while the dehydrator vehicle speed value is kept constant.
도 4는 침전조 Imhoff 값이 일정범위로 유지될 경우, 탈수기 차속값의 조절로 일정한 농함수율의 바이오황을 생산한 것을 나타낸 공정 운전 데이터 그래프이다.4 is a process operation data graph showing that when the precipitation tank Imhoff value is maintained within a certain range, biosulfur with a constant concentration of water is produced by adjusting the dehydrator vehicle speed value.
도 5는 침전조 Imhoff 값이 일정 범위에서 변화하더라도 탈수기 차속값을 조절하여 바이오황의 함수율을 적정하게 유지할 수 있다는 것을 나타낸 공정 운전 데이터 그래프이다.5 is a process operation data graph showing that even if the sedimentation tank Imhoff value changes within a certain range, the moisture content of the biosulfur can be properly maintained by adjusting the dehydrator vehicle speed value.
도 6은 적정한 범위 내에서 탈수기 차속값이 유지되고 있는 경우, 유량을 조절하여 Imhoff값을 조절하게 되면 바이오황의 함수율을 일정범위 내로 유지할 수 있다는 것을 나타낸 공정 운전 데이터 그래프이다.6 is a process operation data graph showing that when the dehydrator vehicle speed value is maintained within an appropriate range, the moisture content of the biosulfur can be maintained within a certain range by adjusting the Imhoff value by adjusting the flow rate.
도 7은 황부하량(S-load)가 일정범위에서 변화하더라도 유량 및 탈수기 차속값을 조절하여 바이오황의 함수율을 적정하게 유지할 수 있다는 것을 나타낸 공정 운전 데이터 그래프이다.7 is a process operation data graph showing that even if the sulfur load (S-load) changes within a certain range, the moisture content of the biosulfur can be properly maintained by adjusting the flow rate and the dehydrator vehicle speed value.
황화수소를 환원하여 원소 황인 바이오황으로 전환시킨 후 적정 수분을 함유하는 바이오황 제품을 생산하기 위해서 탈수 건조 공정을 설계하였다. 탈수 건조 공정의 핵심 장치는 탈수기이며, 탈수기의 탈수 속도 및 탈수기로 공급되는 유량을 조절하여 바이오황의 적정 함수율을 유지한다.The dehydration drying process was designed to produce biosulfur products containing appropriate moisture after reduction of hydrogen sulfide to biosulfur, an elemental sulfur. The key device of the dehydration drying process is the dehydrator, which maintains the proper moisture content of the biosulfur by controlling the dehydration rate of the dehydrator and the flow rate supplied to the dehydrator.
탈수기에 공급되는 유량은 펌프의 인버터를 통하여 조절이 가능한데, 탈수기로 공급되는 유량은 4 ~ 20m3/hr 범위에서 조절이 가능하다. 탈수기에는 주모터 및 차속모터가 장착되어 있으며, 탈수기 주모터 및 차속모터의 속도 변화(차속값)는 운전 중에도 조절이 가능한데, 주모터는 최대 가동시에 인버터 기동으로 3,100 RPM 정도로 가동하였으며, 최고치의 80~100% 정도로 조절하였다. 그리고, 차속값은 0.5 ~ 32 범위에서 조절이 가능하며 황부하량에 따라 바이오황 함수율을 조절하기 위해서 최적 범위를 설정하였다. The flow rate supplied to the dehydrator can be adjusted through the inverter of the pump, the flow rate supplied to the dehydrator can be adjusted in the range of 4 ~ 20m3 / hr. The dehydrator is equipped with a main motor and a vehicle speed motor, and the speed change (vehicle speed value) of the dehydrator main motor and the vehicle speed motor can be adjusted even during operation.The main motor was operated at about 3,100 RPM by starting the inverter at maximum operation. It was adjusted to about 80-100%. And, the vehicle speed value can be adjusted in the range of 0.5 to 32, and the optimum range was set to adjust the biosulfur moisture content according to the sulfur load.
유량 및 Imhoff값이 일정한 조건에서는 탈수기의 차속값만 조절해도 함수율을 효과적으로 조절할 수 있다. 특히 탈수기가 차속값을 설정하면 자동으로 변환되는 기능이 있을 때는 운전 조절이 매우 용이해진다.  If the flow rate and Imhoff value are constant, the moisture content can be effectively controlled by adjusting only the vehicle speed value of the dehydrator. In particular, when the dehydrator has a function to automatically change the vehicle speed value, driving control becomes very easy.
아래 표는 탈수기 유량 및 TSS, Imhoff를 일정하게 유지시킨 상태에서 차속값을 변화시켜 함수율을 조절한 공정 운전 데이터이며, 도 2에 그 결과를 도시하였다.The table below shows process operation data in which the moisture content is adjusted by changing the vehicle speed value while the dehydrator flow rate, TSS and Imhoff are kept constant, and the results are shown in FIG. 2.
표 1은 Imhoff가 일정한 경우, 탈수기 유량 변화에 따른 수분 함량 변화로서 도 2의 그래프 데이터의 일부이다.Table 1 is a part of the graph data of FIG. 2 as the moisture content change according to the dehydrator flow rate change when Imhoff is constant.
도 2에서 보는 바와 같이 일정한 조건에서 탈수기 차속값을 증가시켰을 경우, 회전체 내부의 공정수(고형물)의 체류시간이 짧아지고, 그로인한 고액분리 효율이 떨어져서 함수율이 증가하였다.As shown in FIG. 2, when the dehydrator vehicle speed value was increased under constant conditions, the residence time of the process water (solids) inside the rotor was shortened, and thus the liquid-liquid separation efficiency was lowered, thereby increasing the water content.
구분division 탈수기유량(m3/hr)Dehydrator flow rate (m 3 / hr) 탈수기차속값(rpm)Dehydrator speed (rpm) 수분(%M)Moisture (% M) Imhoff(ml/L)Imhoff (ml / L)
1One 15 15 22 22 46.126 46.126 240240
22 1515 2424 46.74246.742 240240
33 1515 2626 47.91547.915 240240
44 1515 2828 48.63848.638 240240
55 1515 3030 48.10248.102 240240
66 1515 3232 50.16250.162 230230
표 2는 탈수기 차속값이 일정한 경우 Imhoff값 변화에 따른 수분 함량 변화로서 도 3의 그래프 데이터의 일부이다.Table 2 is a part of the graph data of FIG. 3 as the moisture content change according to the Imhoff value change when the dehydrator vehicle speed value is constant.
한편, 도 3에 나타난 것과 같이 탈수기 주모터 rpm의 변화로 함수율을 조절할 수도 있는데 일정한 조건에서 탈수기 주모터 rpm을 조절하면 중력이 아닌 밀도차에 의한 원심력으로 분리되는 효율이 변하는 것을 확인하였다.On the other hand, as shown in Figure 3, it is also possible to adjust the moisture content by the change of the dehydrator main motor rpm, it was confirmed that the efficiency of separation by centrifugal force due to the density difference, not by gravity, when the dehydrator main motor rpm is adjusted under certain conditions.
즉, 주모터 rpm을 감소시켰을 경우, 회전체(볼)의 스피드가 줄어 들게 되고, 이것은 원심력 감소로 이어지며, 고상과 액상의 분리 효율이 낮아지게 되므로 함수율은 증가하였다.That is, when the main motor rpm is reduced, the speed of the rotating body (ball) is reduced, which leads to a decrease in centrifugal force, and the water content is increased because the separation efficiency of the solid and liquid phases is lowered.
다시 말하면 탈수기 유량이 증가하면 탈수기로 공급되는 고형물의 절대량이 증가하므로, 고액분리 효율이 감소하게 되어 바이오황 함수율은 증가하였다. 그리고, 탈수기에 유입되는 유량과 침전조의 침전 시간은 반비례 관계가 있는데, 예를 들면 탈수기 유량을 증가시킬 경우 침전조의 공정수 침전시간이 줄어들게 되어 Imhoff값이 감소하는 현상이 발생하였다. 따라서, 탈수기 유량을 적정 범위에서 조절하여 일정한 Imhoff를 유지할 경우, 바이오황을 일정한 함수율로 생산할 수 있었다.In other words, when the flow rate of the dehydrator increases, the absolute amount of the solids supplied to the dehydrator increases, thereby decreasing the solid-liquid separation efficiency and increasing the biosulfur water content. In addition, the flow rate flowing into the dehydrator and the settling time of the sedimentation tank are inversely related. For example, when the dehydrator flow rate is increased, the process time settling time of the settling tank is reduced, resulting in a decrease in the Imhoff value. Therefore, when the dehydrator flow rate was adjusted in an appropriate range to maintain a constant Imhoff, biosulfur could be produced at a constant moisture content.
즉, 탈수기 차속값을 일정하게 하더라도 Imhoff값을 조절하여 바이오황의 함수율을 조절할 수 있었다. 아래 표는 그러한 조건으로 공정을 운전하였을 때의 값을 나타낸 것이다.That is, even if the dehydrator vehicle speed was constant, the moisture content of the biosulfur could be adjusted by adjusting the Imhoff value. The table below shows the values when the process was run under such conditions.
구분division 탈수기유량(m3/hr)Dehydrator flow rate (m 3 / hr) 탈수기차속값(rpm)Dehydrator speed (rpm) 수분(%M)Moisture (% M) Imhoff(ml/L)Imhoff (ml / L)
1One 88 24 24 45.924 45.924 350350
22 1010 2424 46.02246.022 300300
33 1212 2424 46.04846.048 270270
44 1515 2424 46.74246.742 250250
55 1818 2424 52.14252.142 200200
표 3은 침전조 Imhoff값과 탈수기 유량 변화로서 도 4에 도시한 그래프의 데이터이다.Table 3 is the data of the graph shown in FIG. 4 as the settling tank Imhoff value and the dehydrator flow rate change.
그리고 도 4에 나타낸 바와 같이, 탈수기에 공정수가 유입되기 전에 침전조의 Imhoff 값을 일정 범위 내에서 유지할 경우(150 ~ 300㎖/L), 탈수기의 차속값을 조절하여 적정 함수율을 갖는 바이오황을 생산할 수 있다는 것을 확인하였다. Imhoff 값은 황부하(S-load) 및 미생물의 상태에 따라 변동성이 크게 될 수 있으나 유량을 조절함으로써 일정 범위 내로 관리할 수 있으며, 그러한 관리된 Imhoff 값 내에서는 탈수기 차속값 조절로 바이오황 함수율을 조절할 수 있었다.And, as shown in Figure 4, if the Imhoff value of the sedimentation tank is maintained within a predetermined range before the process water is introduced into the dehydrator (150 ~ 300mL / L), by adjusting the vehicle speed value of the dehydrator to produce a bio-sulfur having a proper moisture content Confirmed that it can. The Imhoff value can vary greatly depending on the S-load and microbial conditions, but can be managed within a certain range by adjusting the flow rate. Within such managed Imhoff values, the biosulfur moisture content can be controlled by adjusting the dehydrator speed. I could adjust it.
날짜date 침전조 Imhoff(ml/L)Sedimentation tank Imhoff (ml / L) 탈수기유량(m3/hr)Dehydrator flow rate (m 3 / hr)
09-0409-04 290290 1212
09-0509-05 320320 1212
09-0609-06 330330 1212
09-0709-07 295295 1212
09-0809-08 260260 14.514.5
09-0909-09 260260 15.515.5
09-1009-10 260260 15.515.5
09-1109-11 260260 1717
09-1209-12 240240 1717
09-1309-13 240240 1717
09-1409-14 230230 1717
09-1509-15 220220 16.516.5
09-1609-16 200200 1717
09-1709-17 230230 16.516.5
09-1809-18 220220 16.516.5
09-1909-19 300300 16.516.5
09-2009-20 330330 16.516.5
09-2109-21 240240 16.516.5
09-2209-22 240240 16.516.5
09-2309-23 240240 16.516.5
09-2409-24 280280 16.516.5
09-2509-25 240240 1717
09-2609-26 240240 1717
09-2709-27 260260 1717
09-2809-28 260260 1717
09-2909-29 300300 1717
09-3009-30 300300 1717
10-0110-01 290290 1717
10-0210-02 300300 1717
10-0310-03 280280 1717
10-0410-04 310310 1717
10-0510-05 300300 1717
10-0610-06 320320 1717
10-0710-07 300300 1717
10-0810-08 300300 1717
10-0910-09 320320 1717
10-1010-10 300300 16.116.1
10-1110-11 290290 1717
10-1210-12 280280 1717
10-1310-13 300300 1717
10-1410-14 310310 1717
10-1510-15 300300 16.616.6
10-1610-16 300300 17.217.2
10-1710-17 280280 17.317.3
10-1810-18 320320 1717
10-1910-19 330330 17.117.1
10-2010-20 310310 16.816.8
10-2110-21 300300 16.516.5
10-2210-22 280280 16.916.9
10-2310-23 290290 17.117.1
10-2410-24 290290 1717
10-2510-25 280280 1717
10-2610-26 290290 1717
10-2710-27 260260 17.317.3
10-2810-28 270270 17.117.1
10-2910-29 250250 1616
10-3010-30 260260 1616
10-3110-31 290290 1616
11-0111-01 250250 1616
11-0211-02 280280 1616
11-0311-03 230230 1616
11-0411-04 250250 1414
11-0511-05 250250 1414
11-0611-06 260260 1414
11-0711-07 300300 1414
11-0811-08 260260 1414
11-0911-09 290290 1414
11-1011-10 270270 1515
11-1111-11 250250 1515
11-1211-12 250250 1515
11-1311-13 250250 1515
11-1411-14 240240 1515
11-1511-15 270270 1515
11-1611-16 300300 1515
11-1711-17 270270 1515
11-1811-18 250250 1515
11-1911-19 220220 1515
11-2011-20 220220 1515
11-2111-21 220220 1515
11-2211-22 210210 1515
11-2311-23 220220 1515
11-2411-24 220220 1515
11-2511-25 200200 1414
11-2611-26 210210 1414
11-2711-27 240240 1414
12-0412-04 260260 9.49.4
12-0512-05 290290 15.215.2
12-0612-06 260260 1515
12-0712-07 190190 1717
12-0812-08 250250 14.214.2
12-0912-09 230230 15.815.8
12-1012-10 230230 15.815.8
12-1112-11 210210 15.715.7
12-1212-12 190190 15.515.5
12-1312-13 200200 15.715.7
12-1412-14 180180 15.715.7
12-1512-15 190190 14.514.5
12-1612-16 200200 14.714.7
12-1712-17 210210 14.514.5
12-1812-18 220220 14.514.5
12-1912-19 250250 14.714.7
12-2012-20 200200 14.714.7
12-2112-21 240240 14.814.8
12-2212-22 200200 14.714.7
12-2312-23 240240 14.914.9
12-2412-24 220220 14.114.1
12-2512-25 200200 14.514.5
12-2612-26 230230 1414
12-2712-27 210210 14.614.6
12-2812-28 180180 1313
12-2912-29 210210 14.514.5
12-3012-30 180180 13.513.5
12-3112-31 190190 1313
01-0101-01 200200 1212
01-0201-02 210210 12.512.5
01-0301-03 180180 1313
01-0401-04 210210 12.612.6
01-0501-05 220220 1313
01-0601-06 210210 1111
01-0701-07 200200 14.814.8
01-0801-08 200200 14.814.8
01-0901-09 190190 14.514.5
01-1001-10 200200 14.614.6
01-1101-11 200200 14.714.7
01-1201-12 170170 14.614.6
01-1301-13 140140 14.814.8
01-1401-14 170170 14.914.9
01-1501-15 170170 14.914.9
01-1601-16 150150 14.714.7
01-1701-17 150150 1414
01-1801-18 170170 1313
01-1901-19 190190 13.213.2
01-2001-20 160160 13.513.5
01-2101-21 200200 1313
01-2201-22 160160 12.512.5
01-2301-23 180180 1313
01-2401-24 180180 1313
01-2501-25 160160 12.112.1
01-2601-26 170170 12.812.8
01-2701-27 160160 1313
01-2801-28 120120 1313
01-2901-29 6060 1313
01-3001-30 7575 12.812.8
01-3101-31 9090 10.210.2
표 4는 일정 수준의 Imhoff값이 유지되는 경우 차속값 변화에 따른 함수율 변화로서 도 5에 도시된 그래프 데이터이다.Table 4 is graph data shown in FIG. 5 as a change in moisture content according to a change in vehicle speed value when a certain level of Imhoff value is maintained.
한편 도 5에 나타낸 바와 같이, 탈수기 유량을 조절하여 적절하게 유지된 Imhoff 값을 가진 공정수가 탈수기로 유입되었을 때 차속값을 조절하여 바이오황의 함수율을 47~52% 범위에서 일정하게 유지시킬 수 있음을 확인하였다. 즉, 공정이 안정화된 상태에서는 유입되는 공정수의 조건이 장시간 동안 급격하게 변화하지 않는 한 차속값을 조절하여 원하는 함수율의 바이오황을 생산할 수 있다는 것을 확인하였다.On the other hand, as shown in Figure 5, by adjusting the dehydrator flow rate when the process water having an appropriately maintained Imhoff value is introduced into the dehydrator can adjust the vehicle speed value to maintain a constant moisture content of the bio-sulfur in the 47 ~ 52% range Confirmed. That is, it was confirmed that biosulfuric acid having a desired moisture content can be produced by adjusting a vehicle speed value unless the condition of the incoming process water changes rapidly for a long time while the process is stabilized.
날짜date 함수율(%)Moisture content (%) 차속값Vehicle speed
09-0409-04 44.244.2 1111
09-0509-05 45.845.8 16.516.5
09-0609-06 46.246.2 20.720.7
09-0709-07 48.548.5 2424
09-0809-08 49.349.3 3030
09-0909-09 49.549.5 2828
09-1009-10 4949 2323
09-1109-11 4949 2424
09-1209-12 49.249.2 2828
09-1309-13 49.549.5 2828
09-1409-14 49.349.3 2828
09-1509-15 49.549.5 3030
09-1609-16 49.549.5 2828
09-1709-17 49.649.6 2828
09-1809-18 49.249.2 29.529.5
09-1909-19 49.549.5 29.529.5
09-2009-20 49.649.6 29.529.5
09-2109-21 49.549.5 29.529.5
09-2209-22 49.249.2 3030
09-2309-23 50.150.1 3232
09-2409-24 5050 3232
09-2509-25 50.250.2 3232
09-2609-26 49.949.9 3131
09-2709-27 50.150.1 3131
09-2809-28 49.949.9 30.530.5
09-2909-29 49.849.8 2929
09-3009-30 49.249.2 2626
10-0110-01 48.448.4 2525
10-0210-02 48.648.6 24.624.6
10-0310-03 48.648.6 25.625.6
10-0410-04 49.249.2 23.623.6
10-0510-05 48.548.5 22.622.6
10-0610-06 48.348.3 25.525.5
10-0710-07 48.248.2 2525
10-0810-08 4848 2424
10-0910-09 48.148.1 25.525.5
10-1010-10 48.948.9 27.427.4
10-1110-11 4949 2828
10-1210-12 49.949.9 28.528.5
10-1310-13 4848 2525
10-1410-14 48.148.1 2525
10-1510-15 48.548.5 2525
10-1610-16 48.248.2 24.524.5
10-1710-17 47.947.9 22.522.5
10-1810-18 47.847.8 2222
10-1910-19 48.548.5 21.521.5
10-2010-20 48.148.1 21.521.5
10-2110-21 47.547.5 19.519.5
10-2210-22 47.647.6 19.519.5
10-2310-23 47.647.6 1919
10-2410-24 4848 1919
10-2510-25 47.947.9 1919
10-2610-26 48.148.1 1919
10-2710-27 46.146.1 19.519.5
10-2810-28 46.246.2 1919
10-2910-29 4747 20.420.4
10-3010-30 4747 1818
10-3110-31 47.147.1 1717
11-0111-01 47.347.3 18.818.8
11-0211-02 47.147.1 1818
11-0311-03 47.247.2 1818
11-0411-04 47.947.9 20.520.5
11-0511-05 47.847.8 2727
11-0611-06 49.149.1 26.526.5
11-0711-07 49.549.5 27.527.5
11-0811-08 48.848.8 1919
11-0911-09 48.148.1 1919
11-1011-10 49.349.3 22.522.5
11-1111-11 49.549.5 2525
11-1211-12 49.949.9 2626
11-1311-13 47.147.1 1818
11-1411-14 48.548.5 24.424.4
11-1511-15 48.448.4 24.524.5
11-1611-16 48.948.9 2525
11-1711-17 49.749.7 2727
11-1811-18 50.250.2 27.527.5
11-1911-19 49.849.8 2323
11-2011-20 48.848.8 24.524.5
11-2111-21 49.149.1 24.524.5
11-2211-22 49.649.6 22.522.5
11-2311-23 49.549.5 23.523.5
11-2411-24 50.250.2 23.823.8
11-2511-25 50.450.4 23.523.5
11-2611-26 49.849.8 21.521.5
11-2711-27 49.549.5 23.523.5
12-0412-04 51.351.3 29.529.5
12-0512-05 5151 2424
12-0612-06 50.550.5 24.524.5
12-0712-07 50.150.1 2222
12-0812-08 51.651.6 2727
12-0912-09 50.850.8 26.526.5
12-1012-10 49.849.8 2222
12-1112-11 49.249.2 2222
12-1212-12 49.949.9 2222
12-1312-13 49.149.1 2020
12-1412-14 49.949.9 2323
12-1512-15 50.250.2 23.523.5
12-1612-16 49.749.7 2222
12-1712-17 49.649.6 21.521.5
12-1812-18 50.150.1 2222
12-1912-19 48.148.1 13.913.9
12-2012-20 48.648.6 12.512.5
12-2112-21 48.648.6 13.213.2
12-2212-22 48.248.2 12.512.5
12-2312-23 47.947.9 13.113.1
12-2412-24 49.149.1 13.513.5
12-2512-25 48.848.8 13.713.7
12-2612-26 48.548.5 12.512.5
12-2712-27 48.648.6 16.516.5
12-2812-28 48.948.9 16.416.4
12-2912-29 4949 1818
12-3012-30 4949 2020
12-3112-31 49.249.2 2020
01-0101-01 48.748.7 2121
01-0201-02 49.349.3 2323
01-0301-03 49.149.1 2323
01-0401-04 48.948.9 2121
01-0501-05 48.548.5 19.319.3
01-0601-06 47.147.1 19.519.5
01-0701-07 48.648.6 19.519.5
01-0801-08 48.348.3 19.519.5
01-0901-09 48.548.5 2020
01-1001-10 49.149.1 2020
01-1101-11 49.549.5 2020
01-1201-12 49.549.5 20.520.5
01-1301-13 49.949.9 2121
01-1401-14 49.549.5 1919
01-1501-15 49.249.2 18.318.3
01-1601-16 49.349.3 17.717.7
01-1701-17 49.349.3 1717
01-1801-18 49.649.6 14.714.7
01-1901-19 49.449.4 1616
01-2001-20 48.148.1 15.815.8
01-2101-21 48.648.6 15.815.8
01-2201-22 48.548.5 15.115.1
01-2301-23 48.348.3 15.515.5
01-2401-24 48.948.9 16.716.7
01-2501-25 48.948.9 1616
01-2601-26 49.649.6 1717
01-2701-27 49.849.8 16.516.5
01-2801-28 49.849.8 19.419.4
01-2901-29 5050 2121
01-3001-30 51.251.2 20.420.4
01-3101-31 5151 21.521.5
표 5는 일정 수준의 차속값이 유지되는 경우 Imhoff값 변화에 따른 함수율 변화로서 도 6에 도시된 그래프 데이터이다.Table 5 is graph data shown in FIG. 6 as a change in moisture content according to the Imhoff value change when a certain level of vehicle speed is maintained.
도 6에서 알 수 있는 바와 같이, 탈수기의 차속값이 적정 범위 내에서 유지되어 공정이 안정화된 상태에서 운전되는 경우, 유량을 적절하게 조절하여 침전조의 Imhoff 값을 일정 범위로 조정하면 바이오황의 함수율을 유지할 수 있음을 확인하였다.As can be seen in Figure 6, when the vehicle speed value of the dehydrator is maintained within an appropriate range to operate in a stabilized state, by adjusting the flow rate appropriately to adjust the Imhoff value of the sedimentation tank to a certain range, the moisture content of the biosulfur It was confirmed that it can be maintained.
날짜date 함수율(%)Moisture content (%) Settler Imhoff(ml/L)Settler Imhoff (ml / L)
09-0409-04 44.244.2 290290
09-0509-05 45.845.8 320320
09-0609-06 46.246.2 330330
09-0709-07 48.548.5 295295
09-0809-08 49.349.3 260260
09-0909-09 49.549.5 260260
09-1009-10 4949 260260
09-1109-11 4949 260260
09-1209-12 49.249.2 240240
09-1309-13 49.549.5 240240
09-1409-14 49.349.3 230230
09-1509-15 49.549.5 220220
09-1609-16 49.549.5 200200
09-1709-17 49.649.6 230230
09-1809-18 49.249.2 220220
09-1909-19 49.549.5 300300
09-2009-20 49.649.6 330330
09-2109-21 49.549.5 240240
09-2209-22 49.249.2 240240
09-2309-23 50.150.1 240240
09-2409-24 5050 280280
09-2509-25 50.250.2 240240
09-2609-26 49.949.9 240240
09-2709-27 50.150.1 260260
09-2809-28 49.949.9 260260
09-2909-29 49.849.8 300300
09-3009-30 49.249.2 300300
10-0110-01 48.448.4 290290
10-0210-02 48.648.6 300300
10-0310-03 48.648.6 280280
10-0410-04 49.249.2 310310
10-0510-05 48.548.5 300300
10-0610-06 48.348.3 320320
10-0710-07 48.248.2 300300
10-0810-08 4848 300300
10-0910-09 48.148.1 320320
10-1010-10 48.948.9 300300
10-1110-11 4949 290290
10-1210-12 49.949.9 280280
10-1310-13 4848 300300
10-1410-14 48.148.1 310310
10-1510-15 48.548.5 300300
10-1610-16 48.248.2 300300
10-1710-17 47.947.9 280280
10-1810-18 47.847.8 320320
10-1910-19 48.548.5 330330
10-2010-20 48.148.1 310310
10-2110-21 47.547.5 300300
10-2210-22 47.647.6 280280
10-2310-23 47.647.6 290290
10-2410-24 4848 290290
10-2510-25 47.947.9 280280
10-2610-26 48.148.1 290290
10-2710-27 46.146.1 260260
10-2810-28 46.246.2 270270
10-2910-29 4747 250250
10-3010-30 4747 260260
10-3110-31 47.147.1 290290
11-0111-01 47.347.3 250250
11-0211-02 47.147.1 280280
11-0311-03 47.247.2 230230
11-0411-04 47.947.9 250250
11-0511-05 47.847.8 250250
11-0611-06 49.149.1 260260
11-0711-07 49.549.5 300300
11-0811-08 48.848.8 260260
11-0911-09 48.148.1 290290
11-1011-10 49.349.3 270270
11-1111-11 49.549.5 250250
11-1211-12 49.949.9 250250
11-1311-13 47.147.1 250250
11-1411-14 48.548.5 240240
11-1511-15 48.448.4 270270
11-1611-16 48.948.9 300300
11-1711-17 49.749.7 270270
11-1811-18 50.250.2 250250
11-1911-19 49.849.8 220220
11-2011-20 48.848.8 220220
11-2111-21 49.149.1 220220
11-2211-22 49.649.6 210210
11-2311-23 49.549.5 220220
11-2411-24 50.250.2 220220
11-2511-25 50.450.4 200200
11-2611-26 49.849.8 210210
11-2711-27 49.549.5 240240
12-0412-04 51.351.3 260260
12-0512-05 5151 290290
12-0612-06 50.550.5 260260
12-0712-07 50.150.1 190190
12-0812-08 51.651.6 250250
12-0912-09 50.850.8 230230
12-1012-10 49.849.8 230230
12-1112-11 49.249.2 210210
12-1212-12 49.949.9 190190
12-1312-13 49.149.1 200200
12-1412-14 49.949.9 180180
12-1512-15 50.250.2 190190
12-1612-16 49.749.7 200200
12-1712-17 49.649.6 210210
12-1812-18 50.150.1 220220
12-1912-19 48.148.1 250250
12-2012-20 48.648.6 200200
12-2112-21 48.648.6 240240
12-2212-22 48.248.2 200200
12-2312-23 47.947.9 240240
12-2412-24 49.149.1 220220
12-2512-25 48.848.8 200200
12-2612-26 48.548.5 230230
12-2712-27 48.648.6 210210
12-2812-28 48.948.9 180180
12-2912-29 4949 210210
12-3012-30 4949 180180
12-3112-31 49.249.2 190190
01-0101-01 48.748.7 200200
01-0201-02 49.349.3 210210
01-0301-03 49.149.1 180180
01-0401-04 48.948.9 210210
01-0501-05 48.548.5 220220
01-0601-06 47.147.1 210210
01-0701-07 48.648.6 200200
01-0801-08 48.348.3 200200
01-0901-09 48.548.5 190190
01-1001-10 49.149.1 200200
01-1101-11 49.549.5 200200
01-1201-12 49.549.5 170170
01-1301-13 49.949.9 140140
01-1401-14 49.549.5 170170
01-1501-15 49.249.2 170170
01-1601-16 49.349.3 150150
01-1701-17 49.349.3 150150
01-1801-18 49.649.6 170170
01-1901-19 49.449.4 190190
01-2001-20 48.148.1 160160
01-2101-21 48.648.6 200200
01-2201-22 48.548.5 160160
01-2301-23 48.348.3 180180
01-2401-24 48.948.9 180180
01-2501-25 48.948.9 160160
01-2601-26 49.649.6 170170
01-2701-27 49.849.8 160160
01-2801-28 49.849.8 120120
01-2901-29 5050 6060
01-3001-30 51.251.2 7575
01-3101-31 5151 9090
표 6은 황부하량에 따른 바이오황 함수율 변화로서 도 7에 도시된 그래프의 데이터이다.Table 6 shows the data of the graph shown in FIG. 7 as the biosulfur moisture content change according to the sulfur load.
그리고, 도 7에서 알 수 있는 바와 같이, 탈수기의 차속값과 Imhoff값을 조정하여 적정 범위 내에서 유지하면, 황부하량(S-load, Ton/day)에 변화가 있더라도 장시간에 걸쳐 큰 폭의 변화가 계속해서 유지되는 경우가 아니면, 생산되는 바이오황의 함수율은 원하는 목표치로 유지할 수 있음을 확인하였다.As can be seen in FIG. 7, if the vehicle speed value and the Imhoff value of the dehydrator are adjusted and maintained within an appropriate range, even if there is a change in the yellow load (S-load, Ton / day), a large change over a long period of time. It is confirmed that the water content of the biosulfur produced can be maintained at the desired target value unless the case is continuously maintained.
날짜date 황부하량(Ton/d)Yellow Load (Ton / d) 함수율(%)Moisture content (%)
09-0409-04 18.1218.12 44.244.2
09-0509-05 17.7417.74 45.845.8
09-0609-06 17.2717.27 46.246.2
09-0709-07 17.7417.74 48.548.5
09-0809-08 14.3314.33 49.349.3
09-0909-09 17.1317.13 49.549.5
09-1009-10 18.0118.01 4949
09-1109-11 17.3517.35 4949
09-1209-12 18.1118.11 49.249.2
09-1309-13 18.2118.21 49.549.5
09-1409-14 17.8517.85 49.349.3
09-1509-15 18.5618.56 49.549.5
09-1609-16 18.2918.29 49.549.5
09-1709-17 17.5817.58 49.649.6
09-1809-18 19.0719.07 49.249.2
09-1909-19 18.9918.99 49.549.5
09-2009-20 19.1419.14 49.649.6
09-2109-21 18.618.6 49.549.5
09-2209-22 17.8917.89 49.249.2
09-2309-23 1818 50.150.1
09-2409-24 17.817.8 5050
09-2509-25 17.8317.83 50.250.2
09-2609-26 17.9817.98 49.949.9
09-2709-27 18.8118.81 50.150.1
09-2809-28 18.4918.49 49.949.9
09-2909-29 18.6318.63 49.849.8
09-3009-30 18.6918.69 49.249.2
10-0110-01 19.8119.81 48.448.4
10-0210-02 18.118.1 48.648.6
10-0310-03 18.6618.66 48.648.6
10-0410-04 18.9418.94 49.249.2
10-0510-05 19.5219.52 48.548.5
10-0610-06 19.719.7 48.348.3
10-0710-07 17.5617.56 48.248.2
10-0810-08 19.0519.05 4848
10-0910-09 20.5320.53 48.148.1
10-1010-10 19.5619.56 48.948.9
10-1110-11 18.918.9 4949
10-1210-12 19.7419.74 49.949.9
10-1310-13 19.6819.68 4848
10-1410-14 19.2719.27 48.148.1
10-1510-15 19.8719.87 48.548.5
10-1610-16 18.718.7 48.248.2
10-1710-17 18.6918.69 47.947.9
10-1810-18 19.5219.52 47.847.8
10-1910-19 18.6518.65 48.548.5
10-2010-20 19.2519.25 48.148.1
10-2110-21 18.9318.93 47.547.5
10-2210-22 18.918.9 47.647.6
10-2310-23 19.1219.12 47.647.6
10-2410-24 19.0819.08 4848
10-2510-25 19.2319.23 47.947.9
10-2610-26 19.9719.97 48.148.1
10-2710-27 17.8417.84 46.146.1
10-2810-28 17.9317.93 46.246.2
10-2910-29 20.0920.09 4747
10-3010-30 18.5718.57 4747
10-3110-31 18.9718.97 47.147.1
11-0111-01 19.5319.53 47.347.3
11-0211-02 19.0819.08 47.147.1
11-0311-03 18.1418.14 47.247.2
11-0411-04 17.4517.45 47.947.9
11-0511-05 17.3617.36 47.847.8
11-0611-06 15.2815.28 49.149.1
11-0711-07 17.3217.32 49.549.5
11-0811-08 17.0517.05 48.848.8
11-0911-09 16.6616.66 48.148.1
11-1011-10 17.0217.02 49.349.3
11-1111-11 18.1618.16 49.549.5
11-1211-12 14.8814.88 49.949.9
11-1311-13 16.9916.99 47.147.1
11-1411-14 16.5316.53 48.548.5
11-1511-15 19.3319.33 48.448.4
11-1611-16 17.7717.77 48.948.9
11-1711-17 17.8417.84 49.749.7
11-1811-18 16.4916.49 50.250.2
11-1911-19 17.3617.36 49.849.8
11-2011-20 18.8818.88 48.848.8
11-2111-21 17.6817.68 49.149.1
11-2211-22 19.2819.28 49.649.6
11-2311-23 19.2819.28 49.549.5
11-2411-24 17.3317.33 50.250.2
11-2511-25 18.2218.22 50.450.4
11-2611-26 17.4217.42 49.849.8
11-2711-27 15.6415.64 49.549.5
12-0412-04 18.2418.24 51.351.3
12-0512-05 1717 5151
12-0612-06 17.9517.95 50.550.5
12-0712-07 17.1817.18 50.150.1
12-0812-08 13.5713.57 51.651.6
12-0912-09 16.9316.93 50.850.8
12-1012-10 17.617.6 49.849.8
12-1112-11 17.8117.81 49.249.2
12-1212-12 16.3116.31 49.949.9
12-1312-13 16.5616.56 49.149.1
12-1412-14 17.3217.32 49.949.9
12-1512-15 18.118.1 50.250.2
12-1612-16 17.417.4 49.749.7
12-1712-17 17.6417.64 49.649.6
12-1812-18 16.8816.88 50.150.1
12-1912-19 16.3916.39 48.148.1
12-2012-20 17.0117.01 48.648.6
12-2112-21 16.0116.01 48.648.6
12-2212-22 15.3715.37 48.248.2
12-2312-23 17.2917.29 47.947.9
12-2412-24 17.3117.31 49.149.1
12-2512-25 16.7616.76 48.848.8
12-2612-26 15.8915.89 48.548.5
12-2712-27 17.7117.71 48.648.6
12-2812-28 17.3417.34 48.948.9
12-2912-29 17.3917.39 4949
12-3012-30 16.8616.86 4949
12-3112-31 16.8816.88 49.249.2
한편, 안정적인 함수율이 유지되어 운전된 경우의 Imhoff(㎖/L)/차속값(rpm) 값을 정리한 데이터는 아래표와 같다.On the other hand, the data that summarizes the Imhoff (ml / L) / vehicle speed value (rpm) values when the stable moisture content is maintained is shown in the table below.
표 7은 적정 함수율이 유지된 경우 Imhoff(㎖/L)/차속값(rpm)의 변화이다.Table 7 shows the change of Imhoff (ml / L) / vehicle speed (rpm) when the proper moisture content is maintained.
날짜date 침전조 Imhoff(ml/L)Sedimentation tank Imhoff (ml / L) 차속값Vehicle speed Imhoff/차속값Imhoff / Vehicle Speed Value
09-0409-04 290290 1111 2626
09-0509-05 320320 16.516.5 1919
09-0609-06 330330 20.720.7 1616
09-0709-07 295295 2424 1212
09-0809-08 260260 3030 99
09-0909-09 260260 2828 99
09-1009-10 260260 2323 1111
09-1109-11 260260 2424 1111
09-1209-12 240240 2828 99
09-1309-13 240240 2828 99
09-1409-14 230230 2828 88
09-1509-15 220220 3030 77
09-1609-16 200200 2828 77
09-1709-17 230230 2828 88
09-1809-18 220220 29.529.5 77
09-1909-19 300300 29.529.5 1010
09-2009-20 330330 29.529.5 1111
09-2109-21 240240 29.529.5 88
09-2209-22 240240 3030 88
09-2309-23 240240 3232 88
09-2409-24 280280 3232 99
09-2509-25 240240 3232 88
09-2609-26 240240 3131 88
09-2709-27 260260 3131 88
09-2809-28 260260 30.530.5 99
09-2909-29 300300 2929 1010
09-3009-30 300300 2626 1212
10-0110-01 290290 2525 1212
10-0210-02 300300 24.624.6 1212
10-0310-03 280280 25.625.6 1111
10-0410-04 310310 23.623.6 1313
10-0510-05 300300 22.622.6 1313
10-0610-06 320320 25.525.5 1313
10-0710-07 300300 2525 1212
10-0810-08 300300 2424 1313
10-0910-09 320320 25.525.5 1313
10-1010-10 300300 27.427.4 1111
10-1110-11 290290 2828 1010
10-1210-12 280280 28.528.5 1010
10-1310-13 300300 2525 1212
10-1410-14 310310 2525 1212
10-1510-15 300300 2525 1212
10-1610-16 300300 24.524.5 1212
10-1710-17 280280 22.522.5 1212
10-1810-18 320320 2222 1515
10-1910-19 330330 21.521.5 1515
10-2010-20 310310 21.521.5 1414
10-2110-21 300300 19.519.5 1515
10-2210-22 280280 19.519.5 1414
10-2310-23 290290 1919 1515
10-2410-24 290290 1919 1515
10-2510-25 280280 1919 1515
10-2610-26 290290 1919 1515
10-2710-27 260260 19.519.5 1313
10-2810-28 270270 1919 1414
10-2910-29 250250 20.420.4 1212
10-3010-30 260260 1818 1414
10-3110-31 290290 1717 1717
11-0111-01 250250 18.818.8 1313
11-0211-02 280280 1818 1616
11-0311-03 230230 1818 1313
11-0411-04 250250 20.520.5 1212
11-0511-05 250250 2727 99
11-0611-06 260260 26.526.5 1010
11-0711-07 300300 27.527.5 1111
11-0811-08 260260 1919 1414
11-0911-09 290290 1919 1515
11-1011-10 270270 22.522.5 1212
11-1111-11 250250 2525 1010
11-1211-12 250250 2626 1010
11-1311-13 250250 1818 1414
11-1411-14 240240 24.424.4 1010
11-1511-15 270270 24.524.5 1111
11-1611-16 300300 2525 1212
11-1711-17 270270 2727 1010
11-1811-18 250250 27.527.5 99
11-1911-19 220220 2323 1010
11-2011-20 220220 24.524.5 99
11-2111-21 220220 24.524.5 99
11-2211-22 210210 22.522.5 99
11-2311-23 220220 23.523.5 99
11-2411-24 220220 23.823.8 99
11-2511-25 200200 23.523.5 99
11-2611-26 210210 21.521.5 1010
11-2711-27 240240 23.523.5 1010
11-2911-29 120120 3131 44
11-3011-30 9898 3232 33
12-0412-04 260260 29.529.5 99
12-0512-05 290290 2424 1212
12-0612-06 260260 24.524.5 1111
12-0712-07 190190 2222 99
12-0812-08 250250 2727 99
12-0912-09 230230 26.526.5 99
12-1012-10 230230 2222 1010
12-1112-11 210210 2222 1010
12-1212-12 190190 2222 99
12-1312-13 200200 2020 1010
12-1412-14 180180 2323 88
12-1512-15 190190 23.523.5 88
12-1612-16 200200 2222 99
12-1712-17 210210 21.521.5 1010
12-1812-18 220220 2222 1010
12-1912-19 250250 13.913.9 1818
12-2012-20 200200 12.512.5 1616
12-2112-21 240240 13.213.2 1818
12-2212-22 200200 12.512.5 1616
12-2312-23 240240 13.113.1 1818
12-2412-24 220220 13.513.5 1616
12-2512-25 200200 13.713.7 1515
12-2612-26 230230 12.512.5 1818
12-2712-27 210210 16.516.5 1313
12-2812-28 180180 16.416.4 1111
12-2912-29 210210 1818 1212
12-3012-30 180180 2020 99
12-3112-31 190190 2020 1010
위 표 7에서와 같이 Imhoff(㎖/L)/차속값(rpm)의 값을 3 내지 27 사이에서 조절한 경우에는 바이오황의 함수율을 50% 부근에서 유지할 수 있어서 우수한 물성을 갖는 바이오황을 생산할 수 있었다.As shown in Table 7 above, when the value of Imhoff (mL / L) / vehicle speed (rpm) is adjusted between 3 and 27, the biosulfur content can be maintained at around 50% to produce biosulfur having excellent physical properties. there was.
[부호의 설명][Description of the code]
1. 주모터, 2. 차속 모터, 3. 스크롤 드라이브, 4. 볼 드라이브, 5. 프레임, 6. 분배기, 7. (슬러리) 공급 튜브, 8. 스크롤 베어링, 9. (슬러리) 공급부, 10. 볼베어링, 11. 조절판(댐링), 12. 탈리여액 배출부, 13. 볼, 14. 분리실, 15. 이송 스크류, 15a. 침지(浸漬)디스크, 16. 고형물 배출부, 17. 기어박스, 18. 진동 흠수장치, 19. 클러치.1. main motor, 2. vehicle speed motor, 3. scroll drive, 4. ball drive, 5. frame, 6. distributor, 7. (slurry) feed tube, 8. scroll bearing, 9. (slurry) feed, 10. Ball bearing, 11. throttle (damping), 12. tally filtrate outlet, 13. ball, 14. separation chamber, 15. feed screw, 15a. Immersion disc, 16. Solids outlet, 17. Gearbox, 18. Vibration seal, 19. Clutch.

Claims (6)

  1. 바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff 값 및 탈수기의 차속값을 조절하여 바이오황 함수율을 조절하는 탈수 공정으로서, 탈수 공정에 유입되는 바이오황 함유액의 Imhoff값을 다음 식을 만족하는 일정 범위 내로 유지하여 황부하량(S-load)이 일정 범위에서 변화하더라도 바이오황 함수율을 평균적으로 45 내지 55% 범위로 조절하기 위한 탈수 공정A dehydration process that controls the biosulfur moisture content by adjusting the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process and the vehicle speed value of the dehydrator for drying the biosulfur. Dehydration process to control the biosulfur moisture content in the range of 45 to 55% on average even if the S-load changes in a certain range by maintaining within a certain range satisfying the
    [수식 3] 100 ≤ Imhoff(㎖/L) ≤ 400[Equation 3] 100 <Imhoff (ml / L) <400
    [수식 1] 3 ≤ Imhoff(㎖/L)/차속값(rpm) ≤ 27Equation 1 3? Imhoff (ml / L) / vehicle speed value (rpm)? 27
  2. 제1항에 있어서,The method of claim 1,
    바이오황 건조를 위하여 탈수 공정의 탈수기 차속값을 다음 식을 만족하는 일정 범위 내로 유지하여 바이오황 함수율을 조절하기 위한 탈수 공정Dehydration process to control the biosulfur moisture content by maintaining the dehydrator vehicle speed value of the dehydration process within a certain range satisfying the following equation for biosulfur drying
    [수식 2] 15 ≤ 차속값(rpm) ≤ 30Equation 2 15 ≤ vehicle speed value (rpm) ≤ 30
  3. 제1항에 있어서,The method of claim 1,
    바이오황 건조를 위하여 탈수 공정에 유입되는 바이오황 함유액의 Imhoff값을 다음 식을 만족하는 일정 범위 내로 유지하여 바이오황 함수율을 조절하기 위한 탈수 공정Dehydration process to control the biosulfur moisture content by maintaining the Imhoff value of the biosulfur-containing liquid flowing into the dehydration process for the biosulfur drying within a certain range satisfying the following equation.
    [수식 4] 150 ≤ Imhoff(㎖/L) ≤ 300Equation 4 150 ≤ Imhoff (ml / L) ≤ 300
  4. 제1항에 있어서,The method of claim 1,
    생산되는 바이오황의 함수율이 평균적으로 47 내지 52%의 범위로 유지되는 것을 특징으로 하는 바이오황 함수율을 조절하기 위한 탈수 공정Dehydration process for controlling the biosulfur moisture content, characterized in that the moisture content of the produced biosulfur is maintained in the range of 47 to 52% on average
  5. 제1항에 있어서,The method of claim 1,
    Imhoff값이 감소하면 탈수기 차속값을 감소시켜 바이오황의 함수율을 일정하게 유지하는 것을 특징으로 하는 바이오황 함수율을 조절하기 위한 탈수 공정Dehydration process for controlling the biosulfur moisture content, characterized by decreasing the dehydrator vehicle speed value to keep the moisture content of the biosulfur constant when the Imhoff value decreases
  6. 제1항에 있어서,The method of claim 1,
    Imhoff값이 증가하면 탈수기 차속값을 증가시켜 바이오황의 함수율을 일정하게 유지하는 것을 특징으로 하는 바이오황 함수율을 조절하기 위한 탈수 공정If the Imhoff value is increased, the dehydration process for controlling the biosulfur moisture content is characterized by increasing the dehydrator vehicle speed value to keep the moisture content of the biosulfur constant.
PCT/KR2018/002231 2017-02-23 2018-02-23 Dehydration process for controlling moisture content of bio-sulfur suspension WO2018155943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880013553.7A CN110418765A (en) 2017-02-23 2018-02-23 For adjusting the dehydration procedure of biological sulphur suspension moisture content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170024139A KR101813486B1 (en) 2017-02-23 2017-02-23 Dehydration process to control water content of biosulfur suspension concentrate
KR10-2017-0024139 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155943A1 true WO2018155943A1 (en) 2018-08-30

Family

ID=60939284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002231 WO2018155943A1 (en) 2017-02-23 2018-02-23 Dehydration process for controlling moisture content of bio-sulfur suspension

Country Status (3)

Country Link
KR (1) KR101813486B1 (en)
CN (1) CN110418765A (en)
WO (1) WO2018155943A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813486B1 (en) * 2017-02-23 2017-12-29 에코바이오홀딩스 주식회사 Dehydration process to control water content of biosulfur suspension concentrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128158A (en) * 1996-11-01 1998-05-19 Trinity Ind Corp Centrifugal separator
KR20070076919A (en) * 2006-01-20 2007-07-25 문일성 Hydroextractor using rotation speed difference for drum screen and screw
WO2012053894A2 (en) * 2010-10-18 2012-04-26 Ceradis B.V. Novel biosulfur formulations
KR101328066B1 (en) * 2013-07-24 2013-11-13 주식회사 무한기술 Comparison control mode horizontal type centrifugal separator
KR20140004593A (en) * 2012-07-03 2014-01-13 토모에코교 카부시키카이샤 Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
KR101813486B1 (en) * 2017-02-23 2017-12-29 에코바이오홀딩스 주식회사 Dehydration process to control water content of biosulfur suspension concentrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192403A (en) * 2005-01-17 2006-07-27 Tokyo Electric Power Environmental Engineering Co Inc Method for reducing water content in dewatered sludge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128158A (en) * 1996-11-01 1998-05-19 Trinity Ind Corp Centrifugal separator
KR20070076919A (en) * 2006-01-20 2007-07-25 문일성 Hydroextractor using rotation speed difference for drum screen and screw
WO2012053894A2 (en) * 2010-10-18 2012-04-26 Ceradis B.V. Novel biosulfur formulations
KR20140004593A (en) * 2012-07-03 2014-01-13 토모에코교 카부시키카이샤 Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
KR101328066B1 (en) * 2013-07-24 2013-11-13 주식회사 무한기술 Comparison control mode horizontal type centrifugal separator
KR101813486B1 (en) * 2017-02-23 2017-12-29 에코바이오홀딩스 주식회사 Dehydration process to control water content of biosulfur suspension concentrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, TAE SOON ET AL.: "A Study on Performance of Sulfur Concrete Using BIO Sulfur Derived from the Landfill and Additives", J OF KOREA SOCIETY OF WASTE MANAGEMENT, vol. 33, no. 2, March 2016 (2016-03-01), pages 154 - 163, XP055537098 *

Also Published As

Publication number Publication date
CN110418765A (en) 2019-11-05
KR101813486B1 (en) 2017-12-29

Similar Documents

Publication Publication Date Title
JP2693272B2 (en) Sulfide-containing wastewater purification method
WO2018155943A1 (en) Dehydration process for controlling moisture content of bio-sulfur suspension
CN101970360A (en) Waste activated sludge phosphorus and magnesium stripping process and struvite production system
JP2003275773A (en) Method for treating waste water containing polyphenylene sulfide
US8470569B2 (en) Hydrometallurgical procedure for the production of ferric-sulfate from fayalite slag
CN111777052A (en) Fine desulfurization method for phosphoric acid
CN212864145U (en) Phosphoric acid dearsenification system
CN113443812B (en) Method for quickly adjusting flocculation condition and filter-pressing dehydration process of blue algae mud
SE507253C2 (en) Process for separating gaseous elemental mercury from a gas
CN101249966A (en) Method for removing harmful elements Pb, Hg, As from aluminium magnesium silicate inorganic gel
KR101959402B1 (en) Process for Manufacturing Biosulfur Suspension Concentrate And Biosulfur Suspension Concentrate Manufactured Thereby
WO1994002418A1 (en) A method of and an apparatus for purifying aqueous suspensions containing organic material and cations
US4624788A (en) Method of biological purification of waste water
CN105776364A (en) Preparation method of municipal sewage treating agent
CN218925651U (en) Hazardous waste harmless pretreatment system for abandoned ammonium thiosulfate
CN207659109U (en) A kind of device improving magnesium sulfate concentration
CN211367231U (en) Desulfurization wastewater treatment device
SE453725B (en) SET TO MAKE HEPAR CONTENTS WATER EXTRACTS
CN109020106A (en) A kind of novel mud waste water processing system and method
CN107324612A (en) Acetate fiber produces waste water reclaiming recovery method and its recovery system
CN219507803U (en) System for preparing and adding sludge dewatering agent
CN220999546U (en) Nitrogen-phosphorus compound fertilizer preparation system
CN209536977U (en) A kind of H of whole process non-pollutant discharge2S preparation facilities
CN213537297U (en) Centrifugation and mixed composite polycrystalline silicon slag slurry treatment system
CN107089766A (en) A kind of efficient hospital sewage processing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756948

Country of ref document: EP

Kind code of ref document: A1