WO2018155244A1 - Energy recovery device and energy recovery method - Google Patents

Energy recovery device and energy recovery method Download PDF

Info

Publication number
WO2018155244A1
WO2018155244A1 PCT/JP2018/004725 JP2018004725W WO2018155244A1 WO 2018155244 A1 WO2018155244 A1 WO 2018155244A1 JP 2018004725 W JP2018004725 W JP 2018004725W WO 2018155244 A1 WO2018155244 A1 WO 2018155244A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
pressure side
fluid
inertial
frequency
Prior art date
Application number
PCT/JP2018/004725
Other languages
French (fr)
Japanese (ja)
Inventor
前川 智史
菅野 直紀
喜雄 井上
元康 園部
Original Assignee
株式会社神戸製鋼所
高知県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017155216A external-priority patent/JP6717451B2/en
Application filed by 株式会社神戸製鋼所, 高知県公立大学法人 filed Critical 株式会社神戸製鋼所
Priority to EP18758436.2A priority Critical patent/EP3569870B1/en
Priority to US16/485,370 priority patent/US10738798B2/en
Publication of WO2018155244A1 publication Critical patent/WO2018155244A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8613Control during or prevention of abnormal conditions the abnormal condition being oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/8616Control during or prevention of abnormal conditions the abnormal condition being noise or vibration

Definitions

  • the present invention relates to an energy recovery device and an energy recovery method for recovering energy of a working fluid.
  • Patent Document 1 the technique described in Patent Document 1 is known as an energy recovery device that recovers the energy of a working fluid.
  • the technology includes an inertial fluid container that communicates with the discharge side of the actuator, and a low-pressure side container and a high-pressure side container that are respectively connected in parallel to the inertial fluid container. Further, a low-pressure side switch composed of a solenoid valve is provided between the inertial fluid container and the low-pressure side container, and a high-pressure side switch composed of a solenoid valve is provided between the inertial fluid container and the high-pressure side container. It has been.
  • the high-pressure side switch and the low-pressure side switch are alternately opened and closed at a high frequency, so that the energy of the working fluid can be recovered in the high-pressure side container.
  • the present invention relates to an energy recovery device that recovers energy of a working fluid discharged from a fluid chamber, an energy recovery device capable of suppressing a decrease in energy recovery rate due to a flow rate fluctuation of the working fluid in a flow path, And an energy recovery method.
  • an energy recovery device that recovers the energy of a working fluid
  • the energy recovery device is a fluid chamber in which the working fluid is enclosed, and the volume of the fluid chamber is variable.
  • a low pressure side container having a second internal space communicating with the first internal space of the inertial fluid container and receiving the working fluid flowing out from the inertial fluid container; and a pressure higher than the second internal space of the low pressure side container
  • a high-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and has a third internal space that communicates with the first internal space of the inertial fluid container.
  • a low-pressure side switch that operates to open and close the low-pressure side opening by forming a low-pressure side opening that allows the working fluid to flow between the pressure vessel and the low-pressure side container;
  • a high-pressure side switch that operates to open and close the high-pressure side opening by forming a high-pressure side opening that allows the working fluid to flow to and from the inertial fluid container; and the low-pressure side opening and closing from the inertia fluid container
  • a switch passage that leads to the working fluid and the high-pressure side switch and guides the working fluid, and communicates the inertial fluid container with the low-pressure side container and the high-pressure side according to a reduction in the volume of the fluid chamber
  • the switch controller controls a switching frequency for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container, and includes at least the inertial fluid container and the switch channel. It is set to a frequency in the vicinity of the Nth order (N is a natural number) anti-resonance frequency of the flow path.
  • FIG. 1 is a schematic hydraulic circuit diagram of an energy recovery device according to a first embodiment of the present invention. It is the graph which showed the relationship between the opening time of the high voltage
  • the energy recovery device concerning a 1st embodiment of the present invention, it is a graph which showed an example of the relation (frequency response of flow rate variation) of the frequency of pressure variation which occurs in the flow path of working fluid, and the flow rate variation of working fluid.
  • FIG. 8A shows the time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows.
  • FIG. 8A It is a graph which shows the frequency response of the pressure fluctuation
  • FIG. 9A FIG.
  • FIG. 9A shows a time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows. It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 9A. It is a graph which shows the frequency response of the flow volume fluctuation
  • FIG. 13A It is a graph which shows the frequency response of the pressure fluctuation
  • FIG. 13A It is a graph which shows the frequency response of the pressure fluctuation
  • FIG. 14A shows a time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows. It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 14A. It is a graph which shows the frequency response of the flow volume fluctuation
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1.
  • 2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. It is the graph which expanded the periphery of the antiresonance frequency (primary) and the resonance frequency (primary) among the graphs of FIG.
  • FIG. 1 is a schematic hydraulic circuit diagram of an energy recovery device 1 according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the opening time of the high-pressure side switch and the low-pressure side switch provided in the energy recovery device 1 according to this embodiment and the opening degree of each switch.
  • the energy recovery device 1 recovers the energy of the working fluid. Examples of the working fluid include hydraulic oil, water, and air, but are not particularly limited.
  • a hydraulic circuit fluid circuit
  • energy input to the hydraulic cylinder is converted into hydraulic oil energy
  • the energy recovery device 1 recovers the energy of the hydraulic oil. To do.
  • an energy recovery apparatus 1 includes a hydraulic cylinder 20, an inertia fluid chamber 21 (inertia fluid container), a low pressure side switch 3L, a high pressure side switch 3H, and a low pressure source LP (low pressure side container). ), A high pressure source HP (high pressure side container), and a control unit 5 (switch control unit).
  • the hydraulic cylinder 20 includes a cylindrical cylinder body 201 and a piston 202 that can reciprocate within the cylinder body 201.
  • a rod 202 ⁇ / b> A is connected to one end side of the piston 202.
  • the piston 202 partitions the internal space of the cylinder body 201 into a piston side chamber 203 (fluid chamber) and a rod side chamber 204.
  • the hydraulic cylinder 20 can input and output energy with the outside through the rod 202A.
  • At least the piston side chamber 203 of the hydraulic cylinder 20 is filled with hydraulic oil. As shown in FIG. 1, when an external force F is applied to the rod 202A, the piston 202 moves so that the volume of the piston side chamber 203 is reduced.
  • the piston side chamber 203 constitutes a fluid chamber of the present invention.
  • the piston side chamber 203 is filled with hydraulic oil, and the volume of the piston side chamber 203 is variable.
  • the inertial fluid chamber 21 includes a cylindrical internal space (first internal space) communicating with the piston side chamber 203 of the hydraulic cylinder 20.
  • the inertial fluid chamber 21 receives the hydraulic oil discharged from the piston side chamber 203 that is contracted as the piston 202 moves.
  • the inertial fluid chamber 21 has a pipe shape, and the inertial fluid chamber 21 has a circular cross-sectional shape.
  • the inertia fluid chamber 21 is a cylindrical member (straight pipe shape) extending linearly along the direction of the flow of hydraulic oil.
  • the volume of the internal space of the inertial fluid chamber 21 is smaller than the volume of the internal space of the hydraulic cylinder 20.
  • the internal space of the inertial fluid chamber 21 is filled with hydraulic oil.
  • a low pressure pipe PL and a high pressure pipe PH are connected in parallel to a fluid chamber outlet 210 that is an outlet of the inertial fluid chamber 21.
  • the flow path connected to the fluid chamber outlet 210 is branched into two immediately after the fluid chamber outlet 210.
  • the low pressure source LP is connected to the end of the low pressure pipe PL.
  • the low-pressure source LP has an internal space (second internal space).
  • the internal space of the low pressure source LP communicates with the inertial fluid chamber 21 via the low pressure pipe PL.
  • the low pressure source LP receives the hydraulic oil that has flowed out of the inertial fluid chamber 21.
  • the low pressure source LP is, for example, a tank for storing hydraulic oil.
  • the internal space of the low pressure source LP is normally kept at atmospheric pressure. As a result, the pressure of the hydraulic oil in the low pressure source LP is substantially equal to the atmospheric pressure, and is set to be lower than the internal pressure of the piston side chamber 203.
  • the low pressure side switch 3L is disposed between the inertial fluid chamber 21 and the low pressure source LP.
  • the low pressure side switch 3L is a solenoid valve.
  • the low pressure side switch 3L forms an unillustrated opening (low pressure side opening) that permits the flow of hydraulic oil between the inertial fluid chamber 21 and the low pressure source LP, and opens and closes the opening. Operate. That is, the low pressure side switch 3L communicates and blocks the inertial fluid chamber 21 and the low pressure source LP.
  • the high pressure source HP is connected to the end of the high pressure pipe PH.
  • the high pressure source HP includes an internal space (third internal space).
  • the internal space of the high pressure source HP communicates with the inertial fluid chamber 21 via the high pressure pipe PH.
  • the high pressure source HP receives the hydraulic fluid that has flowed out of the inertial fluid chamber 21.
  • the high pressure source HP may be a tank in which hydraulic oil having a higher pressure than the low pressure source LP is accumulated, or an accumulator.
  • the internal space of the high-pressure source HP is set to a pressure higher than at least the internal space of the low-pressure source LP. In this embodiment, the internal space is set to a pressure higher than the pressure of the piston-side chamber 203.
  • the high-pressure side switch 3H is disposed between the inertial fluid chamber 21 and the high-pressure source HP.
  • the high-pressure side switch 3H is a solenoid valve.
  • the high-pressure side switch 3H forms an opening (not shown) (low-pressure side opening) that allows the working oil to flow between the inertial fluid chamber 21 and the high-pressure source HP, and opens and closes the opening. Operate. That is, the high-pressure side switch 3H communicates and blocks the inertial fluid chamber 21 and the high-pressure source HP.
  • a region from the fluid chamber outlet 210 to the opening of the low-pressure side switch 3L is defined as a low-pressure side branch 31.
  • a region from the fluid chamber outlet 210 to the opening of the high-pressure side switch 3 ⁇ / b> H in the high-pressure pipe PH is defined as a high-pressure side branch path 32.
  • the low-pressure side branch path 31 and the high-pressure side branch path 32 constitute the switch channel of the present invention.
  • the switch channel is a channel (pipe) that is arranged so as to branch from the fluid chamber outlet 210 of the inertial fluid chamber 21 and guides hydraulic oil to the low pressure side switch 3L and the high pressure side switch 3H. .
  • the control unit 5 controls the operation of the high pressure side switch 3H and the low pressure side switch 3L.
  • the control unit 5 has a function of instructing the switching timing to the high voltage side switch 3H and the low voltage side switch 3L.
  • the control unit 5 controls the low-pressure side switch 3L and the high-pressure side opening / closing so that the communication destination of the inertial fluid chamber 21 is alternately switched between the low-pressure source LP and the high-pressure source HP according to the reduction in the volume of the piston-side chamber 203.
  • the opening / closing operation of the device 3H is controlled.
  • the hydraulic oil in the inertial fluid chamber 21 flows into the low-pressure source LP. At this time, a fluid inertia force is generated in the internal space of the inertial fluid chamber 21 by the flow of the hydraulic oil.
  • the controller 5 closes the opening of the low pressure side switch 3L and opens the opening of the high pressure side switch 3H, the high pressure source HP is generated by the inertial force of the fluid generated in the inertia fluid chamber 21 as described above.
  • the hydraulic oil can be poured into and accumulated.
  • the control part 5 can recover the inertial force of the fluid by closing the high pressure side switch 3H again and opening the low pressure side switch 3L. For this reason, the control part 5 switches the switching period of the low voltage
  • a hydraulic device a hydraulic motor or a hydraulic pump
  • control unit 5 when performing the energy recovery operation, alternately switches the opening and closing operations of low-pressure side switch 3L and high-pressure side switch 3H at high speed.
  • the control unit 5 includes a control current output unit, a PWM converter, and a drive circuit.
  • the control current output unit outputs a pulse signal for controlling the switching operation of the low voltage side switch 3L and the high voltage side switch 3H.
  • the pulse signal is composed of a predetermined rectangular wave, and the open / close times of the low-voltage side switch 3L and the high-voltage side switch 3H are controlled by the duty ratio d of the pulse signal.
  • the duty ratio d is defined by the following equation 1.
  • T1 is a time (cycle) per cycle of opening / closing of the low-voltage side switch 3L and the high-voltage side switch 3H
  • T2 is a time during which the high-voltage side switch 3H is open in one cycle.
  • the duty ratio d defined by Equation 1 corresponds to the high-pressure side duty ratio d1 for controlling the opening time of the high-pressure side opening 3H within the period T1.
  • the time during which the low pressure side switch 3L is open corresponds to T1-T2 in FIG. Therefore, the low-pressure side duty ratio d2 for controlling the opening time of the low-pressure side opening 3L within the period T1 corresponds to 1-d1.
  • the frequency of the pulse signal is controlled as a switching frequency described later.
  • the flow path of the hydraulic oil discharged from the piston side chamber 203 of the hydraulic cylinder 20 includes a flow path (low pressure pipe PL) from the inertia fluid chamber 21 to the low pressure source LP and a high pressure from the inertia fluid chamber 21. And a flow path (high-pressure pipe PH) to the source HP. Since these flow paths are composed of piping or the like, predetermined vibrations are generated according to the flow of hydraulic oil. In addition, when the flow path shown in FIG. 1 is a complete rigid body, such vibration does not occur. The vibration of the flow path (pipe) causes pulsation of the hydraulic oil and affects the flow of the hydraulic oil.
  • FIG. 3 is a graph showing an example of the relationship (frequency response of flow rate fluctuation) between the frequency of pressure fluctuation generated in the flow path of hydraulic fluid and the flow rate fluctuation of hydraulic oil in the energy recovery apparatus 1 according to the present embodiment. is there.
  • the high pressure source HP with the opening of the high pressure side switch 3H fully opened (free end) and the opening of the low pressure side switch 3L fully closed (fixed end).
  • a pressure fluctuation that fluctuates in a sine wave is forcibly applied.
  • FIG. 3 is a waveform showing the flow rate fluctuation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 in this case.
  • the data in FIG. 3 may be calculated by simulation, or may be measured by a flow meter provided as a test near the fluid chamber outlet 210.
  • the magnitude of the flow rate variation of the hydraulic oil varies depending on the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path of FIG. 1.
  • “1” shown in the graph of FIG. 3 is the anti-resonance primary frequency of the flow path (system)
  • “2” is the resonance primary frequency
  • “3” is the anti-resonance secondary frequency.
  • "4" is the resonant secondary frequency.
  • the fluctuation in the flow rate of the hydraulic oil at the resonance frequency is a maximum value
  • the fluctuation in the flow rate of the hydraulic oil at the anti-resonance frequency is a minimum value.
  • the resonance frequency is twice the antiresonance frequency.
  • the resonance primary frequency “2” is approximately twice the anti-resonance primary frequency “1”.
  • the switching frequency f in the control of the low pressure side switch 3L and the high pressure side switch 3H by the control unit 5 is suitably set.
  • the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is determined from the anti-resonance points (“1”, “3”... Is set near the frequency.
  • control unit 5 sets at least the inertia fluid chamber 21 and the switch channel (the low-pressure side branch channel 31, the high-pressure channel 31) to switch the communication destination of the inertia fluid chamber 21 between the low pressure source LP and the high pressure source HP.
  • the frequency is set in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic oil flow path including the side branch path 32). As a result, as shown in FIG. 3, it is possible to reduce fluctuations in the flow rate of the hydraulic oil as compared with other frequency regions.
  • FIG. 4B to 4E correspond to the control of the switch shown in FIG. 4A.
  • FIG. 4B is a graph showing the time transition of the hydraulic oil pressure in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 4C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L.
  • FIG. 4D is a graph showing the frequency response of the hydraulic oil pressure fluctuation (FIG. 4B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. In other words, FIG. 4D shows the result of processing the pressure fluctuation data of FIG.
  • FIG. 4E is a graph showing the frequency response of the flow rate fluctuation (FIG. 4C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 4E shows the result of processing the flow rate fluctuation data in the vicinity of the fluid chamber outlet 210 in FIG. 4C by known frequency analysis (hereinafter, FIG. 5E, FIG. 8E, FIG. 9E, FIG. 13E and FIG. The same applies to 14E).
  • a region H is a time during which only the high-pressure side switch 3H is opened and the inertial fluid chamber 21 communicates with the high-pressure source HP. This corresponds to the time for the hydraulic oil to flow toward (the high-pressure side switch passage flow rate is +).
  • Region L is a time during which only the low-pressure side switch 3L is opened and the inertial fluid chamber 21 communicates with the low-pressure source LP, and hydraulic oil flows from the inertial fluid chamber 21 toward the low-pressure source LP in setting. Corresponds to time (the low-pressure side switch passage flow rate is +).
  • the definition of the regions H and L is the same in the later graphs.
  • FIG. 5A is a graph showing the time transition of the opening degree of the high-pressure side switch 3H and the low-pressure side switch 3L.
  • the aforementioned duty ratio d 0.5.
  • 5B to 5E correspond to the control of the switch shown in FIG. 5A.
  • FIG. 5B is a graph showing the time transition of the pressure of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 5C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is.
  • FIG. 5D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 5B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 5E is a graph showing the frequency response of the flow rate variation (FIG. 5C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • inertial fluid chamber 21 is in communication with high pressure source HP, but hydraulic oil flows backward from high pressure source HP toward inertial fluid chamber 21 (high pressure side).
  • the flow rate through the switch is-). This phenomenon is caused by the fact that the switching fluctuation f of each switch is set to the resonance primary frequency of the system, so that the flow fluctuation of the resonance primary frequency component is greatly excited as shown in FIG. 5E (FIG. 5E). Arrow “1”). In this case, it becomes difficult to prevent a decrease in the amount of recovered energy when recovering the energy of the hydraulic oil.
  • the control unit 5 sets at least the inertia fluid chamber 21 and the switch flow path to the switching frequency f for switching the communication destination of the inertia fluid chamber 21 between the low pressure source LP and the high pressure source HP.
  • the frequency is set in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic oil flow path including the (low pressure side branch path 31 and high pressure side branch path 32). For this reason, the fluctuation
  • control unit 5 sets the switching frequency f to a frequency in the vicinity of the primary anti-resonance frequency of the hydraulic oil flow path. In this case, it is possible to further suppress the fluctuation in the flow rate of the hydraulic oil that occurs due to the resonance of the flow path of the hydraulic oil including the inertial fluid chamber 21 and the switch flow path (the low pressure side branch path 31 and the high pressure side branch path 32). it can.
  • the energy recovery device 1 (FIG. 1) includes an inertial fluid chamber 22.
  • FIG. 6 is a cross-sectional view of the inertial fluid chamber 22.
  • Region (A) in FIG. 6 corresponds to a cross-sectional view of inertial fluid chamber 22 cut along the longitudinal direction (direction in which hydraulic fluid flows), and region (B) represents inertial fluid chamber 22 in the radial direction (operational). This corresponds to a cross-sectional view taken along the direction in which the oil flows.
  • the inertial fluid chamber 22 has a cylindrical internal space communicating with the piston side chamber 203 of the hydraulic cylinder 20 (FIG. 1).
  • the inertial fluid chamber 22 receives hydraulic oil discharged from the piston side chamber 203 as the piston 202 moves.
  • the inertial fluid chamber 22 has a pipe shape, and the inertial fluid chamber 22 has a circular cross-sectional shape.
  • the volume of the internal space of the inertial fluid chamber 22 is smaller than the volume of the internal space of the hydraulic cylinder 20.
  • the internal space of the inertial fluid chamber 22 is filled with hydraulic oil.
  • a fluid chamber inlet 220 ⁇ / b> A that is an inlet of the inertial fluid chamber 22 communicates with the piston-side chamber 203 of the hydraulic cylinder 20.
  • a low pressure pipe PL and a high pressure pipe PH (FIG. 1) are connected in parallel to the fluid chamber outlet 220B which is the outlet of the inertial fluid chamber 22.
  • the inertial fluid chamber 22 includes a first fluid chamber 221 (first conduit), a second fluid chamber 222 (third conduit), and an intermediate fluid chamber 223 (second conduit).
  • the inner diameter of the intermediate fluid chamber 223 is set larger than the inner diameters of the first fluid chamber 221 and the second fluid chamber 222. Further, the axial length of the intermediate fluid chamber 223 is set to about one-fourth of the entire inertial fluid chamber 22.
  • the cross-sectional area of the intermediate fluid chamber 223 is preferably set to 2 to 3 times the cross-sectional areas of the first fluid chamber 221 and the second fluid chamber 222. Note that the inner diameter of the first fluid chamber 221 and the inner diameter of the second fluid chamber 222 may be the same or different from each other.
  • the inner diameter of the first fluid chamber 221 and the inner diameter of the second fluid chamber 222 are set to the same value.
  • the length of the first fluid chamber 221 is four times 15 times the length of the second fluid chamber 222.
  • the length of the intermediate fluid chamber 223 is set to eight times of 15 times L and the length of the intermediate fluid chamber 223 is set to three times of 15 times L.
  • L 3000 (mm).
  • FIG. 7 is a graph showing an example of the relationship (frequency response of flow rate fluctuation) between the frequency of pressure fluctuation generated in the hydraulic oil flow path and the flow fluctuation of hydraulic oil in the energy recovery apparatus 1 according to the present embodiment.
  • the inertial fluid chamber 22 is arranged instead of the inertial fluid chamber 21, the opening of the high-pressure side switch 3H is fully opened (free end), and the opening of the low-pressure side switch 3L is fully closed ( In the state of the fixed end, a pressure fluctuation that fluctuates in a sine wave is forcibly applied to the high-pressure source HP.
  • FIG. 1 the inertial fluid chamber 22 is arranged instead of the inertial fluid chamber 21, the opening of the high-pressure side switch 3H is fully opened (free end), and the opening of the low-pressure side switch 3L is fully closed ( In the state of the fixed end, a pressure fluctuation that fluctuates in a sine wave is forcibly applied to the high-pressure source HP.
  • FIG. 7 is a waveform showing the flow rate fluctuation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22 in this case. Note that the data in FIG. 7 may be calculated by simulation, as in FIG. 3, or may be measured by a flow meter provided as a test near the fluid chamber outlet 220B.
  • the magnitude of the flow rate variation of the hydraulic oil varies depending on the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path.
  • “1” shown in the graph of FIG. 7 is the anti-resonance primary frequency of the flow path (system)
  • “2” is the resonance primary frequency
  • “3” is the anti-resonance secondary frequency
  • Yes is the resonant secondary frequency.
  • the antiresonance frequency and the resonance frequency appear alternately.
  • the resonance primary frequency “2” is smaller than twice the anti-resonance primary frequency “1”.
  • the resonance secondary frequency “2 ′” of the system is close to the higher order frequency of the third or higher fundamental frequency. Since the magnitude of the resonant secondary frequency component is smaller than the magnitude of the resonant primary frequency component of the flow fluctuation, the influence is small.
  • FIG. 8A is a graph which shows the time transition of the opening degree of the high voltage
  • FIG. 8B is a graph showing the time transition of the pressure fluctuation of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 8C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is.
  • FIG. 8D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 8B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • FIG. 8E is a graph showing the frequency response of the flow rate fluctuation (FIG. 8C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
  • a region H in FIG. 8C is a state where the inertial fluid chamber 21 communicates with the high-pressure source HP, but there is a time during which the hydraulic oil flows backward from the high-pressure source HP toward the inertial fluid chamber 21 (the high-pressure side).
  • the flow rate through the switch is-).
  • the resonance frequency is twice the anti-resonance frequency.
  • the resonance primary frequency (arrow “2” in FIG. 8D) exists near the secondary frequency (double frequency) of the fundamental frequency (arrow “1” in FIG. 8D).
  • the secondary component of the fundamental frequency of flow fluctuation (arrow “2” in FIG. 8E) is greatly excited, and a backflow of hydraulic oil occurs. In this case, it becomes difficult to prevent a decrease in the amount of recovered energy when recovering the energy of the hydraulic oil.
  • FIG. 9A is a graph which shows the time transition of the opening degree of the high voltage
  • FIG. 9A is a graph showing the time transition of the pressure fluctuation of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22.
  • FIG. 9C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is.
  • FIG. 9D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 9B) in the vicinity of the fluid chamber outlet 220 ⁇ / b> B of the inertial fluid chamber 22.
  • FIG. 9E is a graph showing the frequency response of the flow rate fluctuation (FIG. 9C) of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22.
  • Region H in FIG. 9C is a state where the inertial fluid chamber 22 communicates with the high-pressure source HP, and there is a time during which hydraulic oil flows backward from the high-pressure source HP toward the inertial fluid chamber 22 (high-pressure side opening / closing).
  • the flow rate through the container is-).
  • the backflow of the hydraulic oil is less than in FIG. 8C.
  • the inertial fluid chamber 21 includes the intermediate fluid chamber 223, the secondary frequency of the fundamental frequency (arrow “2 ′” in FIG. 7) from the resonance primary frequency of the system (arrow “2” in FIG. 7), FIG. 9D arrow “2”) is off (shifted).
  • the secondary frequency component (arrow “2” in FIG. 9E) of the fundamental frequency of flow fluctuation in FIG. 9E is smaller than the arrow “2” in FIG. 8E.
  • FIG. 9C the flow rate of the working oil that flows backward is smaller than that in FIG. 8C, and a decrease in the energy recovery amount is suppressed when the energy of the working oil is recovered.
  • the inertial fluid chamber 22 has a frequency that is twice the primary anti-resonance frequency of the hydraulic oil flow path deviates from the primary resonant frequency of the hydraulic oil flow path. It has a shape. For this reason, even when a frequency twice as high as the primary anti-resonance frequency of the hydraulic oil flow path is excited, fluctuations in the flow volume of the hydraulic oil that occur due to resonance of the hydraulic oil flow path are suppressed. be able to.
  • the inertial fluid chamber 22 is a cylindrical member extending along the direction of hydraulic oil flow, and includes a first fluid chamber 221 (first pipe line) communicating with the piston-side chamber 203, and a first fluid chamber 221.
  • first fluid chamber 221 first pipe line
  • first fluid chamber 2221 second pipe
  • second fluid chamber 2223 second pipe
  • second fluid chamber 222 third pipe line
  • the energy recovery device 1 including the inertial fluid chamber 21 formed of a cylindrical member (straight pipe shape) extending linearly along the direction of the flow of the hydraulic oil.
  • the control unit 5 desirably sets the duty ratio d in the range of 0.45 to 0.55. . In this case, it is possible to stably suppress fluctuations in the flow rate of the hydraulic fluid that occurs in association with the resonance of the hydraulic fluid passage including the inertia fluid chamber 21 and the switch passage.
  • the energy recovery device 1 (FIG. 1) includes an inertial fluid chamber 23.
  • FIG. 10 is a cross-sectional view of the inertial fluid chamber 23.
  • Region (A) in FIG. 10 corresponds to a cross-sectional view of inertial fluid chamber 23 cut along the longitudinal direction (direction in which hydraulic oil flows), and region (B) represents inertial fluid chamber 23 in the radial direction (operational). This corresponds to a cross-sectional view taken along the direction in which the oil flows.
  • the inertial fluid chamber 23 has a cylindrical internal space communicating with the piston side chamber 203 of the hydraulic cylinder 20 (FIG. 1).
  • the inertial fluid chamber 23 receives hydraulic oil discharged from the piston side chamber 203 as the piston 202 moves.
  • the inertial fluid chamber 23 has a pipe shape, and the inertial fluid chamber 23 has a circular cross-sectional shape.
  • the volume of the internal space of the inertial fluid chamber 23 is smaller than the volume of the internal space of the hydraulic cylinder 20.
  • the internal space of the inertial fluid chamber 23 is filled with hydraulic oil.
  • the inertial fluid chamber 23 includes a fluid chamber inlet 230A, a fluid chamber outlet 230B, and a plurality of sub-fluid chambers (a third fluid chamber 231, a fourth fluid chamber 232, and a fifth fluid chamber 233) (a plurality of pipelines).
  • the fluid chamber inlet 230 ⁇ / b> A is an inlet of the inertial fluid chamber 23 and communicates with the piston-side chamber 203 of the hydraulic cylinder 20.
  • the fluid chamber outlet 230B is an outlet of the inertial fluid chamber 23, and the low pressure pipe PL and the high pressure pipe PH (FIG. 1) are connected (communicated) in parallel.
  • the inertial fluid chamber 23 includes the third fluid chamber 231 on the most downstream side, the fourth fluid chamber 232, and the fifth fluid chamber 233 on the most upstream side.
  • the fifth fluid chamber 233, the fourth fluid chamber 232, and the third fluid chamber 231 are sequentially arranged from the fluid chamber inlet 230A to the fluid chamber outlet 230B, and the flow of hydraulic oil
  • the cross-sectional area of each fluid chamber in the cross section orthogonal to the direction is set so as to gradually decrease along the flow direction of the hydraulic oil. Note that the cross-sectional areas of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 223 are constant.
  • the inertial fluid chamber 23 includes a three-stage pipeline, but as described later, the inertial fluid chamber 23 may include a four-stage or more pipeline.
  • the total length of inertial fluid chamber 23 along the direction of hydraulic oil flow is defined as L (mm).
  • the lengths of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 233 are set to L / 3, in other words, one third of L.
  • the cross-sectional areas of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 233 are defined as A P1 , A P2 , and A P3 , respectively (A P1 ⁇ A P2 ⁇ A P3 ).
  • it is desirable that the ratio of each cross-sectional area satisfies the following expressions 2 and 3.
  • a 2 A P2 / A P1 ⁇ 5 (Formula 2)
  • a 3 A P3 / A P1 ⁇ 5 (Formula 3)
  • FIGS. 11 and 12 show an example of the relationship between the frequency of the pressure fluctuation generated in the hydraulic oil flow path and the flow fluctuation of the hydraulic oil (frequency response of the flow fluctuation) in the energy recovery device 1 according to the present embodiment. And corresponds to FIG. 3 of the first embodiment. That is, in FIG. 1, an inertial fluid chamber 23 is arranged instead of the inertial fluid chamber 21, the opening of the high-pressure side switch 3H is fully opened (free end), and the opening of the low-pressure side switch 3L is fully closed ( In the state of the fixed end, a pressure fluctuation that fluctuates in a sine wave is forcibly applied to the high-pressure source HP.
  • FIGS. 11 and 12 are waveforms showing the flow rate variation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 230B of the inertial fluid chamber 23 in this case, and correspond to FIG. 3 of the first embodiment.
  • the total length L of the inertial fluid chamber 23 is set to 3 m
  • the total length L of the inertial fluid chamber 23 is set to 9 m.
  • the data in FIGS. 11 and 12 may be calculated by simulation as in FIG. 3, or may be measured by a flow meter provided experimentally near the fluid chamber outlet 230B.
  • the flow rate variation of the hydraulic fluid is determined according to the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path.
  • the size changes.
  • “1” shown in the graph of FIG. 11 is the anti-resonance primary frequency of the flow path (system)
  • “2” is the resonance primary frequency
  • “3” is the anti-resonance secondary frequency
  • “4” is the resonant secondary frequency
  • “5” is the anti-resonant tertiary frequency (the same applies to FIG. 12).
  • the antiresonance frequency and the resonance frequency appear alternately. Then, as shown in FIG.
  • the antiresonance secondary frequency is twice (90 Hz) the antiresonance primary frequency (45 Hz), and the antiresonance tertiary frequency is Is three times the anti-resonant primary frequency (135 Hz).
  • 13A to 13E correspond to FIGS. 3A to 3E of the first embodiment.
  • the aforementioned duty ratio d is set to 0.75.
  • the inertial fluid chamber 23 has a shape in which a plurality of sub-fluid chambers (pipes) are reduced in stages, so that the flow rate fluctuation of the hydraulic oil is reduced and the energy regeneration rate is improved.
  • the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is set to the anti-resonant primary frequency (frequency in FIG. 3).
  • the periodic reverse flow portion where the flow rate is zero or less
  • the aforementioned duty ratio d is set to 0.75.
  • FIG. 14C compared with FIG. 8C, the generation
  • the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is set to a low frequency, the flow fluctuation of the hydraulic oil is reduced and the energy of the hydraulic oil can be efficiently regenerated. .
  • the flow fluctuation of the second-order fundamental frequency component is suppressed (FIG. 14E).
  • the switching frequency f can be set lower than that in FIG. 13 group. Accordingly, since the switching response performance required for the high-pressure side switch 3H and the low-pressure side switch 3L can be lowered, the energy regeneration of the hydraulic oil can be realized at a lower cost.
  • the inertial fluid chamber 23 includes a plurality of sub fluid chambers from the fluid chamber inlet 230A toward the fluid chamber outlet 230B. These fluid chambers are connected so that the cross-sectional area is gradually reduced. Then, when the ratio of each cross-sectional area is set to a predetermined value and optimized so that the switching frequency f is set to the anti-resonant primary frequency of the hydraulic oil flow path, the flow fluctuation of the hydraulic oil is changed. Can be reduced.
  • the frequency response curve can be changed as shown in FIG. 3, FIG. 11, and FIG.
  • the primary anti-resonance frequency of the system is increased compared to the straight pipe shape (straight), and the third-order anti-resonance frequency is increased. Decrease.
  • the secondary antiresonance frequency does not change greatly.
  • the secondary and tertiary antiresonance frequencies approach an integral multiple (2 times, 3 times) of the primary antiresonance frequency.
  • the shape of the inertial fluid chamber 23 is not limited to a three-stage configuration.
  • the inertial fluid chamber 23 may have four or five or more stages.
  • the cross-sectional area of the inertial fluid chamber 23 is reduced stepwise, and the ratio of the cross-sectional areas is set as described above, so that fluctuations in the flow rate of the hydraulic oil are reduced and a high energy regeneration rate is achieved. Secured. Further, in FIGS. 13 and 14 described above, the duty ratio is 0.75, but the same effect is exhibited under other conditions.
  • the present invention is limited to the anti-resonant secondary frequency being twice the anti-resonant primary frequency and the anti-resonant tertiary frequency being three times the anti-resonant primary frequency.
  • the antiresonance secondary frequency may be in the vicinity of twice the antiresonance primary frequency, and the antiresonance tertiary frequency may be in the vicinity of three times the antiresonance primary frequency. Further, at least the antiresonant secondary frequency may be in the vicinity of twice the antiresonant primary frequency. In this case, the neighborhood may be set in a range of ⁇ 5% of the target frequency.
  • the switching frequency f of the low pressure side switch 3L and the high pressure side switch 3H controlled by the control unit 5 is set in the vicinity of the anti-resonance frequency of the flow path (system) through which the hydraulic oil (working fluid) flows. It is desirable.
  • the antiresonance frequency is not limited to the first order, and may be a second order or third order (Nth order, N is a natural number) antiresonance frequency. As shown in FIG. 3, there is a region where the flow rate fluctuation increases as the order increases even at the anti-resonance frequency. For this reason, it is desirable that the switching frequency f be set in the vicinity of the primary anti-resonance frequency.
  • the primary anti-resonance frequency (arrow “1”) is frn (Hz)
  • the primary resonance frequency (arrow “2”) is frt (Hz)
  • the flow rate of hydraulic oil at each frequency When the fluctuations are Vfrn (L / min / (kgf / cm 2 )) and Vfrt (L / min / (kgf / cm 2 )), it is desirable that the set switching frequency f satisfies the following formula 4. . f ⁇ (frn + frt) / 2 (Formula 4) In this case, the switching frequency f is set at a position closer to the primary anti-resonance frequency frn than at least the primary resonance frequency frt.
  • the set switching frequency f satisfies the following formula 5.
  • f ⁇ frn / 2 (Formula 5)
  • the switching frequency f is desirably a frequency that is at least higher than half the frequency of the first-order antiresonance frequency frn.
  • the switching frequency f is not too close to 0, and an increase in flow rate fluctuation is suppressed (FIG. 3). Therefore, it is possible to more stably suppress fluctuations in the flow rate of the hydraulic oil that occurs with the resonance of the flow path of the hydraulic oil.
  • Vf (Vfrn + Vfrt) / 2 (Expression 6)
  • Vf the flow rate fluctuation Vf at the switching frequency f is set in a region closer to the flow rate fluctuation Vfrn at the primary anti-resonance frequency frn than at least the flow rate fluctuation Vfrt at the primary resonance frequency frt. Therefore, increase in flow rate fluctuation and backflow of hydraulic oil are suppressed. As a result, it is possible to more stably suppress fluctuations in the flow rate of the hydraulic oil that occurs with the resonance of the flow path of the hydraulic oil. In this case as well, it is more desirable that the above Expression 5 is satisfied.
  • FIG. 15 is a graph group corresponding to FIG. 4C, and is a graph showing the time transition of the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 in the energy recovery device 1 shown in FIG. 1.
  • the switching frequency f is set to 72.5 Hz
  • the switching frequency f is set to 80 Hz in FIG. 15B
  • the switching frequency f is set to 88 Hz in FIG. 15C
  • the switching frequency f is set to 100 Hz in FIG.
  • the switching frequency f is set to 105 Hz
  • the switching frequency f is set to 110 Hz
  • FIG. 15G the switching frequency f is set to 125 Hz.
  • the aforementioned duty ratio d 0.5.
  • FIG. 15A the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is periodically negative, and a reverse flow is generated.
  • FIG. 15B the flow rate of the hydraulic oil instantaneously becomes negative, but no back flow actually occurred.
  • FIGS. 15C and 15D the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is continuously positive, and the hydraulic oil is stably recovered by the high-pressure source HP. .
  • FIG. 15E as in FIG. 15B, although the flow rate of the hydraulic oil is instantaneously negative, no back flow actually occurred.
  • 15F and 15G similarly to FIG. 15A, the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is periodically negative, and a backflow is generated.
  • FIG. 16 is an enlarged graph around the anti-resonance frequency (primary) and the resonance frequency (primary) in the graph of FIG. From the results of FIG. 15A to FIG. 15G, when the switching frequency f is set in the range of 77.5 Hz to 100 Hz (the following expression 7), the backflow of hydraulic oil does not occur and stable energy recovery can be realized. It is said. That is, when the anti-resonance frequency (primary) of the flow path of the energy recovery device 1 is 88 Hz, 77.5 ⁇ f ⁇ 100 (Hz) (Expression 7) It is desirable that this relationship is satisfied.
  • the inventors of the present invention changed the length of the inertial fluid chamber 21 of the energy recovery device 1 and the lengths of the low pressure side branch path 31 and the high pressure side branch path 32 at a plurality of levels, and evaluated the same as described above. As a result, it was confirmed that when the following formula 8 is satisfied, energy recovery in which backflow is similarly suppressed is realized.
  • the energy recovery method according to the present invention is an energy recovery method for recovering the energy of hydraulic oil, which is a fluid chamber in which hydraulic oil is enclosed, and the volume of the fluid chamber is variable.
  • the inertial fluid container communicating with the fluid chamber
  • the low-pressure side container and the high-pressure side container communicating in parallel with the inertial fluid container on the opposite side of the fluid chamber
  • the inertial fluid container and the low-pressure side container Low pressure side switch for switching the flow of hydraulic oil
  • high pressure side switch for switching the flow of hydraulic oil between the high pressure side container and the inertial fluid container
  • a switch passage for guiding the working fluid is prepared.
  • the inertial fluid container at a switching frequency near the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic fluid flow path including at least the inertial fluid container and the switch flow path.
  • the working fluid can be caused to flow into the high-pressure side container by the inertial force generated in the inertial fluid container when the working fluid flows from the inertial fluid container toward the low-pressure side container.
  • the switching frequency for controlling the switching operation of the high-pressure side switch and the low-pressure side switch is set to a frequency in the vicinity of the Nth-order anti-resonance frequency of the flow path of the working fluid, the inertia fluid container and the switch flow It is possible to suppress fluctuations in the flow rate of the working fluid that occurs due to resonance of the flow path of the working fluid including the passage. For this reason, it becomes possible to suppress the fall of the energy recovery rate resulting from the flow volume fluctuation
  • the energy recovery apparatus 1 and the energy recovery method according to each embodiment of the present invention have been described above.
  • the present invention is not limited to these forms.
  • the following modified embodiments are possible as the energy recovery device and the energy recovery method according to the present invention.
  • the inertia fluid chamber 21, the inertia fluid chamber 22, and the inertia fluid chamber 23 have been described as having a circular cross section, but the present invention is not limited to this.
  • the cross sections of the inertial fluid chamber 21, the inertial fluid chamber 22, and the inertial fluid chamber 23 may have shapes other than a circle.
  • the inertial fluid chamber 22 includes the intermediate fluid chamber 223, so that the frequency twice the primary anti-resonance frequency of the hydraulic oil flow path can be reduced.
  • the embodiment has been described in a manner deviating from the primary resonance frequency of the road, the present invention is not limited to this. Due to the shape of the inertia fluid chamber 22 having a curved pipe with a curved flow path, a frequency twice the primary anti-resonance frequency of the hydraulic oil flow path is the primary resonant frequency of the hydraulic oil flow path.
  • the mode may be deviated or may be based on other shapes and structures.
  • the energy recovery apparatus includes a fluid chamber in which the working fluid is sealed, the fluid chamber having a variable volume, and a first internal space communicating with the fluid chamber.
  • An inertia fluid container that receives the working fluid discharged from the fluid chamber as the size of the fluid chamber decreases, and a second internal space that is set at a lower pressure than the fluid chamber and communicates with the first internal space of the inertia fluid container.
  • a low-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and a third internal space that is set at a higher pressure than the second internal space of the low-pressure side container and communicates with the first internal space of the inertial fluid container
  • a high-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and a low-pressure side opening that allows the working fluid to flow between the inertial fluid container and the low-pressure side container
  • a low-pressure side switch that operates to open and close the low-pressure side opening, and a high-pressure side opening that allows the working fluid to flow between the high-pressure side container and the inertial fluid container.
  • a high-pressure side switch that operates to open and close the opening, a switch passage that is arranged from the inertial fluid container to the low-pressure side switch and the high-pressure side switch, and guides the working fluid; and the fluid Controls the opening / closing operation of the high-pressure side switch and the low-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container according to the reduction in the volume of the chamber
  • a switch controller that causes the working fluid to flow into the high-pressure side container by an inertial force generated in the first internal space of the inertial fluid container when the working fluid flows toward the low-pressure side container.
  • the switch controller controls a switching frequency for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container, and includes at least the inertial fluid container and the switch channel. It is set to a frequency in the vicinity of the Nth order (N is a natural number) anti-resonance frequency of the flow path.
  • the switch controller controls the high-pressure side switch and the high-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container according to the reduction in the volume of the fluid chamber. Controls the opening / closing operation of the low-voltage side switch.
  • the switching frequency for controlling the switching operation of the high-pressure side switch and the low-pressure side switch is set to a frequency in the vicinity of the Nth-order anti-resonance frequency of the flow path of the working fluid.
  • the switch control unit sets the switching frequency to a frequency in the vicinity of a primary anti-resonance frequency of the flow path of the working fluid.
  • the frequency in the vicinity of the primary anti-resonance frequency is a frequency closer to the primary anti-resonance frequency than the primary resonance frequency of the flow path of the working fluid.
  • the frequency in the vicinity of the primary anti-resonance frequency is a frequency that is at least larger than half the frequency of the primary anti-resonance frequency.
  • the frequency in the vicinity of the primary anti-resonance frequency is greater than the flow rate fluctuation of the working fluid generated in the flow path at the primary resonance frequency of the flow path of the working fluid. It is desirable that the frequency of the flow rate of the working fluid be close to the flow rate variation of the working fluid at the anti-resonance frequency.
  • the inertial fluid container has a shape in which a frequency twice as high as a primary anti-resonance frequency of the flow path of the working fluid deviates from a primary resonance frequency of the flow path of the working fluid. It is desirable to have.
  • the inertial fluid container is a cylindrical member extending along the flow direction of the working fluid, and communicates with the first conduit and the first conduit that communicate with the fluid chamber.
  • a second pipe having a larger inner diameter than the first pipe; and a third pipe having a smaller inner diameter than the second pipe and communicating with the second pipe and the switch passage. It is desirable.
  • the inertial fluid container is a cylindrical member extending linearly along the flow direction of the working fluid, and the switch controller controls the communication destination of the inertial fluid container with the low pressure It is desirable to set the duty ratio for switching between the side container and the high-pressure side container to be close to 0.5.
  • the switch control unit sets the duty ratio in a range of 0.45 to 0.55.
  • the secondary anti-resonance frequency of the flow path of the working fluid is in the vicinity of twice the primary anti-resonance frequency of the flow path of the working fluid. It may be provided with such a shape.
  • the inertial fluid container has a third-order anti-resonance frequency of the flow path of the working fluid in the vicinity of a frequency that is three times the primary anti-resonance frequency of the flow path of the working fluid. It may be provided with such a shape.
  • the inertial fluid container is a cylindrical member extending along the flow direction of the working fluid
  • the inertial fluid container includes a container inlet communicating with the fluid chamber, and the switch flow.
  • the cross-sectional area may be set so as to gradually decrease along the flow direction of the working fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

In order to prevent a reduction in the energy recovery rate caused by flow rate fluctuations in a working fluid in a flow path in an energy recovery device that recovers energy from a working fluid ejected from a fluid chamber, this energy recovery device (1) is equipped with an inertial fluid container (21), a low-pressure-side container (LP), a high-pressure-side container (HP), a low-pressure-side opening/closing device (3L), a high-pressure-side opening/closing device (3H), opening/closing flow paths (31, 32), and an opening/closing device control unit (5). The opening/closing device control unit (5) alternately switches the communication destination of the inertial fluid container (21) between the low-pressure-side container (LP) and the high-pressure-side container (HP) in accordance with a reduction in the volume of a fluid chamber (203), and causes hydraulic oil to flow into the high-pressure-side container (HP) by means of the inertial force generated in the inertial fluid container (21) when the hydraulic oil flows toward the low-pressure-side container (LP). The opening/closing device control unit (5) sets the switching frequency of the opening/closing devices to a frequency close to the Nth (where N is a natural number) antiresonant frequency of the flow path of the hydraulic oil.

Description

エネルギー回収装置、およびエネルギー回収方法Energy recovery device and energy recovery method
 本発明は、作動流体のエネルギーを回収するエネルギー回収装置、およびエネルギー回収方法に関するものである。 The present invention relates to an energy recovery device and an energy recovery method for recovering energy of a working fluid.
 従来、作動流体のエネルギーを回収するエネルギー回収装置として、特許文献1に記載された技術が知られている。当該技術では、アクチュエータの排出側に連通される慣性流体容器と、当該慣性流体容器にそれぞれ並列して接続される低圧側容器および高圧側容器とを備える。また、慣性流体容器と低圧側容器との間には、電磁弁からなる低圧側開閉器が備えられ、慣性流体容器と高圧側容器との間には、電磁弁からなる高圧側開閉器が備えられている。当該エネルギー回収装置では、高圧側開閉器が閉じられるとともに低圧側開閉器が開かれると、作動流体が慣性流体容器から低圧側容器に流入する。この際、作動流体の流れにより、慣性流体容器内に流体の慣性力が発生する。この後、低圧側開閉器が閉じられるとともに高圧側開閉器が開かれると、慣性流体容器に発生した流体の慣性力により、高圧側容器へ作動流体が流入する。このように、高圧側開閉器および低圧側開閉器が高い周波数で交互に開閉されることによって、作動流体のエネルギーが高圧側容器に回収可能とされる。 Conventionally, the technique described in Patent Document 1 is known as an energy recovery device that recovers the energy of a working fluid. The technology includes an inertial fluid container that communicates with the discharge side of the actuator, and a low-pressure side container and a high-pressure side container that are respectively connected in parallel to the inertial fluid container. Further, a low-pressure side switch composed of a solenoid valve is provided between the inertial fluid container and the low-pressure side container, and a high-pressure side switch composed of a solenoid valve is provided between the inertial fluid container and the high-pressure side container. It has been. In the energy recovery apparatus, when the high-pressure side switch is closed and the low-pressure side switch is opened, the working fluid flows from the inertial fluid container into the low-pressure side container. At this time, the inertial force of the fluid is generated in the inertial fluid container due to the flow of the working fluid. Thereafter, when the low-pressure side switch is closed and the high-pressure side switch is opened, the working fluid flows into the high-pressure side container due to the inertial force of the fluid generated in the inertial fluid container. Thus, the high-pressure side switch and the low-pressure side switch are alternately opened and closed at a high frequency, so that the energy of the working fluid can be recovered in the high-pressure side container.
特開2014-163419号公報JP 2014-163419 A
 特許文献1に記載された技術において、各開閉器を開閉する切替周波数が所定の値に設定されると、開閉器の開閉に起因して作動流体が脈動することがある。当該脈動は、アクチュエータや作動流体の流路において増長されると、高圧側容器から慣性流体容器に向かって作動流体の逆流が発生し、エネルギー回収量が低下するという問題があった。 In the technique described in Patent Document 1, when the switching frequency for opening and closing each switch is set to a predetermined value, the working fluid may pulsate due to the opening and closing of the switch. When the pulsation is increased in the actuator and the flow path of the working fluid, there is a problem that the backflow of the working fluid is generated from the high-pressure side container toward the inertial fluid container, and the amount of energy recovery is reduced.
 本発明は、流体室から吐出される作動流体のエネルギーを回収するエネルギー回収装置において、流路内における作動流体の流量変動に起因するエネルギー回収率の低下を抑止することが可能なエネルギー回収装置、およびエネルギー回収方法を提供することを目的とする。 The present invention relates to an energy recovery device that recovers energy of a working fluid discharged from a fluid chamber, an energy recovery device capable of suppressing a decrease in energy recovery rate due to a flow rate fluctuation of the working fluid in a flow path, And an energy recovery method.
 提供されるのは、作動流体のエネルギーを回収するエネルギー回収装置であって、当該エネルギー回収装置は、前記作動流体が封入される流体室であって前記流体室の容積が可変とされている流体室と、前記流体室に連通する第1内部空間を備え前記流体室の容積の縮小に伴って前記流体室から吐出された前記作動流体を受け入れる慣性流体容器と、前記流体室よりも低圧に設定され前記慣性流体容器の前記第1内部空間に連通する第2内部空間を備え前記慣性流体容器から流出した前記作動流体を受け入れる低圧側容器と、前記低圧側容器の前記第2内部空間よりも高圧に設定され前記慣性流体容器の前記第1内部空間に連通する第3内部空間を備え前記慣性流体容器から流出した前記作動流体を受け入れる高圧側容器と、前記慣性流体容器と前記低圧側容器との間での前記作動流体の流通を許容する低圧側開口部を形成し前記低圧側開口部を開閉するように作動する低圧側開閉器と、前記高圧側容器と前記慣性流体容器との間での前記作動流体の流通を許容する高圧側開口部を形成し前記高圧側開口部を開閉するように作動する高圧側開閉器と、前記慣性流体容器から前記低圧側開閉器および前記高圧側開閉器に至るまで配設され前記作動流体を導く開閉器流路と、前記流体室の容積の縮小に応じて前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で交互に切り替えるように前記高圧側開閉器および前記低圧側開閉器の開閉動作を制御することで、前記作動流体が前記低圧側容器に向かって流動する際に前記慣性流体容器の前記第1内部空間に発生した慣性力によって前記作動流体を前記高圧側容器に流入させる開閉器制御部と、を備える。前記開閉器制御部は、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で切り替える切替周波数を、少なくとも前記慣性流体容器および前記開閉器流路を含む前記作動流体の流路のN次(Nは自然数)の反共振周波数の近傍の周波数に設定する。 What is provided is an energy recovery device that recovers the energy of a working fluid, and the energy recovery device is a fluid chamber in which the working fluid is enclosed, and the volume of the fluid chamber is variable. A first internal space communicating with the fluid chamber, an inertia fluid container for receiving the working fluid discharged from the fluid chamber as the volume of the fluid chamber is reduced, and a lower pressure than the fluid chamber A low pressure side container having a second internal space communicating with the first internal space of the inertial fluid container and receiving the working fluid flowing out from the inertial fluid container; and a pressure higher than the second internal space of the low pressure side container A high-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and has a third internal space that communicates with the first internal space of the inertial fluid container. A low-pressure side switch that operates to open and close the low-pressure side opening by forming a low-pressure side opening that allows the working fluid to flow between the pressure vessel and the low-pressure side container; A high-pressure side switch that operates to open and close the high-pressure side opening by forming a high-pressure side opening that allows the working fluid to flow to and from the inertial fluid container; and the low-pressure side opening and closing from the inertia fluid container A switch passage that leads to the working fluid and the high-pressure side switch and guides the working fluid, and communicates the inertial fluid container with the low-pressure side container and the high-pressure side according to a reduction in the volume of the fluid chamber By controlling the opening and closing operations of the high-pressure side switch and the low-pressure side switch so as to switch alternately with the container, when the working fluid flows toward the low-pressure side container, the inertial fluid container The inertia generated in the first internal space And a switch control unit for flowing the working fluid to the high pressure side container by the force. The switch controller controls a switching frequency for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container, and includes at least the inertial fluid container and the switch channel. It is set to a frequency in the vicinity of the Nth order (N is a natural number) anti-resonance frequency of the flow path.
本発明の第1実施形態に係るエネルギー回収装置の模式的な油圧回路図である。1 is a schematic hydraulic circuit diagram of an energy recovery device according to a first embodiment of the present invention. 本発明の第1実施形態に係るエネルギー回収装置に備えられる高圧側開閉器および低圧側開閉器の開口時間と各開閉器の開度との関係を示したグラフである。It is the graph which showed the relationship between the opening time of the high voltage | pressure side switch and low voltage | pressure side switch with which the energy recovery apparatus which concerns on 1st Embodiment of this invention is equipped, and the opening degree of each switch. 本発明の第1実施形態に係るエネルギー回収装置において、作動流体の流路に発生する圧力変動の周波数と作動流体の流量変動との関係(流量変動の周波数応答)の一例を示したグラフである。In the energy recovery device concerning a 1st embodiment of the present invention, it is a graph which showed an example of the relation (frequency response of flow rate variation) of the frequency of pressure variation which occurs in the flow path of working fluid, and the flow rate variation of working fluid. . 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図4Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 4A. 図4Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。Time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high pressure side switch, and the flow rate of the working fluid of the low pressure side switch corresponding to the control of the switch shown in FIG. 4A It is a graph which shows. 図4Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 4A. 図4Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow volume fluctuation | variation of the working fluid in the vicinity of the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 4A. 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図5Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 5A. 図5Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。Time transition of the working fluid passage flow rate near the outlet of the inertial fluid chamber, the working fluid passage flow rate of the high pressure side switch, and the working fluid passage rate of the low pressure side switch corresponding to the control of the switch shown in FIG. 5A It is a graph which shows. 図5Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 5A. 図5Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow volume fluctuation | variation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 5A. 本発明の第2実施形態に係るエネルギー回収装置の慣性流体室の断面図である。It is sectional drawing of the inertial fluid chamber of the energy recovery apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るエネルギー回収装置において、作動流体の流路に発生する圧力変動の周波数と作動流体の流量変動との関係(流量変動の周波数応答)の一例を示したグラフである。In the energy recovery device concerning a 2nd embodiment of the present invention, it is a graph which showed an example of the relation (frequency response of flow rate fluctuation) of the frequency of the pressure fluctuation which occurs in the flow path of the working fluid, and the flow volume fluctuation of the working fluid. . 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図8Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 8A. 図8Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。FIG. 8A shows the time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows. 図8Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation | variation of the working fluid in the vicinity of the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 8A. 図8Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow volume fluctuation | variation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 8A. 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図9Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 9A. 図9Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。FIG. 9A shows a time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows. 図9Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 9A. 図9Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow volume fluctuation | variation of the working fluid in the vicinity of the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 9A. 本発明の第3実施形態に係るエネルギー回収装置の慣性流体室の断面図である。It is sectional drawing of the inertial fluid chamber of the energy recovery apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るエネルギー回収装置において、作動流体の流路に発生する圧力変動の周波数と作動流体の流量変動との関係(流量変動の周波数応答)の第1の例を示したグラフである。In the energy recovery apparatus according to the third embodiment of the present invention, the first example of the relationship (frequency response of flow rate fluctuation) between the frequency of pressure fluctuation generated in the flow path of the working fluid and the flow rate fluctuation of the working fluid is shown. It is a graph. 本発明の第3実施形態に係るエネルギー回収装置において、作動流体の流路に発生する圧力変動の周波数と作動流体の流量変動との関係(流量変動の周波数応答)の第2の例を示したグラフである。In the energy recovery device according to the third embodiment of the present invention, the second example of the relationship between the frequency of the pressure fluctuation generated in the flow path of the working fluid and the flow fluctuation of the working fluid (frequency response of the flow fluctuation) is shown. It is a graph. 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図13Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 13A. 図13Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。The time transitions of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch corresponding to the control of the switch shown in FIG. 13A It is a graph which shows. 図13Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation | variation of the working fluid in the vicinity of the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 13A. 図13Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 13A. 高圧側開閉器および低圧側開閉器の開度の時間推移を示すグラフである。It is a graph which shows the time transition of the opening degree of a high voltage | pressure side switch and a low voltage | pressure side switch. 図14Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の圧力の時間推移を示すグラフである。It is a graph which shows the time transition of the pressure of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 14A. 図14Aに示される開閉器の制御に対応する、慣性流体室の出口付近の作動流体の通過流量、高圧側開閉器の作動流体の通過流量および低圧側開閉器の作動流体の通過流量の時間推移を示すグラフである。FIG. 14A shows a time transition of the flow rate of the working fluid near the outlet of the inertial fluid chamber, the flow rate of the working fluid of the high-pressure side switch, and the flow rate of the working fluid of the low-pressure side switch, corresponding to the control of the switch shown in FIG. It is a graph which shows. 図14Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の圧力変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the pressure fluctuation of the working fluid near the exit of an inertial fluid chamber corresponding to control of the switch shown in Drawing 14A. 図14Aに示される開閉器の制御に対応する、慣性流体室の出口付近における作動流体の流量変動の周波数応答を示すグラフである。It is a graph which shows the frequency response of the flow volume fluctuation | variation of the working fluid in the vicinity of the exit of an inertial fluid chamber corresponding to control of the switch shown by FIG. 14A. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図1に示すエネルギー回収装置において、慣性流体室の出口付近の作動油の流量の時間推移を示すグラフである。2 is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the outlet of the inertial fluid chamber in the energy recovery device shown in FIG. 1. 図3のグラフのうち、反共振周波数(1次)および共振周波数(1次)の周辺を拡大したグラフである。It is the graph which expanded the periphery of the antiresonance frequency (primary) and the resonance frequency (primary) among the graphs of FIG.
 以下、図面を参照しつつ、本発明の第1実施形態について説明する。図1は、本実施形態に係るエネルギー回収装置1の模式的な油圧回路図である。図2は、本実施形態に係るエネルギー回収装置1に備えられる高圧側開閉器および低圧側開閉器の開口時間と各開閉器の開度との関係を示したグラフである。エネルギー回収装置1は、作動流体のエネルギーを回収する。なお、作動流体としては、例えば、作動油や水、空気などを挙げることができるが、とくに限定されない。以下では、油圧シリンダと接続された油圧回路(流体回路)において、油圧シリンダに入力されるエネルギーが作動油のエネルギーに変換され、その作動油が有するエネルギーをエネルギー回収装置1が回収する場合について説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic hydraulic circuit diagram of an energy recovery device 1 according to the present embodiment. FIG. 2 is a graph showing the relationship between the opening time of the high-pressure side switch and the low-pressure side switch provided in the energy recovery device 1 according to this embodiment and the opening degree of each switch. The energy recovery device 1 recovers the energy of the working fluid. Examples of the working fluid include hydraulic oil, water, and air, but are not particularly limited. Hereinafter, in a hydraulic circuit (fluid circuit) connected to the hydraulic cylinder, energy input to the hydraulic cylinder is converted into hydraulic oil energy, and the energy recovery device 1 recovers the energy of the hydraulic oil. To do.
 図1を参照して、エネルギー回収装置1は、油圧シリンダ20と、慣性流体室21(慣性流体容器)と、低圧側開閉器3Lと、高圧側開閉器3Hと、低圧源LP(低圧側容器)と、高圧源HP(高圧側容器)と、制御部5(開閉器制御部)と、を備える。 Referring to FIG. 1, an energy recovery apparatus 1 includes a hydraulic cylinder 20, an inertia fluid chamber 21 (inertia fluid container), a low pressure side switch 3L, a high pressure side switch 3H, and a low pressure source LP (low pressure side container). ), A high pressure source HP (high pressure side container), and a control unit 5 (switch control unit).
 油圧シリンダ20は、筒状のシリンダ本体201と、シリンダ本体201内で往復移動可能なピストン202と、を備える。ピストン202の一端側にはロッド202Aが接続されている。ピストン202は、シリンダ本体201の内部空間をピストン側室203(流体室)と、ロッド側室204とに仕切っている。油圧シリンダ20は、ロッド202Aを介して、外部との間でエネルギーの入力および出力が可能となっている。油圧シリンダ20のうち少なくともピストン側室203は、作動油によって満たされている。図1に示すように、ロッド202Aに外力Fが加わると、ピストン側室203の容積が縮小するようにピストン202が移動する。この結果、ピストン側室203内の作動油が油圧シリンダ20から流出し、慣性流体室21に流入する。なお、ピストン側室203は、本発明の流体室を構成する。ピストン側室203には作動油が封入され、ピストン側室203の容積は可変とされている。 The hydraulic cylinder 20 includes a cylindrical cylinder body 201 and a piston 202 that can reciprocate within the cylinder body 201. A rod 202 </ b> A is connected to one end side of the piston 202. The piston 202 partitions the internal space of the cylinder body 201 into a piston side chamber 203 (fluid chamber) and a rod side chamber 204. The hydraulic cylinder 20 can input and output energy with the outside through the rod 202A. At least the piston side chamber 203 of the hydraulic cylinder 20 is filled with hydraulic oil. As shown in FIG. 1, when an external force F is applied to the rod 202A, the piston 202 moves so that the volume of the piston side chamber 203 is reduced. As a result, the hydraulic oil in the piston side chamber 203 flows out from the hydraulic cylinder 20 and flows into the inertial fluid chamber 21. The piston side chamber 203 constitutes a fluid chamber of the present invention. The piston side chamber 203 is filled with hydraulic oil, and the volume of the piston side chamber 203 is variable.
 慣性流体室21は、油圧シリンダ20のピストン側室203に連通する筒状の内部空間(第1内部空間)を備えている。慣性流体室21は、ピストン202の移動に伴って縮小したピストン側室203から吐出された作動油を受け入れる。一例として、本実施形態では、慣性流体室21はパイプ状であり、慣性流体室21の断面形状は円形である。また、慣性流体室21は、作動油の流れの方向に沿って直線的に延びる筒状の部材(直管形状)である。慣性流体室21の内部空間の容積は、油圧シリンダ20の内部空間の容積よりも小さい。慣性流体室21の内部空間は、作動油によって満たされている。慣性流体室21の出口である流体室出口210には、低圧配管PLおよび高圧配管PHが並列的に接続されている。換言すれば、流体室出口210に接続される流路は、流体室出口210の直後に2つに分岐している。 The inertial fluid chamber 21 includes a cylindrical internal space (first internal space) communicating with the piston side chamber 203 of the hydraulic cylinder 20. The inertial fluid chamber 21 receives the hydraulic oil discharged from the piston side chamber 203 that is contracted as the piston 202 moves. As an example, in the present embodiment, the inertial fluid chamber 21 has a pipe shape, and the inertial fluid chamber 21 has a circular cross-sectional shape. The inertia fluid chamber 21 is a cylindrical member (straight pipe shape) extending linearly along the direction of the flow of hydraulic oil. The volume of the internal space of the inertial fluid chamber 21 is smaller than the volume of the internal space of the hydraulic cylinder 20. The internal space of the inertial fluid chamber 21 is filled with hydraulic oil. A low pressure pipe PL and a high pressure pipe PH are connected in parallel to a fluid chamber outlet 210 that is an outlet of the inertial fluid chamber 21. In other words, the flow path connected to the fluid chamber outlet 210 is branched into two immediately after the fluid chamber outlet 210.
 低圧源LPは、低圧配管PLの末端に接続されている。低圧源LPは、内部空間(第2内部空間)を備えている。低圧源LPの内部空間は、低圧配管PLを介して慣性流体室21に連通している。低圧源LPは、慣性流体室21から流出した作動油を受け入れる。低圧源LPは、例えば、作動油を貯留しておくためのタンクである。低圧源LPの内部空間は、通常、大気圧に保たれている。この結果、低圧源LP内の作動油の圧力は、大気圧にほぼ等しくなっており、ピストン側室203の内圧よりも低圧に設定されている。 The low pressure source LP is connected to the end of the low pressure pipe PL. The low-pressure source LP has an internal space (second internal space). The internal space of the low pressure source LP communicates with the inertial fluid chamber 21 via the low pressure pipe PL. The low pressure source LP receives the hydraulic oil that has flowed out of the inertial fluid chamber 21. The low pressure source LP is, for example, a tank for storing hydraulic oil. The internal space of the low pressure source LP is normally kept at atmospheric pressure. As a result, the pressure of the hydraulic oil in the low pressure source LP is substantially equal to the atmospheric pressure, and is set to be lower than the internal pressure of the piston side chamber 203.
 低圧側開閉器3Lは、慣性流体室21と低圧源LPとの間に配置されている。低圧側開閉器3Lは、電磁弁である。低圧側開閉器3Lは、慣性流体室21と低圧源LPとの間での作動油の流通を許容する不図示の開口部(低圧側開口部)を形成し、前記開口部を開閉するように作動する。すなわち、低圧側開閉器3Lは、慣性流体室21と低圧源LPとを連通および遮断する。 The low pressure side switch 3L is disposed between the inertial fluid chamber 21 and the low pressure source LP. The low pressure side switch 3L is a solenoid valve. The low pressure side switch 3L forms an unillustrated opening (low pressure side opening) that permits the flow of hydraulic oil between the inertial fluid chamber 21 and the low pressure source LP, and opens and closes the opening. Operate. That is, the low pressure side switch 3L communicates and blocks the inertial fluid chamber 21 and the low pressure source LP.
 高圧源HPは、高圧配管PHの末端に接続されている。高圧源HPは、内部空間(第3内部空間)を備えている。高圧源HPの内部空間は、高圧配管PHを介して慣性流体室21に連通している。高圧源HPは、慣性流体室21から流出した作動油を受け入れる。高圧源HPは、低圧源LPよりも高圧の作動油が蓄積されているタンクなどでも良いし、アキュムレータなどでも良い。また、高圧源HPの内部空間は、少なくとも低圧源LPの内部空間よりも高圧に設定されており、本実施形態では、ピストン側室203の圧力よりも高圧に設定されている。 The high pressure source HP is connected to the end of the high pressure pipe PH. The high pressure source HP includes an internal space (third internal space). The internal space of the high pressure source HP communicates with the inertial fluid chamber 21 via the high pressure pipe PH. The high pressure source HP receives the hydraulic fluid that has flowed out of the inertial fluid chamber 21. The high pressure source HP may be a tank in which hydraulic oil having a higher pressure than the low pressure source LP is accumulated, or an accumulator. Further, the internal space of the high-pressure source HP is set to a pressure higher than at least the internal space of the low-pressure source LP. In this embodiment, the internal space is set to a pressure higher than the pressure of the piston-side chamber 203.
 高圧側開閉器3Hは、慣性流体室21と高圧源HPとの間に配置されている。高圧側開閉器3Hは、電磁弁である。高圧側開閉器3Hは、慣性流体室21と高圧源HPとの間での作動油の流通を許容する不図示の開口部(低圧側開口部)を形成し、前記開口部を開閉するように作動する。すなわち、高圧側開閉器3Hは、慣性流体室21と高圧源HPとを連通および遮断する。 The high-pressure side switch 3H is disposed between the inertial fluid chamber 21 and the high-pressure source HP. The high-pressure side switch 3H is a solenoid valve. The high-pressure side switch 3H forms an opening (not shown) (low-pressure side opening) that allows the working oil to flow between the inertial fluid chamber 21 and the high-pressure source HP, and opens and closes the opening. Operate. That is, the high-pressure side switch 3H communicates and blocks the inertial fluid chamber 21 and the high-pressure source HP.
 なお、低圧配管PLのうち流体室出口210から低圧側開閉器3Lの開口部に至るまでの領域が、低圧側分岐路31と定義される。また、高圧配管PHのうち流体室出口210から高圧側開閉器3Hの開口部に至るまでの領域が、高圧側分岐路32と定義される。低圧側分岐路31および高圧側分岐路32は、本発明の開閉器流路を構成する。開閉器流路は、慣性流体室21の流体室出口210から分岐するように配設され、低圧側開閉器3Lおよび高圧側開閉器3Hに至るまで作動油を導く流路(管路)である。 In the low-pressure pipe PL, a region from the fluid chamber outlet 210 to the opening of the low-pressure side switch 3L is defined as a low-pressure side branch 31. Further, a region from the fluid chamber outlet 210 to the opening of the high-pressure side switch 3 </ b> H in the high-pressure pipe PH is defined as a high-pressure side branch path 32. The low-pressure side branch path 31 and the high-pressure side branch path 32 constitute the switch channel of the present invention. The switch channel is a channel (pipe) that is arranged so as to branch from the fluid chamber outlet 210 of the inertial fluid chamber 21 and guides hydraulic oil to the low pressure side switch 3L and the high pressure side switch 3H. .
 制御部5は、高圧側開閉器3Hおよび低圧側開閉器3Lの作動を制御する。この制御部5は、高圧側開閉器3Hおよび低圧側開閉器3Lに対して、開閉タイミングを指示する機能を有している。制御部5は、ピストン側室203の容積の縮小に応じて、慣性流体室21の連通先を低圧源LPと高圧源HPとの間で交互に切り替えるように、低圧側開閉器3Lおよび高圧側開閉器3Hの開閉動作を制御する。 The control unit 5 controls the operation of the high pressure side switch 3H and the low pressure side switch 3L. The control unit 5 has a function of instructing the switching timing to the high voltage side switch 3H and the low voltage side switch 3L. The control unit 5 controls the low-pressure side switch 3L and the high-pressure side opening / closing so that the communication destination of the inertial fluid chamber 21 is alternately switched between the low-pressure source LP and the high-pressure source HP according to the reduction in the volume of the piston-side chamber 203. The opening / closing operation of the device 3H is controlled.
 エネルギー回収装置1では、制御部5が高圧側開閉器3Hの開口部を閉じ、低圧側開閉器3Lの開口部を開くと、慣性流体室21の作動油が低圧源LPに流入する。この際、作動油の流れにより慣性流体室21の内部空間に流体の慣性力が発生する。次に、制御部5が低圧側開閉器3Lの開口部を閉じ、高圧側開閉器3Hの開口部を開くと、上記のように慣性流体室21に発生した流体の慣性力によって、高圧源HPに作動油を流しこみ、蓄圧することができる。なお、高圧源HPの圧力が慣性流体室21の圧力以上であっても、慣性流体容器21内に流体の慣性力が持続されている間は、作動油を高圧源HPに流しこみ蓄圧することができる。すなわち、図1のように油圧シリンダ20に外力Fが加わった場合、制御部5が低圧側開閉器3Lおよび高圧側開閉器3Hを制御することで、外力Fのエネルギーを、高圧源HPに回収することができる。 In the energy recovery apparatus 1, when the control unit 5 closes the opening of the high-pressure side switch 3H and opens the opening of the low-pressure side switch 3L, the hydraulic oil in the inertial fluid chamber 21 flows into the low-pressure source LP. At this time, a fluid inertia force is generated in the internal space of the inertial fluid chamber 21 by the flow of the hydraulic oil. Next, when the controller 5 closes the opening of the low pressure side switch 3L and opens the opening of the high pressure side switch 3H, the high pressure source HP is generated by the inertial force of the fluid generated in the inertia fluid chamber 21 as described above. The hydraulic oil can be poured into and accumulated. Even if the pressure of the high-pressure source HP is equal to or higher than the pressure of the inertial fluid chamber 21, the hydraulic oil is poured into the high-pressure source HP and accumulated while the inertial force of the fluid is maintained in the inertial fluid container 21. Can do. That is, when an external force F is applied to the hydraulic cylinder 20 as shown in FIG. 1, the control unit 5 controls the low pressure side switch 3L and the high pressure side switch 3H, so that the energy of the external force F is recovered in the high pressure source HP. can do.
 なお、慣性流体室21内の流体の慣性力は時間とともに低下する。このため、制御部5が再び高圧側開閉器3Hを閉じ、低圧側開閉器3Lを開くことで、流体の慣性力を回復させることができる。このため、制御部5は、低圧側開閉器3Lおよび高圧側開閉器3Hの開閉周期を所定の周期で交互に切り替える。このような構成によれば、高圧源HPの圧力が油圧シリンダ20のピストン側室203の圧力以上であっても、高圧源HPにエネルギーを回生し蓄圧することが可能となる。回収されたエネルギーは、再び油圧シリンダ20を駆動するエネルギーと利用されてもよく、他のエネルギーとして再生されてもよい。一例として、高圧源HPに回収された作動油のエネルギーが、不図示の油圧機器(油圧モーターや油圧ポンプ)に供給されてもよい。 Note that the inertial force of the fluid in the inertial fluid chamber 21 decreases with time. For this reason, the control part 5 can recover the inertial force of the fluid by closing the high pressure side switch 3H again and opening the low pressure side switch 3L. For this reason, the control part 5 switches the switching period of the low voltage | pressure side switch 3L and the high voltage | pressure side switch 3H alternately with a predetermined period. According to such a configuration, even when the pressure of the high pressure source HP is equal to or higher than the pressure of the piston side chamber 203 of the hydraulic cylinder 20, energy can be regenerated and accumulated in the high pressure source HP. The recovered energy may be used again as energy for driving the hydraulic cylinder 20 or may be regenerated as other energy. As an example, the energy of the hydraulic oil recovered by the high pressure source HP may be supplied to a hydraulic device (a hydraulic motor or a hydraulic pump) (not shown).
 図2を参照して、エネルギー回収動作を行う場合は、制御部5が低圧側開閉器3Lおよび高圧側開閉器3Hの開放および遮断動作を交互に高速で切り替える。詳しくは、制御部5は、制御電流出力部と、PWM変換器と、駆動回路と、を備えている。制御電流出力部は、低圧側開閉器3Lおよび高圧側開閉器3Hの開閉動作を制御するためのパルス信号を出力する。ここで、パルス信号は所定の矩形波からなり、当該パルス信号のデューティ比dによって低圧側開閉器3Lおよび高圧側開閉器3Hの開閉時間がそれぞれ制御される。図2を参照して、デューティ比dは下記の式1によって定義される。
 d=T2/T1 ・・・(式1)
ここで、T1は低圧側開閉器3Lおよび高圧側開閉器3Hの開閉の1サイクルあたりの時間(周期)であり、T2は1サイクルにおいて高圧側開閉器3Hが開いている時間である。すなわち、式1で定義されるデューティ比dは、周期T1内における高圧側開口部3Hの開口時間を制御するための高圧側のデューティ比d1に相当する。なお、低圧側開閉器3Lが開いている時間は、図2においてT1-T2に相当する。このため、周期T1内における低圧側開口部3Lの開口時間を制御するための低圧側のデューティ比d2は、1-d1に相当する。なお、上記のパルス信号の周波数は、後記の切替周波数として制御される。
Referring to FIG. 2, when performing the energy recovery operation, control unit 5 alternately switches the opening and closing operations of low-pressure side switch 3L and high-pressure side switch 3H at high speed. Specifically, the control unit 5 includes a control current output unit, a PWM converter, and a drive circuit. The control current output unit outputs a pulse signal for controlling the switching operation of the low voltage side switch 3L and the high voltage side switch 3H. Here, the pulse signal is composed of a predetermined rectangular wave, and the open / close times of the low-voltage side switch 3L and the high-voltage side switch 3H are controlled by the duty ratio d of the pulse signal. Referring to FIG. 2, the duty ratio d is defined by the following equation 1.
d = T2 / T1 (Formula 1)
Here, T1 is a time (cycle) per cycle of opening / closing of the low-voltage side switch 3L and the high-voltage side switch 3H, and T2 is a time during which the high-voltage side switch 3H is open in one cycle. That is, the duty ratio d defined by Equation 1 corresponds to the high-pressure side duty ratio d1 for controlling the opening time of the high-pressure side opening 3H within the period T1. The time during which the low pressure side switch 3L is open corresponds to T1-T2 in FIG. Therefore, the low-pressure side duty ratio d2 for controlling the opening time of the low-pressure side opening 3L within the period T1 corresponds to 1-d1. Note that the frequency of the pulse signal is controlled as a switching frequency described later.
 図1に示すように、油圧シリンダ20のピストン側室203から吐出された作動油の流路は、慣性流体室21から低圧源LPに至る流路(低圧配管PL)と、慣性流体室21から高圧源HPに至る流路(高圧配管PH)とを含む。これらの流路は、配管などから構成されるため、作動油の流れに応じて、所定の振動が発生する。なお、図1に示す流路が完全な剛体である場合には、このような振動は発生しない。流路(配管)の振動は、作動油の脈動を引き起こし、作動油の流れに影響を与える。 As shown in FIG. 1, the flow path of the hydraulic oil discharged from the piston side chamber 203 of the hydraulic cylinder 20 includes a flow path (low pressure pipe PL) from the inertia fluid chamber 21 to the low pressure source LP and a high pressure from the inertia fluid chamber 21. And a flow path (high-pressure pipe PH) to the source HP. Since these flow paths are composed of piping or the like, predetermined vibrations are generated according to the flow of hydraulic oil. In addition, when the flow path shown in FIG. 1 is a complete rigid body, such vibration does not occur. The vibration of the flow path (pipe) causes pulsation of the hydraulic oil and affects the flow of the hydraulic oil.
 図3は、本実施形態に係るエネルギー回収装置1において、作動油の流路に発生する圧力変動の周波数と作動油の流量変動との関係(流量変動の周波数応答)の一例を示したグラフである。具体的には、図1において、高圧側開閉器3Hの開口部が全開(自由端)とされ、低圧側開閉器3Lの開口部が全閉(固定端)とされた状態で、高圧源HPに正弦波で変動する圧力変動が強制的に加えられる。図3は、この場合の慣性流体室21の流体室出口210近傍での作動油の流量変動(周波数応答)を示した波形である。なお、図3のデータは、シミュレーションで演算されてもよく、流体室出口210付近に試験的に設けられた流量計によって計測されてもよい。 FIG. 3 is a graph showing an example of the relationship (frequency response of flow rate fluctuation) between the frequency of pressure fluctuation generated in the flow path of hydraulic fluid and the flow rate fluctuation of hydraulic oil in the energy recovery apparatus 1 according to the present embodiment. is there. Specifically, in FIG. 1, the high pressure source HP with the opening of the high pressure side switch 3H fully opened (free end) and the opening of the low pressure side switch 3L fully closed (fixed end). A pressure fluctuation that fluctuates in a sine wave is forcibly applied. FIG. 3 is a waveform showing the flow rate fluctuation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 in this case. Note that the data in FIG. 3 may be calculated by simulation, or may be measured by a flow meter provided as a test near the fluid chamber outlet 210.
 図3を参照して、図1の作動油の流路全体が備える振動特性から、加えられる圧力変動の周波数に応じて、作動油の流量変動の大きさが変化する。ここで、図3のグラフ中に示した「1」は流路(系)の反共振1次周波数であり、「2」は共振1次周波数であり、「3」は反共振2次周波数であり、「4」は共振2次周波数である。このように、反共振周波数と共振周波数とは交互に現れている。そして、図3に示すように、共振周波数における作動油の流量変動は極大値となり、反共振周波数における作動油の流量変動は極小値となっている。一般に、慣性流体室21が直線的かつ一様な断面を備える形状であれば、共振周波数は反共振周波数の2倍になる。図3においても、共振1次周波数「2」は、反共振1次周波数「1」のおよそ2倍になっている。なお、前述のように、慣性流体室21と高圧側開閉器3Hおよび低圧側開閉器3Lとの間は分岐された形状であるため、実際には、共振1次周波数「2」は、反共振1次周波数「1」の2倍から若干ずれている。本発明では、このような作動油の流量変動の傾向が新たに知見された結果、制御部5による低圧側開閉器3Lおよび高圧側開閉器3Hの制御における切替周波数fが好適に設定される。 Referring to FIG. 3, the magnitude of the flow rate variation of the hydraulic oil varies depending on the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path of FIG. 1. Here, “1” shown in the graph of FIG. 3 is the anti-resonance primary frequency of the flow path (system), “2” is the resonance primary frequency, and “3” is the anti-resonance secondary frequency. Yes, "4" is the resonant secondary frequency. Thus, the anti-resonance frequency and the resonance frequency appear alternately. As shown in FIG. 3, the fluctuation in the flow rate of the hydraulic oil at the resonance frequency is a maximum value, and the fluctuation in the flow rate of the hydraulic oil at the anti-resonance frequency is a minimum value. In general, if the inertial fluid chamber 21 has a shape having a linear and uniform cross section, the resonance frequency is twice the antiresonance frequency. Also in FIG. 3, the resonance primary frequency “2” is approximately twice the anti-resonance primary frequency “1”. As described above, since the inertial fluid chamber 21 is branched from the high-pressure side switch 3H and the low-pressure side switch 3L, the resonance primary frequency “2” is actually anti-resonance. There is a slight deviation from twice the primary frequency “1”. In the present invention, as a result of newly finding such a tendency of the flow rate variation of the hydraulic oil, the switching frequency f in the control of the low pressure side switch 3L and the high pressure side switch 3H by the control unit 5 is suitably set.
 すなわち、図1において、油圧シリンダ20から吐出された作動油のエネルギーを高圧源HPに回収するにあたって、低圧側開閉器3Lおよび高圧側開閉器3Hの開口部が順に開閉される場合、当該開口部の開閉は、作動油の流路に圧力変動を発生させることになる。そこで、本実施形態では、この高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fが、流路(系)の反共振点(図3の「1」、「3」・・・)となる周波数付近に設定される。すなわち、制御部5は、慣性流体室21の連通先を低圧源LPと高圧源HPとの間で切り替える切替周波数fを、少なくとも慣性流体室21および開閉器流路(低圧側分岐路31、高圧側分岐路32)を含む作動油の流路のN次(Nは自然数)の反共振周波数の近傍の周波数に設定する。この結果、図3に示すように、他の周波数領域と比較して、作動油の流量変動を低減することが可能となる。 That is, in FIG. 1, when recovering the energy of the hydraulic oil discharged from the hydraulic cylinder 20 to the high pressure source HP, when the openings of the low pressure side switch 3L and the high pressure side switch 3H are sequentially opened and closed, the openings Opening and closing the valve causes pressure fluctuations in the hydraulic oil flow path. Therefore, in the present embodiment, the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is determined from the anti-resonance points (“1”, “3”... Is set near the frequency. That is, the control unit 5 sets at least the inertia fluid chamber 21 and the switch channel (the low-pressure side branch channel 31, the high-pressure channel 31) to switch the communication destination of the inertia fluid chamber 21 between the low pressure source LP and the high pressure source HP. The frequency is set in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic oil flow path including the side branch path 32). As a result, as shown in FIG. 3, it is possible to reduce fluctuations in the flow rate of the hydraulic oil as compared with other frequency regions.
 <切替周波数が反共振周波数に設定される場合(デューティ比d=0.5)>
 以下に、図1に示すエネルギー回収装置1において、高圧側開閉器3Hおよび低圧側開閉器3Lの開口動作の制御例を示す。図4群は、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図3の周波数「1」=88Hz)に設定した場合の各特性値の推移を示したグラフである。図4Aは、高圧側開閉器3Hおよび低圧側開閉器3Lの開度の時間推移を示すグラフである。なお、図4Aでは、前述のデューティ比d=0.5である。図4B乃至図4Eは、図4Aに示される開閉器の制御に対応している。図4Bは、慣性流体室21の流体室出口210付近の作動油の圧力の時間推移を示すグラフである。図4Cは、慣性流体室21の流体室出口210付近の作動油の通過流量、高圧側開閉器3Hの作動油の通過流量および低圧側開閉器3Lの作動油の通過流量の時間推移を示すグラフである。図4Dは、慣性流体室21の流体室出口210付近における作動油の圧力変動(図4B)の周波数応答を示すグラフである。換言すれば、図4Dは、図4Bの圧力変動のデータを公知の周波数解析で処理した結果を示している(以後の図5D、図8D、図9D、図13Dおよび図14Dにおいても同様)。図4Eは、慣性流体室21の流体室出口210付近における作動油の流量変動(図4C)の周波数応答を示すグラフである。換言すれば、図4Eは、図4Cの流体室出口210付近の流量変動のデータを公知の周波数解析で処理した結果を示している(以後の図5E、図8E、図9E、図13Eおよび図14Eにおいても同様)。なお、図4A~図4Cにおいて、領域Hは高圧側開閉器3Hのみが開口され、慣性流体室21が高圧源HPと連通している時間であり、設定上、慣性流体室21から高圧源HPに向かって作動油が流れる時間に相当する(設定上の高圧側開閉器通過流量が+)。また、領域Lは低圧側開閉器3Lのみが開口され、慣性流体室21が低圧源LPと連通している時間であり、設定上、慣性流体室21から低圧源LPに向かって作動油が流れる時間に相当する(設定上の低圧側開閉器通過流量が+)。なお、領域HおよびLの定義については、後出のグラフにおいても同様である。
<When switching frequency is set to anti-resonance frequency (duty ratio d = 0.5)>
Hereinafter, in the energy recovery apparatus 1 shown in FIG. 1, an example of controlling the opening operation of the high-pressure side switch 3H and the low-pressure side switch 3L is shown. FIG. 4 shows the transition of each characteristic value when the switching frequency f of the high-voltage side switch 3H and the low-voltage side switch 3L is set to the anti-resonance primary frequency (frequency “1” in FIG. 3 = 88 Hz). It is a graph. FIG. 4A is a graph showing time transitions of the opening degrees of the high-pressure side switch 3H and the low-pressure side switch 3L. In FIG. 4A, the aforementioned duty ratio d = 0.5. 4B to 4E correspond to the control of the switch shown in FIG. 4A. FIG. 4B is a graph showing the time transition of the hydraulic oil pressure in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. FIG. 4C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is. FIG. 4D is a graph showing the frequency response of the hydraulic oil pressure fluctuation (FIG. 4B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. In other words, FIG. 4D shows the result of processing the pressure fluctuation data of FIG. 4B by a known frequency analysis (the same applies to FIGS. 5D, 8D, 9D, 13D, and 14D). FIG. 4E is a graph showing the frequency response of the flow rate fluctuation (FIG. 4C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. In other words, FIG. 4E shows the result of processing the flow rate fluctuation data in the vicinity of the fluid chamber outlet 210 in FIG. 4C by known frequency analysis (hereinafter, FIG. 5E, FIG. 8E, FIG. 9E, FIG. 13E and FIG. The same applies to 14E). 4A to 4C, a region H is a time during which only the high-pressure side switch 3H is opened and the inertial fluid chamber 21 communicates with the high-pressure source HP. This corresponds to the time for the hydraulic oil to flow toward (the high-pressure side switch passage flow rate is +). Region L is a time during which only the low-pressure side switch 3L is opened and the inertial fluid chamber 21 communicates with the low-pressure source LP, and hydraulic oil flows from the inertial fluid chamber 21 toward the low-pressure source LP in setting. Corresponds to time (the low-pressure side switch passage flow rate is +). The definition of the regions H and L is the same in the later graphs.
 図4Cを参照して、慣性流体室21の流体室出口210から流出した作動油のほとんどが、順に低圧側開閉器3Lおよび高圧側開閉器3Hを通過している。ここで、図4Dを見ると、低圧側開閉器3Lおよび高圧側開閉器3Hの開口制御におけるデューティ比d=0.5の場合、圧力変動が発生する加振周波数は、切替周波数(88Hz)の1倍(図4Dの「矢印1」)、3倍(図4Dの「矢印2」)、5倍(図4Dの「矢印3」)のように、基本周波数(=切替周波数)の奇数倍である。その結果、図4Eに示すように、慣性流体室21の流体室出口210近傍の流動変動の周波数応答も、基本周波数の奇数倍の周波数成分が少しずつ励起されている。換言すれば、この場合、加振周波数は、系の共振1次周波数(図3の矢印「2」)から外れている。このため、慣性流体室21の流体室出口210近傍の作動油の流動変動を抑制することができる。この結果、高圧源HPに作動油のエネルギーを回収するにあたって、作動油の流動変動(脈動)に起因するエネルギー回収率の低下を抑止することが可能となる。 Referring to FIG. 4C, most of the hydraulic oil flowing out from the fluid chamber outlet 210 of the inertial fluid chamber 21 passes through the low pressure side switch 3L and the high pressure side switch 3H in order. 4D, when the duty ratio d = 0.5 in the opening control of the low pressure side switch 3L and the high pressure side switch 3H, the excitation frequency at which the pressure fluctuation occurs is the switching frequency (88 Hz). 1 times ("arrow 1" in FIG. 4D), 3 times ("arrow 2" in FIG. 4D), 5 times ("arrow 3" in FIG. 4D), and an odd multiple of the fundamental frequency (= switching frequency) is there. As a result, as shown in FIG. 4E, in the frequency response of the flow fluctuation in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the frequency component that is an odd multiple of the fundamental frequency is gradually excited. In other words, in this case, the excitation frequency deviates from the resonance primary frequency of the system (arrow “2” in FIG. 3). For this reason, the flow fluctuation | variation of the hydraulic fluid of the fluid chamber exit 210 vicinity of the inertial fluid chamber 21 can be suppressed. As a result, when recovering the energy of the hydraulic oil to the high pressure source HP, it is possible to suppress a decrease in the energy recovery rate due to the flow fluctuation (pulsation) of the hydraulic oil.
 <切替周波数が共振周波数に設定される場合(デューティ比d=0.5)>
 図5群は、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数を共振1次周波数(図3の矢印「2」=167Hz)に設定した場合の各特性値の推移を示したグラフである。図5Aは、高圧側開閉器3Hおよび低圧側開閉器3Lの開度の時間推移を示すグラフである。なお、図5Aでは、前述のデューティ比d=0.5である。図5B乃至図5Eは、図5Aに示される開閉器の制御に対応している。図5Bは、慣性流体室21の流体室出口210付近の作動油の圧力の時間推移を示すグラフである。図5Cは、慣性流体室21の流体室出口210付近の作動油の通過流量、高圧側開閉器3Hの作動油の通過流量および低圧側開閉器3Lの作動油の通過流量の時間推移を示すグラフである。図5Dは、慣性流体室21の流体室出口210付近における作動油の圧力変動(図5B)の周波数応答を示すグラフである。図5Eは、慣性流体室21の流体室出口210付近における作動油の流量変動(図5C)の周波数応答を示すグラフである。
<When switching frequency is set to resonance frequency (duty ratio d = 0.5)>
FIG. 5 is a graph showing the transition of each characteristic value when the switching frequency of the high-voltage side switch 3H and the low-voltage side switch 3L is set to the resonance primary frequency (arrow “2” = 167 Hz in FIG. 3). is there. FIG. 5A is a graph showing the time transition of the opening degree of the high-pressure side switch 3H and the low-pressure side switch 3L. In FIG. 5A, the aforementioned duty ratio d = 0.5. 5B to 5E correspond to the control of the switch shown in FIG. 5A. FIG. 5B is a graph showing the time transition of the pressure of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. FIG. 5C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is. FIG. 5D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 5B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. FIG. 5E is a graph showing the frequency response of the flow rate variation (FIG. 5C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
 図5Cを参照して、領域Hでは、慣性流体室21が高圧源HPと連通している状態であるが、高圧源HPから慣性流体室21に向かって作動油が逆流している(高圧側開閉器通過流量が-)。この現象は、各開閉器の切替周波数fが系の共振1次周波数に設定されることによって、図5Eに示すように共振1次周波数成分の流動変動が大きく励起されること起因する(図5Eの矢印「1」)。この場合、作動油のエネルギーを回収する際に、エネルギー回収量の低下を防ぐことが困難となる。 Referring to FIG. 5C, in region H, inertial fluid chamber 21 is in communication with high pressure source HP, but hydraulic oil flows backward from high pressure source HP toward inertial fluid chamber 21 (high pressure side). The flow rate through the switch is-). This phenomenon is caused by the fact that the switching fluctuation f of each switch is set to the resonance primary frequency of the system, so that the flow fluctuation of the resonance primary frequency component is greatly excited as shown in FIG. 5E (FIG. 5E). Arrow “1”). In this case, it becomes difficult to prevent a decrease in the amount of recovered energy when recovering the energy of the hydraulic oil.
 以上のように、本実施形態では、制御部5は、慣性流体室21の連通先を低圧源LPと高圧源HPとの間で切り替える切替周波数fを、少なくとも慣性流体室21および開閉器流路(低圧側分岐路31、高圧側分岐路32)を含む作動油の流路のN次(Nは自然数)の反共振周波数の近傍の周波数に設定する。このため、慣性流体室21および開閉器流路を含む作動油の流路の共振に伴って発生する作動油の流量変動を抑止することができる。この結果、流路内における作動油の流量変動に起因するエネルギー回収率の低下を抑止することが可能となる。 As described above, in the present embodiment, the control unit 5 sets at least the inertia fluid chamber 21 and the switch flow path to the switching frequency f for switching the communication destination of the inertia fluid chamber 21 between the low pressure source LP and the high pressure source HP. The frequency is set in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic oil flow path including the (low pressure side branch path 31 and high pressure side branch path 32). For this reason, the fluctuation | variation of the flow volume of the working oil which generate | occur | produces with the resonance of the flow path of the working oil containing the inertial fluid chamber 21 and the switch flow path can be suppressed. As a result, it is possible to suppress a decrease in the energy recovery rate due to fluctuations in the flow rate of the hydraulic oil in the flow path.
 特に、制御部5は、切替周波数fを、作動油の流路の1次の反共振周波数の近傍の周波数に設定することが望ましい。この場合、慣性流体室21および開閉器流路(低圧側分岐路31、高圧側分岐路32)を含む作動油の流路の共振に伴って発生する作動油の流量変動を更に抑止することができる。 Particularly, it is desirable that the control unit 5 sets the switching frequency f to a frequency in the vicinity of the primary anti-resonance frequency of the hydraulic oil flow path. In this case, it is possible to further suppress the fluctuation in the flow rate of the hydraulic oil that occurs due to the resonance of the flow path of the hydraulic oil including the inertial fluid chamber 21 and the switch flow path (the low pressure side branch path 31 and the high pressure side branch path 32). it can.
 次に、本発明の第2実施形態について説明する。なお、本実施形態では、先の第1実施形態と比較して、慣性流体室21に代わって慣性流体室22が備えられる点において相違するため、当該相違点を中心に説明し、共通する点の説明を省略する。 Next, a second embodiment of the present invention will be described. Note that the present embodiment is different from the first embodiment in that an inertial fluid chamber 22 is provided in place of the inertial fluid chamber 21, so that the difference will be mainly described and common points will be described. The description of is omitted.
 本実施形態では、エネルギー回収装置1(図1)は、慣性流体室22を備える。図6は、慣性流体室22の断面図である。図6のうち領域(A)は、慣性流体室22を長手方向(作動油が流れる方向)に沿って切断した断面図に相当し、領域(B)は、慣性流体室22を半径方向(作動油が流れる方向と直交する方向)に沿って切断した断面図に相当する。 In this embodiment, the energy recovery device 1 (FIG. 1) includes an inertial fluid chamber 22. FIG. 6 is a cross-sectional view of the inertial fluid chamber 22. Region (A) in FIG. 6 corresponds to a cross-sectional view of inertial fluid chamber 22 cut along the longitudinal direction (direction in which hydraulic fluid flows), and region (B) represents inertial fluid chamber 22 in the radial direction (operational). This corresponds to a cross-sectional view taken along the direction in which the oil flows.
 慣性流体室22は、油圧シリンダ20(図1)のピストン側室203に連通する筒状の内部空間を備えている。慣性流体室22は、ピストン202の移動に伴ってピストン側室203から吐出された作動油を受け入れる。一例として、本実施形態では、慣性流体室22はパイプ状であり、慣性流体室22の断面形状は円形である。慣性流体室22の内部空間の容積は、油圧シリンダ20の内部空間の容積よりも小さい。慣性流体室22の内部空間は、作動油によって満たされている。慣性流体室22の入口である流体室入口220Aは、油圧シリンダ20のピストン側室203に連通している。また、慣性流体室22の出口である流体室出口220Bには、低圧配管PLおよび高圧配管PH(図1)が並列的に接続されている。 The inertial fluid chamber 22 has a cylindrical internal space communicating with the piston side chamber 203 of the hydraulic cylinder 20 (FIG. 1). The inertial fluid chamber 22 receives hydraulic oil discharged from the piston side chamber 203 as the piston 202 moves. As an example, in the present embodiment, the inertial fluid chamber 22 has a pipe shape, and the inertial fluid chamber 22 has a circular cross-sectional shape. The volume of the internal space of the inertial fluid chamber 22 is smaller than the volume of the internal space of the hydraulic cylinder 20. The internal space of the inertial fluid chamber 22 is filled with hydraulic oil. A fluid chamber inlet 220 </ b> A that is an inlet of the inertial fluid chamber 22 communicates with the piston-side chamber 203 of the hydraulic cylinder 20. Further, a low pressure pipe PL and a high pressure pipe PH (FIG. 1) are connected in parallel to the fluid chamber outlet 220B which is the outlet of the inertial fluid chamber 22.
 慣性流体室22は、第1流体室221(第1管路)と、第2流体室222(第3管路)と、中間流体室223(第2管路)と、を備える。中間流体室223の内径は、第1流体室221および第2流体室222の内径よりも大きく設定されている。また、中間流体室223の軸方向の長さは、慣性流体室22全体の4分の1前後に設定されている。中間流体室223の断面積は、第1流体室221および第2流体室222の断面積の2~3倍に設定されることが望ましい。なお、第1流体室221の内径および第2流体室222の内径は、互いに同じであってもよく、異なるように設定されてもよい。以後の説明では、第1流体室221の内径および第2流体室222の内径は同じ値に設定されている。なお、本実施形態では、一例として、作動油の流れの方向における慣性流体室22の全長をLとすると、第1流体室221の長さがLの15分の4倍、第2流体室222の長さがLの15分の8倍、中間流体室223の長さがLの15分の3倍に設定されている。また、一例として、L=3000(mm)である。 The inertial fluid chamber 22 includes a first fluid chamber 221 (first conduit), a second fluid chamber 222 (third conduit), and an intermediate fluid chamber 223 (second conduit). The inner diameter of the intermediate fluid chamber 223 is set larger than the inner diameters of the first fluid chamber 221 and the second fluid chamber 222. Further, the axial length of the intermediate fluid chamber 223 is set to about one-fourth of the entire inertial fluid chamber 22. The cross-sectional area of the intermediate fluid chamber 223 is preferably set to 2 to 3 times the cross-sectional areas of the first fluid chamber 221 and the second fluid chamber 222. Note that the inner diameter of the first fluid chamber 221 and the inner diameter of the second fluid chamber 222 may be the same or different from each other. In the following description, the inner diameter of the first fluid chamber 221 and the inner diameter of the second fluid chamber 222 are set to the same value. In the present embodiment, as an example, if the total length of the inertial fluid chamber 22 in the direction of hydraulic oil flow is L, the length of the first fluid chamber 221 is four times 15 times the length of the second fluid chamber 222. The length of the intermediate fluid chamber 223 is set to eight times of 15 times L and the length of the intermediate fluid chamber 223 is set to three times of 15 times L. As an example, L = 3000 (mm).
 図7は、本実施形態に係るエネルギー回収装置1において、作動油の流路に発生する圧力変動の周波数と作動油の流量変動との関係(流量変動の周波数応答)の一例を示したグラフであり、第1実施形態の図3に対応している。すなわち、図1において、慣性流体室21の代わりに慣性流体室22が配置され、高圧側開閉器3Hの開口部が全開(自由端)とされ、低圧側開閉器3Lの開口部が全閉(固定端)とされた状態で、高圧源HPに正弦波で変動する圧力変動が強制的に加えられる。図7は、この場合の慣性流体室22の流体室出口220B近傍での作動油の流量変動(周波数応答)を示した波形である。なお、図7のデータは、図3と同様に、シミュレーションで演算されてもよく、流体室出口220B付近に試験的に設けられた流量計によって計測されてもよい。 FIG. 7 is a graph showing an example of the relationship (frequency response of flow rate fluctuation) between the frequency of pressure fluctuation generated in the hydraulic oil flow path and the flow fluctuation of hydraulic oil in the energy recovery apparatus 1 according to the present embodiment. Yes, corresponding to FIG. 3 of the first embodiment. That is, in FIG. 1, the inertial fluid chamber 22 is arranged instead of the inertial fluid chamber 21, the opening of the high-pressure side switch 3H is fully opened (free end), and the opening of the low-pressure side switch 3L is fully closed ( In the state of the fixed end, a pressure fluctuation that fluctuates in a sine wave is forcibly applied to the high-pressure source HP. FIG. 7 is a waveform showing the flow rate fluctuation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22 in this case. Note that the data in FIG. 7 may be calculated by simulation, as in FIG. 3, or may be measured by a flow meter provided as a test near the fluid chamber outlet 220B.
 図7を参照して、作動油の流路全体が備える振動特性から、加えられる圧力変動の周波数に応じて、作動油の流量変動の大きさが変化する。ここで、図7のグラフ中に示した「1」は流路(系)の反共振1次周波数であり、「2」は共振1次周波数であり、「3」は反共振2次周波数であり、「4」は共振2次周波数である。このように、図7においても、反共振周波数と共振周波数とが交互に現れている。 Referring to FIG. 7, the magnitude of the flow rate variation of the hydraulic oil varies depending on the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path. Here, “1” shown in the graph of FIG. 7 is the anti-resonance primary frequency of the flow path (system), “2” is the resonance primary frequency, and “3” is the anti-resonance secondary frequency. Yes, "4" is the resonant secondary frequency. Thus, also in FIG. 7, the antiresonance frequency and the resonance frequency appear alternately.
 一方、図7の結果では、共振1次周波数「2」は、反共振1次周波数「1」の2倍よりも小さな値になっている。換言すれば、反共振1次周波数「1」の2倍の周波数「2’」は、共振1次周波数からずれた位置に配置されている。したがって、系の反共振1次周波数が基本周波数(=切替周波数f)に設定されると、系の共振1次周波数から基本周波数の2次の周波数を外すことができる。なお、図7の場合、系の共振2次の周波数「2’」と基本周波数の3次以上の高次の周波数とが近くなる可能性があるが、系の減衰の影響により、流動変動の共振2次周波数成分の大きさは流動変動の共振1次周波数成分の大きさよりも小さくなるため影響は少ない。 On the other hand, in the result of FIG. 7, the resonance primary frequency “2” is smaller than twice the anti-resonance primary frequency “1”. In other words, the frequency “2 ′” which is twice the anti-resonance primary frequency “1” is arranged at a position shifted from the resonance primary frequency. Therefore, when the anti-resonance primary frequency of the system is set to the fundamental frequency (= switching frequency f), the secondary frequency of the fundamental frequency can be removed from the resonance primary frequency of the system. In the case of FIG. 7, there is a possibility that the resonance secondary frequency “2 ′” of the system is close to the higher order frequency of the third or higher fundamental frequency. Since the magnitude of the resonant secondary frequency component is smaller than the magnitude of the resonant primary frequency component of the flow fluctuation, the influence is small.
 以下では、図1の慣性流体室21と図6の慣性流体室22との比較をデューティ比d=0.75にて行った結果について説明する。 Hereinafter, the result of comparison between the inertial fluid chamber 21 of FIG. 1 and the inertial fluid chamber 22 of FIG. 6 at a duty ratio d = 0.75 will be described.
 <慣性流体室21に対して切替周波数fが反共振周波数に設定される場合(デューティ比d=0.75)>
 図8群は、図1に示す慣性流体室21を備えたエネルギー回収装置1において、デューティ比d=0.75にて、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図3の周波数「1」=88Hz)に設定した場合の各特性値の推移を示したグラフである。なお、図8Aは、高圧側開閉器3Hおよび低圧側開閉器3Lの開度の時間推移を示すグラフである。図8B乃至図8Eは、図8Aに示される開閉器の制御に対応している。図8Bは、慣性流体室21の流体室出口210付近の作動油の圧力変動の時間推移を示すグラフである。図8Cは、慣性流体室21の流体室出口210付近の作動油の通過流量、高圧側開閉器3Hの作動油の通過流量および低圧側開閉器3Lの作動油の通過流量の時間推移を示すグラフである。図8Dは、慣性流体室21の流体室出口210付近における作動油の圧力変動(図8B)の周波数応答を示すグラフである。図8Eは、慣性流体室21の流体室出口210付近における作動油の流量変動(図8C)の周波数応答を示すグラフである。
<When switching frequency f is set to anti-resonance frequency with respect to inertial fluid chamber 21 (duty ratio d = 0.75)>
FIG. 8 shows an anti-resonance of the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L at the duty ratio d = 0.75 in the energy recovery device 1 including the inertial fluid chamber 21 shown in FIG. It is the graph which showed transition of each characteristic value at the time of setting to a primary frequency (frequency "1" of Drawing 3 = 88Hz). In addition, FIG. 8A is a graph which shows the time transition of the opening degree of the high voltage | pressure side switch 3H and the low voltage | pressure side switch 3L. 8B to 8E correspond to the control of the switch shown in FIG. 8A. FIG. 8B is a graph showing the time transition of the pressure fluctuation of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. FIG. 8C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is. FIG. 8D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 8B) in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21. FIG. 8E is a graph showing the frequency response of the flow rate fluctuation (FIG. 8C) of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21.
 図8Cの領域Hは、慣性流体室21が高圧源HPと連通している状態であるが、高圧源HPから慣性流体室21に向かって作動油が逆流している時間が存在する(高圧側開閉器通過流量が-)。図8Dに示すように、デューティ比d=0.75の場合、デューティ比d=0.5の場合と異なり、系に発生する加振周波数には、切替周波数の奇数倍の周波数に加え、偶数倍の周波数が含まれる。すなわち、加振周波数は、基本周波数(=切替周波数f)の整数倍となる(図8Dの矢印「1」、「2」、「3」)。また、慣性流体室21は、直線的かつ一様断面形状を備えているため、共振周波数は反共振周波数の2倍となる。このため、共振1次周波数(図8Dの矢印「2」)は、基本周波数(図8Dの矢印「1」)の2次周波数(2倍の周波数)の近くに存在する。この結果、流動変動の基本周波数の2次成分(図8Eの矢印「2」)が大きく励起され、作動油の逆流が発生する。この場合、作動油のエネルギーを回収する際に、エネルギー回収量の低下を防ぐことが困難となる。 A region H in FIG. 8C is a state where the inertial fluid chamber 21 communicates with the high-pressure source HP, but there is a time during which the hydraulic oil flows backward from the high-pressure source HP toward the inertial fluid chamber 21 (the high-pressure side). The flow rate through the switch is-). As shown in FIG. 8D, when the duty ratio d = 0.75, unlike the case where the duty ratio d = 0.5, the excitation frequency generated in the system includes an even number in addition to a frequency that is an odd multiple of the switching frequency. Double frequency is included. That is, the excitation frequency is an integral multiple of the fundamental frequency (= switching frequency f) (arrows “1”, “2”, “3” in FIG. 8D). Further, since the inertial fluid chamber 21 has a linear and uniform cross-sectional shape, the resonance frequency is twice the anti-resonance frequency. For this reason, the resonance primary frequency (arrow “2” in FIG. 8D) exists near the secondary frequency (double frequency) of the fundamental frequency (arrow “1” in FIG. 8D). As a result, the secondary component of the fundamental frequency of flow fluctuation (arrow “2” in FIG. 8E) is greatly excited, and a backflow of hydraulic oil occurs. In this case, it becomes difficult to prevent a decrease in the amount of recovered energy when recovering the energy of the hydraulic oil.
 <慣性流体室22に対して切替周波数fが反共振周波数に設定される場合(デューティ比d=0.75)>
 一方、図9群は、図6に示す慣性流体室22を備えたエネルギー回収装置1において、デューティ比d=0.75にて、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図3の周波数「1」=88Hz)に設定した場合の各特性値の推移を示したグラフである。なお、図9Aは、高圧側開閉器3Hおよび低圧側開閉器3Lの開度の時間推移を示すグラフである。図9B乃至図9Eは、図9Aに示される開閉器の制御に対応している。図9Bは、慣性流体室22の流体室出口220B付近の作動油の圧力変動の時間推移を示すグラフである。図9Cは、慣性流体室22の流体室出口220B付近の作動油の通過流量、高圧側開閉器3Hの作動油の通過流量および低圧側開閉器3Lの作動油の通過流量の時間推移を示すグラフである。図9Dは、慣性流体室22の流体室出口220B付近における作動油の圧力変動(図9B)の周波数応答を示すグラフである。図9Eは、慣性流体室22の流体室出口220B付近における作動油の流量変動(図9C)の周波数応答を示すグラフである。
<When switching frequency f is set to an anti-resonance frequency with respect to inertia fluid chamber 22 (duty ratio d = 0.75)>
On the other hand, FIG. 9 group shows the switching frequency f of the high pressure side switch 3H and the low pressure side switch 3L at the duty ratio d = 0.75 in the energy recovery device 1 having the inertial fluid chamber 22 shown in FIG. It is the graph which showed transition of each characteristic value at the time of setting to an antiresonance primary frequency (frequency "1" of Drawing 3 = 88Hz). In addition, FIG. 9A is a graph which shows the time transition of the opening degree of the high voltage | pressure side switch 3H and the low voltage | pressure side switch 3L. 9B to 9E correspond to the control of the switch shown in FIG. 9A. FIG. 9B is a graph showing the time transition of the pressure fluctuation of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22. FIG. 9C is a graph showing the time transition of the flow rate of hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22, the flow rate of hydraulic oil in the high pressure side switch 3H, and the flow rate of hydraulic fluid in the low pressure side switch 3L. It is. FIG. 9D is a graph showing the frequency response of hydraulic oil pressure fluctuation (FIG. 9B) in the vicinity of the fluid chamber outlet 220 </ b> B of the inertial fluid chamber 22. FIG. 9E is a graph showing the frequency response of the flow rate fluctuation (FIG. 9C) of the hydraulic oil in the vicinity of the fluid chamber outlet 220B of the inertial fluid chamber 22.
 図9Cの領域Hは、慣性流体室22が高圧源HPと連通している状態であり、高圧源HPから慣性流体室22に向かって作動油が逆流している時間が存在する(高圧側開閉器通過流量が-)。しかしながら、図9Cでは、先の図8Cと比較して、作動油の逆流が少ない。この場合も、図9Dに示すように、デューティ比d=0.75の場合、加振周波数は、基本周波数(=切替周波数)の整数倍となっている(図9Dの矢印「1」、「2」、「3」)。しかしながら、慣性流体室21が中間流体室223を備えているため、系の共振1次周波数(図7の矢印「2」)から基本周波数の2次周波数(図7の矢印「2’」、図9Dの矢印「2」)が外れている(ずれている)。このため、図9Eの流動変動の基本周波数の2次周波数成分(図9Eの矢印「2」)が、図8Eの矢印「2」と比較して小さくなっている。この結果、図9Cに示すように、逆流する作動油の流量が図8Cと比較して少なくなり、作動油のエネルギーを回収する際に、エネルギー回収量の低下が抑制されている。 Region H in FIG. 9C is a state where the inertial fluid chamber 22 communicates with the high-pressure source HP, and there is a time during which hydraulic oil flows backward from the high-pressure source HP toward the inertial fluid chamber 22 (high-pressure side opening / closing). The flow rate through the container is-). However, in FIG. 9C, the backflow of the hydraulic oil is less than in FIG. 8C. Also in this case, as shown in FIG. 9D, when the duty ratio is d = 0.75, the excitation frequency is an integral multiple of the fundamental frequency (= switching frequency) (arrows “1”, “1” in FIG. 9D). 2 "," 3 "). However, since the inertial fluid chamber 21 includes the intermediate fluid chamber 223, the secondary frequency of the fundamental frequency (arrow “2 ′” in FIG. 7) from the resonance primary frequency of the system (arrow “2” in FIG. 7), FIG. 9D arrow “2”) is off (shifted). For this reason, the secondary frequency component (arrow “2” in FIG. 9E) of the fundamental frequency of flow fluctuation in FIG. 9E is smaller than the arrow “2” in FIG. 8E. As a result, as shown in FIG. 9C, the flow rate of the working oil that flows backward is smaller than that in FIG. 8C, and a decrease in the energy recovery amount is suppressed when the energy of the working oil is recovered.
 以上のように、本実施形態では、慣性流体室22は、作動油の流路の1次の反共振周波数の2倍の周波数が、作動油の流路の1次の共振周波数からずれるような形状を備えている。このため、作動油の流路の1次の反共振周波数の2倍の周波数が励起される場合であっても、作動油の流路の共振に伴って発生する作動油の流量変動を抑止することができる。 As described above, in the present embodiment, the inertial fluid chamber 22 has a frequency that is twice the primary anti-resonance frequency of the hydraulic oil flow path deviates from the primary resonant frequency of the hydraulic oil flow path. It has a shape. For this reason, even when a frequency twice as high as the primary anti-resonance frequency of the hydraulic oil flow path is excited, fluctuations in the flow volume of the hydraulic oil that occur due to resonance of the hydraulic oil flow path are suppressed. be able to.
 特に、慣性流体室22は、作動油の流れの方向に沿って延びる筒状の部材であって、ピストン側室203に連通する第1流体室221(第1管路)と、第1流体室221に連通し第1流体室221よりも大きな内径を備える中間流体室223(第2管路)と、中間流体室223および開閉器流路(低圧側分岐路31、高圧側分岐路32)に連通し中間流体室223よりも小さな内径を備える第2流体室222(第3管路)と、を備える。このため、作動油の流路の1次の反共振周波数の2倍の周波数が励起される場合であっても、作動油の流路の共振に伴って発生する作動油の流量変動を安定して抑止することができる。 In particular, the inertial fluid chamber 22 is a cylindrical member extending along the direction of hydraulic oil flow, and includes a first fluid chamber 221 (first pipe line) communicating with the piston-side chamber 203, and a first fluid chamber 221. To the intermediate fluid chamber 223 (second pipe) having an inner diameter larger than that of the first fluid chamber 221, and to the intermediate fluid chamber 223 and the switch channel (low pressure side branch channel 31, high pressure side branch channel 32). And a second fluid chamber 222 (third pipe line) having an inner diameter smaller than that of the intermediate fluid chamber 223. For this reason, even when a frequency twice as high as the primary anti-resonance frequency of the hydraulic oil flow path is excited, the flow fluctuation of the hydraulic oil generated due to the resonance of the hydraulic oil flow path is stabilized. Can be deterred.
 <デューティ比dによる比較>
 なお、図4群と図8群とを比較することで、作動油の流れの方向に沿って直線的に延びる筒状の部材(直管形状)からなる慣性流体室21を備えるエネルギー回収装置1において、デューティ比dが異なる場合の作動油の回収性について検討することができる。すなわち、デューティ比d=0.5の場合は、基本周波数(=切替周波数f)の奇数倍の周波数成分が励起されるのに対して、デューティ比d=0.75の場合は、基本周波数の整数倍の周波数成分が励起される。このため、慣性流体室21のように本発明に係る慣性流体室が直線的であり、断面形状が一様である場合は、低圧側開閉器3Lおよび高圧側開閉器3Hを制御するパルスのデューティ比をd=0.5近傍になるように制御することで、流量変動の基本周波数の2次周波数成分が低減できる。このため、作動油の流路の共振に伴って発生する作動油の流量変動を抑止することができる。この結果、作動油のエネルギーを回収する際に、エネルギー回収量の低下を防ぐことができる。
<Comparison by duty ratio d>
4 and 8 are compared, the energy recovery device 1 including the inertial fluid chamber 21 formed of a cylindrical member (straight pipe shape) extending linearly along the direction of the flow of the hydraulic oil. Thus, the recoverability of hydraulic oil when the duty ratio d is different can be examined. That is, when the duty ratio d = 0.5, a frequency component that is an odd multiple of the fundamental frequency (= switching frequency f) is excited, whereas when the duty ratio d = 0.75, the fundamental frequency An integer frequency component is excited. For this reason, when the inertial fluid chamber according to the present invention is linear, such as the inertial fluid chamber 21, and the cross-sectional shape is uniform, the duty of the pulses for controlling the low pressure side switch 3L and the high pressure side switch 3H By controlling the ratio to be close to d = 0.5, the secondary frequency component of the fundamental frequency of the flow rate fluctuation can be reduced. For this reason, the fluctuation | variation of the flow volume of the hydraulic oil which generate | occur | produces with the resonance of the flow path of hydraulic oil can be suppressed. As a result, when recovering the energy of the hydraulic oil, it is possible to prevent a decrease in the amount of recovered energy.
 なお、上記のように、デューティ比がd=0.5近傍になるように制御されるにあたって、制御部5は、デューティ比dを0.45以上0.55以下の範囲に設定することが望ましい。この場合、慣性流体室21および開閉器流路を含む作動油の流路の共振に伴って発生する作動油の流量変動を安定して抑止することができる。 As described above, when the duty ratio is controlled to be close to d = 0.5, the control unit 5 desirably sets the duty ratio d in the range of 0.45 to 0.55. . In this case, it is possible to stably suppress fluctuations in the flow rate of the hydraulic fluid that occurs in association with the resonance of the hydraulic fluid passage including the inertia fluid chamber 21 and the switch passage.
 次に、本発明の第3実施形態について説明する。なお、本実施形態では、先の第1実施形態と比較して、慣性流体室21に代わって慣性流体室23が備えられる点において相違するため、当該相違点を中心に説明し、共通する点の説明を省略する。 Next, a third embodiment of the present invention will be described. In addition, in this embodiment, since it differs in the point provided with the inertial fluid chamber 23 instead of the inertial fluid chamber 21 compared with previous 1st Embodiment, it demonstrates centering on the said difference and is a common point The description of is omitted.
 本実施形態では、エネルギー回収装置1(図1)は、慣性流体室23を備える。図10は、慣性流体室23の断面図である。図10のうち領域(A)は、慣性流体室23を長手方向(作動油が流れる方向)に沿って切断した断面図に相当し、領域(B)は、慣性流体室23を半径方向(作動油が流れる方向と直交する方向)に沿って切断した断面図に相当する。 In the present embodiment, the energy recovery device 1 (FIG. 1) includes an inertial fluid chamber 23. FIG. 10 is a cross-sectional view of the inertial fluid chamber 23. Region (A) in FIG. 10 corresponds to a cross-sectional view of inertial fluid chamber 23 cut along the longitudinal direction (direction in which hydraulic oil flows), and region (B) represents inertial fluid chamber 23 in the radial direction (operational). This corresponds to a cross-sectional view taken along the direction in which the oil flows.
 慣性流体室23は、油圧シリンダ20(図1)のピストン側室203に連通する筒状の内部空間を備えている。慣性流体室23は、ピストン202の移動に伴ってピストン側室203から吐出された作動油を受け入れる。一例として、本実施形態では、慣性流体室23はパイプ状であり、慣性流体室23の断面形状は円形である。慣性流体室23の内部空間の容積は、油圧シリンダ20の内部空間の容積よりも小さい。慣性流体室23の内部空間は、作動油によって満たされている。慣性流体室23は、流体室入口230Aと、流体室出口230Bと、複数の副流体室(第3流体室231、第4流体室232、第5流体室233)(複数の管路)を備える。流体室入口230Aは、慣性流体室23の入口であり、油圧シリンダ20のピストン側室203に連通している。また、流体室出口230Bは、慣性流体室23の出口であり、低圧配管PLおよび高圧配管PH(図1)が並列的に接続(連通)されている。 The inertial fluid chamber 23 has a cylindrical internal space communicating with the piston side chamber 203 of the hydraulic cylinder 20 (FIG. 1). The inertial fluid chamber 23 receives hydraulic oil discharged from the piston side chamber 203 as the piston 202 moves. As an example, in this embodiment, the inertial fluid chamber 23 has a pipe shape, and the inertial fluid chamber 23 has a circular cross-sectional shape. The volume of the internal space of the inertial fluid chamber 23 is smaller than the volume of the internal space of the hydraulic cylinder 20. The internal space of the inertial fluid chamber 23 is filled with hydraulic oil. The inertial fluid chamber 23 includes a fluid chamber inlet 230A, a fluid chamber outlet 230B, and a plurality of sub-fluid chambers (a third fluid chamber 231, a fourth fluid chamber 232, and a fifth fluid chamber 233) (a plurality of pipelines). . The fluid chamber inlet 230 </ b> A is an inlet of the inertial fluid chamber 23 and communicates with the piston-side chamber 203 of the hydraulic cylinder 20. The fluid chamber outlet 230B is an outlet of the inertial fluid chamber 23, and the low pressure pipe PL and the high pressure pipe PH (FIG. 1) are connected (communicated) in parallel.
 上記のように、慣性流体室23は、最も下流側の第3流体室231と、第4流体室232と、最も上流側の第5流体室233と、を備える。図10に示すように、第5流体室233、第4流体室232および第3流体室231は、流体室入口230Aから流体室出口230Bに至るまで順に配設されており、作動油の流れの方向と直交する断面における各流体室の断面積が作動油の流れの方向に沿って段階的に縮小するように設定されている。なお、第3流体室231、第4流体室232および第5流体室223の断面積は、それぞれ一定である。本実施形態では、慣性流体室23は、3段の管路を備えているが、後記のとおり、慣性流体室23は、4段以上の管路を備えるものでもよい。 As described above, the inertial fluid chamber 23 includes the third fluid chamber 231 on the most downstream side, the fourth fluid chamber 232, and the fifth fluid chamber 233 on the most upstream side. As shown in FIG. 10, the fifth fluid chamber 233, the fourth fluid chamber 232, and the third fluid chamber 231 are sequentially arranged from the fluid chamber inlet 230A to the fluid chamber outlet 230B, and the flow of hydraulic oil The cross-sectional area of each fluid chamber in the cross section orthogonal to the direction is set so as to gradually decrease along the flow direction of the hydraulic oil. Note that the cross-sectional areas of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 223 are constant. In this embodiment, the inertial fluid chamber 23 includes a three-stage pipeline, but as described later, the inertial fluid chamber 23 may include a four-stage or more pipeline.
 図10を参照して、作動油の流れの方向に沿った慣性流体室23の全長がL(mm)と定義される。本実施形態では、第3流体室231、第4流体室232および第5流体室233の長さが、L/3、換言すれば、Lの3分の1倍に設定されている。また、第3流体室231、第4流体室232および第5流体室233の断面積が、それぞれ、AP1、AP2、AP3と定義される(AP1<AP2<AP3)。この場合、各断面積の比が、以下の式2、式3を満たすことが望ましい。
=AP2/AP1<5 ・・・(式2)
=AP3/AP1<5 ・・・(式3)
Referring to FIG. 10, the total length of inertial fluid chamber 23 along the direction of hydraulic oil flow is defined as L (mm). In the present embodiment, the lengths of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 233 are set to L / 3, in other words, one third of L. The cross-sectional areas of the third fluid chamber 231, the fourth fluid chamber 232, and the fifth fluid chamber 233 are defined as A P1 , A P2 , and A P3 , respectively (A P1 <A P2 <A P3 ). In this case, it is desirable that the ratio of each cross-sectional area satisfies the following expressions 2 and 3.
a 2 = A P2 / A P1 <5 (Formula 2)
a 3 = A P3 / A P1 <5 (Formula 3)
 本実施形態に係る慣性流体室23を含むエネルギー回収装置1が、建設機械などの高圧配管に適用される場合、1/2インチ配管は内径φ16.1(mm)であり、1+(1/4)インチ配管は内径φ35.5(mm)である。したがって、これらの内径同士の関係を断面積の比率に換算すると、4.84(=(35.5/16.1))となる。このため、建設機械などへの搭載を踏まえると、エネルギー回収装置1の搭載性およびコストの観点から、式2、式3に示すように、各管路の断面積の比率a、aは5未満に設定されることが望ましい。なお、2<a<2.5、4.5<aの関係が満たされることが更に望ましい。更に、本発明者の鋭意実験および検証の結果、3段構成の場合a=2.25、a=5に設定されることが最も望ましい。当該a=2.25、a=5という望ましい設定値は、慣性流体室23の長さが変化しても、3段の管路の長さが互いに同じ場合には適用可能である。 When the energy recovery apparatus 1 including the inertial fluid chamber 23 according to the present embodiment is applied to a high-pressure pipe such as a construction machine, the 1/2 inch pipe has an inner diameter φ16.1 (mm), and 1+ (1/4 ) Inch piping has an inner diameter of φ35.5 (mm). Therefore, when the relationship between the inner diameters is converted into the ratio of the cross-sectional area, 4.84 (= (35.5 / 16.1) 2 ) is obtained. For this reason, in view of the mounting on construction machines and the like, from the viewpoint of the mountability and cost of the energy recovery device 1, the ratios a 2 and a 3 of the cross-sectional areas of the pipelines are as shown in Formulas 2 and 3, respectively. It is desirable to set it to less than 5. It is more desirable that the relations 2 <a 2 <2.5 and 4.5 <a 3 are satisfied. Furthermore, as a result of intensive experiments and verifications by the present inventors, it is most preferable that a 2 = 2.25 and a 3 = 5 are set in the case of a three-stage configuration. The desirable setting values of a 2 = 2.25 and a 3 = 5 are applicable when the lengths of the inertial fluid chambers 23 are changed and the lengths of the three stages of pipes are the same.
 図11および図12は、本実施形態に係るエネルギー回収装置1において、作動油の流路に発生する圧力変動の周波数と作動油の流量変動との関係(流量変動の周波数応答)の一例を示したグラフであり、第1実施形態の図3に対応している。すなわち、図1において、慣性流体室21の代わりに慣性流体室23が配置され、高圧側開閉器3Hの開口部が全開(自由端)とされ、低圧側開閉器3Lの開口部が全閉(固定端)とされた状態で、高圧源HPに正弦波で変動する圧力変動が強制的に加えられる。図11および図12は、この場合の慣性流体室23の流体室出口230B近傍での作動油の流量変動(周波数応答)を示した波形であり、第1実施形態の図3に対応する。そして、図11では、慣性流体室23の全長Lが3mに設定され、図12では、慣性流体室23の全長Lが9mに設定されている。また、慣性流体室23の断面積の比は、a=2.25、a=5に設定されている。なお、図11、図12のデータは、図3と同様に、シミュレーションで演算されてもよく、流体室出口230B付近に試験的に設けられた流量計によって計測されてもよい。 11 and 12 show an example of the relationship between the frequency of the pressure fluctuation generated in the hydraulic oil flow path and the flow fluctuation of the hydraulic oil (frequency response of the flow fluctuation) in the energy recovery device 1 according to the present embodiment. And corresponds to FIG. 3 of the first embodiment. That is, in FIG. 1, an inertial fluid chamber 23 is arranged instead of the inertial fluid chamber 21, the opening of the high-pressure side switch 3H is fully opened (free end), and the opening of the low-pressure side switch 3L is fully closed ( In the state of the fixed end, a pressure fluctuation that fluctuates in a sine wave is forcibly applied to the high-pressure source HP. FIGS. 11 and 12 are waveforms showing the flow rate variation (frequency response) of the hydraulic oil in the vicinity of the fluid chamber outlet 230B of the inertial fluid chamber 23 in this case, and correspond to FIG. 3 of the first embodiment. In FIG. 11, the total length L of the inertial fluid chamber 23 is set to 3 m, and in FIG. 12, the total length L of the inertial fluid chamber 23 is set to 9 m. The ratio of the cross-sectional area of the inertial fluid chamber 23 is set to a 2 = 2.25 and a 3 = 5. The data in FIGS. 11 and 12 may be calculated by simulation as in FIG. 3, or may be measured by a flow meter provided experimentally near the fluid chamber outlet 230B.
 慣性流体室23の全長Lが3mに設定された場合の図11を参照して、作動油の流路全体が備える振動特性から、加えられる圧力変動の周波数に応じて、作動油の流量変動の大きさが変化する。ここで、図11のグラフ中に示した「1」は流路(系)の反共振1次周波数であり、「2」は共振1次周波数であり、「3」は反共振2次周波数であり、「4」は共振2次周波数であり、「5」は反共振3次周波数である(図12も同様)。このように、図11においても、反共振周波数と共振周波数とが交互に現れている。そして、図10に示すように、作動油の流れの方向に沿って、第5流体室233、第4流体室232および第3流体室231の順に断面積が段階的に縮小されるとともに、これらの断面積比がa=2.25、a=5に設定されることで、図11では、反共振2次周波数が反共振1次周波数(133Hz)の2倍(266Hz)となり、反共振3次周波数が反共振1次周波数の3倍(399Hz)となっている。 Referring to FIG. 11 in the case where the total length L of the inertial fluid chamber 23 is set to 3 m, the flow rate variation of the hydraulic fluid is determined according to the frequency of the applied pressure variation from the vibration characteristics provided in the entire hydraulic fluid flow path. The size changes. Here, “1” shown in the graph of FIG. 11 is the anti-resonance primary frequency of the flow path (system), “2” is the resonance primary frequency, and “3” is the anti-resonance secondary frequency. Yes, “4” is the resonant secondary frequency, and “5” is the anti-resonant tertiary frequency (the same applies to FIG. 12). Thus, also in FIG. 11, the antiresonance frequency and the resonance frequency appear alternately. Then, as shown in FIG. 10, the sectional areas of the fifth fluid chamber 233, the fourth fluid chamber 232, and the third fluid chamber 231 are reduced stepwise along the direction of the hydraulic oil flow, 11 is set to a 2 = 2.25 and a 3 = 5, the anti-resonant secondary frequency in FIG. 11 is twice the anti-resonant primary frequency (133 Hz) (266 Hz), and the anti-resonant secondary frequency is The resonance tertiary frequency is three times (399 Hz) the anti-resonance primary frequency.
 同様に、慣性流体室23の全長Lが9mに設定された場合の図12においても、反共振2次周波数が反共振1次周波数(45Hz)の2倍(90Hz)となり、反共振3次周波数が反共振1次周波数の3倍(135Hz)となっている。 Similarly, also in FIG. 12 when the total length L of the inertial fluid chamber 23 is set to 9 m, the antiresonance secondary frequency is twice (90 Hz) the antiresonance primary frequency (45 Hz), and the antiresonance tertiary frequency is Is three times the anti-resonant primary frequency (135 Hz).
 更に、図13群は、図11に示される全長3mの慣性流体室23において、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図11の周波数「1」=133Hz)に設定した場合の各特性値の推移を示したグラフである。図13Aから図13Eは、先の第1実施形態の図3Aから図3Eに対応している。なお、図13群では、前述のデューティ比d=0.75に設定されている。 Further, in the group of FIG. 13, the switching frequency f of the high pressure side switch 3 </ b> H and the low pressure side switch 3 </ b> L in the inertial fluid chamber 23 having a total length of 3 m shown in FIG. = 133 Hz) is a graph showing the transition of each characteristic value. 13A to 13E correspond to FIGS. 3A to 3E of the first embodiment. In the group shown in FIG. 13, the aforementioned duty ratio d is set to 0.75.
 本実施形態のように、複数の副流体室(管路)が段階的に縮小されるような形状を慣性流体室23が備えることで、作動油の流量変動が低減し、エネルギー回生率が向上する。先の第1実施形態に係る慣性流体室21では、デューティ比d=0.75にて、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図3の周波数「1」=88Hz)に設定した場合の各特性値が、図8群に示された。ここで、図8Cの慣性流体室出口付近通過流量に発生している周期的な逆流(流量がゼロ以下の部分)と比較して、図13Cでは、慣性流体室出口付近通過流量に発生している周期的な逆流の発生時間が縮小している。この結果、作動油の流動変動が低減し、作動油のエネルギーが効率的に回生可能とされる。なお、図8群では、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fの2倍の周波数(基本周波数2次)と系の共振1次周波数とが近いため、基本周波数2次の周波数成分の流動変動が大きくなっている(図8E)。一方、図13群に示される結果では、基本周波数2次の周波数成分の流動変動が抑えられている(図13E)。 As in this embodiment, the inertial fluid chamber 23 has a shape in which a plurality of sub-fluid chambers (pipes) are reduced in stages, so that the flow rate fluctuation of the hydraulic oil is reduced and the energy regeneration rate is improved. To do. In the inertial fluid chamber 21 according to the first embodiment, at the duty ratio d = 0.75, the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is set to the anti-resonant primary frequency (frequency in FIG. 3). Each characteristic value when set to “1” = 88 Hz) is shown in FIG. Here, compared with the periodic reverse flow (portion where the flow rate is zero or less) generated in the flow rate near the inertial fluid chamber outlet in FIG. 8C, in FIG. The occurrence time of periodic backflow is reduced. As a result, the flow fluctuation of the hydraulic oil is reduced, and the energy of the hydraulic oil can be efficiently regenerated. In FIG. 8 group, since the frequency (secondary fundamental frequency) twice the switching frequency f of the high-voltage side switch 3H and the low-voltage side switch 3L is close to the resonance primary frequency of the system, The flow fluctuation of the frequency component is large (FIG. 8E). On the other hand, in the result shown in FIG. 13 group, the flow fluctuation of the secondary frequency component of the fundamental frequency is suppressed (FIG. 13E).
 同様に、図14群は、図12に示される全長9mの慣性流体室23において、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fを反共振1次周波数(図12の周波数「1」=45Hz)に設定した場合の各特性値の推移を示したグラフである。なお、図14群においても、前述のデューティ比d=0.75に設定されている。そして、図14Cでは、図8Cと比較して、慣性流体室出口付近通過流量に発生している周期的な逆流の発生時間が縮小している。この結果、高圧側開閉器3Hおよび低圧側開閉器3Lの切替周波数fが低周波に設定された場合でも、作動油の流動変動が低減し、作動油のエネルギーが効率的に回生可能とされる。なお、図14群に示される結果においても、基本周波数2次の周波数成分の流動変動が抑えられている(図14E)。加えて、図14群に示される結果では、図13群と比較して、切替周波数fを低く設定することができる。したがって、高圧側開閉器3Hおよび低圧側開閉器3Lに要求される開閉応答性能を下げることができるため、作動油のエネルギー回生が、より低コストで実現可能とされる。 Similarly, in the group of FIG. 14, the switching frequency f of the high pressure side switch 3 </ b> H and the low pressure side switch 3 </ b> L is set to the anti-resonant primary frequency (frequency “1” in FIG. 12). It is a graph showing transition of each characteristic value when set to “= 45 Hz”. In the group in FIG. 14 as well, the aforementioned duty ratio d is set to 0.75. And in FIG. 14C, compared with FIG. 8C, the generation | occurrence | production time of the periodic backflow which has generate | occur | produced in the inertia fluid chamber exit vicinity passage flow rate has shrunk | reduced. As a result, even when the switching frequency f of the high-pressure side switch 3H and the low-pressure side switch 3L is set to a low frequency, the flow fluctuation of the hydraulic oil is reduced and the energy of the hydraulic oil can be efficiently regenerated. . In the results shown in FIG. 14 group as well, the flow fluctuation of the second-order fundamental frequency component is suppressed (FIG. 14E). In addition, in the results shown in FIG. 14 group, the switching frequency f can be set lower than that in FIG. 13 group. Accordingly, since the switching response performance required for the high-pressure side switch 3H and the low-pressure side switch 3L can be lowered, the energy regeneration of the hydraulic oil can be realized at a lower cost.
 以上のように、本実施形態では、慣性流体室23が流体室入口230Aから流体室出口230Bに向かって、複数の副流体室を備えている。これらの流体室は、段階的に断面積が縮小されるように接続されている。そして、各断面積の比率が所定の値に設定され、最適化されることで、切替周波数fが作動油の流路の反共振1次周波数に設定された場合に、作動油の流量変動を低減することができる。このように、慣性流体室23の形状が設定されることで、図3、図11および図12に示すように、周波数応答曲線を変化させることができる。そして、慣性流体室23の断面積が段階的に縮小されることで、直管形状(ストレート)の場合と比較して、系の1次の反共振周波数が増加し、3次の反共振周波数が減少する。一方、2次の反共振周波数は大きく変化しない。この結果、慣性流体室23の断面積が最適化されることで、2次および3次の反共振周波数が1次の反共振周波数の整数倍(2倍、3倍)に近づくこととなる。 As described above, in this embodiment, the inertial fluid chamber 23 includes a plurality of sub fluid chambers from the fluid chamber inlet 230A toward the fluid chamber outlet 230B. These fluid chambers are connected so that the cross-sectional area is gradually reduced. Then, when the ratio of each cross-sectional area is set to a predetermined value and optimized so that the switching frequency f is set to the anti-resonant primary frequency of the hydraulic oil flow path, the flow fluctuation of the hydraulic oil is changed. Can be reduced. Thus, by setting the shape of the inertial fluid chamber 23, the frequency response curve can be changed as shown in FIG. 3, FIG. 11, and FIG. Then, by reducing the cross-sectional area of the inertial fluid chamber 23 in stages, the primary anti-resonance frequency of the system is increased compared to the straight pipe shape (straight), and the third-order anti-resonance frequency is increased. Decrease. On the other hand, the secondary antiresonance frequency does not change greatly. As a result, by optimizing the cross-sectional area of the inertial fluid chamber 23, the secondary and tertiary antiresonance frequencies approach an integral multiple (2 times, 3 times) of the primary antiresonance frequency.
 なお、慣性流体室23の形状は、3段の構成に限定されるものではない。慣性流体室23は、4段、または5段以上の形状を備えるものでもよい。この場合も、慣性流体室23の断面積が段階的に縮小されるとともに、各断面積の比が前述のように設定されることで、作動油の流量変動が低減され、高いエネルギー回生率が確保される。また、上記の図13群、図14群では、デューティ比が0.75の条件で示したが、他の条件においても同様の効果が発現される。なお、本発明は、慣性流体室23において、反共振2次周波数が反共振1次周波数の2倍となり、反共振3次周波数が反共振1次周波数の3倍となることに限定されるものではない。慣性流体室23の形状によって、反共振2次周波数が反共振1次周波数の2倍の近傍となり、反共振3次周波数が反共振1次周波数の3倍の近傍となるものでもよい。また、少なくとも、反共振2次周波数が反共振1次周波数の2倍の近傍となるものでもよい。この場合、近傍とは、対象となる周波数の±5%の範囲に設定されればよい。 Note that the shape of the inertial fluid chamber 23 is not limited to a three-stage configuration. The inertial fluid chamber 23 may have four or five or more stages. Also in this case, the cross-sectional area of the inertial fluid chamber 23 is reduced stepwise, and the ratio of the cross-sectional areas is set as described above, so that fluctuations in the flow rate of the hydraulic oil are reduced and a high energy regeneration rate is achieved. Secured. Further, in FIGS. 13 and 14 described above, the duty ratio is 0.75, but the same effect is exhibited under other conditions. In the inertial fluid chamber 23, the present invention is limited to the anti-resonant secondary frequency being twice the anti-resonant primary frequency and the anti-resonant tertiary frequency being three times the anti-resonant primary frequency. is not. Depending on the shape of the inertial fluid chamber 23, the antiresonance secondary frequency may be in the vicinity of twice the antiresonance primary frequency, and the antiresonance tertiary frequency may be in the vicinity of three times the antiresonance primary frequency. Further, at least the antiresonant secondary frequency may be in the vicinity of twice the antiresonant primary frequency. In this case, the neighborhood may be set in a range of ± 5% of the target frequency.
 <切替周波数fの設定範囲>
 上記のように、制御部5が制御する低圧側開閉器3Lおよび高圧側開閉器3Hの切替周波数fは、作動油(作動流体)が流れる流路(系)の反共振周波数の近傍に設定されることが望ましい。この場合、反共振周波数は、1次に限定されるものではなく、2次、3次(N次、Nは自然数)の反共振周波数であってもよい。なお、図3に示すように、反共振周波数であっても、高次になるにつれて流量変動が増大する領域がある。このため、切替周波数fは1次の反共振周波数の近傍に設定されることが望ましい。
<Setting range of switching frequency f>
As described above, the switching frequency f of the low pressure side switch 3L and the high pressure side switch 3H controlled by the control unit 5 is set in the vicinity of the anti-resonance frequency of the flow path (system) through which the hydraulic oil (working fluid) flows. It is desirable. In this case, the antiresonance frequency is not limited to the first order, and may be a second order or third order (Nth order, N is a natural number) antiresonance frequency. As shown in FIG. 3, there is a region where the flow rate fluctuation increases as the order increases even at the anti-resonance frequency. For this reason, it is desirable that the switching frequency f be set in the vicinity of the primary anti-resonance frequency.
 ここで、図3において、1次の反共振周波数(矢印「1」)をfrn(Hz)、1次の共振周波数(矢印「2」)をfrt(Hz)とし、各周波数における作動油の流量変動がそれぞれVfrn(L/min/(kgf/cm))、Vfrt(L/min/(kgf/cm))とすると、設定される切替周波数fは、下記の式4を満たすことが望ましい。
 f≦(frn+frt)/2 ・・・ (式4)
この場合、切替周波数fは、少なくとも1次の共振周波数frtよりも1次の反共振周波数frnに近い位置に設定される。したがって、流量変動の増大、作動油の逆流が抑止される。この結果、慣性流体室21(慣性流体室22)および開閉器流路を含む作動油の流路の共振に伴って発生する作動油の流量変動を安定して抑止することができる。
Here, in FIG. 3, the primary anti-resonance frequency (arrow “1”) is frn (Hz), the primary resonance frequency (arrow “2”) is frt (Hz), and the flow rate of hydraulic oil at each frequency When the fluctuations are Vfrn (L / min / (kgf / cm 2 )) and Vfrt (L / min / (kgf / cm 2 )), it is desirable that the set switching frequency f satisfies the following formula 4. .
f ≦ (frn + frt) / 2 (Formula 4)
In this case, the switching frequency f is set at a position closer to the primary anti-resonance frequency frn than at least the primary resonance frequency frt. Therefore, increase in flow rate fluctuation and backflow of hydraulic oil are suppressed. As a result, it is possible to stably suppress fluctuations in the flow rate of the hydraulic fluid that occurs in association with the resonance of the hydraulic fluid passage including the inertia fluid chamber 21 (inertial fluid chamber 22) and the switch passage.
 また、設定される切替周波数fは、下記の式5を満たすことが望ましい。
 f≧frn/2 ・・・ (式5)
換言すれば、切替周波数fは、少なくとも1次の反共振周波数frnの半分の周波数よりも大きな周波数であることが望ましい。この場合、切替周波数fが、0に近づきすぎることがなく、流量変動が増大することが抑止される(図3)。したがって、作動油の流路の共振に伴って発生する作動油の流量変動を更に安定して抑止することができる。
Further, it is desirable that the set switching frequency f satisfies the following formula 5.
f ≧ frn / 2 (Formula 5)
In other words, the switching frequency f is desirably a frequency that is at least higher than half the frequency of the first-order antiresonance frequency frn. In this case, the switching frequency f is not too close to 0, and an increase in flow rate fluctuation is suppressed (FIG. 3). Therefore, it is possible to more stably suppress fluctuations in the flow rate of the hydraulic oil that occurs with the resonance of the flow path of the hydraulic oil.
 また、切替周波数fにおける流量変動をVfとすると、Vfは下記の式6を満たすことが望ましい。
 Vf≦(Vfrn+Vfrt)/2 ・・・(式6)
この場合、切替周波数fにおける流量変動Vfは、少なくとも1次の共振周波数frtにおける流量変動Vfrtよりも1次の反共振周波数frnにおける流量変動Vfrnに近い領域に設定される。したがって、流量変動の増大、作動油の逆流が抑止される。この結果、作動油の流路の共振に伴って発生する作動油の流量変動を更に安定して抑止することができる。なお、この場合も、上記の式5が満たされることが更に望ましい。
Further, assuming that the flow rate fluctuation at the switching frequency f is Vf, it is desirable that Vf satisfies the following expression (6).
Vf ≦ (Vfrn + Vfrt) / 2 (Expression 6)
In this case, the flow rate fluctuation Vf at the switching frequency f is set in a region closer to the flow rate fluctuation Vfrn at the primary anti-resonance frequency frn than at least the flow rate fluctuation Vfrt at the primary resonance frequency frt. Therefore, increase in flow rate fluctuation and backflow of hydraulic oil are suppressed. As a result, it is possible to more stably suppress fluctuations in the flow rate of the hydraulic oil that occurs with the resonance of the flow path of the hydraulic oil. In this case as well, it is more desirable that the above Expression 5 is satisfied.
 更に、切替周波数fのより好ましい設定範囲について、説明する。図15群は、図4Cに対応するグラフ群であって、図1に示すエネルギー回収装置1において、慣性流体室21の流体室出口210付近の作動油の流量の時間推移を示すグラフである。図15Aでは切替周波数f=72.5Hzに設定され、図15Bでは切替周波数f=80Hzに設定され、図15Cでは切替周波数f=88Hzに設定され、図15Dでは切替周波数f=100Hzに設定され、図15Eでは切替周波数f=105Hzに設定され、図15Fでは切替周波数f=110Hzに設定され、図15Gでは切替周波数f=125Hzに設定されている。なお、いずれの場合も、前述のデューティ比d=0.5である。 Furthermore, a more preferable setting range of the switching frequency f will be described. FIG. 15 is a graph group corresponding to FIG. 4C, and is a graph showing the time transition of the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 in the energy recovery device 1 shown in FIG. 1. 15A, the switching frequency f is set to 72.5 Hz, the switching frequency f is set to 80 Hz in FIG. 15B, the switching frequency f is set to 88 Hz in FIG. 15C, the switching frequency f is set to 100 Hz in FIG. In FIG. 15E, the switching frequency f is set to 105 Hz, in FIG. 15F, the switching frequency f is set to 110 Hz, and in FIG. 15G, the switching frequency f is set to 125 Hz. In either case, the aforementioned duty ratio d = 0.5.
 図15Aでは、慣性流体室21の流体室出口210付近の作動油の流量が周期的にマイナスになっており、逆流が発生している。図15Bでは、作動油の流量が瞬間的にマイナスになっているが、実際には逆流は発生しなかった。また、図15C、図15Dでは、慣性流体室21の流体室出口210付近の作動油の流量が、継続的にプラスで推移しており、作動油が高圧源HPに安定して回収されている。また、図15Eでは、図15Bと同様に、作動油の流量が瞬間的にマイナスになっているが、実際には逆流は発生しなかった。また、図15F、図15Gでは、図15Aと同様に、慣性流体室21の流体室出口210付近の作動油の流量が周期的にマイナスになっており、逆流が発生している。 In FIG. 15A, the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is periodically negative, and a reverse flow is generated. In FIG. 15B, the flow rate of the hydraulic oil instantaneously becomes negative, but no back flow actually occurred. Further, in FIGS. 15C and 15D, the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is continuously positive, and the hydraulic oil is stably recovered by the high-pressure source HP. . Further, in FIG. 15E, as in FIG. 15B, although the flow rate of the hydraulic oil is instantaneously negative, no back flow actually occurred. 15F and 15G, similarly to FIG. 15A, the flow rate of the hydraulic oil in the vicinity of the fluid chamber outlet 210 of the inertial fluid chamber 21 is periodically negative, and a backflow is generated.
 図16は、図3のグラフのうち、反共振周波数(1次)および共振周波数(1次)の周辺を拡大したグラフである。図15Aから図15Gの結果から、切替周波数fが77.5Hz以上100Hz以下の範囲(以下の式7)に設定された場合、作動油の逆流が発生せず、安定してエネルギー回収が実現可能とされる。すなわち、エネルギー回収装置1の流路の反共振周波数(1次)が88Hzの場合、
 77.5≦f≦100(Hz) ・・・(式7)
の関係が満たされることが望ましい。
なお、本発明の発明者らは、エネルギー回収装置1の慣性流体室21の長さ、低圧側分岐路31および高圧側分岐路32の長さを複数の水準で変更し、上記と同様の評価を行った結果、以下の式8が満たされる場合に、同様に逆流が抑止されたエネルギー回収が実現されることを確認した。
FIG. 16 is an enlarged graph around the anti-resonance frequency (primary) and the resonance frequency (primary) in the graph of FIG. From the results of FIG. 15A to FIG. 15G, when the switching frequency f is set in the range of 77.5 Hz to 100 Hz (the following expression 7), the backflow of hydraulic oil does not occur and stable energy recovery can be realized. It is said. That is, when the anti-resonance frequency (primary) of the flow path of the energy recovery device 1 is 88 Hz,
77.5 ≦ f ≦ 100 (Hz) (Expression 7)
It is desirable that this relationship is satisfied.
The inventors of the present invention changed the length of the inertial fluid chamber 21 of the energy recovery device 1 and the lengths of the low pressure side branch path 31 and the high pressure side branch path 32 at a plurality of levels, and evaluated the same as described above. As a result, it was confirmed that when the following formula 8 is satisfied, energy recovery in which backflow is similarly suppressed is realized.
 系の反共振周波数frnとすると、
 0.88×frn≦f≦1.13≦×frn ・・・(式8)
If the anti-resonance frequency frn of the system is
0.88 × frn ≦ f ≦ 1.13 ≦ × frn (Formula 8)
 <エネルギー回収方法について>
 以上のように、本発明に係るエネルギー回収方法は、作動油のエネルギーを回収するエネルギー回収方法であり、作動油が封入される流体室であって、前記流体室の容積が可変とされている流体室と、流体室に連通する慣性流体容器と、流体室とは反対側で慣性流体容器に並列的に連通する低圧側容器および高圧側容器と、慣性流体容器と低圧側容器との間での作動油の流通を切り替える低圧側開閉器と、高圧側容器と慣性流体容器との間での作動油の流通を切り替える高圧側開閉器と、慣性流体容器から低圧側開閉器および高圧側開閉器に至るまで配設され、作動流体を導く開閉器流路と、が準備される。そして、流体室の容積の縮小に応じて、少なくとも慣性流体容器および開閉器流路を含む作動油の流路のN次(Nは自然数)の反共振周波数の近傍の切替周波数で、慣性流体容器の連通先を低圧側容器と高圧側容器との間で交互に切り替えるように高圧側開閉器および低圧側開閉器を制御することで、作動流体が低圧側容器に向かって流動する際に慣性流体容器の内部に発生した慣性力によって作動流体を高圧側容器に流入させる。
<About energy recovery methods>
As described above, the energy recovery method according to the present invention is an energy recovery method for recovering the energy of hydraulic oil, which is a fluid chamber in which hydraulic oil is enclosed, and the volume of the fluid chamber is variable. Between the fluid chamber, the inertial fluid container communicating with the fluid chamber, the low-pressure side container and the high-pressure side container communicating in parallel with the inertial fluid container on the opposite side of the fluid chamber, and the inertial fluid container and the low-pressure side container Low pressure side switch for switching the flow of hydraulic oil, high pressure side switch for switching the flow of hydraulic oil between the high pressure side container and the inertial fluid container, the low pressure side switch and the high pressure side switch from the inertial fluid container And a switch passage for guiding the working fluid is prepared. Then, according to the reduction in the volume of the fluid chamber, the inertial fluid container at a switching frequency near the Nth-order (N is a natural number) anti-resonance frequency of the hydraulic fluid flow path including at least the inertial fluid container and the switch flow path. When the working fluid flows toward the low-pressure side container by controlling the high-pressure side switch and the low-pressure side switch so as to alternately switch the communication destination between the low-pressure side container and the high-pressure side container, The working fluid is caused to flow into the high-pressure side container by the inertial force generated in the container.
 本方法によれば、作動流体が慣性流体容器から低圧側容器に向かって流動する際に慣性流体容器に発生した慣性力によって作動流体を高圧側容器に流入させることができる。更に、高圧側開閉器および低圧側開閉器の開閉動作を制御する切替周波数が、作動流体の流路のN次の反共振周波数の近傍の周波数に設定されるため、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を抑止することができる。このため、流路内における作動流体の流量変動に起因するエネルギー回収率の低下を抑止することが可能となる。 According to this method, the working fluid can be caused to flow into the high-pressure side container by the inertial force generated in the inertial fluid container when the working fluid flows from the inertial fluid container toward the low-pressure side container. Further, since the switching frequency for controlling the switching operation of the high-pressure side switch and the low-pressure side switch is set to a frequency in the vicinity of the Nth-order anti-resonance frequency of the flow path of the working fluid, the inertia fluid container and the switch flow It is possible to suppress fluctuations in the flow rate of the working fluid that occurs due to resonance of the flow path of the working fluid including the passage. For this reason, it becomes possible to suppress the fall of the energy recovery rate resulting from the flow volume fluctuation | variation of the working fluid in a flow path.
 以上、本発明の各実施形態に係るエネルギー回収装置1およびエネルギー回収方法について説明した。なお、本発明はこれらの形態に限定されるものではない。本発明に係るエネルギー回収装置およびエネルギー回収方法として、以下のような変形実施形態が可能である。 The energy recovery apparatus 1 and the energy recovery method according to each embodiment of the present invention have been described above. The present invention is not limited to these forms. The following modified embodiments are possible as the energy recovery device and the energy recovery method according to the present invention.
 (1)上記の各実施形態では、慣性流体室21、慣性流体室22および慣性流体室23の断面が円形からなる態様にて説明したが、本発明はこれに限定されるものではない。慣性流体室21、慣性流体室22および慣性流体室23の断面は、円形以外の形状を備えるものでもよい。 (1) In each of the above-described embodiments, the inertia fluid chamber 21, the inertia fluid chamber 22, and the inertia fluid chamber 23 have been described as having a circular cross section, but the present invention is not limited to this. The cross sections of the inertial fluid chamber 21, the inertial fluid chamber 22, and the inertial fluid chamber 23 may have shapes other than a circle.
 (2)また、上記の第2実施形態では、慣性流体室22が中間流体室223を備えることによって、作動油の流路の1次の反共振周波数の2倍の周波数が、作動油の流路の1次の共振周波数からずれる態様にて説明したが、本発明はこれに限定されるものではない。慣性流体室22の一部に流路が湾曲した曲げ配管を備える形状によって、作動油の流路の1次の反共振周波数の2倍の周波数が、作動油の流路の1次の共振周波数からずれる態様でもよく、その他の形状、構造に基づくものでもよい。 (2) In the second embodiment described above, the inertial fluid chamber 22 includes the intermediate fluid chamber 223, so that the frequency twice the primary anti-resonance frequency of the hydraulic oil flow path can be reduced. Although the embodiment has been described in a manner deviating from the primary resonance frequency of the road, the present invention is not limited to this. Due to the shape of the inertia fluid chamber 22 having a curved pipe with a curved flow path, a frequency twice the primary anti-resonance frequency of the hydraulic oil flow path is the primary resonant frequency of the hydraulic oil flow path. The mode may be deviated or may be based on other shapes and structures.
 本発明によって提供されるのは、作動流体のエネルギーを回収するエネルギー回収装置である。当該エネルギー回収装置は、前記作動流体が封入される流体室であって前記流体室の容積が可変とされている流体室と、前記流体室に連通する第1内部空間を備え前記流体室の容積の縮小に伴って前記流体室から吐出された前記作動流体を受け入れる慣性流体容器と、前記流体室よりも低圧に設定され前記慣性流体容器の前記第1内部空間に連通する第2内部空間を備え前記慣性流体容器から流出した前記作動流体を受け入れる低圧側容器と、前記低圧側容器の前記第2内部空間よりも高圧に設定され前記慣性流体容器の前記第1内部空間に連通する第3内部空間を備え前記慣性流体容器から流出した前記作動流体を受け入れる高圧側容器と、前記慣性流体容器と前記低圧側容器との間での前記作動流体の流通を許容する低圧側開口部を形成し前記低圧側開口部を開閉するように作動する低圧側開閉器と、前記高圧側容器と前記慣性流体容器との間での前記作動流体の流通を許容する高圧側開口部を形成し前記高圧側開口部を開閉するように作動する高圧側開閉器と、前記慣性流体容器から前記低圧側開閉器および前記高圧側開閉器に至るまで配設され前記作動流体を導く開閉器流路と、前記流体室の容積の縮小に応じて前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で交互に切り替えるように前記高圧側開閉器および前記低圧側開閉器の開閉動作を制御することで前記作動流体が前記低圧側容器に向かって流動する際に前記慣性流体容器の前記第1内部空間に発生した慣性力によって前記作動流体を前記高圧側容器に流入させる開閉器制御部と、を備える。前記開閉器制御部は、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で切り替える切替周波数を、少なくとも前記慣性流体容器および前記開閉器流路を含む前記作動流体の流路のN次(Nは自然数)の反共振周波数の近傍の周波数に設定する。 Provided by the present invention is an energy recovery device that recovers the energy of a working fluid. The energy recovery apparatus includes a fluid chamber in which the working fluid is sealed, the fluid chamber having a variable volume, and a first internal space communicating with the fluid chamber. An inertia fluid container that receives the working fluid discharged from the fluid chamber as the size of the fluid chamber decreases, and a second internal space that is set at a lower pressure than the fluid chamber and communicates with the first internal space of the inertia fluid container. A low-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and a third internal space that is set at a higher pressure than the second internal space of the low-pressure side container and communicates with the first internal space of the inertial fluid container A high-pressure side container that receives the working fluid that has flowed out of the inertial fluid container, and a low-pressure side opening that allows the working fluid to flow between the inertial fluid container and the low-pressure side container A low-pressure side switch that operates to open and close the low-pressure side opening, and a high-pressure side opening that allows the working fluid to flow between the high-pressure side container and the inertial fluid container. A high-pressure side switch that operates to open and close the opening, a switch passage that is arranged from the inertial fluid container to the low-pressure side switch and the high-pressure side switch, and guides the working fluid; and the fluid Controls the opening / closing operation of the high-pressure side switch and the low-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container according to the reduction in the volume of the chamber And a switch controller that causes the working fluid to flow into the high-pressure side container by an inertial force generated in the first internal space of the inertial fluid container when the working fluid flows toward the low-pressure side container. . The switch controller controls a switching frequency for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container, and includes at least the inertial fluid container and the switch channel. It is set to a frequency in the vicinity of the Nth order (N is a natural number) anti-resonance frequency of the flow path.
 本構成によれば、開閉器制御部は、流体室の容積の縮小に応じて、慣性流体容器の連通先を低圧側容器と高圧側容器との間で交互に切り替えるように高圧側開閉器および低圧側開閉器の開閉動作を制御する。この結果、作動流体が慣性流体容器から低圧側容器に向かって流動する際に慣性流体容器の第1内部空間に発生した慣性力によって作動流体を高圧側容器に流入させることができる。更に、高圧側開閉器および低圧側開閉器の開閉動作を制御する切替周波数は、作動流体の流路のN次の反共振周波数の近傍の周波数に設定される。このため、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を抑止することができる。この結果、流路内における作動流体の流量変動に起因するエネルギー回収率の低下を抑止することが可能となる。 According to this configuration, the switch controller controls the high-pressure side switch and the high-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container according to the reduction in the volume of the fluid chamber. Controls the opening / closing operation of the low-voltage side switch. As a result, when the working fluid flows from the inertial fluid container toward the low pressure side container, the working fluid can flow into the high pressure side container by the inertial force generated in the first internal space of the inertial fluid container. Furthermore, the switching frequency for controlling the switching operation of the high-pressure side switch and the low-pressure side switch is set to a frequency in the vicinity of the Nth-order anti-resonance frequency of the flow path of the working fluid. For this reason, the flow volume fluctuation | variation of the working fluid which generate | occur | produces with the resonance of the flow path of the working fluid containing an inertial fluid container and a switch flow path can be suppressed. As a result, it is possible to suppress a decrease in energy recovery rate caused by fluctuations in the flow rate of the working fluid in the flow path.
 上記の構成において、前記開閉器制御部は、前記切替周波数を、前記作動流体の前記流路の1次の反共振周波数の近傍の周波数に設定することが望ましい。 In the above-described configuration, it is preferable that the switch control unit sets the switching frequency to a frequency in the vicinity of a primary anti-resonance frequency of the flow path of the working fluid.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を更に抑止することができる。 According to this configuration, it is possible to further suppress fluctuations in the flow rate of the working fluid that occurs in association with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記1次の反共振周波数の近傍の周波数は、前記作動流体の前記流路の1次の共振周波数よりも前記1次の反共振周波数に近い周波数であることが望ましい。 In the above configuration, it is desirable that the frequency in the vicinity of the primary anti-resonance frequency is a frequency closer to the primary anti-resonance frequency than the primary resonance frequency of the flow path of the working fluid.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。 According to this configuration, it is possible to stably suppress fluctuations in the flow rate of the working fluid that occurs with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記1次の反共振周波数の近傍の周波数は、少なくとも前記1次の反共振周波数の半分の周波数よりも大きな周波数であることが望ましい。 In the above configuration, it is desirable that the frequency in the vicinity of the primary anti-resonance frequency is a frequency that is at least larger than half the frequency of the primary anti-resonance frequency.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を更に安定して抑止することができる。 According to this configuration, it is possible to more stably suppress fluctuations in the flow rate of the working fluid that occurs due to resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記1次の反共振周波数の近傍の周波数は、前記作動流体の前記流路の1次の共振周波数における前記流路に発生する前記作動流体の流量変動よりも、前記1次の反共振周波数における前記作動流体の流量変動に近い前記作動流体の流量変動を発生させる周波数であることが望ましい。 In the above configuration, the frequency in the vicinity of the primary anti-resonance frequency is greater than the flow rate fluctuation of the working fluid generated in the flow path at the primary resonance frequency of the flow path of the working fluid. It is desirable that the frequency of the flow rate of the working fluid be close to the flow rate variation of the working fluid at the anti-resonance frequency.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。 According to this configuration, it is possible to stably suppress fluctuations in the flow rate of the working fluid that occurs with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記慣性流体容器は、前記作動流体の前記流路の1次の反共振周波数の2倍の周波数が、前記作動流体の前記流路の1次の共振周波数からずれるような形状を備えていることが望ましい。 In the above configuration, the inertial fluid container has a shape in which a frequency twice as high as a primary anti-resonance frequency of the flow path of the working fluid deviates from a primary resonance frequency of the flow path of the working fluid. It is desirable to have.
 本構成によれば、作動流体の流路の1次の反共振周波数の2倍の周波数が励起される場合であっても、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を抑止することができる。 According to this configuration, even when a frequency twice as high as the primary anti-resonance frequency of the flow path of the working fluid is excited, the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path. Therefore, fluctuations in the flow rate of the working fluid that occur along with this can be suppressed.
 上記の構成において、前記慣性流体容器は、前記作動流体の流れの方向に沿って延びる筒状の部材であって、前記流体室に連通する第1管路と、前記第1管路に連通し前記第1管路よりも大きな内径を備える第2管路と、前記第2管路および前記開閉器流路に連通し前記第2管路よりも小さな内径を備える第3管路と、を備えることが望ましい。 In the above configuration, the inertial fluid container is a cylindrical member extending along the flow direction of the working fluid, and communicates with the first conduit and the first conduit that communicate with the fluid chamber. A second pipe having a larger inner diameter than the first pipe; and a third pipe having a smaller inner diameter than the second pipe and communicating with the second pipe and the switch passage. It is desirable.
 本構成によれば、作動流体の流路の1次の反共振周波数の2倍の周波数が励起される場合であっても、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。 According to this configuration, even when a frequency twice as high as the primary anti-resonance frequency of the flow path of the working fluid is excited, the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path. Therefore, fluctuations in the flow rate of the working fluid that occur along with this can be stably suppressed.
 上記の構成において、前記慣性流体容器は、前記作動流体の流れの方向に沿って直線的に延びる筒状の部材であって、前記開閉器制御部は、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器にとの間で切り替えるデューティ比を0.5近傍に設定することが望ましい。 In the above configuration, the inertial fluid container is a cylindrical member extending linearly along the flow direction of the working fluid, and the switch controller controls the communication destination of the inertial fluid container with the low pressure It is desirable to set the duty ratio for switching between the side container and the high-pressure side container to be close to 0.5.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を抑止することができる。 According to this configuration, it is possible to suppress fluctuations in the flow rate of the working fluid that occurs in association with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記開閉器制御部は、前記デューティ比を0.45以上0.55以下の範囲に設定することが望ましい。 In the above configuration, it is preferable that the switch control unit sets the duty ratio in a range of 0.45 to 0.55.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。 According to this configuration, it is possible to stably suppress fluctuations in the flow rate of the working fluid that occurs with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記慣性流体容器は、前記作動流体の前記流路の2次の反共振周波数が、前記作動流体の前記流路の1次の反共振周波数の2倍の周波数の近傍となるような形状を備えているものでもよい。 In the above configuration, in the inertial fluid container, the secondary anti-resonance frequency of the flow path of the working fluid is in the vicinity of twice the primary anti-resonance frequency of the flow path of the working fluid. It may be provided with such a shape.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。 According to this configuration, it is possible to stably suppress fluctuations in the flow rate of the working fluid that occurs with the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記慣性流体容器は、前記作動流体の前記流路の3次の反共振周波数が、前記作動流体の前記流路の1次の反共振周波数の3倍の周波数の近傍となるような形状を備えているものでもよい。 In the above configuration, the inertial fluid container has a third-order anti-resonance frequency of the flow path of the working fluid in the vicinity of a frequency that is three times the primary anti-resonance frequency of the flow path of the working fluid. It may be provided with such a shape.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を更に安定して抑止することができる。 According to this configuration, it is possible to more stably suppress fluctuations in the flow rate of the working fluid that occurs due to resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.
 上記の構成において、前記慣性流体容器は、前記作動流体の流れの方向に沿って延びる筒状の部材であって、当該慣性流体容器は、前記流体室に連通する容器入口と、前記開閉器流路に連通する容器出口と、前記容器入口から前記容器出口に至るまで順に配設される複数の管路と、を有し、前記作動流体の流れの方向と直交する断面における前記複数の管路の断面積が前記作動流体の流れの方向に沿って段階的に縮小するように設定されているものでもよい。 In the above configuration, the inertial fluid container is a cylindrical member extending along the flow direction of the working fluid, and the inertial fluid container includes a container inlet communicating with the fluid chamber, and the switch flow. A plurality of conduits in a cross section orthogonal to the direction of the flow of the working fluid, the container outlet communicating with the passage, and a plurality of conduits sequentially disposed from the container inlet to the container outlet The cross-sectional area may be set so as to gradually decrease along the flow direction of the working fluid.
 本構成によれば、慣性流体容器および開閉器流路を含む作動流体の流路の共振に伴って発生する作動流体の流量変動を安定して抑止することができる。
 
According to this configuration, it is possible to stably suppress fluctuations in the flow rate of the working fluid that occurs due to the resonance of the flow path of the working fluid including the inertial fluid container and the switch flow path.

Claims (13)

  1.  作動流体のエネルギーを回収するエネルギー回収装置であって、
     前記作動流体が封入される流体室であって、前記流体室の容積が可変とされている流体室と、
     前記流体室に連通する第1内部空間を備え、前記流体室の容積の縮小に伴って前記流体室から吐出された前記作動流体を受け入れる慣性流体容器と、
     前記流体室よりも低圧に設定され前記慣性流体容器の前記第1内部空間に連通する第2内部空間を備え、前記慣性流体容器から流出した前記作動流体を受け入れる低圧側容器と、
     前記低圧側容器の前記第2内部空間よりも高圧に設定され前記慣性流体容器の前記第1内部空間に連通する第3内部空間を備え、前記慣性流体容器から流出した前記作動流体を受け入れる高圧側容器と、
     前記慣性流体容器と前記低圧側容器との間での前記作動流体の流通を許容する低圧側開口部を形成し、前記低圧側開口部を開閉するように作動する低圧側開閉器と、
     前記高圧側容器と前記慣性流体容器との間での前記作動流体の流通を許容する高圧側開口部を形成し、前記高圧側開口部を開閉するように作動する高圧側開閉器と、
     前記慣性流体容器から前記低圧側開閉器および前記高圧側開閉器に至るまで配設され、前記作動流体を導く開閉器流路と、
     前記流体室の容積の縮小に応じて、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で交互に切り替えるように前記高圧側開閉器および前記低圧側開閉器の開閉動作を制御することで、前記作動流体が前記低圧側容器に向かって流動する際に前記慣性流体容器の前記第1内部空間に発生した慣性力によって前記作動流体を前記高圧側容器に流入させる開閉器制御部と、
    を備え、
     前記開閉器制御部は、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で切り替える切替周波数を、少なくとも前記慣性流体容器および前記開閉器流路を含む前記作動流体の流路のN次(Nは自然数)の反共振周波数の近傍の周波数に設定する、エネルギー回収装置。
    An energy recovery device for recovering the energy of a working fluid,
    A fluid chamber in which the working fluid is enclosed, wherein the volume of the fluid chamber is variable;
    An inertial fluid container having a first internal space communicating with the fluid chamber and receiving the working fluid discharged from the fluid chamber as the volume of the fluid chamber decreases.
    A low-pressure side container that includes a second internal space that is set at a lower pressure than the fluid chamber and communicates with the first internal space of the inertial fluid container, and that receives the working fluid flowing out of the inertial fluid container;
    A high pressure side that has a third internal space that is set at a higher pressure than the second internal space of the low pressure side container and communicates with the first internal space of the inertial fluid container, and that receives the working fluid that has flowed out of the inertial fluid container A container,
    A low-pressure side switch that operates to open and close the low-pressure side opening by forming a low-pressure side opening that allows the working fluid to flow between the inertial fluid container and the low-pressure side container;
    Forming a high-pressure side opening that allows the working fluid to flow between the high-pressure side container and the inertial fluid container, and a high-pressure side switch that operates to open and close the high-pressure side opening;
    A switch passage that is arranged from the inertial fluid container to the low-pressure side switch and the high-pressure side switch, and leads the working fluid;
    Opening and closing of the high-pressure side switch and the low-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container in accordance with a reduction in the volume of the fluid chamber. By controlling the operation, when the working fluid flows toward the low pressure side container, the opening and closing of the working fluid to flow into the high pressure side container by the inertial force generated in the first internal space of the inertial fluid container A device controller;
    With
    The switch controller controls a switching frequency for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container, and includes at least the inertial fluid container and the switch channel. An energy recovery device that is set to a frequency in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the flow path.
  2.  前記開閉器制御部は、前記切替周波数を、前記作動流体の前記流路の1次の反共振周波数の近傍の周波数に設定する、請求項1に記載のエネルギー回収装置。 The energy recovery device according to claim 1, wherein the switch control unit sets the switching frequency to a frequency in the vicinity of a primary anti-resonance frequency of the flow path of the working fluid.
  3.  前記1次の反共振周波数の近傍の前記周波数は、前記作動流体の前記流路の1次の共振周波数よりも前記1次の反共振周波数に近い周波数である、請求項2に記載のエネルギー回収装置。 The energy recovery according to claim 2, wherein the frequency in the vicinity of the primary anti-resonance frequency is a frequency closer to the primary anti-resonance frequency than the primary resonance frequency of the flow path of the working fluid. apparatus.
  4.  前記1次の反共振周波数の近傍の前記周波数は、少なくとも前記1次の反共振周波数の半分の周波数よりも大きな周波数である、請求項3に記載のエネルギー回収装置。 4. The energy recovery apparatus according to claim 3, wherein the frequency in the vicinity of the primary anti-resonance frequency is a frequency that is at least higher than half the frequency of the primary anti-resonance frequency.
  5.  前記1次の反共振周波数の近傍の前記周波数は、前記作動流体の前記流路の1次の共振周波数における前記流路に発生する前記作動流体の流量変動よりも、前記1次の反共振周波数における前記流路に発生する前記作動流体の流量変動に近い前記作動流体の流量変動を前記流路に発生させる周波数である、請求項2に記載のエネルギー回収装置。 The frequency in the vicinity of the primary anti-resonance frequency is higher than the primary anti-resonance frequency than the flow fluctuation of the working fluid generated in the flow path at the primary resonance frequency of the flow path of the working fluid. The energy recovery device according to claim 2, wherein the energy recovery device has a frequency at which the flow rate fluctuation of the working fluid close to the flow rate fluctuation of the working fluid generated in the flow path is generated in the flow path.
  6.  前記慣性流体容器は、前記作動流体の前記流路の1次の反共振周波数の2倍の周波数が、前記作動流体の前記流路の1次の共振周波数からずれるような形状を備えている、請求項1に記載のエネルギー回収装置。 The inertial fluid container has a shape such that a frequency twice as high as a primary antiresonance frequency of the flow path of the working fluid deviates from a primary resonance frequency of the flow path of the working fluid. The energy recovery device according to claim 1.
  7.  前記慣性流体容器は、前記作動流体の流れの方向に沿って延びる筒状の部材であって、前記流体室に連通する第1管路と、前記第1管路に連通し前記第1管路よりも大きな内径を備える第2管路と、前記第2管路および前記開閉器流路に連通し前記第2管路よりも小さな内径を備える第3管路と、を備える、請求項6に記載のエネルギー回収装置。 The inertial fluid container is a cylindrical member extending along the direction of flow of the working fluid, the first conduit communicating with the fluid chamber, and the first conduit communicating with the first conduit. A second pipe line having a larger inner diameter, and a third pipe line communicating with the second pipe line and the switch channel and having a smaller inner diameter than the second pipe line. The energy recovery device described.
  8.  前記慣性流体容器は、前記作動流体の流れの方向に沿って直線的に延びる筒状の部材であって、
     前記開閉器制御部は、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で切り替えるデューティ比を0.5近傍に設定する、請求項1に記載のエネルギー回収装置。
    The inertial fluid container is a cylindrical member extending linearly along the direction of the flow of the working fluid,
    The energy recovery device according to claim 1, wherein the switch control unit sets a duty ratio for switching a communication destination of the inertial fluid container between the low-pressure side container and the high-pressure side container in the vicinity of 0.5.
  9.  前記開閉器制御部は、前記デューティ比を0.45以上0.55以下の範囲に設定する、請求項8に記載のエネルギー回収装置。 The energy recovery device according to claim 8, wherein the switch control unit sets the duty ratio in a range of 0.45 to 0.55.
  10.  前記慣性流体容器は、前記作動流体の前記流路の2次の反共振周波数が、前記作動流体の前記流路の1次の反共振周波数の2倍の周波数の近傍となるような形状を備えている、請求項2に記載のエネルギー回収装置。 The inertial fluid container has a shape such that the secondary antiresonance frequency of the flow path of the working fluid is in the vicinity of twice the primary antiresonance frequency of the flow path of the working fluid. The energy recovery device according to claim 2.
  11.  前記慣性流体容器は、前記作動流体の前記流路の3次の反共振周波数が、前記作動流体の前記流路の1次の反共振周波数の3倍の周波数の近傍となるような形状を備えている、請求項10に記載のエネルギー回収装置。 The inertial fluid container has a shape such that a third-order anti-resonance frequency of the flow path of the working fluid is in the vicinity of a frequency that is three times the primary anti-resonance frequency of the flow path of the working fluid. The energy recovery device according to claim 10.
  12.  前記慣性流体容器は、前記作動流体の流れの方向に沿って延びる筒状の部材であって、当該慣性流体容器は、前記流体室に連通する容器入口と、前記開閉器流路に連通する容器出口と、前記容器入口から前記容器出口に至るまで順に配設される複数の管路と、を有し、前記作動流体の流れの方向と直交する断面における前記複数の管路の断面積が前記作動流体の流れの方向に沿って段階的に縮小するように設定されている、請求項10または11に記載のエネルギー回収装置。 The inertial fluid container is a cylindrical member extending along the flow direction of the working fluid, and the inertial fluid container is a container inlet communicating with the fluid chamber and a container communicating with the switch channel. An outlet and a plurality of pipes arranged in order from the container inlet to the container outlet, and a cross-sectional area of the plurality of pipes in a cross section orthogonal to the direction of the flow of the working fluid is The energy recovery device according to claim 10 or 11, wherein the energy recovery device is set so as to be reduced stepwise along the direction of flow of the working fluid.
  13.  作動流体のエネルギーを回収するエネルギー回収方法であって、
     前記作動流体が封入される流体室であって、前記流体室の容積が可変とされている流体室と、前記流体室に連通する慣性流体容器と、前記流体室とは反対側で前記慣性流体容器に並列的に連通する低圧側容器および高圧側容器と、前記慣性流体容器と前記低圧側容器との間での前記作動流体の流通を切り替える低圧側開閉器と、前記高圧側容器と前記慣性流体容器との間での前記作動流体の流通を切り替える高圧側開閉器と、前記慣性流体容器から前記低圧側開閉器および前記高圧側開閉器に至るまで配設され、前記作動流体を導く開閉器流路と、を準備し、
     前記流体室の容積の縮小に応じて、少なくとも前記慣性流体容器および前記開閉器流路を含む前記作動流体の流路のN次(Nは自然数)の反共振周波数の近傍の切替周波数で、前記慣性流体容器の連通先を前記低圧側容器と前記高圧側容器との間で交互に切り替えるように前記高圧側開閉器および前記低圧側開閉器を制御することで、前記作動流体が前記低圧側容器に向かって流動する際に前記慣性流体容器の内部に発生した慣性力によって前記作動流体を前記高圧側容器に流入させる、エネルギー回収方法。
    An energy recovery method for recovering the energy of a working fluid,
    A fluid chamber in which the working fluid is sealed, wherein the volume of the fluid chamber is variable; an inertial fluid container communicating with the fluid chamber; and the inertial fluid on a side opposite to the fluid chamber A low-pressure side container and a high-pressure side container communicating in parallel with the container, a low-pressure side switch for switching the flow of the working fluid between the inertial fluid container and the low-pressure side container, the high-pressure side container and the inertia A high-pressure switch that switches the flow of the working fluid to and from the fluid container, and a switch that leads from the inertial fluid container to the low-pressure switch and the high-pressure switch to guide the working fluid And a flow path,
    In response to a reduction in the volume of the fluid chamber, at least a switching frequency in the vicinity of the Nth-order (N is a natural number) anti-resonance frequency of the working fluid flow path including the inertial fluid container and the switch flow path, By controlling the high-pressure side switch and the low-pressure side switch so that the communication destination of the inertial fluid container is alternately switched between the low-pressure side container and the high-pressure side container, the working fluid is supplied to the low-pressure side container. An energy recovery method in which the working fluid is caused to flow into the high-pressure side container by an inertial force generated in the inertial fluid container when flowing toward the high pressure side.
PCT/JP2018/004725 2017-02-27 2018-02-09 Energy recovery device and energy recovery method WO2018155244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18758436.2A EP3569870B1 (en) 2017-02-27 2018-02-09 Energy recovery device and energy recovery method
US16/485,370 US10738798B2 (en) 2017-02-27 2018-02-09 Energy recovery device and energy recovery method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-034607 2017-02-27
JP2017034607 2017-02-27
JP2017155216A JP6717451B2 (en) 2017-02-27 2017-08-10 Energy recovery device and energy recovery method
JP2017-155216 2017-08-10

Publications (1)

Publication Number Publication Date
WO2018155244A1 true WO2018155244A1 (en) 2018-08-30

Family

ID=63253041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004725 WO2018155244A1 (en) 2017-02-27 2018-02-09 Energy recovery device and energy recovery method

Country Status (1)

Country Link
WO (1) WO2018155244A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163419A (en) 2013-02-22 2014-09-08 Kochi Univ Of Technology Energy recovery device and energy recovery method
JP2014169763A (en) * 2013-03-05 2014-09-18 Kochi Univ Of Technology Pulsation suppression mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163419A (en) 2013-02-22 2014-09-08 Kochi Univ Of Technology Energy recovery device and energy recovery method
JP2014169763A (en) * 2013-03-05 2014-09-18 Kochi Univ Of Technology Pulsation suppression mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569870A4

Similar Documents

Publication Publication Date Title
US6623256B2 (en) Pump with inertance value of the entrance passage being smaller than an inertance value of the exit passage
JP6717451B2 (en) Energy recovery device and energy recovery method
US7011507B2 (en) Positive displacement pump with a combined inertance value of the inlet flow path smaller than that of the outlet flow path
US9803790B2 (en) Self-killing of shock pulses of transferred medium in main pipeline
US20080256947A1 (en) System for Generating High Pressure Pulses
JP5810336B2 (en) Pulsation suppression mechanism
WO2018155244A1 (en) Energy recovery device and energy recovery method
CN102261360B (en) Multi-waveform hydraulic rotary valve for hydraulic vibration exciter
CN110056551A (en) Using special-shaped pressure stabilizing cavity body hydraulic valve bank
JP5173801B2 (en) Impulse generator, hydraulic impulse tool, and impulse generation method
Scheidl et al. Basics for the energy-efficient control of hydraulic drives by switching techniques
Ainsworth The Effect of Oil-Column Acoustic Resonance on Hydraulic Valve “Squeal”
US20200088309A1 (en) Spool valve unit and valve device
US10962027B2 (en) Suction pumps
CN105864189A (en) Hydraulic wave filtering method for full-band variable structure
McKee et al. Acoustics in Pumping Systems
CN109780361B (en) Pipeline wide-frequency fluid pressure pulsation damper
JP7315599B2 (en) Hydraulic control system, control method for hydraulic equipment
GB2198167A (en) Hydraulic pulse generator
CN103174627B (en) Methods and devices for constructively using the pressure pulsations in reciprocating compressors installations
RU2744530C1 (en) Interferential compensating disk
SU964137A1 (en) Hydraulic pulse generator
RU128736U1 (en) HYDRAULIC FLUID FLOW CONTROLLER
WO2017059542A1 (en) Switched inertance converter
SU1102956A1 (en) Stepped hydraulic pulser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018758436

Country of ref document: EP

Effective date: 20190814

NENP Non-entry into the national phase

Ref country code: DE