WO2018155506A1 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
WO2018155506A1
WO2018155506A1 PCT/JP2018/006286 JP2018006286W WO2018155506A1 WO 2018155506 A1 WO2018155506 A1 WO 2018155506A1 JP 2018006286 W JP2018006286 W JP 2018006286W WO 2018155506 A1 WO2018155506 A1 WO 2018155506A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
module according
pressure adjusting
battery cell
Prior art date
Application number
PCT/JP2018/006286
Other languages
French (fr)
Japanese (ja)
Inventor
貴支 鈴木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019501384A priority Critical patent/JPWO2018155506A1/en
Publication of WO2018155506A1 publication Critical patent/WO2018155506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module in which a plurality of secondary battery cells are stacked.
  • Lithium-ion batteries can charge and discharge more energy than lead batteries and nickel-cadmium batteries, so there are various types such as portable electronic devices such as mobile phones and laptop computers, auxiliary power supplies for disasters, and power supplies for mobile vehicles such as automobiles and motorcycles. It can be applied to various uses.
  • a battery module for automobiles a plurality of lithium ion battery cells (hereinafter referred to as battery cells) are connected in series, in parallel, or a combination thereof to form an assembled battery (battery module), which is a vehicle. In many cases.
  • the electrode expansion of the battery cell due to charging / discharging is compressed and suppressed, the output is prevented from being lowered, and the battery module is compressed and stored in a predetermined size for mounting in the vehicle. .
  • Patent Document 1 in a spacer component arranged between battery cells, an elastic material is formed in a portion that contacts the battery cell to absorb the influence of the battery cell electrode expansion and compressive force. Is disclosed within a certain range.
  • the battery module of Patent Document 2 has a compressive force within a certain range by bending a connecting member that fixes the interval between the end plates according to the dimensions of the laminated body including the battery cells and the spacer parts. Yes.
  • the present invention has been made in view of the above points, and its object is to absorb the accumulation of dimensional errors of battery cells while keeping the compression force of the battery module within a certain range with a simple configuration. It is to provide a battery module that fits in a predetermined dimension.
  • a battery module of the present invention includes a plurality of battery cells that are stacked and compressed in one direction, and are sandwiched between the plurality of battery cells so as to face the side surfaces of the battery cells, and are discretely arranged. And a spacer formed by integrally molding a plurality of pressure adjusting portions that are structurally deformed and press-contacted to the side surface of the battery cell.
  • the present invention it is possible to absorb the accumulation of the dimensional error of the battery cell and keep it within a predetermined size while keeping the compressive force of the battery module within a certain range with a simple configuration. Battery output performance can be maintained.
  • a battery module of the present invention will be described with reference to the drawings.
  • the present invention is not limited to this, and electric power generated by solar power generation or wind power generation is used.
  • the present invention can be applied to all battery modules for home use, office use, industrial use, and the like.
  • FIG. 1 is an external perspective view of a battery cell 1 constituting the battery module of the present embodiment.
  • the battery cell 1 is a prismatic lithium ion secondary battery, and an electrode group having a positive electrode and a negative electrode is accommodated in a container made of an aluminum alloy together with a non-aqueous electrolyte.
  • the battery cell 1 includes a flat box type battery can 11 and a battery lid 12 that seals an opening of the battery can 11.
  • the battery can 11 is a flat rectangular container formed by deep drawing.
  • the battery can 11 has a rectangular bottom surface PB, a pair of wide side surfaces PW rising from the long side of the bottom surface PB, and a pair of narrow side surfaces PN rising from the short side of the bottom surface PB.
  • the battery lid 12 is formed of a rectangular flat plate member and has an upper surface PU.
  • a positive electrode external terminal 13 and a negative electrode external terminal 14 are arranged in the long side direction of the battery lid 12.
  • the positive electrode external terminals 13 and the negative electrode external terminals 14 of the plurality of battery cells 1 are connected by a bus bar (not shown) to serve as input / output terminals of the battery module.
  • a gas discharge valve 15 that is cleaved by an increase in internal pressure and discharges the gas in the battery can 11 is provided.
  • the battery lid 12 is laser-welded to the battery can 11 to seal the opening of the battery can 11.
  • FIG. 2 is an external perspective view of the spacer 2.
  • the spacer 2 is interposed between the plurality of battery cells 1 to hold the battery cells 1 and to electrically insulate the battery cells 1 from each other.
  • the compression force also referred to as lashing force
  • the mounting interval of the battery cell 1 are adjusted.
  • the spacer 2 is, for example, a part integrally formed of PBT (Poly Butylene Terephtalate) or PC (polycarbonate) resin.
  • the spacer 2 has a bottom wall portion 23 that faces the bottom surface PB of the battery can 11, an upper wall portion 25 that faces the top surface PU of the battery can 11, and a side wall portion 22 that faces the narrow side surface PN of the battery can 11.
  • the battery can 11 is inserted into a space surrounded by the bottom wall 23, the upper wall 25, and the side wall 22. Thereby, the movement of the wide side surface PW of the battery can 11 is restrained and held.
  • the spacer 2 is disposed over the entire wide side surface PW of the battery can 11 so as to connect the opposing side wall portions 22, and the spacer 2 is sandwiched between the wide side surfaces PW of the two battery cans 11 and a plurality of the narrow wall portions 21.
  • a press adjusting unit 24 The plurality of pressure adjusting units 24 are discretely arranged in the height direction of the battery cans 11 and are in pressure contact with the wide side surfaces PW of the two battery cans 11.
  • FIG. 3 is an exploded perspective view showing a state in which a part of the battery module 3 of the embodiment is disassembled.
  • the battery module 3 is formed by alternately connecting a plurality of battery cells 1 (1a, 1b%) And spacers 2 (2a, 2b, 2c). End spacers 7 and end plates 4 are arranged at both ends of the stacked battery cells (1a, 1b%) And spacers (2a, 2b, 2c).
  • the end spacer 7 has a bottom wall portion, an upper wall portion, and a side wall portion similar to those of the spacer 2, and one surface surrounded by the bottom wall portion, the upper wall portion, and the side portion of the side wall portion is sealed.
  • a mounting hole 41 for attaching the battery module 3 to the vehicle is provided on the upper surface of the end plate 4.
  • a fixing screw hole 42 for fixing the side plate 5 with the bolt 6 is provided on the side surface of the end plate 4.
  • Opposing end spacers 7 are arranged between the opposing end plates 4, and a plurality of battery cells 1 (1 a, 1 b%) And spacers 2 (2 a, 2 b, 2 c...) Are interposed between the end spacers 7. They are alternately stacked. For vehicle mounting, compressive force is applied from the end plates 4 at both ends in the stacking direction so that the distance between the mounting holes 41 of the opposing end plates 4 becomes a predetermined size, and the end plates 4 and the side plates 5 are connected by bolts 6. And the battery module 3 is assembled.
  • the battery module 3 of the embodiment performs the absorption of the dimensional variation of the battery cell 1 and the adjustment of the compressive force (also referred to as lashing force) by the spacer 2.
  • This compressive force is a holding force of the battery cell 1 of the battery module 3 and is a binding force that suppresses electrode expansion of the battery cell 1. Therefore, a predetermined range of compressive force is maintained in order to maintain the proof strength against the running vibration of the vehicle and the battery characteristics.
  • FIG. 4 is a cross-sectional view of the battery module 3 in the stacking direction.
  • the spacer 2 is disposed between the wide side surfaces PW of the two battery cells 1.
  • the spacer 2a between the battery cell 1a and the battery cell 1b will be described here, the same applies to the other spacers 2.
  • the four pressure adjusting portions 24 of the spacer 2a are in pressure contact with the wide side surfaces PW of the battery cell 1a and the battery cell 1b, and the compressive force is adjusted by the structural deformation force. Details of the structure of the pressing adjustment unit 24 will be described later.
  • the narrow wall portion 21 of the spacer 2a is a strength maintaining member that prevents insulation between the battery cell 1a and the battery cell 1b and prevents structural deformation of the bottom wall portion 23, the upper wall portion 25, and the side wall portion 22 of the spacer 2a. Do not press the wide side surface PW of the cell 1a and the battery cell 1b.
  • FIG. 5 shows the compressive force (vertical axis) of the battery module 3 when the spacer member is provided with an elastic member between the battery cells 1 as in Patent Document 1 and when the pressing adjustment unit 24 of this embodiment is provided. ) And the compression length (horizontal axis).
  • the change in compression force (straight line) with respect to the change in compression length is smaller than that in the case of an elastic member.
  • stacking compression of the battery module 3 becomes large, the displacement width
  • FIG. 6A is an enlarged view of a broken line region in FIG. 4, and is a diagram showing a crescent-shaped cross section of one pressing adjustment unit 24. As shown in FIG. 4, the spacer 2 is provided with four pressing adjustment portions 24. These are the press adjustment parts 24 which have the cross section shown to FIG. 6A, and are arrange
  • the pressure adjusting unit 24 having a crescent-shaped cross section in FIG. 6A is sandwiched between the wide side surfaces PW of the two battery cells 1.
  • One wide side surface PW is press-contacted at the center of the press adjusting portion 24, and the other wide side surface PW is press-contacted at the end of the press adjusting portion 24.
  • the pressure adjusting unit 24 is deformed from a crescent shape into a linear shape by the compressive force received at the pressure contact.
  • the battery cell 1 receives a reaction force when it is deformed from a crescent shape into a linear shape from the pressure adjusting portion 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1.
  • This reaction force is a force due to the structural deformation that the pressing adjusting unit 24 restores from a linear shape to a crescent shape, and as described above, there is little variation due to dimensional variations of the battery cells 1.
  • the pressure adjustment is performed so that the points of the pressure adjusting unit 24 that are in pressure contact with the wide side surface PW of the battery cell 1 are shifted from each other on the wide side surface PW of the battery cell 1 that sandwiches the spacer 2.
  • a section of the portion 24 is formed.
  • the pressure adjusting unit 24 forms a cross section in which a space in which the pressure adjusting unit 24 can be displaced by a compressive force is provided on the other battery cell 1 side facing the wide side surface PW of the one battery cell 1 in pressure contact. .
  • the press adjustment part 24 is shaped so as to be connected to the opposing side wall portion 22 at a position corresponding to any one of the three points of the center portion or the end portion of the crescent-shaped cross section of the press adjusting portion 24.
  • the press adjusting part 24 is connected to the side wall part 22 at the crescent-shaped central part, the pressure contact at the end of the cross section of the press adjusting part 24 moves along the wide side surface PW when receiving a compressive force.
  • the pressure adjusting part 24 is connected to the side wall part 22 at one end of the crescent shape, the pressure contact at the other end part and the central part moves along the wide side surface PW when receiving the compressive force.
  • the press adjustment part 24 may be shape
  • FIG. 6B is an enlarged view of the broken line area of FIG. 4, and shows a cross section of one pressing adjustment unit 24. 6B is sandwiched between the wide side surfaces PW of the two battery cells 1, and the S-shaped convex portion of the pressure adjustment unit 24 is in pressure contact with the wide side surface PW. The pressure adjusting unit 24 is deformed from an S-shape to a linear shape by the compressive force received by the pressure contact.
  • the battery cell 1 receives a reaction force when it is deformed from an S-shape to a linear shape from the pressure adjusting portion 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1.
  • This reaction force is a force due to the structural deformation that the pressing adjusting unit 24 restores from a straight shape to an S-shape, and as described above, there is little variation due to dimensional variations of the battery cells 1.
  • the press adjusting unit 24 is arranged such that the points that come into pressure contact with the wide side surface PW of the battery cell 1 of the press adjusting unit 24 are shifted from each other on the wide side surface PW of the battery cell 1 that sandwiches the spacer 2.
  • the cross section of the pressure adjusting portion 24 is formed.
  • the pressure adjusting unit 24 is a cross-section in which a space in which the pressure adjusting unit 24 can be displaced by a compressive force is provided on the other battery cell 1 side facing the wide side surface PW of the one battery cell 1 to which the pressure adjusting unit 24 is pressed. Is forming.
  • the pressure adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the three points of the center part or the end part of the S-shaped cross section.
  • the press adjusting part 24 is connected to the side wall part 22 at the S-shaped central part, the pressure contact at the end of the cross section of the press adjusting part 24 moves along the wide side surface PW when receiving a compressive force.
  • the pressing adjustment portion 24 is connected to the side wall portion 22 at one end portion of the S-shaped cross section, the other end portion and the central pressure contact point along the wide side surface PW when receiving a compressive force. Moving. Thereby, the deformation
  • the press adjustment part 24 may be shape
  • FIG. 6C is an enlarged view of the broken line region of FIG. 4 and is a view showing a cross section of one pressing adjustment unit 24. 6C is sandwiched between the wide side surfaces PW of the two battery cells 1, and the skirt of the mountain shape of the pressure adjusting unit 24 is sandwiched between the wide side surfaces PW of the two battery cells 1. The portion is in pressure contact with the wide side surface PW. In the pressing adjustment unit 24, the chevron shape is deformed into an acute angle by the compressive force received by the pressure contact.
  • the battery cell 1 receives a reaction force that the chevron shape returns from the acute angle to the original angle from the pressure adjusting portion 24 that is pressed against the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1.
  • This reaction force is a force due to the structural deformation that the pressing adjustment unit 24 restores to the mountain shape, and as described above, the variation due to the dimensional variation of the battery cell 1 is small.
  • the press adjusting unit 24 forms a cross section of the press adjusting unit 24 so that the pressure contacts of the press adjusting unit 24 face each other on the wide side surface PW of the battery cell 1 holding the spacer 2.
  • the skirt of the chevron-shaped cross section of the press adjusting unit 24 is formed so as to provide a space that can be displaced inside the press adjusting unit 24 by a compressive force.
  • the pressure adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to the apex of the mountain-shaped cross section.
  • the skirt of the chevron-shaped cross section of the pressing adjustment unit 24 is a free end, and therefore moves along the wide side surface PW when receiving a compressive force.
  • FIG. 6D is an enlarged view of the broken line region of FIG. 4 and is a diagram showing a cross section of one pressing adjustment unit 24.
  • the pressure adjusting unit 24 having a cross-section of a dogleg shape (also referred to as ⁇ mark shape,> mark shape, inequality symbol shape) is sandwiched between the wide side surfaces PW of the two battery cells 1, and The start point / end point and the bending point are pressed against the wide side surface PW.
  • the pressure adjusting unit 24 is deformed into a shape in which the shape of the dog-leg is crushed by the compressive force received by the pressure contact.
  • the battery cell 1 receives a reaction force that attempts to return to the shape of the dogleg from the pressure adjusting unit 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1.
  • This reaction force is a force due to the structural deformation that the pressing adjustment unit 24 restores to the shape of a dogleg, and as described above, there is little variation due to dimensional variations of the battery cells 1.
  • the cross section of the press adjusting unit 24 is formed so that the pressure contacts of the press adjusting unit 24 are arranged so as to be shifted from each other on the wide side surface PW of the battery cell 1 holding the spacer 2. Moreover, the press adjustment part 24 forms the cross section which provided the space which can displace the press-contact of the U-shaped press adjustment part 24 to a compression direction with a compressive force.
  • the press adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the start point, the bending point, and the end point of the cross section of the dogleg shape.
  • the pressure adjusting part 24 is connected to the side wall part 22 at the bending point of the dogleg shape, the pressure contact points at the starting point and the end point of the dogleg shape move along the wide side surface PW when receiving the compressive force.
  • the pressure adjusting unit 24 is connected to the side wall portion 22 at the starting point of the V shape, the bending point and the end pressure contact point of the V shape move along the wide side surface PW when receiving the compressive force. .
  • the press adjustment part 24 When the pressure adjusting portion 24 is connected to the side wall portion 22 at the end point of the dogleg shape, the bent point of the dogleg shape and the pressure contact point at the start point move along the wide side surface PW when receiving the compressive force. . Thereby, the deformation
  • the press adjustment part 24 may be shape
  • FIG. 6E is an enlarged view of the broken line region of FIG. 4 and shows a cross section of one pressing adjustment unit 24. 6E is pressed between the wide side surfaces PW of the two battery cells 1, and both ends of the pressure adjustment unit 24a are in pressure contact with the wide side surface PW. The pressure adjusting unit 24a is deformed like a bow by the compressive force received at the pressure contact.
  • the battery cell 1 receives a reaction force when it is deformed like a bow from the pressure adjusting portion 24a pressed against the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1.
  • This reaction force is a force due to the structural deformation of the pressure adjusting unit 24a, and as described above, there is little variation due to dimensional variations of the battery cells 1.
  • the press adjusting unit 24 a is arranged such that the points that come into pressure contact with the wide side surface PW of the battery cell 1 of the press adjusting unit 24 a are shifted from each other on the wide side surface PW of the battery cell 1 holding the spacer 2. In this way, a cross section of the pressing adjustment portion 24a is formed. Further, the end portion of the pressing adjustment portion 24a is formed so as to provide a space that can be displaced in the compression direction by a compression force.
  • the press adjusting part 24a is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the three points of the center part or the end part of the cross section.
  • the press adjusting part 24a is connected to the side wall part 22 at the center, the pressure contact at the end of the press adjusting part 24a moves along the wide side surface PW when receiving a compressive force.
  • the pressure adjusting portion 24a is connected to the side wall portion 22 at one end, the pressure contact at the other end moves along the wide side surface PW when receiving a compressive force.
  • the press adjustment part 24 may be shape
  • the wide side surface PW of the battery cell 1 is electrode-expanded like a drum. Therefore, the clearance between the stacked battery cells 1 is narrow at the center of the wide side surface PW and wider at the periphery than at the center.
  • the cross-sectional shape of the pressing adjustment unit 24 may be changed in the direction of the side wall 22.
  • the end portion has the cross-sectional shape of the press adjusting portion 24a
  • the central portion has the cross-sectional shape of the press adjusting portion 24b. That is, it is formed such that the width of the central portion of the press adjusting portion 24 is wider than the width of the end portion.
  • the central portion of the pressing adjustment portion 24 has a spring characteristic with a linear inclination smaller than that of the end portion.
  • the cross-sectional shape of the press adjusting part 24a and the end part may be the cross-sectional shape of the press adjusting part 24b.
  • the compressive force at the center is increased, and the drum-like electrode expansion of the battery cell 1 can be suppressed.
  • the configuration in which the cross section of the pressure adjusting unit 24 has a different shape in the surface direction of the wide side surface PW is not limited to the flap shape cross section of FIG. 6E but can be applied to other cross sectional shapes of FIGS. 6A to 6D.
  • FIG. FIG. 2 and FIG. 4 show that the four pressure adjusting portions 24 are evenly arranged, but the interval between the central pressure adjusting portions 24 is larger than the interval between the end pressure adjusting portions 24. To place. Thereby, the compressive force of the press adjusting part 24 at the center is reduced, and the surface pressure of the compressive force is made uniform.
  • FIG. 7 is an external perspective view of the spacer 2.
  • the spacer 2 of FIG. 7 is configured such that, in the spacer 2 of the first embodiment shown in FIG. 2, an opening 26 that communicates with the space sandwiched between the pressing adjustment portions 24 is provided on each of the opposing side wall portions 22. It has become.
  • a coolant such as cooling air flows from the opening 26 of the one side wall portion 22 and flows through the cooling flow path formed by the pressing adjustment portion 24 facing the wide side surface PW of the opposite battery cell 1 and the other side wall. It flows out from the opening part 26 of the part 22. FIG. By this refrigerant flow, the battery cell 1 can be cooled on the wide side surface PW.
  • FIG. 8 is an external perspective view of the battery module 3.
  • the side plate 5 has an opening 51 that communicates with the opening 26 described in FIG.
  • the cool air can be introduced from the opening 51 using the fan or the duct and can be discharged from the opening 51 provided in the opposite side plate 5.
  • the temperature management of the module 3 can be performed.
  • the spacer 2 between the battery cells 1 is provided with the pressure adjusting portion 24 that generates a repulsive force due to structural deformation.
  • the fluctuation range of the compressive force with respect to the dimensional variation of the battery cell 1 can be narrowed.
  • the pressure adjusting unit 24 is a homogeneous member that can be integrally formed with the spacer 2, the manufacturing cost of the spacer 2 can be reduced.
  • the pressing adjustment unit 24 is a structural deformation member, the degree of freedom in design can be increased in relation to the dimensional variation and the variation range of the compressive force.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding in the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

Provided is a battery module which absorbs cumulative dimensional errors of a battery cell and has dimensions falling within predetermined dimensions while having a compressive force of the battery module fall within a certain range with a simple configuration. The battery module (3) of the present invention is provided with: a plurality of battery cells (1) laminated and compressed in one direction; and a spacer (2) facing the side surfaces of the battery cells, sandwiched between the plurality of battery cells, and having a plurality of pressure adjustment portions (24) which are discretely disposed and structurally deformed to be pressed against the side surfaces of the battery cells, the pressure adjustment portions (24) being integrally formed.

Description

電池モジュールBattery module
 本発明は、複数の二次電池セルを積層した電池モジュールに関する。 The present invention relates to a battery module in which a plurality of secondary battery cells are stacked.
 リチウムイオン電池は、鉛電池やニッケルカドニウム電池よりも大きなエネルギーを充放電可能なことから、携帯電話やノートパソコンなどのポータブル電子機器、災害時補助電源、自動車や二輪車等の移動体用電源等様々な用途へ適用することができる。
 自動車用の電池モジュールでは、複数のリチウムイオン電池セル(以下、電池セルと記す)を直列接続や並列接続、またはそれらを組み合わせて接続して、組電池(電池モジュール)を構成し、それを車両に搭載することが多い。
Lithium-ion batteries can charge and discharge more energy than lead batteries and nickel-cadmium batteries, so there are various types such as portable electronic devices such as mobile phones and laptop computers, auxiliary power supplies for disasters, and power supplies for mobile vehicles such as automobiles and motorcycles. It can be applied to various uses.
In a battery module for automobiles, a plurality of lithium ion battery cells (hereinafter referred to as battery cells) are connected in series, in parallel, or a combination thereof to form an assembled battery (battery module), which is a vehicle. In many cases.
 自動車用の電池モジュールでは、充放電に伴う電池セルの電極膨張を圧縮して抑止し、出力低下を防止するとともに、車両に搭載するために、電池モジュールを圧縮して所定の寸法に納めている。 In the battery module for automobiles, the electrode expansion of the battery cell due to charging / discharging is compressed and suppressed, the output is prevented from being lowered, and the battery module is compressed and stored in a predetermined size for mounting in the vehicle. .
 例えば、特許文献1には、電池セルと電池セルの間に配置されるスペーサ部品において、電池セルと接触する部分に弾性材料を形成することで電池セルの電極膨張による影響を吸収し、圧縮力をある範囲内に収める構造を開示している。
 また、特許文献2の電池モジュールは、エンドプレートの間隔を固定する連結部材を、電池セルおよびスペーサ部品からなる積層体の寸法に合わせて屈曲させるようにして、圧縮力をある範囲内に収めている。
For example, in Patent Document 1, in a spacer component arranged between battery cells, an elastic material is formed in a portion that contacts the battery cell to absorb the influence of the battery cell electrode expansion and compressive force. Is disclosed within a certain range.
In addition, the battery module of Patent Document 2 has a compressive force within a certain range by bending a connecting member that fixes the interval between the end plates according to the dimensions of the laminated body including the battery cells and the spacer parts. Yes.
特開2016-186888号公報JP-A-2016-186888 特開2010-092610号公報JP 2010-092610 A
 しかし、上記の特許文献1の技術では、スペーサ部品は、電池セルと接触する部分に弾性材料を形成する必要があり、形状や材料の煩雑さによる部品製造コストが高くなる課題がある。
 また、上記の特許文献2の技術では、寸法に合わせるための寸法測定や連結部材の屈曲工程の作業時間に加え、装置や設備を要するという問題がある。
However, in the technique of Patent Document 1 described above, the spacer component needs to form an elastic material in a portion in contact with the battery cell, and there is a problem that the component manufacturing cost is increased due to the complexity of the shape and material.
Moreover, in the technique of said patent document 2, there exists a problem that an apparatus and equipment are required in addition to the working time of the dimension measurement for matching to a dimension, and the bending process of a connection member.
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、簡単な構成で電池モジュールの圧縮力をある範囲内に収めながら、電池セルの寸法誤差の累積を吸収し所定の寸法に収める電池モジュールを提供することである。 The present invention has been made in view of the above points, and its object is to absorb the accumulation of dimensional errors of battery cells while keeping the compression force of the battery module within a certain range with a simple configuration. It is to provide a battery module that fits in a predetermined dimension.
 前記課題を解決するため、本発明の電池モジュールは、一方向に積層され圧縮される複数の電池セルと、前記電池セルの側面に対向して前記複数の電池セルに挟持され、離散的に配置されるとともに構造変形して前記電池セルの側面に圧接する複数の押圧調整部を一体成型したスペーサと、を備えるようにした。 In order to solve the above problems, a battery module of the present invention includes a plurality of battery cells that are stacked and compressed in one direction, and are sandwiched between the plurality of battery cells so as to face the side surfaces of the battery cells, and are discretely arranged. And a spacer formed by integrally molding a plurality of pressure adjusting portions that are structurally deformed and press-contacted to the side surface of the battery cell.
 本発明によれば、簡単な構成で電池モジュールの圧縮力をある範囲内に収めながら、電池セルの寸法誤差の累積を吸収し所定の寸法に収めることができるので、電池モジュールの搭載作業を容易に行うことができるとともに、バッテリ出力性能を維持できる。 According to the present invention, it is possible to absorb the accumulation of the dimensional error of the battery cell and keep it within a predetermined size while keeping the compressive force of the battery module within a certain range with a simple configuration. Battery output performance can be maintained.
第1実施形態の電池セルの外観斜視図である。It is an external appearance perspective view of the battery cell of 1st Embodiment. 第1実施形態のスペーサの外観斜視図である。It is an external appearance perspective view of the spacer of 1st Embodiment. 第1実施形態の電池モジュールの分解斜視図である。It is a disassembled perspective view of the battery module of 1st Embodiment. 電池モジュールの積層方向の断面図である。It is sectional drawing of the lamination direction of a battery module. 電池モジュールの圧縮力と圧縮長さの関係を示す図である。It is a figure which shows the relationship between the compression force of a battery module, and compression length. 押圧調整部の三日月形状の断面を示す図である。It is a figure which shows the crescent-shaped cross section of a press adjustment part. 押圧調整部のS字形形状の断面を示す図である。It is a figure which shows the S-shaped cross section of a press adjustment part. 押圧調整部の山型形状の断面を示す図である。It is a figure which shows the cross section of the mountain shape of a press adjustment part. 押圧調整部のくの字形状の断面を示す図である。It is a figure which shows the cross-section of the character shape of a press adjustment part. 押圧調整部のフラップ形状の断面を示す図である。It is a figure which shows the flap-shaped cross section of a press adjustment part. 第2実施形態のスペーサの外観斜視図である。It is an external appearance perspective view of the spacer of 2nd Embodiment. 第2実施形態の電池モジュールの分解斜視図である。It is a disassembled perspective view of the battery module of 2nd Embodiment.
 以下、本発明の電池モジュールの実施形態を図面に基づき説明する。
 以下の説明では、電気自動車やハイブリッド電気自動車や鉄道車両の電源として用いられる車載用の電池モジュールの場合について説明するが、これに限定されず、太陽光発電や風力発電等で発電された電力を蓄電する蓄電システムや、エレベータや医療機器等の非常用電源の電池モジュールの他、家庭用、オフィス用、産業用等のあらゆる電池モジュールにも適用できる。
Hereinafter, an embodiment of a battery module of the present invention will be described with reference to the drawings.
In the following description, the case of an in-vehicle battery module used as a power source for an electric vehicle, a hybrid electric vehicle, and a railway vehicle will be described. However, the present invention is not limited to this, and electric power generated by solar power generation or wind power generation is used. In addition to power storage systems that store power and battery modules for emergency power supplies such as elevators and medical devices, the present invention can be applied to all battery modules for home use, office use, industrial use, and the like.
 ≪第1実施形態≫
 図1は、本実施形態の電池モジュールを構成する電池セル1の外観斜視図である。
 電池セル1は、角形のリチウムイオン二次電池であり、アルミニウム合金製の容器内に、正極電極と負極電極を有する電極群が非水電解液と共に収容されている。
 電池セル1は、扁平箱型の電池缶11と、電池缶11の開口部を封口する電池蓋12とを有している。
<< First Embodiment >>
FIG. 1 is an external perspective view of a battery cell 1 constituting the battery module of the present embodiment.
The battery cell 1 is a prismatic lithium ion secondary battery, and an electrode group having a positive electrode and a negative electrode is accommodated in a container made of an aluminum alloy together with a non-aqueous electrolyte.
The battery cell 1 includes a flat box type battery can 11 and a battery lid 12 that seals an opening of the battery can 11.
 電池缶11は、深絞り加工により形成された扁平な角型容器である。
 電池缶11は、長方形の底面PBと、底面PBの長辺から立ち上がる一対の幅広側面PWと、底面PBの短辺から立ち上がる一対の幅狭側面PNを有している。
 電池蓋12は、長方形の平板部材によって構成されており、上面PUを有している。
The battery can 11 is a flat rectangular container formed by deep drawing.
The battery can 11 has a rectangular bottom surface PB, a pair of wide side surfaces PW rising from the long side of the bottom surface PB, and a pair of narrow side surfaces PN rising from the short side of the bottom surface PB.
The battery lid 12 is formed of a rectangular flat plate member and has an upper surface PU.
 電池蓋12には、正極外部端子13と負極外部端子14が、電池蓋12の長辺方向に配置されている。複数の電池セル1の正極外部端子13と負極外部端子14とが、バスバー(図示せず)で接続されて、電池モジュールの入出力端子となる。 In the battery lid 12, a positive electrode external terminal 13 and a negative electrode external terminal 14 are arranged in the long side direction of the battery lid 12. The positive electrode external terminals 13 and the negative electrode external terminals 14 of the plurality of battery cells 1 are connected by a bus bar (not shown) to serve as input / output terminals of the battery module.
 電池蓋12の長辺方向の中間位置には、内圧上昇により開裂して、電池缶11内のガスを排出するガス排出弁15が設けられている。
 電池蓋12は、電池缶11にレーザー溶接されて電池缶11の開口部を封口する。
At an intermediate position in the long side direction of the battery lid 12, a gas discharge valve 15 that is cleaved by an increase in internal pressure and discharges the gas in the battery can 11 is provided.
The battery lid 12 is laser-welded to the battery can 11 to seal the opening of the battery can 11.
 図2は、スペーサ2の外観斜視図である。
 スペーサ2は、電池モジュール3(後述の図3参照)において、複数の電池セル1間に介在して、電池セル1の保持、電池セル1と電池セル1との間の電気絶縁を行うとともに、詳細を後述するが、電池セル1の圧縮力(固縛力とも言う)と取付間隔を調整する。
 スペーサ2は、例えば、PBT(Poly Butylene Terephtalate:ポリブチレンテレフタレート)やPC(polycarbonate:ポリカーボネート)樹脂を一体成形した部品である。
FIG. 2 is an external perspective view of the spacer 2.
In the battery module 3 (see FIG. 3 described later), the spacer 2 is interposed between the plurality of battery cells 1 to hold the battery cells 1 and to electrically insulate the battery cells 1 from each other. Although details will be described later, the compression force (also referred to as lashing force) and the mounting interval of the battery cell 1 are adjusted.
The spacer 2 is, for example, a part integrally formed of PBT (Poly Butylene Terephtalate) or PC (polycarbonate) resin.
 スペーサ2は、電池缶11の底面PBに対向する底壁部23、電池缶11の上面PUに対向する上壁部25、電池缶11の幅狭側面PNに対向する側壁部22、を有し、底壁部23と上壁部25と側壁部22に囲まれた空間に、電池缶11が挿入される。
 これにより、電池缶11の幅広側面PWの動きが拘束され、保持される。
The spacer 2 has a bottom wall portion 23 that faces the bottom surface PB of the battery can 11, an upper wall portion 25 that faces the top surface PU of the battery can 11, and a side wall portion 22 that faces the narrow side surface PN of the battery can 11. The battery can 11 is inserted into a space surrounded by the bottom wall 23, the upper wall 25, and the side wall 22.
Thereby, the movement of the wide side surface PW of the battery can 11 is restrained and held.
 また、スペーサ2は、対向する側壁部22を連接するように電池缶11の幅広側面PW全面に亘って配設され、2つの電池缶11の幅広側面PWに挟まれる狭壁部21と複数の押圧調整部24とを有する。
 複数の押圧調整部24は、電池缶11の高さ方向に離散的に配置され、2つの電池缶11の幅広側面PWに圧接する。
The spacer 2 is disposed over the entire wide side surface PW of the battery can 11 so as to connect the opposing side wall portions 22, and the spacer 2 is sandwiched between the wide side surfaces PW of the two battery cans 11 and a plurality of the narrow wall portions 21. And a press adjusting unit 24.
The plurality of pressure adjusting units 24 are discretely arranged in the height direction of the battery cans 11 and are in pressure contact with the wide side surfaces PW of the two battery cans 11.
 図3は、実施形態の電池モジュール3の一部を分解した状態を示す分解斜視図である。
 電池モジュール3は、複数の電池セル1(1a、1b…)とスペーサ2(2a、2b、2c…)とを交互に接続して積層されている。積層された電池セル(1a、1b…)とスペーサ(2a、2b、2c…)の両端には、エンドスペーサ7とエンドプレート4が配置されている。
 エンドスペーサ7は、スペーサ2と同様の底壁部と上壁部と側壁部を持ち、底壁部と上壁部と側壁部の辺部で囲まれた一方の面が封止されている。
FIG. 3 is an exploded perspective view showing a state in which a part of the battery module 3 of the embodiment is disassembled.
The battery module 3 is formed by alternately connecting a plurality of battery cells 1 (1a, 1b...) And spacers 2 (2a, 2b, 2c...). End spacers 7 and end plates 4 are arranged at both ends of the stacked battery cells (1a, 1b...) And spacers (2a, 2b, 2c...).
The end spacer 7 has a bottom wall portion, an upper wall portion, and a side wall portion similar to those of the spacer 2, and one surface surrounded by the bottom wall portion, the upper wall portion, and the side portion of the side wall portion is sealed.
 エンドプレート4の上面には、電池モジュール3を車両に取り付ける取付穴41が設けられている。
 また、エンドプレート4の側面には、サイドプレート5をボルト6により固定するための固定ネジ穴42が設けられている。
A mounting hole 41 for attaching the battery module 3 to the vehicle is provided on the upper surface of the end plate 4.
A fixing screw hole 42 for fixing the side plate 5 with the bolt 6 is provided on the side surface of the end plate 4.
 対向するエンドプレート4の間に、対向するエンドスペーサ7が配置され、このエンドスペーサ7の間に、複数の電池セル1(1a、1b…)とスペーサ2(2a、2b、2c…)とが交互に積層配置されている。
 そして、車両取付のため、対向するエンドプレート4の取付穴41の間隔が所定寸法になるように、圧縮力を両端のエンドプレート4から積層方向に加え、ボルト6によりエンドプレート4とサイドプレート5とが締結されて、電池モジュール3を組み立てられている。
Opposing end spacers 7 are arranged between the opposing end plates 4, and a plurality of battery cells 1 (1 a, 1 b...) And spacers 2 (2 a, 2 b, 2 c...) Are interposed between the end spacers 7. They are alternately stacked.
For vehicle mounting, compressive force is applied from the end plates 4 at both ends in the stacking direction so that the distance between the mounting holes 41 of the opposing end plates 4 becomes a predetermined size, and the end plates 4 and the side plates 5 are connected by bolts 6. And the battery module 3 is assembled.
 この時、実施形態の電池モジュール3は、電池セル1の寸法ばらつきの吸収と圧縮力(固縛力とも言う)の調整を、スペーサ2により行う。
 この圧縮力は、電池モジュール3の電池セル1の保持力であり、また、電池セル1の電極膨張を抑止する拘束力となっている。したがって、車両の走行振動に対する耐力や電池特性の維持のために、所定範囲の圧縮力を維持する。
 つぎに、スペーサ2の詳細を説明する。
At this time, the battery module 3 of the embodiment performs the absorption of the dimensional variation of the battery cell 1 and the adjustment of the compressive force (also referred to as lashing force) by the spacer 2.
This compressive force is a holding force of the battery cell 1 of the battery module 3 and is a binding force that suppresses electrode expansion of the battery cell 1. Therefore, a predetermined range of compressive force is maintained in order to maintain the proof strength against the running vibration of the vehicle and the battery characteristics.
Next, details of the spacer 2 will be described.
 図4は、電池モジュール3の積層方向の断面図である。
 スペーサ2は、2つの電池セル1の幅広側面PWの間に挟まれて配置されている。
 ここでは、電池セル1aと電池セル1bの間のスペーサ2aについて説明するが、他のスペーサ2でも同様である。
FIG. 4 is a cross-sectional view of the battery module 3 in the stacking direction.
The spacer 2 is disposed between the wide side surfaces PW of the two battery cells 1.
Although the spacer 2a between the battery cell 1a and the battery cell 1b will be described here, the same applies to the other spacers 2.
 スペーサ2aの4つの押圧調整部24は、電池セル1aと電池セル1bの幅広側面PWに圧接し、その構造的な変形力により圧縮力が調整される。押圧調整部24の構造の詳細は後述する。
 スペーサ2aの狭壁部21は、電池セル1aと電池セル1b間の絶縁と、スペーサ2aの底壁部23と上壁部25と側壁部22の構造変形を防止する強度維持部材であり、電池セル1aと電池セル1bの幅広側面PWに圧接しないようにする。
The four pressure adjusting portions 24 of the spacer 2a are in pressure contact with the wide side surfaces PW of the battery cell 1a and the battery cell 1b, and the compressive force is adjusted by the structural deformation force. Details of the structure of the pressing adjustment unit 24 will be described later.
The narrow wall portion 21 of the spacer 2a is a strength maintaining member that prevents insulation between the battery cell 1a and the battery cell 1b and prevents structural deformation of the bottom wall portion 23, the upper wall portion 25, and the side wall portion 22 of the spacer 2a. Do not press the wide side surface PW of the cell 1a and the battery cell 1b.
 図5は、電池セル1間に特許文献1のようにスペーサ部品に弾性部材を設けた場合と、本実施形態の押圧調整部24を設けた場合との、電池モジュール3の圧縮力(縦軸)と圧縮長さ(横軸)の関係を示す図である。
 押圧調整部24の場合は、弾性部材の場合よりも、圧縮長さの変化に対する圧縮力の変化(直線の傾き)が小さくなっている。
FIG. 5 shows the compressive force (vertical axis) of the battery module 3 when the spacer member is provided with an elastic member between the battery cells 1 as in Patent Document 1 and when the pressing adjustment unit 24 of this embodiment is provided. ) And the compression length (horizontal axis).
In the case of the pressing adjustment unit 24, the change in compression force (straight line) with respect to the change in compression length is smaller than that in the case of an elastic member.
 これにより、電池モジュール3を積層圧縮する際の圧縮長さは大きくなるが、所定範囲の圧縮力を発生する圧縮長さの変位幅を、弾性部材を設けた場合よりも、広くすることができる。つまり、所定範囲の圧縮力を得る際の、電池セル1の寸法誤差範囲を広くすることができる。
 また、電池セル1の電極膨張が発生して電池セル1が膨らんでも、圧縮力の変化を小さくすることができる。
Thereby, although the compression length at the time of carrying out the lamination | stacking compression of the battery module 3 becomes large, the displacement width | variety of the compression length which generate | occur | produces the compression force of a predetermined range can be made wider than the case where an elastic member is provided. . That is, the dimensional error range of the battery cell 1 when obtaining a predetermined range of compressive force can be widened.
Moreover, even if the electrode expansion of the battery cell 1 occurs and the battery cell 1 swells, the change in compressive force can be reduced.
 図3や図4に示したように、電池モジュール3は、複数のスペーサ2を電池間に分散して設けるようにしたので、電池セル1の寸法誤差を分散して吸収する。これにより、押圧調整部24のバネ構造の設計自由度が向上する。
 以下、押圧調整部24の、具体的な構造を説明する。
As shown in FIGS. 3 and 4, since the battery module 3 is provided with the plurality of spacers 2 distributed between the batteries, the dimensional error of the battery cell 1 is dispersed and absorbed. Thereby, the freedom degree of design of the spring structure of the pressure adjusting unit 24 is improved.
Hereinafter, a specific structure of the pressing adjustment unit 24 will be described.
 図6Aは、図4の破線領域の拡大図であり、ひとつの押圧調整部24の三日月形の断面を示す図である。
 図4に示すように、スペーサ2には、4つの押圧調整部24が設けられている。これらは、図6Aに示す断面を有する押圧調整部24であり、三日月形の凸部が交互に突出すように配置されている。
FIG. 6A is an enlarged view of a broken line region in FIG. 4, and is a diagram showing a crescent-shaped cross section of one pressing adjustment unit 24.
As shown in FIG. 4, the spacer 2 is provided with four pressing adjustment portions 24. These are the press adjustment parts 24 which have the cross section shown to FIG. 6A, and are arrange | positioned so that the crescent-shaped convex part may protrude alternately.
 図6Aの三日月形の断面を有する押圧調整部24は、2つの電池セル1の幅広側面PWに挟持されている。一方の幅広側面PWでは、押圧調整部24の中央部で圧接し、他方の幅広側面PWでは、押圧調整部24の端部で圧接している。
 押圧調整部24は、この圧接点で受ける圧縮力により、三日月形から直線状に変形する。
The pressure adjusting unit 24 having a crescent-shaped cross section in FIG. 6A is sandwiched between the wide side surfaces PW of the two battery cells 1. One wide side surface PW is press-contacted at the center of the press adjusting portion 24, and the other wide side surface PW is press-contacted at the end of the press adjusting portion 24.
The pressure adjusting unit 24 is deformed from a crescent shape into a linear shape by the compressive force received at the pressure contact.
 電池セル1は、両側の幅広側面PWに圧接する押圧調整部24から、三日月形から直線状に変形する際の反力を受け、これが電池セル1の圧縮力となる。この反力は、押圧調整部24が、直線状から三日月形に復元する構造変形による力であり、前述のとおり、電池セル1の寸法ばらつきによる変動が少ない。 The battery cell 1 receives a reaction force when it is deformed from a crescent shape into a linear shape from the pressure adjusting portion 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1. This reaction force is a force due to the structural deformation that the pressing adjusting unit 24 restores from a linear shape to a crescent shape, and as described above, there is little variation due to dimensional variations of the battery cells 1.
 図6Aに示されるように、押圧調整部24の電池セル1の幅広側面PWに圧接する点が、スペーサ2を挟持する電池セル1の幅広側面PWにおいて互いにずれて配置されるように、押圧調整部24の断面を形成する。
 または、押圧調整部24は、圧接する一方の電池セル1の幅広側面PWに対向する他方の電池セル1側に、圧縮力により押圧調整部24が変位できる空間を設けた断面を形成している。
As shown in FIG. 6A, the pressure adjustment is performed so that the points of the pressure adjusting unit 24 that are in pressure contact with the wide side surface PW of the battery cell 1 are shifted from each other on the wide side surface PW of the battery cell 1 that sandwiches the spacer 2. A section of the portion 24 is formed.
Alternatively, the pressure adjusting unit 24 forms a cross section in which a space in which the pressure adjusting unit 24 can be displaced by a compressive force is provided on the other battery cell 1 side facing the wide side surface PW of the one battery cell 1 in pressure contact. .
 さらに、押圧調整部24の三日月形の断面の中央部または端部の3点のいずれか一点に対応する位置で、対向する側壁部22に連接するように成形されている。
 押圧調整部24が三日月形の中央部で側壁部22に連接する場合には、押圧調整部24の断面端部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 押圧調整部24が三日月形の一方の端部で側壁部22に連接する場合も同様に、他方の端部と中央部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 これにより、幅広側面PWの面内方向において押圧調整部24の変形を可能にする。
 なお、押圧調整部24は、断面の全体で側壁部22に連接するように成形されていてもよい。
Further, it is shaped so as to be connected to the opposing side wall portion 22 at a position corresponding to any one of the three points of the center portion or the end portion of the crescent-shaped cross section of the press adjusting portion 24.
When the press adjusting part 24 is connected to the side wall part 22 at the crescent-shaped central part, the pressure contact at the end of the cross section of the press adjusting part 24 moves along the wide side surface PW when receiving a compressive force.
Similarly, when the pressure adjusting part 24 is connected to the side wall part 22 at one end of the crescent shape, the pressure contact at the other end part and the central part moves along the wide side surface PW when receiving the compressive force. To do.
Thereby, the deformation | transformation of the press adjustment part 24 is enabled in the surface direction of the wide side surface PW.
In addition, the press adjustment part 24 may be shape | molded so that it may connect with the side wall part 22 in the whole cross section.
 図6Bは、図4の破線領域の拡大図であり、ひとつの押圧調整部24の断面を示す図である。
 図6BのS字形の断面を有する押圧調整部24は、2つの電池セル1の幅広側面PW間に挟持され、押圧調整部24のS字形の凸部が、幅広側面PWに圧接している。
 押圧調整部24は、この圧接点で受ける圧縮力により、S字形から直線状に変形する。
FIG. 6B is an enlarged view of the broken line area of FIG. 4, and shows a cross section of one pressing adjustment unit 24.
6B is sandwiched between the wide side surfaces PW of the two battery cells 1, and the S-shaped convex portion of the pressure adjustment unit 24 is in pressure contact with the wide side surface PW.
The pressure adjusting unit 24 is deformed from an S-shape to a linear shape by the compressive force received by the pressure contact.
 電池セル1は、両側の幅広側面PWに圧接する押圧調整部24から、S字形から直線状に変形する際の反力を受け、これが電池セル1の圧縮力となる。この反力は、押圧調整部24が、直線状からS字形に復元する構造変形による力であり、前述のとおり、電池セル1の寸法ばらつきによる変動が少ない。 The battery cell 1 receives a reaction force when it is deformed from an S-shape to a linear shape from the pressure adjusting portion 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1. This reaction force is a force due to the structural deformation that the pressing adjusting unit 24 restores from a straight shape to an S-shape, and as described above, there is little variation due to dimensional variations of the battery cells 1.
 押圧調整部24は、図6Bに示されるように、押圧調整部24の電池セル1の幅広側面PWに圧接する点が、スペーサ2を挟持する電池セル1の幅広側面PWにおいて互いにずれて配置されるように、押圧調整部24の断面を形成する。
 また、押圧調整部24は、押圧調整部24が圧接する一方の電池セル1の幅広側面PWに対向する他方の電池セル1側に、圧縮力により押圧調整部24が変位できる空間を設けた断面を形成している。
As shown in FIG. 6B, the press adjusting unit 24 is arranged such that the points that come into pressure contact with the wide side surface PW of the battery cell 1 of the press adjusting unit 24 are shifted from each other on the wide side surface PW of the battery cell 1 that sandwiches the spacer 2. Thus, the cross section of the pressure adjusting portion 24 is formed.
Further, the pressure adjusting unit 24 is a cross-section in which a space in which the pressure adjusting unit 24 can be displaced by a compressive force is provided on the other battery cell 1 side facing the wide side surface PW of the one battery cell 1 to which the pressure adjusting unit 24 is pressed. Is forming.
 押圧調整部24は、S字形の断面の中央部または端部の3点のいずれか一点に対応する位置で、対向する側壁部22に連接するように成形されている。
 押圧調整部24がS字形の中央部で側壁部22に連接する場合には、押圧調整部24の断面端部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 押圧調整部24がS字形断面の一方の端部で側壁部22に連接する場合も同様に、他方の端部と中央部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 これにより、幅広側面PWの面内方向において押圧調整部24の変形を可能にする。
 なお、押圧調整部24は、断面の全体で側壁部22に連接するように成形されていてもよい。
The pressure adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the three points of the center part or the end part of the S-shaped cross section.
When the press adjusting part 24 is connected to the side wall part 22 at the S-shaped central part, the pressure contact at the end of the cross section of the press adjusting part 24 moves along the wide side surface PW when receiving a compressive force.
Similarly, when the pressing adjustment portion 24 is connected to the side wall portion 22 at one end portion of the S-shaped cross section, the other end portion and the central pressure contact point along the wide side surface PW when receiving a compressive force. Moving.
Thereby, the deformation | transformation of the press adjustment part 24 is enabled in the surface direction of the wide side surface PW.
In addition, the press adjustment part 24 may be shape | molded so that it may connect with the side wall part 22 in the whole cross section.
 図6Cは、図4の破線領域の拡大図であり、ひとつの押圧調整部24の断面を示す図である。
 図6Cの山型形状(ウェッジ形状、サーカムフレックス形状ともいう)の断面を有する押圧調整部24は、2つの電池セル1の幅広側面PW間に挟持され、押圧調整部24の山型形状の裾部が、幅広側面PWに圧接している。
 押圧調整部24は、この圧接点で受ける圧縮力により、山型形状が鋭角に変形する。
FIG. 6C is an enlarged view of the broken line region of FIG. 4 and is a view showing a cross section of one pressing adjustment unit 24.
6C is sandwiched between the wide side surfaces PW of the two battery cells 1, and the skirt of the mountain shape of the pressure adjusting unit 24 is sandwiched between the wide side surfaces PW of the two battery cells 1. The portion is in pressure contact with the wide side surface PW.
In the pressing adjustment unit 24, the chevron shape is deformed into an acute angle by the compressive force received by the pressure contact.
 電池セル1は、両側の幅広側面PWに圧接する押圧調整部24から、山型形状が鋭角から元の角度に復帰しようとする反力を受け、これが電池セル1の圧縮力となる。この反力は、押圧調整部24が山型形状に復元する構造変形による力であり、前述のとおり、電池セル1の寸法ばらつきによる変動が少ない。 The battery cell 1 receives a reaction force that the chevron shape returns from the acute angle to the original angle from the pressure adjusting portion 24 that is pressed against the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1. This reaction force is a force due to the structural deformation that the pressing adjustment unit 24 restores to the mountain shape, and as described above, the variation due to the dimensional variation of the battery cell 1 is small.
 押圧調整部24は、図6Cに示されるように、押圧調整部24の圧接点が、スペーサ2を挟持する電池セル1の幅広側面PWにおいて互いに対向するように、押圧調整部24の断面を形成する。
 また、押圧調整部24の山型形状断面の裾部は、圧縮力により、押圧調整部24の内側に変位できる空間を設けるように形成している。
As shown in FIG. 6C, the press adjusting unit 24 forms a cross section of the press adjusting unit 24 so that the pressure contacts of the press adjusting unit 24 face each other on the wide side surface PW of the battery cell 1 holding the spacer 2. To do.
Further, the skirt of the chevron-shaped cross section of the press adjusting unit 24 is formed so as to provide a space that can be displaced inside the press adjusting unit 24 by a compressive force.
 押圧調整部24は、山型形状断面の頂点に対応する位置で、対向する側壁部22に連接するように成形されている。
 押圧調整部24の山型形状断面の裾部は、自由端となっているため、圧縮力を受けた際に幅広側面PWに沿って移動する。
 なお、押圧調整部24は、図示の形状が上下反転されて配置するようにしてもよい。
The pressure adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to the apex of the mountain-shaped cross section.
The skirt of the chevron-shaped cross section of the pressing adjustment unit 24 is a free end, and therefore moves along the wide side surface PW when receiving a compressive force.
In addition, you may make it the press adjustment part 24 arrange | position the shape shown in figure upside down.
 図6Dは、図4の破線領域の拡大図であり、ひとつの押圧調整部24の断面を示す図である。
 図6Dに示す、くの字形状(<マーク形状、>マーク形状、不等号記号形状ともいう)の断面を有する押圧調整部24は、2つの電池セル1の幅広側面PWに挟持され、くの字の始点・終点と屈曲点が、幅広側面PWに圧接している。
 押圧調整部24は、この圧接点で受ける圧縮力により、くの字形状が潰される形状に変形する。
FIG. 6D is an enlarged view of the broken line region of FIG. 4 and is a diagram showing a cross section of one pressing adjustment unit 24.
6D, the pressure adjusting unit 24 having a cross-section of a dogleg shape (also referred to as <mark shape,> mark shape, inequality symbol shape) is sandwiched between the wide side surfaces PW of the two battery cells 1, and The start point / end point and the bending point are pressed against the wide side surface PW.
The pressure adjusting unit 24 is deformed into a shape in which the shape of the dog-leg is crushed by the compressive force received by the pressure contact.
 電池セル1は、両側の幅広側面PWに圧接する押圧調整部24から、くの字形状に復帰しようとする反力を受け、これが電池セル1の圧縮力となる。この反力は、押圧調整部24がくの字形状に復元する構造変形による力であり、前述のとおり、電池セル1の寸法ばらつきによる変動が少ない。 The battery cell 1 receives a reaction force that attempts to return to the shape of the dogleg from the pressure adjusting unit 24 that is in pressure contact with the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1. This reaction force is a force due to the structural deformation that the pressing adjustment unit 24 restores to the shape of a dogleg, and as described above, there is little variation due to dimensional variations of the battery cells 1.
 図6Dに示されるように、押圧調整部24の圧接点が、スペーサ2を挟持する電池セル1の幅広側面PWにおいて互いにずれて配置されるように、押圧調整部24の断面を形成する。
 また、押圧調整部24は、くの字形状の押圧調整部24の圧接点が、圧縮力により、圧縮方向に変位できる空間を設けた断面を形成している。
As shown in FIG. 6D, the cross section of the press adjusting unit 24 is formed so that the pressure contacts of the press adjusting unit 24 are arranged so as to be shifted from each other on the wide side surface PW of the battery cell 1 holding the spacer 2.
Moreover, the press adjustment part 24 forms the cross section which provided the space which can displace the press-contact of the U-shaped press adjustment part 24 to a compression direction with a compressive force.
 さらに、押圧調整部24は、くの字形状の断面の始点・屈曲点・終点のいずれかの一点に対応する位置で、対向する側壁部22に連接するように成形されている。
 押圧調整部24がくの字形状の屈曲点で側壁部22に連接する場合には、くの字形状の始点と終点の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 押圧調整部24がくの字形状の始点で側壁部22に連接する場合には、くの字形状の屈曲点と終点の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 押圧調整部24がくの字形状の終点で側壁部22に連接する場合には、くの字形状の屈曲点と始点の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 これにより、幅広側面PW内方向の押圧調整部24の変形を可能にする。
 なお、押圧調整部24は、断面の全体で側壁部22に連接するように成形されていてもよい。
Furthermore, the press adjusting part 24 is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the start point, the bending point, and the end point of the cross section of the dogleg shape.
When the pressure adjusting part 24 is connected to the side wall part 22 at the bending point of the dogleg shape, the pressure contact points at the starting point and the end point of the dogleg shape move along the wide side surface PW when receiving the compressive force. .
When the pressure adjusting unit 24 is connected to the side wall portion 22 at the starting point of the V shape, the bending point and the end pressure contact point of the V shape move along the wide side surface PW when receiving the compressive force. .
When the pressure adjusting portion 24 is connected to the side wall portion 22 at the end point of the dogleg shape, the bent point of the dogleg shape and the pressure contact point at the start point move along the wide side surface PW when receiving the compressive force. .
Thereby, the deformation | transformation of the press adjustment part 24 of the wide side surface PW direction is enabled.
In addition, the press adjustment part 24 may be shape | molded so that it may connect with the side wall part 22 in the whole cross section.
 図6Eは、図4の破線領域の拡大図であり、ひとつの押圧調整部24の断面を示す図である。
 図6Eのフラップ形状の断面を有する押圧調整部24aは、2つの電池セル1の幅広側面PW間に挟持され、押圧調整部24aの両端が、幅広側面PWに圧接している。
 押圧調整部24aは、この圧接点で受ける圧縮力により、弓なりに変形する。
FIG. 6E is an enlarged view of the broken line region of FIG. 4 and shows a cross section of one pressing adjustment unit 24.
6E is pressed between the wide side surfaces PW of the two battery cells 1, and both ends of the pressure adjustment unit 24a are in pressure contact with the wide side surface PW.
The pressure adjusting unit 24a is deformed like a bow by the compressive force received at the pressure contact.
 電池セル1は、両側の幅広側面PWに圧接する押圧調整部24aから、弓なりに変形する際の反力を受け、これが電池セル1の圧縮力となる。この反力は、押圧調整部24aの構造変形による力であり、前述のとおり、電池セル1の寸法ばらつきによる変動が少ない。 The battery cell 1 receives a reaction force when it is deformed like a bow from the pressure adjusting portion 24a pressed against the wide side surfaces PW on both sides, and this becomes the compressive force of the battery cell 1. This reaction force is a force due to the structural deformation of the pressure adjusting unit 24a, and as described above, there is little variation due to dimensional variations of the battery cells 1.
 押圧調整部24aは、図6Eに示されるように、押圧調整部24aの電池セル1の幅広側面PWに圧接する点が、スペーサ2を挟持する電池セル1の幅広側面PWにおいて互いにずれて配置されるように、押圧調整部24aの断面を形成する。
 また、押圧調整部24aの端部は、圧縮力により、圧縮方向に変位できる空間を設けるように形成されている。
As shown in FIG. 6E, the press adjusting unit 24 a is arranged such that the points that come into pressure contact with the wide side surface PW of the battery cell 1 of the press adjusting unit 24 a are shifted from each other on the wide side surface PW of the battery cell 1 holding the spacer 2. In this way, a cross section of the pressing adjustment portion 24a is formed.
Further, the end portion of the pressing adjustment portion 24a is formed so as to provide a space that can be displaced in the compression direction by a compression force.
 押圧調整部24aは、断面の中央部または端部の3点のいずれか一点に対応する位置で、対向する側壁部22に連接するように成形されている。
 押圧調整部24aが中央部で側壁部22に連接する場合には、押圧調整部24aの端部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 押圧調整部24aが一方の端部で側壁部22に連接する場合には、他方の端部の圧接点は、圧縮力を受けた際に幅広側面PWに沿って移動する。
 これにより、幅広側面PW内方向の押圧調整部24aの変形を可能にする。
 なお、押圧調整部24は、断面の全体で側壁部22に連接するように成形されていてもよい。
The press adjusting part 24a is formed so as to be connected to the opposing side wall part 22 at a position corresponding to any one of the three points of the center part or the end part of the cross section.
When the press adjusting part 24a is connected to the side wall part 22 at the center, the pressure contact at the end of the press adjusting part 24a moves along the wide side surface PW when receiving a compressive force.
When the pressure adjusting portion 24a is connected to the side wall portion 22 at one end, the pressure contact at the other end moves along the wide side surface PW when receiving a compressive force.
Thereby, the deformation | transformation of the press adjustment part 24a of the wide side surface PW inner direction is enabled.
In addition, the press adjustment part 24 may be shape | molded so that it may connect with the side wall part 22 in the whole cross section.
 ところで、電池セル1の幅広側面PWは、太鼓状に電極膨張する。したがって、積層した電池セル1間のすきま寸法は、幅広側面PWの中央部が狭く、周辺部は、中央部よりも広くなる。
 電池モジュール3の圧縮力を均一な面圧にするために、押圧調整部24の断面形状を、側壁部22方向で変化させてもよい。
By the way, the wide side surface PW of the battery cell 1 is electrode-expanded like a drum. Therefore, the clearance between the stacked battery cells 1 is narrow at the center of the wide side surface PW and wider at the periphery than at the center.
In order to make the compressive force of the battery module 3 uniform surface pressure, the cross-sectional shape of the pressing adjustment unit 24 may be changed in the direction of the side wall 22.
 例えば、図6Eに示すように、端部が押圧調整部24a、中央部が押圧調整部24bの断面形状を持つようにする。つまり、押圧調整部24の中央部の幅が、端部の幅より広くなるように成形する。
 これは、図5の圧縮力と圧縮長さの関係においては、押圧調整部24の中央部は、端部よりも直線の傾きが小さいバネ特性を持つようにすることを意味している。
 これにより、電池セル1が電極膨張した場合にも、面圧の均一な圧縮力を発生することができる。
For example, as shown in FIG. 6E, the end portion has the cross-sectional shape of the press adjusting portion 24a, and the central portion has the cross-sectional shape of the press adjusting portion 24b. That is, it is formed such that the width of the central portion of the press adjusting portion 24 is wider than the width of the end portion.
This means that in the relationship between the compression force and the compression length in FIG. 5, the central portion of the pressing adjustment portion 24 has a spring characteristic with a linear inclination smaller than that of the end portion.
Thereby, even when the battery cell 1 expands the electrode, it is possible to generate a compressive force having a uniform surface pressure.
 また、上記とは逆に、中央部を押圧調整部24a、端部を押圧調整部24bの断面形状としてもよい。
 この場合には、中央部の圧縮力が大きくなり、電池セル1の太鼓状の電極膨張を抑止することができる。
Contrary to the above, the cross-sectional shape of the press adjusting part 24a and the end part may be the cross-sectional shape of the press adjusting part 24b.
In this case, the compressive force at the center is increased, and the drum-like electrode expansion of the battery cell 1 can be suppressed.
 上記の押圧調整部24の断面が幅広側面PWの面方向において異なる形状を持つ構成は、図6Eのフラップ形状断面に限らず、図6A~図6Dの他の断面形状においても適用できる。 The configuration in which the cross section of the pressure adjusting unit 24 has a different shape in the surface direction of the wide side surface PW is not limited to the flap shape cross section of FIG. 6E but can be applied to other cross sectional shapes of FIGS. 6A to 6D.
 さらに、押圧調整部24の側壁部22間の配置を変えてもよい。
 図2や図4では、4つの押圧調整部24を均等に配置することを示しているが、中央部の押圧調整部24の間隔が、端部の押圧調整部24の間隔よりも広くなるように、配置する。
 これにより、中央部の押圧調整部24の圧縮力を小さくして、圧縮力の面圧を均一にする。
Furthermore, you may change arrangement | positioning between the side wall parts 22 of the press adjustment part 24. FIG.
FIG. 2 and FIG. 4 show that the four pressure adjusting portions 24 are evenly arranged, but the interval between the central pressure adjusting portions 24 is larger than the interval between the end pressure adjusting portions 24. To place.
Thereby, the compressive force of the press adjusting part 24 at the center is reduced, and the surface pressure of the compressive force is made uniform.
 ≪第2実施形態≫
 つぎに、第2実施形態の電池モジュール3を図7と図8により説明する。
 図7は、スペーサ2の外観斜視図である。
 図7のスペーサ2は、図2に示した第1実施形態のスペーサ2において、対向する側壁部22のそれぞれに、押圧調整部24に挟まれた空間に連通する開口部26を設けた構成となっている。
<< Second Embodiment >>
Next, the battery module 3 of the second embodiment will be described with reference to FIGS.
FIG. 7 is an external perspective view of the spacer 2.
The spacer 2 of FIG. 7 is configured such that, in the spacer 2 of the first embodiment shown in FIG. 2, an opening 26 that communicates with the space sandwiched between the pressing adjustment portions 24 is provided on each of the opposing side wall portions 22. It has become.
 冷却空気等の冷媒が、一方の側壁部22の開口部26から流入し、対向する電池セル1の幅広側面PWと対向する押圧調整部24より形成される冷却流路を通流し、他方の側壁部22の開口部26から流出するようにする。
 この冷媒通流により、幅広側面PWにおいて電池セル1の冷却を行うことができる。
A coolant such as cooling air flows from the opening 26 of the one side wall portion 22 and flows through the cooling flow path formed by the pressing adjustment portion 24 facing the wide side surface PW of the opposite battery cell 1 and the other side wall. It flows out from the opening part 26 of the part 22. FIG.
By this refrigerant flow, the battery cell 1 can be cooled on the wide side surface PW.
 図8は、電池モジュール3の外観斜視図である。
 図3に示した第1実施形態の電池モジュール3において、サイドプレート5に、図7で説明した開口部26に連通する開口部51を設けた構成となっている。
FIG. 8 is an external perspective view of the battery module 3.
In the battery module 3 according to the first embodiment shown in FIG. 3, the side plate 5 has an opening 51 that communicates with the opening 26 described in FIG.
 これにより、電池モジュール3を車両取付した場合でも、ファンやダクトを用いて冷風を開口部51から流入させ、反対側のサイドプレート5に設けられた開口部51から流出させることができるので、電池モジュール3の温度管理を行うことができる。 Thereby, even when the battery module 3 is mounted on the vehicle, the cool air can be introduced from the opening 51 using the fan or the duct and can be discharged from the opening 51 provided in the opposite side plate 5. The temperature management of the module 3 can be performed.
 上記のとおり、複数の電池セル1の積層する電池モジュール3において、電池セル1間のスペーサ2に、構造変形により反発力を生じる押圧調整部24を設けるようにしたので、所定範囲の圧縮力とモジュール長さで電池モジュール3を組み立てる際に、電池セル1の寸法ばらつきに対する圧縮力の変動範囲を狭くすることができる。
 また、押圧調整部24をスペーサ2に一体成型可能な同質部材としたので、スペーサ2の製造コストを低減できる。
 また、押圧調整部24を構造変形部材としたので、寸法ばらつきと圧縮力の変動範囲の関係において設計自由度を高くすることができる。
As described above, in the battery module 3 in which the plurality of battery cells 1 are stacked, the spacer 2 between the battery cells 1 is provided with the pressure adjusting portion 24 that generates a repulsive force due to structural deformation. When assembling the battery module 3 with the module length, the fluctuation range of the compressive force with respect to the dimensional variation of the battery cell 1 can be narrowed.
In addition, since the pressure adjusting unit 24 is a homogeneous member that can be integrally formed with the spacer 2, the manufacturing cost of the spacer 2 can be reduced.
In addition, since the pressing adjustment unit 24 is a structural deformation member, the degree of freedom in design can be increased in relation to the dimensional variation and the variation range of the compressive force.
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. The above-described embodiments have been described in detail for easy understanding in the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
 1 電池セル
 PW 幅広側面
 2 スペーサ
 24 押圧調整部
 26 開口部
 3 電池モジュール
 51 開口部
DESCRIPTION OF SYMBOLS 1 Battery cell PW Wide side surface 2 Spacer 24 Press adjustment part 26 Opening part 3 Battery module 51 Opening part

Claims (10)

  1.  一方向に積層され圧縮される複数の電池セルと、
     前記電池セルの側面に対向して前記複数の電池セルに挟持され、離散的に配置されるとともに構造変形して前記電池セルの側面に圧接する複数の押圧調整部を有するスペーサと、
    を備えたことを特徴とする電池モジュール。
    A plurality of battery cells stacked and compressed in one direction;
    A spacer having a plurality of pressure adjusting portions that are sandwiched between the plurality of battery cells so as to face the side surfaces of the battery cells and are discretely arranged and structurally deformed to press-contact the side surfaces of the battery cells;
    A battery module comprising:
  2.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部が圧接する一方の電池セルに対向する他方の電池セルの側面と前記押圧調整部との間には、前記押圧調整部が変位する空間を有する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    A battery module comprising: a space in which the pressure adjusting portion is displaced between a side surface of the other battery cell facing the one battery cell in pressure contact with the pressure adjusting portion and the pressure adjusting portion.
  3.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は、対向する一方の電池セルの側面と対向する他方の電池セルの側面とにおいて、異なる位置かつ異なる方向に圧接する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressure adjusting unit is in pressure contact with a side surface of one opposing battery cell and a side surface of the other battery cell facing each other at different positions and in different directions.
  4.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は突出形状を有して、前記複数の電池セルのそれぞれに圧接する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressing adjustment portion has a protruding shape and is in pressure contact with each of the plurality of battery cells.
  5.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は、三日月形状、または、くの字形状の断面を有する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressing adjustment section has a crescent-shaped or a cross-section with a U-shape.
  6.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は、S字形状、または、フラップ形状の断面を有する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressing adjustment unit has an S-shaped or flap-shaped cross section.
  7.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は、山型形状の断面を有する
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressure adjusting portion has a mountain-shaped cross section.
  8.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部は、中央部の断面形状が、端部の断面形状より大きい
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module according to claim 1, wherein the pressure adjusting portion has a cross-sectional shape at a central portion larger than a cross-sectional shape at an end portion.
  9.  請求項1に記載の電池モジュールにおいて、
     前記押圧調整部の前記電池セルの側面に対向する面内の中央部の配置間隔が、端部の配置間隔より広い
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    The battery module, wherein an arrangement interval of a central portion in a plane facing the side surface of the battery cell of the pressing adjustment unit is wider than an arrangement interval of end portions.
  10.  請求項1に記載の電池モジュールにおいて、
     前記スペーサの前記押圧調整部の両端が連接する側壁部には、開口部が設けられ、
     前記電池セルの側面と前記押圧調整部とで囲まれた空間は、前記開口部を連通する冷媒流路である
    ことを特徴とする電池モジュール。
    The battery module according to claim 1,
    An opening is provided in a side wall portion where both ends of the pressing adjustment portion of the spacer are connected,
    The battery module is characterized in that the space surrounded by the side surface of the battery cell and the pressure adjusting portion is a refrigerant flow path communicating with the opening.
PCT/JP2018/006286 2017-02-24 2018-02-21 Battery module WO2018155506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501384A JPWO2018155506A1 (en) 2017-02-24 2018-02-21 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033529 2017-02-24
JP2017033529 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155506A1 true WO2018155506A1 (en) 2018-08-30

Family

ID=63253338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006286 WO2018155506A1 (en) 2017-02-24 2018-02-21 Battery module

Country Status (2)

Country Link
JP (2) JPWO2018155506A1 (en)
WO (1) WO2018155506A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435722A (en) * 2019-01-14 2020-07-21 丰田自动车株式会社 Battery pack
JP2020145160A (en) * 2019-03-08 2020-09-10 トヨタ自動車株式会社 Battery pack
WO2020194930A1 (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Power supply device, electric vehicle using same, and power storage device
WO2020194937A1 (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Power supply device, and electric vehicle and electrical storage device each equipped with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294407A (en) * 2006-03-28 2007-11-08 Takehiro:Kk Battery module
JP2012248482A (en) * 2011-05-30 2012-12-13 Toshiba Corp Secondary battery device
JP2016031902A (en) * 2014-07-30 2016-03-07 株式会社Gsユアサ Power storage device
JP2017126430A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Battery pack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102915A (en) * 2012-11-16 2014-06-05 Hitachi Vehicle Energy Ltd Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294407A (en) * 2006-03-28 2007-11-08 Takehiro:Kk Battery module
JP2012248482A (en) * 2011-05-30 2012-12-13 Toshiba Corp Secondary battery device
JP2016031902A (en) * 2014-07-30 2016-03-07 株式会社Gsユアサ Power storage device
JP2017126430A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435722A (en) * 2019-01-14 2020-07-21 丰田自动车株式会社 Battery pack
CN111435722B (en) * 2019-01-14 2022-06-28 丰田自动车株式会社 Battery pack
JP2020145160A (en) * 2019-03-08 2020-09-10 トヨタ自動車株式会社 Battery pack
JP7137762B2 (en) 2019-03-08 2022-09-15 トヨタ自動車株式会社 assembled battery
WO2020194930A1 (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Power supply device, electric vehicle using same, and power storage device
WO2020194937A1 (en) * 2019-03-28 2020-10-01 三洋電機株式会社 Power supply device, and electric vehicle and electrical storage device each equipped with same

Also Published As

Publication number Publication date
JP2021073649A (en) 2021-05-13
JP7208273B2 (en) 2023-01-18
JPWO2018155506A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN108615842B (en) Battery pack
JP7208273B2 (en) battery module
KR101894652B1 (en) Battery pack
US9484592B2 (en) Battery module having structure of improved stability and high cooling efficiency
US9203065B2 (en) Battery module
US8691421B2 (en) Battery module having flexibility in designing structure of module and battery pack employed with the same
US9929385B2 (en) Battery module of improved stability
WO2019151037A1 (en) Battery module and battery pack
US8835036B2 (en) Battery pack
JP5472059B2 (en) Power storage device
CN108336267B (en) Storage battery
JP6192509B2 (en) Assembled battery
KR20070018507A (en) Secondary battery module
US20150064523A1 (en) Battery module
CN106257735B (en) Rechargeable battery module
JP2017098107A (en) Power storage device
JP2012129043A (en) Power storage device
KR20150000090A (en) Battery Module with Pressing Bracket
CN111684621B (en) Pouch-type battery cell including vent member, and battery module and battery pack including the same
JP2011014321A (en) Battery system
KR20140040327A (en) Battery module having elastic pressing member
JP6684613B2 (en) Battery module and battery pack
EP3373360B1 (en) Battery module
KR20170073856A (en) Battery Cell Comprising Integrated Support Member Provided at Edge Sealing Part
US20230253648A1 (en) Battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758384

Country of ref document: EP

Kind code of ref document: A1