WO2018155867A1 - 압전 진동 장치 및 이를 구비하는 전자기기 - Google Patents

압전 진동 장치 및 이를 구비하는 전자기기 Download PDF

Info

Publication number
WO2018155867A1
WO2018155867A1 PCT/KR2018/002008 KR2018002008W WO2018155867A1 WO 2018155867 A1 WO2018155867 A1 WO 2018155867A1 KR 2018002008 W KR2018002008 W KR 2018002008W WO 2018155867 A1 WO2018155867 A1 WO 2018155867A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
diaphragm
case
piezoelectric vibrating
piezoelectric element
Prior art date
Application number
PCT/KR2018/002008
Other languages
English (en)
French (fr)
Inventor
박성철
박상훈
정인섭
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180002359A external-priority patent/KR20180098128A/ko
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Publication of WO2018155867A1 publication Critical patent/WO2018155867A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present invention relates to a piezoelectric vibrating apparatus and an electronic apparatus having the same, and more particularly, to an electronic apparatus using the piezoelectric vibrating member in a bone conduction manner.
  • Mobile terminals are portable electronic devices that are portable and have one or more functions such as voice and video calling, information input and output, and data storage. Accordingly, as the functions are diversified, the mobile terminal is implemented in the form of a multimedia player having complex functions such as taking a picture or a video, playing a music or a video file, playing a game, and receiving a broadcast.
  • Such a mobile terminal uses a speaker as a means for generating air-conducted sound which vibrates air during voice calls or music reproduction.
  • the ambient noise is larger than the air conduction sound, the air conduction sound is hard to be heard.
  • a bone conduction piezoelectric vibration member for transmitting sound using vibration may be applied to the mobile terminal.
  • the piezoelectric vibrating member may generate a tremor of air to transmit sound or to stimulate a user's hearing nerve to transmit sound.
  • a structure capable of transmitting vibration more efficiently may be considered.
  • the present invention provides an electronic device including a piezoelectric vibrating member of the bone conduction method for transmitting sound using vibration.
  • the present invention provides an electronic device that can efficiently transmit the vibration generated from the piezoelectric vibrating member of the bone conduction method to the user.
  • a piezoelectric vibration device includes a support member; A diaphragm provided on the support member; And a piezoelectric element provided on at least one surface of the diaphragm, wherein the support member has a hardness of 5 to 95.
  • the hardness of the diaphragm is higher than or equal to the hardness of the support member.
  • the piezoelectric element is provided inside between the support members.
  • the piezoelectric element includes a plurality of piezoelectric layers, a plurality of internal electrodes formed between the plurality of piezoelectric layers, and external electrodes provided externally to be connected to the plurality of internal electrodes.
  • the upper and lower piezoelectric layers of the inner electrode operate in the reverse direction.
  • a base is further included, and the plurality of piezoelectric layers and internal electrodes are formed on both surfaces of the base.
  • the base includes a piezoelectric layer that is not polarized, and the piezoelectric layers on the top and bottom of the base operate in the reverse direction.
  • the thickness of the base is 1/3 to 1/150 of the thickness of the piezoelectric element.
  • the thickness of the piezoelectric layer is equal to or greater than the thickness of the base or internal electrode.
  • each of the piezoelectric layers is 1/3 to 1/100 of the thickness of the piezoelectric element.
  • the piezoelectric layer includes at least one pore.
  • the internal electrode has a thickness of at least one region.
  • the internal electrode has an area of 10% to 97% of the piezoelectric layer area.
  • the piezoelectric layer comprises a seed composition.
  • the piezoelectric layer is an orientation raw material composition formed of a piezoelectric material having a perovskite crystal structure, and distributed in the orientation raw material composition, wherein ABO 3 (A is a divalent metal element and B is a tetravalent metal element).
  • a seed composition formed of an oxide having the general formula.
  • an electronic device includes a display for displaying an image; A window provided on one side of the display and touchable by a user; A case provided on the other side of the display from a side of the window; And a piezoelectric vibrating member according to an aspect of the present invention, wherein the piezoelectric vibrating member generates sound through vibration of air due to vibration, or provides sound in a bone conduction manner. To pass.
  • the case includes a front case, a rear case and a cover case, and the piezoelectric vibration member is provided in at least one region of at least one of the front case, the rear case and the cover case.
  • the piezoelectric vibrating member is in contact with the display.
  • the piezoelectric vibrating member of the bone conduction type is mounted on the front case, vibration generated from the piezoelectric vibrating member can be efficiently transmitted to the front surface of the terminal body. That is, by providing a bone conduction piezoelectric vibration member in the front case of the mobile terminal including the front case and the rear case, the transmission path of vibration can be reduced, so that the loss of vibration can be reduced, and the echo generated by the separation of the transmission path. The phenomenon can be reduced.
  • the piezoelectric vibrating member includes a support member having a low hardness, and a piezoelectric element is provided inside the support member to improve the sound pressure characteristics.
  • FIG 1 is an external perspective view of an electronic device according to the present invention.
  • FIGS. 2 to 9 are schematic cross-sectional views of electronic devices according to embodiments of the present invention.
  • FIG 10 and 11 are cross-sectional views of piezoelectric vibration members according to embodiments of the present invention.
  • FIGS. 12 and 13 are perspective views of a piezoelectric vibrating member according to a modification of the embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of a piezoelectric vibrating member according to a comparative example and an embodiment of the present invention.
  • 15 and 16 are characteristic graphs of piezoelectric vibration members according to comparative examples and embodiments of the present invention.
  • 17 and 18 are perspective and sectional views of the piezoelectric element used in the present invention.
  • FIG. 19 is a cross-sectional view according to another example of a piezoelectric element used in the present invention.
  • 20 to 22 are diagrams for explaining the characteristics of the piezoelectric ceramic sintered body used in the present invention.
  • 25 to 33 are cross-sectional views of piezoelectric vibrating members according to other embodiments of the inventive concept.
  • 34 and 35 are schematic cross-sectional views of an electronic device according to another embodiment of the present invention.
  • FIG. 1 is an external perspective view of an electronic device according to the present invention.
  • FIG. 1A is a front perspective view
  • FIG. 1B is a rear perspective view.
  • the electronic apparatus 1000 includes a case 1100 forming an appearance.
  • the case 1100 may include a front case 1110, a rear case 1120, and a cover case 1130. At least a portion of the front case 1100 may be provided in a plate shape so that the display unit 1310 may be provided on the upper side.
  • a piezoelectric piezoelectric vibrating member of a bone conduction type may be provided in contact with at least a portion of the front case 1110.
  • the rear case 1120 is provided below the front case 1110 and at least a portion thereof is provided in a plate shape.
  • Various components such as a circuit board may be embedded between the front case 1110 and the rear case 1120.
  • a predetermined space may be provided between the front case 1110 and the rear case 1120, and a circuit board or the like may be provided in the space.
  • the battery 1200 is provided in a predetermined region of the other surface of the rear case 1120, that is, the other surface facing the front case 1110, and the rear surface of the rear case 1120 to cover the battery 1200.
  • a cover case 1130 may be provided on the cover case 1130.
  • the battery 1200 may be built in the electronic device 1000 or may be configured to be detachable from the outside of the electronic device 1000. In this case, when the battery 1200 is detachable, the cover case 1130 may also be detachable, and when the battery 1200 is built and fixed, the cover case 1130 may also be fixed.
  • the case 1100 may be formed by injecting a synthetic resin, or may be formed of a metal material, for example, stainless steel (STS), titanium (Ti), aluminum (Al), or the like.
  • STS stainless steel
  • Ti titanium
  • Al aluminum
  • the front case 1100, the rear case 1120, and the cover case 1130 may be formed of the same material, or at least one may be formed of a different material.
  • the front case 1100 and the rear case 1120 may be formed of a metal material
  • the cover case 1130 may be formed of a synthetic resin.
  • the front case 1110 may include a display unit 1310, a camera module 1320a, and the like.
  • a microphone 1330, a side input unit 1340, an interface 1350, and the like may be disposed on side surfaces of the front case 1110 and the rear case 1120.
  • the display unit 1310 occupies most of the front surface of the front case 1110. That is, the display unit 1310 is formed to be disposed on the front of the electronic device body to output visual information.
  • the camera module 1320a is disposed above the display unit 1310, and the front input unit 1360 is disposed below the display unit 1310.
  • the display unit 1310 may form a touch screen together with a touch sensor.
  • the piezoelectric vibration device may provide feedback in response to a user's input or touch, and the piezoelectric vibration device may be provided in contact with the display unit 1310.
  • the piezoelectric vibration device may be provided in contact with the front case 1110.
  • the touch sensor it is also possible to have a configuration without the front input unit 1360 on the front of the terminal.
  • the front input unit 1360 may be configured as a touch key, a push key, or the like, and a method in which the user operates while having a tactile feeling may be employed.
  • the side input unit 1340 may receive a command such as adjusting the volume of the sound or switching to the touch recognition mode of the display unit 1310.
  • the camera module 1320b may be additionally mounted on the rear surface of the electronic apparatus 1000. That is, the camera module 1320b may be provided in a predetermined area of the rear case 1120 and exposed through the cover case 1130.
  • the camera module 1320b may be a camera having a photographing direction substantially opposite to the camera module 1320a and having different pixels from the camera module 1320a.
  • a flash (not shown) may be further disposed adjacent to the camera module 1320b.
  • FIG. 2 is a schematic cross-sectional view of an electronic device according to an embodiment of the present disclosure, and at least some regions of the front case and the display unit are schematic cross-sectional views.
  • an electronic device may include a window 100, a display 200 provided at one side of the window 100, and a front case 1110; 310 provided at one side of the display 200. 320 and a piezoelectric vibrating member 2000 functioning as an acoustic element provided in at least a portion of the front case 1110.
  • the electronic device may be provided with a window 100, a display 200, and a front case 1110 in a downward direction, the window 100 and the display 200 may be provided in close contact, and the display 200 and the front may be provided.
  • a predetermined space may be provided between the cases 1110. That is, the display unit 1310 including the window 100 and the display 200 is provided on the front case 1110, and the piezoelectric vibrating member 2000 is provided to contact at least a portion of the front case 1110. Can be.
  • the window 100 is in contact with an object such as a finger or a stylus pen.
  • the window 100 may be formed of a material through which light can pass, for example, a light-transmissive synthetic resin, tempered glass, or the like.
  • the window 100 may be formed to include a portion through which light cannot pass. That is, the window 100 may be partitioned into an opaque edge region and a central region surrounded by the edge region.
  • the edge area may be seated and supported in one area of the front case 1110, and the center area may have an area corresponding to the display 200. Through this, the user can externally recognize visual information output from the display 200.
  • the window 100 may be firmly fixed to the front case 1110 through an adhesive film (not shown).
  • the adhesive film is sealed to prevent foreign matter from penetrating between the display 200 and the window 100, and may have a loop shape corresponding to the edge region of the window 100 and the edge region of the front case 1110.
  • the window 100 since the electronic device according to the present invention transmits the sound using the vibration generated from the piezoelectric vibrating member 2000, the window 100 may not be formed with holes or grooves for emitting the sound.
  • the display 200 is disposed at the rear of the window 100 and is accommodated in the front case 1110.
  • the display 200 is electrically connected to a circuit board (not shown) to output visual information under the control of a controller.
  • the display 200 may have an area corresponding to a portion of the window 100 through which light is transmitted.
  • Such a display 200 is, for example, a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), a flexible
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • the display may be any one of a flexible display and a 3D display.
  • the front case 1110 may support an edge of the window 100 and may be spaced apart from the display 200 to be disposed below the front case 1110. That is, the front case 1110 includes a support part 310 supporting the edge of the window 100 and a flat part 320 spaced apart from the bottom surface of the display 200 and connected to the support part 310. can do.
  • the support part 310 may include a vertical part provided vertically along the edge of the window 100 and a horizontal part protruding inward from the vertical part to support the edge of the window 100. Accordingly, the vertical portion may surround the window 100, and the horizontal portion may contact the edge of the window 100 to support the window 100. Meanwhile, the display 200 may be provided inside the horizontal portion. As a result, the support 310 may have an "L" shape.
  • the thickness of a portion of the support 310 under the window 100 may be thicker than the thickness of the display 200. Therefore, the flat plate 320 connected to the lower side of the support 310 may be provided below the display 200 at a predetermined interval from the display 200.
  • the rear case 1120 may be provided below the front case 1110 and spaced apart from the front case 1110 as described with reference to FIG. 1.
  • a predetermined space is provided between the front case 1110 and the rear case 1120, and various electronic components are embedded in the space.
  • At least one intermediate case (not shown) may be further disposed between the front case 1110 and the rear case 1120.
  • an opening 10 may be formed in a predetermined region of the front case 1110, that is, a predetermined region of the support 310 or the flat plate 320. The opening 10 may be formed to expose a predetermined area of the display 200.
  • the piezoelectric vibrating member 2000 is electrically connected to a circuit board (not shown) inside the electronic device to generate vibration under the control of the controller (not shown).
  • the piezoelectric vibrating member 2000 is configured to generate sound through vibration of air due to vibration, or to transmit sound in a bone conduction and air conduction manner.
  • the piezoelectric vibrating member 2000 may include, for example, a bone conduction speaker, a bone conduction receiver, or the like.
  • a bone conduction speaker or a bone conduction receiver refers to delivering sound in a bone conduction manner.
  • Bone conduction includes a bone conduction vibrator, a transducer that converts an electrical signal into a vibration signal, and utilizes a phenomenon in which sound is transmitted to the skull directly through the skull instead of through the eardrum.
  • Bone conduction is a concept corresponding to air conduction, in which sound in the air reaches the inner ear through the ear canal, eardrum, and scavenging bones and is heard as a sound.
  • a bone conduction transducer is attached to a bone conduction speaker or a bone conduction receiver, which acts as a vibrating speaker that transmits sound by converting an electrical signal into a vibration signal.
  • the piezoelectric vibrating member 2000 may be implemented using a piezoelectric element. That is, the piezoelectric vibrating member 2000 may include a piezoelectric vibrating element, and the piezoelectric vibrating element may include a piezoelectric element and further include a vibrating element.
  • the piezoelectric vibrating member 2000 may include a piezoelectric vibrating element including a piezoelectric element and a vibrating element to which one surface of the piezoelectric element is adhered.
  • the configuration of the piezoelectric vibrating member including the piezoelectric element and the vibrating element will be described in detail later.
  • the piezoelectric vibrating member 2000 may be provided in a plate shape including a piezoelectric element, or may be implemented in a module case and modularized.
  • the piezoelectric vibrating member 2000 may be inserted into the opening 10, and at least a portion thereof may be in contact with the display 200.
  • the opening 10 may be formed in a predetermined region of the flat plate part 320, and the piezoelectric vibrating member 2000 may be inserted into the opening 10 to be in contact with the display 200.
  • the piezoelectric vibrating member 2000 may have one surface facing the display 200 in a convex shape from the edge toward the center so that the center portion, that is, the most convex region, may contact the display 200.
  • the piezoelectric vibrating member 2000 is mounted to the front case 1110 to transmit the vibration generated to the window 100.
  • the piezoelectric vibrating member 2000 may be connected.
  • the vibration is transmitted to the window 100 through the flat part 320 and the support part 310 of the front case 1110, and the user can hear the sound through the vibration as the ear contacts the window 100 during a call. .
  • the electronic device of the present invention in addition to the window 100, the display 200, the front case 1110 and the piezoelectric vibrating member 2000, a circuit board not shown, the rear case 1120 shown in FIG. It may further include.
  • the rear case 1120 is coupled to the front case 1110 and disposed to cover the piezoelectric vibrating member 2000.
  • the rear case 1120 has a discharge hole (not shown) for discharging the surrounding air of the piezoelectric vibrating member 2000. This can be formed. Through this, the ringing phenomenon occurring at the rear surface of the piezoelectric vibrating member 2000 may be alleviated or eliminated.
  • the cover case 1130 may be provided to cover the rear case 1120.
  • the piezoelectric vibrating member 2000 may also be provided in the rear case 1120 or the cover case 1130. That is, the piezoelectric vibrating member 2000 may be provided on the rear case 1120 or the cover case 1130 as well as the front cover 1110.
  • the piezoelectric vibrating member 2000 may be in contact with the display 200 through the front case 1110 or the front case 1110 in various ways. That is, various embodiments as well as the embodiment described with reference to FIG. 2 are possible. Various embodiments of the contact method of the piezoelectric vibrating member 2000 will be described with reference to FIGS. 3 to 8 as follows.
  • the piezoelectric vibrating member 2000 has at least one flat surface and is inserted into the opening 10 formed in the flat plate 320 of the front case 1110 from the flat surface to display the display 200. Can be contacted. That is, the flat surface of the piezoelectric vibrating member 2000 may contact the display 200.
  • the upper portion of the piezoelectric vibrating member 2000 may be inserted into the opening 10 over the flat plate 320 of the front case 1110. That is, the piezoelectric vibrating member 2000 may include a portion inserted into the opening 10 and a region wider than this so as to be supported by the flat plate 320 at the inlet of the opening 10 without being inserted into the opening 10. Can be. Accordingly, at least a portion of the piezoelectric vibrating member 2000 may be supported by the flat plate part 320, and at least a portion thereof may be inserted into the opening 10. In this case, the supporting region may be thinner than the region inserted into the opening 10, and an adhesive member or the like is provided in the supporting region so that the piezoelectric vibrating member 2000 may be attached to the flat plate 320.
  • a groove 20 may be formed in the flat plate 320 of the front case 1110, and the piezoelectric vibrating member 2000 may be inserted into the groove 20.
  • the opening 10 is formed to penetrate the support 310 or the flat plate 320 so that the display 200 is exposed through the support 310 or the flat plate 320, but the groove 20 has a predetermined thickness. A portion of the support 310 or the flat plate 320 may be removed to remain.
  • the piezoelectric vibrating member 2000 may be provided on one surface of the front case 1110 without the opening 10 or the groove 20. That is, the piezoelectric vibrating member 2000 may be provided in a predetermined region of the other surface of the flat plate 320 that does not face the display 200.
  • the piezoelectric vibrating member 2000 may be directly attached to one region of the window 100. That is, as shown in FIG. 7, the piezoelectric vibrating member 2000 is provided in an area where the display 200 is not provided, that is, an outer area of the display 200, and in this case, the front case 1110 is supported by the support part 310. The shape may be deformed.
  • the front case 1110 may be deformed in shape, and the piezoelectric vibrating member 2000 may be provided in a predetermined region of the front case 1110.
  • the front case 1110 is provided to surround the window 100 by being fixed to the edge of the window 100, and the piezoelectric vibrating member in one region of the front case 1110. 2000 may be provided.
  • the piezoelectric vibrating member 2000 may be provided in contact with the front case 1110 in an area where the display 200 under the window 100 is not formed.
  • the front case 1110 may not include the flat plate portion 320.
  • the piezoelectric vibrating member 2000 may be disposed below the support portion 310 that supports the window 100. Can be prepared. That is, one side of the horizontal portion of the support part 310 may contact the window 100 to support the piezoelectric vibrating member 2000.
  • FIG. 10 is a cross-sectional view of the piezoelectric vibrating member 2000 according to the first embodiment of the present invention
  • FIG. 11 is a cross-sectional view of the piezoelectric vibrating member 2000 according to the second embodiment of the present invention
  • 12 and 13 are exploded perspective views of the piezoelectric vibrating member 2000 according to a modified example of the second embodiment of the present invention.
  • the piezoelectric vibrating member 2000 includes a diaphragm 2200, a piezoelectric element 2100 provided on at least one surface of the diaphragm 2200, and a support member 2300 provided in at least two regions of the diaphragm 2200. It may further include. In addition, as shown in FIGS. 11 to 13, the weight member 2400 may be further provided on one surface of the diaphragm 2200.
  • the piezoelectric vibrating member 2000 generates vibration by a reverse piezoelectric effect in which bending stress is generated in response to voltage application. That is, the piezoelectric element 2100 extends and contracts in the vertical or horizontal direction according to the applied voltage, and the diaphragm 2200 deforms it into bending deformation to generate vibration in the vertical direction.
  • the piezoelectric element 2100 may include a base, at least one piezoelectric layer and an internal electrode provided on at least one surface of the base.
  • the piezoelectric element 2100 will be described in more detail later with reference to FIGS. 14 and 15.
  • the piezoelectric element 2100 is attached to at least one surface of the diaphragm 2200 using an adhesive or the like.
  • the piezoelectric element 2100 may be attached to a central portion of the diaphragm 2200 such that both sides of the diaphragm 2200 remain the same length.
  • the piezoelectric element 2100 may be attached to an upper surface of the diaphragm 2200, may be attached to a lower surface of the diaphragm 2200, or may be attached to upper and lower surfaces of the diaphragm 2200. That is, in the present embodiment, the piezoelectric element 2100 is illustrated and attached to the lower surface of the diaphragm 2200, but the piezoelectric element 2100 may be attached to the upper surface of the diaphragm 2200, or the diaphragm 2200.
  • the piezoelectric element 2100 and the diaphragm 2200 may be fixed in various ways other than adhesion.
  • the diaphragm 2200 and the piezoelectric element 2100 may be adhered using an adhesive, and the sides of the diaphragm 2200 and the piezoelectric element 2100 may be fixed by using an adhesive or the like.
  • the diaphragm 2200 may be manufactured by using metal, plastic, resin, or the like, and may stack at least two different materials to use at least a double structure.
  • the diaphragm 2200 may use a polymer or pulp material.
  • the diaphragm 2200 may use a resin film, and may have a hardness of 40 to 130 (Rockwell Hardness, ASTM D785 R scale), preferably 50 to 120, such as ethylene fluoropropylene rubber or styrene butadiene rubber.
  • the piezoelectric element 2100 and the diaphragm 2200 are manufactured in a substantially rectangular plate shape.
  • the piezoelectric element 2100 and the diaphragm 2200 have a predetermined length, width and thickness, respectively, and are manufactured in a shape having one surface and the other surface facing each other.
  • the diaphragm 2200 may be manufactured longer than the piezoelectric element 2100.
  • the diaphragm 2200 may be manufactured to the same length as the weight member 2400.
  • One surface of the piezoelectric vibrating member 2000 is bonded to one surface of the piezoelectric element 2100, and the other surface of the vibrating plate 2200 is in contact with a portion of the weight member 2400.
  • the piezoelectric element 2100 may be attached to the lower surface of the diaphragm 2200, and a portion of the weight member 2400 may be coupled to the upper surface of the diaphragm 2200.
  • the piezoelectric element 2100 and the weight member 2400 may be contacted and coupled.
  • the piezoelectric vibrating member 2000 and the weight member 2400 may be fixed by adhesion.
  • the diaphragm 2200 may be formed by extending a predetermined region other than the region bonded to the piezoelectric element 2100.
  • the support member 2300 may be provided in contact with one surface of the diaphragm 2200.
  • one surface of the support member 2300 may be in contact with the diaphragm 2200, and the other surface thereof may be in contact with at least one region of the electronic device 1000. That is, the support member 2300 may be provided between the piezoelectric vibrating member 2000 and the electronic apparatus 1000, and may support the piezoelectric vibrating member 2000 on the electronic apparatus 1000. In addition, the support member 2300 may transmit the vibration generated by the piezoelectric vibrating member 2000 to the electronic apparatus 1000.
  • the support member 2300 may be provided in at least one region of the diaphragm 2200.
  • the supporting member 2300 may be provided at two end portions in the longitudinal direction of the diaphragm 2200, respectively.
  • the support member 2300 may be provided in the shape of a substantially “wh” along the edge of the diaphragm 2200.
  • the supporting member 2300 may be provided spaced apart from each other in the two or more areas of the edge of the diaphragm 2200 by a predetermined interval.
  • the piezoelectric element 2100 may be provided inside the support member 2300. That is, as illustrated in FIGS. 10 and 11, the piezoelectric element 2100 may be provided inward from an area forming the same vertical line inside the support member 2300.
  • the piezoelectric element 2100 may be provided with a size equal to or smaller than a space between the support members 2300.
  • a portion of the piezoelectric element 2100 when at least a portion of the piezoelectric element 2100 is provided on a region overlapping with the support member 2300, at least one of characteristics, for example, sound pressure and low frequency characteristics may be deteriorated, so that the piezoelectric element 2100 may be supported.
  • the support member 2300 may be provided with a flexible material having a predetermined elasticity. That is, the support member 2300 may use a material that can be compressed and restored.
  • the support member 2300 may be formed of a material having a hardness of 5 to 95 (ASTM D2240 Shore A), preferably of a material of 40 to 90.
  • the hardness of the support member 2300 is equal to or lower than the hardness of the diaphragm 2200.
  • the support member 2300 may be formed using, for example, silicon, gel, rubber, urethane, or the like. When the support member 2300 is made of a material having high hardness, problems such as low pass characteristics may be lowered.
  • the weight member 2400 may be provided in a predetermined region of the diaphragm 2200, for example, a central region.
  • the weight member 2400 may be provided to have a length shorter than that of the piezoelectric element 2100.
  • the weight member 2400 may be provided to have a length equal to or longer than the piezoelectric element 2100 as shown in FIGS. 12 and 13.
  • the vibration force is amplified to the maximum at a specific frequency of the AC drive voltage.
  • the resonant frequency may have a different value depending on the physical resources and the physical characteristics of each component such as the piezoelectric vibrating member 2000 and the weight member 2400.
  • the vibrating body generates the largest vibration when vibrating at its natural frequency.
  • the thickness of the weight member 2400 may be reduced, and at least two or more weight members 2400 may be provided.
  • the thickness is reduced to 1/2 to 1/3, etc. as shown in FIG.
  • two or three weight members 2400 may be configured by combining two or three weight members. Therefore, while reducing the thickness, the mass of the weight member 2400 is maintained as it is, and thus the vibration force can be improved and the thickness can be reduced in the same manner as in the case of using one large weight member 2400.
  • the weight member 2400 has a substantially hexahedral shape having a predetermined length, width, and thickness as shown in FIGS. 12 and 13.
  • the weight member 2400 has a contact portion 2410 formed on the diaphragm 2000 side, and the contact portion 2410 is in contact with the diaphragm 2000. That is, the contact part 2410 may be provided at the center of one surface in the thickness direction of the weight member 2400 facing one surface of the diaphragm 2000, and thus may be in contact with the central part of the diaphragm 2000.
  • the contact portion 2410 may be provided to protrude from a central portion of one surface of the weight member 2400 which is flat to be horizontal, and one surface of the weight member 2400 is formed to be inclined at a predetermined angle from the edge to the central portion and is the highest portion of the central portion.
  • the contact part 2410 may be in contact with the diaphragm 2200.
  • the contact portion 2410 and the diaphragm 2200 may be bonded and fixed by an adhesive. That is, the weight member 2400 may be provided with an adhesive between the contact portion 2410 and the diaphragm 2200 so that the weight member 2400 may be primarily fixed to the piezoelectric vibrating member 2000.
  • the contact portion 2410 may contact the diaphragm 2200, and the remaining area of the weight member 2400 may be spaced apart from the diaphragm 2200.
  • the recessed portion (not shown) is formed in the region where the adhesive is applied, that is, the contact portion 2410, according to the thickness of the adhesive, and the adhesive may be applied inside the recess. Meanwhile, the contact portion 2410 may not be located at the center portion of the weight member 2400 and may be moved within 30% of the center portion.
  • the vibration frequency and displacement can be adjusted accordingly.
  • the weight member 2400 coupled to the diaphragm 2200 thus vibrates with the vibrating plate 2200 to carry its weight on the vibration.
  • an accommodating groove 2420 may be formed on the side surface and the upper surface of the weight member 2400 to accommodate the fixing member 2500. That is, the recessed groove 2420 is formed in the region of the weight member 2400 that the fixing member 2500 is in contact with, and the fixing member 2500 may be inserted into and accommodated in the receiving groove 2420.
  • the receiving groove 2420 may be formed to have a depth of about the thickness of the fixing member 2500 and a width of the width of the fixing member 2500.
  • the side surface and the upper surface of the weight member 2400 may form a plane with the fixing member 2500.
  • the receiving groove 2420 may be formed to a depth greater than the thickness of the fixing member 2500 or may be formed to a small depth.
  • the width of the receiving groove 2420 is formed to be the width of the fixing member 2500 so that the weight member 2400 does not move. In this way, the fixing member 2500 may be inserted into the receiving groove 2420 to more firmly fix the weight member 2400.
  • the fixing member 2500 may be provided to surround the weight member 2400 from at least one region of the piezoelectric vibrating member 2000.
  • the fixing member 2500 may include first and second fixing members 2510 and 2520 extending from two sides of the diaphragm 2200 in the X direction, that is, the long side.
  • the fixing member 2500 may be provided integrally with the diaphragm 2200.
  • the fixing member 2500 may be manufactured separately from the diaphragm 2200 and then fixed to one region of the diaphragm 2200 by welding or the like.
  • the fixing member 2500 is preferably manufactured integrally with the diaphragm 2200.
  • the fixing member 2500 is formed to surround the side and the upper surface of the weight member 2400 so that the weight member 2400 may be fixed on the piezoelectric vibrating member 2000. That is, the fixing member 2500 may be formed to be in contact with the side surface and the upper surface of the weight member 2400 to be folded to contact and surround the weight member 2400.
  • the weight member 2400 is primarily fixed on the piezoelectric vibrating member 2000 by an adhesive or the like, and the fixing member 2500 may surround the weight member 2400 to fix the weight member 2400 more firmly.
  • at least a portion of the bent portion of the fixing member 2500 may be formed in a narrower or thinner than the other area by removing a portion of the fixing member 2500. That is, as shown in FIG.
  • an opening may be formed by removing a predetermined width in a portion contacting the side surface of the diaphragm 2200.
  • the fixing member 2500 may be formed of the same material as the diaphragm 2200, for example, may be formed of a metal material.
  • the fixing member 2500 may be formed in pairs on both sides of the diaphragm 2200, may be formed in two or more pairs.
  • the fixing member 2500 may be formed on one side and the other side of the diaphragm 2200, respectively, one at a time, a plurality of spaced apart a predetermined interval on one side and the other side of the diaphragm 2200 to be formed It may be. Since the fixing member 2500 is formed in a plurality of pairs, the weight member 2400 may be fixed in a plurality of regions, and accordingly, the weight member 2400 may be more firmly fixed than in the case of fixing in a pair. Meanwhile, the fixing member 2500 may be formed to have a width of 5% to 50% with respect to the length of the weight member 2400. That is, the width of the fixing member 2500 may be 5% to 50% of the length of the weight member 2400.
  • the width of one fixing member 2500 may be 5% to 50% of the length of the weight member 2400, and the sum of the widths of the plurality of fixing members 2500 may be 5% to 50 times the length of the weight member 2400. May be%.
  • the fixing member 2500 may be formed in various shapes in contact with each other. That is, the protrusion is provided in one region of the first fixing member 2510 and the recess is provided in the other region, and the second fixing member 2520 opposite to the protrusion and the recess of the first fixing member 2510 are respectively provided. Opposite portions may be provided with recesses and protrusions.
  • first fixing member 2510 may be provided with a concave portion, for example, at a central portion thereof, and may face the second fixing member 252 with a convex portion.
  • two or more recesses may be provided in the first fixing member 251 and two or more convex portions may be provided in the second fixing member 2520.
  • each of the first and second fixing members 2510 and 2520 may be formed in a sawtooth shape and joined to face each other.
  • an adhesive or a cushioning material may be provided between the fixing member 2500 and the weight member 2400, that is, between the fixing member 2500 and the receiving groove 2420.
  • the adhesive By providing the adhesive, the bonding force between the fixing member 2500 and the weight member 2400 may be improved.
  • the cushioning material the shock due to the coupling of the fixing member 2500 and the weight member 2400 may be alleviated, and noise due to vibration may be reduced.
  • a coating layer (not shown) may be further formed on at least a portion of the piezoelectric vibrating member 2000.
  • the coating layer may be formed using a waterproofing material such as parylene.
  • the parylene may be formed on the top and side surfaces of the piezoelectric element 2100 and the top and side surfaces of the vibrating plate 2200 exposed by the piezoelectric element 2100 while the piezoelectric element 2100 is bonded to the vibrating plate 2200. have. That is, parylene may be formed on the top and side surfaces of the piezoelectric element 2100 and the diaphragm 2200.
  • parylene may be formed on the top and side surfaces of the piezoelectric element 2100 and the top, side and bottom surfaces of the piezoelectric element 2200 in a state where the piezoelectric element 2100 is bonded to the diaphragm 2200. That is, parylene may be formed on the top, side, and bottom surfaces of the piezoelectric element 2100 and the diaphragm 2200.
  • parylene is formed on the upper surface, the side surface, and the lower surface exposed by the opening of the piezoelectric element 2100, and at the same time, the vibrating plate ( It may be formed on the top, side and bottom of the 2200.
  • parylene is formed on at least one surface of the piezoelectric element 2100 and the diaphragm 2200 to prevent moisture penetration and to prevent oxidation.
  • the resonance frequency may be adjusted according to the coating thickness of parylene.
  • parylene may be coated only on the piezoelectric element 2100, and may be coated on the top, side, and bottom surfaces of the piezoelectric element 2100, and may be connected to the piezoelectric element 2100 to supply power to the piezoelectric element 2100. It may be coated on the FPCB to.
  • parylene is formed in the piezoelectric element 2100, moisture permeation of the piezoelectric element 2100 may be prevented and oxidation may be prevented.
  • the resonance frequency can be adjusted by adjusting the formation thickness.
  • parylene may be coated with a different thickness according to the material and characteristics of the piezoelectric element 2100 or the diaphragm 2200, and may be formed thinner than the thickness of the piezoelectric element 2100 or the diaphragm 2200, for example. For example, it may be formed to a thickness of 0.1 ⁇ m to 10 ⁇ m.
  • parylene is first heated and vaporized in a vaporizer to make a dimer, followed by second heating to thermally decompose into a monomer state, and the parylene is cooled. Parylene may be converted into a polymer state in a monomer state and coated on at least one surface of the piezoelectric vibrating member 2000.
  • the piezoelectric vibrating member 2000 according to the position of the piezoelectric element 2100 and the material of the supporting member 2300 were tested.
  • the piezoelectric vibrating member according to the comparative example and the embodiments of the present invention was implemented in order to test the characteristics according to the position of the piezoelectric element 2100. That is, the piezoelectric vibrating member according to the comparative example is provided such that the piezoelectric element 2100 overlaps at least partially on the support member 2300 as shown in FIG. 14A. As shown in FIG. 14B, the edge of the piezoelectric element 2100 is provided perpendicular to the inner surface of the support member 2300.
  • the piezoelectric vibrating member according to the second embodiment is provided such that the piezoelectric element 2100 is positioned inside the support member 2300 as shown in FIG. 14C. That is, in the comparative example, the length of the piezoelectric element 2100 was provided to be longer than the distance between the supporting members 2300, and in Example 1, the length of the piezoelectric element 2100 was provided to be equal to the distance between the supporting members 2300. In Example 2, the length of the piezoelectric element 2100 was shorter than the distance between the supporting members 2300.
  • Comparative Examples and Examples 1 and 2 except that only the position and the length of the piezoelectric element 2100 was tested under the same conditions. That is, the material and thickness of the piezoelectric element 2100, the material and size of the diaphragm 2200, the material and size of the support member 2300, and the material and size of the weight member 2400 are all the same.
  • the characteristics of the piezoelectric vibrating member according to the comparative examples and embodiments are illustrated in FIG. 15. As shown, it can be seen that the sound pressure of Examples 1 and 2 is increased compared to the comparative example. In addition, it can be seen that Example 2 increases the sound pressure compared to Example 1. From this, it can be seen that the sound pressure increases as the piezoelectric element 2100 is farther from the support member 2300. That is, although not shown, when the piezoelectric element 2100 smaller than Example 2 is used, the sound pressure characteristic is better. Although not shown, the piezoelectric element 2100 has a larger size than that of the comparative example, and thus, when the support member 2300 and the piezoelectric element 2100 completely overlap, the sound pressure characteristics are similar to or lower than those of the comparative example.
  • FIG. 16 is a graph showing the frequency characteristics according to the material of the support member.
  • PC polycarbonate
  • the embodiment used silicon having low hardness as the support member.
  • the remaining conditions were the same as in Comparative Examples and Examples. That is, the material, length and thickness of the piezoelectric element 2100, the material and size of the diaphragm 2200, the material and size of the support member 2300, the material and size of the weight member 2400, and the piezoelectric element 2100 The conditions were all the same, etc. located similarly in the support member 2300 inside. As shown in FIG. 16, it can be seen that the low pass characteristic of the embodiment using the support member having low hardness is improved compared to the comparative example using the support member having high hardness.
  • FIG. 17 and 18 are a perspective view and a cross-sectional view of a piezoelectric element according to an embodiment of the present invention
  • Figure 19 is a cross-sectional view of a piezoelectric element according to another embodiment of the present invention.
  • 20 and 21 are diagrams for explaining a piezoelectric element according to another embodiment of the present invention.
  • the piezoelectric element 2100 may be provided in a plate shape having a predetermined thickness.
  • the piezoelectric element 2100 may have a thickness of 0.1 mm to 1 mm.
  • the thickness of the piezoelectric element 2100 may be equal to or less than the thickness range according to the size of the piezoelectric vibrating apparatus.
  • the piezoelectric element 2100 may have a substantially rectangular shape, in which the length may be longer or equal to the width.
  • the ratio of the length in the X direction and the width in the Y direction may be 5: 5 to 9: 1.
  • the piezoelectric element 2100 may be provided with a size smaller than or equal to that of the diaphragm 2200.
  • the length in the X direction is shorter or equal to the length of the diaphragm 2200, and the width in the Y direction is the diaphragm 2200. It may be provided to be shorter or equal to the width of.
  • the piezoelectric element 2100 may be provided in various shapes such as a circle and an oval according to the shape of the piezoelectric vibrating apparatus.
  • the piezoelectric element 2100 includes a base 2110, at least one piezoelectric layer 2120 provided on at least one surface of the base 2110, and at least one formed on the piezoelectric layer 2120. It may include an internal electrode 2130 of. That is, the piezoelectric element 2100 may be formed in a bimorph type in which the piezoelectric layer 2120 is formed on both surfaces of the base 2110, or in a unimorph type in which the piezoelectric layer 2120 is formed on one surface of the base 2110. May be In addition, in order to increase displacement and vibration force and to enable low voltage driving, a plurality of piezoelectric layers 2120 may be stacked on one surface of the base 2110 and formed in a unimorph type.
  • a plurality of piezoelectric layers 2121 to 2128; 2120 are stacked on one surface and the other surface of the base 2110, and a conductive layer is formed between the piezoelectric layers 2120.
  • Internal electrodes 2131 to 2138; and 2130 may be formed.
  • the conductive layer may be formed on the surface of the piezoelectric layer 2120 to form the surface electrode 2139.
  • at least one of the internal electrodes 2130 may be formed on the surface of the base 2110, where the base 2110 may be made of an insulating material.
  • the piezoelectric element 2100 may further include external electrodes 2141, 2142 and 2140 formed outside the stack to be connected to the internal electrodes 2130.
  • the base 2110 may use a material having a characteristic of generating vibration while maintaining a structure in which the piezoelectric layer 2120 is stacked.
  • the base 2110 may be made of metal, plastic, insulating ceramic, or the like.
  • the base 2110 may not use a material different from the piezoelectric layer 2120 such as metal, plastic, or insulating ceramic. That is, the base 2110 may be provided using a piezoelectric layer that is not polarized. In this case, when the base 2110 is made of a non-polarized piezoelectric layer or metal, the internal electrode 2130 may not be formed on the surface of the base 2110.
  • the base 2110 provided with a piezoelectric layer that is not polarized may serve as a boundary between the piezoelectric layers 2120 that operate in the reverse direction from the upper side and the lower side thereof.
  • the upper piezoelectric layers 2125 to 2128 may expand to operate in opposite directions.
  • the base 2110 may be provided to have a thickness of 1/3 to 1/150 of the total thickness of the piezoelectric element 2100.
  • the thickness of the base 2110 may be 2 ⁇ m to 100 ⁇ m.
  • the thickness of the base 2110 may be thinner than the thickness of the entire piezoelectric layer 2120, and may be thinner or the same as the thickness of each of the plurality of stacked piezoelectric layers 2120.
  • the thickness of the base 2110 may be thicker than the thickness of each of the piezoelectric layers 2120.
  • the thicker the base 2110 the smaller the thickness of the piezoelectric layer 2120 or the smaller the number of the piezoelectric layers 2120. Therefore, the thickness of the base 2110 is preferably thinner than the thickness of the entire piezoelectric layer 2120 and thinner than or equal to the thickness of each of the plurality of piezoelectric layers 2120.
  • the base 2110 may be provided at the top or the bottom as well as the central portion of the piezoelectric element 2100. That is, the base 2110 may be provided on the upper surface or the lower surface of the piezoelectric element 2100.
  • a plurality of piezoelectric layers 2120 and internal electrodes 2130 may be stacked on one surface of the base 2110. That is, the base 2110 may be used as a support layer for forming the plurality of piezoelectric layers 2120 and the internal electrodes 2130.
  • two or more bases 2110 may be provided inside the piezoelectric element 2100.
  • the base 2110 may be provided at the upper and lower portions of the piezoelectric element 2100, or may be provided at the upper, central and lower portions of the piezoelectric element 2100, respectively.
  • the base 2110 may be provided at any one of the upper and lower portions of the piezoelectric element 2100 and the center thereof.
  • the base 2110 provided on the upper and lower portions of the piezoelectric element 2100 may be made of an insulating material, the oxidation of the surface electrode 2139 and the internal electrode 2130 by the insulating base 2110 can be prevented. have.
  • the insulating base 2110 may be provided to cover the surface electrode 2139, and penetration of oxygen or moisture is prevented by the insulating base 2110, thereby oxidizing the surface electrode 2139 and the internal electrode 2130. Can be prevented. Even when two or more bases 2110 are provided as described above, the entire thickness of the base 2110 is preferably thinner than the entire thickness of the piezoelectric layer 2120.
  • the piezoelectric layer 2120 may be formed using, for example, piezoelectric materials of PZT (Pb, Zr, Ti), NKN (Na, K, Nb), and BNT (Bi, Na, Ti) series.
  • the piezoelectric layer 2120 is not limited to such a material and may use various piezoelectric materials. That is, the piezoelectric layer 2120 may use various types of piezoelectric materials that generate voltage when pressure is applied, and increase or decrease in volume or length due to pressure change when voltage is applied.
  • the piezoelectric layer 2120 may include at least one pore (not shown) formed in at least one region. In this case, the pores may be formed in at least one size and shape.
  • the pores may be irregularly distributed in an irregular shape and size.
  • the piezoelectric layer 2120 may be polarized in at least one direction.
  • two adjacent piezoelectric layers 2120 may be polarized in different directions. That is, the plurality of piezoelectric layers 2120 polarized in different directions may be alternately stacked.
  • the first, third, sixth, and eighth piezoelectric layers 2121, 2123, 2126, and 2128 are polarized downward, and the second, fourth, fifth, and seventh piezoelectric layers 2122, 2124 are formed.
  • 2125 and 2127 may be polarized in the upward direction.
  • the internal electrode 2130 may be provided to apply a voltage applied from the outside to the piezoelectric layer 2120. That is, the internal electrode 2130 may apply a first power source for polarization of the piezoelectric layer 2120 and a second power source for driving the piezoelectric layer 2120 to the piezoelectric layer 2120. The first power source for polarization and the second power source for driving may be applied to the internal electrode 2130 through the external electrode 2140.
  • the internal electrode 2130 may be formed to be alternately connected to the external electrode 2140 formed outside the piezoelectric element 2100.
  • the first, third, fifth, and seventh internal electrodes 2131, 2133, 2135, and 2137 are connected to the first external electrode 2141, and the second, fourth, sixth, and eighth internal electrodes ( 2132, 2134, 2136, and 2138 may be connected to the second external electrode 2142.
  • the internal electrode 2130 may be formed of a conductive material.
  • the internal electrode 2130 may be formed of a metal or a metal alloy including any one or more components of Al, Ag, Au, Pt, Pd, Ni, and Cu. In the case of an alloy, for example, Ag and Pd alloys may be used.
  • Al may form aluminum oxide (Al 2 O 3 ) on its surface during firing and maintain Al therein.
  • the internal electrode 2130 may be formed of Al coated on the surface of Al 2 O 3 , which is a porous thin insulating layer.
  • various metals having an insulating layer, preferably a porous insulating layer may be used on the surface.
  • the internal electrode 2130 may be formed to have a thickness of, for example, 1 ⁇ m to 10 ⁇ m.
  • at least one region may have a different thickness, or at least one region may be formed by removing the internal electrode 2130.
  • the same internal electrode 2130 may be formed to be thinner or thicker than at least one region due to uneven thickness of at least one region, or may be formed to expose the piezoelectric layer 2120 by removing at least one region. However, even if the thickness of at least one region of the internal electrode 2130 is thin or at least one region is removed, the connected state is maintained as a whole so that there is no problem in electrical conductivity.
  • the other internal electrodes 2130 may be formed in different thicknesses or in different shapes in the same region. That is, at least one inner electrode 2130 of the same region corresponding to a predetermined length and width in the vertical direction among the plurality of inner electrodes 2130 may be formed to have a different thickness from that of the other inner electrodes 2130.
  • the other shape may include a concave, convex, or indented shape.
  • the internal electrode 2130 may have a length in the X direction and a width in the Y direction smaller than the length and width of the piezoelectric element 2100. In other words.
  • the internal electrode 2130 may be formed smaller than the length and width of the piezoelectric layer 2120.
  • the internal electrode 2130 may be formed to have a length of 10% to 97% and a width of 10% to 97% of the length of the piezoelectric layer 2120.
  • the internal electrodes 2130 may be formed with areas of 10% to 97% of the areas of the piezoelectric layers 2120, respectively.
  • the distance between the internal electrodes 2130 may be 1/3 to 1/100 of the total thickness. That is, the thickness of each of the piezoelectric layers 2120 between the internal electrodes 2130 may be 1/3 to 1/100 of the total thickness of the piezoelectric element 2100.
  • the distance between the internal electrodes 2130 that is, the thickness of each of the piezoelectric layers 2120 may be 3 ⁇ m to 100 ⁇ m.
  • the driving voltage may be changed by the distance between the internal electrodes 2130, that is, the thickness of the piezoelectric layer 2120, and the driving voltage may decrease as the distance between the internal electrodes 2130 is closer.
  • the driving voltage increases, thereby generating a high driving voltage.
  • Costly driver ICs are needed to increase costs.
  • the distance between the internal electrodes 2130, that is, the thickness of the piezoelectric layer 2120 is less than 1/100 of the total thickness of the piezoelectric element 2100, the frequency variation of the thickness of the piezoelectric layer 2120 is high. Is not constant, a problem of deterioration may occur.
  • the external electrode 2140 may be formed to apply a driving voltage of the piezoelectric layer 2120.
  • the external electrode 2140 is formed on at least one surface of the stack and may be connected to the internal electrode 2130.
  • the external electrodes 2140 may be formed on two opposite surfaces of the laminate in the X direction, that is, the length direction.
  • the external electrodes 2140 may extend on two surfaces facing each other and at least one surface adjacent thereto.
  • the external electrode 2140 may be formed into the stack through the stack.
  • the external electrode 2140 may be formed using a method such as printing, deposition, sputtering, plating, or the like, and may be formed of at least one layer.
  • the external electrode 2140 may be formed by a printing method using a conductive paste with a first layer in contact with the laminate, and a second layer formed thereon by a plating method.
  • at least a portion of the external electrode 2140 connected to the internal electrode 2130 may be formed of the same material as the internal electrode 2130.
  • the inner electrode 2130 may be formed of copper
  • the first layer of the outer electrode 2140 formed on the surface of the stack and in contact with the inner electrode 2130 may be formed of copper.
  • the present invention may not include the base 2110. That is, as illustrated in FIG. 19, the plurality of piezoelectric layers 2120 and the plurality of internal electrodes 2130 may be alternately stacked without the base 2110. In this case, the operation of the upper and lower piezoelectric layers 2120 may be divided by one internal electrode 2130. For example, when the piezoelectric layers 2124, 2125, and 2126 on the upper side of the internal electrode 2134 provided in the center in the stacking direction of the piezoelectric layer 2120 and the internal electrode 2130, that is, in the vertical direction, contract, the internal electrode 2134. The piezoelectric layers 2121, 2122, and 2123 below the bottom may expand.
  • the lower and upper piezoelectric layers 2120 may operate differently based on the internal electrodes 2130 between the two piezoelectric layers 2120. It may be.
  • the upper piezoelectric layer 2122 may expand and the lower piezoelectric layer 2121 may contract based on the internal electrode 2132.
  • any one of the external electrodes 2140, for example, the second external electrode 2142 is separated into upper and lower sides based on the inner electrode 2134 of the center for polarization. It may be formed primary (2142a, 2142b) and secondary formed (2142c) to connect them after polarization is complete.
  • the second external electrodes 2142 are spaced in the vertical direction to form the first external electrodes 2142a and 2142b as shown in FIG. 19A, and the first external electrodes 2142a and 2142b are connected after polarization. As shown in FIG. 19B, a secondary external electrode 2142c may be formed.
  • the piezoelectric layer 2120 is formed of an orientation raw material composition formed of a piezoelectric material, and an oxide having a general formula of ABO 3 (A is a divalent metal element and B is a tetravalent metal element) distributed in the alignment raw material composition.
  • the piezoelectric ceramic sintered body formed by sintering the piezoelectric ceramic composition containing a seed composition can also be used. That is, the piezoelectric element 2100 includes a base 2110, a piezoelectric layer 2120 and an internal electrode 2130 formed on at least one surface of the base 2110, and the piezoelectric layer 2120 includes a seed composition. It may include a piezoelectric ceramic sintered body.
  • the orientation raw material composition may be formed of a piezoelectric material having a perovskite crystal structure.
  • the orientation raw material composition may use a composition in which a material having a crystal structure different from the perovskite crystal structure forms a solid solution.
  • a material having a crystal structure different from the perovskite crystal structure forms a solid solution.
  • PbTiO 3 [PT] having a tetragonal structure and PbZrO having a rhombohedral structure PZT-based material in which 3 [PZ] forms a solid solution can be used.
  • the orientation raw material composition is Pb (Ni, Nb) O 3 [PNN], Pb (Zn, Nb) O 3 [PZN] and Pb (Mn, Nb) O 3 [PMN] as a relaxer in PZT-based materials.
  • Pb (Ni, Nb) O 3 [PNN] Pb (Zn, Nb) O 3 [PZN]
  • Pb (Mn, Nb) O 3 [PMN] Pb (Ni, Nb) O 3 [PNN]
  • Pb (Mn, Nb) O 3 [PMN] Pb (Mn, Nb) O 3 [PMN]
  • PZN-based material and the PNN-based material may be used as the relaxer to form a PZNN-based material having high piezoelectric properties, low dielectric constant, and ease of sintering as a relaxer.
  • An orientation raw material composition employing a PZNN-based material as a relaxer in the PZT-based material is (1-x) Pb (Zr 0.47 Ti 0.53 ) O 3 -xPb ((Ni 1-y Zn y ) 1/3 Nb 2/3 ) It may have a composition formula of O 3 .
  • x may have a value in the range of 0.1 ⁇ x ⁇ 0.5, preferably may have a value in the range of 0.30 ⁇ x ⁇ 0.32, and most preferably may have a value of 0.31.
  • y may have a value in the range of 0.1 ⁇ y ⁇ 0.9, preferably a value in the range of 0.39 ⁇ y ⁇ 0.41, and most preferably may have a value of 0.40.
  • the piezoelectric properties are rapidly improved in the phase of the Morphotropic Phase Boundary (MPB) region.
  • the composition of the orientation raw material composition that is sintered by adding the seed composition has a different phase than when the seed composition is not added, and excellent piezoelectric properties can be induced by forming a new MPB composition according to the amount of the seed composition added.
  • the MPB composition can be adjusted by changing the x value and the y value of the orientation raw material composition, and when x has a value of 0.31 and y has a value of 0.40, it has the highest piezoelectric and dielectric properties. It becomes preferable.
  • the orientation raw material composition may use a lead-free piezoelectric material containing no lead (Pb).
  • lead-free piezoelectric materials include Bi 0.5 K 0.5 TiO 3 , Bi 0.5 Na 0.5 TiO 3 , K 0.5 Na 0.5 NbO 3 , KNbO 3 , NaNbO 3 , BaTiO 3 , (1-x) Bi 0.5 Na 0.5 TiO 3 ⁇ at least one piezoelectric selected from xSrTiO 3 , (1-x) Bi 0.5 Na 0.5 TiO 3 -xBaTiO 3 , (1-x) K 0.5 Na 0.5 NbO 3 -xBi 0.5 Na 0.5 TiO 3 , BaZr 0.25 Ti 0.75 O 3, etc. It may be a lead-free piezoelectric material including the material.
  • Seed composition is formed of an oxide having a general formula of ABO 3,
  • ABO 3 is made of an oxide having a perovskite (perovskite) the structure of the plate-like having an orientation
  • A is a bivalent metal element
  • B is quadrivalent It consists of a metal element.
  • Oxide composition that is formed of an oxide having a general formula of ABO 3 is CaTiO 3, BaTiO 3, SrTiO 3, PbTiO 3 and Pb (Ti, Zr) O may include at least one of the 3 and, of BaTiO 3 to the seed composition When used as a piezoelectric performance can be improved.
  • BaTiO 3 is synthesized by salt melting synthesis of Bi 4 Ti 3 O 12 , which is an Aurivillius plate-like structure, and is subjected to structural chemical microcrystal conversion (TMC). It can be prepared by substitution.
  • the seed composition may be included in a volume ratio of 1 vol% to 10 vol% with respect to the orientation raw material composition. When the seed composition is included in less than 1 vol% with respect to the orientation raw material composition, the effect of improving the crystal orientation by the seed composition is insignificant. In this case, when the seed composition is included in an amount of 10 vol% based on the orientation raw material composition, the amount of strain may be maximized and optimal piezoelectric properties may be exhibited.
  • the piezoelectric ceramic composition including the orientation raw material composition and the seed composition as described above is grown with the same orientation as the seed composition by a templated grain growth (TGG). That is, the piezoelectric ceramic sintered body is, for example, BaTiO 3 in the orientation raw material composition having a composition formula of 0.69Pb (Zr 0.47 Ti 0.53 ) O 3 -0.31Pb ((Ni 0.6 Zn 0.4 ) 1/3 Nb 2/3 ) O 3 .
  • the piezoelectric ceramic sintered body is, for example, BaTiO 3 in the orientation raw material composition having a composition formula of 0.69Pb (Zr 0.47 Ti 0.53 ) O 3 -0.31Pb ((Ni 0.6 Zn 0.4 ) 1/3 Nb 2/3 ) O 3 .
  • a seed composition not only sintering is possible at a low temperature of 1000 ° C. or less, but also the crystal orientation can be improved, and the displacement amount according to the electric field can be maximized to have high piezo
  • the piezoelectric ceramic sintered body according to another embodiment of the present invention may have a lotgering factor of 85% or more.
  • FIG. 20 (A) of FIG. 20 is a graph which shows the strain according to the electric field according to the lotgering orientation, and FIG. 20 (b) is a table which shows the increase rate of the strain by the lotgering orientation.
  • 21 is a graph showing the piezoelectric constant d33 according to the lotgering orientation.
  • the piezoelectric ceramic sintered body has a higher strain value as the lotgering orientation degree increases. That is, in the case of the piezoelectric ceramic sintered body (Normal) without crystal orientation, the strain according to the electric field has a value of 0.165%. In the case of increasing the crystal orientation of the piezoelectric ceramic sintered body by the plate-like grain growth method, in the piezoelectric ceramic sintered body having a lot gerring orientation value of 63%, the strain decreased by 0.106% to about 35.76%, but the lot gerring orientation value was 75%. It can be seen that the strain increases to 0.170%, 0.190%, and 0.235% as the value increases to 85%, 90%.
  • the rate of increase of the strain according to the electric field increases rapidly. That is, when the lotger orientation of the piezoelectric ceramic sintered body increases from 75% to 85%, the increase rate of the strain has a value of about 12%, but when the lotger orientation increases from 85% to 90%, the rate of increase of the strain is about 27%. It can be seen that the increase rate is about 4 times or more due to the value of%.
  • the value of the piezoelectric constant d33 increases rapidly when the lotgering orientation has a value of 85% or more.
  • the piezoelectric constant d33 represents the amount of electric charge generated in the pressure direction when pressure is applied to the material.
  • the higher the piezoelectric constant d33 has a higher value the more accurate the piezoelectric element can be manufactured.
  • FIG. 21 it is found that when the lotgering orientation of the piezoelectric ceramic sintered body increased from 75% to 85%, the piezoelectric constant (d33) increased about 35 pC / N from 345 pC / N to 380 pC / N. Can be.
  • the piezoelectric constant (d33) increased about 50 pC / N from 380 pC / N to 430 pC / N, indicating a three-fold increase.
  • the piezoelectric material having a perovskite crystal structure is distributed in the alignment raw material composition and the alignment raw material composition, and ABO3 (A is a divalent metal).
  • Element, B is a piezoelectric ceramic sintered body by producing a piezoelectric ceramic sintered body by a seed composition formed of an oxide having a general formula of a tetravalent metal element) to produce a piezoelectric ceramic sintered body having a lotgering factor of 85% or more, It becomes possible to manufacture a piezoelectric element having a high sensitivity.
  • the characteristics (example) of the piezoelectric layer including the seed composition according to the present invention were compared with the characteristics (comparative example) of the piezoelectric layer not including the seed composition.
  • An orientation raw material composition of 3 Nb 2/3 ) O 3 was synthesized.
  • Bi 4 Ti 3 O 12 an orbilius plate-like structure, was synthesized by salt melting synthesis, and BaTiO 3 seed composition was synthesized through structural chemical microcrystal substitution.
  • a piezoelectric specimen was prepared by mixing, injection, and molding so that the seed composition contained 10 vol% of the orientation raw material composition.
  • the piezoelectric specimen was heated to 5 ° C. per minute and sintered at 950 ° C. for 10 hours.
  • the comparative example was prepared in the same manner as in Example except that only the difference was not added BaTiO 3 as a seed composition. That is, in Comparative Example, BaTiO 3 was not added, thereby preparing a piezoelectric specimen having no seed composition.
  • FIG. 22 is a graph showing X-ray diffraction patterns of the piezoelectric ceramic sintered body of Comparative Example and Example, that is, the piezoelectric specimen a of Comparative Example and the piezoelectric specimen b of Example.
  • the degree of orientation in this graph was calculated according to the formula of Lotgering factor, and description of the formula and the specific process for calculating the Lotgering orientation will be omitted.
  • FIG. 22 it can be seen that the piezoelectric specimen a of the comparative example was grown in all crystal directions on the surface, and in particular, the crystals grew significantly in the normal direction of the (110) plane.
  • the piezoelectric specimen b of the embodiment it can be seen that crystals are grown only in the normal direction of the (002) plane having the same direction as the normal direction of the (001) plane on the surface, and the (110) plane of the comparative example. Crystal growth is suppressed in the normal direction.
  • the height of the graph represents the intensity of the X-ray peak, and it can be seen from the X-ray peak intensity that the lotgering orientation has a value of 95.3% for the piezoelectric specimen (b) of the example.
  • the piezoelectric ceramic sintered body including the seed composition was oriented in the (001) direction to confirm that the crystal orientation was remarkably improved.
  • FIG. 23 (a) is a cross-sectional image of the piezoelectric specimen prepared by a comparative example
  • Figure 23 (b) is a cross-sectional image of the piezoelectric specimen prepared by the embodiment.
  • the piezoelectric ceramic sintered body to which the seed composition was not added it can be seen that the particles were grown in the shape of a hexagon. This is also consistent with the result of FIG. 22 in which crystals grow in multiple plane directions, respectively.
  • the piezoelectric ceramic sintered body to which the seed composition is added is grown in a rectangular shape by the seed composition (horizontal black region of FIG. 23 (b)) positioned horizontally to improve crystal orientation. It can be confirmed.
  • FIG. 24 is a cross-sectional image of a piezoelectric element using a piezoelectric ceramic sintered body as a piezoelectric layer. That is, FIG. 24A is a cross-sectional image of a piezoelectric element using the piezoelectric ceramic sintered body according to a comparative example as a piezoelectric layer, and FIG. 24B is a piezoelectric element using the piezoelectric ceramic sintered body according to the embodiment as a piezoelectric layer. Cross section image. As shown in FIG. 24B, the piezoelectric element using the embodiment has a seed composition (the black region of FIG. 24B), and a comparative example as shown in FIG. 24A. It can be seen that the piezoelectric element used does not have a seed composition.
  • the seed is oriented in the length and width of 1 ⁇ m to 20 ⁇ m. That is, the degree of orientation of the seed may be oriented about 1 to 20 ⁇ m each in one direction and the other direction, preferably 6 to 20 ⁇ m oriented.
  • the vibration force of the piezoelectric vibrating member may be increased as compared with the case of using the piezoelectric layer to which the seed composition is not added. That is, by using the piezoelectric layer to which the seed composition is added in the piezoelectric vibrating member having the same size, the vibration force may be further increased to improve the sound pressure characteristics.
  • 25 to 28 are cross-sectional views of piezoelectric vibrating members according to example embodiments.
  • the piezoelectric vibrating member 2000 may include a module case 2500 and a piezoelectric vibrating member provided in the module case 2500.
  • the piezoelectric vibrating member may include a supporting member 2300, a vibrating plate 2200 provided on the supporting member 2300, and a piezoelectric element 2100 provided on at least one surface of the vibrating plate 2200.
  • the module case 2500 amplifies the vibration of the piezoelectric vibrating member 2000 and transmits the vibration to the electronic device. That is, the module case 2500 amplifies the vibration of the piezoelectric vibrating member 2000 and transmits it to the electronic device.
  • the module case 2500 may be formed in a substantially hexahedral shape having a space provided therein. That is, the module case 2500 includes a flat portion 2510, a vertical portion 2520 extending upward from an outer side of the flat portion 2510, and a protrusion 2530 protruding outward from an upper side of the vertical portion 2520. It may include.
  • the planar portion 2510 may have a predetermined thickness. In this case, the thickness of the flat portion 2510 may be thicker than the thickness of the piezoelectric vibrating member 2000. For example, the thickness of the flat portion 2510 may be 2 to 4 times thicker than the thickness of the piezoelectric vibrating member 2000.
  • the vertical portion 2520 may be formed at the same height as the thickness in consideration of the thickness of the piezoelectric vibrating member 2000.
  • the protrusion 2510 may support the piezoelectric vibrating member 2000 to the front case 1110 when the piezoelectric vibrating member 2000 is inserted into the opening 10 of the front case 1110 as shown in FIG. 4. do.
  • the outer surface of the protrusion 2510 and the front case 1110 may be adhesively fixed to the front case 1110 using an adhesive or the like.
  • the piezoelectric vibrating member 2000 may be fixed to the front case 1110 by screwing the protrusion 2510.
  • the planar portion 2510 may be provided with first and second planar portions 2510a and 2510b at an upper side and a lower side thereof, and a space may be provided therebetween. That is, the first and second planar portions 2510a and 2510b may be spaced apart by a predetermined interval in the vertical direction, and a vertical portion may be formed on the outside thereof to form a predetermined space between the first and second planar portions 2510a and 2510b. have.
  • Such a space may be used as a resonance space for amplifying the vibration generated by the piezoelectric vibrating member 2000.
  • heterogeneous materials may be embedded in the space. For example, a material different from the piezoelectric vibrating member 2000 and the module case 2500 such as silicon may be provided in the space. Thus, the heterogeneous material is buried in the space, thereby controlling the vibration characteristics.
  • the planar portion 2510 may be formed to have one surface rounded. That is, as shown in FIG. 2, one surface may be rounded, and the surface may contact the display 200 through the front case 1110. That is, the display 200 may be in line contact with the display 200 through the front case 1110 in the form as shown in FIG. 2.
  • first and second planar portions 2510a and 2510b may be spaced apart in the vertical direction, and a predetermined space may be provided inside the module case 2500.
  • heterogeneous materials may be embedded in the space between the first and second planar portions 2510a and 2510b.
  • 29 to 33 are cross-sectional views of piezoelectric vibrating members according to other exemplary embodiments.
  • a diaphragm 2200 is provided on the support member 2300, and a piezoelectric element 2100 is provided on one surface of the diaphragm 2200.
  • the piezoelectric element 2100 is provided on one surface of the diaphragm 2200 to which the support member 2300 is in contact. That is, the piezoelectric element 2100 and the supporting member 2300 are provided on the same surface of the diaphragm 2200.
  • the piezoelectric element 2100 may be provided inside the support member 2300 spaced apart from the support member 2300 by a predetermined interval.
  • the support member 2300 may be formed to extend downward and then extend in a horizontal direction so that a predetermined space is provided below the diaphragm 2200. That is, the support member 2300 may be provided in a substantially "c" shape with one side open.
  • the supporting member 2300 includes a vertical portion 2310 extending downward from the edge of the diaphragm 2200, and a horizontal portion 2320 extending inwardly from the vertical portion 2310, and the horizontal portion 2320 The central portion may be formed in an open shape. That is, a lower portion of the diaphragm 2200 may have a predetermined space provided therein and a support member 2300 having one side open.
  • a weight member 2400 may be provided on one surface of the diaphragm 2200, that is, the internal space.
  • a stiffener 26000 may be further provided to cover the piezoelectric vibrating member 2000. That is, the predetermined region of the supporting member 2300 may be removed to a predetermined width, and then contacted with the region to provide a reinforcement 2600 having a substantially “C” shape.
  • the reinforcement 2600 may be provided to protect the piezoelectric element 2100 and the diaphragm 2200 and reinforce the strength.
  • the reinforcing member 2600 may be provided in contact with the support member 2300 and spaced apart from the piezoelectric element 2100 and the diaphragm 2200. Therefore, the piezoelectric vibrating member may be provided inside the reinforcing member 2600.
  • the weight member may be further provided on one surface of the diaphragm 2200.
  • the support member 2300 may be formed to extend downward and then extend in a horizontal direction so that a predetermined space is provided below the diaphragm 2200. That is, the support member 2300 may be provided in a substantially "C" shape so that the internal space is closed.
  • the support member 2300 includes a vertical portion 2310 extending downward from the edge of the diaphragm 2200 and a horizontal portion 2330 extending inwardly from the vertical portion 2310, and the horizontal portion 2330. May be formed to close between the vertical portions 2310. That is, a predetermined space may be provided inside the diaphragm 2200 and a closed support member 2300 may be provided.
  • the piezoelectric vibrating member 2000 may be mounted to the electronic device as shown in FIG. That is, as shown in FIG. 34, the electronic device includes a window 100, a display 200 provided at one side of the window 100, a front case 1110 provided at one side of the display 200, and a front case 1110. It may include a piezoelectric vibrating member (2000) provided on at least a portion.
  • the front case 1110 may include a support 310 supporting the edge of the window 100 and a flat plate 320 spaced apart from the lower surface of the display 200 and partially connected to the support 310.
  • the piezoelectric vibrating member 2000 may be formed in at least a portion of the support part 310.
  • the support part 310 in which the piezoelectric vibrating member 2000 is provided may be removed, and the piezoelectric vibrating member 2000 may be provided in the removed region.
  • the support part 310 in which the piezoelectric vibrating member 2000 is not provided may include a vertical part and a horizontal part, and the support part 310 of the region in which the piezoelectric vibrating member 2000 is provided may be formed inside the vertical part and in the horizontal part. At least a portion of the upper side may be removed.
  • the spacer 600 is provided between the display 200 and the front case 1110, and the piezoelectric vibrating member 2000 may be provided to be supported by a predetermined region of the support member 600.
  • the piezoelectric vibrating member 2000 including the piezoelectric element 2100 and the diaphragm 2200 may be provided to be supported by the supporting member 2300.
  • the support member 2300 may be provided integrally with the spacer member 600. That is, the diaphragm 2200 and the piezoelectric element 2100 may be provided on the protrusion protruding from the spacer 600.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

본 발명은 지지 부재와, 상기 지지 부재 상에 마련된 진동판과, 상기 진동판의 적어도 일면 상에 마련된 압전 소자를 포함하며, 상기 지지 부재는 경도가 10 이하인 물질로 형성된 압전 진동 장치 및 이를 구비하는 전자기기를 제시한다.

Description

압전 진동 장치 및 이를 구비하는 전자기기
본 발명은 압전 진동 장치 및 이를 구비하는 전자기기에 관한 것으로, 특히 압전 진동 부재를 골전도 방식으로 이용하는 전자기기에 관한 것이다.
이동 단말기는 휴대가 가능하면서 음성 및 영상 통화 기능, 정보를 입출력하는 기능, 데이터를 저장할 수 있는 기능 등을 하나 이상 갖춘 휴대용 전자기기이다. 따라서, 이동 단말기는 기능이 다양화됨에 따라 사진이나 동영상의 촬영, 음악이나 동영상 파일의 재생, 게임, 방송의 수신 등의 복합적인 기능들을 갖춘 멀티미디어 기기(multimedia player) 형태로 구현되고 있다.
이러한 이동 단말기는 음성 통화 시 또는 음악 재생 시에 공기를 진동시키는 공기 전도음(air-conducted sound)을 발생하는 수단으로서 스피커를 이용하는 것이 알려져 있다. 그러나, 주변의 소음이 공기 전도음보다 큰 경우에는 공기 전도음이 잘들리지 않게 된다.
이러한 문제를 해결하기 위해 이동 단말기에는 진동을 이용하여 소리를 전달하는 골전도 방식의 압전 진동 부재가 적용될 수 있다. 압전 진동 부재는 공기의 떨림을 발생시켜 소리를 전달하거나, 사용자의 청신경을 자극하여 소리를 전달하는 방식으로 청음을 가능하게 한다. 이처럼, 압전 진동 부재는 진동을 이용하여 소리를 전달하므로, 진동을 보다 효율적으로 전달할 수 있는 구조가 고려될 수 있다.
(선행기술문헌)
일본특허등록 제3929465호
한국특허공개 제2014-0074299호
본 발명은 진동을 이용하여 소리를 전달하는 골전도 방식의 압전 진동 부재를 포함하는 전자기기를 제공한다.
본 발명은 골전도 방식의 압전 진동 부재로부터 발생되는 진동을 사용자에게 효율적으로 전달할 수 있는 전자기기를 제공한다.
본 발명의 일 양태에 따른 압전 진동 장치는 지지 부재; 상기 지지 부재 상에 마련된 진동판; 및 상기 진동판의 적어도 일면 상에 마련된 압전 소자를 포함하며, 상기 지지 부재는 경도가 5 내지 95이다.
상기 진동판의 경도는 상기 지지 부재의 경도보다 높거나 같다.
상기 압전 소자는 상기 지지 부재 사이의 내측에 마련된다.
상기 압전 소자는 복수의 압전층과, 상기 복수의 압전층 사이에 형성된 복수의 내부 전극과, 상기 복수의 내부 전극과 연결되도록 외부에 마련된 외부 전극을 포함한다.
상기 내부 전극의 상부 및 하부 압전층이 역방향으로 동작한다.
베이스를 더 포함하고, 상기 베이스의 양면 상에 상기 복수의 압전층 및 내부 전극이 형성된다.
상기 베이스는 분극되지 않은 압전층을 포함하고, 상기 베이스의 상부 및 하부의 압전층이 역방향으로 동작한다.
상기 베이스의 두께는 상기 압전 소자 두께의 1/3 내지 1/150이다.
상기 압전층의 두께는 상기 베이스 또는 내부 전극의 두께보다 같거나 두껍다.
상기 압전층 각각의 두께는 상기 압전 소자 두께의 1/3 내지 1/100이다.
상기 압전층은 적어도 하나의 기공을 포함한다.
상기 내부 전극은 적어도 일 영역의 두께가 다르다.
상기 내부 전극은 상기 압전층 면적의 10% 내지 97%의 면적을 갖는다.
상기 압전층은 시드 조성물을 포함한다.
상기 압전층은 페로브스카이트(perovskite) 결정 구조를 가지는 압전 물질로 형성되는 배향 원료 조성물과, 상기 배향 원료 조성물 내에 분포하며 ABO3(A는 2가의 금속 원소, B는 4가의 금속 원소)의 일반식을 가지는 산화물로 형성되는 시드 조성물을 포함한다.
상기 진동판의 일면 상에 마련된 웨이트 부재를 더 포함한다.
본 발명의 다른 양태에 따른 전자기기는 영상을 표시하는 디스플레이; 상기 디스플레이의 일측에 마련되며 사용자가 터치 가능한 윈도우; 상기 윈도우의 측면으로부터 상기 디스플레이의 타측에 마련된 케이스; 및 상기 케이스의 적어도 일 영역에 마련되며, 본 발명의 일 양태에 따른 압전 진동 부재를 포함하고, 상기 압전 진동 부재는 진동으로 인한 공기의 떨림을 통하여 소리를 발생시키거나, 골전도 방식으로 소리를 전달한다.
상기 케이스는 프론트 케이스, 리어 케이스 및 커버 케이스를 포함하고, 상기 압전 진동 부재는 상기 프론트 케이스, 리어 케이스 및 커버 케이스 중 적어도 어느 하나의 적어도 일 영역에 마련된다.
상기 프론트 케이스의 적어도 일 영역에 형성된 개구 또는 홈을 포함하고, 상기 압전 진동 부재는 적어도 일부가 상기 개구 또는 상기 홈 내에 삽입된다.
상기 압전 진동 부재는 상기 디스플레이와 접촉된다.
본 발명은 프론트 케이스에 골전도 방식의 압전 진동 부재가 장착됨에 따라 압전 진동 부재에서 발생되는 진동이 단말기 바디의 전면으로 효율적으로 전달될 수 있다. 즉, 프론트 케이스 및 리어 케이스를 포함하는 이동 단말기의 프론트 케이스에 골전도 방식의 압전 진동 부재를 마련함으로써 진동의 전달 경로가 줄어들어 진동의 손실이 감소될 수 있으며, 전달 경로가 분리됨으로 인하여 발생하는 메아리 현상이 감소될 수 있다.
또한, 압전 진동 부재가 경도가 낮은 지지 부재를 포함하고, 지지 부재의 내측으로 압전 소자가 마련됨으로써 음압 특성을 향상시킬 수 있다.
도 1은 본 발명에 따른 전자기기의 외형 사시도.
도 2 내지 도 9는 본 발명의 실시 예들에 따른 전자기기의 개략 단면도.
도 10 및 도 11은 본 발명의 실시 예들에 따른 압전 진동 부재의 단면도.
도 12 및 도 13은 본 발명의 실시 예의 변형 예에 따른 압전 진동 부재의 사시도.
도 14는 본 발명의 비교 예 및 실시 예에 따른 압전 진동 부재의 단면도.
도 15 및 도 16은 본 발명의 비교 예 및 실시 예에 따른 압전 진동 부재의 특성 그래프.
도 17 및 도 18은 본 발명에 이용되는 압전 소자의 사시도 및 단면도.
도 19는 본 발명에 이용되는 압전 소자의 다른 예에 따른 단면도.
도 20 내지 도 22는 본 발명에 이용되는 압전 세라믹 소결체의 특성을 설명하기 위한 도면.
도 23 및 도 24는 본 발명에 이용되는 압전 세라믹 소결체의 실시 예와 비교 예를 설명하기 위한 사진.
도 25 내지 도 33은 본 발명의 다른 실시 예들에 따른 압전 진동 부재의 단면도.
도 34 및 도 35는 본 발명의 다른 실시 예들에 따른 전자기기의 개략 단면도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명에 따른 전자기기의 외형 사시도로서, 도 1의 (a)는 전면 사시도이고, 도 1의 (b)는 후면 사시도이다.
도 1을 참조하면, 전자기기(1000)는 외관을 이루는 케이스(1100)를 포함한다. 케이스(1100)는 프론트 케이스(1110), 리어 케이스(1120) 및 커버 케이스(1130)를 포함할 수 있다. 프론트 케이스(1100)는 적어도 일부가 판 형상으로 마련되어 상측에 디스플레이부(1310) 등이 마련되도록 할 수 있다. 또한, 프론트 케이스(1110)의 적어도 일부에 접촉되어 골전도 방식의 압전 압전 진동 부재가 마련될 수 있다. 리어 케이스(1120)는 프론트 케이스(1110) 하측에 마련되며, 적어도 일부가 판 형상으로 마련된다. 프론트 케이스(1110)와 리어 케이스(1120) 사이에는 회로 기판 등 각종 부품이 내장될 수 있다. 즉, 프론트 케이스(1110)와 리어 케이스(1120) 사이에는 소정의 공간이 마련될 수 있고, 그 공간에 회로 기판 등이 마련될 수 있다. 한편, 리어 케이스(1120)의 타면, 즉 프론트 케이스(1110)와 대면하는 일면에 대향되는 타면의 소정 영역에는 배터리(1200)가 마련되며, 배터리(1200)를 덮도록 리어 케이스(1120)의 후면 상에 커버 케이스(1130)가 마련될 수 있다. 배터리(1200)는 전자기기(1000) 내부에 내장되거나, 전자기기(1000) 외부에서 탈착 가능하도록 구성될 수 있다. 이때, 배터리(1200)가 탈착 가능한 경우 커버 케이스(1130) 또한 탈착 가능하고, 배터리(1200)가 내장되어 고정되는 경우 커버 케이스(1130) 또한 고정될 수 있다. 한편, 케이스(1100)는 합성수지를 사출하여 형성되거나 금속 재질, 예를 들어 스테인레스 스틸(STS), 티타늄(Ti), 알루미늄(Al) 등으로 형성될 수도 있다. 이때, 프론트 케이스(1100), 리어 케이스(1120) 및 커버 케이스(1130)는 동일 재질로 형성될 수도 있고, 적어도 하나가 다른 재질로 형성될 수도 있다. 예를 들어, 프론트 케이스(1100) 및 리어 케이스(1120)가 금속 재질로 형성되고, 커버 케이스(1130)가 합성 수지로 형성될 수 있다.
한편, 프론트 케이스(1110)에는 디스플레이부(1310), 카메라 모듈(1320a) 등이 배치될 수 있다. 또한, 프론트 케이스(1110) 및 리어 케이스(1120)의 측면에는 마이크(1330), 측면 입력부(1340), 인터페이스(1350) 등이 배치될 수 있다. 디스플레이부(1310)는 프론트 케이스(1110)의 전면의 대부분을 차지한다. 즉, 디스플레이부(1310)는 전자기기 바디의 전면에 배치되어 시각 정보를 출력하도록 형성된다. 디스플레이부(1310)의 상측에는 카메라 모듈(1320a)이 배치되고, 하측에는 전면 입력부(1360)가 배치된다. 또한, 디스플레이부(1310)는 터치 센서와 함께 터치 스크린을 형성할 수 있다. 이때, 사용자의 입력 또는 터치에 반응하여 압전 진동 장치가 피드백을 제공할 수 있고, 압전 진동 장치는 디스플레이부(1310)에 접촉되어 마련될 수 있다. 물론, 압전 진동 장치는 프론트 케이스(1110)에 접촉되어 마련될 수도 있다. 한편, 터치 센서가 구성되는 경우 단말기 전면에 전면 입력부(1360)가 없는 구성도 가능하게 된다. 전면 입력부(1360)는 터치키, 푸쉬키 등으로 구성될 수 있으며, 사용자가 촉각적인 느낌을 가면서 조작하게 되는 방식이 채용될 수 있다. 그리고, 측면 입력부(1340)는 음향의 크기 조절 또는 디스플레이부(1310)의 터치 인식 모드로의 전환 등과 같은 명령을 입력 받을 수 있다.
전자기기(1000)의 후면에는 카메라 모듈(1320b)이 추가로 장착될 수 있다. 즉, 카메라 모듈(1320b)이 리어 케이스(1120)의 소정 영역에 마련되고 커버 케이스(1130)를 통해 노출될 수 있다. 카메라 모듈(1320b)은 카메라 모듈(1320a)과 실질적으로 반대되는 촬영 방향을 가지며, 카메라 모듈(1320a)과 서로 다른 화소를 가지는 카메라일 수 있다. 카메라 모듈(1320b)에 인접하게는 플래시(미도시)가 추가로 배치될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 전자기기의 개략 단면도로서, 프론트 케이스와 디스플레이부의 적어도 일부 영역이 개략 단면도이다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 전자기기는 윈도우(100)와, 윈도우(100) 일측에 마련된 디스플레이(200)와, 디스플레이(200) 일측에 마련된 프론트 케이스(1110; 310, 320)와, 프론트 케이스(1110)의 적어도 일부에 마련되는 음향 소자로서 기능하는 압전 진동 부재(2000)를 포함할 수 있다. 여기서, 전자기기는 하측 방향으로 윈도우(100), 디스플레이(200) 및 프론트 케이스(1110)가 마련되며, 윈도우(100)와 디스플레이(200)는 밀착되어 마련될 수 있고, 디스플레이(200)와 프론트 케이스(1110) 사이에는 소정의 공간이 마련될 수 있다. 즉, 프론트 케이스(1110) 상에 윈도우(100) 및 디스플레이(200)를 포함하는 디스플레이부(1310)가 마련되고, 프론트 케이스(1110)의 적어도 일부에 접촉되도록 압전 진동 부재(2000)가 마련될 수 있다.
윈도우(100)는 손가락, 스트일러스 펜 등의 객체가 접촉된다. 이러한 윈도우(100)는 빛이 투과할 수 있는 소재, 예를 들어, 광투과성 합성 수지, 강화 유리 등으로 구성될 수 있다. 윈도우(100)는 빛이 투과할 수 없는 부분을 포함하여 형성될 수 있다. 즉, 윈도우(100)는 불투명 처리되는 가장자리 영역과, 가장자리 영역에 의하여 감싸지는 중앙 영역으로 구획될 수 있다. 가장자리 영역은 프론트 케이스(1110)의 일 영역에 안착되어 지지되며, 중앙 영역은 디스플레이(200)에 대응되는 면적을 가질 수 있다. 이를 통하여 사용자는 디스플레이(200)에서 출력되는 시각 정보를 외부에서 인지할 수 있게 된다. 또한, 윈도우(100)는 접착필름(미도시)을 통해 프론트 케이스(1110)에 견고하게 고정될 수 있다. 접착필름은 디스플레이(200)와 윈도우(100) 사이로 이물질이 침투하지 못하도록 실링하며, 윈도우(100)의 가장자리 영역과 프론트 케이스(1110)의 가장자리 영역에 대응되는 루프 형상으로 이루어질 수 있다. 한편, 본 발명에 따른 전자기기는 압전 진동 부재(2000)로부터 발생되는 진동을 이용하여 소리를 전달하므로 윈도우(100)에는 음향의 방출을 위한 홀 또는 홈이 형성되지 않을 수 있다.
디스플레이(200)는 윈도우(100)의 후면에 배치되고, 프론트 케이스(1110)에 수용된다. 디스플레이(200)는 회로 기판(미도시)과 전기적으로 연결되어 제어부의 제어에 의해 시각 정보를 출력하도록 이루어진다. 디스플레이(200)는 윈도우(100)의 빛이 투과되는 부분에 대응되는 면적을 가질 수 있다. 이러한 디스플레이(200)는 예를 들어 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 어느 하나가 될 수 있다.
프론트 케이스(1110)는 윈도우(100)의 가장자리를 지지하며, 디스플레이(200)와 이격되어 그 하측에 마련될 수 있다. 즉, 프론트 케이스(1110)는 윈도우(100)의 가장자리를 지지하는 지지부(310)와, 디스플레이(200)의 하면과 이격되어 마련되며 일부가 지지부(310)와 연결되는 평판부(320)를 포함할 수 있다. 여기서, 지지부(310)는 윈도우(100)의 가장자리를 따라 수직하게 마련된 수직부와, 수직부로부터 내측으로 돌출되어 윈도우(100)의 가장자리를 지지하는 수평부를 포함할 수 있다. 따라서, 수직부가 윈도우(100)를 감싸며, 수평부가 윈도우(100)의 가장자리와 접촉되어 윈도우(100)를 지지할 수 있다. 한편, 수평부의 내측으로 디스플레이(200)가 마련될 수 있다. 결국, 지지부(310)는 "L"자 형태를 가질 수 있다. 한편, 윈도우(100) 하측의 지지부(310)의 일부 영역의 두께는 디스플레이(200)의 두께보다 두꺼울 수 있다. 따라서, 지지부(310)의 하측에 연결되는 평판부(320)가 디스플레이(200)와 소정 간격 이격되어 디스플레이(200) 하측에 마련될 수 있다. 한편, 프론트 케이스(1110)와 이격되어 그 하측에는 도 1을 이용하여 설명한 바와 같이 리어 케이스(1120)가 마련될 수 있다. 프론트 케이스(1110)와 리어 케이스(1120) 사이에 소정의 공간이 마련되고, 이러한 공간 내에 각종 전자부품들이 내장된다. 프론트 케이스(1110)와 리어 케이스(1120) 사이에는 적어도 하나의 중간 케이스(미도시)가 추가로 배치될 수도 있다. 또한, 프론트 케이스(1110)의 소정 영역, 즉 지지부(310) 또는 평판부(320)의 소정 영역에는 개구(10)가 형성될 수 있다. 개구(10)는 디스플레이(200)의 소정 영역을 노출하도록 형성될 수 있다.
압전 진동 부재(2000)는 전자기기 내부의 회로 기판(미도시)과 전기적으로 연결되어 제어부(미도시)의 제어에 따라 진동을 발생시키도록 이루어진다. 압전 진동 부재(2000)는 진동으로 인한 공기의 떨림을 통하여 소리를 발생시키거나, 골전도(bone conduction)와 공기 전도 방식으로 소리를 전달하도록 이루어진다. 이러한 압전 진동 부재(2000)는 예를 들어 골전도 스피커, 골전도 리시버 등을 포함할 수 있다. 골전도 스피커 또는 골전도 리시버는 골전도 방식으로 소리를 전달하는 것을 말한다. 골전도란 전기적인 신호를 진동 신호로 바꾸는 변환기인 골전도 진동자를 포함하고, 소리가 고막을 통하지 않고 두개골에 전도되어 직접 내이에 전달되는 현상을 이용하는 것이다. 골전도는 공기 중의 소리가 외이도, 고막 및 청소골을 통하여 내이에 도달하여 소리로 들리는 공기전도(Air Conduction)에 대응하는 개념이다. 골전도 스피커 또는 골전도 리시버에는 골전도 진동자(Bone conduction transducer)가 부착되어 있는데, 골전도 진동자는 전기적인 신호를 진동 신호로 바꾸어 소리를 전달하는 진동 스피커의 역할을 한다. 이러한 압전 진동 부재(2000)는 압전 소자를 이용하여 구현될 수 있다. 즉, 압전 진동 부재(2000)는 압전 진동 소자를 포함할 수 있는데, 압전 진동 소자를 압전 소자를 포함하고 진동 소자를 더 포함할 수 있다. 예를 들어 압전 진동 부재(2000)는 압전 소자와, 압전 소자의 일면이 접착된 진동 소자를 포함하는 압전 진동 소자를 포함할 수 있다. 압전 소자와 진동 소자를 포함하는 압전 진동 부재의 구성에 대해서는 추후 상세히 설명하겠다. 이러한 압전 진동 부재(2000)는 압전 소자를 포함하여 판 형상으로 마련될 수 있고, 모듈 케이스 내에 구현되어 모듈화되어 마련될 수도 있다. 한편, 압전 진동 부재(2000)는 개구(10)에 삽입되며, 적어도 일부가 디스플레이(200)에 접촉되도록 형성될 수 있다. 예를 들어, 평판부(320)의 소정 영역에 개구(10)가 형성되고, 압전 진동 부재(2000)는 개구(10)에 삽입되어 적어도 일부가 디스플레이(200)에 접촉될 수 있다. 이를 위해, 압전 진동 부재(2000)는 디스플레이(200)와 대면하는 일면이 가장자리에서 중앙부로 갈수록 볼록한 형태로 형성되어 중앙부, 즉 가장 볼록한 영역이 디스플레이(200)에 접촉될 수 있다. 압전 진동 부재(2000)는 프론트 케이스(1110)에 장착되어 발생하는 진동을 윈도우(100)로 전달하도록 이루어진다. 즉, 압전 진동 부재(2000)가 장착되는 프론트 케이스(1110)의 평판부(320)는 지지부(320)와 연결되고, 지지부(320)는 윈도우(100)와 연결되므로 압전 진동 부재(2000)의 진동은 프론트 케이스(1110)의 평탄부(320) 및 지지부(310)를 거쳐 윈도우(100)로 전달되며, 사용자는 통화시에 귀가 윈도우(100)에 접촉됨에 따라 진동을 통하여 소리를 들을 수 있다.
한편, 본 발명의 전자기기는 윈도우(100), 디스플레이(200), 프론트 케이스(1110) 및 압전 진동 부재(2000)에 더하여 도시하지 않은 회로 기판과, 도 1에 도시된 리어 케이스(1120) 등을 더 포함할 수 있다. 리어 케이스(1120)는 프론트 케이스(1110)에 결합되어 압전 진동 부재(2000)를 덮도록 배치되며, 리어 케이스(1120)에는 압전 진동 부재(2000)의 주변 공기를 배출하는 배출홀(미도시)이 형성될 수 있다. 이를 통하여, 압전 진동 부재(2000)의 후면에서 발생하는 울림 현상이 완화 또는 제거될 수 있다. 또한, 리어 케이스(1120)를 덮도록 커버 케이스(1130)가 마련될 수 있다. 따라서, 압전 진동 부재(2000)가 리어 케이스(1120) 또는 커버 케이스(1130)에도 마련될 수 있다. 즉, 압전 진동 부재(2000)는 프론트 커버(1110) 뿐만 아니라 리어 케이스(1120) 또는 커버 케이스(1130)에도 마련될 수 있다.
또한, 압전 진동 부재(2000)는 다양한 방법으로 프론트 케이스(1110) 또는 프론트 케이스(1110)를 통해 디스플레이(200)에 접촉될 수 있다. 즉, 도 2를 이용하여 설명된 실시 예 뿐만 아니라 다양한 실시 예가 가능한데, 압전 진동 부재(2000)의 접촉 방식의 다양한 실시 예를 도 3 내지 도 8을 이용하여 설명하면 다음과 같다.
도 3에 도시된 바와 같이, 압전 진동 부재(2000)는 적어도 일면이 평탄하게 마련되고, 평탄면으로부터 프론트 케이스(1110)의 평판부(320)에 형성된 개구(10)에 삽입되어 디스플레이(200)에 접촉될 수 있다. 즉, 압전 진동 부재(2000)는 평탄면이 디스플레이(200)에 접촉될 수 있다.
또한, 도 4에 도시된 바와 같이 압전 진동 부재(2000)는 상측 일부가 프론트 케이스(1110)의 평판부(320)에 걸쳐 개구(10)에 삽입될 수 있다. 즉, 압전 진동 부재(2000)는 개구(10)에 삽입되는 부분과, 이보다 폭이 더 넓어 개구(10)에 삽입되지 않고 개구(10) 입구의 평판부(320)에 지지되는 영역을 포함할 수 있다. 따라서, 압전 진동 부재(2000)는 적어도 일부가 평판부(320)에 지지되어 적어도 일부가 개구(10)에 삽입될 수 있다. 이때, 지지 영역은 개구(10)에 삽입되는 영역보다 두께가 얇을 수 있고, 지지 영역에 접착 부재 등이 마련되어 압전 진동 부재(2000)가 평판부(320)에 접착될 수 있다.
그리고, 도 5에 도시된 바와 같이 프론트 케이스(1110)의 평판부(320)에 홈(20)이 형성되고 홈(20) 내에 압전 진동 부재(2000)가 삽입될 수 있다. 여기서, 개구(10)는 지지부(310) 또는 평판부(320)를 통해 디스플레이(200)가 노출되도록 지지부(310) 또는 평판부(320)를 관통하도록 형성되지만, 홈(20)은 소정 두께가 잔류하도록 지지부(310) 또는 평판부(320)의 일부가 제거되어 형성될 수 있다.
물론, 도 6에 도시된 바와 같이 개구(10) 또는 홈(20)이 형성되지 않고 프론트 케이스(1110)의 일 면에 압전 진동 부재(2000)가 마련될 수도 있다. 즉, 디스플레이(200)에 대면하지 않는 평판부(320)의 타면의 소정 영역에 압전 진동 부재(2000)가 마련될 수 있다.
또한, 압전 진동 부재(2000)는 윈도우(100)의 일 영역에 직접 부착될 수도 있다. 즉, 도 7에 도시된 바와 같이 디스플레이(200)가 마련되지 않은 영역, 즉 디스플레이(200)의 외측 영역에 압전 진동 부재(2000)가 마련되고, 이 경우 프론트 케이스(1110)는 지지부(310) 형상이 변형될 수 있다.
한편, 프론트 케이스(1110)는 형상이 변형되고, 프론트 케이스(1110)의 소정 영역에 압전 진동 부재(2000)가 마련될 수 있다. 예를 들어, 도 8에 도시된 바와 같이 프론트 케이스(1110)는 윈도우(100)의 테두리에 접촉되어 고정되어 윈도우(100)를 감싸도록 마련되고, 프론트 케이스(1110)의 일 영역에 압전 진동 부재(2000)가 마련될 수 있다. 예를 들어, 압전 진동 부재(2000)는 윈도우(100) 하측의 디스플레이(200)가 형성되지 않은 영역의 프론트 케이스(1110)에 접촉되어 마련될 수 있다. 또한, 도 9에 도시된 바와 같이 프론트 케이스(1110)는 평판부(320)가 마련되지 않을 수 있는데, 이 경우 윈도우(100)를 지지하는 지지부(310)의 하측에 압전 진동 부재(2000)가 마련될 수 있다. 즉, 지지부(310)의 수평부는 일 면이 윈도우(100)를 접촉하여 지지하고, 타면에 압전 진동 부재(2000)가 마련될 수 있다.
도 10은 본 발명의 제 1 실시 예에 따른 압전 진동 부재(2000)의 단면도이고, 도 11은 본 발명의 제 2 실시 예에 따른 압전 진동 부재(2000)의 단면도이다. 또한, 도 12 및 도 13은 본 발명의 제 2 실시 예의 변형 예에 따른 압전 진동 부재(2000)의 분리 사시도이다.
도 10을 참조하면, 압전 진동 부재(2000)는 진동판(2200)과, 진동판(2200)의 적어도 일면에 마련된 압전 소자(2100)와, 진동판(2200)의 적어도 두 영역에 마련된 지지 부재(2300)을 더 포함할 수 있다. 또한, 도 11 내지 도 13에 도시된 바와 같이, 진동판(2200)의 일면 상에 마련된 웨이트 부재(2400)를 더 포함할 수도 있다.
1. 압전 소자
압전 진동 부재(2000)는 전압 인가에 따라 굽힘 응력이 발생하는 역압전 효과에 의해 진동을 발생시킨다. 즉, 압전 소자(2100)는 인가되는 전압에 따라 수직 또는 수평 방향으로 신축 운동을 하고, 진동판(2200)은 이를 굽힘 변형으로 변형하여 수직 방향으로 진동을 발생시킨다. 여기서, 압전 소자(2100)는 베이스와, 베이스의 적어도 일면 상에 마련된 적어도 하나의 압전층 및 내부 전극을 포함할 수 있다. 이러한 압전 소자(2100)에 대해서는 도 14 및 15 등을 이용하여 추후 더욱 상세히 설명한다. 압전 소자(2100)는 접착제 등을 이용하여 진동판(2200)의 적어도 일면에 부착된다. 이때, 진동판(2200)의 양측이 동일 길이로 잔류하도록 압전 소자(2100)는 진동판(2200)의 중앙부에 부착될 수 있다. 또한, 압전 소자(2100)는 진동판(2200)의 상면에 부착될 수 있고, 진동판(2200)의 하면에 부착될 수도 있으며, 진동판(2200)의 상하 양면에 부착될 수도 있다. 즉, 본 실시 예는 압전 소자(2100)가 진동판(2200)의 하면에 부착되는 경우를 도시하여 설명하고 있지만, 압전 소자(2100)는 진동판(2200)의 상면에 부착될 수도 있고, 진동판(2200)의 상면 및 하면에 부착될 수도 있다. 여기서, 압전 소자(2100)와 진동판(2200)은 접착 이외에 다양한 방법으로 고정될 수 있다. 예를 들어, 진동판(2200)과 압전 소자(2100)를 점착제를 이용하여 점착하고, 진동판(2200)과 압전 소자(2100)의 측면을 접착제 등을 이용하여 접착함으로써 고정할 수도 있다.
2. 진동판
진동판(2200)은 금속, 플라스틱, 수지 등을 이용하여 제작할 수 있고, 서로 다른 이종의 소재를 적층하여 적어도 2중 구조를 이용할 수 있다. 또한, 진동판(2200)은 폴리머계 또는 펄프계 물질을 이용할 수 있다. 예를 들어, 진동판(2200)은 수지 필름을 이용할 수 있는데, 에틸렌 플로필렌 고무계, 스티렌 부타디엔 고무계 등 경도가 40∼130(Rockwell Hardness, ASTM D785 R scale), 바람직하게는 50∼120일 수 있다. 이러한 압전 소자(2100) 및 진동판(2200)은 대략 직사각형의 판 형상으로 제작된다. 즉, 압전 소자(2100) 및 진동판(2200)은 각각 소정의 길이, 너비 및 두께를 가지고, 서로 대향되는 일면 및 타면을 갖는 형상으로 제작된다. 이때, 진동판(2200)이 압전 소자(2100)보다 길게 제작될 수 있다. 또한, 진동판(2200)은 웨이트 부재(2400)와 같은 길이로 제작될 수 있다. 이러한 압전 진동 부재(2000)는 진동판(2200)의 일면이 압전 소자(2100)의 일면과 접착되고, 진동판(2200)의 타면이 웨이트 부재(2400)의 일부와 접촉된다. 즉, 진동판(2200)의 하면에 압전 소자(2100)가 접착되고, 진동판(2200)의 상면에 웨이트 부재(2400)의 일부가 결합될 수 있다. 또한, 압전 소자(2100)가 진동판(2200)의 상면에 부착되는 경우 압전 소자(2100)와 웨이트 부재(2400)가 접촉되어 결합될 수도 있다. 이때, 압전 진동 부재(2000)와 웨이트 부재(2400)는 접착에 의해 고정될 수 있다. 또한, 진동판(2200)은 압전 소자(2100)와 접착된 영역 이외의 소정 영역이 외측으로 연장되어 형성될 수 있다.
3. 지지 부재
지지 부재(2300)는 진동판(2200)의 일면에 접촉되어 마련될 수 있다. 또한, 지지 부재(2300)는 일면이 진동판(2200)과 접촉되고 타면이 전자기기(1000)의 적어도 일 영역에 접촉될 수 있다. 즉, 지지 부재(2300)는 압전 진동 부재(2000)와 전자기기(1000) 사이에 마련되며, 압전 진동 부재(2000)를 전자기기(1000) 상에 지지할 수 있다. 또한, 지지 부재(2300)는 압전 진동 부재(2000)에서 발생된 진동을 전자기기(1000)에 전달할 수 있다. 이러한 지지 부재(2300)는 진동판(2200)의 적어도 일 영역에 마련될 수 있다. 예를 들어, 지지 부재(2300)는 진동판(2200)의 길이 방향의 두 말단부에 각각 마련될 수 있다. 또한, 지지 부재(2300)는 진동판(2200)의 가장자리를 따라 대략 "ㅁ"자 형상으로 마련될 수도 있다. 물론, 지지 부재(2300)는 진동판(2200)의 가장자리의 두 영역의 이상의 영역에 소정 간격 이격되어 마련될 수 있다. 한편, 이러한 지지 부재(2300)의 내측으로 압전 소자(2100)가 마련될 수 있다. 즉, 도 10 및 도 11에 도시된 바와 같이 압전 소자(2100)는 지지 부재(2300)의 내측에 동일 수직 선분을 이루는 영역으로부터 내측으로 마련될 수 있다. 다시 말하면, 압전 소자(2100)는 지지 부재(2300) 사이의 공간보다 같거나 작은 크기로 마련될 수 있다. 이때, 압전 소자(2100)의 적어도 일부가 지지 부재(2300)와 중첩되는 영역 상에 마련될 경우 특성, 예를 들어 음압 및 저주파 특성의 적어도 하나가 저하될 수 있으므로, 압전 소자(2100)는 지지 부재(2300) 내측에 마련되는 것이 바람직하다. 한편, 지지 부재(2300)는 소정의 탄성을 갖는 연성 물질로 마련될 수 있다. 즉, 지지 부재(2300)는 압축 및 복원이 가능한 물질을 이용할 수 있다. 이러한 지지 부재(2300)는 경도가 5∼95(ASTM D2240 Shore A)인 물질, 바람직하게는 40∼90인 물질로 형성할 수 있다. 또한, 지지 부재(2300)의 경도는 진동판(2200)의 경도보다 같거나 낮다. 이를 위해 지지 부재(2300)은 예를 들어 실리콘, 겔, 고무, 우레탄 등을 이용하여 형성할 수 있다. 지지 부재(2300)가 경도가 높은 물질로 이루어진 경우 저역 특성이 저하되는 등의 문제가 발생할 수 있다.
4. 웨이트 부재
웨이트 부재(2400)는 도 11에 도시된 바와 같이 진동판(2200)의 소정 영역, 예를 들어 중앙 영역에 마련될 수 있다. 이때, 웨이트 부재(2400)는 압전 소자(2100)보다 짧은 길이로 마련될 수 있다. 그러나, 웨이트 부재(2400)는 도 12 및 도 13에 도시된 바와 같이 압전 소자(2100)보다 길거나 같은 길이로 마련될 수도 있다. 이렇게 진동판(2200)에 웨이트 부재(2400)가 결합되어 웨이트 부재(2400)의 무게가 실리면 진동체의 무게가 늘어난 결과가 되어 압전 진동 부재(2000)가 단독으로 진동할 때에 비해 공진 주파수는 감소하는 대신에 반면 진동력은 강화된다. 특히, 교류 구동 전압의 특정 주파수에서는 진동력이 최대로 증폭된다. 공진 주파수는 압전 진동 부재(2000), 웨이트 부재(2400) 등의 각 구성 요소의 물리적 재원과 물성적 특징에 따라 다른 값을 가질 수 있다. 진동체는 자신의 고유 진동수에서 진동을 할 때 가장 큰 진동을 일으킨다. 여기서, 압전 진동 부재(2000)의 두께를 얇게 하기 위해 웨이트 부재(2400)의 두께를 줄이고, 적어도 둘 이상의 웨이트 부재(2400)가 구비되도록 할 수 있다. 예를 들어, 도 11의 (a)에 도시된 바와 같이 하나의 웨이트 부재(2400)를 이용하는 경우에 비해 도 11의 (b)에 도시된 바와 같이 두께를 1/2 내지 1/3 등으로 줄이고, 이렇게 두께가 얇아진 웨이트 부재(2400)를 두개 또는 세개 결합하여 구성할 수도 있다. 따라서, 두께를 줄이면서 웨이트 부재(2400)의 질량은 그대로 유지하여 하나의 큰 웨이트 부재(2400)를 이용하는 경우와 동일하게 진동력을 향상시킬 수 있고, 두께를 줄일 수 있다.
한편, 웨이트 부재(2400)는 도 12 및 도 13에 도시된 바와 같이 소정의 길이와 너비, 그리고 두께를 갖는 대략 육면체의 형상을 갖는다. 또한, 웨이트 부재(2400)는 진동판(2000) 측으로 접촉부(2410)가 형성되고, 접촉부(2410)는 진동판(2000)과 접촉된다. 즉, 접촉부(2410)는 진동판(2000)의 일면과 대면하는 웨이트 부재(2400)의 두께 방향의 일면의 중앙부에 마련될 수 있으며, 그에 따라 진동판(2000)의 중앙부에 접촉될 수 있다. 접촉부(2410)는 수평을 이루도록 평탄하게 마련된 웨이트 부재(2400)의 일면 중앙부에 돌출되어 마련될 수 있고, 웨이트 부재(2400)의 일면이 가장자리로부터 중앙부로 소정 각도로 경사지게 형성되고 중앙부의 가장 높은 부분이 접촉부(2410)가 되어 진동판(2200)와 접촉될 수 있다. 이때, 접촉부(2410)와 진동판(2200)은 접착제 등에 따라 접착되어 고정될 수 있다. 즉, 웨이트 부재(2400)는 접촉부(2410)와 진동판(2200) 사이에 접착제가 마련되어 웨이트 부재(2400)가 압전 진동 부재(2000)에 1차 고정될 수 있다. 따라서, 접촉부(2410)가 진동판(2200)과 접촉되고, 웨이트 부재(2400)의 나머지 영역은 진동판(2200)과 이격될 수 있다. 그런데, 접착제의 종류 및 그에 따른 특성에 따라 접착제를 두껍게 도포해야 할 수도 있는데, 접착제 도포 두께에 따라 압전 진동 부재(2000)와 웨이트 부재(2400)의 간격이 멀어지고, 그에 따라 압전 진동 장치의 두께가 증가할 수 있다. 따라서, 접착제가 도포되는 영역, 즉 접촉부(2410)는 접착제의 도포 두께에 따라 내부로 움푹 파인 오목부(미도시)가 형성되고, 오목부 내측에 접착제가 도포될 수 있다. 한편, 접촉부(2410)는 웨이트 부재(2400)의 중앙부에 위치하지 않을 수도 있고 중앙부로부터 30% 이내에서 이동될 수 있다. 그에 따라 진동 주파수 및 변위를 조절할 수 있다. 이렇게 진동판(2200)과 결합되는 웨이트 부재(2400)는 진동판(2200)의 진동에 의해 그와 함께 진동하면서 자신의 무게를 그 진동에 실어준다. 한편, 웨이트 부재(2400)의 측면 및 상면에는 고정 부재(2500)가 수용되어 결합되는 수용 홈(2420)이 형성될 수 있다. 즉, 고정 부재(2500)가 접촉되는 웨이트 부재(2400)의 영역에는 오목하게 패인 수용 홈(2420)이 형성되고, 수용 홈(2420) 내에 고정 부재(2500)가 삽입되어 수용될 수 있다. 이러한 수용 홈(2420)은 고정 부재(2500)의 두께 정도의 깊이와 고정 부재(2500)의 폭 정도의 폭으로 형성될 수 있다. 따라서, 고정 부재(2500)가 수용 홈(2420)에 삽입된 후 웨이트 부재(2400)의 측면 및 상면은 고정 부재(2500)와 평면을 이룰 수 있다. 물론, 수용 홈(2420)은 고정 부재(2500)의 두께보다 큰 깊이로 형성될 수도 있고 작은 깊이로 형성될 수도 있다. 그러나, 수용 홈(2420)의 폭은 고정 부재(2500)의 폭으로 형성되고, 그에 따라 웨이트 부재(2400)가 움직이지 않도록 하는 것이 바람직하다. 이렇게 고정 부재(2500)가 수용 홈(2420) 내에 삽입되어 웨이트 부재(2400)를 더욱 견고하게 고정할 수 있다.
5. 고정 부재
고정 부재(2500)는 압전 진동 부재(2000)의 적어도 일 영역으로부터 웨이트 부재(2400)를 감싸도록 마련될 수 있다. 예를 들어, 고정 부재(2500)는 진동판(2200)의 X 방향의 두 측면, 즉 장변으로부터 연장되어 마련된 제 1 및 제 2 고정 부재(2510, 2520)를 포함할 수 있다. 이러한 고정 부재(2500)는 진동판(2200)과 일체로 마련될 수 있다. 물론, 고정 부재(2500)는 진동판(2200)과 별도로 제작된 후 진동판(2200)의 일 영역에 용접 등의 방법으로 고정될 수도 있다. 그러나, 고정 부재(2500)는 진동판(2200)과 일체로 제작되는 것이 바람직하다. 이러한 고정 부재(2500)는 웨이트 부재(2400)의 측면 및 상면을 감싸도록 형성되어 웨이트 부재(2400)는 압전 진동 부재(2000) 상에 고정시킬 수 있다. 즉, 고정 부재(2500)는 웨이트 부재(2400)의 측면 및 상면에 접촉되어 꺾어져 웨이트 부재(2400)를 접촉되어 감싸도록 형성될 수 있다. 웨이트 부재(2400)는 압전 진동 부재(2000) 상에 접착제 등에 의해 1차 고정되는데, 고정 부재(2500)가 웨이트 부재(2400)를 감싸 고정함으로써 웨이트 부재(2400)를 더욱 견고하게 고정할 수 있다. 한편, 고정 부재(2500)의 꺾어지는 부분의 적어도 일부는 고정 부재(2500)의 일부가 제거되어 다른 영역보다 폭이 좁거나 얇게 형성될 수 있다. 즉, 도 12에 도시된 바와 같이 진동판(2200)의 측면과 접촉되는 부분에 소정 폭이 제거되어 개구가 형성될 수 있다. 이렇게 고정 부재(2500)의 적어도 일부분이 제거됨으로써 고정 부재(2500)의 꺾임을 용이하게 할 수 있고, 그에 따라 웨이트 부재(2400)를 더욱 밀착하여 고정할 수 있다. 이러한 고정 부재(2500)는 진동판(2200)과 동일 재질로 형성될 수 있으며, 예를 들어 금속 재질로 형성될 수 있다. 한편, 고정 부재(2500)는 진동판(2200)의 양측에 한쌍 형성될 수도 있고, 둘 이상 복수의 쌍으로 형성될 수도 있다. 즉, 고정 부재(2500)는 진동판(2200)의 일 측면 및 이와 대향되는 타 측면에 각각 하나씩 형성될 수도 있고, 진동판(2200)의 일 측면 및 이와 대향되는 타 측면에 소정 간격 이격되어 복수 형성될 수도 있다. 고정 부재(2500)가 복수의 쌍으로 형성됨으로써 웨이트 부재(2400)를 복수의 영역에서 고정할 수 있고, 그에 따라 한쌍으로 고정하는 경우에 비해 웨이트 부재(2400)를 더욱 견고하게 고정할 수 있다. 한편, 고정 부재(2500)는 웨이트 부재(2400)의 길이에 대해 5% 내지 50%의 폭으로 형성될 수 있다. 즉, 고정 부재(2500)의 폭은 웨이트 부재(2400) 길이의 5% 내지 50%로 형성될 수 있다. 이는 하나의 고정 부재(2500)의 폭이 웨이트 부재(2400) 길이의 5% 내지 50%일 수 있고, 복수의 고정 부재(2500)의 폭의 합이 웨이트 부재(2400) 길이의 5% 내지 50%일 수 있다. 또한, 고정 부재(2500)는 서로 맞닿는 부분이 다양한 형상으로 형성될 수 있다. 즉, 제 1 고정 부재(2510)의 일 영역에 돌출부가 마련되고 타 영역에 오목부가 마련되며, 이와 대향되는 제 2 고정 부재(2520)는 제 1 고정 부재(2510)의 돌출부 및 오목부에 각각 대향되어 오목부 및 돌출부가 마련될 수 있다. 또한, 제 1 고정 부재(2510)에는 예를 들어 중앙부에 오목부가 마련되고 이에 대향되어 제 2 고정 부재(252)에는 볼록부가 마련될 수 있다. 그리고, 제 1 고정 부재(251)에는 둘 이상의 오목부가 마련되고 이에 대향되어 제 2 고정 부재(2520)에는 둘 이상의 볼록부가 마련될 수 있다. 또한, 제 1 및 제 2 고정 부재(2510, 2520)는 각각의 말단이 톱니 모양으로 형성되고 이들이 대향되어 결합될 수 있다. 이렇게 제 1 및 제 2 고정 부재(2510, 2520)의 서로 맞닿는 말단부를 다양한 형상으로 형성함으로써 제 1 및 제 2 고정 부재(2510, 2520)의 대면하는 면적을 증가시킬 수 있고, 그에 따라 웨이트 부재(2400)의 고정력을 더욱 증가시킬 수 있다. 한편, 고정 부재(2500)와 웨이트 부재(2400) 사이, 즉 고정 부재(2500)와 수용 홈(2420) 사이에는 접착제 또는 쿠션재가 마련될 수 있다. 접착제가 마련됨으로써 고정 부재(2500)와 웨이트 부재(2400)의 결합력을 향상시킬 수 있다. 또한, 쿠션재가 마련됨으로써 고정 부재(2500)와 웨이트 부재(2400)의 결합에 의한 충격을 완화시킬 수 있고, 진동에 의한 소음을 감소시킬 수 있다.
한편, 압전 진동 부재(2000)의 적어도 일부에 코팅층(미도시)이 더 형성될 수 있다. 코팅층은 파릴렌(parylene) 등의 방수 재료를 이용하여 형성될 수 있다. 파릴렌은 압전 소자(2100)가 진동판(2200) 상에 접합된 상태에서 압전 소자(2100)의 상면 및 측면과 압전 소자(2100)에 의해 노출된 진동판(2200)의 상면 및 측면에 형성될 수 있다. 즉, 파릴렌은 압전 소자(2100) 및 진동판(2200)의 상면 및 측면에 형성될 수 있다. 또한, 파릴렌은 압전 소자(2100)가 진동판(2200) 상에 접합된 상태에서 압전 소자(2100)의 상면 및 측면과 진동판(2200)의 상면, 측면 및 하면에 형성될 수 있다. 즉, 파릴렌은 압전 소자(2100) 및 진동판(2200)의 상면, 측면 및 하면에 형성될 수 있다. 그리고, 압전 소자(2100)가 진동판(2200)의 중앙부에 형성된 개구 상에 마련되는 경우 파릴렌은 압전 소자(2100)의 상면, 측면 및 개구에 의해 노출된 하면 상에 형성되고, 이와 동시에 진동판(2200)의 상면, 측면 및 하면에 형성될 수 있다. 이렇게 파릴렌이 압전 소자(2100) 및 진동판(2200)의 적어도 일면에 형성됨으로써 습기 침투를 방지할 수 있고 산화를 방지할 수 있다. 또한, 폴리머 등의 얇은 재질의 진동판(2200)을 이용하여 발생되는 편진동을 개선할 수 있고, 진동 소자의 경도 증가에 의한 응답 속도가 향상되어 깊은 음향 특성을 완화시키고 고음역을 안정화시킬 수 있다. 그리고, 파릴렌의 코팅 두께에 따라 공진 주파수를 조절할 수 있다. 물론, 파릴렌은 압전 소자(2100)에만 코팅될 수도 있는데, 압전 소자(2100)의 상면, 측면 및 하면에 코팅될 수 있고, 압전 소자(2100)와 연결되어 압전 소자(2100)에 전원을 공급하기 위한 FPCB에 코팅될 수도 있다. 파릴렌이 압전 소자(2100)에 형성됨으로써 압전 소자(2100)의 수분 침투를 방지할 수 있고 산화를 방지할 수 있다. 또한, 형성 두께를 조절함으로써 공진 주파수를 조절할 수 있다. 한편, 파릴렌이 FPCB 상에 형성되는 경우 FPCB와 솔더, 소자 이음부에서 발생되는 이상음을 개선할 수도 있다. 이러한 파릴렌은 압전 소자(2100) 또는 진동판(2200)의 재질과 특성에 따라 두께를 다르게 하여 코팅될 수 있는데, 압전 소자(2100) 또는 진동판(2200)의 두께보다 얇게 형성될 수 있으며, 예를 들어 0.1㎛∼10㎛의 두께로 형성될 수 있다. 이렇게 파릴렌을 코팅하기 위해 예를 들어 파릴렌을 기화기(Vaporizer)에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 압전 진동 부재(2000)의 적어도 일면 상에 코팅될 수 있다.
실험 예
압전 소자(2100)의 위치 및 지지 부재(2300)의 재질에 따른 압전 진동 부재(2000)의 특성을 실험하였다. 먼저, 압전 소자(2100)의 위치에 따른 특성을 실험하기 위해 비교 예 및 본 발명의 실시 예들에 따른 압전 진동 부재를 구현하였다. 즉, 비교 예에 따른 압전 진동 부재는 도 14의 (a)에 도시된 바와 같이 압전 소자(2100)가 지지 부재(2300) 상에 적어도 일부 중첩되도록 마련하였고, 실시 예 1에 따른 압전 진동 부재는 도 14의 (b)에 도시된 바와 같이 압전 소자(2100)의 가장자리가 지지 부재(2300)의 내측면에 수직을 이루도록 마련하였다. 또한, 실시 예 2에 따른 압전 진동 부재는 도 14의 (c)에 도시된 바와 같이 압전 소자(2100)가 지지 부재(2300)의 내측에 위치하도록 마련하였다. 즉, 비교 예는 압전 소자(2100)의 길이가 지지 부재(2300) 사이의 거리보다 길게 마련하였으며, 실시 예 1은 압전 소자(2100)의 길이가 지지 부재(2300) 사이의 거리와 같게 마련하였으며, 실시 예 2는 압전 소자(2100)의 길이가 지지 부재(2300) 사이의 거리보다 짧게 마련하였다. 한편, 비교 예와 실시 예 1 및 2는 압전 소자(2100)의 위치 및 길이만 다를 뿐 나머지는 동일한 조건에서 실험하였다. 즉, 압전 소자(2100)의 재질 및 두께, 진동판(2200)의 재질 및 크기, 지지 부재(2300)의 재질 및 크기, 그리고 웨이트 부재(2400)의 재질 및 크기 등을 모두 동일하게 하였다.
이러한 비교 예 및 실시 예들에 따른 압전 진동 부재의 특성을 도 15에 도시하였다. 도시된 바와 같이 비교 예에 비해 실시 예 1 및 2의 음압이 상승함을 알 수 있다. 또한, 실시 예 2가 실시 예 1에 비해 음압이 상승함을 알 수 있다. 이로부터 압전 소자(2100)가 지지 부재(2300)로부터 멀수록 음압이 상승함을 알 수 있다. 즉, 도시하지는 않았지만, 실시 예 2보다 더 작은 압전 소자(2100)를 이용하는 경우 음압 특성은 더 좋아지게 된다. 또한, 제시하지는 않았지만, 비교 예보다 압전 소자(2100)의 크기가 커 지지 부재(2300)와 압전 소자(2100)가 완전히 중첩되는 경우 비교 예와 유사하거나 더 낮은 음압 특성을 나타낸다.
도 16은 지지 부재의 재질에 따른 주파수 특성을 나타낸 그래프이다. 비교 예는 지지 부재로서 경도가 높은 폴리카보네이트(Polycarbonate; PC)를 이용하였고, 실시 예는 지지 부재로서 경도가 낮은 실리콘을 이용하였다. 지지 부재의 재질 이외에 나머지 조건은 비교 예 및 실시 예를 동일하게 하였다. 즉, 압전 소자(2100)의 재질, 길이 및 두께, 진동판(2200)의 재질 및 크기, 지지 부재(2300)의 재질 및 크기, 웨이트 부재(2400)의 재질 및 크기, 그리고 압전 소자(2100)가 지지 부재(2300) 내측에 동일하게 위치하는 등을 모두 조건을 동일하게 하였다. 도 16에 도시된 바와 같이 경도가 높은 지지 부재를 이용한 비교 예에 비해 경도가 낮은 지지 부재를 이용한 실시 예의 저역 특성이 향상됨을 알 수 있다.
이어서, 본 발명의 압전 진동 부재(2000)로 이용되는 압전 소자(2100)에 대해 도면을 이용하여 상세히 설명하면 다음과 같다. 도 17 및 도 18은 본 발명의 일 예에 따른 압전 소자의 사시도 및 단면도이고, 도 19는 본 발명의 다른 실시 예에 따른 압전 소자의 단면도이다. 또한, 도 20 및 도 21은 본 발명의 다른 에에 따른 압전 소자를 설명하기 위한 도면이다.
2.1. 압전 소자의 일 예
도 17에 도시된 바와 같이, 압전 소자(2100)는 소정의 두께를 갖는 판 형상으로 마련될 수 있다. 예를 들어, 압전 소자(2100)는 0.1㎜∼1㎜의 두께를 가질 수 있다. 그러나, 압전 진동 장치의 크기 등에 따라 압전 소자(2100)의 두께는 상기 두께 범위 이하이거나 이상일 수 있다. 또한, 압전 소자(2100)는 대략 사각형의 형상을 가질 수 있는데, 이때 길이가 폭보다 길거나 같을 수 있다. 예를 들어, X 방향으로의 길이와 Y 방향으로의 폭의 비율이 5:5∼9:1일 수 있다. 이때, 압전 소자(2100)는 진동판(2200)보다 작거나 같은 사이즈로 마련될 수 있는데, X 방향으로의 길이가 진동판(2200)의 길이보다 짧거나 같고, Y 방향으로의 폭이 진동판(2200)의 폭보다 짧거나 같도록 마련될 수 있다. 물론, 압전 소자(2100)는 압전 진동 장치의 형태에 따라 원형, 타원형 등 다양한 형상으로 마련될 수 있다.
이러한 압전 소자(2100)는 도 18에 도시된 바와 같이 베이스(2110)와, 베이스(2110)의 적어도 일면 상에 마련된 적어도 하나의 압전층(2120)과, 압전층(2120) 상에 형성된 적어도 하나의 내부 전극(2130)을 포함할 수 있다. 즉, 압전 소자(2100)는 베이스(2110)의 양면에 압전층(2120)이 형성된 바이모프 타입으로 형성될 수도 있고, 베이스(2110)의 일면에 압전층(2120)이 형성된 유니모프 타입으로 형성될 수도 있다. 또한, 변위와 진동력을 증가시키고, 저전압 구동을 가능하게 하기 위해 베이스(2110)의 일면 상에 압전층(2120)을 복수로 적층하고 유니모프 타입으로 형성할 수도 있다. 예를 들어, 도 18에 도시된 바와 같이 베이스(2110)의 일면 및 타면 상에 복수의 압전층(2121 내지 2128; 2120)이 적층 형성되고, 압전층(2120) 사이에 도전층이 형성되어 복수의 내부 전극(2131 내지 2138; 2130)이 형성될 수 있다. 또한, 도전층은 압전층(2120)의 표면에 형성되어 표면 전극(2139)이 형성될 수 있다. 한편, 내부 전극(2130)의 적어도 하나는 베이스(2110)의 표면 상에 형성될 수도 있는데, 이때 베이스(2110)는 절연성 물질로 이루어질 수 있다. 또한, 압전 소자(2100)는 내부 전극(2130)과 연결되도록 적층체의 외부에 형성된 외부 전극(2141, 2142; 2140)을 더 포함할 수도 있다.
베이스(2110)는 압전층(2120)이 적층된 구조를 유지하면서 진동이 발생할 수 있는 특성을 갖는 물질을 이용할 수 있다. 예를 들어, 베이스(2110)는 금속, 플라스틱, 절연성 세라믹 등을 이용할 수 있다. 한편, 베이스(2110)는 금속, 플라스틱, 절연성 세라믹 등의 압전층(2120)과 이종의 물질을 이용하지 않을 수 있다. 즉, 베이스(2110)는 분극되지 않은 압전층을 이용하여 마련될 수도 있다. 이때, 베이스(2110)가 분극되지 않은 압전층 또는 금속으로 마련될 경우 베이스(2110)의 표면에는 내부 전극(2130)이 형성되지 않을 수 있다. 한편, 분극되지 않은 압전층으로 마련된 베이스(2110)는 그 상측 및 하측에서 역방향으로 동작하는 각각의 압전층(2120)의 경계로 작용할 수도 있다. 예를 들어, 베이스(2110)를 기준으로 하측의 압전층들(2121 내지 2124)이 수축할 때 상측의 압전층들(2125 내지 2128)이 팽창하여 서로 반대 방향으로 동작할 수 있다. 베이스(2110)는 압전 소자(2100) 전체 두께 대비 1/3 내지 1/150의 두께로 마련될 수 있다. 예를 들어, 압전 소자(2100)의 두께가 300㎛일 경우 베이스(2110)의 두께는 2㎛ 내지 100㎛일 수 있다. 이때, 베이스(2110)의 두께는 압전층(2120) 전체의 두께보다 얇고, 복수로 적층된 압전층(2120) 각각의 두께보다 얇거나 같을 수 있다. 물론, 베이스(2110)의 두께가 압전층(2120) 각각의 두께보다 두꺼울 수도 있다. 그러나, 베이스(2110)가 두꺼울수록 압전층(2120)의 두께가 얇아지거나 압전층(2120)의 적층 수가 적어지므로 압전 현상이 적게 발생할 수 있다. 따라서, 베이스(2110)의 두께는 압전층(2120) 전체의 두께보다 얇고 복수로 이루어진 압전층(2120) 각각의 두께보다 얇거나 같은 것이 바람직하다. 한편, 베이스(2110)는 압전 소자(2100)의 중앙부 뿐만 아니라 상부 또는 하부에 마련될 수 있다. 즉, 베이스(2110)는 압전 소자(2100)의 상부 표면 또는 하부 표면에 마련될 수 있다. 베이스(2110)가 압전 소자(2100)의 일 표면에 마련되면 베이스(2110)의 일면 상에 복수의 압전층(2120) 및 내부 전극(2130)이 적층될 수 있다. 즉, 베이스(2110)가 복수의 압전층(2120) 및 내부 전극(2130)을 형성하기 위한 지지층으로 이용될 수 있다. 또한, 베이스(2110)는 압전 소자(2100) 내부에 둘 이상 마련될 수도 있다. 예를 들어, 베이스(2110)는 압전 소자(2100)의 상부 및 하부에 각각 마련되거나, 압전 소자(2100)의 상부, 중앙부 및 하부에 각각 마련될 수도 있다. 물론, 압전 소자(2100)의 상부 및 하부의 어느 하나와 중앙부에 베이스(2110)가 마련될 수도 있다. 한편, 압전 소자(2100)의 상부 및 하부에 마련되는 베이스(2110)는 절연성 물질로 이루어질 수 있고, 절연성 베이스(2110)에 의해 표면 전극(2139) 및 내부 전극(2130)의 산화가 방지될 수 있다. 즉, 절연성 베이스(2110)가 표면 전극(2139)를 덮도록 마련될 수 있고, 절연성 베이스(2110)에 의해 산소 또는 수분 등의 침투가 방지되어 표면 전극(2139) 및 내부 전극(2130)의 산화가 방지될 수 있다. 이렇게 둘 이상의 베이스(2110)가 마련되는 경우에도 베이스(2110)의 전체 두께는 압전층(2120) 전체 두께보다 얇은 것이 바람직하다.
압전층(2120)은 예를 들어 PZT(Pb, Zr, Ti), NKN(Na, K, Nb), BNT(Bi, Na, Ti) 계열의 압전 물질을 이용하여 형성할 수 있다. 그러나, 압전층(2120)은 이러한 물질에 한정되지 않고 다양한 압전 물질을 이용할 수 있다. 즉, 압전층(2120)은 압력을 가하면 전압이 발생하고, 전압을 가하면 압력 변화로 인한 부피나 길이의 증감이 발생하는 다양한 종류의 압전 물질을 이용할 수 있다. 한편, 압전층(2120)은 적어도 일 영역에 형성된 적어도 하나의 기공(미도시)을 포함할 수 있다. 이때, 기공은 적어도 하나의 크기 및 형상으로 형성될 수 있다. 즉, 기공은 불규칙한 형상 및 크기로 불규칙하게 분포될 수 있다. 또한, 압전층(2120)은 적어도 일 방향으로 분극될 수 있다. 예를 들어, 인접한 두 압전층(2120)이 서로 다른 방향으로 분극될 수 있다. 즉, 서로 다른 방향으로 분극된 복수의 압전층(2120)이 교대로 적층될 수 있다. 예를 들어, 제 1, 제 3, 제 6 및 제 8 압전층(2121, 2123, 2126, 2128)이 하측 방향으로 분극되고, 제 2, 제 4, 제 5 및 제 7 압전층(2122, 2124, 2125 및 2127)이 상측 방향으로 분극될 수 있다.
내부 전극(2130)은 외부로부터 인가되는 전압을 압전층(2120)에 인가하기 위해 마련될 수 있다. 즉, 내부 전극(2130)은 압전층(2120)의 분극을 위한 제 1 전원 및 압전층(2120)의 구동을 위한 제 2 전원을 압전층(2120)에 인가할 수 있다. 분극을 위한 제 1 전원 및 구동을 위한 제 2 전원은 외부 전극(2140)을 통해 내부 전극(2130)으로 인가될 수 있다. 이러한 내부 전극(2130)은 압전 소자(2100) 외부에 형성된 외부 전극(2140)과 교대로 연결되도록 형성될 수 있다. 즉, 제 1, 제 3, 제 5 및 제 7 내부 전극(2131, 2133, 2135, 2137)은 제 1 외부 전극(2141)과 연결되고, 제 2, 제 4, 제 6 및 제 8 내부 전극(2132, 2134, 2136, 2138)은 제 2 외부 전극(2142)과 연결될 수 있다. 또한, 내부 전극(2130)은 도전성 물질로 형성될 수 있는데, 예를 들어 Al, Ag, Au, Pt, Pd, Ni, Cu 중 어느 하나 이상의 성분을 포함하는 금속 또는 금속 합금으로 형성될 수 있다. 합금의 경우 예를 들어 Ag와 Pd 합금을 이용할 수 있다. 한편, Al은 소성 중 표면에 알루미늄 옥사이드(Al2O3)가 형성되고 내부는 Al을 유지할 수 있다. 즉, Al을 압전층(2120) 상에 형성할 때 공기와 접촉하게 되는데, 이러한 Al은 이후 공정에서 표면이 산화되어 Al2O3가 형성되고, 내부는 Al을 그대로 유지한다. 따라서, 내부 전극(2130)은 표면에 다공성의 얇은 절연층인 Al2O3로 피복된 Al로 형성될 수 있다. 물론, Al 이외에 표면에 절연층, 바람직하게는 다공성의 절연층이 형성되는 다양한 금속이 이용될 수 있다. 한편, 내부 전극(2130)은 예를 들어 1㎛∼10㎛의 두께로 형성될 수 있다. 여기서, 내부 전극(2130)은 적어도 일 영역의 두께가 다르게 형성될 수도 있고, 적어도 일 영역이 제거되어 형성될 수 있다. 즉, 동일 내부 전극(2130)은 적어도 일 영역의 두께가 불균일하여 다른 영역보다 얇거나 두껍게 형성될 수도 있고, 적어도 일 영역이 제거되어 압전층(2120)이 노출되도록 형성될 수도 있다. 그러나, 내부 전극(2130)의 적어도 일 영역의 두께가 얇거나 적어도 일 영역이 제거되더라도 전체적으로 연결된 상태를 유지하므로 전기 전도성에는 전혀 문제가 발생되지 않는다. 또한, 다른 내부 전극(2130)은 동일 영역에서 서로 다른 두께로 형성되거나 서로 다른 형상으로 형성될 수 있다. 즉, 복수의 내부 전극(2130) 중에서 수직 방향으로 소정의 길이 및 폭에 해당하는 동일 영역의 적어도 하나의 내부 전극(2130)이 다른 내부 전극(2130)과는 다른 두께로 형성될 수 있고, 다른 형상으로 형성될 수 있다. 여기서, 다른 형상은 오목하거나 볼록하거나 패인 형상 등으로 포함할 수 있다. 또한, 내부 전극(2130)은 X 방향의 길이 및 Y 방향의 폭이 압전 소자(2100)의 길이 및 폭보다 작게 형성될 수 있다. 즉. 내부 전극(2130)은 압전층(2120)의 길이 및 폭보다 작게 형성될 수 있다. 예를 들어, 내부 전극(2130)은 압전층(2120)의 길이의 10% 내지 97%의 길이와 10% 내지 97%의 폭으로 형성될 수 있다. 또한, 내부 전극(2130)은 압전층(2120) 각각의 면적 대비 10% 내지 97%의 면적으로 각각 형성될 수 있다. 한편, 압전 소자(2100)는 내부 전극(2130) 사이의 거리가 전체 두께 대비 1/3 내지 1/100일 수 있다. 즉, 내부 전극(2130) 사이의 압전층(2120) 각각의 두께는 압전 소자(2100) 전체 두께의 1/3 내지 1/100일 수 있다. 예를 들어, 압전 소자(2100) 두께가 300㎛일 경우 내부 전극(2130) 사이의 거리, 즉 압전층(2120) 각각의 두께는 3㎛ 내지 100㎛일 수 있다. 내부 전극(2130) 사이의 거리, 즉 압전층(2120)의 두께에 의해 구동 전압이 변경될 수 있으며, 내부 전극(2130) 사이의 거리가 가까울수록 구동 전압은 감소될 수 있다. 그런데, 내부 전극(2130) 사이의 거리, 즉 압전층(2120)의 두께가 압전 소자(2100) 전체 두께의 1/3을 초과할 경우 구동 전압이 증가하게 되고, 그에 따라 높은 구동 전압을 생성하기 위한 고비용의 구동 IC가 필요하게 되어 원가 상승의 원인이 될 수 있다. 또한, 내부 전극(2130) 사이의 거리, 즉 압전층(2120)의 두께가 압전 소자(2100) 전체 두께의 1/100 미만이면 공정상 두께 편차 발생 빈도가 높고 그에 따라 압전층(2120)의 두께가 일정하지 않아 특성 저하의 문제가 발생될 수 있다.
외부 전극(2140)은 압전층(2120)의 구동 전압을 인가하기 위해 형성될 수 있다. 이를 위해 외부 전극(2140)은 적층체의 적어도 일 표면에 형성되며, 내부 전극(2130)과 연결될 수 있다. 예를 들어, 외부 전극(2140)은 X 방향, 즉 길이 방향으로 적층체의 대향되는 두 면에 각각 형성될 수 있다. 물론, 외부 전극(2140)은 서로 대향되는 두 면과, 이와 인접한 적어도 한 면에 연장 형성될 수 있다. 또한, 외부 전극(2140)은 적층체를 관통하여 적층체 내부로 형성될 수도 있다. 이러한 외부 전극(2140)은 인쇄, 증착, 스퍼터링, 도금 등의 방법을 이용하여 형성할 수 있으며, 적어도 하나의 층으로 형성될 수 있다. 예를 들어, 외부 전극(2140)은 적층체와 접촉되는 제 1 층이 도전성 페이스트를 이용한 인쇄 방법으로 형성되고, 그 상부에 제 2 층이 도금 방법으로 형성될 수 있다. 또한, 내부 전극(2130)과 연결되는 외부 전극(2140)의 적어도 일부 영역은 내부 전극(2130)과 동일 재질의 물질로 형성될 수 있다. 예를 들어, 내부 전극(2130)이 구리로 형성되고, 적층체의 표면에 형성되며 내부 전극(2130)과 접촉되는 외부 전극(2140)의 제 1 층이 구리로 형성될 수 있다.
한편, 본 발명은 베이스(2110)를 구비하지 않을 수도 있다. 즉, 도 19에 도시된 바와 같이 베이스(2110)를 구비하지 않고 복수의 압전층(2120)과 복수의 내부 전극(2130)이 교대로 적층될 수 있다. 이 경우 일 내부 전극(2130)에 의해 상측 및 하측 압전층(2120)의 동작이 구분될 수 있다. 예를 들어, 압전층(2120)과 내부 전극(2130)의 적층 방향, 즉 수직 방향으로 중앙부에 마련된 내부 전극(2134) 상측의 압전층(2124, 2125, 2126)이 수축할 때 내부 전극(2134) 하측의 압전층(2121, 2122, 2123)은 팽창할 수 있다. 물론, 복수의 압전층(2120)이 서로 다른 방향으로 분극되어 마련되므로 두 압전층(2120) 사이의 내부 전극(2130)을 기준으로 그 하측 및 상측의 압전층(2120)이 서로 다른 동작을 할 수도 있다. 예를 들어, 내부 전극(2132)를 기준으로 그 상측의 압전층(2122)이 팽창하고 그 하측의 압전층(2121)이 수축할 수 있다. 한편, 베이스(2110)를 구비하지 않는 경우 외부 전극(2140) 중 어느 하나, 예를 들어 제 2 외부 전극(2142)은 분극을 위해 중심부의 내부 전극(2134)를 기준으로 상측 및 하측으로 분리되어 1차로 형성되고(2142a, 2142b) 분극이 완료된 후 이들을 연결하도록 2차로 형성(2142c)될 수 있다. 즉, 제 2 외부 전극(2142)은 수직 방향으로 이격되어 도 19(a)에 도시된 바와 같이 1차 외부 전극(2142a, 2142b)이 형성되고 분극 후 1차 외부 전극(2142a, 2142b)이 연결되도록 도 19(b)에 도시된 바와 같이 2차 외부 전극(2142c)이 형성될 수 있다.
2.2. 압전 소자의 다른 예
한편, 압전층(2120)은 압전 물질로 형성되는 배향 원료 조성물과, 배향 원료 조성물 내에 분포하며 ABO3(A는 2가의 금속 원소, B는 4가의 금속 원소)의 일반식을 가지는 산화물로 형성되는 시드 조성물을 포함하는 압전 세라믹 조성물을 소결하여 형성된 압전 세라믹 소결체를 이용할 수도 있다. 즉, 압전 소자(2100)는 베이스(2110)과, 베이스(2110)의 적어도 일면 상에 형성된 압전층(2120) 및 내부 전극(2130)을 포함하며, 압전층(2120)이 시드 조성물을 포함하는 압전 세라믹 소결체를 포함할 수 있다. 여기서, 배향 원료 조성물은 페로브스카이트(perovskite) 결정 구조를 가지는 압전 물질로 형성될 수 있다. 또한, 배향 원료 조성물은 페로브스카이트 결정 구조와 다른 결정 구조를 가지는 물질이 고용체를 형성하는 조성물을 이용할 수 있는데, 예를 들어 정방정계 구조를 가지는 PbTiO3[PT]와 능면체 구조를 가지는 PbZrO3[PZ]가 고용체를 형성하는 PZT계 물질을 이용할 수 있다.
그리고, 배향 원료 조성물은 PZT계 물질에 릴랙서(relaxor)로서 Pb(Ni,Nb)O3[PNN], Pb(Zn,Nb)O3[PZN] 및 Pb(Mn,Nb)O3[PMN] 중 적어도 하나를 고용한 조성물을 사용하여 PZT계 물질의 특성을 향상시킬 수 있다. 예를 들어, PZT계 물질에 PZN계 물질과 PNN계 물질을 이용하여 높은 압전 특성과 낮은 유전율 및 소결 용이성을 갖는 PZNN계 물질을 릴랙서로서 고용하여 배향 원료 조성물을 형성할 수 있다. PZT계 물질에 PZNN계 물질을 릴랙서로서 고용한 배향 원료 조성물은 (1-x)Pb(Zr0.47Ti0.53)O3-xPb((Ni1-yZny)1/3Nb2/3)O3의 조성식을 가질 수 있다. 여기서, x는 0.1<x<0.5 범위 내의 값을 가질 수 있으며, 바람직하게는 0.30≤x≤0.32 범위 내의 값을 가질 수 있으며, 가장 바람직하게는 0.31의 값을 가질 수 있다. 또한, y는 0.1<y≤0.9 범위 내의 값을 가질 수 있으며, 바람직하게는 0.39≤y≤0.41 범위 내의 값을 가질 수 있으며, 가장 바람직하게는 0.40의 값을 가질 수 있다.
압전 세라믹 소결체의 경우 상 공존 경계(Morphotropic Phase Boundary: MPB) 영역에서 압전 특성의 급격한 향상이 나타나므로 압전 특성 향상을 위하여 MPB 부근의 조성을 찾아야 한다. 시드 조성물을 첨가하여 소결되는 배향 원료 조성물의 조성은 시드 조성물이 첨가되지 않았을 때와 다른 상을 가지게 되고, 시드 조성물의 첨가량에 따라 새로운 MPB 조성을 형성함으로써 우수한 압전 특성을 유도할 수 있다. 이러한 MPB 조성은 배향 원료 조성물의 x 값과 y 값을 변화시켜 조절 가능하며, 상기와 같이 x가 0.31의 값을 가지고, y가 0.40의 값을 가지는 경우 가장 높은 압전 특성 및 유전 특성을 가지므로 가장 바람직하게 된다.
또한, 배향 원료 조성물은 납(Pb)을 포함하지 않는 무연계 압전 물질을 사용할 수도 있다. 이와 같은 무연계 압전 물질로는 Bi0.5K0.5TiO3, Bi0.5Na0.5TiO3, K0.5Na0.5NbO3, KNbO3, NaNbO3, BaTiO3, (1-x)Bi0.5Na0.5TiO3-xSrTiO3, (1-x)Bi0.5Na0.5TiO3-xBaTiO3, (1-x)K0.5Na0.5NbO3-xBi0.5Na0.5TiO3, BaZr0.25Ti0.75O3 등 중에서 선택된 적어도 하나의 압전 물질을 포함하는 무연계 압전 물질일 수 있다.
시드 조성물은 ABO3의 일반식을 가지는 산화물로 형성되는데, ABO3는 배향성을 갖는 판 형상의 페로브스카이트(perovskite) 구조를 가지는 산화물로 A는 2가의 금속 원소로 이루어지며, B는 4가의 금속 원소로 이루어진다. ABO3의 일반식을 가지는 산화물로 형성되는 시드 조성물은 CaTiO3, BaTiO3, SrTiO3, PbTiO3 및 Pb(Ti,Zr)O3 중 적어도 하나를 포함할 수 있으며, 이 중 BaTiO3를 시드 조성물로 사용하는 경우 압전 성능을 향상시킬 수 있다. 시드 조성물로 BaTiO3를 사용하는 경우, BaTiO3는 오르빌리우스(aurivillius) 판상 구조체인 Bi4Ti3O12를 염용융 합성법으로 합성하고, 구조 화학적 미세 결정 치환(TMC: Topochemical Microcrystal Conversion)을 통하여 치환하여 제조될 수 있다. 여기서, 시드 조성물은 배향 원료 조성물에 대하여 1vol% 내지 10vol%의 부피비로 포함될 수 있다. 시드 조성물이 배향 원료 조성물에 대하여 1vol% 미만으로 포함되면 시드 조성물에 의하여 결정 배향성이 향상되는 효과가 미미하며, 10 vol%를 초과하여 포함되면 압전 세라믹 소결체의 압전 성능이 저하된다. 여기서, 시드 조성물이 배향 원료 조성물에 대하여 10 vol%로 포함되는 경우 변위(strain)량이 극대화되고 최적의 압전 특성을 나타낼 수 있다.
상기와 같이 배향 원료 조성물 및 시드 조성물을 포함하는 압전 세라믹 조성물은 판상 입형 성장법(TGG: Templated Grain Growth)에 의하여 시드 조성물과 동일한 방향성을 가지며 성장하게 된다. 즉, 압전 세라믹 소결체는, 예를 들어 0.69Pb(Zr0.47Ti0.53)O3-0.31Pb((Ni0.6Zn0.4)1/3Nb2/3)O3의 조성식을 가지는 배향 원료 조성물에 BaTiO3를 시드 조성물로 사용함으로써 1000℃ 이하의 낮은 온도에서도 소결이 가능할 뿐만 아니라, 결정 배향성을 향상시키고, 전기장에 따른 변위량을 극대화할 수 있어 단결정 물질과 유사한 높은 압전 특성을 가지게 된다. 즉, 배향 원료 조성물에 결정 배향성을 향상시키는 시드 조성물을 첨가하고 이를 소결하여 압전 세라믹 소결체를 제조함으로써, 전기장에 따른 변위량을 극대화하고, 압전 특성을 현저하게 향상시킬 수 있다.
또한, 본 발명의 다른 실시 예에 따른 압전 세라믹 소결체는 로트게링 배향도(Lotgering factor)가 85% 이상의 값을 가질 수 있다.
도 20의 (a)는 로트게링 배향도 별 전기장에 따른 변형률을 나타내는 그래프이고, 도 20의 (b)는 로트게링 배향도 별 변형률의 증가율을 도시한 표이다. 또한, 도 21은 로트게링 배향도에 따른 압전 상수(d33)를 나타내는 그래프이다.
도 20을 참조하면, 압전 세라믹 소결체는 로트게링 배향도가 높은 값을 가질 수록 변형률이 증가하는 것을 알 수 있다. 즉, 결정 배향이 이루어지지 않은 압전 세라믹 소결체(Normal)의 경우 전기장에 따른 변형률은 0.165%의 값을 가진다. 이러한 압전 세라믹 소결체에 대하여 판상 입형 성장법에 의하여 결정 배향성을 증가시키는 경우, 63%의 로트게링 배향도 값을 가지는 압전 세라믹 소결체에서는 변형률이 0.106%로 약 35.76% 감소하나, 로트게링 배향도 값이 75%, 85%, 90%의 값으로 증가함에 따라 변형률도 0.170%, 0.190%, 0.235% 값으로 증가하는 것을 알 수 있다.
압전 세라믹 소결체의 로트게링 배향도는, 최대값인 100%에 대하여 85% 이상의 값을 가지는 경우 전기장에 따른 변형률의 증가율이 급격하게 증가한다. 즉, 압전 세라믹 소결체의 로트게링 배향도가 75%에서 85%로 증가하는 경우 변형률의 증가율은 약 12%의 값을 가지나, 로트게링 배향도가 85%에서 90%로 증가하는 경우 변형률의 증가율은 약 27%의 값을 가지게 되어 약 4배 이상의 증가율을 보임을 알 수 있다.
또한, 압전 세라믹 소결체는 로트게링 배향도가 85% 이상의 값을 가지는 경우 압전 상수(d33)의 값이 급격하게 증가한다. 압전 상수(d33)는 재료에 압력을 가했을 때 압력 방향으로 발생한 전하의 양을 나타내는 것으로 압전 상수(d33)가 높은 값을 가질수록 감도가 좋은 고정밀의 압전 소자를 제조할 수 있다. 도 21에 도시된 바와 같이, 압전 세라믹 소결체의 로트게링 배향도가 75%에서 85%로 증가하는 경우 압전 상수(d33)는 345 pC/N에서 380 pC/N으로 약 35 pC/N 증가함을 알 수 있다. 그러나, 압전 세라믹 소결체의 로트게링 배향도가 85%에서 90%로 증가하는 경우 압전 상수(d33)는 380 pC/N에서 430 pC/N으로 약 50 pC/N 증가하게 되어, 3배 이상의 증가율을 나타낸다. 따라서, 본 발명의 실시 예에 따른 압전 세라믹 소결체의 경우, 페로브스카이트(perovskite) 결정 구조를 가지는 압전 물질로 형성되는 배향 원료 조성물과 상기 배향 원료 조성물 내에 분포하며, ABO3(A는 2가의 금속 원소, B는 4가의 금속 원소)의 일반식을 가지는 산화물로 형성되는 시드 조성물에 의하여 압전 세라믹 소결체를 제조함으로써 85% 이상의 로트게링 배향도(Lotgering factor)를 가지는 압전 세라믹 소결체를 제조하고, 향상된 변형률과 높은 감도를 가지는 압전 소자를 제조할 수 있게 된다.
이러한 본 발명에 따른 시드 조성물이 포함된 압전층의 특성(실시 예)을 시드 조성물이 포함되지 않은 압전층의 특성(비교 예)과 비교하였다. 실시 예를 위해 순도 98% 이상의 PbO, ZrO2, TiO2, ZnO, NiO, Nb2O5 분말을 이용하여 0.69Pb(Zr0.47Ti0.53)O3-0.31Pb((Ni0.6Zn0.4)1/3Nb2/3)O3의 배향 원료 조성물을 합성하였다. 또한, 오르빌리우스 판상 구조체인 Bi4Ti3O12를 염용융 합성법으로 합성하고, 구조 화학적 미세 결정 치환을 통하여 BaTiO3 시드 조성물을 합성하였다. 이러한 배향 원료 조성물에 시드 조성물이 10vol% 포함되도록 혼합하고 사출 및 성형하여 압전 시편을 제조하였다. 또한, 압전 시편을 분당 5℃로 승온하여 950℃에서 10시간 동안 소결 공정을 진행하였다. 이에 비해, 비교 예는 시드 조성물로서 BaTiO3를 첨가하지 않은 점에서만 차이가 있을 뿐 실시 예와 동일하게 제조되었다. 즉, 비교 예는 BaTiO3를 투입하지 않아 시드 조성물이 없는 압전 시편을 제조하였다.
도 22는 비교 예와 실시 예의 압전 세라믹 소결체 즉, 비교 예의 압전 시편(ⓐ)과 실시 예의 압전 시편(ⓑ)의 표면 X선 회절 패턴들을 각각 나타내는 그래프이다. 본 그래프에서의 배향 정도는 로트게링 배향도(Lotgering factor)의 계산식에 따라 계산하였으며, 로트게링 배향도를 계산하는 계산식 및 구체적 과정에 대한 설명은 생략하기로 한다. 도 22에 도시된 바와 같이, 비교 예의 압전 시편(ⓐ)은 표면에서 모든 결정 방향으로 성장되었으며, 특히 (110) 평면의 법선 방향으로 결정이 두드러지게 성장하였음을 알 수 있다. 반면, 실시 예의 압전 시편(ⓑ)은 표면에서 (001) 평면의 법선 방향 및 동일한 방향을 가지는 (002) 평면의 법선 방향으로만 결정이 성장되어 있음을 알 수 있으며, 비교 예의 (110) 평면의 법선 방향으로는 결정 성장이 억제되어 있다. 또한, 본 그래프의 높이는 X선 피크의 강도를 나타내며, 각 X선 피크 강도로부터 실시 예의 압전 시편(ⓑ)의 경우 로트게링 배향도가 95.3%의 값을 가지는 것을 알 수 있었다. 이를 통하여 시드 조성물이 포함된 압전 세라믹 소결체는 (001) 방향으로 배향 성장되어 결정 배향성이 현저하게 향상되었음을 확인할 수 있다.
도 23은 압전 세라믹 소결체의 스캔 전자 현미경 이미지를 나타내는 이미지이다. 즉, 도 23의 (a)는 비교 예에 의하여 제조된 압전 시편의 단면 이미지이고, 도 23의 (b)는 실시 예에 의하여 제조된 압전 시편의 단면 이미지이다. 도 23의 (a)에 나타난 바와 같이, 시드 조성물이 첨가되지 않은 압전 세라믹 소결체의 경우 입자가 육각형의 형상으로 성장되었음을 알 수 있다. 이는 결정이 다수의 평면 방향으로 각각 성장하는 도 22의 결과와도 일치한다. 반면, 도 23의 (b)에 나타난 바와 같이 시드 조성물이 첨가된 압전 세라믹 소결체는 수평 위치된 시드 조성물(도 23의 (b)의 검은색 영역)에 의하여 사각형의 형상으로 성장되어 결정 배향성이 향상되었음을 확인할 수 있다.
또한, 도 24는 압전 세라믹 소결체를 압전층으로 이용한 압전 소자의 단면 이미지이다. 즉, 도 24의 (a)는 비교 예에 따른 압전 세라믹 소결체를 압전층으로 이용한 압전 소자의 단면 이미지이고, 도 24의 (b)는 실시 예에 따른 압전 세라믹 소결체를 압전층으로 이용한 압전 소자의 단면 이미지이다. 도 24의 (b)에 도시된 바와 같이 실시 예를 이용한 압전 소자는 시드 조성물(도 24의 (b)의 검은색 영역)이 존재하고, 도 24의 (a)에 도시된 바와 같이 비교 예를 이용한 압전 소자는 시드 조성물이 존재하지 않음을 알 수 있다. 이때, 시드는 1㎛∼20㎛의 길이 및 폭으로 배향된다. 즉, 시드의 배향 정도가 일 방향 및 이와는 다른 타 방향으로 각각 1㎛∼20㎛ 정도 배향될 수 있으며, 바람직하게는 6㎛∼20㎛ 정도 배향될 수 있다.
시드 조성물이 첨가된 압전층을 이용하는 경우 시드 조성물이 첨가되지 않은 압전층을 이용하는 경우에 비해 압전 진동 부재의 진동력을 증가시킬 수 있다. 즉, 동일 사이즈를 갖는 압전 진동 부재에서 시드 조성물이 첨가된 압전층을 이용하면 진동력을 더 증가시켜 음압 특성을 향상시킬 수 있다.
압전 진동 부재의 실시 예들
도 25 내지 도 28은 본 발명의 일 실시 예들에 따른 압전 진동 부재의 단면도이다.
도 25를 참조하면, 본 발명의 일 실시 예에 따른 압전 진동 부재(2000)는 모듈 케이스(2500)와, 모듈 케이스(2500) 내부에 마련된 압전 진동 부재를 포함할 수 있다. 압전 진동 부재는 지지 부재(2300)와, 지지 부재(2300) 상에 마련된 진동판(2200)과, 진동판(2200)의 적어도 일면 상에 마련된 압전 소자(2100)를 포함할 수 있다. 모듈 케이스(2500)는 압전 진동 부재(2000)의 진동을 증폭하며, 이러한 진동을 전자기기에 전달한다. 즉, 모듈 케이스(2500)는 압전 진동 부재(2000)의 진동을 증폭시켜 전자기기에 전달한다. 이러한 모듈 케이스(2500)는 내부에 공간이 마련된 대략 육면체 형상으로 형성될 수 있다. 즉, 모듈 케이스(2500)는 평면부(2510)와, 평면부(2510)의 외측으로부터 상측으로 연장된 수직부(2520)와, 수직부(2520)의 상측으로부터 외측으로 돌출된 돌출부(2530)을 포함할 수 있다. 평면부(2510)는 소정의 두께를 가질 수 있다. 이때, 평면부(2510)의 두께는 압전 진동 부재(2000)의 두께보다 두꺼울 수 있다. 예를 들어, 평면부(2510)의 두께는 압전 진동 부재(2000)의 두께보다 2배 내지 4배 두꺼울 수 있다. 또한, 수직부(2520)에 의해 압전 진동 부재(2000)가 수용되는 공간이 마련될 수 있다. 따라서, 수직부(2520)는 압전 진동 부재(2000)의 두께를 고려하여 이들 두께와 동일 높이로 형성될 수 있다. 그리고, 돌출부(2510)는 도 4에 도시된 바와 같이 압전 진동 부재(2000)가 프론트 케이스(1110)의 개구(10)에 삽입될 때 프론트 케이스(1110)에 압전 진동 부재(2000)가 지지되도록 한다. 이때, 돌출부(2510) 및 프론트 케이스(1110)의 외측면은 프론트 케이스(1110)에 접착제 등을 이용하여 접착 고정될 수 있다. 물론, 돌출부(2510)를 나사 결합하여 압전 진동 부재(2000)가 프론트 케이스(1110)에 고정될 수도 있다.
도 26에 도시된 바와 같이, 평면부(2510)는 상측 및 하측에 제 1 및 제 2 평면부(2510a, 2510b)가 마련되어 이들 사이에 내부에 공간이 마련될 수 있다. 즉, 제 1 및 제 2 평면부(2510a, 2510b)가 수직 방향으로 소정 간격 이격되고 그 외측에 수직부가 형성되어 제 1 및 제 2 평면부(2510a, 2510b) 사이에 소정의 공간이 형성될 수 있다. 이러한 공간은 압전 진동 부재(2000)에서 발생된 진동을 증폭하는 공명 공간으로 이용될 수 있다. 한편, 공간 내에는 이종의 물질이 매립될 수 있다. 예를 들어, 실리콘 등 압전 진동 부재(2000)와 모듈 케이스(2500)와 다른 물질이 공간 내에 마련될 수 있다. 이렇게 공간 내에 이종의 물질이 매립됨으로써 진동 특성을 조절할 수 있다.
도 27에 도시된 바와 같이, 평면부(2510)는 일면이 라운드하게 형성될 수 있다. 즉, 도 2에 도시된 바와 같이 일면이 라운드하게 형성되고, 해당 면이 프론트 케이스(1110)를 통해 디스플레이(200)와 접촉될 수 있다. 즉, 도 2에 도시된 바와 같은 형태로 프론트 케이스(1110)를 통해 디스플레이(200)에 선 접촉될 수 있다.
또한, 도 28에 도시된 바와 같이, 제 1 및 제 2 평면부(2510a, 2510b)가 수직 방향으로 이격되어 마련되어 모듈 케이스(2500) 내부에 소정의 공간이 마련될 수 있다. 또한, 제 1 및 제 2 평면부(2510a, 2510b) 사이의 공간 내에 이종의 물질이 매립될 수 있다.
도 29 내지 도 33은 본 발명의 또다른 실시 예들에 따른 압전 진동 부재의 단면도이다.
도 29에 도시된 바와 같이, 지지 부재(2300) 상에 진동판(2200)이 마련되고, 진동판(2200)의 일면 상에 압전 소자(2100)가 마련된다. 이때, 압전 소자(2100)는 지지 부재(2300)가 접촉된 진동판(2200)의 일면 상에 마련된다. 즉, 압전 소자(2100)와 지지 부재(2300)는 진동판(2200)의 동일 면 상에 마련된다. 여기서, 압전 소자(2100)는 지지 부재(2300)와 소정 간격 이격되어 지지 부재(2300)의 내측에 마련될 수 있다.
도 30에 도시된 바와 같이, 지지 부재(2300)는 하측으로 연장 형성된 후 다시 수평 방향으로 연장 형성되어 진동판(2200)의 하측에 소정의 공간이 마련되도록 할 수 있다. 즉, 지지 부재(2300)는 일측이 개방된 대략 "ㄷ"자 형태로 마련될 수 있다. 이를 위해 지지 부재(2300)는 진동판(2200)의 가장자리로부터 하측으로 연장 형성된 수직부(2310)와, 수직부(2310)로부터 내측으로 연장 형성된 수평부(2320)를 포함하며, 수평부(2320)는 중앙부가 개방된 형태로 형성될 수 있다. 즉, 진동판(2200)의 하측에는 내부에 소정 공간이 마련되고 일측이 개방된 형태의 지지 부재(2300)가 마련될 수 있다. 이렇게 함으로써 압전 진동 부재(2000)의 진동을 증폭시키고, 증폭된 진동을 전자기기에 전달할 수 있다. 또한, 도 31에 도시된 바와 같이 진동판(2200)의 일면, 즉 내부 공간에는 웨이트 부재(2400)가 마련될 수 있다.
도 32를 참조하면, 압전 진동 부재(2000)를 덮도록 보강재(stiffener)(26000)가 더 마련될 수 있다. 즉, 지지 부재(2300)의 소정 영역이 소정 폭으로 제거된 후 그 영역에 접촉되어 대략 "ㄷ"자 형태의 보강재(2600)가 마련될 수 있다. 보강재(2600)는 압전 소자(2100) 및 진동판(2200)을 보호하고 강도를 보강하기 위해 마련될 수 있다. 이때, 보강재(2600)는 지지 부재(2300)와는 접촉되고 압전 소자(2100) 및 진동판(2200)과는 이격되어 마련될 수 있다. 따라서, 보강재(2600)의 내측으로 압전 진동 부재가 마련될 수 있다. 이러한 경우에도 진동판(2200)의 일면 상에 웨이트 부재가 더 마련될 수 있다.
도 33을 참조하면, 지지 부재(2300)는 하측으로 연장 형성된 후 다시 수평 방향으로 연장 형성되어 진동판(2200)의 하측에 소정의 공간이 마련되도록 할 수 있다. 즉, 지지 부재(2300)는 내부 공간이 폐쇄되도록 대략 "ㄷ"자 형태로 마련될 수 있다. 이를 위해 지지 부재(2300)는 진동판(2200)의 가장자리로부터 하측으로 연장 형성된 수직부(2310)와, 수직부(2310)로부터 내측으로 연장 형성된 수평부(2330)를 포함하며, 수평부(2330)는 수직부(2310) 사이를 폐쇄하도록 형성될 수 있다. 즉, 진동판(2200)의 하측에는 내부에 소정 공간이 마련되고 폐쇄된 지지 부재(2300)가 마련될 수 있다.
한편, 본 발명의 일 실시 예들 및 다른 실시 예들에 따른 압전 진동 부재(2000)는 도 34에 도시된 바와 같이 전자기기에 장착될 수 있다. 즉, 도 34에 도시된 바와 같이, 전자기기는 윈도우(100)와, 윈도우(100) 일측에 마련된 디스플레이(200)와, 디스플레이(200) 일측에 마련된 프론트 케이스(1110)와, 프론트 케이스(1110)의 적어도 일부에 마련되는 압전 진동 부재(2000)를 포함할 수 있다. 또한, 프론트 케이스(1110)는 윈도우(100)의 가장자리를 지지하는 지지부(310)와, 디스플레이(200)의 하면과 이격되어 마련되며 일부가 지지부(310)와 연결되는 평판부(320)를 포함할 수 있는데, 압전 진동 부재(2000)는 지지부(310)의 적어도 일부에 형성될 수 있다. 즉, 압전 진동 부재(2000)가 마련되는 지지부(310)의 적어도 일부는 제거되고, 제거된 영역에 압전 진동 부재(2000)가 마련될 수 있다. 이때, 압전 진동 부재(2000)가 마련되지 않는 지지부(310)는 수직부와 수평부를 포함하여 이루어질 수 있고, 압전 진동 부재(2000)가 마련되는 영역의 지지부(310)는 수직부의 내측 및 수평부의 상측 적어도 일부가 제거될 수 있다.
또한, 도 35에 도시된 바와 같이 디스플레이(200)와 프론트 케이스(1110) 사이에 간격 부재(600)가 마련되고, 지지 부재(600)의 소정 영역에 지지되도록 압전 진동 부재(2000)가 마련될 수 있다. 즉, 디스플레이(200)와 프론트 케이스(1110)의 평판부(320) 사이의 소정 영역에 간격 부재(600)가 마련되고, 간격 부재(600)는 내측으로 수평 방향으로 돌출된 지지 부재(2300)가 마련되며, 지지 부재(2300)에 지지되도록 압전 소자(2100) 및 진동판(2200)을 포함하는 압전 진동 부재(2000)가 마련될 수 있다. 여기서, 지지 부재(2300)는 간격 부재(600)와 일체로 마련될 수 있다. 즉, 간격 부재(600)로부터 돌출된 돌출부 상에 진동판(2200) 및 압전 소자(2100)가 마련될 수도 있다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (18)

  1. 지지 부재;
    상기 지지 부재 상에 마련된 진동판; 및
    상기 진동판의 적어도 일면 상에 마련된 압전 소자를 포함하며,
    상기 지지 부재는 경도가 5 내지 95인 압전 진동 장치.
  2. 청구항 1에 있어서, 상기 진동판의 경도는 상기 지지 부재의 경도보다 높거나 같은 압전 진동 장치.
  3. 청구항 1에 있어서, 상기 지지 부재는 상기 진동판의 가장자리 중 적어도 일부를 지지하며, 상기 압전 소자는 상기 지지 부재 사이의 내측에 마련된 압전 진동 장치.
  4. 청구항 1에 있어서, 상기 압전 소자는 복수의 압전층과, 상기 복수의 압전층 사이에 형성된 복수의 내부 전극과, 상기 복수의 내부 전극과 연결되도록 외부에 마련된 외부 전극을 포함하는 압전 진동 장치.
  5. 청구항 4에 있어서, 상기 내부 전극의 상부 및 하부 압전층이 역방향으로 동작하는 압전 진동 장치.
  6. 청구항 4에 있어서, 상기 압전 소자는 베이스를 더 포함하고, 상기 베이스의 양면 상에 상기 복수의 압전층 및 내부 전극이 형성된 압전 진동 장치.
  7. 청구항 6에 있어서, 상기 베이스는 분극되지 않은 압전층을 포함하고, 상기 베이스의 상부 및 하부의 압전층이 역방향으로 동작하는 압전 진동 장치.
  8. 청구항 6에 있어서, 상기 베이스의 두께는 상기 압전 소자 두께의 1/3 내지 1/150인 압전 진동 장치.
  9. 청구항 6에 있어서, 상기 압전층의 두께는 상기 베이스 또는 내부 전극의 두께보다 같거나 두꺼운 압전 진동 장치.
  10. 청구항 6에 있어서, 상기 압전층 각각의 두께는 상기 압전 소자 두께의 1/3 내지 1/100인 압전 진동 장치.
  11. 청구항 4에 있어서, 상기 압전층은 적어도 하나의 기공을 포함하는 압전 진동 장치.
  12. 청구항 4에 있어서, 상기 내부 전극은 적어도 일 영역의 두께가 다른 압전 진동 장치.
  13. 청구항 4에 있어서, 상기 내부 전극은 상기 압전층 면적의 10% 내지 97%의 면적을 갖는 압전 진동 장치.
  14. 청구항 1 내지 청구항 13 중 어느 한 항에 있어서, 상기 진동판의 일면 상에 마련된 웨이트 부재를 더 포함하는 압전 진동 장치.
  15. 영상을 표시하는 디스플레이;
    상기 디스플레이의 일측에 마련되며 사용자가 터치 가능한 윈도우;
    상기 윈도우의 측면으로부터 상기 디스플레이의 타측에 마련된 케이스; 및
    상기 케이스의 적어도 일 영역에 마련되며, 청구항 1 내지 청구항 14 중 적어도 한 항 기재의 압전 진동 장치를 포함하고,
    상기 압전 진동 장치는 진동으로 인한 공기의 떨림을 통하여 소리를 발생시키거나, 골전도 방식으로 소리를 전달하는 전자기기.
  16. 청구항 15에 있어서, 상기 케이스는 프론트 케이스, 리어 케이스 및 커버 케이스를 포함하고, 상기 압전 진동 장치는 상기 프론트 케이스, 리어 케이스 및 커버 케이스 중 적어도 어느 하나의 적어도 일 영역에 마련된 전자기기.
  17. 청구항 16에 있어서, 상기 프론트 케이스의 적어도 일 영역에 형성된 개구 또는 홈을 포함하고, 상기 압전 진동 장치는 적어도 일부가 상기 개구 또는 상기 홈 내에 삽입되는 전자기기.
  18. 청구항 17에 있어서, 상기 압전 진동 장치는 상기 디스플레이와 접촉되는 전자기기.
PCT/KR2018/002008 2017-02-24 2018-02-19 압전 진동 장치 및 이를 구비하는 전자기기 WO2018155867A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0024971 2017-02-24
KR20170024971 2017-02-24
KR10-2018-0002359 2018-01-08
KR1020180002359A KR20180098128A (ko) 2017-02-24 2018-01-08 압전 진동 장치 및 이를 구비하는 전자기기

Publications (1)

Publication Number Publication Date
WO2018155867A1 true WO2018155867A1 (ko) 2018-08-30

Family

ID=63253826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002008 WO2018155867A1 (ko) 2017-02-24 2018-02-19 압전 진동 장치 및 이를 구비하는 전자기기

Country Status (1)

Country Link
WO (1) WO2018155867A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377670A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Audio speaker and proximity sensor with piezoelectric polymer technology
TWI843113B (zh) * 2022-06-01 2024-05-21 國立高雄科技大學 麥克風及其微機電系統聲學感測器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080110402A (ko) * 2007-06-15 2008-12-18 주식회사 이엠텍 압전진동자 및 이를 이용한 음향발생장치
JP2012217029A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 発振装置、発振装置の製造方法、および電子機器
KR101319974B1 (ko) * 2013-05-20 2013-10-18 주식회사 이노칩테크놀로지 압전 진동 장치
KR20150140134A (ko) * 2014-06-05 2015-12-15 엘지전자 주식회사 이동 단말기
JP2016046366A (ja) * 2014-08-22 2016-04-04 太陽誘電株式会社 電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080110402A (ko) * 2007-06-15 2008-12-18 주식회사 이엠텍 압전진동자 및 이를 이용한 음향발생장치
JP2012217029A (ja) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd 発振装置、発振装置の製造方法、および電子機器
KR101319974B1 (ko) * 2013-05-20 2013-10-18 주식회사 이노칩테크놀로지 압전 진동 장치
KR20150140134A (ko) * 2014-06-05 2015-12-15 엘지전자 주식회사 이동 단말기
JP2016046366A (ja) * 2014-08-22 2016-04-04 太陽誘電株式会社 電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377670A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Audio speaker and proximity sensor with piezoelectric polymer technology
WO2021242519A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Audio speaker and proximity sensor with piezoelectric polymer technology
TWI843113B (zh) * 2022-06-01 2024-05-21 國立高雄科技大學 麥克風及其微機電系統聲學感測器

Similar Documents

Publication Publication Date Title
US11722825B2 (en) Vibration generating device and display apparatus including the same
KR20180098128A (ko) 압전 진동 장치 및 이를 구비하는 전자기기
JP4746988B2 (ja) アクチュエータ素子及びアクチュエータ素子を有する装置
US20180324519A1 (en) Sound output apparatus
CN101132651A (zh) 压电式电声转换器
CN108370394A (zh) 移动终端
US11770645B2 (en) Display apparatus
WO2018155867A1 (ko) 압전 진동 장치 및 이를 구비하는 전자기기
WO2021017246A1 (zh) 振动发声型显示面板
US20210341784A1 (en) Liquid crystal display module and mobile terminal
JPH10190086A (ja) 圧電/電歪素子
KR102714369B1 (ko) 압전체, 압전체를 포함하는 압전 소자, 압전 소자를 포함하는 진동 모듈 및 표시장치
WO2017213415A1 (ko) 음향 출력 장치
US11557712B2 (en) Vibration generating device and electronic equipment
WO2018199634A1 (ko) 음파 발생 장치
KR20220096947A (ko) 진동 장치 및 이를 포함하는 장치
KR20210142887A (ko) 표시 장치
KR101877505B1 (ko) 압전 진동 장치 및 이를 구비하는 전자기기
TWI793925B (zh) 振動裝置以及包含其的電子裝置
KR20200083222A (ko) 진동발생장치 및 이를 포함하는 디스플레이 장치
WO2017111447A2 (ko) 이동 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756827

Country of ref document: EP

Kind code of ref document: A1