WO2018155902A1 - Dual-turbine internal combustion engine comprising phase controller included in turbine assembly - Google Patents

Dual-turbine internal combustion engine comprising phase controller included in turbine assembly Download PDF

Info

Publication number
WO2018155902A1
WO2018155902A1 PCT/KR2018/002131 KR2018002131W WO2018155902A1 WO 2018155902 A1 WO2018155902 A1 WO 2018155902A1 KR 2018002131 W KR2018002131 W KR 2018002131W WO 2018155902 A1 WO2018155902 A1 WO 2018155902A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
power
control
phase controller
combustion engine
Prior art date
Application number
PCT/KR2018/002131
Other languages
French (fr)
Korean (ko)
Inventor
최영희
Original Assignee
최영희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최영희 filed Critical 최영희
Publication of WO2018155902A1 publication Critical patent/WO2018155902A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/14Adaptations of engines for driving, or engine combinations with, other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/10Fuel supply; Introducing fuel to combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine, and more particularly, to a double turbine internal combustion engine configured with a phase controller in a turbine assembly.
  • an internal combustion engine refers to an engine that converts thermal energy of a fuel into mechanical power by burning a fuel and directly applying the combustion gas to a piston or a turbine blade.
  • a conventional internal combustion engine often refers to a reciprocating engine, but in addition, a gas turbine, a jet engine, a rocket, and the like are a kind of internal combustion engine.
  • a rotary internal combustion engine (also known as a rotary engine) is disclosed as a rotary internal combustion engine in which a piston rotates.
  • This rotary internal combustion engine is an internal combustion engine that realizes strokes of suction, compression, explosion, and exhaust using a triangular rotor that rotates eccentrically in an elliptical engine room, and has an advantage of generating high output even with a small displacement.
  • the fuel efficiency is reduced, and the rotor and the center of gravity of the rotor rotates in an eccentric state, so the engine compartment and the rotor must be precisely designed, and the durability of the engine is further deteriorated.
  • a vane rotary internal combustion engine using a vane pump is also disclosed.
  • This vane rotary internal combustion engine is provided with the principle of connecting two sets of vane vanes to separate rotary gears and operating the vane vanes by varying the rotation angle of the vane vanes.
  • the conventional vane type internal combustion engine is configured to generate power through the combustion space formed by controlling the rotation angle of each vane blade by interlocking the connecting shaft and the gear part of the control unit, which is less durable than the conventional internal combustion engine, and the weight of the controller It is difficult to keep the center at the center of rotation, and there is a problem involving vibration.
  • the present invention was devised to solve the above problems, and provides a dual turbine internal combustion engine configured with a phase controller in a turbine assembly capable of reducing vibration while improving durability and miniaturization and weight reduction.
  • the power turbine unit and the control turbine unit is disposed so that the mutual turbine blades mesh with each other inside the main body portion, the fuel explosion in the space between the turbine blades
  • a dual turbine internal combustion engine for generating power by means of: a phase controller connected to the power turbine unit and receiving a rotation of the power turbine unit to convert the rotation into the rotation of the control turbine unit, wherein the phase controller includes the power turbine unit.
  • a dual turbine internal combustion engine constituting a phase controller in a turbine assembly located inside the power turbine unit.
  • the phase controller may be arranged in a circumferential direction of the power turbine unit to control the phase angle of the control turbine unit.
  • the phase controller may include a planetary gear member disposed on an inner circumferential surface of the power turbine unit, a crank member connected to the planetary gear member to adjust the phase angle, and a link member connected to one end of the crank member and connected to a control turbine. It may be made, including.
  • Guide portions exposing a part of the planetary gear member are respectively formed on both side surfaces of the power turbine part, and cover parts having internal gears are formed on both sides of the main body part, and the planetary gear member is mounted on the internal gear of the cover part. Gears can be connected.
  • the phase angle of the control turbine portion is changed by turning the link member at a predetermined angle by a rotational center of rotation biased to one side generated while the crank member rotates. Can be controlled.
  • the present invention by configuring a phase controller inside the turbine assembly, it is possible to reduce the size of the device and to reduce the number of parts to reduce the weight, and to match the center of gravity of all the rotors with the power shaft, there is a vibration reduction effect.
  • the present invention does not need to separately configure the control device has an effect that can simplify the overall structure more.
  • FIG. 1A is a perspective view of a dual turbine internal combustion engine constituting a phase controller in a turbine assembly according to an embodiment of the present invention
  • Figure 1b is a state diagram showing the internal configuration by cutting a portion of the dual turbine internal combustion engine of Figure 1a,
  • FIG. 1A is an exploded perspective view of FIG. 1A;
  • FIG. 3 is a block diagram showing an internal configuration of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention
  • FIG. 5 is a partial configuration diagram showing a configuration of a phase controller of a turbine assembly of a dual turbine internal combustion engine in which a phase controller is configured in a turbine assembly according to an embodiment of the present invention
  • FIG. 6 is an operational state diagram of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention
  • FIG. 7 is an operational state diagram of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention
  • FIG. 8 is an internal configuration diagram of a turbine assembly of a dual turbine internal combustion engine in which a phase controller is configured in a turbine assembly according to another embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a phase controller of a dual turbine internal combustion engine constituting a phase controller in a turbine assembly according to another embodiment of the present invention.
  • One embodiment of the present invention is a spark ignition type internal combustion engine, a turbine assembly having four turbine blades is fixed to both sides through internal gears, and constitutes a phase controller comprising three sets of planetary gears.
  • an embodiment of the present invention includes a main body unit 100, a power turbine unit 10, and a control turbine unit 20.
  • the main body 100 has a fuel injection port 170, an intake port 110, a low pressure exhaust port 120, a high pressure exhaust port 130, and a spark plug mounting port 140 through the outer peripheral surface.
  • the front cover portion 150 and the rear cover portion 160 are mounted to the front and rear of the body portion 100, respectively.
  • the phase detection port 151 is formed outside the front cover part 150. This phase detection port 151 is provided for detecting the rotation angle of the phase angle detection plate 155 mounted on the power shaft tip 11a.
  • the power turbine unit 10 and the control turbine unit 20 are interlocked with each other to form the turbine assembly 200.
  • the power shaft front end 11a and the power shaft rear end 11b are extended to both sides of the turbine assembly 200, respectively, and the power shaft front end 11a and the power shaft rear end 11b are the front cover part 150 and the rear cover. It is exposed to the outside of the unit 160.
  • each component is rotated, the bearing mounting groove is formed to be coupled through the bearing, but the illustration of the bearing is omitted for simplicity of illustration.
  • the front cover plate 157 is mounted in front of the front cover part 150, and the internal gear 156 is formed inside the front cover part 150.
  • the rear cover plate 157 ' is mounted on the rear cover part 150', and the internal gear 156 'is also formed inside the rear cover part 150'.
  • the power turbine blade 12a of the power turbine unit 10 and the control turbine blade 22a of the control turbine unit 20 are engaged with each other to form a combustion chamber P in the space therebetween.
  • guides 10a are respectively formed for guiding rotation of the internal phase controller 30 (see FIG. 4).
  • phase controller 30 is located inside the turbine assembly 200.
  • the power turbine cover plate 10c is fastened to the power turbine unit 10
  • the control turbine unit 20 is fitted with the turbine blades 12a and 22a facing each other inside the power turbine unit 10. Installed in a state.
  • the power shaft front end 11a is formed in front of the power turbine part 10, and the other power shaft 11b is formed below the power turbine cover plate 10c.
  • the power turbine cover plate 10c is provided with a protrusion 15a for fitting along the inner surface, and three guide holes 15b are formed on the outer periphery of the center hole, respectively.
  • wing 22a of four poles is formed in the outer peripheral surface of the turbine body 10b, respectively.
  • the control turbine rotating shaft P4 is formed in the center.
  • first mounting holes h1 are formed around the control turbine rotary shaft P4, respectively.
  • the control turbine cover plate 25 is attached to the control turbine body 10b.
  • the control turbine cover plate 25 has a central hole (ho) in the center, the second mounting hole (h2) is formed around the central hole (ho), respectively.
  • the phase controller 30 may be positioned between the turbine body 10b and the control turbine cover plate 25 to be rotated.
  • the power turbine portion 10 and the control turbine portion 20 are located on the same centerline of the same structure but are disconnected from each other, so that the control turbine portion 20 when the power turbine portion 10 rotates at a given angular velocity. May rotate while changing the relative angle with the power turbine unit 10 in a certain range.
  • the planetary gear members 31 constituting the phase controller 10 are guided by being seated in guide grooves 25a provided in the guide parts 10a respectively formed in front and rear of the power turbine part 10. Can be rotated.
  • a part of the guide groove 25a is configured to be open, and a part of the planetary gear member 31 may be exposed to the outside.
  • the phase controller 30 includes a planetary gear member 31 moving along the internal gears 156 and 156 ', a crank member 32 and a crank member connected to the planetary gear member 31.
  • the link member 33 connected to 32 is constituted by one individual connecting body, and the individual connecting body has a structure in which three are arranged in the circumferential direction between the control turbine cover plate 25 and the turbine body 10b, respectively.
  • the phase controller 10 is composed of a planetary gear member 31, a crank member 32, and a link member 33, the center of the planetary gear member 31 and the crank member 32 through a bearing
  • the other side of the link member 33 which is supported on the inner wall of the power turbine unit 10 and transmits the control angle, is coupled to the coupling groove formed in the center of the control turbine unit 20 through a bearing.
  • the power turbine unit 10 serves as a support of the phase controller 30, and the center wall of the control turbine unit 20 serves as a transmission table receiving the control angle.
  • the planetary gear member 31 rotates gears by engaging the gears 156 and 156 'of the front and rear cover parts 150 and 160 by exposing the gears to the outer surface (guide part 10a) of the central portion of the power turbine part 10.
  • the crank member 32 is connected to the shaft of the planetary gear member 31.
  • phase control unit 30 Referring to the operation of the phase control unit 30 having such a configuration, when the power turbine unit 10 rotates, a plurality of planetary gear members 31 connected to the shaft in the circumferential direction is circumferentially along the internal gear 156,156 '. Direction of rotation. That is, the planetary gear member 31 is rotated in the circumferential direction about the power shaft. At this time, the crank member 32 fixed to the central axis of the planetary gear member 31 is rotated to form a control angle for changing the angular velocity with respect to the power turbine unit 10, through the link member 330 the control turbine unit By connecting to the transmission 20, the relative angle with respect to the power turbine unit 10 is changed.
  • the planetary gear members 31 and 31 ' having the central axis fixed to the inner wall of the power turbine unit 10 travel in mesh with the gears of the internal gears 156 and 156' in the rotational direction of the power turbine unit 10.
  • the rotational direction of the gear members 31 and 31 ' is opposite to the rotational direction of the power turbine unit 10.
  • the crank member 32 connected to the planetary gear members 31 and 31' has a first pivot point P1. Rotate around. That is, the first pivot point P1 is circumferentially moved along the internal gears 156 and 156 'while the planetary gear members 31 and 31' are rotated.
  • the crank member 32 rotates based on the link member 33 and the second pivot point P2.
  • the second turning point P2 rotates around the first turning point P1 (a2 ⁇ d2 in FIG. 6).
  • the crank member 32 and the link member 33 move while rotating along the gear teeth of the internal gears 156 and 156 'based on the second pivot point P2.
  • the end of the link member 33 pivots between the control turbine portion 20 and the control turbine cover plate 25 with respect to the third turning point P3.
  • the third turning point P3 is fitted into the first mounting hole h1 of the turbine body 10b and the second mounting hole h2 of the control turbine cover plate 25, respectively.
  • the first pivot point P1 is rotated while moving in the circumferential direction along the internal gears 156 and 156 ', and the third pivot point P3 is changed in angle according to the rotation of the second pivot point P2.
  • Linear movement when the linear movement direction of the third turning point P3 is the same as the rotational direction of the power turbine unit 20, it operates in a direction of narrowing the spacing of the turbine, and in the opposite direction, it operates in a direction of widening the spacing of the turbine.
  • the power turbine unit 10 is rotated at a constant angular speed according to the rotational speed, while the control turbine unit 20 is rotated to follow the rotation while changing to a given angular range at a predetermined period by the phase controller.
  • the repetition period is 90 degrees
  • the change angle is 45 degrees.
  • control turbine unit 20 follows the power turbine unit 10 so that the combustion chamber formed between the turbine units executes the suction stroke (a1 in FIG. 6; aa in FIG. 7) when the interval is widened, and narrows.
  • suction stroke (a1 in FIG. 6; aa in FIG. 7)
  • compression stroke (b1 in FIG. 6; b in FIG. 7) is executed.
  • the power turbine unit 10 of the combustion chamber in the explosion state after the compression of the turbine assembly 200 receives the explosion energy in the rotational direction
  • the control turbine unit 20 receives the explosion energy in the opposite direction, which acts
  • the explosive force in the opposite direction is also transmitted to the planetary gear member 31 through the connection structure of the crank member 32 and the link member 33 and in the rotational direction of the power turbine unit 10 with the action of the internal gears 156 and 156 '. Is converted and transmitted to the power shaft. Accordingly, the explosion energy generated in the turbine blades 22a and 12a on both sides is transmitted to the power shaft, thereby further improving the output efficiency.
  • a phase angle detection plate 155 may be provided to detect a rotational position of the power turbine unit 10.
  • the reference member may be coupled to an outer center of the power turbine unit 10.
  • a detection member (not shown) can detect the rotational position of the reference member and send the rotational phase of the turbine to the controller.
  • the phase detection unit may be applied to, for example, a photo sensor, a magnetic sensor, etc. as a detection means, and may also be applied to a mechanical device such as a cam mechanism.
  • the angle change of the control turbine part 20 according to the rotation angle of the power turbine part 10 is demonstrated.
  • the power turbine unit 10 rotates counterclockwise
  • the power turbine unit 10 is fixed to the power output shaft, rotates at a constant angular speed according to the rotational speed, and the control turbine unit 20 is in phase.
  • the controller 30 follows while changing the relative angle with respect to the power turbine unit 10.
  • a space is formed between the turbine blades due to the angle difference between the power turbine section 10 and the control turbine section, and the four strokes of the suction compression explosion exhaust are realized by the change of the space (combustion chamber; P, see FIG. 2).
  • the power turbine unit 10 rotates counterclockwise to reach 45 degrees, but the control turbine unit 20 moves linearly in the reverse direction by the operation of the phase controller 30.
  • the change of angle is hardly seen during this time. Air is sucked into the combustion chamber P from the inlet port 110, and fuel mixed with the fuel injection port 170 is sucked into the combustion chamber (suction stroke; a1 in FIG. 6 and a in FIG. 7).
  • the space of the combustion chamber P is formed by controlling the rotation of the control turbine unit 30 by the phase controller 30 so as to follow the rotating power turbine unit 10 and the relative angle thereof.
  • Combustion chamber (P) is in a compressed state, at which time the ignition is ignited through the ignition plug and the mixed gas of the combustion chamber (P) explodes (explosion stroke; c1 in FIG. 6, c in FIG. 7).
  • the explosion energy in the reverse direction also acts on the control turbine unit 20 linearly moving in the reverse direction.
  • the turbine blades 12a of the power turbine unit 10 receive explosive force in the same direction as the rotational direction to receive energy directly, while the turbine blades 22a of the control turbine unit 20 have a rotational direction.
  • the explosive force acts in the opposite direction, where the force in the reverse direction is transmitted to the planetary gear member 31 through the link member 33 and the crank member 32 of the phase controller 30 moving linearly in the reverse direction and the internal gear ( 156, 156 'and is converted into the forward rotational force of the power turbine unit 10. That is, even the repulsive force acting in the turbine during the explosion acts as a forward rotational force to the power shaft can improve the energy transfer efficiency.
  • the power turbine unit continues to rotate counterclockwise, and when the exhaust ports 120 and 130 reach the exhaust ports, the explosive gas is discharged through the exhaust ports 120 and 130, and exhausted through the high pressure exhaust port 130 and the low pressure exhaust port 120. After that, the angle of the control turbine unit 20 is narrowed to completely discharge the remaining explosive gas (exhaust stroke; d1 in FIG. 6 and d in FIG. 7).
  • each of the turbine blades 12a and 22a rotates, intakes and compresses in the section of the inlet port 110, and explodes and exhausts in the section of the spark plug mounting hole 140, and mixes the mixed gas.
  • the explosive section is different, and when one turbine blade is compressed by suction, the other turbine blade realizes explosion and exhaust.
  • the present invention configured as described above can reduce the energy conversion loss because the turbine assembly 200 and the phase control unit 30 are all coaxially rotated.
  • the center of gravity of all components is coaxial with the power shaft and rotates at the same speed. Accordingly, noise and vibration can be minimized during driving, and all the planetary gear members 31 forming the phase control unit operate in the same phase, thereby distributing and transmitting explosion energy in the turbine, thereby increasing durability of the driving body. .
  • the phase controller 30 is formed by forming the rotational support points of all components of the phase controller 30 on the inner wall or the outer wall of the power turbine unit 10, thereby simplifying the structure by eliminating a separate phase control room. It is possible to improve the manufacturing efficiency, and also to reduce the weight and size of the device.
  • the present invention is to generate a power by directly converting the explosion energy of the fuel to the rotational movement of the turbine portion, it is possible to generate a high output with a small displacement. Since all the drive bodies are formed in a circular shape around the output shaft, high manufacturing precision can be realized. Moreover, according to the design of the turbine, simultaneous explosion can be realized in a plurality of combustion chambers P at the same time, so that a power-to-weight ratio can be realized. In addition, as the turbine unit rotates, a separate intake valve unit and an exhaust valve are not required, thereby simplifying the structure and improving durability and maintenance performance.
  • the internal combustion engine of a spark ignition system was demonstrated in this embodiment, when a fuel injector is mounted in the position of a spark plug, and a high pressure fuel pump is applied, it can also be realized as a compression ignition internal combustion engine. Therefore, the present invention can be applied to both a spark ignition system using gasoline or the like and a compression ignition type internal combustion engine using diesel or the like as a fuel.
  • the fixed gear can be employed as the outer gear 156, 156 'instead of the inner gear, and the number of poles of the turbine blades can also be variously configured to require more than one rotational speed.
  • Various designs can be selected according to the maximum power required.

Abstract

The present invention relates to a dual-turbine internal combustion engine comprising a power turbine part and a control turbine part disposed in a body part such that turbine blades thereof are meshed with each other, wherein power is generated by triggering an explosion of fuel in the space between the turbine blades. The dual-turbine internal combustion engine further comprises a phase controller connected to the power turbine part so as to receive a rotation of the power turbine part and convert the same into a rotation of the control turbine part, wherein the phase controller is disposed within the power turbine part and the power turbine part.

Description

터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관Dual Turbine Internal Combustion Engine with Phase Controller in Turbine Assembly
본 발명은 내연기관에 관한 것으로, 더욱 상세하게는 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관에 관한 것이다. The present invention relates to an internal combustion engine, and more particularly, to a double turbine internal combustion engine configured with a phase controller in a turbine assembly.
일반적으로, 내연기관은 연료를 연소시키고 그의 연소가스를 직접 피스톤 또는 터빈블레이드(깃) 등에 작용시킴으로써 연료가 가지고 있는 열에너지를 기계적동력으로 바꾸는 기관을 말한다. 특히 통상의 내연기관은 왕복운동형 기관을 가리킬 때가 많으나 그 이외에도 가스터빈·제트기관·로켓 등도 내연기관의 일종이다. In general, an internal combustion engine refers to an engine that converts thermal energy of a fuel into mechanical power by burning a fuel and directly applying the combustion gas to a piston or a turbine blade. In particular, a conventional internal combustion engine often refers to a reciprocating engine, but in addition, a gas turbine, a jet engine, a rocket, and the like are a kind of internal combustion engine.
한편, 종래에는 피스톤이 회전하는 회전형 내연기관으로서 로터리형 내연기관(일명 로터리 엔진)이 개시되어 있다. 이 로터리형 내연기관은 타원형의 엔진실에서 편심 회전하는 삼각형의 로터를 이용하여, 흡입, 압축, 폭발, 배기의 행정을 실현하는 내연기관으로서, 적은 배기량으로도 높은 출력을 발생시키는 장점은 있다. 그러나 연료효율이 떨어지고, 근본적으로 로터의 무게중심이 편심된 상태로 회전하기 때문에 엔진실과 로터를 정밀하게 설계해야 하며, 더욱이 엔진의 내구성이 저하되는 문제점이 있다. On the other hand, in the related art, a rotary internal combustion engine (also known as a rotary engine) is disclosed as a rotary internal combustion engine in which a piston rotates. This rotary internal combustion engine is an internal combustion engine that realizes strokes of suction, compression, explosion, and exhaust using a triangular rotor that rotates eccentrically in an elliptical engine room, and has an advantage of generating high output even with a small displacement. However, the fuel efficiency is reduced, and the rotor and the center of gravity of the rotor rotates in an eccentric state, so the engine compartment and the rotor must be precisely designed, and the durability of the engine is further deteriorated.
최근에는 베인 펌프를 응용한 베인 회전형 내연기관도 개시되어 있다. 이 베인 회전형 내연기관은 2조의 베인 날개를 각각 별도의 회전기어에 연결하고 제어부를 통해 베인 날개의 회전각도 변화시키면서 작동하고 그의 공간을 연소공간(연소실)으로 응용하는 원리로 제공된다. Recently, a vane rotary internal combustion engine using a vane pump is also disclosed. This vane rotary internal combustion engine is provided with the principle of connecting two sets of vane vanes to separate rotary gears and operating the vane vanes by varying the rotation angle of the vane vanes.
이러한 종래의 베인형 내연기관은 제어부의 연결축과 기어부를 연동시켜 베인 날개 각각의 회전각도를 제어하여 형성된 연소공간을 통해 동력을 발생시키는 구성으로서, 종래의 내연기관보다 내구성이 떨어지고, 제어부의 무게중심을 회전중심에 유지하기 어려워 진동을 수반하는 문제점이 있다. The conventional vane type internal combustion engine is configured to generate power through the combustion space formed by controlling the rotation angle of each vane blade by interlocking the connecting shaft and the gear part of the control unit, which is less durable than the conventional internal combustion engine, and the weight of the controller It is difficult to keep the center at the center of rotation, and there is a problem involving vibration.
<선행문헌><Previous Documents>
1. 대한민국 공개특허 제2016-0129780호(2016.11.09) 1. Republic of Korea Patent Publication No. 2016-0129780 (2016.11.09)
2. 대한민국 공개특허 제2012-0092075호(2012.08.20)2. Republic of Korea Patent Publication No. 2012-0092075 (2012.08.20)
본 발명은 위와 같은 문제점을 해소하기 위해 창안된 것으로서, 내구성을 향상시키면서도 진동발생을 줄일 수 있으며, 소형화 및 경량화가 가능한 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관을 제공한다. The present invention was devised to solve the above problems, and provides a dual turbine internal combustion engine configured with a phase controller in a turbine assembly capable of reducing vibration while improving durability and miniaturization and weight reduction.
위와 같은 목적을 달성하기 위한 본 발명의 일실시 형태에 따르면, 본체부의 내부에 상호의 터빈 날개가 서로 맞물리도록 동력 터빈부와 제어 터빈부가 배치되고, 상기 터빈 날개 사이의 공간에서 연료의 폭발이 이루어지게 하여 동력을 생성하는 이중터빈 내연기관으로서, 상기 동력 터빈부에 연결되어 상기 동력 터빈부의 회전을 전달받아 상기 제어 터빈부의 회전으로 전환시키는 위상 제어기를 더 포함하고, 상기 위상 제어기는 상기 동력 터빈부 및 상기 동력 터빈부의 내부에 위치된 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관이 제공된다. According to one embodiment of the present invention for achieving the above object, the power turbine unit and the control turbine unit is disposed so that the mutual turbine blades mesh with each other inside the main body portion, the fuel explosion in the space between the turbine blades A dual turbine internal combustion engine for generating power by means of: a phase controller connected to the power turbine unit and receiving a rotation of the power turbine unit to convert the rotation into the rotation of the control turbine unit, wherein the phase controller includes the power turbine unit. And a dual turbine internal combustion engine constituting a phase controller in a turbine assembly located inside the power turbine unit.
상기 위상 제어기는, 상기 동력 터빈부의 원주방향을 따라 복수가 배치되어 상기 제어 터빈부의 위상각을 제어할 수 있다. The phase controller may be arranged in a circumferential direction of the power turbine unit to control the phase angle of the control turbine unit.
상기 위상 제어기는, 상기 동력 터빈부의 내주면에 배치된 유성기어 부재, 상기 유성기어 부재에 연결되어 상기 위상각을 조절하는 크랭크 부재, 및 상기 크랭크 부재와 일단이 연결되고 타단이 제어 터빈에 연결된 링크 부재를 포함하여 이루어질 수 있다. The phase controller may include a planetary gear member disposed on an inner circumferential surface of the power turbine unit, a crank member connected to the planetary gear member to adjust the phase angle, and a link member connected to one end of the crank member and connected to a control turbine. It may be made, including.
상기 동력 터빈부의 양측면에는 상기 유성기어 부재의 일부가 노출된 안내부가 각각 형성되고, 상기 본체부의 양측에는 내측에 내치기어가 형성된 커버부가 각각 장착되며, 상기 커버부의 상기 내치기어에는 상기 유성기어 부재가 기어연결될 수 있다. Guide portions exposing a part of the planetary gear member are respectively formed on both side surfaces of the power turbine part, and cover parts having internal gears are formed on both sides of the main body part, and the planetary gear member is mounted on the internal gear of the cover part. Gears can be connected.
상기 유성기어 부재가 상기 동력 터빈부의 원주방향을 따라 회전하면, 상기 크랭크 부재가 회전하면서 발생되는 일측으로 편향된 회전중심의 이동에 의해 상기 링크 부재를 일정각도로 선회시키는 것으로 상기 제어 터빈부의 위상각을 제어할 수 있다. When the planetary gear member rotates in the circumferential direction of the power turbine portion, the phase angle of the control turbine portion is changed by turning the link member at a predetermined angle by a rotational center of rotation biased to one side generated while the crank member rotates. Can be controlled.
본 발명에 따르면, 터빈조립체의 내부에 위상제어기를 구성하여, 장치를 소형화하고 부품 점수를 줄여 경량화가 가능하며, 모든 회전체의 무게중심을 동력축과 일치시킬 수 있어 진동감소 효과가 있다. 아울러 본 발명은 제어장치를 별도로 구성할 필요가 없어서 전체 구조를 보다 간소화할 수 있는 효과가 있다. According to the present invention, by configuring a phase controller inside the turbine assembly, it is possible to reduce the size of the device and to reduce the number of parts to reduce the weight, and to match the center of gravity of all the rotors with the power shaft, there is a vibration reduction effect. In addition, the present invention does not need to separately configure the control device has an effect that can simplify the overall structure more.
도 1a는 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 사시도, 1A is a perspective view of a dual turbine internal combustion engine constituting a phase controller in a turbine assembly according to an embodiment of the present invention;
도 1b는 도 1a의 이중터빈 내연기관의 일부를 절개하여 내부 구성을 보여주는 상태도, Figure 1b is a state diagram showing the internal configuration by cutting a portion of the dual turbine internal combustion engine of Figure 1a,
도 2는 도 1a의 분해 사시도, 2 is an exploded perspective view of FIG. 1A;
도 3은 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 내부 구성을 보여주는 구성도,3 is a block diagram showing an internal configuration of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 분해 사시도,4 is an exploded perspective view of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 위상 제어기의 구성을 보여주는 부분 구성도, 5 is a partial configuration diagram showing a configuration of a phase controller of a turbine assembly of a dual turbine internal combustion engine in which a phase controller is configured in a turbine assembly according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 작동 상태도,6 is an operational state diagram of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention;
도 7은 본 발명의 일 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 작동 상태도, 7 is an operational state diagram of a turbine assembly of a dual turbine internal combustion engine constituting a phase controller in the turbine assembly according to an embodiment of the present invention;
도 8은 본 발명의 다른 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 터빈 조립체의 내부 구성도, 및 8 is an internal configuration diagram of a turbine assembly of a dual turbine internal combustion engine in which a phase controller is configured in a turbine assembly according to another embodiment of the present invention; and
도 9는 본 발명의 다른 실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 위상 제어기의 구성도이다. 9 is a configuration diagram of a phase controller of a dual turbine internal combustion engine constituting a phase controller in a turbine assembly according to another embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한설명은 생략한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own inventions. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. In addition, unless there is another definition in the technical terms and scientific terms used, it has the meaning commonly understood by those of ordinary skill in the art to which this invention belongs, and the gist of the present invention in the following description and the accompanying drawings. Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms. Also, like reference numerals denote like elements throughout the specification. It should be noted that the same elements in the figures are represented by the same numerals wherever possible.
이하, 본 발명의 일실시예에 따른 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관에 대해 설명한다. 본 발명의 일실시예는 불꽃점화방식 내연기관으로서 4개의 터빈날개를 가진 터빈조립체가 내치기어를 통해 양측이 각각 고정되고, 3개조의 유성기어로 이루어진 위상제어기를 구성한다. Hereinafter, a dual turbine internal combustion engine constituting a phase controller in a turbine assembly according to an embodiment of the present invention will be described. One embodiment of the present invention is a spark ignition type internal combustion engine, a turbine assembly having four turbine blades is fixed to both sides through internal gears, and constitutes a phase controller comprising three sets of planetary gears.
도 1a 및 도 1b를 참조하면, 본 발명의 일실시예는 본체부(100), 동력 터빈부(10), 및 제어 터빈부(20)로 구성된다. 1A and 1B, an embodiment of the present invention includes a main body unit 100, a power turbine unit 10, and a control turbine unit 20.
상기한 구성에서, 본체부(100)는 외주면에 연료 분사구(170), 흡기구(110), 저압 배기구(120), 고압 배기구(130), 및 점화 플러그 장착구(140)가 관통형성된다. In the above configuration, the main body 100 has a fuel injection port 170, an intake port 110, a low pressure exhaust port 120, a high pressure exhaust port 130, and a spark plug mounting port 140 through the outer peripheral surface.
상기한 구성에서, 본체부(100)의 전방과 후방에는 각각 전면 커버부(150)와 후면 커버부(160)가 각각 장착된다. 이때 전면 커버부(150)의 외부에는 위상 검출구(151)가 형성된다. 이 위상 검출구(151)는 동력축 선단(11a)에 장착된 위상각 검출판(155)의 회전각도를 검출하기 위해 제공된다. In the above configuration, the front cover portion 150 and the rear cover portion 160 are mounted to the front and rear of the body portion 100, respectively. At this time, the phase detection port 151 is formed outside the front cover part 150. This phase detection port 151 is provided for detecting the rotation angle of the phase angle detection plate 155 mounted on the power shaft tip 11a.
상기한 구성에서, 동력 터빈부(10)와 제어 터빈부(20)는 서로의 터빈 날개가 맞물리게 장착되어 터빈 조립체(200)를 구성한다. 이 터빈 조립체(200)의 양측으로 동력축 선단(11a)과 동력축 후단(11b)이 각각 연장되며 이들 동력축 선단(11a)과 동력축 후단(11b)은 전면 커버부(150)와 후면 커버부(160)의 외부로 노출된다. 한편, 본 발명의 실시예에서 회전하는 각 구성 요소는 베어링을 통하여 결합하도록 베어링 장착홈이 형성되어 있으나 도시의 단순함을 위하여 베어링의 도시는 생략하였다.In the above-described configuration, the power turbine unit 10 and the control turbine unit 20 are interlocked with each other to form the turbine assembly 200. The power shaft front end 11a and the power shaft rear end 11b are extended to both sides of the turbine assembly 200, respectively, and the power shaft front end 11a and the power shaft rear end 11b are the front cover part 150 and the rear cover. It is exposed to the outside of the unit 160. On the other hand, in the embodiment of the present invention, each component is rotated, the bearing mounting groove is formed to be coupled through the bearing, but the illustration of the bearing is omitted for simplicity of illustration.
도 2를 참조하면, 전면 커버부(150)의 전방으로는 전면 커버판(157)이 장착되고, 전면 커버부(150)의 내부에는 내치기어(156)가 형성된다. 이와 마찬가지로 후면 커버부(150')에도 후면 커버판(157')이 장착되고, 후면 커버부(150')의 내부에도 내치기어(156')가 형성된다. 또한 터빈 조립체(20)에는 동력 터빈부(10)의 동력 터빈 날개(12a)와 제어터빈부(20)의 제어 터빈 날개(22a)가 서로 맞물려 이들 사이의 공간에 연소실(P)이 형성된다. 또한 터빈 조립체(200)의 전후방에는 내부의 위상 제어기(30; 도 4 참조)의 회전 안내를 위해 안내부(10a)가 각각 형성된다. Referring to FIG. 2, the front cover plate 157 is mounted in front of the front cover part 150, and the internal gear 156 is formed inside the front cover part 150. Similarly, the rear cover plate 157 'is mounted on the rear cover part 150', and the internal gear 156 'is also formed inside the rear cover part 150'. In addition, in the turbine assembly 20, the power turbine blade 12a of the power turbine unit 10 and the control turbine blade 22a of the control turbine unit 20 are engaged with each other to form a combustion chamber P in the space therebetween. In addition, the front and rear of the turbine assembly 200, guides 10a are respectively formed for guiding rotation of the internal phase controller 30 (see FIG. 4).
도 3 내지 도 5를 참조하여 위상제어기(30)의 구성에 대해 구체적으로 설명한다. 본 발명에서 위상제어기(30)는 터빈 조립체(200)의 내부에 위치된다. 먼저 동력 터빈부(10)에는 동력 터빈 커버판(10c)이 서로 체결되고, 동력 터빈부(10)의 내부에 제어 터빈부(20)가 서로의 터빈 날개(12a 및 22a)가 서로 마주하게 끼워진 상태로 설치된다. A configuration of the phase controller 30 will be described in detail with reference to FIGS. 3 to 5. In the present invention, the phase controller 30 is located inside the turbine assembly 200. First, the power turbine cover plate 10c is fastened to the power turbine unit 10, and the control turbine unit 20 is fitted with the turbine blades 12a and 22a facing each other inside the power turbine unit 10. Installed in a state.
이때 동력 터빈부(10)의 전방에는 동력축 선단(11a)이 형성되고, 동력 터빈 커버판(10c)의 하방에는 동력축 타단(11b)이 형성된다. 또한 동력 터빈 커버판(10c)에는 내측면을 따라 끼움을 위한 돌출부(15a)가 형성되고, 중심공의 외주에는 3개의 안내공(15b)이 각각 형성된다.At this time, the power shaft front end 11a is formed in front of the power turbine part 10, and the other power shaft 11b is formed below the power turbine cover plate 10c. In addition, the power turbine cover plate 10c is provided with a protrusion 15a for fitting along the inner surface, and three guide holes 15b are formed on the outer periphery of the center hole, respectively.
한편, 제어 터빈부(20)는 터빈 몸체(10b)의 외주면으로 4극의 제어 터빈 날개(22a)가 각각 형성된다. 또한 그 중심에는 제어 터빈 회전축(P4)이 형성된다. 또한 제어 터빈 회전축(P4)의 둘레에는 제1 장착공(h1)이 각각 형성된다. 그리고 제어 터빈 몸체(10b)에는 제어 터빈 커버판(25)이 장착된다. 이때 제어 터빈 커버판(25)은 중심에 중앙공(ho)이 형성되고, 중앙공(ho)의 둘레에는 각각 제2 장착공(h2)이 형성된다. 한편 터빈 몸체(10b)와 제어 터빈 커버판(25) 사이에는 위상제어기(30)가 위치되어 회전구동될 수 있다.On the other hand, in the control turbine part 20, the control turbine blade | wing 22a of four poles is formed in the outer peripheral surface of the turbine body 10b, respectively. Moreover, the control turbine rotating shaft P4 is formed in the center. Further, first mounting holes h1 are formed around the control turbine rotary shaft P4, respectively. And the control turbine cover plate 25 is attached to the control turbine body 10b. At this time, the control turbine cover plate 25 has a central hole (ho) in the center, the second mounting hole (h2) is formed around the central hole (ho), respectively. Meanwhile, the phase controller 30 may be positioned between the turbine body 10b and the control turbine cover plate 25 to be rotated.
이와 같이, 동력 터빈부(10)와 제어 터빈부(20)는 같은 구조체의 동일한 중심선상에 위치하지만 서로 단절되어, 동력 터빈부(10)가 주어진 각속도로 회전할 때, 제어 터빈부(20)는 일정범위에서 동력 터빈부(10)와의 상대적인 각도를 변화하며 회전할 수 있다. As such, the power turbine portion 10 and the control turbine portion 20 are located on the same centerline of the same structure but are disconnected from each other, so that the control turbine portion 20 when the power turbine portion 10 rotates at a given angular velocity. May rotate while changing the relative angle with the power turbine unit 10 in a certain range.
한편, 도 3을 참조하면 위상제어기(10)를 구성하는 유성기어 부재(31)는 동력 터빈부(10)의 전후방에 각각 형성된 안내부(10a)에 마련된 가이드홈(25a)에 안착되어 안내되면서 회전될 수 있다. 이때 가이드홈(25a)은 그 일부가 개방된 형태로 구성되어 외부로 유성기어 부재(31)의 일부가 노출될 수 있다. Meanwhile, referring to FIG. 3, the planetary gear members 31 constituting the phase controller 10 are guided by being seated in guide grooves 25a provided in the guide parts 10a respectively formed in front and rear of the power turbine part 10. Can be rotated. In this case, a part of the guide groove 25a is configured to be open, and a part of the planetary gear member 31 may be exposed to the outside.
도 4 및 도 5를 참조하면, 위상제어기(30)는 내치기어(156,156')를 따라 이동하는 유성기어 부재(31)와, 유성기어 부재(31)와 연결된 크랭크 부재(32)와 크랭크 부재(32)에 연결된 링크 부재(33)가 하나의 개별 연결체로 구성되고, 이 개별 연결체는 각각 제어 터빈 커버판(25)과 터빈 몸체(10b) 사이에서 원주방향으로 3개가 배치된 구조로 이루어진다. 4 and 5, the phase controller 30 includes a planetary gear member 31 moving along the internal gears 156 and 156 ', a crank member 32 and a crank member connected to the planetary gear member 31. The link member 33 connected to 32 is constituted by one individual connecting body, and the individual connecting body has a structure in which three are arranged in the circumferential direction between the control turbine cover plate 25 and the turbine body 10b, respectively.
구체적으로, 위상제어기(10)는 유성기어 부재(31), 크랭크 부재(32), 및 링크 부재(33)로 구성되는데, 유성기어 부재(31)와 크랭크 부재(32)의 중심은 베어링을 통하여 동력 터빈부(10)의 내벽에 지지되고, 제어각을 전달하는 링크 부재(33)의 타측은 제어 터빈부(20)의 중심부에 형성된 결합홈에 베어링을 통하여 결합된다. 이로써 동력 터빈부(10)는 위상제어기(30)의 지지부로서 역할을 하고, 제어 터빈부(20)의 중앙벽은 제어각을 전달받는 전달대로서 역할한다.Specifically, the phase controller 10 is composed of a planetary gear member 31, a crank member 32, and a link member 33, the center of the planetary gear member 31 and the crank member 32 through a bearing The other side of the link member 33, which is supported on the inner wall of the power turbine unit 10 and transmits the control angle, is coupled to the coupling groove formed in the center of the control turbine unit 20 through a bearing. As a result, the power turbine unit 10 serves as a support of the phase controller 30, and the center wall of the control turbine unit 20 serves as a transmission table receiving the control angle.
한편, 유성기어 부재(31)는 동력 터빈부(10)의 중심부의 외측면(안내부; 10a)에 그 기어들이 노출되어 전후면 커버부(150,160)의 내치기어(156,156')에 맞물려 기어회전하고 유성기어 부재(31)의 축에는 크랭크 부재(32)가 연결된다.Meanwhile, the planetary gear member 31 rotates gears by engaging the gears 156 and 156 'of the front and rear cover parts 150 and 160 by exposing the gears to the outer surface (guide part 10a) of the central portion of the power turbine part 10. The crank member 32 is connected to the shaft of the planetary gear member 31.
이러한 구성을 갖는 위상제어부(30)의 작동에 대해 설명하면, 동력 터빈부(10)가 회전하면, 원주방향에 축으로 연결된 다수의 유성기어 부재(31)들이 내치기어(156,156')를 따라 원주방향으로 회전하게 된다. 즉 유성기어 부재(31)는 동력축을 중심으로 원주방향으로 회전하게 된다. 이때 유성기어 부재(31)의 중심축에 고정된 크랭크 부재(32)가 회전하여 동력 터빈부(10)에 대한 각속도를 변화시키는 제어각을 형성하고, 이를 링크 부재(330)로 통해 제어 터빈부(20)에 연결하여 전달함으로써 동력 터빈부(10)에 대한 상대각도를 변화시키게 된다.Referring to the operation of the phase control unit 30 having such a configuration, when the power turbine unit 10 rotates, a plurality of planetary gear members 31 connected to the shaft in the circumferential direction is circumferentially along the internal gear 156,156 '. Direction of rotation. That is, the planetary gear member 31 is rotated in the circumferential direction about the power shaft. At this time, the crank member 32 fixed to the central axis of the planetary gear member 31 is rotated to form a control angle for changing the angular velocity with respect to the power turbine unit 10, through the link member 330 the control turbine unit By connecting to the transmission 20, the relative angle with respect to the power turbine unit 10 is changed.
도 6 및 도 7을 참조하여, 본 발명의 터빈 조립체에 위상 제어기를 구성한 이중터빈 내연기관의 작동상태에 대해 설명한다.  6 and 7, the operating state of the dual turbine internal combustion engine constituting the phase controller in the turbine assembly of the present invention will be described.
먼저, 동력 터빈부(10)의 내벽에 중심축이 고정된 유성기어 부재(31,31')는 동력 터빈부(10)의 회전방향으로 내치기어(156,156')의 기어이와 맞물려서 주행하고, 유성기어 부재(31,31')의 회전방향은 동력 터빈부(10)의 회전방향과 반대이다.이때 유성기어 부재(31,31')에 연결된 크랭크 부재(32)는 제1 선회점(P1)을 중심으로 회전한다. 즉 제1 선회점(P1)은 유성기어 부재(31,31')가 회전하면서 내치기어(156,156')를 따라 원주방향으로 이동된다.First, the planetary gear members 31 and 31 'having the central axis fixed to the inner wall of the power turbine unit 10 travel in mesh with the gears of the internal gears 156 and 156' in the rotational direction of the power turbine unit 10. The rotational direction of the gear members 31 and 31 'is opposite to the rotational direction of the power turbine unit 10. At this time, the crank member 32 connected to the planetary gear members 31 and 31' has a first pivot point P1. Rotate around. That is, the first pivot point P1 is circumferentially moved along the internal gears 156 and 156 'while the planetary gear members 31 and 31' are rotated.
한편 크랭크 부재(32)는 링크 부재(33)와 제2 선회점(P2)을 기준으로 회전한다. 이에 따라 제2 선회점(P2)은 제1 선회점(P1)의 주위를 회전하게 된다(도 6의 a2→d2). 이 상태로 내치기어(156,156')의 기어이를 따라 이동하면서 크랭크 부재(32)와 링크 부재(33)는 제2 선회점(P2)을 기준으로 회전하며 이동한다. 이와 동시에 링크 부재(33)의 말단은 제어 터빈부(20)와 제어 터빈 커버판(25)의 사이에서 제3 선회점(P3)을 기준으로 선회한다. 이때 제3 선회점(P3)는 터빈 몸체(10b)의 제1 장착공(h1)과 제어 터빈 커버판(25)의 제2 장착공(h2)에 각각 끼워진다. Meanwhile, the crank member 32 rotates based on the link member 33 and the second pivot point P2. As a result, the second turning point P2 rotates around the first turning point P1 (a2 → d2 in FIG. 6). In this state, the crank member 32 and the link member 33 move while rotating along the gear teeth of the internal gears 156 and 156 'based on the second pivot point P2. At the same time, the end of the link member 33 pivots between the control turbine portion 20 and the control turbine cover plate 25 with respect to the third turning point P3. At this time, the third turning point P3 is fitted into the first mounting hole h1 of the turbine body 10b and the second mounting hole h2 of the control turbine cover plate 25, respectively.
이와 같이, 제1 선회점(P1)은 내치기어(156,156')를 따라 원주방향으로 이동하면서 회전되고, 제3 선회점(P3)은 제2 선회점(P2)의 회전에 따라 각도가 변화하며 선형이동된다. 이때 제3 선회점(P3)의 선형이동 방향이 동력 터빈부(20)의 회전방향과 같을 때에는 터빈의 간격을 좁히는 방향으로 작동하고, 그 반대일 때에는 터빈의 간격을 넓히는 방향으로 작동한다. As such, the first pivot point P1 is rotated while moving in the circumferential direction along the internal gears 156 and 156 ', and the third pivot point P3 is changed in angle according to the rotation of the second pivot point P2. Linear movement. At this time, when the linear movement direction of the third turning point P3 is the same as the rotational direction of the power turbine unit 20, it operates in a direction of narrowing the spacing of the turbine, and in the opposite direction, it operates in a direction of widening the spacing of the turbine.
즉, 동력 터빈부(10)는 회전수에 따라 일정한 각속도로 회전하는 반면, 제어 터빈부(20)는 위상제어기에 의해 일정주기로 주어진 각도범위로 변화하면서 추종 회전하게 된다. 한편 본 실시예에서는 그 반복주기는 90도이고, 변화각도는 45도인 것을 예로 들었다. That is, the power turbine unit 10 is rotated at a constant angular speed according to the rotational speed, while the control turbine unit 20 is rotated to follow the rotation while changing to a given angular range at a predetermined period by the phase controller. In the present embodiment, the repetition period is 90 degrees, and the change angle is 45 degrees.
이러한 방식으로 제어 터빈부(20)가 동력 터빈부(10)를 추종하게 되어 터빈부 사이에 형성된 연소실은 간격이 넓어질 때에는 흡입행정(도 6의 a1; 도 7의 a) 을 실행하고, 좁아질 때에는 압축행정(도 6의 b1; 도 7의 b)을 실행한다.In this way, the control turbine unit 20 follows the power turbine unit 10 so that the combustion chamber formed between the turbine units executes the suction stroke (a1 in FIG. 6; aa in FIG. 7) when the interval is widened, and narrows. When losing, the compression stroke (b1 in FIG. 6; b in FIG. 7) is executed.
또한 터빈 조립체(200)의 압축 후 폭발 상태에서 연소실의 동력 터빈부(10)는 회전방향으로 폭발 에너지를 전달받고, 제어 터빈부(20)는 반대방향으로 폭발 에너지를 전달받게 되는데, 이때 작용하는 반대방향의 폭발력도 크랭크 부재(32)와 링크 부재(33)의 연결구조를 통해 유성기어 부재(31)에 전달하고 내치기어(156,156')의 작용과 함께 동력 터빈부(10)의 회전방향으로 변환되어 동력축에 전달된다. 이에 따라 양측의 터빈날개(22a 및 12a)에 발생한 폭발 에너지가 모두 동력축에 전달되게 되어 출력효율을 보다 향상시킬 수 있다.In addition, the power turbine unit 10 of the combustion chamber in the explosion state after the compression of the turbine assembly 200 receives the explosion energy in the rotational direction, the control turbine unit 20 receives the explosion energy in the opposite direction, which acts The explosive force in the opposite direction is also transmitted to the planetary gear member 31 through the connection structure of the crank member 32 and the link member 33 and in the rotational direction of the power turbine unit 10 with the action of the internal gears 156 and 156 '. Is converted and transmitted to the power shaft. Accordingly, the explosion energy generated in the turbine blades 22a and 12a on both sides is transmitted to the power shaft, thereby further improving the output efficiency.
아울러,도 1b와 같이 동력 터빈부(10)의 회전위치를 검출하기 위한 위상각 검출판(155)이 제공될 수 있는데, 예를 들어 동력 터빈부(10)의 외측 중심부에 연동하도록 기준부재(미도시)가 장착되고, 이 기준부재의 회전위치를 검출부재(미도시)가 검출하여 터빈의 회전위상을 제어부로 송출할 수 있다. 여기서 위상검출부는 예를 들어 포토센서, 마그네틱센서 등이 검출 수단으로 적용될 수 있으며, 또한 캠기구 등 기계적인 장치로도 적용될 수 있다.In addition, as shown in FIG. 1B, a phase angle detection plate 155 may be provided to detect a rotational position of the power turbine unit 10. For example, the reference member may be coupled to an outer center of the power turbine unit 10. And a detection member (not shown) can detect the rotational position of the reference member and send the rotational phase of the turbine to the controller. Here, the phase detection unit may be applied to, for example, a photo sensor, a magnetic sensor, etc. as a detection means, and may also be applied to a mechanical device such as a cam mechanism.
이하, 동력 터빈부(10)의 회전각도에 따른 제어 터빈부(20)의 각도 변화를 설명한다. 동력 터빈부(10)가 반시계방향으로 회전하는 경우를 예를 들면, 동력 터빈부(10)는 동력 출력축과 고정되어 있으며, 회전수에 따른 일정 각속도로 회전하고 제어 터빈부(20)는 위상제어기(30)에 의해 동력 터빈부(10)에 대한 상대각도를 변화시키면서 추종한다. 이때 동력 터빈부(10)와 제어 터빈부의 각도 차이로 인해 터빈날개 사이에 공간이 형성되고, 이 공간(연소실; P, 도 2참조)의 변화로 흡입 압축 폭발 배기의 4 행정을 실현하게 된다. Hereinafter, the angle change of the control turbine part 20 according to the rotation angle of the power turbine part 10 is demonstrated. For example, when the power turbine unit 10 rotates counterclockwise, the power turbine unit 10 is fixed to the power output shaft, rotates at a constant angular speed according to the rotational speed, and the control turbine unit 20 is in phase. The controller 30 follows while changing the relative angle with respect to the power turbine unit 10. At this time, a space is formed between the turbine blades due to the angle difference between the power turbine section 10 and the control turbine section, and the four strokes of the suction compression explosion exhaust are realized by the change of the space (combustion chamber; P, see FIG. 2).
도 6 및 도 7을 참조하면, 동력 터빈부(10)는 반시계방향으로 회전하여 45도에 이르고 있으나, 제어 터빈부(20)는 위상제어기(30)의 동작에 의해 역방향으로 선형이동하므로 인하여 동력 터빈부(10)의 이동방향과 중첩한 결과로 이 시간동안에는 거의 각도의 변화를 보이지 않게 된다. 이 연소실(P)로 흡기구(110)로부터 공기가 흡입되고, 연료 분사구(170)로 연료가 분무되어 혼합된 혼합기체가 연소실로 흡입된다(흡입행정; 도 6의 a1, 도 7의 a). 이와 같이 연소실(P)의 공간 형성은 회전하는 동력 터빈부(10)와 이에 대한 상대각도가 변경되면서 추종하도록 위상제어기(30)에 의해 제어 터빈부(30)의 회전이 제어되는 것으로 이루어진다.6 and 7, the power turbine unit 10 rotates counterclockwise to reach 45 degrees, but the control turbine unit 20 moves linearly in the reverse direction by the operation of the phase controller 30. As a result of overlapping with the moving direction of the power turbine section 10, the change of angle is hardly seen during this time. Air is sucked into the combustion chamber P from the inlet port 110, and fuel mixed with the fuel injection port 170 is sucked into the combustion chamber (suction stroke; a1 in FIG. 6 and a in FIG. 7). As described above, the space of the combustion chamber P is formed by controlling the rotation of the control turbine unit 30 by the phase controller 30 so as to follow the rotating power turbine unit 10 and the relative angle thereof.
이어 혼합기체가 흡입된 상태로 위상제어기(30)의 선형이동 방향이 정방향이 되면서 제어 터빈부(20)는 동력 터빈부(10)와의 간격을 좁혀가며 점화구를 향해 이동하는데, 이에 따라 터빈날개(12a,22a) 사이의 연소실(P)은 압축된다(압축행정; 도 6의 b1, 도 7의 b). Subsequently, as the linear movement direction of the phase controller 30 is in a forward direction while the mixed gas is sucked, the control turbine unit 20 moves toward the ignition while narrowing the distance from the power turbine unit 10. The combustion chamber P between 12a and 22a is compressed (compression stroke; b1 in FIG. 6, b in FIG. 7).
이어 동력 터빈부(10)와 제어 터빈부(20)가 흡입위치에서 90도 이동하고 이 위치에 있는 점화구(점화플러그 장착구; 140)에 도달하면 두 터빈날개(12a,22a)는 최대한 근접하여 연소실(P)은 압축된 상태가 되고, 이때 점화플러그를 통해 점화가 이루어지며 연소실(P)의 혼합기체는 폭발하게 된다(폭발행정; 도 6의 c1, 도 7의 c).Subsequently, when the power turbine unit 10 and the control turbine unit 20 move 90 degrees from the suction position and reach the ignition hole (ignition plug mounting hole) 140 at this position, the two turbine wings 12a and 22a are as close as possible. Combustion chamber (P) is in a compressed state, at which time the ignition is ignited through the ignition plug and the mixed gas of the combustion chamber (P) explodes (explosion stroke; c1 in FIG. 6, c in FIG. 7).
이와 같이 연소실(P)에 폭발이 일어나면 다시 역방향으로 선형 이동하는 제어 터빈부(20)에도 역방향의 폭발에너지가 작용하게 된다. 이에 따라 동력 터빈부(10)의 터빈날개(12a)는 회전방향과 같은 방향으로 폭발력이 작용하여 직접 에너지를 전달받게 되고, 반면에 제어 터빈부(20)의 터빈날개(22a)는 회전방향과 반대방향으로 폭발력이 작용하는데, 이때 이 역방향의 힘도 역방향으로 선형이동 중인 위상제어기(30)의 링크 부재(33)와 크랭크 부재(32)를 거쳐 유성기어 부재(31)에 전달되고 내치기어(156,156')와 함께 작용하여 동력 터빈부(10)의 정방향 회전력으로 변환된다. 즉, 폭발시 터빈 내에 작용하는 반발력까지도 동력축에는 정방향 회전력으로 작용하여 에너지 전달효율을 향상시킬 수 있다.As described above, when an explosion occurs in the combustion chamber P, the explosion energy in the reverse direction also acts on the control turbine unit 20 linearly moving in the reverse direction. Accordingly, the turbine blades 12a of the power turbine unit 10 receive explosive force in the same direction as the rotational direction to receive energy directly, while the turbine blades 22a of the control turbine unit 20 have a rotational direction. The explosive force acts in the opposite direction, where the force in the reverse direction is transmitted to the planetary gear member 31 through the link member 33 and the crank member 32 of the phase controller 30 moving linearly in the reverse direction and the internal gear ( 156, 156 'and is converted into the forward rotational force of the power turbine unit 10. That is, even the repulsive force acting in the turbine during the explosion acts as a forward rotational force to the power shaft can improve the energy transfer efficiency.
이어 폭발행정 이후에 동력 터빈부는 반시계방향으로 계속 회전하게 되어 배기구(120,130)에 도달하면 폭발가스는 배기구(120,130)를 통해 배출되며 고압 배기구(130)와 저압 배기구(120)를 통하여 배기가 이루어지고, 이후 제어 터빈부(20)의 각도가 좁혀지면서 잔여 폭발가스를 완전히 배출하게 된다(배기행정; 도 6의 d1, 도 7의 d).Subsequently, after the explosion stroke, the power turbine unit continues to rotate counterclockwise, and when the exhaust ports 120 and 130 reach the exhaust ports, the explosive gas is discharged through the exhaust ports 120 and 130, and exhausted through the high pressure exhaust port 130 and the low pressure exhaust port 120. After that, the angle of the control turbine unit 20 is narrowed to completely discharge the remaining explosive gas (exhaust stroke; d1 in FIG. 6 and d in FIG. 7).
상술한 바와 같이 배기행정이 완료되고 동력 터빈부(10)와 제어 터빈부(20)는 다시 흡기구(110)를 향해 회전하면서 흡입 -> 압축 -> 폭발 -> 배기의 4 행정이 연속된다.As described above, the exhaust stroke is completed, and the power turbine unit 10 and the control turbine unit 20 rotate toward the intake port 110 again, and the four strokes of intake-> compression-> explosion-> exhaust are continued.
상술한 바와 같이 각각의 터빈날개(12a, 22a)들은 회전하며 흡기구(110)의 구간에서는 흡입과 압축을 하고 점화플러그 장착구(140) 구간에서는 폭발과 배기를 하게 되어 혼합기체를 혼입하는 구간과 폭발하는 구간이 다르며, 일측 터빈날개가 흡입 압축할 때 다른 터빈날개는 폭발과 배기를 실현하게 된다.As described above, each of the turbine blades 12a and 22a rotates, intakes and compresses in the section of the inlet port 110, and explodes and exhausts in the section of the spark plug mounting hole 140, and mixes the mixed gas. The explosive section is different, and when one turbine blade is compressed by suction, the other turbine blade realizes explosion and exhaust.
이와 같이 구성된 본 발명은 터빈 조립체(200)와 위상제어부(30)가 동축 상에서 회전하면서 모든 행정이 이루어지는 구조이므로 에너지 변환손실을 감소시킬 수 있다. 아울러 모든 구성요소의 무게중심이 동력축과 동축 상에 있고, 동일한 속도로 회전한다. 이에 따라 구동시 소음과 진동을 최소화시킬 수 있으며, 위상제어부를 형성하는 모든 유성기어 부재(31)는 동일한 위상에서 동작하므로 터빈 내의 폭발에너지를 분산하여 전달하게 되어 구동체의 내구성을 증대시킬 수 있다.The present invention configured as described above can reduce the energy conversion loss because the turbine assembly 200 and the phase control unit 30 are all coaxially rotated. In addition, the center of gravity of all components is coaxial with the power shaft and rotates at the same speed. Accordingly, noise and vibration can be minimized during driving, and all the planetary gear members 31 forming the phase control unit operate in the same phase, thereby distributing and transmitting explosion energy in the turbine, thereby increasing durability of the driving body. .
또한 본 발명은 동력 터빈부(10)의 내벽 또는 외벽에 위상제어기(30)의 모든 구성요소의 회전 지지점을 형성하여 위상제어기(30)를 구성함으로써, 별도의 위상제어실이 불필요하여 구조를 간단히 할 수 있고, 제조 효율을 개선할 수 있으며, 아울러 장치의 경량화 및 소형화가 가능하다.In addition, according to the present invention, the phase controller 30 is formed by forming the rotational support points of all components of the phase controller 30 on the inner wall or the outer wall of the power turbine unit 10, thereby simplifying the structure by eliminating a separate phase control room. It is possible to improve the manufacturing efficiency, and also to reduce the weight and size of the device.
그리고 본 발명은 연료의 폭발에너지를 터빈부의 회전운동으로 직접 변환시켜 동력을 생성하는 방식으로, 적은 배기량으로도 높은 출력을 발생시킬 수 있다. 모든 구동체가 출력축을 중심으로 원형으로 구성되므로 높은 제조 정밀도를 실현할 수 있다. 더욱이 터빈의 설계에 따라 동시에 복수의 연소실(P)에서 동시폭발을 실현할 수 있으므로, 중량 대비 출력비를 높게 실현할 수 있다. 아울러 터빈부가 회전 이동함에 따라 별도의 흡기밸부와 배기밸브가 불필요하여 구조가 간단하고 내구성과 유지보수 성능을 개선할 수 있다. In addition, the present invention is to generate a power by directly converting the explosion energy of the fuel to the rotational movement of the turbine portion, it is possible to generate a high output with a small displacement. Since all the drive bodies are formed in a circular shape around the output shaft, high manufacturing precision can be realized. Moreover, according to the design of the turbine, simultaneous explosion can be realized in a plurality of combustion chambers P at the same time, so that a power-to-weight ratio can be realized. In addition, as the turbine unit rotates, a separate intake valve unit and an exhaust valve are not required, thereby simplifying the structure and improving durability and maintenance performance.
또한, 본 실시예시에는 불꽃점화방식의 내연기관을 설명하였으나 점화플러그의 위치에 연료분사기를 장착하고, 고압연료 펌프를 적용하면 압축착화방식의 내연기관으로도 실현 가능하다. 따라서 본 발명은 가솔린 등을 연료를 사용하는 불꽃점화방식과 디젤 등을 연료로 사용하는 압축착화방식의 내연기관에 모두 적용할 수 있다. In addition, although the internal combustion engine of a spark ignition system was demonstrated in this embodiment, when a fuel injector is mounted in the position of a spark plug, and a high pressure fuel pump is applied, it can also be realized as a compression ignition internal combustion engine. Therefore, the present invention can be applied to both a spark ignition system using gasoline or the like and a compression ignition type internal combustion engine using diesel or the like as a fuel.
한편, 도 8 및 도 9와 같이 필요한 내연기관의 특성에 따라 고정기어를 내측기어대신에 외치기어(156,156')로 채용할 수 있고, 터빈날개의 극수도 복수 이상으로 다양하게 구성하여 요구 회전수와 요구 최대출력에 따라 다양한 구조의 설계를 선택할 수 있다.On the other hand, according to the characteristics of the internal combustion engine as shown in Figs. 8 and 9, the fixed gear can be employed as the outer gear 156, 156 'instead of the inner gear, and the number of poles of the turbine blades can also be variously configured to require more than one rotational speed. Various designs can be selected according to the maximum power required.
이상에서는 본 발명을 특정의 실시예에 대해서 도시하고 설명하였지만, 본 발명은 상술한 실시예에만 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 본 발명의 기술적 사상의 요지를 벗어나지 않는 범위에서 얼마든지 다양하게 변경하여 실시할 수 있을 것이다. Although the present invention has been illustrated and described with respect to specific embodiments thereof, the present invention is not limited to the above-described embodiments, and a person skilled in the art to which the present invention pertains has the present invention described in the following claims. Various changes may be made without departing from the spirit of the technical idea of the invention.

Claims (5)

  1. 본체부의 내부에 상호의 터빈 날개가 서로 맞물리도록 동력 터빈부와 제어 터빈부로 이루어진 터빈 조립체가 구성되고, 상기 터빈 날개 사이의 공간에서 연료의 폭발이 이루어지게 하여 동력을 생성하는 이중터빈 내연기관으로서, A turbine assembly comprising a power turbine portion and a control turbine portion is configured to interlock turbine blades with each other within a body portion, and generates a power by causing an explosion of fuel in a space between the turbine blades.
    상기 동력 터빈부에 연결되어 상기 동력 터빈부의 회전을 전달받아 상기 제어 터빈부의 회전으로 전환시키는 위상 제어기를 더 포함하고,A phase controller connected to the power turbine unit to receive the rotation of the power turbine unit and convert the rotation into the rotation of the control turbine unit;
    상기 위상 제어기는 상기 터빈 조립체의 내부에 위치되는 것을 특징으로 하는 이중터빈 내연기관.Wherein said phase controller is located inside said turbine assembly.
  2. 제1항에 있어서,The method of claim 1,
    상기 위상 제어기는,The phase controller,
    상기 동력 터빈부의 원주방향을 따라 복수개가 배치되어 상기 제어 터빈부의 위상각을 제어하는 것을 특징으로 하는 이중터빈 내연기관.The plurality of turbine internal combustion engine, characterized in that arranged in the circumferential direction of the power turbine portion to control the phase angle of the control turbine portion.
  3. 제2항에 있어서,The method of claim 2,
    상기 위상 제어기는,The phase controller,
    상기 동력 터빈부의 내주면에 배치된 유성기어 부재,A planetary gear member disposed on an inner circumferential surface of the power turbine portion,
    상기 유성기어 부재에 연결되어 상기 위상각을 조절하는 크랭크 부재, 및 A crank member connected to the planetary gear member to adjust the phase angle;
    상기 크랭크 부재와 일단이 연결되고 타단이 상기 제어 터빈부에 연결된 링크 부재를 포함하여 이루어진 것을 특징으로 하는 이중터빈 내연기관.And a link member having one end connected to the crank member and the other end connected to the control turbine unit.
  4. 제3항에 있어서,The method of claim 3,
    상기 동력 터빈부의 적어도 일측면에는 상기 유성기어 부재의 일부가 노출된 안내부가 형성되고, At least one side of the power turbine portion is formed with a guide portion exposed part of the planetary gear member,
    상기 본체부의 적어도 일측에는 내치기어가 형성된 커버부가 장착되며, At least one side of the main body portion is equipped with a cover portion formed with an internal gear,
    상기 커버부의 상기 내치기어에는 상기 유성기어 부재가 기어연결된 것을 특징으로 하는 이중터빈 내연기관.And the planetary gear member is gear-connected to the internal gear of the cover part.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 유성기어 부재가 상기 동력 터빈부의 원주방향을 따라 회전하면, When the planetary gear member rotates along the circumferential direction of the power turbine portion,
    상기 크랭크 부재가 회전하면서 발생되는 일측으로 편심된 회전 중심의 이동에 의해 상기 링크 부재를 일정각도로 선회시키는 것으로 상기 제어 터빈부의 위상각을 제어하는 것을 특징으로 하는 이중터빈 내연기관.And rotating the link member at a predetermined angle by moving the center of rotation eccentrically to one side generated while the crank member rotates to control the phase angle of the control turbine section.
PCT/KR2018/002131 2017-02-23 2018-02-21 Dual-turbine internal combustion engine comprising phase controller included in turbine assembly WO2018155902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170024360A KR20180097397A (en) 2017-02-23 2017-02-23 Dual turbine internal combustion engine using combined phase controller within the turbine
KR10-2017-0024360 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155902A1 true WO2018155902A1 (en) 2018-08-30

Family

ID=63252808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002131 WO2018155902A1 (en) 2017-02-23 2018-02-21 Dual-turbine internal combustion engine comprising phase controller included in turbine assembly

Country Status (2)

Country Link
KR (1) KR20180097397A (en)
WO (1) WO2018155902A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741308A (en) * 1986-08-15 1988-05-03 Ballinger Michael S Rotary internal combustion engine and method of operation
US5433179A (en) * 1993-12-02 1995-07-18 Wittry; David B. Rotary engine with variable compression ratio
US20080251047A1 (en) * 2005-08-03 2008-10-16 Bowley Ryan T Toroidal engine method and apparatus
KR20120104367A (en) * 2009-12-14 2012-09-20 고텍 에너지 인코포레이티드 Rotary, internal combustion engine
KR20160129780A (en) * 2015-04-30 2016-11-09 최영희 Internal combustion engine using the dual turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741308A (en) * 1986-08-15 1988-05-03 Ballinger Michael S Rotary internal combustion engine and method of operation
US5433179A (en) * 1993-12-02 1995-07-18 Wittry; David B. Rotary engine with variable compression ratio
US20080251047A1 (en) * 2005-08-03 2008-10-16 Bowley Ryan T Toroidal engine method and apparatus
KR20120104367A (en) * 2009-12-14 2012-09-20 고텍 에너지 인코포레이티드 Rotary, internal combustion engine
KR20160129780A (en) * 2015-04-30 2016-11-09 최영희 Internal combustion engine using the dual turbine

Also Published As

Publication number Publication date
KR20180097397A (en) 2018-08-31

Similar Documents

Publication Publication Date Title
US10138804B2 (en) Rotary internal combustion engine
EP2559847A2 (en) Rotary internal combustion engine with exhaust purge and method of operating the engine
JP5619299B2 (en) Rotary engine and its rotor unit
US6129067A (en) Rotary engine
US10208598B2 (en) Rotary energy converter with retractable barrier
EP2778342B1 (en) Internal combustion engine with port communication
US10006360B2 (en) Rotary directional pressure engine
US4057035A (en) Internal combustion engines
WO2018155902A1 (en) Dual-turbine internal combustion engine comprising phase controller included in turbine assembly
AU2006223794B2 (en) Rotary engine
JP2004527682A (en) Rotary engine
US3626911A (en) Rotary machines
WO2020204568A1 (en) Positive displacement turbine engine
CN109236461B (en) Flow guiding type rotor internal combustion engine between rotor and stator
KR20160129780A (en) Internal combustion engine using the dual turbine
CZ290649B6 (en) Rotary positive displacement apparatus
CN113027601B (en) Double-rotor internal combustion engine
EP3628839B1 (en) Engine assembly with multiplie rotary engine stacks
KR101980014B1 (en) Multi-cylinder rotary engine having improved gas flow structure
CN115030812A (en) Double-shaft impeller rotor engine
KR20010053816A (en) Rotary engine
RU2371593C1 (en) Internal combustion engine
WO2015168935A1 (en) Internal combustion engine with primary and auxiliary rotary vane
WO2006030255A1 (en) Four-stroke endothermic engine with rotating drum
JPS60249601A (en) Rotary engine/pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18756828

Country of ref document: EP

Kind code of ref document: A1