WO2018155820A1 - 데이터 블록을 처리하는 방법 및 harq ack/nack 피드백 방법 - Google Patents

데이터 블록을 처리하는 방법 및 harq ack/nack 피드백 방법 Download PDF

Info

Publication number
WO2018155820A1
WO2018155820A1 PCT/KR2018/000746 KR2018000746W WO2018155820A1 WO 2018155820 A1 WO2018155820 A1 WO 2018155820A1 KR 2018000746 W KR2018000746 W KR 2018000746W WO 2018155820 A1 WO2018155820 A1 WO 2018155820A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq ack
nack feedback
cbg
terminal
control information
Prior art date
Application number
PCT/KR2018/000746
Other languages
English (en)
French (fr)
Inventor
김봉회
변일무
신종웅
김진우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18756609.6A priority Critical patent/EP3588828B1/en
Priority to CN201880013654.4A priority patent/CN110326247B/zh
Priority to US16/488,358 priority patent/US11290911B2/en
Publication of WO2018155820A1 publication Critical patent/WO2018155820A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method of processing a data block and a HARQ ACK / NACK feedback method.
  • next generation 5G scenarios may be classified into Enhanced Mobile BroadBand (eMBB) / Ultra-relable Machine-Type Communications (uMTC) / Massive Machine—Type Communications (mMTC).
  • eMBB is a next generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and
  • uMTC is a next generation mobile communication scenario with Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and mass connectivity (eg, IoT).
  • the technical problem to be achieved in the present invention is to provide a method for the terminal to transmit HARQ ACK / NACK feedback.
  • Another object of the present invention is to provide a method for a base station to receive HARQ ACK / NACK feedback.
  • Another technical problem to be achieved in the present invention is to provide a terminal for transmitting HARQ ACK / NACK feedback.
  • Another technical problem to be achieved in the present invention is to provide a base station for receiving HARQ ACK / NACK feedback.
  • a method for transmitting a HARQ AC / NACK feedback by the terminal transmitting the HARQ ACK / NACK feedback all base station on a CBG basis for the first downlink data; Receiving a control channel including specific control information from the base station; And HARQ ACK / NACK for the second downlink data scheduled and received by the control channel based on the specific control information even when the CBG-based retransmission is configured in the terminal. And sending the feedback.
  • HARQ ACK feedback may be transmitted for the corresponding CBG only when decoding is successfully performed for all code blocks in the CBG.
  • the TB may be composed of a plurality of CBGs.
  • the specific control information may correspond to control information related to the HARQ ACK / NACK feedback on a TB basis for control information black or black for a fall back operation.
  • the control channel including the specific control information may be received during the time of resetting the number of code blocks in the CBG for HARQ ACK / NACK feedback transmission.
  • the method may further include receiving RRC signaling for resetting the number of code blocks in the CBG.
  • HARQ ACK / NACK feedback for each CBG of data may be multiplexed and transmitted in the first downlink.
  • a method for receiving a HARQ ACK / NACK feedback by the base station Receiving HARQ ACK / NACK feedback in CBG unit for the first downlink data from the terminal; Receiving a control channel including specific control information to the terminal; And the second block in which downlink data scheduled and received by the control channel is received, even if a code block based (CBG) based retransmission is set in the terminal, in units of transport blocks (TBs) from the terminal.
  • CBG code block based
  • TBs transport blocks
  • the terminal for transmitting comprises: a transmitter; receiving set; And a processor, wherein the processor controls the transmitter to transmit HARQ ACK / NACK feedback to the base station on a CBG basis for the first downlink data, and the receiver falls back from the base station (f aU-back).
  • a control channel is controlled to receive a control channel including control information for an operation, and a code block based (Code Block Group, CBG) based on the terminal for the second downlink data received by the transmitter is scheduled by the control channel.
  • CBG Code Block Group
  • the processor controls to transmit HARQ ACK feedback for the corresponding CBG only when decoding is successfully performed for all code blocks in the corresponding CBG.
  • the specific control information may correspond to control information for fal l-back operation of the terminal or control information related to TB HARQ ACK / NACK feedback.
  • the processor may control the receiver to receive a control channel including the specific control information during a time for resetting the number of code blocks in a CBG for HARQ ACK / NACK feedback transmission.
  • the processor may control the receiver to receive RRC signaling for resetting the number of code blocks in the CBG.
  • the TB may be composed of a plurality of CBGs.
  • the processor may be configured to multiplex each HARQ ACK / NACK feedback for each CBG of data in the first downlink, and the processor may control the transmitter to transmit multiplexed HARQ ACK / NACK feedback. .
  • a base station for receiving HARQ ACK / NACK feedback, the receiver; transmitter; And a processor, wherein the receiver controls the receiver to receive HARQ ACK / NACK feedback from the terminal on a CBG basis with respect to first downlink data, and the transmitter includes specific control information to the terminal. And a code block based (CBG) based retransmission to the terminal for the second downlink data scheduled and received by the control channel.
  • CBG code block based
  • the specific control information may correspond to control information for a faU-back operation of the terminal or control information related to TB HARQ ACK / NACK feedback.
  • Communication performance can be significantly improved by processing a data block and a HARQ ACK / NACK feedback method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating a frame structure of an LTE / LTE-A system.
  • FIG. 3 is a diagram illustrating a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system, which is an example of a wireless communication system.
  • FIG. 5 illustrates a structure of an uplink subframe used in 3GPP LTE / LTE-A system, which is an example of a wireless communication system.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system used in embodiments of the present invention.
  • FIG. 7 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
  • FIG. 8 is a diagram illustrating a rate matching block diagram.
  • FIG. 9 is a diagram illustrating rate matching for turbo coded transport channels.
  • ISA / KR 10 is a diagram illustrating an example of various payload size support using shortening / puncturing.
  • 11 is a view comparing the performance when the code block segmentat ion of the same or unequal size for the LDPC encoder.
  • FIG. 12 is a diagram illustrating a criterion for selecting a base graph when transmitting a transport block using two base graphs.
  • FIG. 13 is a diagram illustrating a HARQ ACK / NACK feedback transmission method according to the fal back operation according to an embodiment of the present invention.
  • the terminal is UE Jser Equipment), MSCMobi l e
  • the base station is Node B, eNode B, Base Stat ion,
  • a user equipment may receive information from a base station through downlink ink, and the terminal may also receive information.
  • ISA / KR Information can be transmitted through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • SC to FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of UMTSOJniversal Mobile Telecommunications System.
  • 3GPP LTEdong term evolution (3GPP) is part of Evolved UMTS (E-UMTS) using EHJTRA and employs 0FDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 may include a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, and a memory 185.
  • the terminal 110 is a transmit (Tx) data processor 165, symbol modulator 170,
  • the transmitter 175 may include a transmit / receive antenna 135, a processor 155, a memory 160, a receiver 140, a symbol demodulator 155, and a receive data processor 150.
  • the transmit and receive antennas 130 and 135 are shown as one at the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the base station 105 according to the present invention can support both SU—MIM0 (Single User-MIMO) and MU-MIM0 (Multi User-MIMO) schemes.
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols. ("Data symbols").
  • the symbol demodulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and upconverts) the analog signals. Also, a downlink signal suitable for transmission over a wireless channel is generated, and then, the transmit antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also has a frequency for downlink from the processor 155.
  • Correction Sheet (Rule 91) ISA / KR Receive a response estimate, perform data demodulation on the received data symbols, obtain a data symbol estimate (which is an estimate of the transmitted data symbols), and provide the data symbol estimates to a receive (Rx) data processor 150 do.
  • Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by the symbol demodulator 145 and the receiving data processor 150 are complementary to the processing by the symbol modulator 120 and the transmitting data processor 115 at the base station 105, respectively.
  • the terminal 110 is on the uplink
  • the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiply the data symbols and perform modulation to provide a stream of symbols to the transmitter 175.
  • Transmitter 175 receives and processes the stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one R Radio Frequency) unit.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data sent from the terminal 110.
  • Processors 155 and 180 of each of terminal 110 and base station 105 instruct (eg, control, coordinate, manage, etc.) operation at terminal 110 and base station 105, respectively.
  • Respective processors 155 and 180 may be connected with memory units 160 and 185 that store program codes and data.
  • Memory 160, 185 is coupled to processor 180 to store operating systems, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. Meanwhile, the processor (155, 180)
  • Correction Sheet (Rule 91) ISA / KR It may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated
  • circuits or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (FLDs), and programmable programmable gate arrays (FPGAs) may be included in the processors 155 and 180.
  • firmware or software may be configured to include modules, procedures or functions for performing the functions or operations of the present invention.
  • Firmware or software configured to perform the above may be provided in the processors 155 and 180 or stored in the memory 160 185 to be driven by the processor 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station in the wireless communication system are based on the first three layers (L1), the second layer ( L2), and the third layer L3.
  • the physical layer belongs to the low 1 1 layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station except for a function and a storage function for receiving or transmitting a signal from the terminal 110 and the base station 105, respectively, signal and data
  • the processor 155 and 180 are not specifically mentioned below for the convenience of description.
  • a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • FIG. 2 is a diagram illustrating a frame structure of an LTE / LTE—A system.
  • one frame consists of 10 ms and ten 1 ms subframes.
  • the time for transmitting one subframe may be defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • a subframe consists of two 0.5 ms slots, and one slot consists of seven (6 black) OFDM Orthogonal Frequency Division Multiplexing (symbol) symbols.
  • the 3GPP LTE system uses 0FDMA in downlink, and an OFDM symbol represents one symbol period.
  • An OFDM symbol may be referred to as an SC-FDMA symbol or one symbol period.
  • a resource block (RB) is a resource allocation unit and includes a plurality of subcarriers adjacent to one slot.
  • the structure of the radio frame shown in FIG. 2 is exemplary, so that the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in one slot may be changed in various ways. .
  • One resource block is defined with 12 subcarriers spaced at 15 kHz and seven 0FDM symbols.
  • the base station is centered. Center Frequency Sends Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS) for Synchronization and Physical Broadcast Channel (PBCH) for system information in 6RB.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the radio frame structure, the signal, and the channel position may be different according to Normal / Extended CPCCyclic Prefix (TDD), Time Division Duplex (TDD) / Frequency Division Duplex (FDD).
  • TDD Normal / Extended CPCCyclic Prefix
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • FIG. 3 is a diagram illustrating a resource grid of a downlink slot of a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • the downlink slot includes a plurality of 0FDM symbols in the time domain.
  • One downlink slot may include 7 (or 6) 0FDM symbols and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12X7 (6) REs.
  • the number of RBs included in the downlink slot NRB depends on the downlink transmission band.
  • the structure of an uplink slot is the same as that of a downlink slot, and a 0FDM symbol is replaced with an SC-FOMA symbol.
  • FIG. 4 illustrates a structure of a downlink subframe of a 3GPP LTE / LTE-A system, which is an example of a wireless communication system.
  • At most three (or four) 0FDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the OFDM symbol corresponds to a data region to which PDSOKPhysical Downlink Shared CHancel) is allocated.
  • Examples of the downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a PHICHCPhysical Hybrid ARQ indicator Channel (PICHCH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a hybrid automatic repeat request acknowledgment / negative acknowledgment (HARQ ACK / NACK) signal as a response to uplink transmission.
  • HARQ ACK / NACK hybrid automatic repeat request acknowledgment / negative acknowledgment
  • the DC I format includes formats 0 for uplink and formats 1, 1A, IB, 1C, ID, 2, 2A, 3, and 3A for downlink.
  • the DCI format includes a hopping flag, RB assignment, MCSC modulat ion coding scheme (RV), redundancy version (RV), NDKnew data indicator (TPC), transmit power control (TPC), and cyclic shift DM RS (depending on the application).
  • CQI channel quality information
  • CQI channel quality information
  • TPMI transmitted precoding matrix indicator
  • PMKprecoding matrix indicator conf irmat ion
  • the PDCCH includes transport format and resource allocation information of a downlink shared channel (DL-SCH), transport format and resource allocation information of an uplink shared channel (UL-SCH), paging channel ( Paging information on paging channel (PCH), system information on DL-SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual terminals in terminal group, ⁇
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregate of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE refers to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits depend on the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal and adds a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC is masked with an identifier (eg, RNTKradio network temporary identifier) according to the owner or purpose of use of the PDCCH. For example, if the PDCCH is for a particular UE, the identifier of the UE (eg ceH-RNTI (ORNTI)). ) Can be masked to the CRC.
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-R TI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 5 illustrates a structure of an uplink subframe used in a 3GPP LTE / LTE-A system as an example of a wireless communication system.
  • an uplink subframe includes a plurality of (eg, two) slots.
  • the slot may include different numbers of SOFDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH (Physical Uplink Shared CHannel) and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH (Physical Uplink Control CHannel) and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • the PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • SR Information used for requesting an uplink UL-SCH resource. It is transmitted using 00K (0n-0ff Keying) method. ⁇
  • HARQ ACK / NACK This is a voice response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword (Codeword, CW), and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • [067]-CQK Channel Quality Indicator Feedback information on a downlink channel.
  • Feedback information related to MIM0 Multiple Input Multiple Output
  • RI Rank Indicator
  • the amount of control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FOMAs available for transmission of control information.
  • SC-FDMA available for control information transmission means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of a subframe in which a Sounding Reference Signal (SRS) is set, SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • the PDCCH is configured to transmit a power control command for multiple UEs to a PDSCH lDiCwnlii for a specific UE on a downlink control channel.
  • the PDCCH occupies up to four 0FDM symbols in the time domain and indicates the number of 0FDM symbols allocated to the PDCCH in the PCFICH.
  • modulation uses QPSK.
  • the resource used for transmitting the PDCCH is called a control channel element (CCE), and is composed of 36 resource elements (REs), so that 72 bits can be transmitted through one CCE.
  • the amount of control information transmitted on the PDCCH depends on the transmission mode. Control information according to each transmission mode is defined in DCI format.
  • the UE determines whether PDSCH / PUSCH is transmitted or not according to the PDCCH decoding result.
  • the PDCCH scrambling is performed by UE ID information (C-RNTI) of the corresponding UE. That is, when the UE detects the DCI format scrambling transmitted by its UE ID, the UE performs PDSCH reception or PUSCH transmission according to the PDCCH control information.
  • C-RNTI UE ID information
  • the terminal needs to check the presence or absence of control information transmitted to itself by decoding the plurality of PDCCHs.
  • the complexity of performing decoding on all transmittable PDCCHs is greatly increased, and the number of decoding is limited.
  • the CCE may transmit control information by concatenating one or more, which is called CCE aggregation.
  • CCE aggregation Currently allowed CCE aggregation level is 1, 2, 4, 8, meaning CCE aggregation level 4 is concatenated with four CCEs
  • the UE decodes PDCCHs transmitted at aggregation levels 4 and 8 4 and 2 times to determine whether control information is transmitted, and specific CCEs constituting the PDCCH include: It corresponds to an area commonly known to the terminal.
  • the PDCCH transmitted at aggregation level 1 2, 4, 8 is decoded 6, 6, 2, 2 times to determine whether control information is transmitted.
  • the CCE used at this time is set differently for each terminal. This is represented by Equation 1 below.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system used in embodiments of the present invention.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • ISA / KR 6 shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the UE can simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data. If N DL CCs are managed in a specific cell, the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to a main DL CC to the UE, and in this case, the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • a linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
  • a combination of DL resources and UL resources may be configured by a linkage defined by System Informat Ion Block Type 2 (SIB2).
  • SIB2 System Informat Ion Block Type 2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying an UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • Self-scheduling refers to a UL CC linked to a DL CC in which a PUSCH transmitted according to a PDCCH (DL Grant) and a PDSCH are transmitted on the same DL CC or a PDCCH JL Grant transmitted on the DL CC. Means to be transmitted through.
  • PDCCH DL Grant
  • a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs, or a PUSCH transmitted according to a PDCCH JL Grant transmitted from a DL CC is linked to a DL CC having received an UL grant. This means that it is transmitted through a UL CC other than the CC.
  • Cross carrier scheduling can be activated or deactivated UE-specifically, and can be semi-staticed for each UE through higher layer signaling (eg, RRC signaling). Can be known.
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Fild) indicating a PDDC / PUSCH to which the PDCCH is transmitted is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resources or PUSCH resources to one of a plurality of component carriers using CIF. That is, CIF is configured when a PDSCH or PUSCH resource is allocated to one DL / UL CC enhancement in which the PDCCH on the DL CC is multiplied.
  • the DCI format of LTE Release-8 may be extended according to the CIF.
  • the set CIF may be fixed to the 3b i t field, or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE release ease-8 may be reused.
  • CIF is not set when the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC. Do not.
  • the same PDCCH structure (same coding and same CCE-based resource mapping) and DCI format as LTE Real ease-8 may be used.
  • the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
  • the PDCCH monitoring set includes a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the UE DL CC set or may be a subset of the UE DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable sel f-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured to be UE-specific, UE group-specific, or CA-specific.
  • the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
  • the PDCCH monitoring set is preferably defined in the terminal DL CC set. That is, in order to schedule the PDSCH or the PUSCH for the terminal, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG. 7 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
  • a base station and / or terminals may be configured with one or more serving cells.
  • a base station can support a total of four serving cells, such as an A cell, a B cell, a C cell, and a D cell
  • a terminal A is composed of an A cell, a B cell, and a C cell
  • a terminal B is a B cell, a C cell
  • the cell is configured with a D cell
  • the terminal C is configured with a B cell.
  • at least one of the cells configured in each terminal may be configured as a P cell.
  • the p cell is always activated
  • the S cell may be activated or deactivated by the base station and / or the terminal.
  • the cell configured in FIG. 7 is a cell capable of adding a cell to a CA based on a measurement report message from a terminal among cells of a base station and may be configured for each terminal.
  • the configured cell reserves the resources for the ACK / NACK message transmission for the PDSCH signal transmission in advance.
  • the activated cell is a cell configured to transmit an actual PDSCH signal and / or a PUSCH signal among configured cells, and performs CSI reporting and SRS (Sounding Reference Signal) transmission.
  • SRS Sounding Reference Signal
  • a cell (De-Activated cell) is a cell configured not to perform PDSCH / PUSCH signal transmission / reception by a command or timer operation of a base station, and CSI report and SRS transmission are also increased.
  • PMI / RI feedback may be set in a higher layer.
  • Transmission mode 9 UE configured for PMI / RI feedback may make an assumption about granularity of a physical resource block applying the same precoding to PDSCH and DM RS. That is, channel estimation may be performed by performing channel estimation assuming that the same precoding is applied to a precoding resource block group (PRG) according to the system bandwidth.
  • PRG precoding resource block group
  • turbo codes In a general communication system, in order to correct an error occurring in a channel at a receiving end, information transmitted from a transmitting end is encoded and then transmitted using a forward error correction code. The receiving end demodulates the received signal, decodes the error correcting code, and restores the transmission information. In this decoding process, an error in the received signal caused by the channel is corrected.
  • error correcting codes There are various kinds of error correcting codes, but in the present invention, turbo codes will be described by way of example. Turbo code is composed of a recursive systematic convolution encoder and inter leaver ⁇ - There is an interleaver to facilitate parallel decoding in actual implementation of turbo code.
  • Inter leaving is performed to reduce the effect of burst error that occurs when transmitting on a wireless channel after an error correction encoding process is performed in units of a code block size. Then, it is mapped to the actual radio resource and transmitted. Since the amount of radio resources used during the actual transmission is constant, rate matching should be performed on the encoded code block in order to meet this. Generally, rate matching consists of puncturing or repet it ions. Rate matching may be performed in units of code blocks encoded such as WCDMA of 3GPP. Alternatively, the systemat ic part and par i ty part of the encoded code block may be separately performed.
  • FIG. 8 is a diagram illustrating a rate matching block diagram.
  • FIG. 8 is a block diagram for performing rate matching by separating a systemat i c portion and a par i ty portion of an encoded code block.
  • the code rate is assumed to be 1/3.
  • a CRC for error detection is attached to a data block transmitted from an upper layer
  • a CRC is attached to each code block for convenience of implementation in a segment at ion code block.
  • Various data block sizes should be defined according to the service type of the upper layer, but since they are actually signaled to the receiver, quantization is required. When quantization, du ⁇ y bi t is added to fit the source data block transmitted from the upper layer to the size of the data block of the physical layer.
  • the data block size, modulation and coding rate, and the number of allocated resources are a function of each other. That is, the other one parameter is determined according to the values of either two parameters. Therefore, when signaling, only two parameters need to be signaled. Data block for future convenience
  • FIG. 9 is a diagram illustrating rate matching for turbo coded transport channels (turbo coded t ransport channe l s).
  • the rate matching for turbo coded transport channels is defined per coded block and consists of interleaving the three information bit streams rf *, rf ⁇ ' 1 andrf ⁇ , followed by the collection of bits and the generation of a circular buffer as depicted in Figure 9
  • the output bits for each code block are transmitted as described in section 5.1.4.3.2 of 3 GPP LTE TS 36.212 standard document.
  • the bit stream [ 0) is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 of 3 GPP LTE TS 36.212 standard document with an output sequence defined as Vo 0) ' v i ⁇ 0) ' v 2 0 ) .- ' v Si an d where K n is defined in section 5.1.4.3.1 of 3GPP LTE TS 36.212 standard document.
  • the bit stream is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 of 3GPP LTE TS 36.212 standard document with an output sequence defined as, .
  • the bit stream is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 with an output sequence defined as
  • the sequence of bits e k for transmission is generated according to section 5.1.4.3.2 of 3GPP LTE TS 36.212 standard document.
  • the bits input to the block interleaver are denoted by , ..., d ⁇ _ x , where D is the number of bits.
  • the output bit sequence from the block interleaver is derived as follows:
  • Assign Cj ⁇ bblock 32 to be the number of columns of the matrix.
  • the columns of the matrix are numbered 0 , 1 , 2 , ... , c hhlocfc -1 from left to right.
  • the rows of rectangular matrix are numbered 0, 1, 2 ,. .., Rj t ; hhlock -1 from top to bottom
  • ⁇ C s T block ) matrix is equal to ⁇ 1) 1 C
  • the output of the block interleaver is the bit sequence read out column by column from the inter-column permuted ⁇ C ⁇ bblock ) matrix.
  • Table 5 shows a detailed description of bit selection, selection and transmission.
  • the size N is obtained as follows, where C is the number of code blocks computed in section 5.1.2:
  • N cb min K, for DL-SCH transport channels
  • Table 6 shows a description of LDPC coding.
  • the AT bits including filler bits (, c !, C2 c K -? ⁇ ) Are encoded based on DK by D parity check matrix (H), where D is number of encoded bits and DK is the number of parity check bits .
  • the parity check matrix H is defined as: p a °> N ldpc_b- 2 p a ° -N ldpc_l p ai > N ldpc_t p a2 - N ldpc b ⁇ 2 p a2 'N ldpc
  • the matrix P ° ij is Z by Z zero matrix when is-1.
  • the codeword length D, information length Kand number of parity bits K is equal to Ni dpc _b x Z, Ki dpc — b x Z and N pairt y_b x Z, respectively.
  • the parameters Nid pc _b, Ki dpc _b and N parity —b according to code rates are depicted in Table 3.
  • the parity check matrix is obtained based on Tables 5.1.3.2-2, 5.1.3.2-3, 5.1.3.2-4 and
  • the encoder when designing the encoder without limiting the payload size, it may not satisfy the required performance due to limitations in processing capability, performance gain or decoding latency of the receiver. Therefore, it may be efficient to encode a payload size above a certain threshold by breaking it into a plurality of code blocks smaller than the threshold.
  • the LDPC encoder has a parity check matrix (H).
  • H matrix can be defined for information bit length D and coding rate (r).
  • 12 H matrices are defined by the combination (D, r).
  • the payload size K supported by the 12 H matrices can be calculated using the formula of D * r: payload of ⁇ 324, 432, 486, 540, 648, 864, 972, 989, 1080, 1319, 1484, 1648 ⁇ bit.
  • 10 is a diagram illustrating examples of various payload size support using shortening / puncturing.
  • D or K supports Ml and r supports M2.
  • the information block size corresponding to K ldpc * Z can be supported.
  • dpc * Z information block size is also called payload size supported by H matrix. At this time, the information block may have a length including the CRC.
  • a method of segmenting at a plurality of code blocks with a payload size over a specific threshold is proposed.
  • the CRC may be added to the code block after the code block segment at ion.
  • the code block size is the same. However, performance degradation can be significant when shortening / puncturing / repetition is performed.
  • 11 is a diagram comparing the performance when the code block segmentation of the same or unequal size for the LDPC encoder.
  • the code block segmentat ion is performed when the payload size is 1648 bits or more, and the payload size 2268 bit is assumed.
  • the 2268 bits may be segmented into three equally sized code blocks of 756 bits, or two code blocks of payload size 972 bits and 648 bits supported by the defined H matrix.
  • 756 bits can be encoded by shortening using an H matrix for 972 bits.
  • segmentation is performed with a code block size of a portion of the payload size increment supported by the H matrix. From the performance result of FIG. 11, the following code block segmentation scheme may be considered.
  • segment at ion it is preferable to segment at ion so that the number of code blocks is minimal.
  • CRCTB and CRC cb are CRC lengths added to the transport block and the code block, and N is the number of code blocks to be segmented at ion.
  • segmentation is performed by code blocks having different sizes supported by the H matrix.
  • it is desirable to minimize the number of code block sizes of different sizes. For example, it can be limited to two or three.
  • the segment at ion-ir is a code block corresponding to the sum of the segment at ion 3 ⁇ 4 code block size closest to the payload size.
  • the number of payload bits corresponding to the difference between the sum of ion3 ⁇ 4 code block sizes and the payload size can be processed as follows.
  • Method 1 Assign to a specific code block, and adjust the codeword length by using rate matching, such as shortening / puncturing / repetit ion.
  • Method 1-1 When segments are ionized into code blocks of different sizes, allocate to one code block of a code block corresponding to a specific code block size.
  • Method 1-2 If segments are ionized into code blocks of different sizes, allocate them as evenly as possible to all code blocks of the code block corresponding to the specific code block size.
  • Method 2 Allocate the payload bit to all code blocks equally and adjust the codeword length using rate matching.
  • the code block size may be expressed as Z * K ldpc (including a CRC length).
  • the possible code block sizes can also have various values.
  • the code block size indicated by [] in Table 12 may not be supported.
  • the c value may set a different value for each Z or a set of multiple Z's (the same value within the set).
  • the granularity of the code block size may be different for each set of multiple Z's (the same granularity in the set).
  • a transport block (TB) having a transport block size (TBS)> 8192 can be segmented at the code block sizes shown in Table 12 in the manner described above.
  • the code block size (CBS) ranges and mappi ng of ⁇ values in Table 13 can be applied to a specific Z or larger than the code block size (CBS) ⁇ Z if the code block size (CBS) is small. Increasing the value and increasing the amount of shortening can perform well. For example, the mapping in Table 13 can be used only if the Z value is 24 or the code block size (CBS) is greater than 512. In Table 12, only the code block size (CBS) corresponding to a multiple of 8 may be allowed. Considering that the unit that processes data in MAC ayer is byte unit, it minimizes padding
  • the code block size (CBS) includes a CRC size.
  • N CB is the number of CBs, and CRC TB represents a CRC length added to a transport block.
  • CBS code block size
  • Table 14 An example of a set of TBS assuming a CBS of a bit unit and is divided into up to 11 code blocks supported when the TB-level CRC is 24 bits
  • the same principle may also support TBS.
  • BG base graphs
  • ISA / KR 12 is a diagram illustrating a criterion for selecting a base graph when transmitting a transport block using two base graphs.
  • TBS is the transport block size (transport block size)
  • CRC TB is the CRC length added to the transport block 16 T t if TBS ⁇ 3824, 24 bi t is added in the other case
  • BGl, BG2 are standard 38.212 vl. 1.0 See Table 5.3.2-1, Table 5.3.2-2, and Table 5.3.2-3 for definitions in [6].
  • the use of BG1 and BG2 is determined based on the code rate 1/4.
  • the code block segmentat ion is performed when TBS + CRC_TB> 8448
  • the code block segmentat ion is performed when TBS + CRC_TB> 3840.
  • BG1 / BG2 may be supported simultaneously or selectively according to UE capabi l i ty / category.
  • BG1 even if code rate ⁇ 1/4, BG2 cannot be used, so only code block segmentat ion using BG1 is performed. That is, the number of code blocks when segmentat ion is performed may be calculated as DC 1 (TBS + CRC_TB / (8448-24)).
  • BG2 since the code block segmentat ion of BG1 cannot be used, segmentat ion using BG2 is performed.
  • the number of code blocks when segmentat ion is performed may be calculated as DC 1 (TBS + CRC_TB / (3840-24)). It is preferable that the segmentat ion be a code block having the same size without zero padding for a terminal simultaneously or selectively supporting BG1 / BG2. This is because zero padding bi t is bi t, which does not contain information. In the case of code block segmentat ion using BG1 or BG2, when the following Equation 3 and Equation 4 are satisfied, the segment block ion may be segmented into the same code block.
  • Nl and N2 are code blocks using BGl and BG2.
  • Table 15 shows an example of TBS + CRCJTB that satisfies Equation 3 and Equation 4 without zero padding according to the range of TBS + CRCJTB.
  • TBS granularity example 1 is the minimum granularity of TBS satisfying Equations 3 and 4
  • TBS granularity example 2 increases granularity as TBS increases among granularities satisfying Equations 3 and 4.
  • the maximum code block size at which the code block segment at ion using BG2 occurs depends on the maximum MCS index with code rate ⁇ l / 4 and the amount of available resources (eg, the number of resource elements (REs)) in the MCS table. Can be.
  • the maximum TBS for generating code block segmentat ion using BG2 is about 19200 bits.
  • TBS can be designed to satisfy granularity of multiples of least common multiple of (8, N1).
  • TBS + CRC_TB may be expressed by Equation 5 and Equation 6.
  • the TBS without zero padding is a multiple of the least common multiple of (8, N1) or (8, N2), respectively.
  • code block segmentation is performed for a payload size of 1648 bits or more for the LDPC encoder.
  • the CRC size added to the transport block and the code block is assumed to be 24.
  • code block segmentation is performed since 1692> 1648.
  • CBG code block group
  • a code block group may be composed of a plurality of code blocks.
  • This transport block may be composed of a plurality of CBGs.
  • the number of CBGs per TB may be 2, 4, 6, or 8.
  • CBG based retransmission may be configured at the receiving side (eg, the terminal).
  • the HARQ-ACK may be transmitted for a plurality of code blocks. That is, the receiving side decodes a predetermined number (P) code blocks constituting the CBG, and then transmits HARQ-ACK to the transmitting side only when decoding of all the code blocks is successful, otherwise, NACK is transmitted.
  • P predetermined number
  • the receiving side receives a downlink control channel including a DCI format related to the CBG transmission base, and based on the scheduling of the downlink control channel, the downlink data channel (eg, PDSCH). ).
  • the receiving side transmits HARQ AC / NACK feedback in CBG units for PDSCH reception, and the transmitting side retransmits only the corresponding code block group (CBG) in which an error occurs, resulting in system efficiency. Can be improved.
  • CBG code block group
  • FIG. 13 is a diagram illustrating a method of transmitting HARQ ACK / NACK feedback according to a fal l-back operation according to an embodiment of the present invention.
  • the base station may set the number of code blocks for transmitting HARQ-ACK in the upper layer and transmit the same to the terminal through higher layer signaling (for example, R C signaling).
  • higher layer signaling for example, R C signaling
  • the transmitting side eg, the base station (gNodeB)
  • the receiving side eg, the terminal
  • UE the terminal
  • the receiving side may perform a f aH-back operation to transmit HARQ-ACK with a defau l t P value. That is, in a situation of the specific condition such as during the upper layer resetting period, the receiving side (eg, the terminal) assumes a specific value of P and transmits HARQ-ACK.
  • the transmitting side (for example, the base station) may transmit the downlink control channel scheduling the corresponding user data to the terminal including the control information for the fal l-back operation as described above.
  • the "fa l-back" operation means that the unit is performed in TB units or TB level HARQ ACK / NACK feedback.
  • control information for which the transmitting side eg, the base station
  • the receiving side may transmit the HARQ ACK / NACK feedback based on the CBG. That is, even when CBG-based retransmission is set in the receiving side (eg, the terminal), specific control information from the transmitting side (eg, the base station) (eg, control information related to a fal l-back operation).
  • the PDSCH or TB level HARQ ACK / NACK feedback is performed on the received PDSCH.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the present invention.
  • the order of operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

단말이 HARQ ACK/NACK 피드백을 전송하는 방법은; 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 기지국으로 전송하는 단계; 상기 기지국으로부터 특정 제어 정보를 포함하는 제어 채널을 수신하는 단계; 및 상기 제어 채널에 의해 스케줄링되어 수신된 계 2 하향링크 테이터에 대해서는 상기 단말에 코드 블록 기반 (Code Block Group, CBG) 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 기초하여 전송 블록 (Transport Block, TB) 단위로 HARQ ACK/NACK 피드백을 전송하는 단계를 포함할 수 있다.

Description

【명세서】
【발명의 명칭】
데이터 블록을 처리하는 방법 및 HARQ ACK/NACK 피드백 방법
【기술분야】
[001] 본 발명은 무선통신에 관한 것으로, 보다 상세하게는, 데이터 블록을 처리하는 방법 및 HARQ ACK/NACK 피드백 방법에 관한 것이다.
【배경기술】
[002] 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/Ultra-rel iable Machine-Type Communications (uMTC)/Massive Machine— Type Communications (mMTC) 등으로 시나리오를 구분할 수 있다. eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, uMTC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g. , V2X, Emergency Service, Remote Control ) , mMTC는 Low Cost , Low Energy, Short Packet , Massive Connectivity특성을 갖는 차세대 이동통신 시나리오이다 (e.g. , IoT).
【발명의 상세한 설명】
【기술적 과제】
[003] 본 발명에서 이루고자 하는 기술적 과제는 단말이 HARQ ACK/NACK 피드백을 전송하는 방법을 제공하는 데 있다.
[004] 본 발명에서 이루고자 하는 다른 기술적 과제는 기지국이 HARQ ACK/NACK 피드백을 수신하는 방법을 제공하는 데 있다.
[005] 본 발명에서 이루고자 하는 또 다른 기술적 과제는 HARQ ACK/NACK 피드백을 전송하기 위한 단말을 제공하는 데 있다.
[006] 본 발명에서 이루고자 하는 또 다른 기술적 과제는 HARQ ACK/NACK 피드백을 수신하기 위한 기지국을 제공하는 데 있다.
[007] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【기술적 해결방법】
정정용지 (규칙 제 91조) ISA/KR [008] 상기의 기술적 과제를 달성하기 위한, 단말이 HARQ AC /NACK 피드백을 전송하는 방법은, 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백올 기지국으로 전송하는 단계; 상기 기지국으로부터 특정 제어 정보를 포함하는 제어 채널을 수신하는 단계; 및 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 상기 CBG 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 기초하여 전송 블록 (Transport Bl ock , TB) 단위로 HARQ ACK/NACK 피드백을 전송하는 단계를 포함할 수 있다.
[009] 상기 CBG 단위로 HARQ ACK/NACK 피드백을 전송하는 단계에서, 해당 CBG 내의 모든 코드 블록들에 대해 디코딩을 성공한 경우에만 해당 CBG에 대해 HARQ ACK 피드백을 전송할 수 있다. 상기 TB는 복수 개의 CBG로 구성될 수 있다. 상기 특정 제어 정보는 상기 단말의 폴-백 ( f aU— back) 동작을 위한 제어 정보 흑은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당할 수 있다. 상기 특정 제어 정보 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 수신될 수 있다. 상기 방법은 상기 CBG 내의 코드 블록의 개수를 재설정하는 RRC 시그널링을 수신하는 단계를 더 포함할 수 있다. 상기 제 1 하향링크에 데이터의 각 CBG에 대한 HARQ ACK/NACK 피드백은 다중화되어 전송될 수 있다.
[010] 상기의 다른 기술적 과제를 달성하기 위한, 기지국이 HARQ ACK/NACK 피드백을 수신하는 방법은, 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 상기 단말로부터 수신하는 단계; 상기 단말로 특정 제어 정보를 포함하는 제어 채널을 수신하는 단계; 및 상기 제어 채널에 의해 스케즐링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Block Group , CBG) 기반 재전송이 설정된 경우라도 상기 단말로부터 전송 블록 (Transport Block , TB) 단위로 HARQ ACK/NACK 피드백을 수신하는 단계를 포함할 수 있다. 상기 특정 제어 정보는 상기 단말의 폴-백 ( f al l-back) 동작올 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당할 수 있다. 상기 특정 제어 정보를 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 전송될 수 있다.
[011] 상기의 또 다른 기술적 과제를 달성하기 위한, HARQ ACK/NACK 피드백을
정정용지 (규칙 제 91조) ISA/KR 전송하기 위한 단말은, 송신기; 수신기; 및 프로세서를 포함하되, 상기 프로세서는 상기 송신기가 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 기지국으로 전송하도록 제어하고, 상기 수신기가 상기 기지국으로부터 폴-백 ( f aU- back) 동작을 위한 제어 정보를 포함하는 제어 채널을 수신하도록 제어하며, 상기 송신기가 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Bl ock Group , CBG)기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 기초하여 전송 블록 (Transport Block , TB) 단위로 HARQ ACK/NACK 피드백을 전송하도록 제어할 수 있다.
[012] 상기 프로세서는, 상기 송신기가 상기 CBG 단위로 HARQ ACK/NACK 피드백을 전송하는 경우에 해당 CBG 내의 모든 코드 블록들에 대해 디코딩을 성공한 경우에만 해당 CBG에 대해 HARQ ACK 피드백을 전송하도록 제어할 수 있다. 상기 특정 제어 정보는 상기 단말의 폴-백 ( fal l-back) 동작을 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당할 수 있다. 상기 프로세서는 상기 수신기가 상기 특정 제어 정보를 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 수신하도록 제어할 수 있다. 상기 프로세서는 상기 수신기가 상기 CBG 내의 코드 블록의 개수를 재설정하는 RRC 시그널링을 수신하도록 제어할 수 있다. 상기 TB는 복수 개의 CBG로 구성될 수 있다.
[013] 상기 프로세서는 상기 제 1 하향링크에 데이터의 각 CBG에 대한 각 HARQ ACK/NACK 피드백이 다중화하도록 구성되며, 상기 프로세서는 상기 송신기가 다중화된 HARQ ACK/NACK 피드백을 전송하도록 제어할 수 있다.
[014] 상기의 또 다른 기술적 과제를 달성하기 위한, HARQ ACK/NACK 피드백을 수신하기 위한 기지국은, 수신기; 송신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가, 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 상기 단말로부터 수신하도록 제어하고, 상기 송신기가, 상기 단말로 특정 제어 정보를 포함하는 제어 채널을 전송하도록 제어하며, 상기 수신기가, 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Bl ock Group , CBG) 기반 재전송이 설정된 경우라도 상기 단말로부터 전송 블록 (Transpor t Bl ock , TB) 단위로 HARQ
정정용지 (규칙 제 91조) ISA/KR ACK/NACK 피드백을 수신하도록 제어할 수 있다. 상기 특정 제어 정보는 상기 단말의 폴-백 ( faU -back) 동작을 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당할 수 있다.
【발명의 효과】
[015] 본 발명의 일 실시예에 따른 데이트 블록의 처리 및 HARQ ACK/NACK 피드백 방법에 의해 통신 성능이 현저히 향상될 수 있다.
[016] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[017] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다 .
[018] 도 1은 무선통신 시스템 ( 100)에서의 기지국 ( 105) 및 단말 ( 110)의 구성을 도시한 블록도이다.
[019] 도 2는 LTE/LTE-A 시스템의 프레임 구조를 도시한 도면이다.
[020] 도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
[021] 도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
[022] 도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
[023] 도 6 은 본 발명의 실시예들에서 사용되는 컴포넌트 캐리어 (CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.
[024] 도 7 은 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일 예를 나타내는 도면이다.
[025] 도 8은 rate matching블록도를 예시한 도면이다.
[026] 도 9는 터보 코딩된 전송 채널들 ( turbo coded transport channe l s )을 위한 레이트 매칭을 예시한 도면이다.
정정용지 (규칙 제 91조) ISA/KR [027] 도 10은 Shortening/punctur ing을 이용한 다양한 payload si ze 지원의 예를 도시한도면이다.
[028] 도 11은 LDPC encoder에 대해서 동일하거나 동일하지 않은 크기의 code block segmentat ion을 수행하였을 경우의 성능을 비교한 도면이다.
[029] 도 12는 2 개의 base graph를 사용하여 transport block을 전송할 때, base graph를 선택하는 기준을 나타낸 도표이다.
[030] 도 13 은 본 발명의 일 실시예에 따른 fal卜 back 동작에 따른 HARQ ACK/NACK 피드백 전송 방법을 예시한 도면이다.
【발명의 실시를 위한 최선의 형태】
[031] 이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE , LTE-A 시스템, 5G 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE , LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
[032] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다 .
[033] 아을러, 이하의 설명에 있어서 단말은 UE Jser Equipment ) , MSCMobi l e
Stat i on) , AMSCAdvanced Mobi le Stat ion) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B , eNode B , Base Stat ion ,
APCAccess Point ) , gNode B 둥 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
[034] 이동 통신 시스템에서 단말 (User Equipment )은 기지국으로부터 하향링크 (Downl ink)를 통해 정보를 수신할 수 있으며, 단말은 또한
정정용지 (규칙 제 91조) ISA/KR 상향링크 (Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
[035] 이하의 기술은 CDMA(code division multiple access), FDMA( frequency division multiple access) , TDMA(t ime division multiple access) , OFDMACorthogonal frequency division multiple access) , SC~FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communicat ions) /GPRS (General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTSOJniversal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTEdong term evolution)는 EHJTRA를 사용하는 E-UMTS( Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE- A(Advanced)는 3GPP LTE의 진화된 버전이다.
[036] 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[037] 도 1은 무선통신 시스템 (100)에서의 기지국 (105) 및 단말 (110)의 구성을 도시한 블록도이다.
[038] 무선 통신 시스템 (100)을 간략화하여 나타내기 위해 하나의 기지국 (105)과 하나의 단말 (110KD2D 단말을 포함)을 도시하였지만, 무선 통신 시스템 (100)은 하나 이상의 기지국 및 /또는 하나 이상의 단말을 포함할 수 있다.
[039] 도 1을 참조하면 , 기지국 (105)은 송신 (Tx) 데이터 프로세서 (115), 심볼 변조기 (120), 송신기 (125), 송수신 안테나 (130), 프로세서 (180), 메모리 (185), 수신기 (190), 심볼 복조기 (195), 수신 데이터 프로세서 (197)를 포함할 수 있다. 그리고, 단말 (110)은 송신 (Tx) 데이터 프로세서 (165), 심볼 변조기 (170),
정정용지 (규칙 제 91조) ISA/KR 송신기 (175), 송수신 안테나 (135), 프로세서 (155), 메모리 (160), 수신기 (140), 심볼 복조기 (155), 수신 데이터 프로세서 (150)를 포함할 수 있다. 송수신 안테나 (130, 135)가 각각 기지국 (105) 및 단말 (110)에서 하나로 도시되어 있지만, 기지국 (105) 및 단말 (110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국 (105) 및 단말 (110)은 MIMO(Multiple Input Multiple Output) 시스템올 지원한다. 또한, 본 발명에 따른 기지국 (105)은 SU— MIM0(Single User- MIMO) MU-MIM0(Multi User-MIMO) 방식 모두를 지원할 수 있다.
[040] 하향링크 상에서, 송신 데이터 프로세서 (115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여 (또는 심볼 매핑하여), 변조 심볼들 ("데이터 심볼들 ")을 제공한다. 심블 변조기 (120)는 이 데이터 심볼들과 파일럿 심블들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
[041] 심볼 변조기 (120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심블은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화 (FDM), 직교 주파수 분할 다중화 (OFDM), 시분할 다중화 (TDM), 또는 코드 분할 다중화 (CDM) 심볼일 수 있다.
[042] 송신기 (125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여 (예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅 (upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나 (130)는 발생된 하향링크 신호를 단말로 전송한다.
[043] 단말 (110)의 구성에서, 수신 안테나 (135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기 (140)로 제공한다. 수신기 (140)는 수신된 신호를 조정하고 (예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅 (downconverting)), 조정된 신호를 디지털화하여 샘플들올 획득한다. 심블 복조기 (145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서 (155)로 제공한다 .
[044] 또한, 심볼 복조기 (145)는 프로세서 (155)로부터 하향링크에 대한 주파수
정정용지 (규칙 제 91조) ISA/KR 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신 (Rx) 데이터 프로세서 (150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조 (즉, 심볼 디—매핑 (demapping))하고, 디인터리빙 (deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
[045] 심볼 복조기 (145) 및 수신 데이터 프로세서 (150)에 의한 처리는 각각 기지국 (105)에서의 심볼 변조기 (120) 및 송신 데이터 프로세서 (115)에 의한 처리에 대해 상보적이다.
[046] 단말 (110)은 상향링크 상에서, 송신 데이터 프로세서 (165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기 (170)는 데이터 심볼들을 수신하여 다증화하고, 변조를 수행하여 , 심볼들의 스트림을 송신기 (175)로 제공할 수 있다. 송신기 (175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나 (135)는 발생된 상향링크 신호를 기지국 (105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 R Radio Frequency) 유닛으로 구성될 수도 있다.
[047] 기지국 (105)에서, 단말 (110)로부터 상향링크 신호가 수신 안테나 (130)를 통해 수신되고, 수신기 (190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심블 복조기 (195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서 (197)는 데이터 심볼 추정치를 처리하여, 단말 (110)로부터 전송된 트래픽 데이터를 복구한다.
[048] 단말 (110) 및 기지국 (105) 각각의 프로세서 (155, 180)는 각각 단말 (110) 및 기지국 (105)에서의 동작을 지시 (예를 들어, 제어 , 조정, 관리 등)한다. 각각의 프로세서들 (155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛 (160, 185)들과 연결될 수 있다. 메모리 (160, 185)는 프로세서 (180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일 (general files)들을 저장한다.
[049] 프로세서 (155, 180)는 컨트를러 (controller), 마이크로 컨트를러 (microcontrol ler) , 마이크로 프로세서 (microprocessor ) , 마이크로 컴퓨터 (microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서 (155, 180)는
정정용지 (규칙 제 91조) ISA/KR 하드웨어 (hardware) 또는 펌웨어 (firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다ᅳ 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(appl ication specific integrated circuits) 또는 DSPs(digital signal processors) , DSPDs(digital signal processing devices) , FlDs( programmable logic devices) , FPGAs(f ield programmable gate arrays) 등이 프로세서 (155, 180)에 구비될 수 있다.
[050] 한편 , 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서 (155, 180) 내에 구비되거나 메모리 (160 185)에 저장되어 프로세서 (155, 180)에 의해 구동될 수 있다.
[051] 단말과 기지국이 무선 통신 시스템 (네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSKopen system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어 (L1), 제 2 레이어 (L2), 및 제 3 레이어 (L3)로 분류될 수 있다. 물리 레이어는 상기 저 1 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC (Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
[052] 본 명세서에서 단말의 프로세서 (155)와 기지국의 프로세서 (180)는 각각 단말 (110) 및 기지국 (105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서 (155, 180)를 언급하지 않는다 . 특별히 프로세서 (155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
[053] 도 2는 LTE/LTE— A시스템의 프레임 구조를 도시한 도면이다.
[054] 도 2를 참조하면, 하나의 프레임은 10ms으로, 10개의 1ms 서브프레임 (subframe)으로 이루어진다. 하나의 서브프레임을 전송하기 위한 시간은 transmission time interval (TTI)로 정의될 수 있다. 예를 들어, 하나의
정정용지 (규칙 제 91조) ISA/KR 서브프레임은 2개의 0.5ms 슬롯 (slot)으로 이루어지며, 하나의 슬롯은 7개 (흑은 6개)의 OFDM Orthogonal Frequency Division Multiplexing) 심볼로 이루어 진다. 3GPP LTE 시스템은 하향링크에서 0FDMA를 사용하고, OFDM 심볼은 한 심볼 구간 (period)를 나타낸다. OFDM 심볼은 SC-FDMA 심볼 또는 한 심볼 구간으로 지칭될 수도 있다. 자원블록 (Resource Block, RB)은 자원 할당 단위 (unit)이고, 한 슬롯에 인접한 복수의 부반송파들을 포함한다. 도 2에 도시된 무선 프레임의 구조는 예시적인 것이어서 무선 프레임에 포함된 서브프레임들의 수, 서브프레임에 포함된 슬롯의 수, 또는 한 슬롯에 포함된 OFDM 심볼들의 수는 다양한 방법으로 변경될 수 있다.
[055] 15 kHz 간격의 부반송파 12개와 7개의 0FDM 심볼로 하나의 자원 블록 (Resource Block, RB)가 정의된다. 기지국은 중심. 주파수 (Center Frequency) 6RB에서 동기화 (Synchronization)를 위한 Primary Synchronization Signal (PSS) , Secondary Synchronization Signal (SSS)와 시스템 정보를 위한 Physical Broadcast Channel (PBCH)를 전송한다. 여기서, Normal /Extended CPCCyclic Prefix), TDD(Time Division Du lex) /FDD (Frequency Division Duplex)에 따라 상기 무선 프레임 구조 및 신호, 채널의 위치에 차이가 있을 수 있다.
[056] 도 3은 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 슬롯의 자원 그리드를 예시한 도면이다.
[057] 도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 0FDM 심볼올 포함한다. 하나의 하향링크 슬롯은 7(혹은 6)개의 0FDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소 (element)는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB는 12X7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 NRB는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, 0FDM 심볼이 SC-FOMA 심볼로 대체된다.
[058] 도 4는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템의 하향링크 서브프레임의 구조를 예시한다.
[059] 도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3개 (혹은 4개)의 0FDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은
10
정정용지 (규칙 제 91조) ISA/KR OFDM 심볼은 PDSOKPhysical Downlink Shared CHancel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICHCPhysical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 웅답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negat ive一 acknowledgment) 신호를 나른다.
[060] PDCCH를 통해 전송되는 제어 정보를 DCKDownlink Control Informat ion)라고 한다. DC I 포맷은 상향링크용으로 포맷 0, 하향링크용으로 포맷 1, 1A, IB, 1C, ID, 2, 2A, 3, 3A 등의 포맷이 정의되어 있다. DCI 포맷은 용도에 따라 호핑 플래그 (hopping flag), RB 할당, MCSCmodulat ion coding scheme) , RV( redundancy version) , NDKnew data indicator) , TPC(transmi t power control ) , 사이클릭 쉬프트 DM RS( demodulation reference signal ) , CQI (channel quality information) 요청, HARQ 프로세스 번호, TPMI(transmitted precoding matrix indicator), PMKprecoding matrix indicator) 확인 (conf irmat ion) 등의 정보를 선택적으로 포함한다.
[061] PDCCH는 하향링크 공유 채널 (downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위- 계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Τχ 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 둥을 나른다ᅳ 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregat ion) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹 (resource element group, REG)에 대웅한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라
정정용지 (규칙 제 91조) ISA/KR 결정된다ᅳ 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자 (예, RNTKradio network temporary identifier))로 마스킹 된다ᅳ 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자 (예, ceH-RNTI (ORNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system information block, SIC))를 위한 것일 경우, SI-R TI (system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 웅답을 위한 것일 경우, RA-RNTI (random access-RNTI)가 CRC에 마스킹 될 수 있다.
[062] 도 5는 무선통신 시스템의 일 예인 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
[063] 도 5를 참조하면 , 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SOFDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared CHannel)를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control CHannel)를 포함하고 상향링크 제어 정보 (Up link Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
[064] PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
[065] - SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. 00K(0n-0ff Keying) 방식올 이용하여 전송된다.
[066] - HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 웅답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드 (Codeword, CW)에 대한 웅답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
[067] - CQK Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIM0(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator),
12
정정용지 (규칙 제 91조) ISA/KR PMKPrecoding Matrix Indicator) , PTKPrecoding Type Indicator) 등을 포함한다. 서브프레임 당 20비트가사용된다.
[068] 단말이 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전송에 가용한 SC-FOMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼올 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
[069] PDCCHCPhysical Downlink Control CHannel) 전송
[070] PDCCH는 하향링크 제어 채널로 특정 단말을 위한 PDSCH lDiCwnlii여러 단말을 위한 power control 명령을 전송하도록 되어 있다. PDCCH는 시간 도메인 (time domain)에서는 최대 4개의 0FDM 심볼을 차지하며 PCFICH로 PDCCH에 할당된 0FDM 심볼 수를 지시한다. 한편, 주파수 도메인 (frequency domain)에서는 시스템 전 대역에 걸쳐서 전송되며, 변조는 QPSK를 사용한다. PDCCH를 전송을 위하여 사용하는 자원은 CCE (control channel element)로 칭하며, 36개의 resource element (RE)로 구성되어 있어서 하나의 CCE를 통해서 72 bit를 전송할 수 있다. PDCCH에 전송되는 제어 정보의 양은 전송 mode에 따라서 달라진다. 각 전송 mode에 따른 제어 정보는 DCI format으로 규정된다. 단말은 PDSCH/PUSCH 전송 유무를 PDCCH 디코딩 결과에 따라서 판단하게 되는 데, 이는 PDCCH scrambling은 해당 단말의 UE id 정보 (C-RNTI)에 의해서 이루어진다. 즉, 단말은 자신의 UE id에 의해서 scrambling되어 전송된 DCI format을 detect ion하게 되는 경우 PDCCH 제어 정보에 의해서 PDSCH 수신 또는 PUSCH 송신을 하게 된다. 일반적으로 하나의 subframe에 전송 가능한 PDCCH 수가 다수 개 이므로, 단말은 다수 개의 PDCCH에 대해서 디코딩을 수행하여 자신에게 전송된 제어 정보 유무를 확인해야 한다. 그러나, 모든 전송 가능한 PDCCH에 대해서 디코딩을 수행하기에는 복잡도가 크게 증가하게 되어, 디코딩 수에 제한올 두게 된다. PDCCH를 통해서 제어 정보를 전송하게 되는 경우, CCE는 한 개 또는 다수 개를 연접하여 제어 정보를 전송할 수 있는 데, 이를 CCE aggregation이라고 한다. 현재 허용하고 있는 CCE aggregation level은 1, 2, 4, 8로서, CCE aggregation level 4의 의미는 4개의 CCE를 연접하여
정정용지 (규칙 제 91조) ISA/KR 해당 UE의 제어 정보를 전송하게 된다. 단말은 각 aggregation level마다 디코딩 수를 제한하게 되는 데 , 이는 다음 표 1과 같다.
[071] 【표 1】
Figure imgf000016_0001
[072] 상기 표 1 에서 common type 의 경우 단말은 aggregation level 4 와 8 로 전송되는 PDCCH 를 4 번과 2 번 디코딩을 수행하여 제어 정보 전송 유무를 판단하게 되는 데, PDCCH 를 구성하는 특정 CCE 는 모든 단말에게 공통으로 알려진 영역에 해당한다. UE-speci f ic type 의 경우 common type 과는 다르게 aggregation level 1 2, 4, 8 로 전송되는 PDCCH 를 6, 6, 2, 2 번 디코딩을 수행하여 제어 정보 전송 유무를 판단하게 된다. 그러나, 이 때 사용되는 CCE 는 단말 별로 모두 다르게 설정된다. 이는 아래 수학식 1 에 의해 표현된다.
[073] 【수학식 1】
Yk =(A-Yk_{)modD
[074]
[075] 여기서, ― , ="!ΝΤΙ≠0 , Λ = 39827 , 65537 and = |_"5/2」 , "s 는 radio frame 내에서 slot number이다.
[076] 도 6 은 본 발명의 실시예들에서 사용되는 컴포넌트 캐리어 (CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.
[077] 도 6 의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC 와 UL CC 가 있다. 하나의 컴포넌트 캐리어는 20MHz 의 주파수 범위를 가질 수 있다.
14
정정용지 (규칙 제 91조) ISA/KR [078] 도 6 의 ( b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6 의 (b)의 경우에 20MHz 의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3 개의 CC 를 동시에 모니터링할 수 있고, 하향링크 신호 /데이터를 수신할 수 있고 상향링크 신호 /데이터를 송신할 수 있다. - [079] 만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC 를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC 에 우선순위를 주어 주된 DL CC 를 단말에 할당할 수 있으며, 이러한 경우 UE 는 L 개의 DL CC 는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
[080] 하향링크 자원의 반송파 주파수 (또는 DL CC)와 상향링크 자원의 반송파 주파수 (또는, UL CC) 사이의 링키지 ( l inkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Informat ion Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC 와 상기 UL 그랜트를 사용하는 UL CC 간의 맵핑 관계를 의미할 수 있으며, HARQ 를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
[081] 크로스 캐리어 스케줄링 (Cross Carr i er Schedul ing)
[082] 캐리어 병합 시스템에서는 캐리어 (또는 반송파) 또는 서빙 셀 (Serving Cel l )에 대한 스케즐링 관점에서 자가 스케즐링 (Sel f-Schedul ing) 방법 및 크로스 캐리어 스케줄링 (Cross Carr ier Schedul ing) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케즐링 (Cross Component Carr ier Schedul ing) 또는 크로스 셀 스케줄링 (Cross Cel l Schedul ing)으로 일컬을 수 있다.
[083] 자가 스케즐링은 PDCCH(DL Grant )와 PDSCH 가 동일한 DL CC 로 전송되거나 DL CC 에서 전송된 PDCCH JL Grant )에 따라 전송되는 PUSCH 가 UL Grant 를 수신한 DL CC와 링크되어 있는 UL CC를 통해 전송되는 것을 의미한다.
정정용지 (규칙 제 91조) ISA/KR [084] 크로스 캐리어 스케줄링은 PDCCH(DL Grant )와 PDSCH 가 각각 다른 DL CC 로 전송되거나, DL CC 에서 전송된 PDCCH JL Grant )에 따라 전송되는 PUSCH 가 UL 그랜트를 수신한 DL CC 와 링크되어 있는 UL CC 가 아닌 다른 UL CC 를 통해 전송되는 것을 의미한다.
[085] 크로스 캐리어 스케즐링 여부는 단말 특정 (UE-spec i f i c)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링 (예를 들어, RRC 시그널링)을 통해서 반정적 (semi-stat i c)으로 각 단말 별로 알려질 수 있다.
[086] 크로스 캐리어 스케줄링이 활성화된 경우, PDCCH 에 해당 PDCCH 가 지시하는 PDSCH/PUSCH 가 어느 DL/UL CC 를 통해서 전송되는지를 알려주는 캐리어 지시자 필드 (CIF : Carr i er Indi cator Fi e ld)가 필요하다. 예를 들어, PDCCH 는 PDSCH 자원 또는 PUSCH자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH 가 다증 집성된 DL/UL CC 증 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF 가 설정된다ᅳ 이 경우, LTE Release-8 의 DCI 포맷은 CIF 에 따라 확장될 수 있다. 이때 설정된 CIF 는 3b i t 필드로 고정되거나, 설정된 CIF 의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE Re l ease-8 의 PDCCH 구조 (동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
[087] 반면, DL CC 상에서의 PDCCH 가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF 가 설정되지. 않는다. 이 경우, LTE Re l ease-8 과 동일한 PDCCH 구조 (동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
[088] 크로스 캐리어 스케줄링이 가능할 때, 단말은 CC 별 전송 모드 및 /또는 대역폭에 따라 모니터링 CC 의 제어영역에서 복수의 DCI 에 대한 PDCCH 를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
[089] 캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH 를 수신하도록 스케줄링된 DL CC 의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH 를 전송하도록 스케줄링된 UL CC 의 집합을 나타낸다. 또한, PDCCH 모니터링 집합 (moni tor ing set )은 PDCCH모니터링을 수행하는 적어도 하나의 DL CC 의 집합을
정정용지 (규칙 제 91조) ISA/KR 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합 (subset )일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC 들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC 에 대한 자기-스케즐링 ( sel f-schedul ing)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정 (UE-spec i f i c) , 단말 그룹 특정 (UE group-spec i f i c) 또는 샐 특정 (CeU- spec i f i c)하게 설정될 수 있다.
[090] 크로스 캐리어 스케즐링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH 를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
[091] 도 7 은 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일 예를 나타내는 도면이다.
[092] 캐리어 병합 (CA)을 지원하는 무선 접속 시스템에서 기지국 및 /또는 단말들은 하나 이상의 서빙 샐들로 구성될 수 있다. 도 7 에서 기지국은 A 셀, B 셀, C 셀 및 D 셀 등 총 4 개의 서빙셀을 지원할 수 있으며, 단말 A 는 A 셀 , B 셀 및 C 샐로 구성되고, 단말 B 는 B 셀, C 셀 및 D 셀로 구성되며, 단말 C 는 B 샐로 구성된 경우를 가정한다. 이때, 각 단말에 구성된 셀들 중 적어도 하나는 P 셀로 설정될 수 있다ᅳ 이때, p 셀은 항상 활성화된 상태이며, S 셀은 기지국 및 /또는 단말에 의해 활성화 또는 비활성화될 수 있다.
[093] 도 7 에서 구성된 셀은 기지국의 셀 중에서 단말로부터의 측정 보고 (measurement report ) 메시지를 기반으로 CA 에 셀 추가가 가능한 셀로서 단말별로 설정 가능하다. 구성된 셀은 PDSCH 신호 전송에 대한 ACK/NACK 메시지 전송을 위한 자원을 미리 예약해 둔다. 활성화된 셀 (Act ivated cel l )은 구성된 셀들 중에서 실제 PDSCH 신호 및 /또는 PUSCH 신호를 전송하도록 설정된 샐이며, CSI 보고 및 SRS(Sounding Reference Signal ) 전송을 수행하게 된다. 비활성화된
정정용지 (규칙 제 91조) ISA/KR 샐 (De-Activated cell)은 기지국의 명령 또는 타이머 동작에 의해서 PDSCH/PUSCH 신호 송수신을 수행하지 않도록 구성되는 셀이며, CSI 보고 및 SRS 전송도 증단된다.
[094] Physical resource block (PRB) bundling
[095] Transmission mode 9을 지원하는 단말의 경우, PMI/RI feedback을 higher layer에서 설정할 수 있다. PMI/RI feedback이 설정된 transmission mode 9 단말은 PDSCH와 DM RS에 동일한 precoding을 적용하는 physical resource block의 granularity에 대한 가정을 할 수 있다. 즉, system bandwidth에 따라 precoding resource block group (PRG)에는 동일한 precoding이 적용되는 것을 가정하여 channel estimation을 수행하여 channel estimation 성능을 향상시킬 수 있다. 아래 표 2는 system bandwidth에 따른 PRG의 크기를 나타낸 값이다.
[096] 【표 2】
PRG size according to system bandwidth
Figure imgf000020_0001
[097] Channel encoding
[098] 일반적인 통신 시스템에서는 채널에서 겪는 오류를 수신단에서 정정해주기 위해서 송신단에서 보내는 정보를 오류정정부호 (forward error correction code)를 사용하여 부호화 (coding)를 한 후 전송하게 된다. 수신단에서는 수신신호를 복조 (demodulation)한 후 오류정정부호의 복호 (decoding)화 과정을 거친 후 전송 정보를 복원하게 된다. 이러한 복호화 과정에서, 채널에 의해서 생긴 수신신호상의 오류를 정정하게 된다. 오류정정부호는 다양한 종류가 가능하지만, 본 발명에서는 터보 코드 (turbo code)를 예를 들어서 설명하도록 한다. 터보 코드는 recursive systematic convolution encoder와 inter leaver≤- 구성된다ᅳ 터보 코드의 실제 구현시 병렬 복호화를 용이하게 하기 위한 인터리버가 있는 데 이의 일종이
18
정정용지 (규칙 제 91조) ISA/KR QPPCquadrat ic polynomi al permutat ii n)이다. 이와 같은 QPP inter lever는 특정의 데이터 블록 크기에만 좋은 성능을 유지한다고 알려져 있다. 터보 코드의 성능은 데이터 블록 크기가 증가할수록 좋은 것으로 알려져 있는데, 실제 통신 시스템에서는 실제 구현의 편리함을 위하여 일정 크기 이상의 데이터 블록의 경우 여러 개의 작은 데이터 블록으로 나누어 encoding올 수행하게 된다. 나누어진 작은 데이터 블록을 code block이라 부른다. Code block은 일반적으로 같은 크기를 갖게 되지만, QPP inter leaver의 크기 제한 때문에 여러 개의 code block중 하나의 code block은 다른 크기를 가질 수도 있다. 정해진 인터리버 ( inter leaver ) 크기 코드 블록 (code block) 단위로 오류정정부호화 과정올 거친 후 무선 채널로 전송 시 발생하는 burst error의 영향을 줄이기 위해 inter leaving을 수행한다. 그리고, 실제 무선 자원에 매핑되어 전송된다. 실제 전송시 사용되는 무선 자원의 양이 일정하기 때문에 이에 맞추기 위해서는 encoding된 code block에 대하여 rate matching을 수행하여야 한다. 일반적으로 rate matching은 punctur ing이나 repet i t ion으로 이루어진다. Rate matching은 3GPP의 WCDMA와 같이 encoding된 code block 단위로 수행할 수도 있다. 다른 방법으로, encoding된 code block의 systemat i c 부분과 par i ty부분을 분리하여 따로 수행할 수도 있다.
[099] 도 8은 rate matching블록도를 예시한 도면이다.
[0100] 도 8은 encodi ng된 code block의 systemat i c 부분과 par i ty 부분을 분리하여 rate matching을 수행하는 블록도이다. 여기서 code rate는 1/3을 가정하였다. 이 때 상위 레이어에서 전송된 데이터 블록에는 오류 검출을 위한 CRC가 붙게 되며, segment at ion된 code block에도 구현상의 편의를 위하여 CRC를 code block마다 첨부하게 된다. 상위 레이어의 서비스 종류에 따라 다양한 데이터 블록 크기가 정의되어야 하지만 이를 실제로 수신단으로 시그널링해야 하므로 양자화가 필요하게 된다. 양자화할 때 상위 레이어에서 전송되어온 소스 데이터 블록을 물리 계층의 데이터 블록 크기에 맞추기 위해서 du隱 y bi t를 붙이게 되는데, 첨가되는 dummy bi t의 양이 최소가 되도록 양자화를 하는 것이 좋다. 데이터 블록 크기, 변조 및 코딩 레이트, 할당된 resource 개수는 서로 함수관계가 된다. 즉, 어느 두 파라미터의 값에 따라 나머지 한 파라미터도 결정된다. 따라서, 시그널링 하는 경우는 두 파라미터만 시그널링하면 된다. 앞으로 편의를 위하여 데이터 블록
정정용지 (규칙 제 91조) ISA/KR 크기를 수신단에 알려주기 위해서 변조 및 코딩 레이트, 할당된 resource 개수를 이용하기로 가정한다. 여기서 할당된 resource 개수에 영향을 주는 요인으로는 안테나 구성에 따라 채널 추정을 위한 p i l ot 또는 reference s ignal 및 제어 정보 전송을 위해 사용되는 resource 등이 영향을 주게 되며, 매 전송 순간마다 바뀔 수 있다.
[0101] Rate mat ching
[0102] 도 9는 터보 코딩된 전송 채널들 ( turbo coded t ransport channe l s )을 위한 레이트 매칭을 예시한 도면이다.
[0103] 도 9에 따른 터보 코딩된 전송 채널들에 대한 레이트 매칭의 구체적인 내용을 다음 표 3과 같이 구체적으로 나타낼 수 있다.
[0104] 【표 3】
The rate matching for turbo coded transport channels is defined per coded block and consists of interleaving the three information bit streams rf * , rf^'1 andrf } , followed by the collection of bits and the generation of a circular buffer as depicted in Figure 9. The output bits for each code block are transmitted as described in section 5.1.4.3.2 of 3 GPP LTE TS 36.212 standard document.
The bit stream [0) is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 of 3 GPP LTE TS 36.212 standard document with an output sequence defined as Vo0) ' vi<0) ' v20).-' vS-i and where Kn is defined in section 5.1.4.3.1 of 3GPP LTE TS 36.212 standard document. The bit stream is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 of 3GPP LTE TS 36.212 standard document with an output sequence defined as ,
Figure imgf000022_0001
. The bit stream is interleaved according to the sub-block interleaver defined in section 5.1.4.3.1 with an output sequence defined as
The sequence of bits ek for transmission is generated according to section 5.1.4.3.2 of 3GPP LTE TS 36.212 standard document.
20
정정용지 (규칙 제 91조) ISA/KR [0105] Sub-b l ock inter leaver
[0106] 다음 표 4는 Sub-block inter leaver에 대한 구체적인 설명을 기술한 표이다.
[0107] 【표 4】
The bits input to the block interleaver are denoted by
Figure imgf000023_0001
,...,d^_x, where D is the number of bits. The output bit sequence from the block interleaver is derived as follows:
(1) Assign Cj^bblock = 32 to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2, ..., c hhlocfc - 1 from left to right.
(2) Determine the number of rows of the matrix R hh ck , by finding minimum integer d such that:
[0108] D≤{R^hhlock
The rows of rectangular matrix are numbered 0, 1 , 2,. .., Rjt;hhlock - 1 from top to bottom
(3) lf[Rjhhl0Ck x C^hhlock )> D , then ND = [R^bhlock χ c block - Dj dummy bits are padded such that yk = <NULL> for k = 0, \ ,.. ,, ND - 1. Then, yNo +k = , k = Q, 1,..., £)-1, and the bit sequence yk is written into the ^bblodi χ Cs T^bblock ) matrix row by row starting with bit y in column 0 of row 0:
Figure imgf000023_0002
For
Perform the inter-column permutation for the matrix based on the patter
that is shown in table 3, where P(j) is the original column position of the j- th permuted column. After permutation of the columns, the inter-column permuted
^ Cs T block) matrix is equal to 一 1) 1 C
Figure imgf000023_0003
21
정정용지 (규칙 제 91조) ISA/KR (5) The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted χ C^bblock)matrix. The bits after sub-block interleaving are denoted by ν^, ^,ν^,.-., ^^ , where corresponds to γρ0)ι) to .. and Kn = [f
For :
(4) The output of the sub-block interleaver is denoted by ^2) , j (2) , ν ν _x , where
,(2)一 and where
Figure imgf000024_0001
[0109] Bit collection, select ion and transmission
[0110] 표 5는 Bit col lection, selection and transmission에 대한 구체적인 설명을 한 표이다.
[0111] 【표 5】
The circular buffer of length Kw = Kn for the r-th coded block is generated as follows: wk
Figure imgf000024_0002
0,..., Kn—l
wKn+lk = v<" for k = 0,..., Kn -1
wKu+1M =v[2) fork^O,..., Kn -l
Denote the soft buffer size for the transport block by NiR bits and the soft buffer size for the r-th code block by N bits. The size N is obtained as follows, where C is the number of code blocks computed in section 5.1.2:
N
Ncb = min K, for DL-SCH transport channels
C
22
정정용지 (규칙 제 91조) ISA/KR
Figure imgf000025_0001
msdmlim nuAe HARses ik in section of istsn! of DL3sfml t>- eco if FT condto a is enal to otewse. isual tiitlndhri.
o so cs.vs te tota nmffthmd bts F ^ ihli.--
N while { k < E }
if w^+j)modNcb≠< NULL >
k = k + l
end if
j =j +l
end while
[0112] LDPC coding
[0113] 다음 표 6은 LDPC 코딩에 대한 설명을 나타내고 있다.
[0114] 【표 6】
The AT bits including filler bits ( ?, c!, C2 cK-\) are encoded based on D-K by D parity check matrix (H), where D is number of encoded bits and D - K is the number of parity check bits. The parity check bits (po, Pi, P ..., PD-K -I) are obtained so that H' dT= 0, where d
Figure imgf000026_0001
po, P P2, ..., PD-K-I) is coded bits stream.
The parity check matrix H is defined as: pa°>Nldpc_b-2 pa°-Nldpc_l pai>Nldpc_t
Figure imgf000026_0002
pa2-Nldpc b~2 pa2'Nldpc
YpaN parity b-1'0 paN parity J)—1'1 paN parity^-1'2 ·'. paN arity_b-X'N ldpcj)~2 paN Par y_b_ where P°ij
Figure imgf000026_0003
, a≤i<Nfcipc_b) is zero matrix (when aij—l) or cyclic-permutation matrix obtained from the Z by Z identity matrix by cyclically shifted the columns to the right by elements. The value of Z is shift size obtained by Z = \K/Kmin \ 27 where Kmitl is given in Table 5.1.2- 1.
The matrix P°ij is Z by Z zero matrix when is - 1. The codeword length D, information length Kand number of parity bits으 K is equal to Nidpc_b x Z, Kidpcb x Z and Npairty_b x Z, respectively. The parameters Nidpc_b, Kidpc_b and Nparity—b according to code rates are depicted in Table 3.
The parity check matrix is obtained based on Tables 5.1.3.2-2, 5.1.3.2-3, 5.1.3.2-4 and
24
정정용지 (규칙 제 91조) ISA/KR 5.1.3.2-5 which show the exponents (ay) of parity check matrix when the code rate equals 5/6, 3/4, 2/3 and 1/2 for each encoded bits, respectively [5].
[0115] 다음 표 7은 패리티 체크 행렬 (Parameters of parity check matrix)의 파라미터들을 나타내고 있다.
[0116] 【표 7】
Figure imgf000027_0001
[0117] 【표 8】
[0118] Matrix exponents for Code rate R=5/6
(a) D = 648 bits, Z=27 bits
16 17 22 24 9 3 14 -1 4 2 7 -1
26 -1 2 -1 21 -1 1 0 -1 -1
-1
- J
25 12 12 3 3 26 6 21 -1 15 22
15 -1 4 -1 -1 16 -1 0 0 -1 -1
-1
25 18 26 16 22 23 9 -1 0 -1 4 -1
4 -1 8 23 11 -1 -1 -1 0 0 -1
-1
9 7 0 1 17 -1 -1 7 3 -1 3 23
-1 16 -1 -1 21 -1 0 -1 -1 0 0
-1
24 5 26 7 1 -1 -1 15 24 15 -1 8
-1 13 -1 13 -1 11 -1 -1 -1 -1 0
0
2 2 19 14 24 1 15 19 -1 21 -1 2
-1 24 -1 3 -1 2 1 -1 -1 -1 -1
25
정정용지 (규칙 제 91조) ISA/KR 0
(b) D = 1296 bits, Z=54 bits
40 51 41 3 29 8 36 -1 14 -1
-1 33 -1 11 -1 4 1 0 -1 -1
-1
21 47 9 48 35 51 -1 38 28 -1
34 -1 50 -1 50 -1 -1 0 -1 -1
-1
39 28 42 50 39 17 -1 6 18
-1 20 -1 15 -1 40 -1 -1 0 -1
-1
0 1 43 36 30 47 49 -1 47
3 -1 35 34 -1 -1 -1 0
-1
32 11 23 10 44 12 -1 48 -1 4
-1 9 -1 17 -1 16 -1 -1 -1 0
0
7 15 47 23 16 47 -1 43 -1 29 -1
52 -1 2 -1 53 -1 1 -1 -1 -1 -1
0
(c) D = 1944 bits, Z= =81 bits
29 28 39 9 61 -1 -1 -1 63 45 80
-1 -1 -1 37 32 22 1 0 -1 -1 -1
-1
49 42 48 11 30 -1 -1 49 17 41
37 15 -1 54 -1 -1 -1 0 -1 -1
-1
76 78 51 37 35 21 -1 17 64 -1 -1
-1 59 7 -1 -1 32 -1 -1 0 0 -1
-1
65 44 9 54 56 73 34 42 -1
35 -1 -1 -1 46 39 0 -1 0
-1
62 7 80 68 26 -1 80 55 36
26 -1 9 -1 72 -1 -1 -1 -1
0
75 33 21 69 59 38 -1 -1 35
-1 62 36 26 -1 1 -1 -1 -1
26
정정용지 (규칙 제 91조) ISA/KR
Figure imgf000029_0001
19] 【표 9】
Matrix exponents for R=3/4
(a) D = 648 bits, Z=27 bits
16 17 22 24 9 3 14 -1 4 2 7 -1
26 -1 2 -1 21 -1 1 0 -1 -1
-1
-1
25 12 12 3 3 26 6 21 -1 15 22 .1
15 -1 4 -1 -1 16 -1 0 0 -1
-1
-1
25 18 26 16 22 23 9 -1 0 -1 4 .1
4 -1 8 23 11 -1 -1 -1 0 0
-1
9 7 0 1 17 -1 -1 7 3' -1 3 23
-1 16 -1 -1 21 -1 0 -1 -1 0 0
- 1
24 5 26 7 1 -1 -1 15 24 15 -1 8
-1 13 -1 13 -1 11 -1 -1 -1 -1 0
0
2 2 19 14 24 1 15 19 -1 21 -1 2
-1 24 -1 3 -1 2 1 -1 -1 -1 -1
0
(b) D = 1296 bits, Z=54 bits
39 40 51 41 3 29 8 36 -1 14 -1 6
-1 33 -1 11 -1 4 1 0 -1 -1 -1
_I
48 21 47 9 48 35 51 -1 38 -1 28 -1
34 -1 50 -1 50 -1 -1 0 0 -1 -1
- 1
30 39 28 42 50 39 5 17 -1 6 -1 18
-1 20 -1 15 -1 40 -1 -1 0 0 -1
- 1
29 0 1 43 36 30 47 -1 49 -1 47 -1
3 -1 35 -1 34 -1 0 -1 -1 0 0
27
정정용지 (규칙 제 91조) ISA/KR -1
32 11 23 10 44 12 7 -1 48 -1 4
-1 9 -1 17 -1 16 - 1 -1 -1 -1 0
0
7 15 47 23 16 47 -1 43 -1 29 -1
52 - 1 2 -1 53 -1 1 -1 -1 -1 -1
0
(c) D = 1944 bits, Z= =81 bits
29 28 39 9 61 -1 - 1 -1 63 45 80
-1 -1 -1 37 32 22 1 0 -1 -1 -1
-1
49 42 48 11 30 -1 -1 -1 49 17 41
37 15 - 1 54 -1 -1 -1 0 0 -1 -1 一 1
76 78 51 37 35 21 -1 17 64 -1 -1
-1 59 7 -1 -1 32 -1 -1 0 0 -1
- 1
65 44 9 54 56 73 34 42 .1 -1 -1
35 - 1 - 1 -1 46 39 0 -1 0 0
-I
62 7 80 68 26 - 1 80 55 -1 36 -1
26 -1 9 - 1 72 -1 - 1 -1 -1 -1 0
0
75 33 21 69 59 3 38 -1 -1 -1 35
-1 62 36 26 -1 -1 1 -1 -1 -1 -1
0 【표 10】
Figure imgf000030_0001
28
정정용지 (규칙 제 91조) ISA/KR -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1
- 1
13 5 0 -1 3 -1 7 -1 -1 26 -1
-1 13 -1 16 -1 -1 -1 0 0 -1 -1
-1
14 24 -1 12 -1 19 -1 17 -1 -1 -1
20 -1 21 -1 0 -1 -1 -1 0 0 -1
-1
22 9 20 -1 25 -1 17 -1 8 -1 14
-1 18 -1 -1 -1 -1 -1 -1 -1 0 0
-1
23 21 11 20 -1 24 -1 18 -1 19 -1
-1 -1 -1 22 -1 -1 -1 -1 -1 -1 0
0
11 11 20 -1 21 -1 26 -1 3 -1 -1
18 -1 26 -1 1 -1 -1 -1 -1 -1 -1
0
(b) D = 1296 bits, Z= =54 bits
31 22 43 -1 40 4 -1 11 -1 -1 50
-1 -1 -1 6 1 0 -1 -1 -1 -1 -1
-1
52 41 2 6 -1, 14 -1 34 -1 -1 -1
24 -1 37 -1 -1 0 0 -1 -1 -1 -1
- 1
31 29 0 21 -1 28 -1 -1 2 -1 -1
7 -1 17 -1 -1 -1 0 0 -1 -1 -1
- 1
33 48 -1 4 13 .1 26 -1 -1 22 -1
-1 46 42 -1 -1 -1 0 0 -1 -1
-1
- 1
7 18 51 12 25 .1 -1 -1 50 -1 -1
5 -1 -1 -1 0 -1 -1 0 0 -1
-1
一 1
40 32 16 5 -1 18 -1 -1 43 51
-1 32 -1 -1 -1 -1 -1 -1 0 0
-1
一 1
24 13 22 28 -1 37 -1 -1 25 -1
-1 52 -1 13 -1 -1 -1 -1 -1 -1 0
29
정정용지 (규칙 제 91조) ISA/KR 0
32 22 4 21 16 -1 -1 -1 27 28 -1 38
-1 -1 -1 8 1 -1 -1 -1 -1 -1 -1
0
(c) D = 1944 bits, Z= =81 bits
61 75 4 63 56 -1 -1 -1 -1 -1 -1 8
-1 2 17 25 1 0 -1 -1 -1 -1 -1
-1
56 74 77 20 -1 -1 -1 64 24 4 67 -1
7 -1 -1 -1 -1 0 0 -1 -1 -1 -1
-1
28 21 68 10 7 14 65 -1 -1 -1 23 -1
-1 -1 75 -1 -1 -1 0 0 -1 -1 -1
-1
48 38 43 78 76 -1 -1 -1 -1 5 36 -1
15 72 -1 -1 -1 -1 -1 0 0 -1 -1
-1
40 2 53 25 -1 52 62 -1 20 -1 -1 44
-1 -1 -1 -1 0 -1 -1 -1 0 0 -1
69 23 64 10 22 -1 21 -1 -1 -1 -1 -1
68 23 29 -1 -1 -1 -1 -1 -1 0 0
-1
12 0 68 20 55 61 -1 40 -1 -1 -1 52
-1 -1 -1 44 -1 -1 -1 -1 -1 -1 0
0
58 8 34 64 78 -1 -1 11 78 24 -1 -1
-1 -1 -1 58 1 -1 -1 -1 -1 -1 -1
0 22] 【표 11】
Matrix exponents for Code rate R=l/2
(a) D = 648 bits, Z=27 bits
0 -1 -1 -1 0 0 -1 -1 0 -1 -1 0
1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
22 0 -1 -1 17 -1 0 0 12 -1 -1 -1
30
정정용지 (규칙 제 91조) ISA/KR 0 0 -1 -1 -1 -1 -1 -1 -1 -1
0 -1 10 -1 -1 -1 24 -1 0 .1
-1 0 0 -1 -1 -1 -1 -1
-1
.! .! 0 20 .1 -1 -1 25 0 -1 .1
-1 0 0 -1 -1 -1 -1 -1
-1 -1 -1
.! .1 -1 3 .1 -1 -1 0 -1 9 11
-1 -1 0 0 -1 -1 -1 -1
-1 -1 -1
.! 23 1 17 .1 3 -1 10 -1 -1 .1
-1 -1 0 0 -1 -1 -1
-1 -1 -1 -1
:: .1 -1 8 .1 -1 -1 7 18 -1 -1
0 -1 -1 -1 0 0 -1 -1
-1 -1
24 .! -1 0 .1 8 -1 6 -1 -1 .1
-1 -1 -1 -1 0 0 -1
-1 -1 -1 -1
20 .1 16 22 10 -1 -1 23 -1 -1 -1
-1 -1 -1 -1 -1 0 0
1 -1 -1 -1
.! .1 -1 19 -1 -1 13 -1 3 17
-1 -1 -1 -1 -1 -1 0 0
-1 -1 -1
8 -1 23 18 -1 14 9 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
0
-1 -1 -1 16 -1 -1 2 25 5 -1 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0
(b) D = 1296 bits , Z=54 bits
-1 -1 -1 22 -1 49 23 43 -1 -1 -1
1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
1 -1 -1 48 35 -1 -1 13 -1 30 -1
-1 0 0 -1 -1 -1 -1 -1 -1 -1 -1
31
정정용지 (규칙 제 91조) ISA/KR -1
50 -1 -1 4 -1 2 -1 -1 -1 -1 49
-1 0 0 -1 -1 -1 -1 -1
-1 -1 -1
[ -1 38 37 -1 .1 4 1 -1 .1 -1
-1 -1 0 0 -1 -1 -1
-1 1 -1 -1
.! -! 0 22 .1 ' .! 20 42 -1
-1 0 0 -1 -1 -1
-1 -1 -1
\ -1 48 35 .! .1 .1 44 -1 18 -1
-1 0 0 -1 -1 -1
-1 -1
11 .! .1 -1 17 .1 ., 51 -1 .1 -1
0 -1 0 0 -1 -1
-1 -1 -1
.! 25 -1 6 .1 45 .1 13 40 -1
-1 0 0 -1
1 -1 -1 -1 -1
.! -1 34 24 .1 -1 .1 23 -1 -1 46
-1 -1 0 0 -1
-1 -1 -1 -1
'. 27 -1 1 -! 38 -1 44 -1
-1 -1 -1 0 0
1 1 -1 -1 -1
18 .1 .! 23 .1 .1 8 0 35 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
0
-1 17 -1 30 -1 -1 -1 34 -1 -1 19
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0
(c) D = 1944 bits, Z=81 bits
-1 -1 -1 50 -1 11 -1 50 -1 79 -1
1 0 -1 -1 -1 -1 ,1 -1 -1 -1 -1
-1
-1 28 -1 0 -1 -1 -1 55 7 -1 -1
-1 0 0 -1 -1 -1 -1 -1 -1 -1 -1
-1
32
정정용지 (규칙 제 91조) ISA/KR 30 -1 -1 -1 24 37 -1 -1 56 14 -1 -1
-1 0 0 -1 -1 -1 -1 -1 -1 -1
62 53 -1 一 1 53 -1 -1 3 35 -1 -1 -1
-1 -1 0 0 -1 -1 -1 -1 -1 -1
40 :! -1 20 66 -1 -1 22 28 -1 -1 -1
-1 -1 -1 0 0 -1 -1 -1 -1 -1
-1
0 :! -1 -1 8 -1 42 -1 50 -1 -1 8
-1 一 1 -1 -1 0 0 -1 -1 -1 -1
-1
69 79 79 -1 -1 -1 56 -1 52 -1 -1 -1
0 -1 -1 -1 -1 -1 0 0 -1 -1 -1
65 -! -1 -1 38 57 .1 -1 72 -1 27 -1
-1 -1 -1 -1 -1 0 0 -1 -1
-1 -1
64 :: -1 -1 14 52 .1 -1 30 -1 -1 32
-1 -1 -1 -1 -1 -1 0 0 -1
-1
-1 45 -1 70 0 -1 .1 -1 77 9 -1 -1
-1 ᅳ 1 -1 -1 -1 -1 -1 0 0
-1 -1
2 56 -1 57 35 -1 .1 -1 -1 -1 12 -1
-1 -1 ᅳ 1 -1 -1 -1 -1 -1 -1 -1 0
0
24 -1 61 -1 60 -1 -1 27 51 -1 -1 16
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0
[0123] LDPC code를 도입하는 경우, payload size의 제한이 없이 encoder를 설계할 경우, 수신기의 processing 능력, 성능 이득이나 decoding latency 등의 제한 때문에 요구 성능을 만족시키지 못할 수가 있다. 따라서, 특정 임계값 이상의 payload size는 임계값보다 작은 다수 개의 code block으로 쪼개어서 encoding을 하는 것이 효율적일 수 있다.
[0124] 상술한 바와 같이, LDPC encoder는 parity check matrix (H)에 의해서
33
정정용지 (규칙 제 91조) ISA/KR 정의될 수 있다. 즉, information bit 길이 D, coding rate (r)에 대해서 H matrix를 정의할 수 있는 데, encoded bit 길이 D는 '648, 1296, 1944 bit가 정의되어 있으며, coding rate (=payload size/codeword size)는 5/6, 3/4, 2/3, 1/2이 정의되어 있어서, (D, r) 조합에 의해 12 개의 H matrix가 정의되어 있다. 이 때 , H는 (D-K) X D matrix로 정의할 수 있는데, D는 encoded bit size, K는 pay load size이며, D=Nldpc*Z, K=Kᅵ dpc*Z 로 정의할 수 있다. 12 개의 H matrix에 의해서 지원되는 payload size K는 D*r의 수식으로 계산할 수 있는데, {324, 432, 486, 540, 648, 864, 972, 989, 1080, 1319, 1484, 1648} bit의 payload size를 지원한다ᅳ 정의되지 않은 encoded bit 길이에 대한 LDPC coding은 shortening, puncturing의 방법으로 지원할 수 있다. 예를 들어, payload size 600 bit에 대해서 1/2 LDPC encoding을 수행하는 경우, D는 1200 bit가 된다. 이 때, r=l/2이므로 (1296, 1/2)의 조합의 H matrix를 사용하는 데, information bit 648 bit 증 48 bit를 0으로 하면 systematic 구조이기 때문에 encoded bit 중 48 bit는 0이 되고, 나머지 1248 bit 증 48 bit를 puncturing하여 1200 bit를 생성하게 된다.
[0125] 도 10은 Shortening/puncturing을 이용한 다양한 payload size 지원의 예를 도시한 도면이다.
[0126] 상술한 바와 같이 M (= Ml X M2) 개의 H matrix를 정의하였다고 하면, M 개의 (D, r) 또는 (K, r) 조합을 지원하는 것이고, 이외의 code rate 및 payload size의 지원을 위해서는 shortening/puncturing/repetition의 rate matching 과정을 수행하여야 한다. 여기서, D 또는 K는 Ml 개, r은 M2개를 지원하는 것을 가정한다. 그리고, 특정 H matrix에 대해서 다수 개의 Z 값을 정의하여 Kldpc*Z 에 해당하는 information block size를 지원할 수 있기 때문에 K|dpc*Z information block size도 H matrix에서 지원하는 payload size라고 할 수 있다. 이 때, information block은 CRC를 포함한 길이로 할 수 있다. 본 발명에서는 유한 개의 H matrix가 정의되어 있을 때, 특정 임계값올 넘는 payload size올 다수 개의 code block으로 segment at ion하는 방식을 제안한다. Code block segment at ion 후 code block에는 CRC가 부가될 수 있다. 일반적으로 code block 단위로 encoding이 수행되기 때문에 코드 블록 크기 (code block size)가 동일한 것이 바람직하다. 그러나, shortening/puncturing/repetition을 수행하는 경우 성능 열화가 클 수
정정용지 (규칙 제 91조) ISA/KR 있기 때문에 동일하지 않은 크기의 code block segmentat ion을 수행할 수 있다.
[0127] 도 11은 LDPC encoder에 대해서 동일하거나 동일하지 않은 크기의 code block segmentation을 수행하였을 경우의 성능을 비교한 도면이다.
[0128] 이 때, payload size가 1648 bit 이상의 경우 code block segmentat ion을 수행한다고 가정하고, payload size 2268 bit를 가정하였다. 2268 bit는 756 bit씩 3 개의 동일한 크기의 code block으로 segmentation 되거나, 정의되어 있는 H matrix에서 지원하고 있는 payload size 972 bit 1 개, 648 bit 2개의 code block으로 segmentation될 수 있다. 이 때, 756 bit는 972 bit에 대한 H matrix를 사용하되 shortening을 통해 encoding 할 수 있다. 도 11에서 알 수 있듯이, H matrix에 지원하는 payload size 증의 일부의 크기의 code block 크기로 segmentation을 수행하는 것이 좋은 성능을 보인다. 도 11의 성능 결과로부터 다음과 같은 code block segmentation 방식을 고려할 수 있다.
[0129] Segment at ion을 하더라도 code block의 개수가 최소가 되도록 segment at ion하는 것이 바람직하다 .
[0130] (1) Code block의 길이가 길수록 성능이 우수하기 때문에 code block 길이가 최대한 길 수 있도록 segmentation을 수행한다. (2) Code block마다 CB CRC가 추가될 수 있기 때문에 overhead가 증가될 수 있다 (예를 들어ᅳ LTE Turbo code). 단, LDPC code를 사용하는 경우 CB CRC 대신 syndrome check로 대체할 수 있다.
[0131] H matrix에서 지원하는 페이로드 크기로 segmentat ion을 하는 것이 바람직하다. 이 때 , H matrix는 코딩율 (code rate) 별로 다를 수 있으므로, code block segmentation 할 때, 제어 정보에서 획득할 수 있는 code rate를 고려하는 것이 바람직하다. 실제 전송할 때 사용하는 code rate rt는 r„ ≤ rt < r„+1,n =
1 Ml 를 만족할 때, r„,rn+1 중 특정 기준으로 선택되는 하나의 code rate에 해당하는 H matrix에서 지원하는 payload size로 segmentat ion을 수행하는 것이 바람직하다ᅳ
[0132] H matrix에서 지원하는 동일한 code block 크기로 segmentat ion을 수행한다. Payload (=transport block) size를 정의할 때, H matrix에서 지원하는 크기의 code block이 되도록 정의할 수 있다. 이 때, K + CRCTB = N*(Kn + CRCCB) , n=l,-,M,
정정용지 (규칙 제 91조) ISA/KR 여기서 CRCTB, CRCcb는 transport block 및 code block에 부가되는 CRC 길이고, N은 segment at ion되는 code block의 개수이다. 다수 개의 Z를 지원하는 경우 , K + CRCTB =Kldpc*Z =N*(Kn + CRCCB) , Kldpc는 base matrix를 η=1,···,Μ 일 때, ^은 기존에 Η matrix에서 지원하는 code block size가 되도록 K를 정할 수 있다.
[0133] 동일한 크기의 segmentation을 할 때, H matrix에서 지원하지 않는 payload size일 경우에는 H matrix에서 지원하는 서로 다른 크기의 code block으로 segmentation을 수행한다. 이 때, 다른 크기의 code block size의 개수는 가급적 최소로 하는 것이 바람직하다. 예를 들면, 2 또는 3으로 제한할 수 있다. Payload (=transport block) size를 정의할 때, H matrix에서 지원하는 서로 다른 크기의 code block들의 합이 되도록 정의할 수 있다. 이 때, 2 개의 서로 다른 크기의 code block을 고려하면 K + CRCTB = Nl*(Knl + CRCCB) + N2*(Kn2 + CRCCB), nl, η2=1,···,Μ, 여기서 CRCTB, CRCCB는 transport block 및 code block에 부가되는 CRC 길이고, Nl, N2은 Knl, Κη2 크기의 code block으로 segment at ion되는 code block의 개수이다ᅳ
[0134] H matrix에서 지원하는 서로 다른 payload size로 segment at ion되지 않는 경우에는, payload size에 가장 근사한 segment at ion ¾ code block size의 합에 해당하는 code block으로 segment at ion-ir 하되, segment at ion¾ code block size의 합과 payload size의 차이에 해당하는 수만큼의 payload bit는 다음과 같이 처리할 수 있다.
[0135] 방법 1: 특정 code block에 할당하고, shortening/punctur ing/repetit ion 등의 rate matching을 이용하여 codeword 길이를 맞춘다. 방법 1-1: 서로 다른 크기의 code block으로 segment at ion되는 경우, 특정 code block 크기에 해당하는 code block의 한 code block에 할당한다. 방법 1-2: 서로 다른 크기의 code block으로 segment at ion되는 경우, 특정 code block 크기에 해당하는 code block의 모든 code block에 최대한 균등하게 할당한다.
[0136] 방법 2: 해당 payload bit를 모든 code block에게 균등하게 최대한 할당하고, rate matching을 이용하여 codeword 길이를 맞춘다. 방법 2—1: Code block 별로 할당하는 bit 개수를 code block 개수에 비례하여 할당하고, 각 code block 크기의 특정 code block에 각각 bit를 할당하는 방법이다. 방법 2-2: Code block 별로
정정용지 (규칙 제 91조) ISA/KR 할당하는 bit 개수를 code block 개수에 비례하여 할당하고, 각 code block 크기의 code block들에 각각 할당된 bit를 최대한 균등하게 할당하는 방법이다.
[0137] H matrix에서 지원하는 code block size를 정하는 방식
[0138] 펑처링 (Puncturing)을 가정하지 않을 때, code block size는 Z*Kldpc (CRC 길이 포함)로 표현할 수 있다. 다양한 Z 값을 설계하는 경우, 가능한 code block size도 다양한 값을 가질 수 있다. 또한, shortening을 이용하면, code block size의 granularity는 더욱 다양할 수 있다. 그러나, shortening을 너무 많이 허용하게 되는 경우 성능 열화를 가져올 수 있기 때문에 shortening은 특정값 이하로 제한하는 것이 바람직하다. 예를 들어, 특정한 Z 값의 multiple, X*Z (예를 들어, X=6) 이하로 shortening의 양을 제한할 수 있다. 이는 성능 열화 정도와 지원하는 code block size의 granularity를 고려하여 정할 수 있다. 또한, shortening은 1 bit 단위로 가능하지만, 1 bit 단위로 code block size를 정의하는 경우, code block size의 수가 증가하여 단말의 test를 위한 비용이 증가하게 된다. 따라서, 균등한 간격의 code block size를 위해서 허용하는 shortening의 양을 제한할 수 있다. 지원하는 τ 값의 집합올 {Zl, Ζ2, Ζ3,···, Ζη}이라고 할 때, Ζ1>Ζ2> - >Ζη 의 관계를 만족한다고 가정한다. 이 때 , 상수 c를 지정하여 Zl*c, Zl*(2c), Zl*(3c), … 의 shortening을 허용한다고 하면, code block size는 Zl* Z*K,dpc> Zl* Kidpc - Zl*c, Zl* K,dpc ― Zl*(2c), Zl* Kldpc ― Zl*(3c) 등이 된다. 이 때, shortening은 X*Z1보다 작게 되도록 하되, Zl* Kldpc - Zl*(mc) > 12* Kldpc의 관계를 만족하도록 m을 선택하는 것이 바람직하다. 이 때, η>1인 {Zn}에 대해서도 같은 원칙을 적용할 수 있다.
[0139] 다음 표 12는 Kidpc = 32, Z 값의 집합이 {256, 224, 192, 160, 128, 112, 96, 80, 64, 56, 48, 40, 32, 28, 24, 20, 16, 14, 12, 10, 8, 6, 4}, 최대 code block size가 819, c=0.5일 때 지원 가능한 code block size의 예이다.
[0140] 【표 12】
[0141] 표 12: Code block size의 example (Kldpc = 32, Z의 집합: {256, 224, 192, 160, 128, 112, 96, 80, 64, 56, 48, 40, 32, 28, 24, 20, 16, 14, 12, 10, 8, 6, 4}, 최대 code block size=8192, c =0.5)
37
정정용지 (규칙 제 91조) ISA/KR z Code block size
256 8192, 8064, 7936, 7808, 7680, 7552, 7424, 7296
224 7168, 7056, 6944, 6832, 6720, 6608, 6496, 6384, 6272, [6160]
192 6144, 5952, 5856, 5760, 5664, 5568, 5472, 5376, 5280, 5184
160 5120, 5040, 4960, 4880, 4800, 4720, 4640, 4560, 4480, 4400,
4320, 4240, 4160
128 4096, 4032, 3968, 3904, 3840, 3776, 3712, 3648
112 3584, 3528, 3472, 3416, 3360, 3304, 3248, 3192, 3136
96 3072, 3024, 2976, 2928, 2880, 2832, 2784, 2736, 2688, 2640, 2592
80 2560, 2520, 2480, 2440, 2400, 2360, 2320, 2280, 2240, 2200,
2160, 2120, 2080
64 2048, 2016, 1984, 1952, 1920, 1888, 1856, 1824
56 1792, 1764, 1736, 1708, 1680, 1652, 1624, 1596, 1568, [1540] -
48 1536, 1512, 1488, 1464, 1440, 1416, 1392, 1368, 1344, 1320, 1296
40 1280, 1260, 1240, 1220, 1200, 1180, 1160, 1140, 1120, 1100,
1080, 1060, 1040
32 1024, 1008, 992, 976, 960, 944, 928, 912
28 896, 882, 868, 854, 840, 826, 812, 798, 784, [770]
24 768, 756, 744, 732, 720, 708, 696, 684, 672, 660
20 640, 630, 620, 610, 600, 590, 580, 570, 560, 550, 540, 530, 520
16 512, 504, 496, 488, 480, 472, 464, 456
14 448, 441, 434, 427, 420, 413, 406, 399, 392, [385]
12 384, 378, 372, 366, 360, 354, 348, 342, 336, 330, [324]
10 320, 315, 310, 305, 300, 295, 290, 285, 280, 275, 270, 265, 260
8 256, 252, 248, 244, 240, 236, 232, 228, 224, 220, 216, 212, 208
6 192, 189, 186, 183, 180, 177, 174, 171, 168, 165, 162, 159, 156,
153
4 128ᅳ 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104,
38
정정용지 (규칙 제 91조) ISA/KR
Figure imgf000041_0001
[0142] 상기 표 12에서 []로 표시된 code block size는 지원되지 않을 수도 있다. 상기 표 12에서 c 값은 Z 또는 다수 개의 Z의 집합 (집합 내는 동일한 값)마다 서로 다른 값을 설정할 수 있다. 또, code block size의 granularity가 다수 개의 Z의 집합 (집합 내는 동일한 granularity)마다 다를 수 있다. 전송 블록 크기 (TBS)>8192인 전송 블록 (TB)는 상술한 방식으로 표 12의 code block size로 segment at ion할 수 있다.
[0143] 【표 13】
표 13: Code block size의 example (Kldpc = 22, Z의 집합: {384, 352, 320, 288, 256, 240, 224, 208, 192, 176,160,144,128, 120, 112, 104, 96, 88, 80, 72, 64, 60, 56, 52, 48, 44, 40, 36, 32, 30, 28, 26, 24, 22, 20, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}, 최대 code block size=8448)
Figure imgf000041_0002
39
정정용지 (규칙 제 91조) ISA/KR 120 2465 <= CBS <= 2640 13 265 <= CBS <= 286
112 2289 <= CBS <= 2464 12 243 <= CBS <= 264
104 2113 <= CBS <= 2288 11 221 <= CBS <= 242
96 1937 <= CBS <= 2112 10 199 <= CBS <= 220
88 1761 <= CBS <= 1936 9 177 <= CBS <= 198
80 1585 <= CBS <= 1760 8 155 <= CBS <= 176
72 1409 <= CBS <= 1584 7 133 <= CBS <= 154
64 1321 <= CBS <= 1408 6 111 <= CBS <= 132
60 1233 <= CBS <= 1320 5 89 <= CBS <= 110
56 1145 <= CBS <= 1232 4 67 <= CBS <= 88
52 1057 <= CBS <= 1144 3 45 <= CBS <= 66
48 969 <= CBS <= 1056 2 CBS <= 44
44 881 <= CBS <= 968
[0144] TBS>8448인 TB는 위에서 언급한 방식으로 표 13의 code b lock s i ze로 segmentat i on할 수 있다. 표 13의 코드 블록 크기 (CBS) 중 일부만 지원하는 것도 가능하다. 표 13의 Z값 증 일부는 지원되지 않을 수도 있다. 이 경우, 코드 블록 크기 (CBS)의 range는 지원하는 Z값을 고려하여 조정될 수 있다. 예를 들면, Z=352를 지원하지 않는다고 가정하면, 7041 < 코드 블록 크기 (CBS) < 8448을 Z=384로 지원하게 된다. 이 때, shortening의 양은 상대적으로 증가하게 된다. 다른 Z 값을 지원하지 않는 경우, 동일한 방식으로 CBS 범위에 해당하는 Z 값을 설정 또는 지정할 수 있다.
[0145] 표 13의 코드 블록 크기 (CBS) 범위와 τ 값의 mappi ng은 특정 Z 또는 코드 블록 크기 (CBS) 이상의 경우에 적용할 수 있다ᅳ 이는, 코드 블록 크기 (CBS)가 작은 경우에는 Z 값을 크게 하고 shortening 양을 증가시키는 것이 좋은 성능을 보일 수 있다. 예를 들면 , Z 값이 24 또는 코드 블록 크기 (CBS)가 512이상의 경우에만 표 13의 맵핑을 사용할 수 있다. 표 12에서 8의 배수에 해당하는 코드 블록 크기 (CBS)만을 허용할 수도 있다. 이는 MAC l ayer에서 데이터를 처리하는 단위가 바이트 (byte) 단위임을 고려하면, 패딩 (padding)을 최소화하여 시스템을
40
정정용지 (규칙 제 91조) ISA/KR 효율적으로 운영할 수 있는 장점이 있다. TB- level CRC 24 bit를 가정하고, 전송 블록 크기 (TBS)는 아래와 같은 수학식 2를 만족하게 되면 코드 블록 크기 (CBS)는 동일한 크기로 segment at ion될 수 있다.
[0146] 【수학식 2】
[0147] TBS + CRCTB = NCB*CBS
[0148] 상기 수학식 2에서 코드 블록 크기 (CBS)는 CRC 크기를 포함한 것이다. NCB는 CB의 개수이고, CRCTB는 전송 블록에 부가하는 CRC 길이를 나타낸다. 수학식 2를 만족하고, 8 bit 단위의 코드 블록 크기 (CBS)를 지원할 때 다음 표 14에 해당하는 TBS를 지원할 수 있다. 이 때, 표 14의 일부에 해당하는 TBS를 지원하는 것도 가능하다.
[0149] 【표 14】
[0150] 표 14: bit 단위의 CBS를 가정하고, TB- level CRC가 24 bit일 때 지원하는 11개까지의 code block으로 분할되는 경우 TBS의 집합의 예시
Figure imgf000043_0001
[0151] 보다 많은 개수의 code block의 segment at ion되는 경우도 동일한 원칙으로 지원하는 TBS를 규정할 수 있다.
[0152] LDPC code를 이용하여 전송 블록 (transport block) 을 전송할 때, 다수 개의 base graph (BG) (예를 들어, H matrix)를 정의하여 전송할 수 있다.
41
정정용지 (규칙 제 91조) ISA/KR [0153] 도 12는 2 개의 base graph를 사용하여 transport block을 전송할 때, base graph를 선택하는 기준을 나타낸 도표이다.
[0154] 도 12를 참조하면, TBS는 전송 블록 크기 ( transport block si ze) , CRC TB는 전송 블록에 부가하는 CRC 길이로 TBS < 3824인 경우 16 bi t , 나머지 경우에는 24 bi t를 부가하며, BGl , BG2는 표준 38.212 vl . 1.0 [6]의 Table 5.3.2-1, Table 5.3.2-2 , Table 5.3.2-3의 정의를 참조할 수 있다. 최소 TBS+CRCᅳ TB의 크기를 40 bi t로 가정하면, 40 <= TBS+CRC_TB<=308은 BG2를 사용한다. 또한, 308 < TBS+CRC_TB<=3840은 code rate 2/3를 기준으로 BG1과 BG2의 사용을 결정한다. 또한, TBS+CRC_TB>3840의 경우, code rate 1/4을 기준으로 BG1과 BG2의 사용을 결정한다. 이때, BG1을 사용하는 경우, TBS+CRC_TB>8448일 때, code block segmentat ion을 수행하고, BG2를 사용하는 경우 TBS+CRC_TB>3840인 경우 code block segmentat ion을 수행한다.
[0155] UE capabi l i ty/category에 따라서 BG1/BG2를 동시에 또는 선택적으로 지원할 수 있다. BG1만 지원하는 단말의 경우, code rate < 1/4이더라도 BG2를 사용할 수 없기 때문에, BG1를 이용한 code block segmentat ion 만을 수행한다. 즉, segmentat ion 수행 시 code block의 개수는 cei 1 (TBS+CRC_TB/ (8448-24) )로 계산할 수 있다. 마찬가지로, BG2만 지원하는 단말의 경우, BG1의 code block segmentat ion을 사용할 수 없기 때문에, BG2를 이용한 segmentat ion을 수행한다. 즉, segmentat ion 수행 시 code block의 개수는 cei 1 (TBS+CRC_TB/( 3840-24) )로 계산할 수 있다. BG1/BG2를 동시에 또는 선택적으로 지원하는 단말에 대해서 zero padding 없이 동일한 크기의 code block으로 segmentat ion이 되는 것이 바람직하다. 그 이유는 zero padding bi t는 정보를 포함하지 않는 bi t이기 때문이다. BG1 또는 BG2를 이용해서 code block segmentat ion하는 경우, 아래 수학식 3 및 수학식 4를을 만족하게 되면 동일한 code block으로 segmentat ion될 수 있다.
[0156] 【수학식 3】
[0157] TBS + CRCJTB = N1*CBS
[0158] 【수학식 4】
[0159] TBS + CRC_TB = N2*CBS
[0160] 수학식 3 및 수학식 4에 Nl , N2는 BGl , BG2를 이용하여 code block
42
정정용지 (규칙 제 91조) ISA/KR segmentation을 수행했을 때의 code block 개수이며, CBS는 code block CRC 길이 (e.g. , 24 bit)를 포함하지 않은 값이다. BG1/BG2를 동시에 또는 선택적으로 지원하는 단말에 상관없이 zero padding이 발생하지 않는 동일한 크기의 code block segmentation을 수행하기 위해서는 도 12의 3840 < TBS+CRC_TB 에 해당하는 transport block에 대해서 수학식 3 및 수학식 4를 동시에 만족하는 TBS+CRC TB를 정의하는 것이 바람직하다. 즉, transport block이 byte—aligned로 가정하면 8의 배수가 되기 때문에, TBS+CRC TB는 (8, Nl, N2)의 최소공배수의 배수가 되도록 TBS를 설계하면 zero padding 없이 수학식 3 및 수학식 4를 만족할 수 있다. 즉, Nl=2, N2=3일 경우, (8, 2, 3)의 최소공배수는 24이므로 TBS+CRC TB는 24의 배수가 되도록 설계하는 것이 바람직하다.
[0161] 다음 표 15는 TBS+CRCJTB의 범위에 따라서, zero padding 없이 수학식 3, 수학식 4를 만족하는 TBS+CRCJTB의 실시예이다. 표 15에서 TBS granularity 예 1는 수학식 3, 수학식 4을 만족하는 TBS의 최소 granularity이고, TBS granularity 예 2는 수학식 3, 수학식 4을 만족하는 granularity중 TBS가 증가함에 따라 granularity를 증가시킨 granularity의 예이다. BG2를 이용하는 code block segment at ion이 발생하는 최대 code block size는 MCS table에서 code rate <l/4 인 최대 MCS index 및 가용 resource의 양 (예를 들어, resource elements (REs)의 수)에 따라 달라질 수 있다. 예를 들면, RB당 120 REs와 275 REs 할당을 가정하고, MCS table을 가정하게 되면 BG2를 이용한 code block segmentat ion이 일어나는 최대 TBS는 약 19200 bit이다. BG2를 이용하여 segmentat ion을 수행하는 TBS 보다 큰 TBS의 경우에는 (8, N1)의 최소공배수의 배수의 granularity를 만족하도록 TBS를 설계할 수 있다.
[0162] 【표 15】
표 15: Zero padding 없이 동일한 크기의 code block segmentation 을 할 수 있는 TBS+CRCJTB조건 (CRC_TB=24)
Input TBS TBS
CBs의 수 CBs의 수
sequence (B) granularity granularity
(BG1) (BG2)
=TBS+CRC_TB 예 1 (grn) 예 2 (grn)
43
정정용지 (규칙 제 91조) ISA/KR 3824< B<=7632 1 2 8 8
7632< B<=8448 1 3 24 24
8448< B<=11448 2 3 24 24
11448<B<= 15264 2 4 8 24
15264<B<=16848 2 5 40 40
16848<B<=19080 3 5 40 40
19080<B<=22896 3 6 24 96
22896<B<=25272 3 7 168 168
25272<B<=26712 4 7 56 168
26712<B<=30528 4 8 8 168
[0163] 표 15 에 기반하여 TBS+CRC_TB 의 크기는 수학식 5 및 수학식 6 으로 표현할 수 있다.
[0164] 【수학식 5】
[0165] TBS + CRC.TB = grn
grn
[0166] 【수학식 6]
[0167] TBS + CRC.TB = grn
grn
[0168] 상기 수학식 5 및 수학식 6 에서 u 는 레이어들의 수, Qm 은 MCS 인덱스로부터 획득된 modulation order, /?은 MCS 인텍스로부터 획득된 code rate, NRE는 RE 들의 개수, NRE는 = Y * #PRBs_scheduled (Y *스케줄링된 PRB 들의 수), grn은 표 15의 granularity 실시예에서 나타낸 값이다.
[0169] BG1 또는 BG2 만을 지원하는 단말의 경우, zero padding 이 발생하지 않는 TBS 는 각각 (8, N1) 또는 (8, N2)의 최소공배수의 배수가 되도록 설계하는 것이 바람직하다.
[0170] 아래 실시예는 LDPC encoder 에 대해서 1648 bit 이상의 payload size 에 대해서 code block segmentation 되는 것을 보여주는 것이다. 이 때, transport block 및 code block에 부가되는 CRC 크기는 24를 가정한다.
[0171] 실시예 1) Transport block size K=1920, r=3/4
44
정정용지 (규칙 제 91조) ISA/KR [0172] 24 bit CRC 를 부가하게 되면 1944 > 1648 이므로 code block segmentation을 수행한다. Code rate r=3/4일 때 지원하는 code block size는 486 972, 1458 bit 이다. 1992 = 2*(972+24)의 관계식을 만족하므로 972 bit 의 크기를 갖는 code block 2개로 segment at ion한다
[0173] 실시예 2) Transport block size K=1668, r=l/2
[0174] 24 bit CRC 를 부가하게 되면, 1692 > 1648 이므로 code block segmentation을 수행한다. Code rate r=l/2일 때 지원하는 code block size는 324 648, 972 bit 이다. 1692 = 2*(822+24)이므로 846 bit 의 크기를 갖는 code block 2 개로 segmentation 할 수 있지만 이는 r=l/2 일 때 지원하는 code block 크기가 아니므로 서로 다른 크기를 갖는 code block 으로 segmentation 을 수행한다. 1692 = 2*648 + 324 의 관계식을 만족하므로 648 bit 의 크기를 갖는 code block 2 개와 324 bit의 크기를 '갖는 code block 1개로 segment at ion한다.
[0175] 실시예 3) Transport block size =1916, r=l/2
[0176] 24 bit CRC 를 부가하게 되면, 1940 > 1648 이므로, code block segmentation 을 수행한다. . Code rate r=l/2 일 때 지원하는 code block size 는 324, 648, 972 bit 이다. 1940 = 2*970 이므로 970 bit 의 크기를 갖는 code block 2 개로 segmentation 할 수 있지만 이는 r=l/2 일 때 지원하는 code block 크기가 아니다. 1940 = 2*972-4 이므로 972 bit 의 크기를 갖는 code block 2 개로 segmentation 한 후 특정 code block 에 대해서 4 bit 만큼 shortening 하거나, 각. code block을 2 bit 만큼 shortening하여 encoded bit를 생성할 수 있다.
[0177] 이하, 코드 블록 그룹 (CBG) (즉, 다수 개의 코드 블록) 기반 재전송에 대한 내용을 설명한다.
[0178] 코드 블록 그룹 (CBG)은 복수 개의 코드 블록으로 구성될 수 있다. 이러한 전송 블록 (TB)는 복수 개의 CBG들로 구성될 수 있다. TB 마다 CBG 의 개수는 2, 4, 6, 또는 8일 수 있다.
[0179] 수신 측 (예를 들어, 단말)에 CBG 기반 재전송이 설정될 수 있다. 다수 개의 코드 블록에 대해서 HARQ-ACK을 전송하도록 설정할 수 있다. 즉, 수신 측은 CBG를 구성하는 소정 개수 (P 개)의 코드 블록을 디코딩한 후 모든 코드 블록의 디코딩이 성공된 경우에만 송신 측으로 HARQ-ACK 을 전송하고, 그렇지 않은 경우에는 NACK 을
45
정정용지 (규칙 제 91조) ISA/KR 전송할 수 있다. 이는 전송 블록 ( transport block)을 구성하는 코드 블록이 많을 경우에 전송 블록 단위로 재전송하는 경우 시스템 효율이 떨어지는 것을 방지할 수 있다. 즉, 수신 측 (예를 들어, 단말)은 CBG 전송 기반과 관련된 DCI 포맷을 포함하는 하향링크 제어 채널을 수신하고, 이 하향링크 제어 채널의 스케줄링에 기초하여 하향링크 데이터 채널 (예를 들어, PDSCH)를 수신한다. 수신 측은 (예를 들어, 단말)은 PDSCH 수신에 대해 CBG 단위로 HARQ AC /NACK 피드백을 전송하고, 송신 측은 오류가 발생한 해당 코드 블록 그룹 (CBG)에 대해서만 재전송을 수행하게 되어, 결과적으로 시스템 효율을 개선할 수 있다. 이러한 CBG 기반 재전송에서, 각 CBG의 HARQ ACK/NACK 피드백은 다중화되어 전송될 수 있다.
[0180] 도 13 은 본 발명의 일 실시예에 따른 fal l-back 동작에 따른 HARQ ACK/NACK 피드백 전송 방법을 예시한 도면이다.
[0181] 기지국은 HARQ-ACK 을 전송하기 위한 코드 블록의 개수를 상위 레이어에서 설정하여 상위 레이어 시그널링 (예를 들어, R C 시그널링)으로 단말에게 전송해 줄 수 있다. 그런데, 만약 기지국이 상위 레이어 시그널링 (예를 들어, RRC 시그널링) P 값을 재설정하는 경우 등과 같은 특정 조건의 상황에서는 송신 측 (예를 들어, 기지국 (gNodeB) )과 수신 측 (예를 들어, 단말 (UE) ) 간에 P 값에 대한 모호성 ( ambigui ty)가 생길 수 있다.
[0182] 이러한 모호성을 제거하기 위하여, 수신 측 (예를 들어, 단말)은 defau l t P 값으로 HARQ-ACK 을 전송하도록 하는 f aH-back 동작을 수행할 수 있다. 즉, 상위 레이어 재설정 구간 동안과 같은 상기 특정 조건의 상황에서는, 수신 측 (예를 들어, 단말)은 특정 값의 P를 가정하고 HARQ-ACK을 전송한다. 이 때, 송신 측 (예를 들어, 기지국)은 해당 사용자 데이터를 스케줄링 하는 하향링크 제어 채널은 상기와 같은 fal l-back 동작을 위한 제어 정보를 포함하는 하향링크 제어 채널을 단말에게 전송할 수 있다. 여기서 fa l l-back 동작이라고 함은 TB 단위 혹은 TB 레벨 HARQ ACK/NACK 피드백으로 수행된다는 것을 의미한다.
[0183] 수신 측 (예를 들어, 단말)에 CBG 기반 재전송이 설정되어 있는 경우라도, 송신 측 (예를 들어, 기지국)이 해당 사용자 데이터를 스케즐링 하며 fal l-back 동작을 지시하는 제어 정보를 포함하는 하향링크 제어 채널을 전송하고 (S1310) , 하향링크 제어 채널이 스케줄링하는 PDSCH 를 수신하고 (S1320) , 수신한 PDSCH 에
정정용지 (규칙 제 91조) ISA/KR 대해서는 TB 단위 혹은 TB 레벨 HARQ ACK/NACK 피드백을 수행한다. 상기 특정 조건의 상황이 아니라면, 수신 측 (예를 들어, 단말)은 CBG 기반으로 HARQ ACK/NACK 피드백을 전송할 수 있다. 즉, 수신 측 (예를 들어, 단말)에 CBG 기반 재전송이 설정되어 있는 경우라도, 송신 측 (예를 들어, 기지국)으로부터 특정 제어 정보 (예를 들어, fal l-back 동작과 관련된 제어 정보), 수신한 PDSCH 에 대해서는 TB 단위 혹은 TB 레벨 HARQ ACK/NACK 피드백을 수행한다.
[0184] 이상에서 설명된 실시예들은 본 발명의 구성요소돌과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다ᅳ 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다 .
[0185] 본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
47
정정용지 (규칙 제 91조) ISA/KR

Claims

【청구의 범위】
【청구항 1】
단말이 HARQ ACK/NACK 피드백을 전송하는 방법에 있어서,
제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 기지국으로 전송하는 단계 ;
상기 기지국으로부터 특정 제어 정보를 포함하는 제어 채널을 수신하는 단겨 1 ; 및
상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Block Group , CBG) 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 기초하여 전송 블록 (Transport Block , TB) 단위로 HARQ ACK/NACK 피드백을 전송하는 단계를 포함하는, HARQ ACK/NACK 피드백 전송 방법 .
【청구항 2】
제 1항에 있어서,
상기 CBG 단위로 HARQ ACK/NACK 피드백을 전송하는 단계에서, 해당 CBG 내의 모든 코드 블록들에 대해 디코딩을 성공한 경우에만 해당 CBG에 대해 HARQ ACK 피드백을 전송하는, HARQ ACK/NACK 피드백 전송 방법.
【청구항 3】
제 1항에 있어서,
상기 TB는 복수 개의 CBG로 구성되는, HARQ ACK/NACK 피드백 전송 방법ᅳ
【청구항 4】
제 1항에 있어서,
상기 특정 제어 정보는 상기 단말의 폴-백 ( f a l l-back) 동작을 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당하는, HARQ ACK/NACK 피드백 전송 방법 .
【청구항 5】
제 1항에 있어서,
상기 특정 제어 정보를 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 수신되는, HARQ
48
정정용지 (규칙 제 91조) ISA/KR ACK/NACK 피드백 전송 방법 .
[청구항 6】
제 5항에 있어서,
상기 CBG 내의 코드 블록의 개수를 재설정하는 RRC 시그널링을 수신하는 단계를 더 포함하는, HARQ ACK/NACK 피드백 전송 방법 .
【청구항 7】
제 1항에 있어서,
상기 제 1 하향링크에 데이터의 각 CBG에 대한 HARQ ACK/NACK 피드백은 다중화되어 전송되는, HARQ ACK/NACK 피드백 전송 방법 .
【청구항 8】
기지국이 HARQ ACK/NACK 피드백을 수신하는 방법에 있어서,
제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 단말로부터 수신하는 단계 ;
상기 단말로 특정 제어 정보를 포함하는 제어 채널올 수신하는 단계; 및 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Bl ock Group , CBG) 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 따라 상기 단말로부터 전송 블록 (Transport Bl ock , TB) 단위로 HARQ ACK/NACK 피드백을 수신하는 단계를 포함하는, HARQ ACK/NACK 피드백 수신 방법 .
【청구항 9】
제 8항에 있어서,
상기 폴-백 ( fal l -back) 동작을 위한 제어 정보를 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 전송되는, HARQ ACK/NACK 피드백 수신 방법 .
【청구항 10】
제 8항에 있어서,
상기 특정 제어 정보는 상기 단말의 폴-백 ( fa l l— back) 동작을 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당하는, HARQ ACK/NACK 피드백 수신 방법 .
49
정정용지 (규칙 제 91조) ISA/KR
【청구항 11】
HARQ ACK/NACK피드백을 전송하기 위한 단말에 있어서 ,
송신기;
수신기; 및
프로세서를 포함하되,
상기 프로세서는,
상기 송신기가 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 기지국으로 전송하도록 제어하고,
상기 수신기가 상기 기지국으로부터 특정 제어 정보를 포함하는 제어 채널을 수신하도록 제어하며,
상기 송신기가 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Block Group , CBG) 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 기초하여 전송 블록 (Transport Bl ock , TB) 단위로 HARQ ACK/NACK 피드백을 전송하도록 제어하는, 단말.
【청구항 12]
제 11항에 있어서,
상기 프로세서는,
상기 송신기가 상기 CBG 단위로 HARQ ACK/NACK 피드백을 전송하는 경우에 해당 CBG 내의 모든 코드 블록들에 대해 디코딩을 성공한 경우에만 해당 CBG에 대해 HARQ ACK 피드백을 전송하도록 제어하는, 단말.
【청구항 13]
제 11항에 있어서,
상기 TB는 복수 개의 CBG로 구성되는, 단말.
【청구항 14】
제 11항에 있어서,
상기 특정 제어 정보는 상기 단말의 폴-백 ( fal l— back) 동작을 위한 제어 정보 혹은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당하는, 단말.
【청구항 15]
제 14항에 있어서,
50
정정용지 (규칙 제 91조) ISA/KR 상기 프로세서는 상기 수신기가 상기 폴-백 ( fal l-back) 동작을 위한 제어 정보를 포함하는 제어 채널은 HARQ ACK/NACK 피드백 전송을 위한 CBG 내의 코드 블록의 개수를 재설정하는 시간 동안에 수신하도록 제어하는, 단말.
【청구항 16】
제 15항에 있어서,
상기 프로세서는 상기 수신기가 상기 CBG 내의 코드 블록의 개수를 재설정하는 RRC 시그널링을 수신하도록 제어하는, 단말.
【청구항 17]
제 12항에 있어서,
상기 프로세서는 상기 제 1 하향링크에 데이터의 각 CBG에 대한 각 HARQ ACK/NACK 피드백이 다중화하도록 구성되며,
상기 프로세서는 상기 송신기가 다중화된 HARQ ACK/NACK 피드백을 전송하도록 제어하는, 단말.
【청구항 18]
HARQ ACK/NACK 피드백을 수신하기 위한 기지국에 있어서,
수신기;
송신기; 및
프로세서를 포함하되,
상기 프로세서는,
상기 수신기가, 제 1 하향링크 데이터에 대해 CBG 단위로 HARQ ACK/NACK 피드백을 단말로부터 수신하도록 제어하고,
상기 송신기가, 상기 단말로 특정 제어 정보를 포함하는 제어 채널을 전송하도록 제어하며,
상기 수신기가, 상기 제어 채널에 의해 스케줄링되어 수신된 제 2 하향링크 데이터에 대해서는 상기 단말에 코드 블록 기반 (Code Bl ock Group , CBG) 기반 재전송이 설정된 경우라도 상기 특정 제어 정보에 따라 상기 단말로부터 전송 블록 (Transport Bl ock , TB) 단위로 HARQ ACK/NACK 피드백을 수신하도록 제어하는, 기지국.
【청구항 19】
51
정정용지 (규칙 제 91조) ISA/KR 제 18항에 있어서,
상기 특정 제어 정보는 상기 단말의 폴-백 ( fal l-back) 동작을 위한 제어 은 TB 단위 HARQ ACK/NACK 피드백과 관련된 제어 정보에 해당하는, 기지국.
52
정정용지 (규칙 제 91조) ISA/KR
PCT/KR2018/000746 2017-02-24 2018-01-16 데이터 블록을 처리하는 방법 및 harq ack/nack 피드백 방법 WO2018155820A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18756609.6A EP3588828B1 (en) 2017-02-24 2018-01-16 Method for processing data block and method for harq ack/nack feedback
CN201880013654.4A CN110326247B (zh) 2017-02-24 2018-01-16 用于处理数据块的方法和用于harq ack/nack反馈的方法
US16/488,358 US11290911B2 (en) 2017-02-24 2018-01-16 Method for processing data block and method for HARQ ACK/NACK feedback

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201762462947P 2017-02-24 2017-02-24
US62/462,947 2017-02-24
US201762490631P 2017-04-27 2017-04-27
US62/490,631 2017-04-27
US201762544696P 2017-08-11 2017-08-11
US62/544,696 2017-08-11
US201762585562P 2017-11-14 2017-11-14
US62/585,562 2017-11-14

Publications (1)

Publication Number Publication Date
WO2018155820A1 true WO2018155820A1 (ko) 2018-08-30

Family

ID=63254445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000746 WO2018155820A1 (ko) 2017-02-24 2018-01-16 데이터 블록을 처리하는 방법 및 harq ack/nack 피드백 방법

Country Status (4)

Country Link
US (1) US11290911B2 (ko)
EP (1) EP3588828B1 (ko)
CN (1) CN110326247B (ko)
WO (1) WO2018155820A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277370A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 上行控制信息的传输方法及终端
WO2020220236A1 (en) * 2019-04-30 2020-11-05 Lenovo (Beijing) Limited Multiplexing feedback responses
WO2021162480A1 (ko) * 2020-02-14 2021-08-19 삼성전자 주식회사 무선 통신 시스템에서 harq-ack 피드백 방법 및 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949941B2 (ja) * 2017-04-05 2021-10-13 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN109150380B (zh) * 2017-06-16 2020-12-08 华为技术有限公司 数据传输的方法、网络设备和终端设备
KR102554096B1 (ko) * 2017-08-04 2023-07-12 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터 채널 및 제어 채널의 송수신 방법, 장치, 및 시스템
WO2019095190A1 (en) * 2017-11-16 2019-05-23 Qualcomm Incorporated Reduced overhead error detection code design for decoding a codeword
CN112134668B (zh) * 2018-02-09 2021-08-13 华为技术有限公司 一种传输控制方法、终端设备及网络设备
WO2020167088A1 (en) 2019-02-15 2020-08-20 Samsung Electronics Co., Ltd. Method and apparatus for transmission or reception of data in communication system
CN110199495B (zh) * 2019-04-16 2021-07-06 北京小米移动软件有限公司 上行传输的反馈方法、重传方法、装置、终端及存储介质
US11329754B2 (en) * 2020-03-03 2022-05-10 Rockwell Collins, Inc. Variable data rate broadcast method for channels requiring equalization
WO2021195821A1 (en) * 2020-03-30 2021-10-07 Qualcomm Incorporated Communication configurations for low density parity check (ldpc) coding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115320A (ko) * 2009-04-17 2010-10-27 엘지전자 주식회사 중계기에서 harq ack/nack 피드백 신호 검출 방법
WO2011017621A2 (en) * 2009-08-07 2011-02-10 Research In Motion Limited Method and system for handling harq operations during transmission mode changes
US20120026963A1 (en) * 2009-04-03 2012-02-02 So Yeon Kim Method and device for effecting uplink harq on a wireless communications system
US20150039958A1 (en) * 2013-08-01 2015-02-05 Sierra Wireless, Inc. Method and device enabling a dynamic bundle size harq mechanism
WO2016126330A1 (en) * 2015-02-03 2016-08-11 Qualcomm Incorporated Code block cluster level harq

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087674A2 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
EP2224633B1 (en) 2009-02-27 2011-11-09 Research In Motion Limited Code block reordering prior to forward error correction decoding based on predicted code block reliability
CN101895925B (zh) 2009-05-22 2014-11-05 中兴通讯股份有限公司 一种实现中继站下行协作重传的方法及中继站
EP2441194B1 (en) 2009-06-10 2013-04-03 Nokia Siemens Networks Oy Code block selection combining in multi point reception up-link data transfer
US8842622B2 (en) * 2011-01-07 2014-09-23 Interdigital Patent Holdings, Inc. Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions
KR101923440B1 (ko) 2011-02-15 2018-11-29 엘지전자 주식회사 무선접속시스템에서 채널품질제어정보 전송방법 및 장치
CN102355341B (zh) 2011-10-12 2013-11-27 东南大学 一种长期演进系统用混合自动重传请求的网络编码方法
KR20150074494A (ko) 2013-12-24 2015-07-02 주식회사 아이티엘 Tdd-fdd 반송파 집성을 위한 소프트버퍼 제어 방법 및 그 장치
CN106664180B (zh) * 2014-07-03 2020-07-10 Lg电子株式会社 在无线通信系统中通过非许可带宽传送和接收信号的方法及其设备
CN105515719B (zh) 2014-09-24 2019-04-26 中兴通讯股份有限公司 一种数据传输方法及装置
CN108289011B (zh) * 2017-01-07 2023-11-21 华为技术有限公司 一种数据传输的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026963A1 (en) * 2009-04-03 2012-02-02 So Yeon Kim Method and device for effecting uplink harq on a wireless communications system
KR20100115320A (ko) * 2009-04-17 2010-10-27 엘지전자 주식회사 중계기에서 harq ack/nack 피드백 신호 검출 방법
WO2011017621A2 (en) * 2009-08-07 2011-02-10 Research In Motion Limited Method and system for handling harq operations during transmission mode changes
US20150039958A1 (en) * 2013-08-01 2015-02-05 Sierra Wireless, Inc. Method and device enabling a dynamic bundle size harq mechanism
WO2016126330A1 (en) * 2015-02-03 2016-08-11 Qualcomm Incorporated Code block cluster level harq

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588828A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277370A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 上行控制信息的传输方法及终端
CN111277370B (zh) * 2018-12-28 2021-06-18 维沃移动通信有限公司 上行控制信息的传输方法及终端
WO2020220236A1 (en) * 2019-04-30 2020-11-05 Lenovo (Beijing) Limited Multiplexing feedback responses
WO2021162480A1 (ko) * 2020-02-14 2021-08-19 삼성전자 주식회사 무선 통신 시스템에서 harq-ack 피드백 방법 및 장치

Also Published As

Publication number Publication date
US11290911B2 (en) 2022-03-29
EP3588828A1 (en) 2020-01-01
US20200236587A1 (en) 2020-07-23
CN110326247A (zh) 2019-10-11
CN110326247B (zh) 2022-04-12
EP3588828A4 (en) 2021-01-06
EP3588828B1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US10951364B2 (en) Method for transmitting/receiving HARQ ACK/NACK signal in wireless communication system, and device therefor
WO2018155820A1 (ko) 데이터 블록을 처리하는 방법 및 harq ack/nack 피드백 방법
CN110710318B (zh) 在无线通信系统中发送和接收物理下行链路共享信道的方法及其装置
US10477531B2 (en) Method and device for setting a control channel and a data channel in a wireless communication system
KR101612667B1 (ko) 무선통신 시스템에서 상향링크 제어 채널을 위한 자원 할당 방법 및 장치
KR101455559B1 (ko) 반송파 집성 시스템에서 스케줄링 방법 및 장치
CN107070584B (zh) 用于发送控制信息的方法及其设备
KR101648584B1 (ko) 다중 반송파 시스템에서 harq 수행 방법
US11211953B2 (en) Rate matching performing method for LDPC code and communication device therefor
CN110402606B (zh) 终端设备、基站设备、通信方法和存储介质
WO2014107030A1 (ko) 무선통신 시스템에서 단말의 데이터 전송 방법 및 상기 방법을 이용하는 단말
WO2014077607A1 (ko) 반송파 집성 시스템에서 단말의 동작 방법 및 이러한 방법을 이용하는 장치
US20140301359A1 (en) Method for setting starting position of data channel in wireless communication system and device using method
KR102331891B1 (ko) Tdd 셀과 fdd 셀이 반송파 집성에 포함된 상황에서 harq 동작
WO2014189304A1 (ko) 무선통신 시스템에서 단말의 통신 방법 및 이러한 방법을 이용하는 단말
EP2975794A1 (en) Method and device for receiving ack/nack in wireless communication system
EP2903355A1 (en) Method and apparatus for controlling transmission power of uplink control channel
US10425189B2 (en) Method for processing data block in LDPC encoder
WO2013015587A2 (ko) 무선 통신 시스템에서 서브프레임을 설정하는 방법
KR20150009585A (ko) 캐리어 어그리게이션을 위한 업링크 harq 및 csi 다중화를 위한 방법 및 시스템
CN110999491A (zh) 在无线通信系统中发送和接收物理下行链路共享信道的方法及其设备
KR20110102145A (ko) 복수의 요소 반송파를 사용하는 다중 반송파 시스템에서 단말의 통신 방법
WO2017196114A1 (ko) 폴라 코딩을 이용한 데이터 전송 방법 및 이를 위한 장치
EP3493436B1 (en) Base station device, terminal device, and communication method
WO2011111955A2 (ko) 복수의 요소 반송파를 사용하는 다중 반송파 시스템에서 단말의 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018756609

Country of ref document: EP

Effective date: 20190924