WO2018155297A1 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
WO2018155297A1
WO2018155297A1 PCT/JP2018/005215 JP2018005215W WO2018155297A1 WO 2018155297 A1 WO2018155297 A1 WO 2018155297A1 JP 2018005215 W JP2018005215 W JP 2018005215W WO 2018155297 A1 WO2018155297 A1 WO 2018155297A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
imaging device
solid
state imaging
conversion unit
Prior art date
Application number
PCT/JP2018/005215
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 網川
進一 荻田
生熊 誠
勝野 元成
憲一 仲田
中村 哲也
良平 宮川
浩久 大槻
平田 達也
Original Assignee
パナソニックIpマネジメント株式会社
パナソニック・タワージャズセミコンダクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社, パナソニック・タワージャズセミコンダクター株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018155297A1 publication Critical patent/WO2018155297A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to a solid-state imaging device having a plurality of pixel cells arranged on a matrix.
  • FIG. 15 is a cross-sectional view illustrating a configuration of a unit pixel of the solid-state imaging device described in Patent Document 1.
  • This solid-state imaging device has a plurality of unit pixels that are two-dimensionally arranged on the semiconductor substrate 30 at a constant pitch.
  • each unit pixel has a saturated charge more than the first photodiode 31a for photoelectrically converting and storing incident light and the first photodiode 31a for photoelectrically converting and storing incident light.
  • a second photodiode 31b having a large amount, a first microlens 33a for condensing light on the first photodiode 31a, and a first for condensing light on the second photodiode 31b.
  • a second micro lens 33b having a smaller opening than the micro lens 33a.
  • the first photodiode 31a corresponds to a high sensitivity pixel
  • the second photodiode 31b corresponds to a low sensitivity pixel.
  • the solid-state imaging device configured in this manner reads both the signals of the first photodiode 31a and the second photodiode 31b when the signal charge is low and the illuminance is low, and outputs the second signal when the signal charge is high and the illuminance is high. Only the signal of the photodiode 31b is read out. As a result, the dynamic range is expanded.
  • LED light sources have become popular in the world due to technological progress of LED (Light Emitting Diode) light sources.
  • As a method for adjusting the light amount of the LED light source there is a method of periodically turning on and off the light source.
  • FIG. 14 is a time chart showing the blinking timing of the LED light source and the exposure timing at which the photodiode of the solid-state imaging device receives light.
  • the LED light source is repeatedly turned on and off at a period of, for example, 1/100 s.
  • the frame period of the solid-state imaging device is set to 1/30 s, for example.
  • imaging with electronic SHT that is, electronic shutter
  • imaging without electronic SHT operation (always exposure operation) are shown.
  • the electronic SHT operation refers to clearing the signal charge of the photodiode.
  • the vertical axis indicates the scanning line from the first line to the last line.
  • the width of the hatched portion that is, the time from the electronic SHT operation (dashed line) to the signal readout operation (thick solid line) is the exposure period.
  • the LED light source is turned on during this period, the signal charge photoelectrically converted by the photodiode is accumulated.
  • the LED light source is turned off during the exposure period, and the image is taken darkly or the LED light source is imaged without being illuminated.
  • the LED light source is lit during the exposure period, and the bright image is taken, or the LED light source is illuminated and taken.
  • the solid-state imaging device generates a dark frame and a bright frame.
  • the flicker phenomenon hereinafter referred to as the LED flicker phenomenon
  • Patent Document 1 when this general method is performed with the low-sensitivity pixel of the conventional disclosed technique (Patent Document 1), the photodiode is easily saturated by the constant exposure operation, and there is a problem that a captured image cannot be obtained. To do. Furthermore, since it becomes impossible to set an optimal exposure period according to the shooting scene, an image is generated only with high-sensitivity pixels having photodiodes having a smaller area than low-sensitivity pixels, and only images with a narrow dynamic range are obtained. The problem that cannot be done occurs.
  • an object of the present disclosure is to provide a solid-state imaging device that obtains an image in which a flicker phenomenon is suppressed in a configuration in which unit pixels are formed by two types of pixels, a high-sensitivity pixel and a low-sensitivity pixel.
  • a solid-state imaging device is a solid-state imaging device having a plurality of pixel cells arranged on a matrix, and each of the plurality of pixel cells is formed on a semiconductor substrate.
  • Load storage unit includes an insulating film on the semiconductor substrate, and an electrode portion formed on the insulating film.
  • an image in which the flicker phenomenon is suppressed can be obtained in a configuration in which a unit pixel is formed by two types of pixels, a high sensitivity pixel and a low sensitivity pixel.
  • the saturation charge amount can be increased while the photoelectric conversion unit has a lower sensitivity.
  • a low-sensitivity pixel that can realize a wide dynamic range can be obtained.
  • an image in which the flicker phenomenon of the LED light source is suppressed can be obtained by always exposing the low-sensitivity pixels.
  • the light receiving area of the first photoelectric conversion unit is larger than that of the second photoelectric conversion unit, a high-sensitivity pixel that secures a saturated charge amount can be configured. Obtainable.
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of a pixel cell in the solid-state imaging device according to the embodiment.
  • FIG. 3 is a diagram illustrating a first example of a pixel layout configuration in the solid-state imaging device according to the embodiment.
  • FIG. 4 is a schematic diagram illustrating a cross section of a low-sensitivity pixel, a cross section of a semiconductor substrate, and a potential (potential) after (a) a reset operation and (b) during charge transfer in the solid-state imaging device according to the embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of a pixel cell in the solid-state imaging device according to the embodiment.
  • FIG. 3 is a diagram illustrating a first example of a pixel layout configuration
  • FIG. 5 is a diagram illustrating a relationship between subject illuminance and signal charge amount of high-sensitivity pixels and low-sensitivity pixels in the solid-state imaging device according to the embodiment.
  • FIG. 6 is a diagram illustrating a second example of the pixel layout configuration in the solid-state imaging device according to the embodiment.
  • FIG. 7 is a diagram illustrating a third example of the pixel layout configuration in the solid-state imaging device according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic cross section of the solid-state imaging device according to the embodiment.
  • FIG. 9 is a diagram illustrating another example of the schematic cross section of the solid-state imaging device according to the embodiment.
  • FIG. 10 is a diagram illustrating a first example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment.
  • FIG. 11 is a diagram illustrating a relationship between the optical waveguide width and the light collection efficiency in the solid-state imaging device according to the embodiment.
  • FIG. 12 is a diagram illustrating a second example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment.
  • FIG. 13 is a diagram illustrating a third example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment.
  • FIG. 14 is a time chart showing the blinking timing of the LED light source and the exposure timing at which the photodiode of the solid-state imaging device receives light.
  • FIG. 15 is a cross-sectional view showing a configuration of a conventional solid-state imaging device.
  • a component corresponding to a high-sensitivity pixel may be given a first, and a component corresponding to a low-sensitivity pixel may be given a second.
  • the solution (effect) of the LED flicker phenomenon according to the present disclosure is not limited to the LED (LED light source, light emitting diode, light emitting diode light source) that is a pulse light source, as shown in the embodiments described below.
  • Other pulse light sources for example, LD (LD light source, laser diode, laser diode light source), and as specific examples, traffic lights equipped with LED light sources, LD light sources, LED light sources, LD light sources, etc., head rides, The same effect can be obtained for transportation equipment (for example, an automobile) used for a stop lamp or the like.
  • a flicker phenomenon caused by a pulse light source other than an LED is also referred to as an LED flicker phenomenon in the present embodiment.
  • CMOS image sensor MOS image sensor
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device 100 according to the embodiment.
  • the solid-state imaging device 100 includes a pixel array unit 102, a driver circuit 103, a vertical scanning circuit 104, a vertical signal line VL, a constant current source circuit 105, a column readout circuit 106, a horizontal scanning.
  • a circuit 107 is provided.
  • the pixel array unit 102 includes a large number of pixel cells (also referred to as unit cells or unit pixels) 101 that perform photoelectric conversion arranged in a matrix.
  • the driver circuit 103 outputs various control signals for driving the pixel array unit 102 for each row scanned by the vertical scanning circuit 104.
  • the vertical scanning circuit 104 scans the pixel array unit 102 in units of rows of the pixel cells 101.
  • the vertical signal line VL is provided for each column of the pixel cells 101 and transmits a signal of the pixel cell 101 to the column readout circuit 106.
  • a constant current source circuit 105 and a column readout circuit 106 are connected to the vertical signal line VL.
  • the constant current source circuit 105 has a constant current source for each column connected to the vertical signal line VL for each column.
  • the constant current source is paired with the amplification transistor in the pixel cell 101 to form a source follower circuit.
  • the column readout circuit 106 has a noise canceller (CDS: Correlated Double Sampling) circuit and an analog-to-digital conversion (ADC) circuit provided for each column.
  • the noise canceller (CDS) circuit receives two pixel signals (reset level and signal level) from the corresponding column and takes the difference between the two pixel signals.
  • the analog-digital conversion circuit receives the pixel signal (difference) from the CDS circuit and converts the analog data into digital data.
  • the horizontal scanning circuit 107 performs scanning that sequentially selects the columns of the pixel cells 101, and sequentially outputs the digital data of the selected columns to the outside of the solid-state imaging device 100.
  • the CDS circuit included in the column readout circuit 106 is connected for each column of the pixel cells 101 arranged in a matrix in the pixel array unit 102, for example.
  • the CDS circuit is generated in the pixel cell 101 by CDS (correlated double sampling) processing on a signal output from the pixel cell 101 in the row selected by the vertical scanning circuit 104 through the vertical signal line VL.
  • CDS correlated double sampling
  • the signal processing for removing the reset noise and the fixed pattern noise specific to the pixel due to the threshold value variation of the transistor is performed, and the pixel signal after the signal processing is temporarily held.
  • the analog-digital conversion circuit has an AGC (Auto-Gain-Control) function and an analog-digital conversion function, and the ADC converts a pixel signal that is an analog signal held in the CDS circuit into a digital signal. .
  • AGC Auto-Gain-Control
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of the pixel cell 101 in the solid-state imaging device 100 according to the embodiment.
  • the pixel cell 101 includes a first photoelectric conversion unit 120, a first transfer transistor 121, a second photoelectric conversion unit 122, a second transfer transistor 123, a charge storage unit 124, a switch transistor 125, a reset transistor 126, and an amplification transistor. 127, a first FD (Floating Diffusion) unit 128, and a second FD unit 129.
  • a high-sensitivity pixel 110 surrounded by a broken line in FIG. 2 corresponds to the first photoelectric conversion unit 120, the first FD unit 128, and the first transfer transistor 121.
  • the low sensitivity pixel 111 corresponds to the second photoelectric conversion unit 122, the second FD unit 129, the second transfer transistor 123, and the charge storage unit 124.
  • the first photoelectric conversion unit 120 (hereinafter also referred to as the first photodiode 120) is a photodiode formed on a semiconductor substrate, and electrically converts light into signal charges.
  • the first transfer transistor 121 is turned on when the transfer control line TGL is at a high level. As a result, the first transfer transistor 121 transfers the signal charge photoelectrically converted by the first photoelectric conversion unit 120 to the first FD unit 128.
  • the second photoelectric conversion unit 122 (hereinafter also referred to as a second photodiode 122) is a photodiode formed on a semiconductor substrate, has a light receiving area smaller than that of the first photodiode 120, and transmits light as a signal. Converts to electric charge.
  • the second transfer transistor 123 is turned on when the transfer control line TGS is at a high level, for example. As a result, the second transfer transistor 123 transfers the signal charge photoelectrically converted by the second photoelectric conversion unit 122 and accumulated in the charge accumulation unit 124 to the second FD unit 129.
  • the charge storage unit 124 is a capacitive element that stores signal charges generated by photoelectric conversion in the second photoelectric conversion unit 122.
  • the charge storage unit 124 is formed as a MOS capacitor, for example, and includes an insulating film on the semiconductor substrate and an electrode unit formed on the insulating film, and a signal is interposed between the semiconductor substrate and the electrode unit that sandwich the insulating film. Accumulate charge.
  • the electrode unit corresponds to a gate electrode. For example, when the control line CG connected to the electrode unit is at a high level, the charge storage unit 124 stores the signal charge photoelectrically converted by the second photoelectric conversion unit 122.
  • the signal charge accumulated in the charge accumulation unit 124 is transferred to the second FD unit 129 by the second transfer transistor 123 when the control line CG is at low level and the transfer control line TGS is at high level.
  • the charge storage unit 124 plays a role of greatly increasing the maximum storage capacity (that is, the saturation signal charge amount) of the signal charge generated by the photoelectric conversion of the second photodiode 122.
  • the switch transistor 125 makes the first FD unit 128 and the second FD unit 129 conductive.
  • the reset transistor 126 resets the second FD unit 129 (to a high level), for example, when the reset control line RS is at a high level.
  • the amplification transistor 127 forms a source follower circuit paired with the constant current source in the constant current source circuit 105, converts the potential of the first FD unit 128 into a voltage, and outputs the voltage to the vertical signal line VL.
  • the first FD portion 128 is a floating diffusion layer formed on the semiconductor substrate, and holds the signal charge transferred by the first transfer transistor 121.
  • the second FD portion 129 is a floating diffusion layer formed on the semiconductor substrate, and holds the signal charge transferred by the second transfer transistor 123.
  • the sensitivity is lower than that of the first photoelectric conversion unit 120, but saturation is achieved.
  • the amount of charge can be increased. Therefore, the low sensitivity pixel 111 can realize a wide dynamic range. Thereby, the image which suppressed the flicker phenomenon of the LED light source can be obtained by always performing the exposure operation of the low sensitivity pixel 111.
  • the light receiving area of the first photoelectric conversion unit 120 is larger than that of the second photoelectric conversion unit 122, it is possible to obtain a high-sensitivity pixel that secures a saturated charge amount, and thus an image that secures a dynamic range is obtained.
  • the high sensitivity pixel 110 and the low sensitivity pixel 111 share the switch transistor 125, the reset transistor 126, and the amplification transistor 127. That is, the high-sensitivity pixel 110 includes an element that performs photoelectric conversion, for example, the first photodiode 120 and the first transfer transistor 121.
  • the low sensitivity pixel 111 includes a second photodiode 122, a second transfer transistor 123, and a charge accumulation unit 124.
  • the pixel cell 101 includes a switch transistor 125, a reset transistor 126, and an amplification transistor 127 that are shared and used by the high sensitivity pixel 110 and the low sensitivity pixel 111.
  • each of the transistors 121 to 127 for example, an N-channel MOS transistor may be used.
  • the N-channel MOS transistor (Nch transistor) is turned on when the gate potential is “High” level, and is turned off when the gate voltage is “Low”.
  • the P-channel MOS transistor (Pch transistor) is turned on when the gate potential is “Low” level, and is turned off when the gate voltage is “High”.
  • the transistors 121 to 127 are N-channel MOS transistors.
  • the first transfer transistor 121 is connected between the cathode electrode of the first photodiode 120 and the first FD portion 128.
  • a transfer control line TGL is connected to the gate electrode of the first transfer transistor 121.
  • the “High” level is applied to the gate electrode of the first transfer transistor 121 from the transfer control line TGL by the transfer pulse ⁇ TGL, the first transfer transistor 121 is turned on and photoelectrically converted by the first photodiode 120.
  • the signal charges (specifically electrons) accumulated in the first photodiode 120 are transferred to the first FD unit 128.
  • the second transfer transistor 123 is connected between the cathode electrode of the second photodiode 122 and the semiconductor substrate of the charge storage unit 124 and the second FD unit 129.
  • a transfer control line TGS is connected to the gate electrode of the second transfer transistor 123.
  • a control line CG is connected to the electrode part of the charge storage part 124.
  • the charge storage portion 124 has a gap between the semiconductor substrate and the electrode portion.
  • the accumulated signal charge (specifically, electrons) is transferred to the second FD portion 129 via the second transfer transistor 123.
  • the gate electrode of the charge storage unit 124 is given a “High” level by the control pulse ⁇ CG from the control line CG, and the charge storage unit 124 receives the signal charge generated by the second photodiode 122. accumulate.
  • the reset control line RS is connected to the gate electrode
  • the pixel power supply wiring VDDC is connected to the drain electrode
  • the second FD portion 129 is connected to the source electrode.
  • the switch control line SW is connected to the gate electrode
  • the second FD portion 129 is connected to the drain electrode
  • the first FD portion 128 is connected to the source electrode.
  • the reset control line RS is transmitted to the gate electrode 126a of the reset transistor 126 to give a “High” level by the reset pulse ⁇ RS, Further, when the switch control line SW is transmitted to the gate electrode 125a of the switch transistor 125 and the “High” level is given by the switch pulse ⁇ SW, the reset transistor 126 and the switch transistor 125 are turned on. As a result, the potentials of the first FD unit 128 and the second FD unit 129 are reset to the power supply voltage AVDD.
  • the gate electrode is connected to the first FD portion 128, the drain electrode is connected to the pixel power supply wiring VDDC, and the source electrode is connected to the vertical signal line VL.
  • the amplification transistor 127 outputs the potential of the first FD portion 128 after being reset by the reset transistor 126 and the switch transistor 125 to the vertical signal line VL as a reset level, and further, the first transfer transistor 121 generates a signal charge.
  • the potential of the first FD unit 128 after the transfer is output as a signal level to the vertical signal line VL.
  • the reset transistor 126 and the switch transistor 125 are turned on, and the potentials of the first FD portion 128 and the second FD portion 129 are changed. Reset to power supply voltage AVDD. After the first FD portion 128 and the second FD portion 129 are reset to the power supply voltage AVDD, a “Low” level is given to the gate electrode 126a of the reset transistor by the reset pulse ⁇ RS, and the gate electrode 125a of the switch transistor is switched to the switch electrode A “High” level is given by the pulse ⁇ SW. Thereby, the reset operation is completed in a state where the first FD portion and the second FD portion are electrically connected.
  • the amplifying transistor 127 outputs the potentials of the first FD unit 128 and the second FD unit 129 after being reset by the reset transistor 126 and the switch transistor 125 to the vertical signal line VL as a reset level.
  • the potentials of the first FD portion 128 and the second FD portion 129 after the signal charge is transferred by the transfer transistor 123 are output as signal levels to the vertical signal line VL.
  • a voltage corresponding to the signal charge amount is transmitted to the amplification transistor 127.
  • the conversion efficiency ⁇ is determined by the capacitance value C of the first FD unit 128 and the second FD unit 129.
  • the first FD portion 128 and the second FD portion 129 are connected to the gate electrode 127a of the amplification transistor, and therefore the gate electrode 127a of the amplification transistor in the case of the high-sensitivity pixel 110.
  • the conversion efficiency ⁇ is lowered.
  • the ratio S / N of the pixel signal S to the noise component N generated in the constant current source circuit 105 and the column readout circuit 106 connected to the vertical signal line VL can be improved, and a high-quality image can be obtained.
  • the high-sensitivity pixel 110 acquires image data of a subject under various environments from low illuminance to high illuminance, and the low-sensitivity pixel 111 captures an image in which the flicker phenomenon of the LED light source (pulse emission source) is suppressed. Acquired and combined to obtain image data in which the flicker phenomenon of the LED light source is suppressed.
  • the high-sensitivity pixel 110 is required to generate a high-quality image in order to acquire images under various environments.
  • a higher conversion efficiency ⁇ is required.
  • the capacitance value C of the first FD unit 128 needs to be reduced.
  • the low-sensitivity pixel 111 always performs an exposure operation in order to obtain an image in which the flicker phenomenon of the LED light source is suppressed.
  • a charge storage unit 124 is connected in order to ensure a dynamic range necessary for acquiring images of various LED light sources. Since the charge storage unit 124 stores a larger amount of signal charge, a small conversion efficiency ⁇ is required. For this purpose, it is necessary to increase the capacitance C connected to the second FD unit 129.
  • the switch transistor 125 is provided between the first FD unit 128 and the second FD unit 129, and the amplification transistor 127 is connected to the first FD unit 128.
  • the switch transistor 125 is read in the OFF state, so that only the first FD portion 128 is connected to the gate electrode 127a of the amplification transistor 127. Conversion efficiency ⁇ is obtained.
  • the signal charge of the low-sensitivity pixel 111 is read out, the first FD portion 128 and the second FD portion 129 are connected to the gate electrode 127a of the amplification transistor by reading the switch transistor 125 in the ON state.
  • a smaller conversion efficiency ⁇ is obtained.
  • a capacity may be given to the second FD unit 129.
  • the high-sensitivity pixel 110 reads the signal charge with the switch transistor 125 turned off, the conversion efficiency ⁇ is not affected, and high image quality can be maintained.
  • the switch transistor 125 is turned on, the reset transistor 126 is turned off, and the first FD unit 128 and the second FD are turned on.
  • the conversion may be performed by reducing the conversion efficiency ⁇ of the unit 129. This is because when a subject is imaged in a high-illuminance environment, the amount of signal charge accumulated in the first photodiode 120 of the high-sensitivity pixel 110 is larger than that in a low-illuminance environment. This is effective as a means for preventing the amount of voltage ⁇ V from exceeding the dynamic range of the vertical signal line VL.
  • the pixel cell 101 is configured such that one high-sensitivity pixel 110 and one low-sensitivity pixel 111 share the switch transistor 125, the reset transistor 126, and the amplification transistor 127. 110 and two low-sensitivity pixels 111 may share the switch transistor 125, the reset transistor 126, and the amplification transistor 127.
  • a selection transistor for selecting a row corresponding to the readout row of the pixel array portion 102 is connected between the source of the amplification transistor 127 and the vertical signal line VL between the amplification transistor 127 and the vertical signal line VL. It may be.
  • the gate electrode of the amplification transistor 127 may be connected to the second FD unit 129 instead of being connected to the first FD unit 128.
  • one FD may be provided instead of the first FD unit 128, the second FD unit 129, and the switch transistor 125.
  • the switch transistor 125 may be omitted, and the first FD unit 128 and the second FD unit 129 may be integrated.
  • FIG. 3 is a diagram illustrating a first example of a pixel layout configuration in the solid-state imaging device 100 according to the embodiment.
  • the pixel cell 101 includes a high sensitivity pixel 110 and a low sensitivity pixel 111.
  • the high-sensitivity pixel 110 includes a first photodiode 120 and a gate (first gate electrode) 121a of a first transfer transistor that transfers the signal charge photoelectrically converted by the first photodiode 120 to the first FD unit 128. Is provided.
  • the low-sensitivity pixel 111 includes a second photodiode 122 having an area smaller than that of the first photodiode 120, an electrode portion 124 a of the charge accumulation portion 124 that accumulates signal charges photoelectrically converted by the second photodiode 122,
  • the gate electrode (second gate electrode) 123a of the second transfer transistor 123 that transfers the signal charge to the FD portion 129 is configured to sandwich the electrode portion 124a of the charge storage portion 124 and the second photodiode 122.
  • an example of the gate material is Poly silicon.
  • the elements such as the first photodiode 120 and the second photodiode 122 are electrically separated in the element isolation region 130.
  • the gate electrode 125a of the switch transistor 125 is connected between the first FD portion 128 and the second FD portion 129, and the reset transistor 126 is connected between the pixel power supply line VDDC and the second FD portion 129. Gate electrode 126a is connected. In addition, the first FD portion 128 and the gate electrode 127a of the amplification transistor 127 are electrically connected.
  • the pixel power supply line VDDC is connected to the drain of the amplification transistor 127 and the vertical signal line VL is connected to the source, and the pixel signal is amplified and transmitted to the vertical signal line VL.
  • the high-sensitivity pixel 110 and the low-sensitivity pixel 111 are provided with filters of the same color, such as a green filter, and the LED light source that has been missed by the high-sensitivity pixel 110 is photoelectrically converted by the low-sensitivity pixel 111 that always performs an exposure operation.
  • An image in which the LED flicker phenomenon is suppressed is generated by acquiring the pixel signal and combining the pixel signals of the high-sensitivity pixel 110 and the low-sensitivity pixel 111.
  • the electrode portion 124a of the charge accumulation portion 124 when the electrode portion 124a of the charge accumulation portion 124 is on the second photodiode 122, blue light having a short wavelength is absorbed by the gate electrode. The problem that blue light does not reach occurs.
  • the electrode portion 124 a of the charge storage portion 124 is disposed in a region adjacent to the second photodiode 122. That is, the electrode portion 124a does not cover the second photodiode 122 in plan view.
  • the layout avoids blue light attenuation.
  • the first photodiode 120 of the high-sensitivity pixel 110, the gate electrode 121a of the first transfer transistor, and the first FD portion 128 are arranged in the vertical direction, and signal charges are transferred upward in the drawing.
  • the second photodiode 122, the gate electrode 123a of the second transfer transistor, and the second FD portion 129 are arranged in the vertical direction, and signal charges are transferred upward in the drawing.
  • a characteristic difference due to transfer variation between the first transfer transistor 121 and the second transfer transistor 123 (for example, the signal charge at the time of transfer Residual image characteristics remaining in the photodiode 120 and / or the second photodiode 122) can be suppressed.
  • the electrode portion 124a of the charge storage portion 124 and the gate electrode 123a of the second transfer transistor are arranged so as to sandwich the second photodiode 122. Accordingly, the electrode portion 124a of the charge storage portion 124 extends the gate electrode in a direction opposite to the gate electrode 123a of the second transfer transistor, whereby the second photodiode 122 and the gate electrode 123a of the second transfer transistor.
  • the charge accumulation amount of the charge accumulation unit 124 can be increased without affecting the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics).
  • FIG. 4 is a schematic diagram illustrating a cross section and a potential (potential) of the semiconductor substrate 140 of the low-sensitivity pixel 111 after the reset operation and (b) during charge transfer in the solid-state imaging device 100 according to the embodiment. is there.
  • the upper stage in FIGS. 4A and 4B corresponds to the cross section taken along the dashed-dotted line IV-IV in FIGS.
  • the lower part of FIGS. 4A and 4B shows the potential on the AA line of the upper part.
  • the second FD portion 129 is reset to the power supply voltage AVDD.
  • the “Low” level is applied to the gate electrode 123a of the second transfer transistor 123 by the transfer pulse ⁇ TGS from the transfer control line TGS.
  • a “High” level is given to the electrode portion 124 a of the charge accumulation unit 124 by the control pulse ⁇ CG from the control line CG, and signal charges (that is, electrons) are accumulated in the charge accumulation unit 124.
  • the potential of the semiconductor substrate 140 is the lowest at the lower part of the second transfer transistor 123, and the signal charge is stored in the lower part of the charge storage unit 124.
  • FIG. 4 shows the potential at the AA line indicated by a broken line during charge transfer.
  • the gate electrode 123a of the second transfer transistor 123 is given a “High” level from the transfer control line TGS by the transfer pulse ⁇ TGS.
  • the electrode portion 124 a of the charge storage unit 124 is given a “Low” level by the control pulse ⁇ CG from the control line CG, and the signal charge is transferred from the charge storage unit 124 to the second photoelectric conversion unit 122 via the second photoelectric conversion unit 122. It has been transferred to the FD unit 129.
  • the potential of the semiconductor substrate 140 becomes, in descending order, the second FD portion 129, the lower portion of the gate electrode 123a of the second transfer transistor, the second photodiode 122, and the lower portion of the electrode portion 124a of the charge storage portion 124, It is possible to transfer the signal charges accumulated in the lower part of the photodiode 122 and the electrode portion 124 a of the charge accumulation portion 124 to the second FD portion 129.
  • the semiconductor substrate 140 is a P-type substrate having a hole charge concentration higher than the electron concentration, the potential of the semiconductor substrate 140 is GND, and the signal charge is composed of electrons,
  • the “Low” voltage of the control pulse ⁇ CG is controlled to GND or a negative voltage, whereby the semiconductor substrate 140 under the electrode portion 124a of the charge storage portion 124 enters a storage state in which hole charges are stored.
  • the potential of the semiconductor substrate 140 that is electrically connected to the semiconductor substrate 140 and is lower than the electrode portion 124a of the charge storage portion 124 becomes GND, so that the desired potential can be made relatively easily.
  • the potential of the semiconductor substrate 140 increases in the descending order of the second FD portion. 129, accumulated below the gate electrode 123a of the second transfer transistor, below the electrode portion 124a of the charge storage portion 124, and below the electrode portion 124a of the second photodiode 122 and the charge storage portion 124 as the second photodiode 122.
  • the signal charge is transferred to the second FD unit 129.
  • the potential of the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 needs to be controlled between the lower portion of the gate electrode 123a of the second transfer transistor 123 and the second photodiode 122. Control is difficult compared to setting the potential of the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 to GND. Therefore, in the low-sensitivity pixel 111, the gate electrode 123a of the second transfer transistor 123, the second photodiode 122, and the electrode portion 124a of the charge storage unit 124 are arranged in this order in order to control signal charge transfer. It is valid.
  • FIG. 5 is a diagram illustrating the relationship between the object illuminance and the signal charge amount of the high-sensitivity pixel 110 and the low-sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment.
  • the horizontal axis represents subject illuminance, and the vertical axis represents signal charge amount.
  • the diagram shows (A) a graph showing the signal charge amount of the high-sensitivity pixel 110 and (B) the signal charge amount of the low-sensitivity pixel 111 when there is no charge storage unit 124 or when the charge storage unit 124 is invalidated. And (C) a graph showing the signal charge amount of the low sensitivity pixel 111.
  • the slope of the graph means sensitivity, and the sensitivity of the high-sensitivity pixel 110 having the first photodiode 120 having a larger light receiving area is higher, so the slope of the graph is steep.
  • the saturation charge amount of the high-sensitivity pixel 110 is reached as shown in (A), and the signal charge amount Qs1 is constant regardless of the subject illuminance.
  • the high sensitivity pixel 110 performs the electronic SHT operation, the exposure time can be arbitrarily changed. Accordingly, it is possible to capture a higher subject illuminance by shortening the exposure time and making the inclination of the graph gentle (relatively lowering the sensitivity).
  • the low-sensitivity pixel 111 When the subject illuminance L2 is reached, the low-sensitivity pixel 111 reaches the saturation charge amount and becomes the signal charge amount Qs2 as indicated by the dotted line in FIG.
  • the low-sensitivity pixel 111 needs to be constantly exposed in order to suppress the LED flicker phenomenon.
  • the low-sensitivity pixel 111 (without the charge storage unit 124) can obtain a signal charge corresponding to the subject illuminance only up to the subject illuminance L2.
  • the low-sensitivity pixel 111 When the object illuminance L3 is reached, the low-sensitivity pixel 111 reaches the saturation charge amount and becomes the signal charge amount Qs3 as shown in (C). Compared with (B), (C) has a wider range of subject illuminance that can be imaged, from 0 to L3, and a signal charge amount corresponding to the subject illuminance can be obtained even when the subject illuminance is relatively high.
  • the charge accumulation amount that can be accumulated in the charge accumulation unit 124 of the low-sensitivity pixel 111 can be increased by increasing the voltage applied to the electrode unit 124 a of the charge accumulation unit 124.
  • the photoelectrically converted signal charge is accumulated in the capacitor Cp of the second photodiode 122 itself. For this reason, since the area of the second photodiode 122 is smaller than that of the first photodiode 120, the charge accumulation amount of the second photoelectric conversion unit 122 itself is reduced.
  • the low-sensitivity pixel 111 has a charge storage portion 124 in addition to the second photodiode 122.
  • the charge storage unit 124 can be configured as a MOS capacitor by a gate electrode (that is, the electrode unit 124a), a gate insulating film, and a semiconductor substrate.
  • the capacitance value Cg of the charge storage unit 124 can be made larger than the capacitance Cp of the first photodiode 120 of the high sensitivity pixel 110.
  • the voltage Vg applied to the electrode portion 124a can be arbitrarily controlled, it is easy to increase the charge accumulation amount of the low sensitivity pixel 111 as compared to the high sensitivity pixel 110. Thereby, the low-sensitivity pixel 111 can obtain an image in which the flicker phenomenon of the LED light source is suppressed by ensuring a wide dynamic range and always performing an exposure operation.
  • FIG. 6 is a diagram illustrating a second example of the pixel layout configuration in the solid-state imaging device 100 according to the embodiment.
  • the description of the part of the same number as FIG. 3 mentioned above is abbreviate
  • the difference from FIG. 3 is the shape of the electrode part 124a of the charge storage part 124.
  • the electrode portion 124a of the charge storage portion 124 is formed along the boundary between the second photodiode 122 and the element isolation region 130, and is concave (that is, U-shaped) toward the gate electrode 123a side of the second transfer transistor. Is formed.
  • the electrode portion 124a includes first, second, and third electrode portions 124a1 to 124a3 that form a U-shape.
  • the first electrode portion 124a1 does not cover the second photoelectric conversion unit 122 in plan view.
  • the second electrode portion 124a2 covers a part of the outer periphery of the second photoelectric conversion unit 122 in plan view.
  • the third electrode portion 124a3 covers the other part of the outer periphery of the second photoelectric conversion unit 122 in plan view.
  • the area of the electrode portion 124a of the charge storage portion 124 can be increased without affecting the sensitivity of the second photodiode 122, and the charge storage amount can be increased.
  • FIG. 7 is a diagram illustrating a third example of the pixel layout configuration in the solid-state imaging device 100 according to the embodiment.
  • the difference from FIG. 3 is the shape of the electrode part 124a of the charge storage part 124.
  • the electrode part 124 a of the charge storage part 124 is formed so as to cover the upper part of the second photodiode 122. Thereby, the area of the electrode part 124a of the charge storage part 124 can be increased, and the charge storage amount can be increased.
  • the short wavelength blue light is absorbed by the electrode portion 124a of the charge storage portion 124, so that the sensitivity reduction with respect to the blue light becomes a problem. Therefore, this configuration is applied to the pixel cell 101 in which a green filter that transmits green light or a red filter that transmits red light is arranged, and the second pixel cell 101 in which a blue filter that transmits blue light is arranged. It is preferable to suppress a decrease in sensitivity to blue light with the shape shown in FIG. 3 or FIG. 6 that is not covered with the electrode part 124a of the charge storage part 124 on the photodiode 122.
  • FIG. 8 is a diagram illustrating an example of a schematic cross section of the solid-state imaging device 100 according to the embodiment. This figure shows a cross section taken along line VIII-VIII shown in FIG. 3 and FIG.
  • An insulating film 141 and an element isolation region 130 that isolates elements of the amplification transistor 127 and the charge storage unit 124 are provided on the semiconductor substrate 140.
  • the second photodiode 122 of the low sensitivity pixel 111 is provided in the semiconductor substrate 140.
  • a copper wiring 143 is connected to the electrode part 124 a of the charge storage part 124 through a contact 142. Copper wiring 143 transmits control pulse ⁇ CG as control line CG.
  • the charge storage unit 124 has a thickness Tox 1 of the insulating film 141 (that is, the gate insulating film) under the gate electrode 123 a of the second transfer transistor 123.
  • the insulating film 141 (for example, a gate insulating film when the charge storage portion 124 is a MOS capacitor) under the electrode portion 124a may be formed to have a small thickness Tox2.
  • the distance between the electrode portion 124a and the semiconductor substrate 140 becomes smaller, so that the capacitance value Cg of the charge storage portion 124 can be increased without increasing the area of the electrode portion 124a of the charge storage portion 124, and charge storage. It is possible to increase the amount.
  • the contact 142 is formed in the electrode portion 124a of the charge storage portion 124, a process of opening a hole in the insulating film 144 by etching in the insulating film 144 and filling the material of the contact 142, for example, tungsten W, is necessary.
  • a contamination source such as a metal diffuses from the contact 142 forming portion to the electrode portion 124 a of the charge storage portion 124, and the contamination source also propagates to the insulating film 141 and the semiconductor substrate 140 below the electrode portion 124 a of the charge storage portion 124. .
  • a defect may occur in the semiconductor substrate 140 that accumulates charges under the electrode portion 124 a of the charge accumulation portion 124.
  • the contact 142 is preferably formed on the gate electrode on the element isolation region 130.
  • the charge accumulation unit 124 accumulates charges in the semiconductor substrate 140 closer to the electrode unit 124a of the charge accumulation unit 124, the charges accumulate on the semiconductor substrate 140 below the Tox 2 where the insulating film 141 is thin.
  • the semiconductor substrate 140 below the element isolation region 130 is much thicker than the thickness Tox2 of the gate insulating film, so that charge is hardly stored. .
  • the contact 142 in the electrode portion 124a of the charge storage portion 124 on the element isolation region 130 noise that causes image quality deterioration such as dark current and white scratches due to defects can be suppressed.
  • the element isolation region 130 may be formed deeper than illustrated. If the semiconductor substrate 140 is made of silicon, for example, the refractive index of silicon at a wavelength of 400 to 1000 nm is 3.5 to 6.0. On the other hand, if the element isolation region 130 is formed of, for example, silicon oxide, the refractive index is 1.4 to 1.5, and light incident on the first photodiode 120 is reflected by the element isolation region 130, so Can be prevented from entering the pixel portion.
  • FIG. 9 is a diagram illustrating another example of a schematic cross section of the solid-state imaging device 100 according to the embodiment. This figure shows a cross section taken along the line IX-IX shown in FIG. It should be noted that the description of the same numbered parts as in FIG. 8 described above is omitted, and only the difference is described. The difference from FIG. 8 is that the thickness of the insulating film 141 below the electrode portion 124a of the charge storage portion 124 is the same as that of Tox1, and the shape of the electrode portion 124a of the charge storage portion 124.
  • the electrode part 124a of the charge storage part 124 is formed so as to cover the second photodiode 122, and the thickness Tgate1 of the electrode part 124a of the charge storage part 124 on the second photodiode 122 is a contact. It is characterized by being thinner than the thickness Tgate2 of the electrode part 124a of the charge storage part 124 to which 142 is connected. This is because by reducing the thickness Tgate1 of the electrode portion 124a of the charge storage portion 124 on the second photodiode 122, absorption of blue light by the electrode portion 124a of the charge storage portion 124 can be suppressed.
  • the thickness Tgate2 of the electrode portion 124a of the charge storage portion 124 to which the contact 142 is connected is set to be the same as that of the gate of another transistor, for example, the gate electrode 123a of the second transfer transistor 123. Compared with Tgate1, the thickness of the portion 124a can suppress propagation of a contamination source such as metal to the semiconductor substrate 140 when the contact 142 is formed.
  • FIG. 10 is a diagram illustrating a first example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment.
  • FIG. 2A shows a schematic cross section of the high-sensitivity pixel 110.
  • the high-sensitivity pixel 110 is formed on the semiconductor substrate 140, and includes a first photodiode 120, an insulating film 141, and a first transfer transistor.
  • the first photodiode 120 that accumulates electric charge for each pixel is configured in the imaging region serving as the light receiving surface in the semiconductor substrate 140, and further, the semiconductor is adjacent to the first photodiode 120.
  • a gate electrode 121a of the first transfer transistor 121 is formed on the substrate 140 as an example of a gate.
  • a signal reading unit that reads a signal charge generated or accumulated in the first photodiode 120 or a voltage corresponding to the signal charge is formed in the first FD unit 128.
  • the signal charge is transferred by applying a voltage to the gate electrode 121a of the transfer transistor 121.
  • the first photodiode 120 is covered, and an insulating film 144 made of, for example, silicon oxide, for example, silicon carbide (refractive index 1.7 to 1.9), or silicon nitride (refractive) is formed on the semiconductor substrate 140.
  • an insulating film 144 made of, for example, silicon oxide, for example, silicon carbide (refractive index 1.7 to 1.9), or silicon nitride (refractive) is formed on the semiconductor substrate 140.
  • a liner film 145 having a ratio of 1.9 to 2.1) and a liner film 147 are laminated to form an insulating film.
  • the copper wirings 143 and 146 are copper wirings formed in different metal wiring layers.
  • a barrier metal layer made of tantalum / tantalum nitride formed by a damascene process may be formed on the outer periphery of the copper wiring.
  • the liner films 145 and 147 are etch stop films at the time of forming vias and are films for preventing diffusion of copper constituting the metal wiring layer.
  • the wiring layer is embedded in the laminated insulating film.
  • Each of the copper wiring 143 and the copper wiring 146 may have a wiring structure formed integrally with the via portion in the opening from the bottom surface of the wiring groove to the lower layer wiring by, for example, a dual damascene process.
  • a high-refractive insulating film 148 having a refractive index higher than that of silicon oxide (refractive index: 1.4 to 1.5) is formed on the side wall and bottom surface of the recess.
  • the high refractive insulating film 148 is formed of a silicon nitride film (refractive index 1.9 to 2.0) or the like.
  • the high refractive insulating film 148 is narrow on the semiconductor substrate 140 side and wide on the microlens 151 side. That is, in the cross section shown in FIG.
  • the width of the high-refractive insulating film 148 decreases as it approaches the semiconductor substrate 140 side. At this time, if the angle between the bottom surface and the side wall surface of the high refractive insulating film 148 is ⁇ , the angle ⁇ is greater than 90 degrees.
  • the insulating film 144 serves as a cladding layer and the high refractive insulating film 148 serves as a core layer.
  • the insulating film 144 serves as a cladding layer and the high refractive insulating film 148 serves as a core layer.
  • it has a function as an optical waveguide leading to one photodiode 120.
  • a portion of the high-refractive insulating film 148 formed in a recess formed in the insulating film 144 above the first photoelectric conversion unit 120 is referred to as a first core layer 1480.
  • a portion of the insulating film 144 adjacent to the sidewall surface of the high refractive insulating film 148 (first core layer 1480) is used as a cladding layer, and the high refractive insulating film 148 (first core layer 1480) is An optical waveguide that guides light by reflection of incident light on the cladding layer is formed.
  • the color filter 149 selects light incident on the first photodiode 120 according to wavelength (for example, RGB color).
  • the color filter 149 is formed, for example, by mixing a pigment for each color into an organic material (for example, an acrylic resin). In this case, the refractive index of the color filter 149 is 1.5 to 1.7.
  • the color filter 149 is formed in an island shape (in a state of being formed individually corresponding to each pixel portion).
  • the microlens 151 focuses light on the first photodiode 120 in the pixel portion corresponding to light incident from above.
  • the microlens 151 is a convex lens that protrudes away from the semiconductor substrate 140.
  • FIG. 10B is a schematic cross-sectional view of the low-sensitivity pixel 111.
  • FIG. In addition, description is abbreviate
  • the low-sensitivity pixel 111 is reduced in size in the horizontal direction, and the second photodiode 122 of the low-sensitivity pixel 111 and a charge accumulation unit that accumulates signal charges from the second photodiode 122 (for example, a MOS capacitor) ) 124, the electrode portion 124 a of the charge storage portion 124, and the gate electrode 123 a of the second transfer transistor 123 that transfers to the second FD portion 129.
  • the second photodiode 122 for example, a MOS capacitor
  • a portion of the high-refractive insulating film 148 formed in a recess formed in the insulating film 144 above the second photoelectric conversion unit 122 is referred to as a second core layer 1481.
  • the second core layer 1481 forms an optical waveguide that guides light by reflection of incident light on the side wall surface adjacent to the insulating film 144.
  • the width of the bottom of the second core layer 1481 is D1
  • the distance between the electrode portion 124a of the charge storage portion 124 and the gate electrode 123a of the second transfer transistor 123 is D2
  • the relationship of D1 ⁇ D2 is established. is there.
  • the second core layer 1481 functions as an optical waveguide that guides the light that has passed through the color filter 149 to the second photodiode 122, and thus the light is collected with a width of D1. Therefore, it is possible to suppress the occurrence of vignetting caused by the light condensed to the width D1 by the optical waveguide hitting the gate electrode 123a of the second transfer transistor 123 and the electrode portion 124a of the charge storage portion 124.
  • the angle between the bottom surface and the side wall surface of the second core layer 1481 is ⁇
  • the angle ⁇ is larger than 90 degrees
  • the angle ⁇ is larger than the angle ⁇ in the first core layer 1480. It has become. Thereby, since light is condensed more, it is possible to suppress color mixing due to leakage of light into the adjacent pixel cell 101.
  • FIG. 11 is a diagram illustrating a relationship between the optical waveguide width and the light collection efficiency in the solid-state imaging device 100 according to the embodiment. This relationship is a result calculated by optical simulation.
  • the light collection efficiency is defined as the ratio of the intensity of light transmitted through the optical waveguide to the intensity of light irradiated onto the optical waveguide.
  • the light collection efficiency sharply decreases with the optical waveguide width being about 340 nm as a boundary. This is because if the width of the optical waveguide that guides light is equal to or smaller than the wavelength, the corresponding light cannot pass and the sensitivity is lowered.
  • the wavelength of light changes depending on the refractive index of the material that passes through, and the light wavelength when passing through the air (refractive index is 1.0) is ⁇ 1, and passes through the material of refractive index n.
  • the minimum width for passing the wavelength 600 to 650 nm of red light, which is a component on the long wavelength side, through the high refractive insulating film 148 is that the high refractive insulating film 148 is a silicon nitride film (refractive index 1.9 to 2.0).
  • the wavelength of red light is 300 to 340 nm, and the width of the optical waveguide needs to be at least 340 nm.
  • FIG. 12 is a diagram illustrating a second example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment.
  • FIG. 6A shows a schematic cross-sectional view of the high-sensitivity pixel 110, which is the same as FIG. 10A described above, and is shown as a comparison target in FIG.
  • FIG. 5B shows a schematic cross-sectional view of the low-sensitivity pixel 111, the description of the portions having the same numbers as those in FIG. The difference from FIG.
  • the bottom surface of the high refractive insulating film 148 is shifted away from the semiconductor substrate 140 more than the bottom surface of the high refractive insulating film 148 of the high sensitivity pixel 110 and is closest to the semiconductor substrate 140. It is a point located above the copper wiring 143 and the liner film 145. This is because the light condensing efficiency can be changed by changing the position of the bottom surface of the high refractive insulating film 148. For example, by shifting the position of the bottom side of the high refractive insulating film 148 to the microlens 151 side, the light condensing efficiency is lowered, and the amount of light irradiated to the second photodiode 122 is reduced. Thereby, the sensitivity of the low-sensitivity pixel 111 is lowered, the slope of the graph in FIG. 5 can be made gentle, and the range of the subject illuminance L3 that can be imaged can be adjusted.
  • the insulating film 144 and liner films 145 and 147 formed by stacking are removed by etching.
  • the liner film 145 of the low sensitivity pixel 111 as an etch stop film, variation in the distance D3 between the bottom surface of the high refractive insulating film 148 of the low sensitivity pixel 111 and the semiconductor substrate 140 due to the variation in etching is suppressed. Can do. Thereby, the sensitivity variation of the low sensitivity pixel 111 can be reduced.
  • FIG. 13 is a diagram illustrating a third example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment.
  • (A) of the figure shows a schematic cross-sectional view of the high-sensitivity pixel 110, and description of the portions having the same numbers as those in FIG. 10 (a) is omitted, and only the differences are described.
  • 10A is different from FIG. 10A in that there is a recess formed in an interlayer insulating film (second interlayer insulating film) above the insulating film 144 (first interlayer insulating film).
  • a partition wall 152 is provided by forming the filter 149 and the first transmission filter 150.
  • the color filter 149 is formed so that the semiconductor substrate 140 side is narrow and the microlens 151 side is wide in the cross section. That is, the bottom side on the semiconductor substrate 140 side has a trapezoidal shape with a smaller width than the upper side on the microlens 151 side.
  • the partition wall 152 prevents light incident from the microlens 151 or the color filter 149 from entering the adjacent pixel portion.
  • the partition wall 152 has a lattice shape (mesh shape) in which a portion corresponding to the color filter 149 is opened in plan view.
  • each partition 152 seems to be independent.
  • the sectional shape of the partition wall 152 is trapezoidal as a whole.
  • the trapezoidal shape here is a shape in which the bottom side on the semiconductor substrate 140 side is longer than the upper side on the microlens 151 side. That is, the width becomes narrower as the distance from the semiconductor substrate 140 increases.
  • the partition wall 152 is made of a material having a lower refractive index than the material constituting the color filter 149, for example, a silicon oxide film (TEOS (TetraTeEthyl Ortho Silicate) film, refractive index 1.4 to 1.5). For this reason, the light traveling in the oblique direction in the color filter 149 is reflected when it reaches the surface of the partition wall 152. At this time, since the partition wall 152 has a shape that becomes narrower as the distance from the semiconductor substrate 140 increases, the reflected light travels toward the first photodiode 120 side.
  • TEOS TetraTeEthyl Ortho Silicate
  • FIG. 13B shows a schematic cross section of the low-sensitivity pixel 111.
  • a second transmission filter 153 is provided above the color filter 149, and a partition wall is formed on the layers of the color filter 149, the second transmission filter 153, and the first transmission filter 150. 152 is provided.
  • the second transmission filter 153 is a gray filter that transmits light with a lower transmittance than that of the first transmission filter 150, and is a material whose light transmittance decreases as the thickness of the film increases. .
  • the refractive index of the second transmission filter 153 is 1.5 to 1.7, and in the wavelength region of 400 nm to 1000 nm, the transmittance is in the range of 5 to 20% compared to the transparent filter.
  • the partition wall 152 is made of a material having a lower refractive index than the material constituting the second transmission filter 153, for example, a silicon oxide film (TEOS (TetraTeEthyl Ortho Silicate), refractive index 1.4 to 1.5). .
  • TEOS TetraTeEthyl Ortho Silicate
  • the upper part of the recess formed in the interlayer insulating film that is, the upper part of the partition wall 152 is arranged at a position higher than the upper part of the color filter 149, and the upper part of the second transmission filter 153 is higher than the upper part of the partition wall 152.
  • the sensitivity of the low sensitivity pixel 111 can be lowered. Thereby, the subject illuminance L3 that can be captured by the low-sensitivity pixel 111 can be increased. This is an effective means for reducing the sensitivity of the low-sensitivity pixel 111 because the low-sensitivity pixel 111 always performs an exposure operation, and the amount of signal charge accumulated in the second photodiode 122 cannot be adjusted by the electron SHT. is there.
  • the solid-state imaging device 100 has a plurality of pixel cells 101 arranged on a matrix.
  • Each of the plurality of pixel cells 101 has a first photoelectric conversion unit 120, a first FD unit 128, and a signal charge photoelectrically converted by the first photoelectric conversion unit 120 formed on the semiconductor substrate 140.
  • the first transfer transistor 121 that transfers to one FD unit 128, the second photoelectric conversion unit 122 that has a light receiving area smaller than that of the first photoelectric conversion unit 120, and the second photoelectric conversion unit 122 performs photoelectric conversion.
  • a charge accumulation unit 124 that accumulates signal charges, a second FD unit 129, and a second transfer transistor 123 that transfers signal charges accumulated in the charge accumulation unit 124 to the second FD unit 129 are provided.
  • the charge storage unit 124 includes an insulating film 141 on the semiconductor substrate 140 and an electrode unit 124 a formed on the insulating film 141.
  • the charge storage unit 124 is added to the second photoelectric conversion unit 122 having a light receiving area smaller than that of the first photoelectric conversion unit 120.
  • the second photoelectric conversion unit 122 can substantially increase the saturation charge amount while having lower sensitivity. Therefore, the second photoelectric conversion unit 122 can configure a low sensitivity pixel that can realize a wide dynamic range.
  • an image in which the flicker phenomenon of the LED light source is suppressed can be obtained by always exposing the low-sensitivity pixels.
  • the high-sensitivity pixel 110 that secures the saturation charge amount can be configured, and thus an image that secures the dynamic range. Can be obtained.
  • a dynamic range in which the flicker phenomenon is suppressed is secured by combining the image in which the LED photoelectric flicker phenomenon is suppressed in the low sensitivity pixel 111 including the first photoelectric conversion unit 120 and the captured image of the high sensitivity pixel 110. An image can be obtained.
  • the electrode part 124a may be configured not to cover the second photoelectric conversion part 122 in a plan view.
  • the electrode part 124a may be configured to cover at least a part of the second photoelectric conversion part 122 in plan view.
  • the area of the electrode part 124a of the charge storage part 124 can be increased, and the charge storage amount can be easily increased.
  • the above configuration is applied to the pixel cell 101 in which a filter that transmits green light is disposed or the pixel cell 101 in which a filter that transmits red light is disposed.
  • the electrode portion 124 a may not be covered with the second photodiode 122 without being applied to the pixel cell 101 in which a filter that transmits blue light is arranged.
  • the electrode portion 124a includes first, second, and third electrode portions 124a1 to 124a3 that form a U-shape, and the first electrode portion 124a1 has the second photoelectric conversion portion 122 in plan view.
  • the second electrode portion 124a2 covers a part of the outer periphery of the second photoelectric conversion unit 122 in plan view
  • the third electrode portion 124a3 is the outer periphery of the second photoelectric conversion unit 122 in plan view. You may cover other part of.
  • the second photoelectric conversion unit 122 may be disposed between the charge storage unit 124 and the second transfer transistor 123 in a plan view.
  • the shape of the second photodiode 122 and the gate electrode 123a of the second transfer transistor is maintained, and the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics) are affected. This can be suppressed.
  • the electrode part 124a may have a convex shape in a direction opposite to the direction in which the second transfer transistor 123 is arranged in a plan view.
  • the shape of the second photodiode 122 and the gate electrode 123a of the second transfer transistor is maintained, and the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics) are affected. Therefore, the charge accumulation amount (saturation charge amount) of the charge accumulation unit 124 can be easily increased.
  • the first photoelectric conversion unit 120 and the second photoelectric conversion unit 122 are adjacent to each other in an oblique direction with respect to the row direction, and the first photoelectric conversion unit 120 and the first photoelectric conversion unit 120 in the same pixel cell.
  • a color filter 149 having the same spectral characteristics is stacked on each of the two photoelectric conversion units 122, and the transfer direction in which the first transfer transistor 121 transfers signal charges in plan view is the second transfer transistor 123. It may be the same as the transfer direction in which signal charges are transferred.
  • the characteristic difference due to transfer variation includes, for example, an afterimage characteristic in which signal charges remain in the first photodiode 120 and / or the second photodiode 122 during transfer.
  • the pixel cell 101 includes a switch transistor 125 that electrically connects the first FD 128 and the second FD 129, and an amplification transistor 127 having a gate electrode that is electrically connected to the first FD 128. It may be.
  • one amplification transistor 127 can be shared by the first photoelectric conversion unit 120 and the second photodiode 122.
  • the pixel cell 101 is formed in a recess formed in the insulating film 144 above the insulating film 144 formed on the semiconductor substrate 140 and the first photoelectric conversion unit 120, and is higher than the insulating film 144.
  • a first core layer 1480 having a refractive index and a second core layer having a refractive index higher than that of the insulating film 144 and formed in a recess formed in the insulating film 144 above the second photoelectric conversion unit 122. 1481 may be provided.
  • the first core layer 1480 and the second core layer 1481 can be waveguides. That is, light incident on the first core layer 1480 can be reflected on the boundary surface between the first core layer 1480 and the insulating film 144 and guided to the first photoelectric conversion unit 120. Light incident on the second core layer 1481 can be reflected by the boundary surface between the second core layer 1481 and the insulating film 144 and guided to the second photoelectric conversion unit 122. As a result, the light collection efficiency of the first photoelectric conversion unit 120 and the second photoelectric conversion unit 122 can be increased, and color mixing due to leakage of light to adjacent pixel cells can be reduced.
  • the angle formed between the bottom surface of the first core layer 1480 and the side wall surface is a first angle ⁇ larger than 90 degrees
  • the angle formed between the bottom surface of the second core layer 1481 and the side wall surface is 90 °.
  • the second angle ⁇ is larger than the second angle ⁇
  • the second angle ⁇ may be larger than the first angle ⁇ .
  • the second transfer transistor 123 includes a gate electrode 123a, and the distance D2 between the electrode portion 124a and the gate electrode 123a of the second transfer transistor 123 is the width D1 of the bottom surface of the second core layer 1481. May be longer.
  • the second core layer 1481 has a function as an optical waveguide for guiding the light that has passed through the color filter 149 to the second photodiode 122, the light is condensed with a width of D1. Since D2> D1, it is possible to suppress the occurrence of vignetting caused by the light condensed to the width D1 by the optical waveguide hitting the gate electrode 123a of the transfer transistor 123 and the electrode portion 124a of the charge storage unit 124.
  • the second core layer 1481 may be made of silicon nitride, and the width D1 of the bottom surface of the second core layer 1481 may be 340 nm or more.
  • the minimum width for passing the wavelength of red light of 600 to 650 nm through the high refractive insulating film 148 is such that the high refractive insulating film 148 is formed of a silicon nitride film (refractive index 1.9 to 2.0).
  • the wavelength of red light is 300 to 340 nm, and the width of the optical waveguide may be at least 340 nm.
  • the distance D3 between the conductor substrate 140 and the bottom surface of the second core layer 1481 is larger than the distance between the semiconductor substrate 140 and the bottom surface of the first core layer 1480, and the bottom surface of the second core layer 1481 is
  • the metal wiring layer may be positioned on the metal wiring layer closest to the semiconductor substrate 140 among the plurality of metal wiring layers.
  • the bottom surface of the second core layer 1481 and the semiconductor due to etching variations Variation in the distance D3 from the substrate 140 can be suppressed. Thereby, the sensitivity variation of the 2nd photoelectric conversion part 122 can be reduced.
  • the first transfer transistor 121 has a first gate electrode 121 a
  • the second transfer transistor 123 has a second gate electrode 123 a
  • an electrode portion on the second photoelectric conversion unit 122 The film thickness Tgate1 of 124a may be thinner than the film thickness Tgate2 of the first gate electrode and may be thinner than the film thickness Tgate2 of the second gate electrode 123a.
  • the absorption of blue light by the electrode part 124a can be suppressed.
  • the pixel cell 101 includes a first wiring (for example, a copper wiring 143) that transmits a control pulse to the electrode portion 124a, and a contact 142 that connects the first wiring and the electrode portion 124a.
  • a first wiring for example, a copper wiring 143
  • a contact 142 that connects the first wiring and the electrode portion 124a.
  • the thickness Tgate1 of the portion on the second photoelectric conversion unit 122 may be smaller than the thickness Tgate2 of the portion to which the contact 142 is connected.
  • the thickness Tgate2 of the electrode part 124a to which the contact 142 is connected is set to the same thickness as the gate of another transistor, for example, the gate electrode 123a of the transfer transistor, the thickness of the electrode part 124a.
  • the electrode part 124a may have a contact 142 that covers a part of the element isolation region formed in the semiconductor substrate 140 and contacts a part of the electrode part 124a that covers the element isolation region.
  • the film thickness Tox2 of the insulating film 141 under the electrode portion 124a may be smaller than the film thickness Tox1 of the gate insulating film of the second transfer transistor 123.
  • the maximum capacity of the charge storage unit 124 can be increased without increasing the area of the electrode part 124a of the charge storage unit 124, and the charge storage amount can be increased.
  • the pixel cell 101 transmits the first transmission filter 150 that transmits incident light incident on the first photoelectric conversion unit 120 and the incident light incident on the second photoelectric conversion unit 122.
  • a second transmission filter 153, and the second transmission filter 153 may have a transmittance lower than that of the first transmission filter 150.
  • the sensitivity of the low-sensitivity pixel 111 can be reduced by disposing the second transmission filter 153.
  • the subject illuminance L3 that can be captured by the low-sensitivity pixel 111 can be increased.
  • This is effective as an adjusting means for lowering the sensitivity of the low-sensitivity pixel 111 because the low-sensitivity pixel 111 always performs an exposure operation and the signal charge amount stored in the second photodiode 122 is not adjusted by the electron SHT.
  • the pixel cell 101 may include a partition wall 152 surrounding the first transmission filter 150 and the second transmission filter 153 or the color filter 149 in a plan view.
  • the light traveling in the oblique direction in the first transmission filter 150 and the second transmission filter 153 or the color filter 149 is reflected when it reaches the surface of the partition wall 152.
  • the reflected light travels toward the first photoelectric conversion unit 120 or the second photoelectric conversion unit 122.
  • the pixel cell 101 may include a partition wall 152 surrounding the first transmission filter 150, the second transmission filter 153, and the color filter 149 in a plan view.
  • the light traveling in the oblique direction in the first transmission filter 150, the second transmission filter 153, and the color filter 149 is reflected when reaching the surface of the partition wall 152.
  • the reflected light travels toward the first photoelectric conversion unit 120 or the second photoelectric conversion unit 122.
  • the present disclosure is effective regardless of the pixel structure, and can be used for, for example, a back-illuminated type, a stacked type solid-state imaging device, and the like.
  • the present disclosure can be used for a solid-state imaging device, and is suitable for, for example, a video camera or a digital camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a solid-state imaging device (100) having a plurality of pixel cells (101), wherein each of the plurality of pixel cells (101) includes: a first photoelectric conversion portion (120); a first floating diffusion portion (128); a first transfer transistor (121); a second photoelectric conversion portion (122) having a light receiving area smaller than that of the first photoelectric conversion portion (120); a charge accumulation portion (124) for accumulating a signal charge photoelectrically converted by the second photoelectric conversion portion (122); a second floating diffusion portion (129); and a second transfer transistor (123) for transferring the signal charge accumulated in the charge accumulation portion (124) to the second floating diffusion portion (129). The charge accumulation portion (124) has an insulating film (141) on a semiconductor substrate (140), and an electrode portion (124a) formed on the insulating film (141).

Description

固体撮像装置Solid-state imaging device
 本開示は、行列上に配置された複数の画素セルを有する固体撮像装置に関する。 The present disclosure relates to a solid-state imaging device having a plurality of pixel cells arranged on a matrix.
 近年、固体撮像装置を内蔵したデジタルカメラ等が広く普及している。 In recent years, digital cameras with a built-in solid-state imaging device have become widespread.
 図15は、特許文献1に記載された固体撮像装置の単位画素の構成を示す断面図である。この固体撮像装置は、半導体基板30上に一定ピッチで2次元配置された複数の単位画素を有する。各単位画素は、図15に示すように、入射光を光電変換し蓄積するための第1のフォトダイオード31aと、入射光を光電変換し蓄積するための第1のフォトダイオード31aよりも飽和電荷量が大きい第2のフォトダイオード31bと、第1のフォトダイオード31aに光を集光するための第1のマイクロレンズ33aと、第2のフォトダイオード31bに光を集光するための第1のマイクロレンズ33aよりも開口の小さい第2のマイクロレンズ33bとを備える。第1のフォトダイオード31aは高感度画素に相当し、第2のフォトダイオード31bは低感度画素に相当する。 FIG. 15 is a cross-sectional view illustrating a configuration of a unit pixel of the solid-state imaging device described in Patent Document 1. This solid-state imaging device has a plurality of unit pixels that are two-dimensionally arranged on the semiconductor substrate 30 at a constant pitch. As shown in FIG. 15, each unit pixel has a saturated charge more than the first photodiode 31a for photoelectrically converting and storing incident light and the first photodiode 31a for photoelectrically converting and storing incident light. A second photodiode 31b having a large amount, a first microlens 33a for condensing light on the first photodiode 31a, and a first for condensing light on the second photodiode 31b. And a second micro lens 33b having a smaller opening than the micro lens 33a. The first photodiode 31a corresponds to a high sensitivity pixel, and the second photodiode 31b corresponds to a low sensitivity pixel.
 このように構成された固体撮像装置は、信号電荷が少ない低照度時は、第1のフォトダイオード31aと第2のフォトダイオード31bの信号の両方を読み出し、信号電荷が多い高照度時は第2のフォトダイオード31bの信号のみを読み出すようにしている。これにより、ダイナミックレンジの拡大を図っている。 The solid-state imaging device configured in this manner reads both the signals of the first photodiode 31a and the second photodiode 31b when the signal charge is low and the illuminance is low, and outputs the second signal when the signal charge is high and the illuminance is high. Only the signal of the photodiode 31b is read out. As a result, the dynamic range is expanded.
特開2011-188148号公報JP 2011-188148 A
 ところで近年、LED(Light Emitting Diode)光源の技術進歩により、LED光源が世の中に普及している。LED光源の光量の調整方法として光源を周期的に点灯と消灯を繰り返す方法がある。 By the way, in recent years, LED light sources have become popular in the world due to technological progress of LED (Light Emitting Diode) light sources. As a method for adjusting the light amount of the LED light source, there is a method of periodically turning on and off the light source.
 図14は、LED光源の点滅タイミングと、固体撮像装置のフォトダイオードが光を受光する露光タイミングとを示すタイムチャート図である。ここでは、(a)LED光源が例えば1/100sの周期で点灯と消灯を繰り返している。また、(b)固体撮像装置のフレーム周期を例えば1/30sとしている。固体撮像装置の動作として(c)電子SHT(つまり電子シャッター)動作ありの撮像と、(d)電子SHT動作なし(常時露光動作)の撮像とを示している。電子SHT動作とは、フォトダイオードの信号電荷をクリアすることをいう。(c)および(d)において、縦軸は、先頭行から末尾行までの走査行を示している。(c)電子SHT(シャッター)動作ありの撮像では、先頭行から末尾行まで行毎に順次、電子SHT動作(破線のタイミング)と信号読出し動作(太い実線のタイミング)を繰り返すローリングシャッター動作を示している。 FIG. 14 is a time chart showing the blinking timing of the LED light source and the exposure timing at which the photodiode of the solid-state imaging device receives light. Here, (a) the LED light source is repeatedly turned on and off at a period of, for example, 1/100 s. Further, (b) the frame period of the solid-state imaging device is set to 1/30 s, for example. As operations of the solid-state imaging device, (c) imaging with electronic SHT (that is, electronic shutter) operation and (d) imaging without electronic SHT operation (always exposure operation) are shown. The electronic SHT operation refers to clearing the signal charge of the photodiode. In (c) and (d), the vertical axis indicates the scanning line from the first line to the last line. (C) In imaging with an electronic SHT (shutter) operation, a rolling shutter operation in which an electronic SHT operation (dashed timing) and a signal readout operation (thick solid line timing) are sequentially repeated for each row from the first row to the last row is shown. ing.
 まず、(c)電子SHT動作あり撮像について、ハッチングされた部分の横幅、つまり電子SHT動作(破線)から信号読出し動作(太い実線)までの時間が露光期間である。この間にLED光源が点灯するとフォトダイオードにて光電変換された信号電荷が蓄積される。同図では、6フレームのうちバツ印を付した2フレーム目と5フレーム目では、露光期間にLED光源が消灯しており、暗く撮像され、またはLED光源が光らずに撮像される。一方、丸印を付した1,3,4,6フレームでは、露光期間にLED光源が点灯しており、明るく撮像され、またはLED光源が光って撮像される。これにより複数フレーム撮像を繰り返すと、固体撮像装置は暗いフレームと明るいフレームが発生し、フレームを連続表示させると撮像画像のLED光源部にて点灯と消灯を繰り返すフリッカー現象(以下、LEDフリッカー現象と呼ぶ場合がある)が発生する。 First, for (c) imaging with an electronic SHT operation, the width of the hatched portion, that is, the time from the electronic SHT operation (dashed line) to the signal readout operation (thick solid line) is the exposure period. When the LED light source is turned on during this period, the signal charge photoelectrically converted by the photodiode is accumulated. In the figure, in the second and fifth frames marked with a cross among the six frames, the LED light source is turned off during the exposure period, and the image is taken darkly or the LED light source is imaged without being illuminated. On the other hand, in the 1st, 3rd, 4th, and 6th frames marked with a circle, the LED light source is lit during the exposure period, and the bright image is taken, or the LED light source is illuminated and taken. As a result, when multiple frame imaging is repeated, the solid-state imaging device generates a dark frame and a bright frame. When the frames are continuously displayed, the flicker phenomenon (hereinafter referred to as the LED flicker phenomenon) is repeatedly turned on and off at the LED light source portion of the captured image. May occur).
 このLEDフリッカー現象を改善させる一般的な方法として、(d)電子SHT動作なし(常時露光動作)の撮像がある。すなわち、固体撮像装置を常時露光とすることで、フォトダイオードはLED光源の点灯タイミングを逃すことなく受光し、丸印を付した1~6フレーム目(全フレーム)では、露光期間にLED光源が点灯しており、明るく撮像され、またはLED光源が光って撮像される。こうして(d)電子SHT動作なし(常時露光動作)では、撮像画像のLED光源におけるフリッカー現象の発生を抑制することが可能である。 As a general method for improving the LED flicker phenomenon, there is (d) imaging without electronic SHT operation (always exposure operation). In other words, by always exposing the solid-state imaging device, the photodiode receives light without missing the lighting timing of the LED light source, and in the first to sixth frames (all frames) marked with a circle, the LED light source is not exposed during the exposure period. Illuminated and brightly imaged, or LED light source is illuminated and imaged. Thus, (d) without the electronic SHT operation (always exposure operation), it is possible to suppress the occurrence of the flicker phenomenon in the LED light source of the captured image.
 しかしながら、この一般的な方法を従来の開示技術(特許文献1)の低感度画素で実施すると、常時露光動作によって容易にフォトダイオードが飽和してしまい、撮像画像を得ることができなくなる課題が発生する。更に、撮影シーンに応じた最適な露光期間を設定することができなくなるため、低感度画素より面積の小さいフォトダイオードを持つ高感度画素のみで画像を生成することとなり、狭いダイナミックレンジの画像しか得られない課題が発生する。 However, when this general method is performed with the low-sensitivity pixel of the conventional disclosed technique (Patent Document 1), the photodiode is easily saturated by the constant exposure operation, and there is a problem that a captured image cannot be obtained. To do. Furthermore, since it becomes impossible to set an optimal exposure period according to the shooting scene, an image is generated only with high-sensitivity pixels having photodiodes having a smaller area than low-sensitivity pixels, and only images with a narrow dynamic range are obtained. The problem that cannot be done occurs.
 そこで、本開示の目的は、高感度画素と低感度画素の2種の画素で単位画素を形成した構成において、フリッカー現象を抑制した画像を得る固体撮像装置を提供することにある。 Therefore, an object of the present disclosure is to provide a solid-state imaging device that obtains an image in which a flicker phenomenon is suppressed in a configuration in which unit pixels are formed by two types of pixels, a high-sensitivity pixel and a low-sensitivity pixel.
 上記課題を解決するため本開示における固体撮像装置は、行列上に配置された複数の画素セルを有する固体撮像装置であって、前記複数の画素セルのそれぞれは、半導体基板上に形成された第1の光電変換部と、第1のフローティングディフュージョン部と、前記第1の光電変換部によって光電変換された信号電荷を前記第1のフローティングディフュージョン部に転送する第1の転送トランジスタと、前記第1の光電変換部よりも受光面積が小さい第2の光電変換部と、前記第2の光電変換部によって光電変換された信号電荷を蓄積する電荷蓄積部と、第2のフローティングディフュージョン部と、前記電荷蓄積部に蓄積された信号電荷を前記第2のフローティングディフュージョン部に転送する第2の転送トランジスタとを備え、前記電荷蓄積部は、前記半導体基板上の絶縁膜と、前記絶縁膜上に形成した電極部とを有する。 In order to solve the above problem, a solid-state imaging device according to the present disclosure is a solid-state imaging device having a plurality of pixel cells arranged on a matrix, and each of the plurality of pixel cells is formed on a semiconductor substrate. One photoelectric conversion unit, a first floating diffusion unit, a first transfer transistor that transfers a signal charge photoelectrically converted by the first photoelectric conversion unit to the first floating diffusion unit, and the first A second photoelectric conversion unit having a light receiving area smaller than that of the photoelectric conversion unit, a charge storage unit that stores signal charges photoelectrically converted by the second photoelectric conversion unit, a second floating diffusion unit, and the charge A second transfer transistor for transferring the signal charge stored in the storage unit to the second floating diffusion unit, Load storage unit includes an insulating film on the semiconductor substrate, and an electrode portion formed on the insulating film.
 本開示によれば、高感度画素と低感度画素の2種の画素で単位画素を形成した構成において、フリッカー現象を抑制した画像を得ることができる。 According to the present disclosure, an image in which the flicker phenomenon is suppressed can be obtained in a configuration in which a unit pixel is formed by two types of pixels, a high sensitivity pixel and a low sensitivity pixel.
 前記第1の光電変換部より受光面積が小さい前記第2の光電変換部に電荷蓄積部を有することで、より感度が小さい光電変換部でありつつ、飽和電荷量を大きくすることができるため、広ダイナミックレンジを実現できる低感度画素を得ることができる。ここで、低感度画素を常時露光動作することで、LED光源のフリッカー現象を抑制した画像を得ることができる。また、前記第1の光電変換部の受光面積が前記第2の光電変換部よりも大きくすることで飽和電荷量を確保した高感度画素を構成することができるため、ダイナミックレンジを確保した画像を得ることができる。つまり、第2の光電変換部を含む低感度画素でLED光源のフリッカー現象を抑制した画像と、高感度画素の撮影画像を合成することで、フリッカー現象を抑制したダイナミックレンジを確保した画像を得ることができる。 Since the second photoelectric conversion unit having a light receiving area smaller than that of the first photoelectric conversion unit has a charge storage unit, the saturation charge amount can be increased while the photoelectric conversion unit has a lower sensitivity. A low-sensitivity pixel that can realize a wide dynamic range can be obtained. Here, an image in which the flicker phenomenon of the LED light source is suppressed can be obtained by always exposing the low-sensitivity pixels. In addition, since the light receiving area of the first photoelectric conversion unit is larger than that of the second photoelectric conversion unit, a high-sensitivity pixel that secures a saturated charge amount can be configured. Obtainable. That is, by combining the image in which the flicker phenomenon of the LED light source is suppressed with the low sensitivity pixel including the second photoelectric conversion unit and the captured image of the high sensitivity pixel, an image having a dynamic range in which the flicker phenomenon is suppressed is obtained. be able to.
 つまり、1つの固体撮像装置でパルス光源によるフリッカー発生を抑制した画像信号を生成することができる。 That is, it is possible to generate an image signal in which flicker generation by a pulse light source is suppressed with one solid-state imaging device.
図1は、実施形態に係る固体撮像装置の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device according to the embodiment. 図2は、実施形態に係る固体撮像装置において、画素セルの回路構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a circuit configuration of a pixel cell in the solid-state imaging device according to the embodiment. 図3は、実施形態に係る固体撮像装置において、画素レイアウト構成の第一の例を示す図である。FIG. 3 is a diagram illustrating a first example of a pixel layout configuration in the solid-state imaging device according to the embodiment. 図4は、実施形態に係る固体撮像装置において、(a)リセット動作後および(b)電荷転送時における低感度画素の断面と半導体基板の断面とポテンシャル(電位)とを示す模式図である。FIG. 4 is a schematic diagram illustrating a cross section of a low-sensitivity pixel, a cross section of a semiconductor substrate, and a potential (potential) after (a) a reset operation and (b) during charge transfer in the solid-state imaging device according to the embodiment. 図5は、実施形態に係る固体撮像装置において、高感度画素と低感度画素の被写体照度と信号電荷量との関係を示す図である。FIG. 5 is a diagram illustrating a relationship between subject illuminance and signal charge amount of high-sensitivity pixels and low-sensitivity pixels in the solid-state imaging device according to the embodiment. 図6は、実施形態に係る固体撮像装置において、画素レイアウト構成の第二の例を示す図である。FIG. 6 is a diagram illustrating a second example of the pixel layout configuration in the solid-state imaging device according to the embodiment. 図7は、実施形態に係る固体撮像装置において、画素レイアウト構成の第三の例を示す図である。FIG. 7 is a diagram illustrating a third example of the pixel layout configuration in the solid-state imaging device according to the embodiment. 図8は、実施形態に係る固体撮像装置の模式断面の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic cross section of the solid-state imaging device according to the embodiment. 図9は、実施形態に係る固体撮像装置の模式断面の他の一例を示す図である。FIG. 9 is a diagram illustrating another example of the schematic cross section of the solid-state imaging device according to the embodiment. 図10は、実施形態に係る固体撮像装置において、(a)高感度画素および(b)低感度画素の模式断面の第一の例を示す図である。FIG. 10 is a diagram illustrating a first example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment. 図11は、実施形態に係る固体撮像装置において、光導波路幅と集光効率の関係を示す図である。FIG. 11 is a diagram illustrating a relationship between the optical waveguide width and the light collection efficiency in the solid-state imaging device according to the embodiment. 図12は、実施形態に係る固体撮像装置において、(a)高感度画素および(b)低感度画素の模式断面の第二の例を示す図である。FIG. 12 is a diagram illustrating a second example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment. 図13は、実施形態に係る固体撮像装置において、(a)高感度画素および(b)低感度画素の模式断面の第三の例を示す図である。FIG. 13 is a diagram illustrating a third example of a schematic cross section of (a) a high-sensitivity pixel and (b) a low-sensitivity pixel in the solid-state imaging device according to the embodiment. 図14は、LED光源の点滅タイミングと、固体撮像装置のフォトダイオードが光を受光する露光タイミングとを示すタイムチャート図である。FIG. 14 is a time chart showing the blinking timing of the LED light source and the exposure timing at which the photodiode of the solid-state imaging device receives light. 図15は、従来技術の固体撮像装置の構成を示す断面図である。FIG. 15 is a cross-sectional view showing a configuration of a conventional solid-state imaging device.
 以下、本開示の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、駆動タイミング等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうちの、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present disclosure. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, drive timings, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. Also, the drawings are not necessarily shown strictly.
 また、以下で説明する実施の形態において、高感度画素に対応する構成要素に第1を付し、低感度画素に対応する構成要素に第2を付する場合がある。 In the embodiment described below, a component corresponding to a high-sensitivity pixel may be given a first, and a component corresponding to a low-sensitivity pixel may be given a second.
 また、本開示によるLEDフリッカー現象の解決(効果)は、以下に説明する実施の形態で示すように、パルス光源であるLED(LED光源、発光ダイオード、発光ダイオード光源)に限定されるものではなく、その他のパルス光源(一例として、LD(LD光源、レーザーダイオード、レーザーダイオード光源)、また具体的なものとして、LED光源やLD光源などを搭載した信号機、LED光源やLD光源などをヘッドライド、ストップランプなどに用いた輸送機器(一例として、自動車))に対しても同様の効果を得ることが出来る。但し、本開示の理解を容易とするため、本実施の形態では、LED以外のパルス光源により生じるフリッカー現象もLEDフリッカー現象と呼ぶ。 Further, the solution (effect) of the LED flicker phenomenon according to the present disclosure is not limited to the LED (LED light source, light emitting diode, light emitting diode light source) that is a pulse light source, as shown in the embodiments described below. Other pulse light sources (for example, LD (LD light source, laser diode, laser diode light source), and as specific examples, traffic lights equipped with LED light sources, LD light sources, LED light sources, LD light sources, etc., head rides, The same effect can be obtained for transportation equipment (for example, an automobile) used for a stop lamp or the like. However, in order to facilitate understanding of the present disclosure, a flicker phenomenon caused by a pulse light source other than an LED is also referred to as an LED flicker phenomenon in the present embodiment.
 以下、各実施形態に係る固体撮像装置について、MOSイメージセンサ(CMOSイメージセンサ)を例として図面を参照しながら説明する。 Hereinafter, the solid-state imaging device according to each embodiment will be described using a MOS image sensor (CMOS image sensor) as an example with reference to the drawings.
 図1は、実施形態に係る固体撮像装置100の構成例を示すブロック図である。図1に示すように、本実施形態に係る固体撮像装置100は、画素アレイ部102、ドライバ回路103、垂直走査回路104、垂直信号線VL、定電流源回路105、カラム読出し回路106、水平走査回路107を備える。 FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device 100 according to the embodiment. As shown in FIG. 1, the solid-state imaging device 100 according to the present embodiment includes a pixel array unit 102, a driver circuit 103, a vertical scanning circuit 104, a vertical signal line VL, a constant current source circuit 105, a column readout circuit 106, a horizontal scanning. A circuit 107 is provided.
 画素アレイ部102は、光電変換を行う画素セル(単位セル、または単位画素とも呼ばれる)101が行列状に多数配置されてなる。 The pixel array unit 102 includes a large number of pixel cells (also referred to as unit cells or unit pixels) 101 that perform photoelectric conversion arranged in a matrix.
 ドライバ回路103は、画素アレイ部102を駆動する各種制御信号を、垂直走査回路104によって走査される行毎に出力する。 The driver circuit 103 outputs various control signals for driving the pixel array unit 102 for each row scanned by the vertical scanning circuit 104.
 垂直走査回路104は、画素アレイ部102を画素セル101の行単位に走査する。 The vertical scanning circuit 104 scans the pixel array unit 102 in units of rows of the pixel cells 101.
 垂直信号線VLは、画素セル101の列毎に設けられ、画素セル101の信号をカラム読出し回路106に伝達する。垂直信号線VLには定電流源回路105と、カラム読出し回路106とが接続されている。 The vertical signal line VL is provided for each column of the pixel cells 101 and transmits a signal of the pixel cell 101 to the column readout circuit 106. A constant current source circuit 105 and a column readout circuit 106 are connected to the vertical signal line VL.
 定電流源回路105は、列毎の垂直信号線VLに接続された、列毎の定電流源を有する。定電流源は画素セル101内の増幅トランジスタと対になってソースフォロア回路を構成する。 The constant current source circuit 105 has a constant current source for each column connected to the vertical signal line VL for each column. The constant current source is paired with the amplification transistor in the pixel cell 101 to form a source follower circuit.
 カラム読出し回路106は、列毎に設けられた、ノイズキャンセラ(CDS:Correlated Double Sampling)回路およびアナログデジタル変換(ADC:Analog to Digital Converter)回路を有する。ノイズキャンセラ(CDS)回路は、対応する列から2つ画素信号(リセットレベルと信号レベル)を受け且つ2つの画素信号の差分をとる。アナログデジタル変換回路は、CDS回路からの画素信号(差分)を受けアナログデータからデジタルデータに変換する。 The column readout circuit 106 has a noise canceller (CDS: Correlated Double Sampling) circuit and an analog-to-digital conversion (ADC) circuit provided for each column. The noise canceller (CDS) circuit receives two pixel signals (reset level and signal level) from the corresponding column and takes the difference between the two pixel signals. The analog-digital conversion circuit receives the pixel signal (difference) from the CDS circuit and converts the analog data into digital data.
 水平走査回路107は、画素セル101の列を順次選択する走査をし、選択された列のデジタルデータを固体撮像装置100の外へ順次出力する。 The horizontal scanning circuit 107 performs scanning that sequentially selects the columns of the pixel cells 101, and sequentially outputs the digital data of the selected columns to the outside of the solid-state imaging device 100.
 カラム読出し回路106に含まれるCDS回路は、例えば画素アレイ部102に行列状に配列されている画素セル101の列ごとに接続されている。また、CDS回路は、垂直走査回路104で選択された行の画素セル101から垂直信号線VLを通って出力される信号に対して、CDS(相関二重サンプリング)処理により、画素セル101で発生するリセットノイズや、トランジスタのしきい値バラツキに起因する画素固有の固定パターンノイズを除去する信号処理を行うと共に、信号処理後の画素信号を一時的に保持する。 The CDS circuit included in the column readout circuit 106 is connected for each column of the pixel cells 101 arranged in a matrix in the pixel array unit 102, for example. The CDS circuit is generated in the pixel cell 101 by CDS (correlated double sampling) processing on a signal output from the pixel cell 101 in the row selected by the vertical scanning circuit 104 through the vertical signal line VL. The signal processing for removing the reset noise and the fixed pattern noise specific to the pixel due to the threshold value variation of the transistor is performed, and the pixel signal after the signal processing is temporarily held.
 アナログデジタル変換回路(ADC)は、AGC(Auto Gain Control)機能と、アナログデジタル変換機能とを備えており、ADCによって、CDS回路で保持されたアナログ信号である画素信号がデジタル信号に変換される。 The analog-digital conversion circuit (ADC) has an AGC (Auto-Gain-Control) function and an analog-digital conversion function, and the ADC converts a pixel signal that is an analog signal held in the CDS circuit into a digital signal. .
 図2は、実施形態に係る固体撮像装置100において、画素セル101の回路構成の一例を示す図である。画素セル101は、第1の光電変換部120、第1の転送トランジスタ121、第2の光電変換部122、第2の転送トランジスタ123、電荷蓄積部124、スイッチトランジスタ125、リセットトランジスタ126、増幅トランジスタ127、第1のFD(Floating Diffusion)部128、第2のFD部129を備える。図2中の破線で囲った高感度画素110は、第1の光電変換部120、第1のFD部128および第1の転送トランジスタ121に対応する。低感度画素111は、第2の光電変換部122、第2のFD部129、第2の転送トランジスタ123および電荷蓄積部124に対応する。 FIG. 2 is a diagram illustrating an example of a circuit configuration of the pixel cell 101 in the solid-state imaging device 100 according to the embodiment. The pixel cell 101 includes a first photoelectric conversion unit 120, a first transfer transistor 121, a second photoelectric conversion unit 122, a second transfer transistor 123, a charge storage unit 124, a switch transistor 125, a reset transistor 126, and an amplification transistor. 127, a first FD (Floating Diffusion) unit 128, and a second FD unit 129. A high-sensitivity pixel 110 surrounded by a broken line in FIG. 2 corresponds to the first photoelectric conversion unit 120, the first FD unit 128, and the first transfer transistor 121. The low sensitivity pixel 111 corresponds to the second photoelectric conversion unit 122, the second FD unit 129, the second transfer transistor 123, and the charge storage unit 124.
 第1の光電変換部120(以下、第1のフォトダイオード120とも記す)は、半導体基板に形成されたフォトダイオードであり、光を信号電荷に電変換する。 The first photoelectric conversion unit 120 (hereinafter also referred to as the first photodiode 120) is a photodiode formed on a semiconductor substrate, and electrically converts light into signal charges.
 第1の転送トランジスタ121は、例えば、転送制御線TGLがハイレベルのとき、オン状態になる。その結果、第1の転送トランジスタ121は、第1の光電変換部120によって光電変換された信号電荷を第1のFD部128に転送する。 For example, the first transfer transistor 121 is turned on when the transfer control line TGL is at a high level. As a result, the first transfer transistor 121 transfers the signal charge photoelectrically converted by the first photoelectric conversion unit 120 to the first FD unit 128.
 第2の光電変換部122(以下、第2のフォトダイオード122とも記す)は、半導体基板に形成されたフォトダイオードであり、第1のフォトダイオード120よりも小さい受光面積を有し、光を信号電荷に電変換する。 The second photoelectric conversion unit 122 (hereinafter also referred to as a second photodiode 122) is a photodiode formed on a semiconductor substrate, has a light receiving area smaller than that of the first photodiode 120, and transmits light as a signal. Converts to electric charge.
 第2の転送トランジスタ123は、例えば転送制御線TGSがハイレベルのとき、オン状態になる。その結果、第2の転送トランジスタ123は、第2の光電変換部122によって光電変換されて電荷蓄積部124に蓄積された信号電荷を第2のFD部129に転送する。 The second transfer transistor 123 is turned on when the transfer control line TGS is at a high level, for example. As a result, the second transfer transistor 123 transfers the signal charge photoelectrically converted by the second photoelectric conversion unit 122 and accumulated in the charge accumulation unit 124 to the second FD unit 129.
 電荷蓄積部124は、第2の光電変換部122において光電変換により生成された信号電荷を蓄積する容量素子である。電荷蓄積部124は、例えば、MOSキャパシタとして形成され、半導体基板上の絶縁膜と、絶縁膜上に形成された電極部とを有し、絶縁膜を挟む半導体基板と電極部との間に信号電荷を蓄積する。電荷蓄積部124がMOSキャパシタである場合、電極部はゲート電極に相当する。電荷蓄積部124は、例えば、電極部に接続される制御線CGがハイレベルのとき、第2の光電変換部122によって光電変換された信号電荷を蓄積する。電荷蓄積部124に蓄積された信号電荷は、制御線CGがローレベルかつ転送制御線TGSがハイレベルのとき、第2の転送トランジスタ123によって第2のFD部129に転送される。電荷蓄積部124は、第2のフォトダイオード122の光電変換により生成された信号電荷の最大蓄積容量(つまり飽和信号電荷量)を大きく増大させる役割を果たす。 The charge storage unit 124 is a capacitive element that stores signal charges generated by photoelectric conversion in the second photoelectric conversion unit 122. The charge storage unit 124 is formed as a MOS capacitor, for example, and includes an insulating film on the semiconductor substrate and an electrode unit formed on the insulating film, and a signal is interposed between the semiconductor substrate and the electrode unit that sandwich the insulating film. Accumulate charge. When the charge storage unit 124 is a MOS capacitor, the electrode unit corresponds to a gate electrode. For example, when the control line CG connected to the electrode unit is at a high level, the charge storage unit 124 stores the signal charge photoelectrically converted by the second photoelectric conversion unit 122. The signal charge accumulated in the charge accumulation unit 124 is transferred to the second FD unit 129 by the second transfer transistor 123 when the control line CG is at low level and the transfer control line TGS is at high level. The charge storage unit 124 plays a role of greatly increasing the maximum storage capacity (that is, the saturation signal charge amount) of the signal charge generated by the photoelectric conversion of the second photodiode 122.
 スイッチトランジスタ125は、例えは、スイッチ制御線SWがハイレベルのとき、第1のFD部128と第2のFD部129とを導通させる。 For example, when the switch control line SW is at a high level, the switch transistor 125 makes the first FD unit 128 and the second FD unit 129 conductive.
 リセットトランジスタ126は、例えば、リセット制御線RSがハイレベルのとき、第2のFD部129を(ハイレベルに)リセットする。 The reset transistor 126 resets the second FD unit 129 (to a high level), for example, when the reset control line RS is at a high level.
 増幅トランジスタ127は、定電流源回路105内の定電流源と対になってソースフォロア回路を構成し、第1のFD部128の電位を電圧に変換し、垂直信号線VLに出力する。 The amplification transistor 127 forms a source follower circuit paired with the constant current source in the constant current source circuit 105, converts the potential of the first FD unit 128 into a voltage, and outputs the voltage to the vertical signal line VL.
 第1のFD部128は、半導体基板に形成された浮遊拡散層であり、第1の転送トランジスタ121によって転送された信号電荷を保持する。 The first FD portion 128 is a floating diffusion layer formed on the semiconductor substrate, and holds the signal charge transferred by the first transfer transistor 121.
 第2のFD部129は、半導体基板に形成された浮遊拡散層であり、第2の転送トランジスタ123によって転送された信号電荷を保持する。 The second FD portion 129 is a floating diffusion layer formed on the semiconductor substrate, and holds the signal charge transferred by the second transfer transistor 123.
 上記のように第1の光電変換部120より受光面積が小さい第2の光電変換部122に電荷蓄積部124を付加することで、第1の光電変換部120よりも感度が小さいながらも、飽和電荷量を大きくすることができる。そのため、低感度画素111は、広ダイナミックレンジを実現できる。これにより、低感度画素111を常時露光動作することで、LED光源のフリッカー現象を抑制した画像を得ることができる。また、第1の光電変換部120の受光面積が第2の光電変換部122よりも大きいことから、飽和電荷量を確保した高感度画素を得ることができるため、ダイナミックレンジを確保した画像を得ることができる。つまり、低感度画素でLED光電のフリッカー現象を抑制した画像と、高感度画素の撮影画像を合成することで、フリッカー現象を抑制したダイナミックレンジを確保した画像を得ることができる。 As described above, by adding the charge storage unit 124 to the second photoelectric conversion unit 122 having a light receiving area smaller than that of the first photoelectric conversion unit 120, the sensitivity is lower than that of the first photoelectric conversion unit 120, but saturation is achieved. The amount of charge can be increased. Therefore, the low sensitivity pixel 111 can realize a wide dynamic range. Thereby, the image which suppressed the flicker phenomenon of the LED light source can be obtained by always performing the exposure operation of the low sensitivity pixel 111. In addition, since the light receiving area of the first photoelectric conversion unit 120 is larger than that of the second photoelectric conversion unit 122, it is possible to obtain a high-sensitivity pixel that secures a saturated charge amount, and thus an image that secures a dynamic range is obtained. be able to. In other words, by synthesizing an image in which the LED photoelectric flicker phenomenon is suppressed with low-sensitivity pixels and a photographed image of the high-sensitivity pixels, an image having a dynamic range in which the flicker phenomenon is suppressed can be obtained.
 これにより、1つの固体撮像装置100でパルス光源によるフリッカー発生を抑制した画像信号を生成することができる。 Thereby, it is possible to generate an image signal in which flicker generation by a pulse light source is suppressed by one solid-state imaging device 100.
 次に、図2に示した画素セル101の回路例について、その動作を具体的に説明する。 Next, the operation of the circuit example of the pixel cell 101 shown in FIG. 2 will be specifically described.
 図2に示すように、本回路例に係る画素セル101は、高感度画素110と低感度画素111とがスイッチトランジスタ125、リセットトランジスタ126、増幅トランジスタ127共有する。すなわち、高感度画素110は、光電変換を行う素子、例えば第1のフォトダイオード120と第1の転送トランジスタ121とを有する。低感度画素111は、第2のフォトダイオード122と第2の転送トランジスタ123と電荷蓄積部124を有する。また、画素セル101は、高感度画素110と低感度画素111が共有して使用するスイッチトランジスタ125と、リセットトランジスタ126と、及び増幅トランジスタ127を有している。各トランジスタ121~127としては、例えばNチャネルのMOSトランジスタを用いてもよい。なお、NチャネルのMOSトランジスタ(Nchトランジスタ)は、ゲート電位が“High”レベルでオン状態となり、“Low”レベルでオフ状態になるとする。また、PチャネルのMOSトランジスタ(Pchトランジスタ)は、ゲート電位が“Low”レベルでオン状態となり、“High”レベルでオフ状態となるとする。図2では、各トランジスタ121~127は、NチャネルのMOSトランジスタであるものとする。 As shown in FIG. 2, in the pixel cell 101 according to this circuit example, the high sensitivity pixel 110 and the low sensitivity pixel 111 share the switch transistor 125, the reset transistor 126, and the amplification transistor 127. That is, the high-sensitivity pixel 110 includes an element that performs photoelectric conversion, for example, the first photodiode 120 and the first transfer transistor 121. The low sensitivity pixel 111 includes a second photodiode 122, a second transfer transistor 123, and a charge accumulation unit 124. Further, the pixel cell 101 includes a switch transistor 125, a reset transistor 126, and an amplification transistor 127 that are shared and used by the high sensitivity pixel 110 and the low sensitivity pixel 111. As each of the transistors 121 to 127, for example, an N-channel MOS transistor may be used. Note that the N-channel MOS transistor (Nch transistor) is turned on when the gate potential is “High” level, and is turned off when the gate voltage is “Low”. The P-channel MOS transistor (Pch transistor) is turned on when the gate potential is “Low” level, and is turned off when the gate voltage is “High”. In FIG. 2, it is assumed that the transistors 121 to 127 are N-channel MOS transistors.
 第1の転送トランジスタ121は、第1のフォトダイオード120のカソード電極と第1のFD部128との間に接続されている。第1の転送トランジスタ121のゲート電極には転送制御線TGLが接続されている。第1の転送トランジスタ121のゲート電極に転送制御線TGLから転送パルスφTGLにて“High”レベルが与えられると、第1の転送トランジスタ121がオン状態となり、第1のフォトダイオード120で光電変換されて第1のフォトダイオード120に蓄積された信号電荷(具体的には電子)が第1のFD部128へ転送される。 The first transfer transistor 121 is connected between the cathode electrode of the first photodiode 120 and the first FD portion 128. A transfer control line TGL is connected to the gate electrode of the first transfer transistor 121. When the “High” level is applied to the gate electrode of the first transfer transistor 121 from the transfer control line TGL by the transfer pulse φTGL, the first transfer transistor 121 is turned on and photoelectrically converted by the first photodiode 120. The signal charges (specifically electrons) accumulated in the first photodiode 120 are transferred to the first FD unit 128.
 第2の転送トランジスタ123は、第2のフォトダイオード122のカソード電極、及び電荷蓄積部124の半導体基板と第2のFD部129との間に接続されている。第2の転送トランジスタ123のゲート電極には転送制御線TGSが接続されている。第2の転送トランジスタ123のゲート電極に転送制御線TGSから転送パルスφTGSにて“High”レベルが与えられると、第2の転送トランジスタ123がオン状態となり、第2のフォトダイオード122で光電変換されて第2のフォトダイオード122に蓄積された信号電荷(具体的には電子)が第2のFD部129へ転送される。 The second transfer transistor 123 is connected between the cathode electrode of the second photodiode 122 and the semiconductor substrate of the charge storage unit 124 and the second FD unit 129. A transfer control line TGS is connected to the gate electrode of the second transfer transistor 123. When a “High” level is applied to the gate electrode of the second transfer transistor 123 from the transfer control line TGS by the transfer pulse φTGS, the second transfer transistor 123 is turned on and is photoelectrically converted by the second photodiode 122. Then, signal charges (specifically electrons) accumulated in the second photodiode 122 are transferred to the second FD portion 129.
 また、電荷蓄積部124の電極部には制御線CGが接続されている。第2の転送トランジスタ123がオン状態で、電荷蓄積部124の電極部に制御線CGから制御パルスφCGにて“Low”レベルが与えられると、電荷蓄積部124において半導体基板と電極部の間に蓄積された信号電荷(具体的には電子)が第2の転送トランジスタ123を介して第2のFD部129へ転送される。なお、露光期間中は電荷蓄積部124のゲート電極には制御線CGから制御パルスφCGにて“High”レベルが与えられ、電荷蓄積部124は第2のフォトダイオード122により生成された信号電荷を蓄積する。 Further, a control line CG is connected to the electrode part of the charge storage part 124. When the second transfer transistor 123 is turned on and a “Low” level is applied to the electrode portion of the charge storage portion 124 by the control pulse φCG from the control line CG, the charge storage portion 124 has a gap between the semiconductor substrate and the electrode portion. The accumulated signal charge (specifically, electrons) is transferred to the second FD portion 129 via the second transfer transistor 123. During the exposure period, the gate electrode of the charge storage unit 124 is given a “High” level by the control pulse φCG from the control line CG, and the charge storage unit 124 receives the signal charge generated by the second photodiode 122. accumulate.
 リセットトランジスタ126については、ゲート電極にリセット制御線RSが接続され、ドレイン電極に画素電源配線VDDCが接続され、ソース電極に第2のFD部129が接続されている。また、スイッチトランジスタ125については、ゲート電極にスイッチ制御線SWが接続され、ドレイン電極に第2のFD部129が接続され、ソース電極に第1のFD部128が接続されている。 As for the reset transistor 126, the reset control line RS is connected to the gate electrode, the pixel power supply wiring VDDC is connected to the drain electrode, and the second FD portion 129 is connected to the source electrode. In the switch transistor 125, the switch control line SW is connected to the gate electrode, the second FD portion 129 is connected to the drain electrode, and the first FD portion 128 is connected to the source electrode.
 まず、高感度画素110の読出し制御について述べる。 First, the readout control of the high sensitivity pixel 110 will be described.
 第1のフォトダイオード120から第1のFD部128へ信号電荷を転送する前に、リセットトランジスタ126のゲート電極126aにリセット制御線RSを伝達してリセットパルスφRSにて“High”レベルを与え、またスイッチトランジスタ125のゲート電極125aにスイッチ制御線SWを伝達してスイッチパルスφSWにて“High”レベルが与えられると、リセットトランジスタ126とスイッチトランジスタ125がオン状態となる。これにより、第1のFD部128と第2のFD部129の電位が電源電圧AVDDにリセットされる。第1のFD部128と第2のFD部129を電源電圧AVDDにリセットした後、リセットトランジスタ126のゲート電極126aにリセットパルスφRSにて“High”レベルを与え、スイッチトランジスタ125のゲート電極125aにはスイッチパルスφSWにて“Low”レベルを与える。これにより、第1のFD部128はリセット動作が完了した状態となる。 Before transferring the signal charge from the first photodiode 120 to the first FD unit 128, the reset control line RS is transmitted to the gate electrode 126a of the reset transistor 126 to give a “High” level by the reset pulse φRS, Further, when the switch control line SW is transmitted to the gate electrode 125a of the switch transistor 125 and the “High” level is given by the switch pulse φSW, the reset transistor 126 and the switch transistor 125 are turned on. As a result, the potentials of the first FD unit 128 and the second FD unit 129 are reset to the power supply voltage AVDD. After the first FD portion 128 and the second FD portion 129 are reset to the power supply voltage AVDD, a “High” level is given to the gate electrode 126a of the reset transistor 126 by a reset pulse φRS, and the gate electrode 125a of the switch transistor 125 is given. Gives a “Low” level with the switch pulse φSW. As a result, the first FD unit 128 is in a state where the reset operation has been completed.
 増幅トランジスタ127については、ゲート電極が第1のFD部128と接続され、ドレイン電極が画素電源配線VDDCと接続され、ソース電極が垂直信号線VLと接続されている。増幅トランジスタ127は、リセットトランジスタ126とスイッチトランジスタ125によってリセットされた後の第1のFD部128の電位をリセットレベルとして垂直信号線VLへ出力し、さらに、第1の転送トランジスタ121によって信号電荷が転送された後の第1のFD部128の電位を信号レベルとして垂直信号線VLへ出力する。 As for the amplification transistor 127, the gate electrode is connected to the first FD portion 128, the drain electrode is connected to the pixel power supply wiring VDDC, and the source electrode is connected to the vertical signal line VL. The amplification transistor 127 outputs the potential of the first FD portion 128 after being reset by the reset transistor 126 and the switch transistor 125 to the vertical signal line VL as a reset level, and further, the first transfer transistor 121 generates a signal charge. The potential of the first FD unit 128 after the transfer is output as a signal level to the vertical signal line VL.
 次に、低感度画素111の読出し制御について述べる。第2のフォトダイオード122から第2のFD部129へ信号電荷を転送する前に、リセットトランジスタ126とスイッチトランジスタ125がオン状態として、第1のFD部128と第2のFD部129の電位を電源電圧AVDDにリセットする。第1のFD部128と第2のFD部129を電源電圧AVDDにリセットした後、リセットトランジスタのゲート電極126aにリセットパルスφRSにて“Low”レベルを与え、スイッチトランジスタのゲート電極125aにはスイッチパルスφSWにて“High”レベルを与える。これにより、電気的に第1のFD部と第2のFD部が接続した状態で、リセット動作が完了する。 Next, readout control of the low sensitivity pixel 111 will be described. Before the signal charge is transferred from the second photodiode 122 to the second FD portion 129, the reset transistor 126 and the switch transistor 125 are turned on, and the potentials of the first FD portion 128 and the second FD portion 129 are changed. Reset to power supply voltage AVDD. After the first FD portion 128 and the second FD portion 129 are reset to the power supply voltage AVDD, a “Low” level is given to the gate electrode 126a of the reset transistor by the reset pulse φRS, and the gate electrode 125a of the switch transistor is switched to the switch electrode A “High” level is given by the pulse φSW. Thereby, the reset operation is completed in a state where the first FD portion and the second FD portion are electrically connected.
 増幅トランジスタ127は、リセットトランジスタ126とスイッチトランジスタ125によってリセットされた後の第1のFD部128と第2のFD部129の電位をリセットレベルとして垂直信号線VLへ出力し、さらに、第2の転送トランジスタ123によって信号電荷が転送された後の第1のFD部128と第2のFD部129の電位を信号レベルとして垂直信号線VLへ出力する。ここで、第1のFD部128および第2のFD部129では、信号電荷量に応じた電圧を、増幅トランジスタ127に伝達する。この信号電荷量から電圧への変換式は△V=Q/Cとなり、変換効率ηはη=1/Cで表される。変換効率ηは、第1のFD部128および第2のFD部129の容量値Cで決まる。低感度画素111の時は増幅トランジスタのゲート電極127aに第1のFD部128と第2のFD部129が接続した状態となっているため、高感度画素110の時の増幅トランジスタのゲート電極127aに第1のFD部128のみ接続された状態と比べて、変換効率ηが低くなる。 The amplifying transistor 127 outputs the potentials of the first FD unit 128 and the second FD unit 129 after being reset by the reset transistor 126 and the switch transistor 125 to the vertical signal line VL as a reset level. The potentials of the first FD portion 128 and the second FD portion 129 after the signal charge is transferred by the transfer transistor 123 are output as signal levels to the vertical signal line VL. Here, in the first FD unit 128 and the second FD unit 129, a voltage corresponding to the signal charge amount is transmitted to the amplification transistor 127. The signal charge-to-voltage conversion formula is ΔV = Q / C, and the conversion efficiency η is expressed as η = 1 / C. The conversion efficiency η is determined by the capacitance value C of the first FD unit 128 and the second FD unit 129. In the case of the low-sensitivity pixel 111, the first FD portion 128 and the second FD portion 129 are connected to the gate electrode 127a of the amplification transistor, and therefore the gate electrode 127a of the amplification transistor in the case of the high-sensitivity pixel 110. Compared with the state where only the first FD unit 128 is connected to the converter, the conversion efficiency η is lowered.
 ここで、変換効率ηは高いほど信号電荷量を電圧に効率よく変換することができ、信号振幅の電圧値を大きくすることができる。これにより垂直信号線VLに接続する定電流源回路105やカラム読出し回路106で発生するノイズ成分Nに対する画素信号Sの比率S/Nを向上することができ、高画質の画像を得ることができる。 Here, the higher the conversion efficiency η, the more efficiently the signal charge can be converted into voltage, and the voltage value of the signal amplitude can be increased. As a result, the ratio S / N of the pixel signal S to the noise component N generated in the constant current source circuit 105 and the column readout circuit 106 connected to the vertical signal line VL can be improved, and a high-quality image can be obtained. .
 本開示では、高感度画素110は、低照度から高照度までの様々な環境下における被写体の画像データを取得し、低感度画素111はLED光源(パルス発光源)のフリッカー現象を抑制した画像を取得して、合成することでLED光源のフリッカー現象を抑制した画像データを得る。 In the present disclosure, the high-sensitivity pixel 110 acquires image data of a subject under various environments from low illuminance to high illuminance, and the low-sensitivity pixel 111 captures an image in which the flicker phenomenon of the LED light source (pulse emission source) is suppressed. Acquired and combined to obtain image data in which the flicker phenomenon of the LED light source is suppressed.
 このとき、高感度画素110は、様々な環境下の画像を取得するため高画質の画像を生成することが求められる。特に1lux未満の低照度環境下で高画質の画像を得るためには変換効率ηがより高いことが求められ、実現するには第1のFD部128の容量値Cを小さくする必要がある。 At this time, the high-sensitivity pixel 110 is required to generate a high-quality image in order to acquire images under various environments. In particular, in order to obtain a high-quality image in a low illuminance environment of less than 1 lux, a higher conversion efficiency η is required. To realize this, the capacitance value C of the first FD unit 128 needs to be reduced.
 一方、低感度画素111は、LED光源のフリッカー現象を抑制した画像を得るため、常時露光動作を行う。また、様々なLED光源の画像を取得に必要なダイナミックレンジを確保するため、電荷蓄積部124を接続している。電荷蓄積部124は、より多くの信号電荷量を蓄積するため、小さな変換効率ηが必要となる。そのためには、第2のFD部129に接続する容量Cを大きくする必要がある。 On the other hand, the low-sensitivity pixel 111 always performs an exposure operation in order to obtain an image in which the flicker phenomenon of the LED light source is suppressed. In addition, a charge storage unit 124 is connected in order to ensure a dynamic range necessary for acquiring images of various LED light sources. Since the charge storage unit 124 stores a larger amount of signal charge, a small conversion efficiency η is required. For this purpose, it is necessary to increase the capacitance C connected to the second FD unit 129.
 本開示の構成では、第1のFD部128と第2のFD部129の間にスイッチトランジスタ125を設けて第1のFD部128に増幅トランジスタ127を接続している。これにより、高感度画素110の信号電荷を読み出す際には、スイッチトランジスタ125をオフ状態として読み出すことで、増幅トランジスタ127のゲート電極127aには第1のFD部128のみ接続した状態となり、より大きな変換効率ηが得られる。また、低感度画素111の信号電荷を読み出す際には、スイッチトランジスタ125をオン状態として読み出すことで、増幅トランジスタのゲート電極127aには第1のFD部128と第2のFD部129とが接続された状態となり、より小さな変換効率ηが得られる。 In the configuration of the present disclosure, the switch transistor 125 is provided between the first FD unit 128 and the second FD unit 129, and the amplification transistor 127 is connected to the first FD unit 128. As a result, when reading the signal charge of the high sensitivity pixel 110, the switch transistor 125 is read in the OFF state, so that only the first FD portion 128 is connected to the gate electrode 127a of the amplification transistor 127. Conversion efficiency η is obtained. Further, when the signal charge of the low-sensitivity pixel 111 is read out, the first FD portion 128 and the second FD portion 129 are connected to the gate electrode 127a of the amplification transistor by reading the switch transistor 125 in the ON state. Thus, a smaller conversion efficiency η is obtained.
 ここで、低感度画素111に対して所望の変換効率ηを得るため、第2のFD部129に容量を付与してもよい。このとき、高感度画素110はスイッチトランジスタ125をオフ状態として信号電荷の読出しを行うため、変換効率ηへの影響はなく、高画質を維持できる。 Here, in order to obtain a desired conversion efficiency η for the low-sensitivity pixel 111, a capacity may be given to the second FD unit 129. At this time, since the high-sensitivity pixel 110 reads the signal charge with the switch transistor 125 turned off, the conversion efficiency η is not affected, and high image quality can be maintained.
 なお、高感度画素110の読出し動作において、低感度画素111と同様に信号電荷を読み出すときにスイッチトランジスタ125をオン状態として、リセットトランジスタ126をオフ状態として第1のFD部128および第2のFD部129の変換効率ηを低くして読出しをしてもよい。これは、高照度の環境下で被写体を撮像するとき、高感度画素110の第1のフォトダイオード120に蓄積した信号電荷量は、低照度の環境下で撮像したときよりも多いため、電荷信号量の電圧△Vが垂直信号線VLのダイナミックレンジを越えるのを防ぐ手段として有効である。 In the reading operation of the high-sensitivity pixel 110, when the signal charge is read out similarly to the low-sensitivity pixel 111, the switch transistor 125 is turned on, the reset transistor 126 is turned off, and the first FD unit 128 and the second FD are turned on. The conversion may be performed by reducing the conversion efficiency η of the unit 129. This is because when a subject is imaged in a high-illuminance environment, the amount of signal charge accumulated in the first photodiode 120 of the high-sensitivity pixel 110 is larger than that in a low-illuminance environment. This is effective as a means for preventing the amount of voltage ΔV from exceeding the dynamic range of the vertical signal line VL.
 また、画素セル101は、1つの高感度画素110と1つの低感度画素111がスイッチトランジスタ125、リセットトランジスタ126、増幅トランジスタ127を共有して使用する構成になっているが、2つの高感度画素110と2つの低感度画素111がスイッチトランジスタ125、リセットトランジスタ126、増幅トランジスタ127を共有して使用する構成になってもよい。 The pixel cell 101 is configured such that one high-sensitivity pixel 110 and one low-sensitivity pixel 111 share the switch transistor 125, the reset transistor 126, and the amplification transistor 127. 110 and two low-sensitivity pixels 111 may share the switch transistor 125, the reset transistor 126, and the amplification transistor 127.
 また、増幅トランジスタ127のソースと垂直信号線VLの間に画素アレイ部102の読出し行に該当する行を選択状態にするための選択トランジスタが増幅トランジスタ127と垂直信号線VLとの間に接続されていてもよい。 A selection transistor for selecting a row corresponding to the readout row of the pixel array portion 102 is connected between the source of the amplification transistor 127 and the vertical signal line VL between the amplification transistor 127 and the vertical signal line VL. It may be.
 なお、図2において増幅トランジスタ127のゲート電極は、第1のFD部128に接続される代わりに、第2のFD部129に接続されていてもよい。 In FIG. 2, the gate electrode of the amplification transistor 127 may be connected to the second FD unit 129 instead of being connected to the first FD unit 128.
 また、図2において、第1のFD部128、第2のFD部129およびスイッチトランジスタ125の代わりに、1つのFDを備える構成としてもよい。言い換えれば、スイッチトランジスタ125を削除し、第1のFD部128と第2のFD部129とを一体にしたFDを備える構成としてもよい。 In FIG. 2, one FD may be provided instead of the first FD unit 128, the second FD unit 129, and the switch transistor 125. In other words, the switch transistor 125 may be omitted, and the first FD unit 128 and the second FD unit 129 may be integrated.
 図3は、実施形態に係る固体撮像装置100において、画素レイアウト構成の第一の例を示す図である。同図のように、画素セル101が高感度画素110と低感度画素111とを含む。 FIG. 3 is a diagram illustrating a first example of a pixel layout configuration in the solid-state imaging device 100 according to the embodiment. As shown in the figure, the pixel cell 101 includes a high sensitivity pixel 110 and a low sensitivity pixel 111.
 高感度画素110は第1のフォトダイオード120、第1のフォトダイオード120で光電変換された信号電荷を第1のFD部128に転送する第1の転送トランジスタのゲート(第1のゲート電極)121aを備える。 The high-sensitivity pixel 110 includes a first photodiode 120 and a gate (first gate electrode) 121a of a first transfer transistor that transfers the signal charge photoelectrically converted by the first photodiode 120 to the first FD unit 128. Is provided.
 低感度画素111は第1のフォトダイオード120より面積が小さい第2のフォトダイオード122、第2のフォトダイオード122で光電変換された信号電荷を蓄積する電荷蓄積部124の電極部124a、第2のFD部129に信号電荷を転送する第2の転送トランジスタ123のゲート電極(第2のゲート電極)123aが電荷蓄積部124の電極部124aと第2のフォトダイオード122を挟むような配置で構成される。ここで、ゲート材料としては、Polyシリコンなどが一例としてあげられる。また、第1のフォトダイオード120と第2のフォトダイオード122など素子間に素子分離領域130にて電気的には分離される。また、第1のFD部128と第2のFD部129の間にはスイッチトランジスタ125のゲート電極125aが接続され、画素電源配線VDDCと第2のFD部129の間には、リセットトランジスタ126のゲート電極126aが接続される。また、第1のFD部128と増幅トランジスタ127のゲート電極127aとは電気的に接続される。増幅トランジスタ127のドレインに画素電源配線VDDC、ソースに垂直信号線VLが接続され、画素信号を増幅して垂直信号線VLに伝達する。 The low-sensitivity pixel 111 includes a second photodiode 122 having an area smaller than that of the first photodiode 120, an electrode portion 124 a of the charge accumulation portion 124 that accumulates signal charges photoelectrically converted by the second photodiode 122, The gate electrode (second gate electrode) 123a of the second transfer transistor 123 that transfers the signal charge to the FD portion 129 is configured to sandwich the electrode portion 124a of the charge storage portion 124 and the second photodiode 122. The Here, an example of the gate material is Poly silicon. In addition, the elements such as the first photodiode 120 and the second photodiode 122 are electrically separated in the element isolation region 130. The gate electrode 125a of the switch transistor 125 is connected between the first FD portion 128 and the second FD portion 129, and the reset transistor 126 is connected between the pixel power supply line VDDC and the second FD portion 129. Gate electrode 126a is connected. In addition, the first FD portion 128 and the gate electrode 127a of the amplification transistor 127 are electrically connected. The pixel power supply line VDDC is connected to the drain of the amplification transistor 127 and the vertical signal line VL is connected to the source, and the pixel signal is amplified and transmitted to the vertical signal line VL.
 ここで、高感度画素110と低感度画素111は同じ色のフィルタ、たとえばGreenフィルタを配置しており、高感度画素110で取りこぼしたLED光源を常時露光動作する低感度画素111で光電変換して画素信号を取得し、高感度画素110と低感度画素111の画素信号を合成することで、LEDフリッカー現象を抑制した画像を生成する。 Here, the high-sensitivity pixel 110 and the low-sensitivity pixel 111 are provided with filters of the same color, such as a green filter, and the LED light source that has been missed by the high-sensitivity pixel 110 is photoelectrically converted by the low-sensitivity pixel 111 that always performs an exposure operation. An image in which the LED flicker phenomenon is suppressed is generated by acquiring the pixel signal and combining the pixel signals of the high-sensitivity pixel 110 and the low-sensitivity pixel 111.
 また、低感度画素111において、電荷蓄積部124の電極部124aが第2のフォトダイオード122上にあると、短波長である青色光がゲート電極により吸収されるため、第2のフォトダイオード122に青色光が到達しないという課題が発生する。図3では、第2のフォトダイオード122に隣接する領域に電荷蓄積部124の電極部124aを配置している。つまり、電極部124aが、平面視において第2のフォトダイオード122を覆わない構成としている。これにより、青色光の減衰を回避するレイアウトとなっている。 Further, in the low-sensitivity pixel 111, when the electrode portion 124a of the charge accumulation portion 124 is on the second photodiode 122, blue light having a short wavelength is absorbed by the gate electrode. The problem that blue light does not reach occurs. In FIG. 3, the electrode portion 124 a of the charge storage portion 124 is disposed in a region adjacent to the second photodiode 122. That is, the electrode portion 124a does not cover the second photodiode 122 in plan view. Thus, the layout avoids blue light attenuation.
 また、高感度画素110の第1のフォトダイオード120と第1の転送トランジスタのゲート電極121a、第1のFD部128が縦方向に並び、図面において上方向に信号電荷が転送される。一方、低感度画素111においても、第2のフォトダイオード122と第2の転送トランジスタのゲート電極123a、第2のFD部129が縦方向に並び、図面において上方向に信号電荷が転送される。このように転送方向を高感度画素110と低感度画素111で合わせることで、第1の転送トランジスタ121と第2の転送トランジスタ123の転送バラツキによる特性差(たとえば、転送時に信号電荷が第1のフォトダイオード120および/または第2のフォトダイオード122に残存する残像特性)を抑制することができる。 In addition, the first photodiode 120 of the high-sensitivity pixel 110, the gate electrode 121a of the first transfer transistor, and the first FD portion 128 are arranged in the vertical direction, and signal charges are transferred upward in the drawing. On the other hand, also in the low-sensitivity pixel 111, the second photodiode 122, the gate electrode 123a of the second transfer transistor, and the second FD portion 129 are arranged in the vertical direction, and signal charges are transferred upward in the drawing. Thus, by matching the transfer direction between the high-sensitivity pixel 110 and the low-sensitivity pixel 111, a characteristic difference due to transfer variation between the first transfer transistor 121 and the second transfer transistor 123 (for example, the signal charge at the time of transfer Residual image characteristics remaining in the photodiode 120 and / or the second photodiode 122) can be suppressed.
 また、低感度画素111において、電荷蓄積部124の電極部124aと第2の転送トランジスタのゲート電極123aが第2のフォトダイオード122を挟むように配置している。これにより、電荷蓄積部124の電極部124aは第2の転送トランジスタのゲート電極123aとは反対の方向にゲート電極を伸ばすことで、第2のフォトダイオード122と第2の転送トランジスタのゲート電極123aの形状を維持し、光電変換の効率(感度)や、信号電荷の転送(たとえば、残像特性)に影響を及ぼすことなく、電荷蓄積部124の電荷蓄積量を増やすことができる。 In the low-sensitivity pixel 111, the electrode portion 124a of the charge storage portion 124 and the gate electrode 123a of the second transfer transistor are arranged so as to sandwich the second photodiode 122. Accordingly, the electrode portion 124a of the charge storage portion 124 extends the gate electrode in a direction opposite to the gate electrode 123a of the second transfer transistor, whereby the second photodiode 122 and the gate electrode 123a of the second transfer transistor. The charge accumulation amount of the charge accumulation unit 124 can be increased without affecting the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics).
 図4は、実施形態に係る固体撮像装置100において、(a)リセット動作後および(b)電荷転送時における低感度画素111の半導体基板140の断面とおよびポテンシャル(電位)とを示す模式図である。図4の(a)および(b)における上段は、図3および図6の一点鎖線のIV-IV線の断面に対応する。図4の(a)および(b)における下段は、上段のA-A線におけるポテンシャルを示す。 FIG. 4 is a schematic diagram illustrating a cross section and a potential (potential) of the semiconductor substrate 140 of the low-sensitivity pixel 111 after the reset operation and (b) during charge transfer in the solid-state imaging device 100 according to the embodiment. is there. The upper stage in FIGS. 4A and 4B corresponds to the cross section taken along the dashed-dotted line IV-IV in FIGS. The lower part of FIGS. 4A and 4B shows the potential on the AA line of the upper part.
 まず、図4の(a)はリセット動作後であって、低感度画素111において、第2のFD部129と、第2の転送トランジスタ123のゲート電極123a下部の半導体基板140内と、第2のフォトダイオード122(図では第2のPD部と表記)と、電荷蓄積部124の電極部124a下部の半導体基板140とを通る破線で示したA-A線におけるポテンシャルを示す。前述したように、リセット動作後、第2のFD部129は電源電圧AVDDにリセットされる。このとき、第2の転送トランジスタ123のゲート電極123aには転送制御線TGSから転送パルスφTGSにて“Low”レベルが与えられる。また、電荷蓄積部124の電極部124aには制御線CGから制御パルスφCGにて“High”レベルが与えられ、信号電荷(つまり電子)が電荷蓄積部124に蓄積している。このときの半導体基板140のポテンシャル電位は、第2の転送トランジスタ123下部が最も低くなっており、信号電荷が電荷蓄積部124下部に蓄積された状態にある。 4A is after the reset operation, and in the low-sensitivity pixel 111, the second FD portion 129, the semiconductor substrate 140 under the gate electrode 123a of the second transfer transistor 123, and the second The potential on the AA line indicated by the broken line passing through the photodiode 122 (denoted as the second PD portion in the figure) and the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 is shown. As described above, after the reset operation, the second FD unit 129 is reset to the power supply voltage AVDD. At this time, the “Low” level is applied to the gate electrode 123a of the second transfer transistor 123 by the transfer pulse φTGS from the transfer control line TGS. Further, a “High” level is given to the electrode portion 124 a of the charge accumulation unit 124 by the control pulse φCG from the control line CG, and signal charges (that is, electrons) are accumulated in the charge accumulation unit 124. At this time, the potential of the semiconductor substrate 140 is the lowest at the lower part of the second transfer transistor 123, and the signal charge is stored in the lower part of the charge storage unit 124.
 図4の(b)は電荷転送時であって、破線で示したA-A線におけるポテンシャルを示す。前述したように、電荷転送時は、第2の転送トランジスタ123のゲート電極123aには転送制御線TGSから転送パルスφTGSにて“High”レベルが与えられる。また、電荷蓄積部124の電極部124aには制御線CGから制御パルスφCGにて“Low”レベルが与えられ、信号電荷が電荷蓄積部124から第2の光電変換部122を介して第2のFD部129へ転送されている。このときの半導体基板140のポテンシャルは高い順に、第2のFD部129、第2の転送トランジスタのゲート電極123a下部、第2のフォトダイオード122、電荷蓄積部124の電極部124a下部となり、第2のフォトダイオード122と電荷蓄積部124の電極部124a下部に蓄積した信号電荷を第2のFD部129へ転送することが可能となる。ここで、半導体基板140はホール電荷濃度が電子濃度より濃いP型基板であり、半導体基板140の電位がGNDで、信号電荷は電子により構成されるとすると、電荷転送時は電子を第2のFD部129へ移動させるため、電荷蓄積部124の電極部124a下部の半導体基板140のポテンシャル電位を第2のフォトダイオード122のポテンシャル電位と、GND電位の間に制御する必要がある。これは、制御パルスφCGの“Low”電圧をGNDあるいはマイナス電圧に制御することで電荷蓄積部124の電極部124a下部の半導体基板140はホール電荷が蓄積する蓄積状態となる。これにより半導体基板140と電気的に接続し、電荷蓄積部124の電極部124a下部の半導体基板140のポテンシャルはGNDとなるため、比較的容易に所望のポテンシャルにすることが可能である。 (B) of FIG. 4 shows the potential at the AA line indicated by a broken line during charge transfer. As described above, during charge transfer, the gate electrode 123a of the second transfer transistor 123 is given a “High” level from the transfer control line TGS by the transfer pulse φTGS. Further, the electrode portion 124 a of the charge storage unit 124 is given a “Low” level by the control pulse φCG from the control line CG, and the signal charge is transferred from the charge storage unit 124 to the second photoelectric conversion unit 122 via the second photoelectric conversion unit 122. It has been transferred to the FD unit 129. At this time, the potential of the semiconductor substrate 140 becomes, in descending order, the second FD portion 129, the lower portion of the gate electrode 123a of the second transfer transistor, the second photodiode 122, and the lower portion of the electrode portion 124a of the charge storage portion 124, It is possible to transfer the signal charges accumulated in the lower part of the photodiode 122 and the electrode portion 124 a of the charge accumulation portion 124 to the second FD portion 129. Here, assuming that the semiconductor substrate 140 is a P-type substrate having a hole charge concentration higher than the electron concentration, the potential of the semiconductor substrate 140 is GND, and the signal charge is composed of electrons, In order to move to the FD portion 129, it is necessary to control the potential potential of the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 between the potential potential of the second photodiode 122 and the GND potential. This is because the “Low” voltage of the control pulse φCG is controlled to GND or a negative voltage, whereby the semiconductor substrate 140 under the electrode portion 124a of the charge storage portion 124 enters a storage state in which hole charges are stored. As a result, the potential of the semiconductor substrate 140 that is electrically connected to the semiconductor substrate 140 and is lower than the electrode portion 124a of the charge storage portion 124 becomes GND, so that the desired potential can be made relatively easily.
 一方、仮に電荷蓄積部124の電極部124aを第2の転送トランジスタ123のゲート電極123aと第2のフォトダイオード122の間に配置した場合、半導体基板140のポテンシャルは高い順に、第2のFD部129、第2の転送トランジスタのゲート電極123a下部、電荷蓄積部124の電極部124a下部、第2のフォトダイオード122として、第2のフォトダイオード122と電荷蓄積部124の電極部124a下部に蓄積した信号電荷を第2のFD部129へ転送する。このとき、電荷蓄積部124の電極部124a下部の半導体基板140のポテンシャルは、第2の転送トランジスタ123のゲート電極123a下部と第2のフォトダイオード122の間に制御する必要があるが、先ほどの電荷蓄積部124の電極部124a下部の半導体基板140のポテンシャルをGNDにすることに比べて制御が困難である。よって、低感度画素111において、第2の転送トランジスタ123のゲート電極123a、第2のフォトダイオード122、電荷蓄積部124の電極部124aが順に配置することは、信号電荷の転送を制御する上で有効である。 On the other hand, if the electrode portion 124a of the charge storage portion 124 is disposed between the gate electrode 123a of the second transfer transistor 123 and the second photodiode 122, the potential of the semiconductor substrate 140 increases in the descending order of the second FD portion. 129, accumulated below the gate electrode 123a of the second transfer transistor, below the electrode portion 124a of the charge storage portion 124, and below the electrode portion 124a of the second photodiode 122 and the charge storage portion 124 as the second photodiode 122. The signal charge is transferred to the second FD unit 129. At this time, the potential of the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 needs to be controlled between the lower portion of the gate electrode 123a of the second transfer transistor 123 and the second photodiode 122. Control is difficult compared to setting the potential of the semiconductor substrate 140 below the electrode portion 124a of the charge storage portion 124 to GND. Therefore, in the low-sensitivity pixel 111, the gate electrode 123a of the second transfer transistor 123, the second photodiode 122, and the electrode portion 124a of the charge storage unit 124 are arranged in this order in order to control signal charge transfer. It is valid.
 図5は、実施形態に係る固体撮像装置100において、高感度画素110と低感度画素111の被写体照度と信号電荷量との関係を示す図である。横軸は被写体照度を、縦軸は信号電荷量を示す。同図には、(A)高感度画素110の信号電荷量を示すグラフと、(B)電荷蓄積部124が無い場合または電荷蓄積部124を無効化した場合の低感度画素111の信号電荷量を示すグラフと、(C)低感度画素111の信号電荷量を示すグラフを示している。グラフの傾きは感度を意味し、より受光面積の大きな第1のフォトダイオード120を有する高感度画素110の方が感度は高くなるため、グラフの傾きが急になっている。 FIG. 5 is a diagram illustrating the relationship between the object illuminance and the signal charge amount of the high-sensitivity pixel 110 and the low-sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment. The horizontal axis represents subject illuminance, and the vertical axis represents signal charge amount. The diagram shows (A) a graph showing the signal charge amount of the high-sensitivity pixel 110 and (B) the signal charge amount of the low-sensitivity pixel 111 when there is no charge storage unit 124 or when the charge storage unit 124 is invalidated. And (C) a graph showing the signal charge amount of the low sensitivity pixel 111. The slope of the graph means sensitivity, and the sensitivity of the high-sensitivity pixel 110 having the first photodiode 120 having a larger light receiving area is higher, so the slope of the graph is steep.
 被写体照度L1になると、(A)のように高感度画素110の飽和電荷量に到達し、これより被写体照度に依存せず一定の信号電荷量Qs1となる。ただし、高感度画素110は電子SHT動作を行うため、任意に露光時間を変えることができる。これにより、露光時間を短くしてグラフの傾きを緩やかにする(相対的に感度を下げる)ことでより高い被写体照度の撮像も可能である。 When the subject illuminance L1 is reached, the saturation charge amount of the high-sensitivity pixel 110 is reached as shown in (A), and the signal charge amount Qs1 is constant regardless of the subject illuminance. However, since the high sensitivity pixel 110 performs the electronic SHT operation, the exposure time can be arbitrarily changed. Accordingly, it is possible to capture a higher subject illuminance by shortening the exposure time and making the inclination of the graph gentle (relatively lowering the sensitivity).
 被写体照度L2になると、(B)の点線のように、低感度画素111が飽和電荷量に到達し、信号電荷量Qs2となる。低感度画素111はLEDフリッカー現象を抑制するため、常時露光動作が必要である。ここでは、低感度画素111(電荷蓄積部124なし)は被写体照度L2までしか被写体照度に応じた信号電荷を得ることができない。 When the subject illuminance L2 is reached, the low-sensitivity pixel 111 reaches the saturation charge amount and becomes the signal charge amount Qs2 as indicated by the dotted line in FIG. The low-sensitivity pixel 111 needs to be constantly exposed in order to suppress the LED flicker phenomenon. Here, the low-sensitivity pixel 111 (without the charge storage unit 124) can obtain a signal charge corresponding to the subject illuminance only up to the subject illuminance L2.
 被写体照度L3になると、(C)のように、低感度画素111が飽和電荷量に到達し、信号電荷量Qs3となる。(C)は、(B)と比べて、撮像可能な被写体照度の範囲は0~L3とより広く、被写体照度が比較的高い場合でも被写体照度に応じた信号電荷量を得ることができる。 When the object illuminance L3 is reached, the low-sensitivity pixel 111 reaches the saturation charge amount and becomes the signal charge amount Qs3 as shown in (C). Compared with (B), (C) has a wider range of subject illuminance that can be imaged, from 0 to L3, and a signal charge amount corresponding to the subject illuminance can be obtained even when the subject illuminance is relatively high.
 また、低感度画素111の電荷蓄積部124に蓄積できる電荷蓄積量は、電荷蓄積部124の電極部124aに与える電圧を高くすることにより増やすことが可能である。これは電荷蓄積量Qsat、MOS容量値をCg、ゲート電極に与える電圧Vgとすると、Qsat=Cg×Vgで表すことができるためである。通常、光電変換した信号電荷は第2のフォトダイオード122自身の容量Cpに蓄積される。このため、第1のフォトダイオード120よりも第2のフォトダイオード122の面積が小さいため第2の光電変換部122自身の電荷蓄積量は少なくなる。しかし、低感度画素111は第2のフォトダイオード122に加えて、電荷蓄積部124を持つ。電荷蓄積部124は、典型的には、MOSキャパシタとして、ゲート電極(つまり電極部124a)とゲート絶縁膜と半導体基板により構成できる。この電荷蓄積部124の容量値Cgは高感度画素110の第1のフォトダイオード120の容量Cpよりも大きくすることができる。また、電極部124aに与える電圧Vgも任意に制御することができるため、低感度画素111の電荷蓄積量を高感度画素110よりも多くすることが容易である。これにより、低感度画素111は広いダイナミックレンジを確保し、常時露光動作することで、LED光源のフリッカー現象を抑制した画像を得ることができる。 In addition, the charge accumulation amount that can be accumulated in the charge accumulation unit 124 of the low-sensitivity pixel 111 can be increased by increasing the voltage applied to the electrode unit 124 a of the charge accumulation unit 124. This is because the charge storage amount Qsat, the MOS capacitance value is Cg, and the voltage Vg applied to the gate electrode can be expressed as Qsat = Cg × Vg. Usually, the photoelectrically converted signal charge is accumulated in the capacitor Cp of the second photodiode 122 itself. For this reason, since the area of the second photodiode 122 is smaller than that of the first photodiode 120, the charge accumulation amount of the second photoelectric conversion unit 122 itself is reduced. However, the low-sensitivity pixel 111 has a charge storage portion 124 in addition to the second photodiode 122. Typically, the charge storage unit 124 can be configured as a MOS capacitor by a gate electrode (that is, the electrode unit 124a), a gate insulating film, and a semiconductor substrate. The capacitance value Cg of the charge storage unit 124 can be made larger than the capacitance Cp of the first photodiode 120 of the high sensitivity pixel 110. In addition, since the voltage Vg applied to the electrode portion 124a can be arbitrarily controlled, it is easy to increase the charge accumulation amount of the low sensitivity pixel 111 as compared to the high sensitivity pixel 110. Thereby, the low-sensitivity pixel 111 can obtain an image in which the flicker phenomenon of the LED light source is suppressed by ensuring a wide dynamic range and always performing an exposure operation.
 図6は、実施形態に係る固体撮像装置100において、画素レイアウト構成の第二の例を示す図である。なお、同図にて前述した図3と同じ番号の箇所は説明を省略し、差分のみ記述する。図3との相違点は、電荷蓄積部124の電極部124aの形状にある。電荷蓄積部124の電極部124aは、第2のフォトダイオード122と素子分離領域130の境界に沿うように形成され、第2の転送トランジスタのゲート電極123a側に向けて凹型(つまりU字形状)に形成されている。言い換えれば、電極部124aは、U字形状を構成する第1、第2および第3の電極部分124a1~124a3を有する。ここで、第1の電極部分124a1は、平面視において第2の光電変換部122を覆わない。第2の電極部分124a2は、平面視において第2の光電変換部122の外周の一部を覆う。第3の電極部分124a3は、平面視において第2の光電変換部122の外周の他の一部を覆う。これにより、第2のフォトダイオード122の感度に影響を与えず、電荷蓄積部124の電極部124aの面積を大きくすることが可能となり、電荷蓄積量を増やすことができる。 FIG. 6 is a diagram illustrating a second example of the pixel layout configuration in the solid-state imaging device 100 according to the embodiment. In addition, the description of the part of the same number as FIG. 3 mentioned above is abbreviate | omitted, and only a difference is described. The difference from FIG. 3 is the shape of the electrode part 124a of the charge storage part 124. The electrode portion 124a of the charge storage portion 124 is formed along the boundary between the second photodiode 122 and the element isolation region 130, and is concave (that is, U-shaped) toward the gate electrode 123a side of the second transfer transistor. Is formed. In other words, the electrode portion 124a includes first, second, and third electrode portions 124a1 to 124a3 that form a U-shape. Here, the first electrode portion 124a1 does not cover the second photoelectric conversion unit 122 in plan view. The second electrode portion 124a2 covers a part of the outer periphery of the second photoelectric conversion unit 122 in plan view. The third electrode portion 124a3 covers the other part of the outer periphery of the second photoelectric conversion unit 122 in plan view. As a result, the area of the electrode portion 124a of the charge storage portion 124 can be increased without affecting the sensitivity of the second photodiode 122, and the charge storage amount can be increased.
 図7は、実施形態に係る固体撮像装置100において、画素レイアウト構成の第三の例を示す図である。なお、同図にて前述した図3と同じ番号の箇所は説明を省略し、差分のみ記述する。図3との相違点は、電荷蓄積部124の電極部124aの形状にある。電荷蓄積部124の電極部124aは、第2のフォトダイオード122の上部を覆うように形成されていることを特徴とする。これにより、電荷蓄積部124の電極部124aの面積を大きくすることが可能となり、電荷蓄積量を増やすことができる。ただし、前述したように電荷蓄積部124の電極部124aにより短波長の青色光が吸収されるため、青色光に対する感度低下が課題となる。そのため、本構成は緑色光を透過するGreenのフィルタか、赤色光を透過するRedのフィルタを配置した画素セル101に適用し、青色光を透過するBlueフィルタを配置した画素セル101では第2のフォトダイオード122の上部に電荷蓄積部124の電極部124aに覆われない図3あるいは図6に示した形状で青色光に対する感度低下を抑制することがよい。 FIG. 7 is a diagram illustrating a third example of the pixel layout configuration in the solid-state imaging device 100 according to the embodiment. In addition, the description of the part of the same number as FIG. 3 mentioned above is abbreviate | omitted, and only a difference is described. The difference from FIG. 3 is the shape of the electrode part 124a of the charge storage part 124. The electrode part 124 a of the charge storage part 124 is formed so as to cover the upper part of the second photodiode 122. Thereby, the area of the electrode part 124a of the charge storage part 124 can be increased, and the charge storage amount can be increased. However, as described above, the short wavelength blue light is absorbed by the electrode portion 124a of the charge storage portion 124, so that the sensitivity reduction with respect to the blue light becomes a problem. Therefore, this configuration is applied to the pixel cell 101 in which a green filter that transmits green light or a red filter that transmits red light is arranged, and the second pixel cell 101 in which a blue filter that transmits blue light is arranged. It is preferable to suppress a decrease in sensitivity to blue light with the shape shown in FIG. 3 or FIG. 6 that is not covered with the electrode part 124a of the charge storage part 124 on the photodiode 122.
 図8は、実施形態に係る固体撮像装置100の模式断面の一例を示す図である。同図は、図3および図6に示したVIII-VIII線における断面を示す。半導体基板140上に絶縁膜141と、増幅トランジスタ127と電荷蓄積部124との素子間を分離する素子分離領域130を備える。絶縁膜141上には、リセットトランジスタのゲート電極126aと、低感度画素111の第2の転送トランジスタ123のゲート電極123aと、電荷蓄積部124の電極部124aと、増幅トランジスタ127のゲート電極127a、絶縁膜144とを備える。また、半導体基板140内に低感度画素111の第2のフォトダイオード122を備える。また、電荷蓄積部124の電極部124aにはコンタクト142を介して銅配線143が接続される。銅配線143は制御線CGとして、制御パルスφCGを伝達する。 FIG. 8 is a diagram illustrating an example of a schematic cross section of the solid-state imaging device 100 according to the embodiment. This figure shows a cross section taken along line VIII-VIII shown in FIG. 3 and FIG. An insulating film 141 and an element isolation region 130 that isolates elements of the amplification transistor 127 and the charge storage unit 124 are provided on the semiconductor substrate 140. On the insulating film 141, the gate electrode 126a of the reset transistor, the gate electrode 123a of the second transfer transistor 123 of the low-sensitivity pixel 111, the electrode portion 124a of the charge storage unit 124, the gate electrode 127a of the amplification transistor 127, An insulating film 144. In addition, the second photodiode 122 of the low sensitivity pixel 111 is provided in the semiconductor substrate 140. In addition, a copper wiring 143 is connected to the electrode part 124 a of the charge storage part 124 through a contact 142. Copper wiring 143 transmits control pulse φCG as control line CG.
 ここで、電荷蓄積部124の容量値Cgを増やすために、第2の転送トランジスタ123のゲート電極123a下にある絶縁膜141(つまりゲート絶縁膜)の厚さTox1に対して、電荷蓄積部124の電極部124a下にある絶縁膜141(例えば、電荷蓄積部124がMOSキャパシタである場合のゲート絶縁膜)の厚さTox2が薄くなるように形成してもよい。これにより、電極部124aと半導体基板140との距離がより小さくなるので、電荷蓄積部124の電極部124aの面積を増やすことなく、電荷蓄積部124の容量値Cgを増やすことができ、電荷蓄積量を増加させることが可能である。 Here, in order to increase the capacitance value Cg of the charge storage unit 124, the charge storage unit 124 has a thickness Tox 1 of the insulating film 141 (that is, the gate insulating film) under the gate electrode 123 a of the second transfer transistor 123. The insulating film 141 (for example, a gate insulating film when the charge storage portion 124 is a MOS capacitor) under the electrode portion 124a may be formed to have a small thickness Tox2. As a result, the distance between the electrode portion 124a and the semiconductor substrate 140 becomes smaller, so that the capacitance value Cg of the charge storage portion 124 can be increased without increasing the area of the electrode portion 124a of the charge storage portion 124, and charge storage. It is possible to increase the amount.
 また、電荷蓄積部124の電極部124aにコンタクト142を形成する際、絶縁膜144にエッチングにより絶縁膜144に穴を開け、コンタクト142の材料、たとえばタングステンWを埋める工程が必要となる。この際、コンタクト142形成部から電荷蓄積部124の電極部124aに金属などの汚染源が拡散し、電荷蓄積部124の電極部124aの下部にある絶縁膜141と半導体基板140にも汚染源が伝播する。これにより、電荷蓄積部124の電極部124a下の電荷を蓄積する半導体基板140に欠陥が発生する可能性がある。半導体基板140の欠陥は暗電流や白キズといった画質劣化を招くノイズを発生する要因となる。これを回避するため、素子分離領域130上にあるゲート電極にコンタクト142を形成することがよい。この理由について以下に述べる。電荷蓄積部124は電荷蓄積部124の電極部124aからより近い半導体基板140内に電荷が蓄積するため、絶縁膜141の厚さが薄いTox2下部の半導体基板140に電荷が蓄積する。一方、電荷蓄積部124の電極部124aの下部が素子分離領域130である場合、素子分離領域130下部の半導体基板140にはゲート絶縁膜の厚さTox2より遥かに厚いため、電荷はほとんど蓄積されない。このため、素子分離領域130上にある電荷蓄積部124の電極部124aにコンタクト142を形成することで、欠陥起因の暗電流や白キズといった画質劣化を招くノイズを抑制することができる。 Further, when the contact 142 is formed in the electrode portion 124a of the charge storage portion 124, a process of opening a hole in the insulating film 144 by etching in the insulating film 144 and filling the material of the contact 142, for example, tungsten W, is necessary. At this time, a contamination source such as a metal diffuses from the contact 142 forming portion to the electrode portion 124 a of the charge storage portion 124, and the contamination source also propagates to the insulating film 141 and the semiconductor substrate 140 below the electrode portion 124 a of the charge storage portion 124. . As a result, a defect may occur in the semiconductor substrate 140 that accumulates charges under the electrode portion 124 a of the charge accumulation portion 124. Defects in the semiconductor substrate 140 cause noise that causes image quality degradation such as dark current and white scratches. In order to avoid this, the contact 142 is preferably formed on the gate electrode on the element isolation region 130. The reason for this will be described below. Since the charge accumulation unit 124 accumulates charges in the semiconductor substrate 140 closer to the electrode unit 124a of the charge accumulation unit 124, the charges accumulate on the semiconductor substrate 140 below the Tox 2 where the insulating film 141 is thin. On the other hand, when the lower part of the electrode part 124a of the charge storage part 124 is the element isolation region 130, the semiconductor substrate 140 below the element isolation region 130 is much thicker than the thickness Tox2 of the gate insulating film, so that charge is hardly stored. . For this reason, by forming the contact 142 in the electrode portion 124a of the charge storage portion 124 on the element isolation region 130, noise that causes image quality deterioration such as dark current and white scratches due to defects can be suppressed.
 なお、素子分離領域130は図示しているよりもさらに深く形成してもよい。これは半導体基板140が、たとえばシリコンで形成されているとすると、波長400~1000nmにおけるシリコンの屈折率は3.5~6.0である。一方、素子分離領域130は、たとえば酸化シリコンで形成されるとすると屈折率は1.4~1.5となり、第1のフォトダイオード120に入射した光は素子分離領域130で反射するため、隣の画素部に入射するのを防止することができる。 Note that the element isolation region 130 may be formed deeper than illustrated. If the semiconductor substrate 140 is made of silicon, for example, the refractive index of silicon at a wavelength of 400 to 1000 nm is 3.5 to 6.0. On the other hand, if the element isolation region 130 is formed of, for example, silicon oxide, the refractive index is 1.4 to 1.5, and light incident on the first photodiode 120 is reflected by the element isolation region 130, so Can be prevented from entering the pixel portion.
 図9は、実施形態に係る固体撮像装置100の模式断面の他の一例を示す図である。同図では、図7に示したIX-IX線における断面を示す。なお、同図にて前述した図8と同じ番号の箇所は説明を省略し、差分のみ記述する。図8との相違点は、電荷蓄積部124の電極部124a下の絶縁膜141の厚さがTox1と同様になっている点と、電荷蓄積部124の電極部124aの形状である。電荷蓄積部124の電極部124aは、第2のフォトダイオード122上を覆うように形成されており、第2のフォトダイオード122上にある電荷蓄積部124の電極部124aの厚さTgate1は、コンタクト142が接続する電荷蓄積部124の電極部124aの厚さTgate2よりも薄いことが特徴となっている。これは、第2のフォトダイオード122上の電荷蓄積部124の電極部124aの厚さTgate1を薄くすることで、電荷蓄積部124の電極部124aによる青色光の吸収を抑制することができる。また、コンタクト142が接続する電荷蓄積部124の電極部124aの厚さTgate2を他のトランジスタにおけるゲート、たとえば第2の転送トランジスタ123のゲート電極123aと同様にすることで、電荷蓄積部124の電極部124aの厚さがTgate1に比べてコンタクト142形成時における半導体基板140への金属などの汚染源の伝播を抑制することができる。 FIG. 9 is a diagram illustrating another example of a schematic cross section of the solid-state imaging device 100 according to the embodiment. This figure shows a cross section taken along the line IX-IX shown in FIG. It should be noted that the description of the same numbered parts as in FIG. 8 described above is omitted, and only the difference is described. The difference from FIG. 8 is that the thickness of the insulating film 141 below the electrode portion 124a of the charge storage portion 124 is the same as that of Tox1, and the shape of the electrode portion 124a of the charge storage portion 124. The electrode part 124a of the charge storage part 124 is formed so as to cover the second photodiode 122, and the thickness Tgate1 of the electrode part 124a of the charge storage part 124 on the second photodiode 122 is a contact. It is characterized by being thinner than the thickness Tgate2 of the electrode part 124a of the charge storage part 124 to which 142 is connected. This is because by reducing the thickness Tgate1 of the electrode portion 124a of the charge storage portion 124 on the second photodiode 122, absorption of blue light by the electrode portion 124a of the charge storage portion 124 can be suppressed. Further, the thickness Tgate2 of the electrode portion 124a of the charge storage portion 124 to which the contact 142 is connected is set to be the same as that of the gate of another transistor, for example, the gate electrode 123a of the second transfer transistor 123. Compared with Tgate1, the thickness of the portion 124a can suppress propagation of a contamination source such as metal to the semiconductor substrate 140 when the contact 142 is formed.
 図10は、実施形態に係る固体撮像装置100において、(a)高感度画素110および(b)低感度画素111の模式断面の第一の例を示す図である。同図の(a)では、高感度画素110の模式断面を示し、高感度画素110は、半導体基板140上に形成され、第1のフォトダイオード120と、絶縁膜141と、第1の転送トランジスタ121のゲート電極121aと、絶縁膜144と、銅配線143と、ライナー膜145と、銅配線146と、ライナー膜147と、高屈折絶縁膜148と、カラーフィルタ149と、平坦化膜となる第1の透過フィルタ150とマイクロレンズ151とを備える。 FIG. 10 is a diagram illustrating a first example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment. FIG. 2A shows a schematic cross section of the high-sensitivity pixel 110. The high-sensitivity pixel 110 is formed on the semiconductor substrate 140, and includes a first photodiode 120, an insulating film 141, and a first transfer transistor. 121, a gate electrode 121a, an insulating film 144, a copper wiring 143, a liner film 145, a copper wiring 146, a liner film 147, a high refractive insulating film 148, a color filter 149, and a first planarizing film. 1 transmission filter 150 and microlens 151.
 このように、半導体基板140内に、受光面となる撮像領域において、画素ごとに電荷を蓄積する第1のフォトダイオード120が構成されており、さらに、第1のフォトダイオード120に隣接して半導体基板140上にゲートの一例として、第1の転送トランジスタ121のゲート電極121aが形成されている。 As described above, the first photodiode 120 that accumulates electric charge for each pixel is configured in the imaging region serving as the light receiving surface in the semiconductor substrate 140, and further, the semiconductor is adjacent to the first photodiode 120. A gate electrode 121a of the first transfer transistor 121 is formed on the substrate 140 as an example of a gate.
 上記の半導体基板140には、第1のFD部128に第1のフォトダイオード120に生成及び蓄積される信号電荷または信号電荷に応じた電圧を読み取る信号読み取り部が形成されており、第1の転送トランジスタ121のゲート電極121aへの電圧の印加によって信号電荷が転送されるように構成されている。 In the semiconductor substrate 140, a signal reading unit that reads a signal charge generated or accumulated in the first photodiode 120 or a voltage corresponding to the signal charge is formed in the first FD unit 128. The signal charge is transferred by applying a voltage to the gate electrode 121a of the transfer transistor 121.
 また、第1のフォトダイオード120を被覆して、半導体基板140上に、それぞれ例えば酸化シリコンからなる絶縁膜144と、例えば炭化シリコン(屈折率1.7~1.9)、または窒化シリコン(屈折率1.9~2.1)からなるライナー膜145、及び、ライナー膜147が積層して、絶縁膜が構成されている。 In addition, the first photodiode 120 is covered, and an insulating film 144 made of, for example, silicon oxide, for example, silicon carbide (refractive index 1.7 to 1.9), or silicon nitride (refractive) is formed on the semiconductor substrate 140. A liner film 145 having a ratio of 1.9 to 2.1) and a liner film 147 are laminated to form an insulating film.
 また、銅配線143、146は、異なる金属配線層に形成された銅配線である。ただし、例えばダマシンプロセスで形成された、タンタル/窒化タンタルからなるバリアメタル層が銅配線の外周部に形成される場合もある。 Also, the copper wirings 143 and 146 are copper wirings formed in different metal wiring layers. However, for example, a barrier metal layer made of tantalum / tantalum nitride formed by a damascene process may be formed on the outer periphery of the copper wiring.
 上記のライナー膜145、147は、ビア形成時のエッチストップ膜であるとともに金属配線層を構成する銅の拡散を防止するための膜でもある。 The liner films 145 and 147 are etch stop films at the time of forming vias and are films for preventing diffusion of copper constituting the metal wiring layer.
 上記のようにして、上記の積層された絶縁膜中に配線層が埋め込まれている。上記の銅配線143、銅配線146は、それぞれ、例えばデユアルダマシンプロセスによる、配線用溝の底面から下層配線への開口部内におけるビア部と一体に形成された配線構造であってもよい。 As described above, the wiring layer is embedded in the laminated insulating film. Each of the copper wiring 143 and the copper wiring 146 may have a wiring structure formed integrally with the via portion in the opening from the bottom surface of the wiring groove to the lower layer wiring by, for example, a dual damascene process.
 第1のフォトダイオード120の上方部分において、上記のように積層して形成された絶縁膜144及びライナー膜145、147に対して凹部が形成されている。上記凹部の側壁および底面に、酸化シリコン(屈折率1.4~1.5)よりも高い屈折率を有する高屈折絶縁膜148が形成されている。高屈折絶縁膜148は、窒化シリコン膜(屈折率1.9~2.0)などで形成する。高屈折絶縁膜148は、その断面において、半導体基板140側が狭く、マイクロレンズ151側が広く形成されている。つまり、図10の(a)に示す断面において、半導体基板140側に近づくに従って、高屈折絶縁膜148の幅が小さくなっている。このとき、高屈折絶縁膜148の底面と側壁面の角度をαとすると、角度αは90度よりも大きな値となる。 In the upper part of the first photodiode 120, recesses are formed with respect to the insulating film 144 and the liner films 145 and 147 formed by stacking as described above. A high-refractive insulating film 148 having a refractive index higher than that of silicon oxide (refractive index: 1.4 to 1.5) is formed on the side wall and bottom surface of the recess. The high refractive insulating film 148 is formed of a silicon nitride film (refractive index 1.9 to 2.0) or the like. In the cross section, the high refractive insulating film 148 is narrow on the semiconductor substrate 140 side and wide on the microlens 151 side. That is, in the cross section shown in FIG. 10A, the width of the high-refractive insulating film 148 decreases as it approaches the semiconductor substrate 140 side. At this time, if the angle between the bottom surface and the side wall surface of the high refractive insulating film 148 is α, the angle α is greater than 90 degrees.
 上記のように、屈折率が絶縁膜144よりも高い高屈折絶縁膜148を用いることで、絶縁膜144がクラッド層、高屈折絶縁膜148がコア層となり、カラーフィルタ149を通過した光を第1のフォトダイオード120に導く光導波路としての機能を有することとなる。高屈折絶縁膜148のうち、第1の光電変換部120の上方において絶縁膜144に形成された凹部に形成された部分を、第1のコア層1480と呼ぶ。言い換えれば、絶縁膜144のうち高屈折絶縁膜148(第1のコア層1480)の側壁面と隣接する位置の部分をクラッド層として、高屈折絶縁膜148(第1のコア層1480)は、クラッド層での入射光の反射により光を導く光導波路を形成している。 As described above, by using the high refractive insulating film 148 having a refractive index higher than that of the insulating film 144, the insulating film 144 serves as a cladding layer and the high refractive insulating film 148 serves as a core layer. Thus, it has a function as an optical waveguide leading to one photodiode 120. A portion of the high-refractive insulating film 148 formed in a recess formed in the insulating film 144 above the first photoelectric conversion unit 120 is referred to as a first core layer 1480. In other words, a portion of the insulating film 144 adjacent to the sidewall surface of the high refractive insulating film 148 (first core layer 1480) is used as a cladding layer, and the high refractive insulating film 148 (first core layer 1480) is An optical waveguide that guides light by reflection of incident light on the cladding layer is formed.
 カラーフィルタ149は、第1のフォトダイオード120への入射光を波長(例えばRGBの色)により選択する。カラーフィルタ149は、例えば各色用の顔料が有機材料(例えば、アクリル樹脂)に混入されてなる。この場合のカラーフィルタ149の屈折率は、1.5~1.7である。カラーフィルタ149は、島状(各画素部に対応して個別に形成された状態である。)に形成されている。マイクロレンズ151は、上方から入射する光に対応する画素部の第1のフォトダイオード120に集光させるものである。マイクロレンズ151は、半導体基板140から離れる方向に突出する凸レンズである。 The color filter 149 selects light incident on the first photodiode 120 according to wavelength (for example, RGB color). The color filter 149 is formed, for example, by mixing a pigment for each color into an organic material (for example, an acrylic resin). In this case, the refractive index of the color filter 149 is 1.5 to 1.7. The color filter 149 is formed in an island shape (in a state of being formed individually corresponding to each pixel portion). The microlens 151 focuses light on the first photodiode 120 in the pixel portion corresponding to light incident from above. The microlens 151 is a convex lens that protrudes away from the semiconductor substrate 140.
 図10の(b)にて、低感度画素111の模式断面図を示す。なお、同図にて前述した図10の(a)と同じ番号の箇所は説明を省略し、差分のみ記述する。低感度画素111として、水平方向にサイズを縮小しており、低感度画素111の第2のフォトダイオード122と、第2のフォトダイオード122から信号電荷を蓄積する電荷蓄積部(一例として、MOS容量)124を形成する電荷蓄積部124の電極部124aと、第2のFD部129へ転送する第2の転送トランジスタ123のゲート電極123aとを備える。高屈折絶縁膜148のうち、第2の光電変換部122の上方において絶縁膜144に形成された凹部に形成された部分を、第2のコア層1481と呼ぶ。第2のコア層1481は、絶縁膜144に隣接する側壁面での入射光の反射により光を導く光導波路を形成している。 10B is a schematic cross-sectional view of the low-sensitivity pixel 111. FIG. In addition, description is abbreviate | omitted about the location of the same number as Fig.10 (a) mentioned above in the figure, and only a difference is described. The low-sensitivity pixel 111 is reduced in size in the horizontal direction, and the second photodiode 122 of the low-sensitivity pixel 111 and a charge accumulation unit that accumulates signal charges from the second photodiode 122 (for example, a MOS capacitor) ) 124, the electrode portion 124 a of the charge storage portion 124, and the gate electrode 123 a of the second transfer transistor 123 that transfers to the second FD portion 129. A portion of the high-refractive insulating film 148 formed in a recess formed in the insulating film 144 above the second photoelectric conversion unit 122 is referred to as a second core layer 1481. The second core layer 1481 forms an optical waveguide that guides light by reflection of incident light on the side wall surface adjacent to the insulating film 144.
 ここで、第2のコア層1481の底辺の幅をD1とし、電荷蓄積部124の電極部124aと第2の転送トランジスタ123のゲート電極123aの距離をD2としたとき、D1<D2という関係にある。第2のコア層1481は、カラーフィルタ149を通過した光を第2のフォトダイオード122に導く光導波路としての機能を有するため、光はD1の幅で集光される。このため、光導波路によりD1の幅に集光された光が第2の転送トランジスタ123のゲート電極123aや電荷蓄積部124の電極部124aにあたることによるケラレの発生を抑制することができる。 Here, when the width of the bottom of the second core layer 1481 is D1, and the distance between the electrode portion 124a of the charge storage portion 124 and the gate electrode 123a of the second transfer transistor 123 is D2, the relationship of D1 <D2 is established. is there. The second core layer 1481 functions as an optical waveguide that guides the light that has passed through the color filter 149 to the second photodiode 122, and thus the light is collected with a width of D1. Therefore, it is possible to suppress the occurrence of vignetting caused by the light condensed to the width D1 by the optical waveguide hitting the gate electrode 123a of the second transfer transistor 123 and the electrode portion 124a of the charge storage portion 124.
 また、第2のコア層1481の底面と側壁面の角度をβとすると、角度βは90度よりも大きな値となり、かつ第1のコア層1480における角度αよりも角度βの方が大きな値となっている。これにより、光がより集光されるため、隣接する画素セル101への光の漏れ込みによる混色を抑制することができる。 Further, when the angle between the bottom surface and the side wall surface of the second core layer 1481 is β, the angle β is larger than 90 degrees, and the angle β is larger than the angle α in the first core layer 1480. It has become. Thereby, since light is condensed more, it is possible to suppress color mixing due to leakage of light into the adjacent pixel cell 101.
 図11は、実施形態に係る固体撮像装置100において、光導波路幅と集光効率の関係を示す図である。この関係は光学シミュレーションで算出した結果であり、シミュレーションの前提として、光導波路は高屈折絶縁膜148が窒化シリコン膜で形成され、長波長側の成分である赤色光で波長600~650nmのうち、最大の波長λ=650nmを照射した時を示す。また、集光効率とは光導波路に照射した光の強度に対する光導波路に透過した光の強度の割合と定義する。同図のグラフでは、光導波路幅が約340nmを境界に急峻に集光効率が低下することを示している。これは光を導く光導波路の幅が波長以下となると、該当の光が通過できず感度が低下するためである。具体的には、光の波長は通過する材料の屈折率により変化し、空気中(屈折率が1.0)を通過するときの光の波長をλ1とすると、屈折率nの材料を通過するときの光の波長λ2は、λ2=λ1/nで表される。このため、長波長側の成分である赤色光の波長600~650nmを高屈折絶縁膜148に通す最小の幅は、高屈折絶縁膜148が窒化シリコン膜(屈折率1.9~2.0)などで形成された場合、赤色光の波長は300~340nmとなり、光導波路の幅を少なくとも340nm以上にする必要がある。 FIG. 11 is a diagram illustrating a relationship between the optical waveguide width and the light collection efficiency in the solid-state imaging device 100 according to the embodiment. This relationship is a result calculated by optical simulation. As a premise of the simulation, the optical waveguide is formed of a silicon nitride film with a high refractive insulating film 148, and is a red component which is a component on the long wavelength side, and has a wavelength of 600 to 650 nm. The time when the maximum wavelength λ = 650 nm is irradiated is shown. The light collection efficiency is defined as the ratio of the intensity of light transmitted through the optical waveguide to the intensity of light irradiated onto the optical waveguide. In the graph of the figure, it is shown that the light collection efficiency sharply decreases with the optical waveguide width being about 340 nm as a boundary. This is because if the width of the optical waveguide that guides light is equal to or smaller than the wavelength, the corresponding light cannot pass and the sensitivity is lowered. Specifically, the wavelength of light changes depending on the refractive index of the material that passes through, and the light wavelength when passing through the air (refractive index is 1.0) is λ1, and passes through the material of refractive index n. The wavelength λ2 of the light at this time is expressed as λ2 = λ1 / n. For this reason, the minimum width for passing the wavelength 600 to 650 nm of red light, which is a component on the long wavelength side, through the high refractive insulating film 148 is that the high refractive insulating film 148 is a silicon nitride film (refractive index 1.9 to 2.0). For example, the wavelength of red light is 300 to 340 nm, and the width of the optical waveguide needs to be at least 340 nm.
 図12は、実施形態に係る固体撮像装置100において、(a)高感度画素110および(b)低感度画素111の模式断面の第二の例を示す図である。同図(a)では、高感度画素110の模式断面図を示し、前述した図10(a)と同様であり、同図(b)の比較対象として図示している。同図(b)では、低感度画素111の模式断面図を示し、前述した図10(b)と同じ番号の箇所は説明を省略し、差分のみ記述する。図10(b)との相違点は、高屈折絶縁膜148の底面が、高感度画素110の高屈折絶縁膜148の底面よりも半導体基板140から離れる方向にシフトし、半導体基板140から最も近い銅配線143とライナー膜145よりも上側に位置している点である。これは、高屈折絶縁膜148の底面の位置を変えることで、光の集光効率を変えることが可能である。たとえば、高屈折絶縁膜148の底辺の位置をマイクロレンズ151側へシフトすることにより、光の集光効率は下がり、第2のフォトダイオード122に照射する光の量は減少する。これにより、低感度画素111の感度は低下し、図5におけるグラフの傾きを緩やかにすることができ、撮像可能な被写体照度L3の範囲を調整することができる。 FIG. 12 is a diagram illustrating a second example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment. FIG. 6A shows a schematic cross-sectional view of the high-sensitivity pixel 110, which is the same as FIG. 10A described above, and is shown as a comparison target in FIG. FIG. 5B shows a schematic cross-sectional view of the low-sensitivity pixel 111, the description of the portions having the same numbers as those in FIG. The difference from FIG. 10B is that the bottom surface of the high refractive insulating film 148 is shifted away from the semiconductor substrate 140 more than the bottom surface of the high refractive insulating film 148 of the high sensitivity pixel 110 and is closest to the semiconductor substrate 140. It is a point located above the copper wiring 143 and the liner film 145. This is because the light condensing efficiency can be changed by changing the position of the bottom surface of the high refractive insulating film 148. For example, by shifting the position of the bottom side of the high refractive insulating film 148 to the microlens 151 side, the light condensing efficiency is lowered, and the amount of light irradiated to the second photodiode 122 is reduced. Thereby, the sensitivity of the low-sensitivity pixel 111 is lowered, the slope of the graph in FIG. 5 can be made gentle, and the range of the subject illuminance L3 that can be imaged can be adjusted.
 また、積層して形成された絶縁膜144及びライナー膜145、147に対して凹部を形成する際、絶縁膜144及びライナー膜147をエッチングによって取り除く。このとき、低感度画素111のライナー膜145をエッチストップ膜として利用することで、エッチングのバラツキによる低感度画素111の高屈折絶縁膜148の底面と半導体基板140の距離D3のバラツキを抑制することができる。これにより、低感度画素111の感度バラツキを低減することができる。 In addition, when forming recesses in the insulating film 144 and liner films 145 and 147 formed by stacking, the insulating film 144 and liner film 147 are removed by etching. At this time, by using the liner film 145 of the low sensitivity pixel 111 as an etch stop film, variation in the distance D3 between the bottom surface of the high refractive insulating film 148 of the low sensitivity pixel 111 and the semiconductor substrate 140 due to the variation in etching is suppressed. Can do. Thereby, the sensitivity variation of the low sensitivity pixel 111 can be reduced.
 図13は、実施形態に係る固体撮像装置100において、(a)高感度画素110および(b)低感度画素111の模式断面の第三の例を示す図である。同図の(a)では、高感度画素110の模式断面図を示し、前述した図10の(a)と同じ番号の箇所は説明を省略し、差分のみ記述する。図10の(a)との相違点は、絶縁膜144(第1の層間絶縁膜)の上部にある層間絶縁膜(第2の層間絶縁膜)で形成された凹部を有し、凹部にカラーフィルタ149と第1の透過フィルタ150を形成することで隔壁152を備えている。これにより、カラーフィルタ149は、その断面において、半導体基板140側が狭く、マイクロレンズ151側が広く形成されている。つまり、半導体基板140側の底辺が、マイクロレンズ151側の上辺より幅の小さな台形状をしている。隔壁152は、マイクロレンズ151やカラーフィルタ149から入射した光が、隣の画素部に入射するのを防止する。隔壁152は、平面視において、カラーフィルタ149に相当する部分が開口する格子状(網の目状)をしている。なお、図13の(a)の断面では、隔壁152それぞれは独立したように見える。隔壁152の断面形状は、ここでは、全体として台形状をしている。ここでの台形状は、半導体基板140側の底辺がマイクロレンズ151側の上辺より長い形状である。つまり、半導体基板140から離れるに従って幅が細くなる形状をしている。隔壁152は、カラーフィルタ149を構成する材料よりも屈折率が低い材料、例えばシリコン酸化膜(TEOS(Tetra Ethyl Ortho Silicate)膜、屈折率1.4~1.5)により構成されている。このため、カラーフィルタ149内を斜め方向に進行する光は、隔壁152の表面に達した際に反射する。この際、隔壁152は半導体基板140から離れるに従って幅が細くなる形状をしているため、反射した光が第1のフォトダイオード120側へと向かう。 FIG. 13 is a diagram illustrating a third example of a schematic cross section of (a) the high sensitivity pixel 110 and (b) the low sensitivity pixel 111 in the solid-state imaging device 100 according to the embodiment. (A) of the figure shows a schematic cross-sectional view of the high-sensitivity pixel 110, and description of the portions having the same numbers as those in FIG. 10 (a) is omitted, and only the differences are described. 10A is different from FIG. 10A in that there is a recess formed in an interlayer insulating film (second interlayer insulating film) above the insulating film 144 (first interlayer insulating film). A partition wall 152 is provided by forming the filter 149 and the first transmission filter 150. As a result, the color filter 149 is formed so that the semiconductor substrate 140 side is narrow and the microlens 151 side is wide in the cross section. That is, the bottom side on the semiconductor substrate 140 side has a trapezoidal shape with a smaller width than the upper side on the microlens 151 side. The partition wall 152 prevents light incident from the microlens 151 or the color filter 149 from entering the adjacent pixel portion. The partition wall 152 has a lattice shape (mesh shape) in which a portion corresponding to the color filter 149 is opened in plan view. In addition, in the cross section of Fig.13 (a), each partition 152 seems to be independent. Here, the sectional shape of the partition wall 152 is trapezoidal as a whole. The trapezoidal shape here is a shape in which the bottom side on the semiconductor substrate 140 side is longer than the upper side on the microlens 151 side. That is, the width becomes narrower as the distance from the semiconductor substrate 140 increases. The partition wall 152 is made of a material having a lower refractive index than the material constituting the color filter 149, for example, a silicon oxide film (TEOS (TetraTeEthyl Ortho Silicate) film, refractive index 1.4 to 1.5). For this reason, the light traveling in the oblique direction in the color filter 149 is reflected when it reaches the surface of the partition wall 152. At this time, since the partition wall 152 has a shape that becomes narrower as the distance from the semiconductor substrate 140 increases, the reflected light travels toward the first photodiode 120 side.
 図13の(b)にて、低感度画素111の模式断面を示す。なお、同図にて前述した図10の(b)と同じ番号の箇所は説明を省略し、差分のみ記述する。図10の(b)との相違点は、カラーフィルタ149の上部に第2の透過フィルタ153を備え、また、カラーフィルタ149と第2の透過フィルタ153と第1の透過フィルタ150の層に隔壁152を備えている。ここで、第2の透過フィルタ153は、第1の透過フィルタ150よりも低い透過率で光が透過するグレイフィルタであり、膜の厚さが厚いほど、光の透過率が低下する材料である。また、第2の透過フィルタ153を構成する材料として、例えば有機材料の混合物に各色の有機顔料やカーボンや金属酸化物の微粒子等を混入して形成されてなる。この場合の第2の透過フィルタ153の屈折率は、1.5~1.7であり、400nm~1000nmの波長領域において、透過率は透明フィルタと比較して5~20%の範囲内にある。隔壁152は、第2の透過フィルタ153を構成する材料よりも屈折率が低い材料、例えばシリコン酸化膜(TEOS(Tetra Ethyl Ortho Silicate)、屈折率1.4~1.5)により構成されている。このため、第2の透過フィルタ153内を斜め方向に進行する光は、隔壁152の表面に達した際に反射する。 FIG. 13B shows a schematic cross section of the low-sensitivity pixel 111. It should be noted that the description of the portions having the same numbers as in FIG. 10B described above in FIG. 10B is different from FIG. 10B in that a second transmission filter 153 is provided above the color filter 149, and a partition wall is formed on the layers of the color filter 149, the second transmission filter 153, and the first transmission filter 150. 152 is provided. Here, the second transmission filter 153 is a gray filter that transmits light with a lower transmittance than that of the first transmission filter 150, and is a material whose light transmittance decreases as the thickness of the film increases. . Further, as a material constituting the second transmission filter 153, for example, a mixture of organic materials is mixed with organic pigments of various colors, fine particles of carbon or metal oxide, and the like. In this case, the refractive index of the second transmission filter 153 is 1.5 to 1.7, and in the wavelength region of 400 nm to 1000 nm, the transmittance is in the range of 5 to 20% compared to the transparent filter. . The partition wall 152 is made of a material having a lower refractive index than the material constituting the second transmission filter 153, for example, a silicon oxide film (TEOS (TetraTeEthyl Ortho Silicate), refractive index 1.4 to 1.5). . For this reason, the light traveling in the oblique direction in the second transmission filter 153 is reflected when it reaches the surface of the partition wall 152.
 なお、層間絶縁膜に形成された凹部の上部、つまり隔壁152の上部は、カラーフィルタ149上部よりも高い位置に配置され、かつ第2の透過フィルタ153の上部は隔壁152の上部よりも高い位置に配置してもよい。これは、隔壁152を形成する際、層間絶縁膜に形成する凹部のアスペクト比(凹部の底辺と高さの比率)が制限され、一方で透過率を低くするために第2の透過フィルタ153を厚くする場合が考えられるためである。 Note that the upper part of the recess formed in the interlayer insulating film, that is, the upper part of the partition wall 152 is arranged at a position higher than the upper part of the color filter 149, and the upper part of the second transmission filter 153 is higher than the upper part of the partition wall 152. You may arrange in. This is because when the partition wall 152 is formed, the aspect ratio of the concave portion formed in the interlayer insulating film (ratio of the bottom side to the height of the concave portion) is limited, while the second transmission filter 153 is used to reduce the transmittance. This is because it may be thicker.
 第2の透過フィルタ153を低感度画素111に配置することで、低感度画素111の感度を低下することができる。これにより、低感度画素111の撮像可能な被写体照度L3を拡大することができる。これは、低感度画素111は常時露光動作を行うため、第2のフォトダイオード122に蓄積する信号電荷量を電子SHTにより調整することができないため、低感度画素111の感度を下げる手段として有効である。 By arranging the second transmission filter 153 in the low sensitivity pixel 111, the sensitivity of the low sensitivity pixel 111 can be lowered. Thereby, the subject illuminance L3 that can be captured by the low-sensitivity pixel 111 can be increased. This is an effective means for reducing the sensitivity of the low-sensitivity pixel 111 because the low-sensitivity pixel 111 always performs an exposure operation, and the amount of signal charge accumulated in the second photodiode 122 cannot be adjusted by the electron SHT. is there.
 以上説明してきたように本実施の形態における固体撮像装置100は、行列上に配置された複数の画素セル101を有する。複数の画素セル101のそれぞれは、半導体基板140上に形成された第1の光電変換部120と、第1のFD部128と、第1の光電変換部120によって光電変換された信号電荷を第1のFD部128に転送する第1の転送トランジスタ121と、第1の光電変換部120よりも受光面積が小さい第2の光電変換部122と、第2の光電変換部122によって光電変換された信号電荷を蓄積する電荷蓄積部124と、第2のFD部129と、電荷蓄積部124に蓄積された信号電荷を第2のFD部129に転送する第2の転送トランジスタ123とを備える。電荷蓄積部124は、半導体基板140上の絶縁膜141と、絶縁膜141上に形成した電極部124aとを有する。 As described above, the solid-state imaging device 100 according to the present embodiment has a plurality of pixel cells 101 arranged on a matrix. Each of the plurality of pixel cells 101 has a first photoelectric conversion unit 120, a first FD unit 128, and a signal charge photoelectrically converted by the first photoelectric conversion unit 120 formed on the semiconductor substrate 140. The first transfer transistor 121 that transfers to one FD unit 128, the second photoelectric conversion unit 122 that has a light receiving area smaller than that of the first photoelectric conversion unit 120, and the second photoelectric conversion unit 122 performs photoelectric conversion. A charge accumulation unit 124 that accumulates signal charges, a second FD unit 129, and a second transfer transistor 123 that transfers signal charges accumulated in the charge accumulation unit 124 to the second FD unit 129 are provided. The charge storage unit 124 includes an insulating film 141 on the semiconductor substrate 140 and an electrode unit 124 a formed on the insulating film 141.
 これによれば、フリッカー現象を抑制した画像を得ることができる。より詳しくは、第1の光電変換部120より受光面積が小さい第2の光電変換部122に電荷蓄積部124が付加される。これにより、第2の光電変換部122は、より感度が小ながらも、飽和電荷量を実質的に大きくすることができる。そのため、第2の光電変換部122は、広いダイナミックレンジを実現できる低感度画素を構成することができる。ここで、低感度画素を常時露光動作することで、LED光源のフリッカー現象を抑制した画像を得ることができる。 According to this, an image in which the flicker phenomenon is suppressed can be obtained. More specifically, the charge storage unit 124 is added to the second photoelectric conversion unit 122 having a light receiving area smaller than that of the first photoelectric conversion unit 120. As a result, the second photoelectric conversion unit 122 can substantially increase the saturation charge amount while having lower sensitivity. Therefore, the second photoelectric conversion unit 122 can configure a low sensitivity pixel that can realize a wide dynamic range. Here, an image in which the flicker phenomenon of the LED light source is suppressed can be obtained by always exposing the low-sensitivity pixels.
 また、第1の光電変換部120の受光面積が第2の光電変換部122よりも大きくすることで飽和電荷量を確保した高感度画素110を構成することができるため、ダイナミックレンジを確保した画像を得ることができる。つまり、第1の光電変換部120を含む低感度画素111でLED光電のフリッカー現象を抑制した画像と、高感度画素110の撮影画像を合成することで、フリッカー現象を抑制したダイナミックレンジを確保した画像を得ることができる。 Further, since the light-receiving area of the first photoelectric conversion unit 120 is larger than that of the second photoelectric conversion unit 122, the high-sensitivity pixel 110 that secures the saturation charge amount can be configured, and thus an image that secures the dynamic range. Can be obtained. In other words, a dynamic range in which the flicker phenomenon is suppressed is secured by combining the image in which the LED photoelectric flicker phenomenon is suppressed in the low sensitivity pixel 111 including the first photoelectric conversion unit 120 and the captured image of the high sensitivity pixel 110. An image can be obtained.
 つまり、1つの固体撮像装置でパルス光源によるフリッカー発生を抑制した画像信号を生成することができる。 That is, it is possible to generate an image signal in which flicker generation by a pulse light source is suppressed with one solid-state imaging device.
 ここで、電極部124aは、平面視において第2の光電変換部122を覆わない構成としてもよい。 Here, the electrode part 124a may be configured not to cover the second photoelectric conversion part 122 in a plan view.
 これによれば、第2の光電変換部122に入射する光、特に青色光の減衰を抑制することができる。 According to this, attenuation of light incident on the second photoelectric conversion unit 122, particularly blue light, can be suppressed.
 ここで、電極部124aは、平面視において第2の光電変換部122の少なくとも一部を覆う構成としてもよい。 Here, the electrode part 124a may be configured to cover at least a part of the second photoelectric conversion part 122 in plan view.
 これによれば、電荷蓄積部124の電極部124aの面積を大きくすることが可能となり、電荷蓄積量を容易に増やすことができる。ただし、電極部124aにより短波長の青色光が吸収されるため、上記の構成は、緑色光を透過するフィルタを配置した画素セル101か、赤色光を透過するフィルタを配置した画素セル101に適用し、青色光を透過するフィルタを配置した画素セル101には適用せずに電極部124aが第2のフォトダイオード122を覆われないようにしてもよい。 According to this, the area of the electrode part 124a of the charge storage part 124 can be increased, and the charge storage amount can be easily increased. However, since the short wavelength blue light is absorbed by the electrode portion 124a, the above configuration is applied to the pixel cell 101 in which a filter that transmits green light is disposed or the pixel cell 101 in which a filter that transmits red light is disposed. However, the electrode portion 124 a may not be covered with the second photodiode 122 without being applied to the pixel cell 101 in which a filter that transmits blue light is arranged.
 ここで、電極部124aは、U字形状を構成する第1、第2および第3の電極部分124a1~124a3を有し、第1の電極部分124a1は、平面視において第2の光電変換部122を覆わず、第2の電極部分124a2は、平面視において第2の光電変換部122の外周の一部を覆い、第3の電極部分124a3は、平面視において第2の光電変換部122の外周の他の一部を覆ってもよい。 Here, the electrode portion 124a includes first, second, and third electrode portions 124a1 to 124a3 that form a U-shape, and the first electrode portion 124a1 has the second photoelectric conversion portion 122 in plan view. The second electrode portion 124a2 covers a part of the outer periphery of the second photoelectric conversion unit 122 in plan view, and the third electrode portion 124a3 is the outer periphery of the second photoelectric conversion unit 122 in plan view. You may cover other part of.
 これによれば、第2の光電変換部122の感度に影響を与えず、電荷蓄積部124の電極部124aの面積を大きくすることが可能となり、電荷蓄積部124の電荷蓄積量を増やすことができる。 According to this, it is possible to increase the area of the electrode part 124a of the charge storage part 124 without affecting the sensitivity of the second photoelectric conversion part 122, and to increase the charge storage amount of the charge storage part 124. it can.
 ここで、第2の光電変換部122は、平面視において電荷蓄積部124と第2の転送トランジスタ123との間に配置されてもよい。 Here, the second photoelectric conversion unit 122 may be disposed between the charge storage unit 124 and the second transfer transistor 123 in a plan view.
 これによれば、第2のフォトダイオード122と第2の転送トランジスタのゲート電極123aの形状を維持し、光電変換の効率(感度)や、信号電荷の転送(たとえば、残像特性)に影響を及ぼすことを抑制することができる。 According to this, the shape of the second photodiode 122 and the gate electrode 123a of the second transfer transistor is maintained, and the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics) are affected. This can be suppressed.
 ここで、電極部124aは、平面視において第2の転送トランジスタ123が配置された方向とは反対方向に凸型形状を有していてもよい。 Here, the electrode part 124a may have a convex shape in a direction opposite to the direction in which the second transfer transistor 123 is arranged in a plan view.
 これによれば、第2のフォトダイオード122と第2の転送トランジスタのゲート電極123aの形状を維持し、光電変換の効率(感度)や、信号電荷の転送(たとえば、残像特性)に影響を及ぼすことなく、電荷蓄積部124の電荷蓄積量(飽和電荷量)を容易に増加させることができる。 According to this, the shape of the second photodiode 122 and the gate electrode 123a of the second transfer transistor is maintained, and the efficiency (sensitivity) of photoelectric conversion and the transfer of signal charges (for example, afterimage characteristics) are affected. Therefore, the charge accumulation amount (saturation charge amount) of the charge accumulation unit 124 can be easily increased.
 ここで、平面視において、第1の光電変換部120と第2の光電変換部122とは、行方向に対して斜め方向に隣接し、同一画素セル内の第1の光電変換部120および第2の光電変換部122それぞれの上に同一の分光特性を有するカラーフィルタ149が積層され、平面視において、第1の転送トランジスタ121が信号電荷を転送する転送方向が、第2の転送トランジスタ123が信号電荷を転送する転送方向と同一であってもよい。 Here, in a plan view, the first photoelectric conversion unit 120 and the second photoelectric conversion unit 122 are adjacent to each other in an oblique direction with respect to the row direction, and the first photoelectric conversion unit 120 and the first photoelectric conversion unit 120 in the same pixel cell. A color filter 149 having the same spectral characteristics is stacked on each of the two photoelectric conversion units 122, and the transfer direction in which the first transfer transistor 121 transfers signal charges in plan view is the second transfer transistor 123. It may be the same as the transfer direction in which signal charges are transferred.
 これによれば、転送方向を同一にすることで、第1の転送トランジスタ121と第2の転送トランジスタ123の転送バラツキによる特性差を抑制することができる。転送バラツキによる特性差には、例えば、転送時に信号電荷が第1のフォトダイオード120および/または第2のフォトダイオード122に残存する残像特性がある。 According to this, by making the transfer directions the same, it is possible to suppress a difference in characteristics due to transfer variations between the first transfer transistor 121 and the second transfer transistor 123. The characteristic difference due to transfer variation includes, for example, an afterimage characteristic in which signal charges remain in the first photodiode 120 and / or the second photodiode 122 during transfer.
 ここで、画素セル101は、第1のFD128と第2のFD129とを電気的に接続するスイッチトランジスタ125と、第1のFD128に電気的に接続されたゲート電極を有する増幅トランジスタ127とを備えていてもよい。 Here, the pixel cell 101 includes a switch transistor 125 that electrically connects the first FD 128 and the second FD 129, and an amplification transistor 127 having a gate electrode that is electrically connected to the first FD 128. It may be.
 これによれば、第1の光電変換部120と第2のフォトダイオード122とで1つの増幅トランジスタ127を共用することができる。 According to this, one amplification transistor 127 can be shared by the first photoelectric conversion unit 120 and the second photodiode 122.
 ここで、画素セル101は、半導体基板140上に形成された絶縁膜144と、第1の光電変換部120の上方において、絶縁膜144に形成された凹部に形成され、絶縁膜144よりも高い屈折率を有する第1のコア層1480と、第2の光電変換部122の上方において、絶縁膜144に形成された凹部に形成され、絶縁膜144よりも高い屈折率を有する第2のコア層1481とを備えていてもよい。 Here, the pixel cell 101 is formed in a recess formed in the insulating film 144 above the insulating film 144 formed on the semiconductor substrate 140 and the first photoelectric conversion unit 120, and is higher than the insulating film 144. A first core layer 1480 having a refractive index and a second core layer having a refractive index higher than that of the insulating film 144 and formed in a recess formed in the insulating film 144 above the second photoelectric conversion unit 122. 1481 may be provided.
 これによれば、第1のコア層1480および第2のコア層1481を導波路とすることができる。すなわち、第1のコア層1480に入射した光を第1のコア層1480と絶縁膜144との境界面で反射し、第1の光電変換部120に導くことができる。第2のコア層1481に入射した光を第2のコア層1481と絶縁膜144との境界面で反射し、第2の光電変換部122に導くことができる。その結果、第1の光電変換部120および第2の光電変換部122の集光効率を高め、隣接する画素セルへの光も漏れによる混色を低減することができる。 According to this, the first core layer 1480 and the second core layer 1481 can be waveguides. That is, light incident on the first core layer 1480 can be reflected on the boundary surface between the first core layer 1480 and the insulating film 144 and guided to the first photoelectric conversion unit 120. Light incident on the second core layer 1481 can be reflected by the boundary surface between the second core layer 1481 and the insulating film 144 and guided to the second photoelectric conversion unit 122. As a result, the light collection efficiency of the first photoelectric conversion unit 120 and the second photoelectric conversion unit 122 can be increased, and color mixing due to leakage of light to adjacent pixel cells can be reduced.
 ここで、第1のコア層1480の底面と側壁面とが成す角度は、90度より大きな第1の角度αであり、第2のコア層1481の底面と側壁面とが成す角度は、90度より大きな第2の角度βであり、第2の角度βは第1の角度αよりも大きくてもよい。 Here, the angle formed between the bottom surface of the first core layer 1480 and the side wall surface is a first angle α larger than 90 degrees, and the angle formed between the bottom surface of the second core layer 1481 and the side wall surface is 90 °. The second angle β is larger than the second angle β, and the second angle β may be larger than the first angle α.
 これにより、第2のコア層1481に入射した光がより集光されるため、隣接する画素セル101への光の漏れ込みによる混色をさらに抑制することができる。 Thereby, since the light incident on the second core layer 1481 is collected more, color mixing due to light leakage into the adjacent pixel cell 101 can be further suppressed.
 ここで、第2の転送トランジスタ123は、ゲート電極123aを有し、電極部124aと、第2の転送トランジスタ123のゲート電極123aとの距離D2は、第2のコア層1481の底面の幅D1よりも長くてもよい。 Here, the second transfer transistor 123 includes a gate electrode 123a, and the distance D2 between the electrode portion 124a and the gate electrode 123a of the second transfer transistor 123 is the width D1 of the bottom surface of the second core layer 1481. May be longer.
 これにより、第2のコア層1481は、カラーフィルタ149を通過した光を第2のフォトダイオード122に導く光導波路としての機能を有するため、光はD1の幅で集光される。D2>D1なので、光導波路によりD1の幅に集光された光が転送トランジスタ123のゲート電極123aや電荷蓄積部124の電極部124aにあたることによるケラレの発生を抑制することができる。 Thereby, since the second core layer 1481 has a function as an optical waveguide for guiding the light that has passed through the color filter 149 to the second photodiode 122, the light is condensed with a width of D1. Since D2> D1, it is possible to suppress the occurrence of vignetting caused by the light condensed to the width D1 by the optical waveguide hitting the gate electrode 123a of the transfer transistor 123 and the electrode portion 124a of the charge storage unit 124.
 ここで、第2のコア層1481は窒化シリコンで構成され、第2のコア層1481の底面の幅D1は、340nm以上であってもよい。 Here, the second core layer 1481 may be made of silicon nitride, and the width D1 of the bottom surface of the second core layer 1481 may be 340 nm or more.
 これによれば、赤色光の波長600~650nmを高屈折絶縁膜148に通す最小の幅は、高屈折絶縁膜148が窒化シリコン膜(屈折率1.9~2.0)などで形成された場合、赤色光の波長は300~340nmとなり、光導波路の幅を少なくとも340nm以上にすればよい。 According to this, the minimum width for passing the wavelength of red light of 600 to 650 nm through the high refractive insulating film 148 is such that the high refractive insulating film 148 is formed of a silicon nitride film (refractive index 1.9 to 2.0). In this case, the wavelength of red light is 300 to 340 nm, and the width of the optical waveguide may be at least 340 nm.
 ここで、導体基板140と第2のコア層1481の底面との距離D3は、半導体基板140と第1のコア層1480の底面との距離よりも、大きく、第2のコア層1481の底面は、複数の金属配線層のうち半導体基板140に最も近い金属配線層の上に位置してもよい。 Here, the distance D3 between the conductor substrate 140 and the bottom surface of the second core layer 1481 is larger than the distance between the semiconductor substrate 140 and the bottom surface of the first core layer 1480, and the bottom surface of the second core layer 1481 is The metal wiring layer may be positioned on the metal wiring layer closest to the semiconductor substrate 140 among the plurality of metal wiring layers.
 これによれば、銅配線143が形成される金属配線層の直上の絶縁層(例えばライナー膜145)をエッチストップ膜として利用することで、エッチングのバラツキによる第2のコア層1481の底面と半導体基板140との距離D3のバラツキを抑制することができる。これにより、第2の光電変換部122の感度バラツキを低減することができる。 According to this, by using an insulating layer (for example, liner film 145) immediately above the metal wiring layer on which the copper wiring 143 is formed as an etch stop film, the bottom surface of the second core layer 1481 and the semiconductor due to etching variations Variation in the distance D3 from the substrate 140 can be suppressed. Thereby, the sensitivity variation of the 2nd photoelectric conversion part 122 can be reduced.
 ここで、第1の転送トランジスタ121は第1のゲート電極121aを有し、第2の転送トランジスタ123は、第2のゲート電極123aを有し、第2の光電変換部122上にある電極部124aの膜厚Tgate1は、第1のゲート電極の膜厚Tgate2よりも薄く、かつ第2のゲート電極123aの膜厚Tgate2よりも薄くてもよい。 Here, the first transfer transistor 121 has a first gate electrode 121 a, the second transfer transistor 123 has a second gate electrode 123 a, and an electrode portion on the second photoelectric conversion unit 122. The film thickness Tgate1 of 124a may be thinner than the film thickness Tgate2 of the first gate electrode and may be thinner than the film thickness Tgate2 of the second gate electrode 123a.
 これによれば、電極部124aの厚さTgate1を薄くすることで、電極部124aによる青色光の吸収を抑制することができる。 According to this, by reducing the thickness Tgate1 of the electrode part 124a, the absorption of blue light by the electrode part 124a can be suppressed.
 ここで、画素セル101は、電極部124aに制御パルスを伝達する第1の配線(例えば銅配線143)と、第1の配線と電極部124aとを接続するコンタクト142とを有し、電極部124aのうち、第2の光電変換部122上における部分の膜厚Tgate1は、コンタクト142が接続された部分の膜厚Tgate2よりも薄くてもよい。 Here, the pixel cell 101 includes a first wiring (for example, a copper wiring 143) that transmits a control pulse to the electrode portion 124a, and a contact 142 that connects the first wiring and the electrode portion 124a. Of 124a, the thickness Tgate1 of the portion on the second photoelectric conversion unit 122 may be smaller than the thickness Tgate2 of the portion to which the contact 142 is connected.
 これによれば、コンタクト142が接続された部分の電極部124aの厚さTgate2を他のトランジスタにおけるゲート、たとえば転送トランジスタのゲート電極123aと同様の厚さにすることで、電極部124aの厚さがTgate1に比べてコンタクト142形成時における半導体基板140への金属などの汚染源の伝播を抑制することができる。 According to this, by setting the thickness Tgate2 of the electrode part 124a to which the contact 142 is connected to the same thickness as the gate of another transistor, for example, the gate electrode 123a of the transfer transistor, the thickness of the electrode part 124a. However, it is possible to suppress the propagation of a contamination source such as metal to the semiconductor substrate 140 when the contact 142 is formed, as compared with Tgate1.
 ここで、電極部124aは、半導体基板140に形成された素子分離領域の一部を覆い、電極部124aのうち素子分離領域を覆う部分に接触するコンタクト142を有していてもよい。 Here, the electrode part 124a may have a contact 142 that covers a part of the element isolation region formed in the semiconductor substrate 140 and contacts a part of the electrode part 124a that covers the element isolation region.
 これによれば、素子分離領域130上にある電極部124aにコンタクト142を形成することで、欠陥起因の暗電流や白キズといった画質劣化を招くノイズを抑制することができる。 According to this, by forming the contact 142 in the electrode part 124a on the element isolation region 130, noise that causes image quality degradation such as dark current and white scratches caused by defects can be suppressed.
 ここで、電極部124a下の絶縁膜141の膜厚Tox2は、第2の転送トランジスタ123のゲート絶縁膜の膜厚Tox1よりも薄くてもよい。 Here, the film thickness Tox2 of the insulating film 141 under the electrode portion 124a may be smaller than the film thickness Tox1 of the gate insulating film of the second transfer transistor 123.
 これによれば、電荷蓄積部124の電極部124aの面積を増やすことなく、電荷蓄積部124の最大容量を増やすことができ、電荷蓄積量を増加させることできる。 According to this, the maximum capacity of the charge storage unit 124 can be increased without increasing the area of the electrode part 124a of the charge storage unit 124, and the charge storage amount can be increased.
 ここで、画素セル101は、第1の光電変換部120上に入射される入射光を透過する第1の透過フィルタ150と、第2の光電変換部122上に入射される入射光を透過する第2の透過フィルタ153とを備え、第2の透過フィルタ153の透過率は、第1の透過フィルタ150の透過率よりも低くてもよい。 Here, the pixel cell 101 transmits the first transmission filter 150 that transmits incident light incident on the first photoelectric conversion unit 120 and the incident light incident on the second photoelectric conversion unit 122. A second transmission filter 153, and the second transmission filter 153 may have a transmittance lower than that of the first transmission filter 150.
 これによれば、第2の透過フィルタ153を配置することで、低感度画素111の感度を低下させることができる。これにより、低感度画素111の撮像可能な被写体照度L3を拡大することができる。これは、低感度画素111は常時露光動作を行うため、第2のフォトダイオード122に蓄積する信号電荷量を電子SHTにより調整しないため、低感度画素111の感度を下げる調整手段として有効である。 According to this, the sensitivity of the low-sensitivity pixel 111 can be reduced by disposing the second transmission filter 153. Thereby, the subject illuminance L3 that can be captured by the low-sensitivity pixel 111 can be increased. This is effective as an adjusting means for lowering the sensitivity of the low-sensitivity pixel 111 because the low-sensitivity pixel 111 always performs an exposure operation and the signal charge amount stored in the second photodiode 122 is not adjusted by the electron SHT.
 ここで、画素セル101は、平面視において第1の透過フィルタ150および第2の透過フィルタ153、またはカラーフィルタ149を囲む隔壁152を備えてもよい。 Here, the pixel cell 101 may include a partition wall 152 surrounding the first transmission filter 150 and the second transmission filter 153 or the color filter 149 in a plan view.
 これによれば、第1の透過フィルタ150および第2の透過フィルタ153、またはカラーフィルタ149内を斜め方向に進行する光は、隔壁152の表面に達した際に反射する。反射した光は、第1の光電変換部120または第2の光電変換部122側へと向かう。これにより、集光効率を高め、混色を低減することができる。 According to this, the light traveling in the oblique direction in the first transmission filter 150 and the second transmission filter 153 or the color filter 149 is reflected when it reaches the surface of the partition wall 152. The reflected light travels toward the first photoelectric conversion unit 120 or the second photoelectric conversion unit 122. Thereby, light collection efficiency can be increased and color mixing can be reduced.
 ここで、画素セル101は、平面視において第1の透過フィルタ150、第2の透過フィルタ153、およびカラーフィルタ149を囲む隔壁152を備えてもよい。 Here, the pixel cell 101 may include a partition wall 152 surrounding the first transmission filter 150, the second transmission filter 153, and the color filter 149 in a plan view.
 これによれば、第1の透過フィルタ150、第2の透過フィルタ153、およびカラーフィルタ149内を斜め方向に進行する光は、隔壁152の表面に達した際に反射する。反射した光は、第1の光電変換部120または第2の光電変換部122側へと向かう。これにより、集光効率を高め、混色を低減することができる。 According to this, the light traveling in the oblique direction in the first transmission filter 150, the second transmission filter 153, and the color filter 149 is reflected when reaching the surface of the partition wall 152. The reflected light travels toward the first photoelectric conversion unit 120 or the second photoelectric conversion unit 122. Thereby, light collection efficiency can be increased and color mixing can be reduced.
 以上、本発明に係る固体撮像装置について、実施の形態に基づいて説明したが、本開示は、実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、実施の形態および変形例における一部の構成要素を任意に組み合わせて構築される別の形態も、本開示の範囲内に含まれる。 As mentioned above, although the solid-state imaging device concerning the present invention was explained based on an embodiment, this indication is not limited to an embodiment. Unless departing from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in the present embodiment, and other forms constructed by arbitrarily combining some components in the embodiment and the modified examples are also possible. Are included within the scope of this disclosure.
 なお、本開示は画素の構造に依らず有効であり、例えば、裏面照射型、積層型などの固体撮像装置にも使用可能である。 Note that the present disclosure is effective regardless of the pixel structure, and can be used for, for example, a back-illuminated type, a stacked type solid-state imaging device, and the like.
 本開示は、固体撮像装置に利用可能であり、例えばビデオカメラやデジタルカメラ等に好適である。 The present disclosure can be used for a solid-state imaging device, and is suitable for, for example, a video camera or a digital camera.
100 固体撮像装置
101 画素セル
102 画素アレイ部
103 ドライバ回路
104 垂直走査回路
105 定電流源回路
106 カラム読出し回路
107 水平走査回路
110 高感度画素
111 低感度画素
120 第1のフォトダイオード(第1の光電変換部)
121 第1の転送トランジスタ
121a、123a、125a、126a、127a ゲート電極
122 第2のフォトダイオード(第2の光電変換部)
123 第2の転送トランジスタ
124 電荷蓄積部
124a 電極部
125 スイッチトランジスタ
126 リセットトランジスタ
127 増幅トランジスタ
128 第1のFD部
129 第2のFD部
130 素子分離領域
140 半導体基板
141 絶縁膜
142 コンタクト
143、146 銅配線
144 絶縁膜
145、147 ライナー膜
148 高屈折絶縁膜
149 カラーフィルタ
150 第1の透過フィルタ
151 マイクロレンズ
152 隔壁
153 第2の透過フィルタ
1480 第1のコア層
1481 第2のコア層
VL 垂直信号線
VDDC 画素電源電圧
Qs1、Qs2、Qs3 信号電荷量
L1、L2、L3 被写体照度
Tox1、Tox2 ゲート酸化膜厚
Tgate1、Tgate2 ゲート膜厚
DESCRIPTION OF SYMBOLS 100 Solid-state imaging device 101 Pixel cell 102 Pixel array part 103 Driver circuit 104 Vertical scanning circuit 105 Constant current source circuit 106 Column readout circuit 107 Horizontal scanning circuit 110 High sensitivity pixel 111 Low sensitivity pixel 120 1st photodiode (1st photoelectric device) Conversion part)
121 First transfer transistor 121a, 123a, 125a, 126a, 127a Gate electrode 122 Second photodiode (second photoelectric conversion unit)
123 Second transfer transistor 124 Charge storage unit 124a Electrode unit 125 Switch transistor 126 Reset transistor 127 Amplification transistor 128 First FD unit 129 Second FD unit 130 Element isolation region 140 Semiconductor substrate 141 Insulating film 142 Contacts 143 and 146 Copper Wiring 144 Insulating films 145, 147 Liner film 148 High refractive insulating film 149 Color filter 150 First transmission filter 151 Micro lens 152 Partition 153 Second transmission filter 1480 First core layer 1481 Second core layer VL Vertical signal line VDDC Pixel power supply voltage Qs1, Qs2, Qs3 Signal charge amounts L1, L2, L3 Subject illuminance Tox1, Tox2 Gate oxide film thickness Tgate1, Tgate2 Gate film thickness

Claims (20)

  1.  行列上に配置された複数の画素セルを有する固体撮像装置であって、
     前記複数の画素セルのそれぞれは、
     半導体基板上に形成された第1の光電変換部と、
     第1のフローティングディフュージョン部と、
     前記第1の光電変換部よって光電変換された信号電荷を前記第1のフローティングディフュージョン部に転送する第1の転送トランジスタと、
     前記第1の光電変換部よりも受光面積が小さい第2の光電変換部と、
     前記第2の光電変換部によって光電変換された信号電荷を蓄積する電荷蓄積部と、
     第2のフローティングディフュージョン部と、
     前記電荷蓄積部に蓄積された信号電荷を前記第2のフローティングディフュージョン部に転送する第2の転送トランジスタと
    を備え、
     前記電荷蓄積部は、前記半導体基板上の絶縁膜と、前記絶縁膜上に形成した電極部とを有する
    固体撮像装置。
    A solid-state imaging device having a plurality of pixel cells arranged on a matrix,
    Each of the plurality of pixel cells includes
    A first photoelectric conversion unit formed on a semiconductor substrate;
    A first floating diffusion section;
    A first transfer transistor that transfers the signal charge photoelectrically converted by the first photoelectric conversion unit to the first floating diffusion unit;
    A second photoelectric conversion unit having a light receiving area smaller than that of the first photoelectric conversion unit;
    A charge storage unit that stores the signal charges photoelectrically converted by the second photoelectric conversion unit;
    A second floating diffusion section;
    A second transfer transistor for transferring the signal charge stored in the charge storage section to the second floating diffusion section,
    The solid-state imaging device, wherein the charge storage unit includes an insulating film on the semiconductor substrate and an electrode unit formed on the insulating film.
  2.  前記電極部は、平面視において前記第2の光電変換部を覆わない
    請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the electrode unit does not cover the second photoelectric conversion unit in plan view.
  3.  前記電極部は、平面視において前記第2の光電変換部の少なくとも一部を覆う
    請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the electrode unit covers at least a part of the second photoelectric conversion unit in a plan view.
  4.  前記電極部は、U字形状を構成する第1、第2および第3の電極部分を有し、
     前記第1の電極部分は、平面視において前記第2の光電変換部を覆わず、
     前記第2の電極部分は、平面視において前記第2の光電変換部の外周の一部を覆い、
     前記第3の電極部分は、平面視において前記第2の光電変換部の外周の他の一部を覆う
    請求項1に記載の固体撮像装置。
    The electrode portion has first, second and third electrode portions constituting a U-shape,
    The first electrode portion does not cover the second photoelectric conversion unit in plan view,
    The second electrode portion covers a part of the outer periphery of the second photoelectric conversion unit in plan view,
    The solid-state imaging device according to claim 1, wherein the third electrode portion covers another part of the outer periphery of the second photoelectric conversion unit in plan view.
  5.  前記第2の光電変換部は、平面視において前記電荷蓄積部と前記第2の転送トランジスタとの間に配置される
    請求項1~4のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 1 to 4, wherein the second photoelectric conversion unit is arranged between the charge storage unit and the second transfer transistor in a plan view.
  6.  前記電極部は、平面視において前記第2の転送トランジスタが配置された方向とは反対方向に凸型形状を有している
    請求項5に記載の固体撮像装置。
    The solid-state imaging device according to claim 5, wherein the electrode portion has a convex shape in a direction opposite to a direction in which the second transfer transistor is arranged in a plan view.
  7.  平面視において、前記第1の光電変換部と前記第2の光電変換部とは、行方向に対して斜め方向に隣接し、
     同一画素セル内の第1の光電変換部および第2の光電変換部それぞれの上に同一の分光特性を有するカラーフィルタが積層され、
     平面視において、前記第1の転送トランジスタが信号電荷を転送する転送方向が、前記第2の転送トランジスタが信号電荷を転送する転送方向と同一である
    請求項1~6のいずれか1項に記載の固体撮像装置。
    In plan view, the first photoelectric conversion unit and the second photoelectric conversion unit are adjacent to each other in an oblique direction with respect to a row direction,
    A color filter having the same spectral characteristics is stacked on each of the first photoelectric conversion unit and the second photoelectric conversion unit in the same pixel cell,
    The transfer direction in which the first transfer transistor transfers a signal charge in a plan view is the same as the transfer direction in which the second transfer transistor transfers a signal charge. Solid-state imaging device.
  8.  前記複数の画素セルのそれぞれは、
     前記第1のフローティングディフュージョン部と前記第2のフローティングディフュージョン部とを電気的に接続するスイッチトランジスタと、
     前記第1のフローティングディフュージョン部に電気的に接続されたゲート電極を有する増幅トランジスタとを備える
    請求項1~7のいずれか1項に記載の固体撮像装置。
    Each of the plurality of pixel cells includes
    A switch transistor for electrically connecting the first floating diffusion portion and the second floating diffusion portion;
    The solid-state imaging device according to any one of claims 1 to 7, further comprising: an amplification transistor having a gate electrode electrically connected to the first floating diffusion portion.
  9.  前記半導体基板上に形成された絶縁膜と、
     前記第1の光電変換部の上方において、前記絶縁膜に形成された凹部に形成され、前記絶縁膜よりも高い屈折率を有する第1のコア層と、
     前記第2の光電変換部の上方において、前記絶縁膜に形成された凹部に形成され、前記絶縁膜よりも高い屈折率を有する第2のコア層とを備える
    請求項1~8のいずれか1項に記載の固体撮像装置。
    An insulating film formed on the semiconductor substrate;
    Above the first photoelectric conversion part, a first core layer formed in a recess formed in the insulating film and having a higher refractive index than the insulating film;
    9. The method according to claim 1, further comprising: a second core layer formed in a recess formed in the insulating film above the second photoelectric conversion portion and having a higher refractive index than the insulating film. The solid-state imaging device according to item.
  10.  前記第1のコア層の底面と側壁面とが成す角度は、90度より大きな第1の角度であり、
     前記第2のコア層の底面と側壁面とが成す角度は、90度より大きな第2の角度であり、
     前記第2の角度は前記第1の角度よりも大きい
    請求項9に記載の固体撮像装置。
    The angle formed by the bottom surface and the side wall surface of the first core layer is a first angle greater than 90 degrees,
    The angle formed by the bottom surface and the side wall surface of the second core layer is a second angle larger than 90 degrees,
    The solid-state imaging device according to claim 9, wherein the second angle is larger than the first angle.
  11.  前記第2の転送トランジスタは、ゲート電極を有し、
     前記電極部と、前記第2の転送トランジスタのゲート電極との距離は、前記第2のコア層の底面の幅よりも長い
    請求項9または10に記載の固体撮像装置。
    The second transfer transistor has a gate electrode;
    The solid-state imaging device according to claim 9 or 10, wherein a distance between the electrode portion and the gate electrode of the second transfer transistor is longer than a width of a bottom surface of the second core layer.
  12.  前記第2のコア層は窒化シリコンで構成され、前記第2のコア層の底面の幅は、340nm以上である
    請求項9~11のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 9 to 11, wherein the second core layer is made of silicon nitride, and a width of a bottom surface of the second core layer is 340 nm or more.
  13.  前記半導体基板と前記第2のコア層の底面との距離は、前記半導体基板と前記第1のコア層の底面との距離よりも大きく、
     前記第2のコア層底面は、複数の金属配線層のうち前記半導体基板に最も近い金属配線層の上に位置する
    請求項9~12のいずれか1項に記載の固体撮像装置。
    The distance between the semiconductor substrate and the bottom surface of the second core layer is greater than the distance between the semiconductor substrate and the bottom surface of the first core layer,
    The solid-state imaging device according to any one of claims 9 to 12, wherein the bottom surface of the second core layer is located on a metal wiring layer closest to the semiconductor substrate among a plurality of metal wiring layers.
  14.  前記第1の転送トランジスタは第1のゲート電極を有し、
     前記第2の転送トランジスタは第2のゲート電極を有し、
     前記第2の光電変換部上にある前記電極部の膜厚は、前記第1のゲート電極の膜厚よりも薄く、かつ前記第2のゲート電極の膜厚よりも薄い
    請求項3または4に記載の固体撮像装置。
    The first transfer transistor has a first gate electrode;
    The second transfer transistor has a second gate electrode;
    The film thickness of the electrode part on the second photoelectric conversion part is thinner than the film thickness of the first gate electrode and thinner than the film thickness of the second gate electrode. The solid-state imaging device described.
  15.  前記電極部に制御パルスを伝達する第1の配線と、
     前記第1の配線と前記電極部とを接続するコンタクトとを有し、
     前記電極部のうち、前記第2の光電変換部における部分の膜厚は、前記コンタクトが接続された部分の膜厚よりも薄い
    請求項14に記載の固体撮像装置。
    A first wiring for transmitting a control pulse to the electrode portion;
    A contact connecting the first wiring and the electrode portion;
    The solid-state imaging device according to claim 14, wherein a film thickness of a portion of the electrode unit in the second photoelectric conversion unit is thinner than a film thickness of a portion to which the contact is connected.
  16.  前記電極部は、前記半導体基板に形成された素子分離領域の一部を覆い、
     前記電極部のうち前記素子分離領域を覆う部分に接触するコンタクトを有する
    請求項1~14のいずれか1項に記載の固体撮像装置。
    The electrode portion covers a part of an element isolation region formed in the semiconductor substrate,
    The solid-state imaging device according to any one of claims 1 to 14, further comprising a contact that contacts a portion of the electrode portion that covers the element isolation region.
  17.  前記電極部下の前記絶縁膜の膜厚は、前記第2の転送トランジスタのゲート絶縁膜の膜厚よりも薄い
    請求項1~16のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 1 to 16, wherein a film thickness of the insulating film under the electrode portion is smaller than a film thickness of a gate insulating film of the second transfer transistor.
  18.  前記第1の光電変換部上に入射される入射光を透過する第1の透過フィルタと、
     前記第2の光電変換部上に入射される入射光を透過する第2の透過フィルタとを備え、
     前記第2の透過フィルタの透過率は、前記第1の透過フィルタの透過率よりも低い
    請求項1~6、8~17のいずれか1項に記載の固体撮像装置。
    A first transmission filter that transmits incident light incident on the first photoelectric conversion unit;
    A second transmission filter that transmits incident light incident on the second photoelectric conversion unit;
    The solid-state imaging device according to any one of claims 1 to 6, and 8 to 17, wherein the transmittance of the second transmission filter is lower than the transmittance of the first transmission filter.
  19.  同一画素セル内の第1の光電変換部および第2の光電変換部それぞれの上に同一の分光特性を有するカラーフィルタが積層され、
     平面視において前記第1の透過フィルタおよび前記第2の透過フィルタ、または前記カラーフィルタを囲む隔壁を備える
    請求項18に記載の固体撮像装置。
    A color filter having the same spectral characteristics is stacked on each of the first photoelectric conversion unit and the second photoelectric conversion unit in the same pixel cell,
    The solid-state imaging device according to claim 18, further comprising a partition wall surrounding the first transmission filter and the second transmission filter or the color filter in a plan view.
  20.  同一画素セル内の第1の光電変換部および第2の光電変換部それぞれの上に同一の分光特性を有するカラーフィルタが積層され、
     平面視において前記第1の透過フィルタ、前記第2の透過フィルタ、および前記カラーフィルタを囲む隔壁を備える
    請求項18に記載の固体撮像装置。
    A color filter having the same spectral characteristics is stacked on each of the first photoelectric conversion unit and the second photoelectric conversion unit in the same pixel cell,
    The solid-state imaging device according to claim 18, further comprising a partition wall that surrounds the first transmission filter, the second transmission filter, and the color filter in a plan view.
PCT/JP2018/005215 2017-02-27 2018-02-15 Solid-state imaging device WO2018155297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035527 2017-02-27
JP2017-035527 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155297A1 true WO2018155297A1 (en) 2018-08-30

Family

ID=63253711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005215 WO2018155297A1 (en) 2017-02-27 2018-02-15 Solid-state imaging device

Country Status (1)

Country Link
WO (1) WO2018155297A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350044B2 (en) * 2017-07-07 2022-05-31 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
WO2022149488A1 (en) * 2021-01-07 2022-07-14 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus
TWI828399B (en) * 2022-10-31 2024-01-01 力晶積成電子製造股份有限公司 Image sensor structure

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338256A (en) * 1986-08-01 1988-02-18 Nikon Corp Image sensor
JPH05121719A (en) * 1991-10-25 1993-05-18 Olympus Optical Co Ltd Solid-state image-pickup element
JPH11103044A (en) * 1997-06-20 1999-04-13 Lucent Technol Inc Mos image sensor
JP2001267543A (en) * 2000-03-21 2001-09-28 Sony Corp Solid-state image pickup device and camera system using the same
JP2003142675A (en) * 2001-07-18 2003-05-16 Hynix Semiconductor Inc Cmos image sensor
WO2005083790A1 (en) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
JP2007281875A (en) * 2006-04-06 2007-10-25 Toppan Printing Co Ltd Imaging device
JP2011015219A (en) * 2009-07-02 2011-01-20 Toshiba Corp Solid-state imaging device
JP2011061133A (en) * 2009-09-14 2011-03-24 Zycube:Kk Semiconductor image sensor and method of manufacturing the same
JP2013070245A (en) * 2011-09-22 2013-04-18 Toshiba Corp Solid-state imaging device and solid-state imaging system
US20130256510A1 (en) * 2012-03-29 2013-10-03 Omnivision Technologies, Inc. Imaging device with floating diffusion switch
JP2013211615A (en) * 2012-03-30 2013-10-10 Sony Corp Solid-state imaging device, driving method of the same and electronic apparatus
JP2013251292A (en) * 2012-05-30 2013-12-12 Panasonic Corp Solid-state image pickup device and manufacturing method thereof
JP2015176969A (en) * 2014-03-14 2015-10-05 キヤノン株式会社 Solid-state imaging apparatus and imaging system
WO2016147885A1 (en) * 2015-03-16 2016-09-22 ソニー株式会社 Solid state imaging device, solid state imaging device drive method, and electronic apparatus
JP2017028241A (en) * 2015-07-20 2017-02-02 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338256A (en) * 1986-08-01 1988-02-18 Nikon Corp Image sensor
JPH05121719A (en) * 1991-10-25 1993-05-18 Olympus Optical Co Ltd Solid-state image-pickup element
JPH11103044A (en) * 1997-06-20 1999-04-13 Lucent Technol Inc Mos image sensor
JP2001267543A (en) * 2000-03-21 2001-09-28 Sony Corp Solid-state image pickup device and camera system using the same
JP2003142675A (en) * 2001-07-18 2003-05-16 Hynix Semiconductor Inc Cmos image sensor
WO2005083790A1 (en) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
JP2007281875A (en) * 2006-04-06 2007-10-25 Toppan Printing Co Ltd Imaging device
JP2011015219A (en) * 2009-07-02 2011-01-20 Toshiba Corp Solid-state imaging device
JP2011061133A (en) * 2009-09-14 2011-03-24 Zycube:Kk Semiconductor image sensor and method of manufacturing the same
JP2013070245A (en) * 2011-09-22 2013-04-18 Toshiba Corp Solid-state imaging device and solid-state imaging system
US20130256510A1 (en) * 2012-03-29 2013-10-03 Omnivision Technologies, Inc. Imaging device with floating diffusion switch
JP2013211615A (en) * 2012-03-30 2013-10-10 Sony Corp Solid-state imaging device, driving method of the same and electronic apparatus
JP2013251292A (en) * 2012-05-30 2013-12-12 Panasonic Corp Solid-state image pickup device and manufacturing method thereof
JP2015176969A (en) * 2014-03-14 2015-10-05 キヤノン株式会社 Solid-state imaging apparatus and imaging system
WO2016147885A1 (en) * 2015-03-16 2016-09-22 ソニー株式会社 Solid state imaging device, solid state imaging device drive method, and electronic apparatus
JP2017028241A (en) * 2015-07-20 2017-02-02 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350044B2 (en) * 2017-07-07 2022-05-31 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
WO2022149488A1 (en) * 2021-01-07 2022-07-14 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus
TWI828399B (en) * 2022-10-31 2024-01-01 力晶積成電子製造股份有限公司 Image sensor structure

Similar Documents

Publication Publication Date Title
US11671721B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR101863505B1 (en) Solid-state imaging device and electronic apparatus
US8884348B2 (en) Solid-state imaging device which can expand dynamic range
US20230097274A1 (en) Imaging device including photoelectric converters and capacitive element
US9985064B2 (en) Solid-state imaging device and method of manufacturing the same, and imaging apparatus
KR101497715B1 (en) Solid-state imaging device and camera
US7875840B2 (en) Imager device with anti-fuse pixels and recessed color filter array
US20130341748A1 (en) Solid-state imaging device, manufacturing method of solid-state imaging device and electronic apparatus
JP2009277798A (en) Solid-state imaging device and electronic equipment
US20080099867A1 (en) Solid-state imaging device and electronic device
CN109922283B (en) Image pickup apparatus and control method of image pickup apparatus
WO2018155297A1 (en) Solid-state imaging device
JP2011014773A (en) Solid-state image pick-up device and method for manufacturing the same
JP5223225B2 (en) Solid-state imaging device
KR100837454B1 (en) Solid-state image sensing device
JP2008172108A (en) Solid-state image sensing device
JP2010040997A (en) Solid-state imaging element
JP2008300788A (en) Solid-state imaging element, imaging apparatus, and camera system
KR100790588B1 (en) Optical block pixel, image sensor having an optical block pixel and method for eliminating an offset and a read out noise thereof
JP2005175391A (en) Solid state imaging device and image pick-up system using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP