WO2018154853A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2018154853A1
WO2018154853A1 PCT/JP2017/039385 JP2017039385W WO2018154853A1 WO 2018154853 A1 WO2018154853 A1 WO 2018154853A1 JP 2017039385 W JP2017039385 W JP 2017039385W WO 2018154853 A1 WO2018154853 A1 WO 2018154853A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
air
conditioning system
compressor
Prior art date
Application number
PCT/JP2017/039385
Other languages
French (fr)
Japanese (ja)
Inventor
永登 齋藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019501038A priority Critical patent/JP6710313B2/en
Publication of WO2018154853A1 publication Critical patent/WO2018154853A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the present invention relates to an air conditioning system that suppresses power consumption when an emergency power supply is used.
  • an air conditioning system such as a multi air conditioning system for buildings is connected to an outdoor unit that is a heat source unit arranged outside a building and a plurality of indoor units arranged inside the building, and is usually supplied from a commercial power source. Operation such as cooling or heating is performed by electric power.
  • Such an air conditioning system further includes an uninterruptible power supply or an emergency generator as an emergency power supply, and operates with power from the emergency power supply when the commercial power supply that is a normal power supply stops. Yes (see, for example, Patent Document 1).
  • Patent Document 1 the compressor, the indoor unit blower, the means for detecting the commercial power supply cutoff, and the capacity of the compressor rotation speed and / or the indoor unit blower air volume are suppressed when the commercial power supply cutoff is detected.
  • an air conditioning system comprising the means.
  • the air conditioning system of Patent Document 1 has a suppression operation mode in which, for example, the compressor is operated at the lowest frequency and the air volume of the indoor unit blower is suppressed, and the suppression operation mode is performed during a power failure of the commercial power supply. It is the composition which becomes.
  • the frequency of the compressor and the air volume of the indoor unit blower are set regardless of the power supplied from the emergency power supply. For this reason, for example, when the compressor is set to the lowest frequency, the air conditioning system can only exhibit a minimum air conditioning capacity even though there is a surplus up to the upper limit of the supplied power. In some cases, the ability was insufficient.
  • the present invention has been made in order to solve the above-described problems.
  • the maximum air conditioning is achieved even when the power supply is suppressed.
  • the purpose is to provide an air conditioning system for operation.
  • An air conditioning system operates normally with power supplied from a normal power source, and includes one or a plurality of air conditioners that operate with power supplied from an emergency power source during a power failure of the normal power source.
  • the operation control unit that controls the operation of one or a plurality of the air conditioners
  • the power failure determination unit that detects a power failure of the regular power supply
  • the power failure determination unit that detects a power failure of the regular power supply
  • An operation command unit that performs an electric power limiting operation that limits electric power used by the plurality of air conditioners based on a preset upper limit electric power
  • the operation control unit is configured to limit the electric power by the operation command unit.
  • the operation of the one or more air conditioners is performed within a range where the total power used by the one or more air conditioners is equal to or less than the upper limit power. It is Gosuru thing.
  • the power used by one or a plurality of air conditioners is limited based on the preset upper limit power at the time of power failure of the regular power supply. That is, the air conditioning system according to the present invention has a configuration in which the power is limited by the upper limit power, and the operation control unit can control the operation within the range of the upper limit power. Therefore, the operation efficiency at the time of using the emergency power supply is improved as compared with the conventional suppression operation mode. For example, when the upper limit power is the power supplied from the emergency power supply, the air conditioning system can be operated with the maximum air conditioning capability within the range of the power supplied.
  • FIG. 1 is a circuit diagram showing a circuit configuration of an air conditioner of an air conditioning system according to Embodiment 1 of the present invention.
  • the air conditioner 1 will be described based on FIG.
  • the air conditioner 1 is used as, for example, an air conditioner that heats or cools a target space.
  • the air conditioner 1 is normally operated by electric power supplied from an ordinary power source such as a commercial power source. However, when the electric power supply from the ordinary power source is interrupted, electric power is supplied from an emergency power source.
  • the emergency power source refers to, for example, an uninterruptible device or an emergency generator.
  • the air conditioner 1 includes an outdoor unit 10 and two indoor units 50a and 50b.
  • the air conditioner 1 has a refrigeration cycle for circulating a refrigerant, and each of the indoor units 50a and 50b can select a cooling operation mode or a heating operation mode as an operation mode.
  • the air conditioner 1 can set the operation mode of each of the indoor units 50a and 50b to the cooling operation mode or the heating operation mode by the flow path switching device 13 mounted on the outdoor unit 10.
  • FIG. 1 shows an example in which two indoor units 50a and 50b are connected in parallel to one outdoor unit 10, but the number of outdoor units 10 and indoor units 50 is the same. Is not particularly limited to this.
  • each of the indoor unit 50a and the indoor unit 50b will be described as the indoor unit 50.
  • the components mounted in the indoor unit 50a and the indoor unit 50b are also illustrated by adding “a” and “b” at the end of each symbol. "And” b "are omitted.
  • the outdoor unit 10 is mainly installed outdoors, and has a function of supplying cold or warm heat to the indoor unit 50.
  • the outdoor unit 10 includes a compressor 11, a check valve 12, a flow path switching device 13, an outdoor unit heat exchanger 14, an accumulator 16, and the like.
  • the outdoor unit 10 is equipped with an outdoor unit blower 15.
  • the compressor 11 compresses the refrigerant flowing in through the accumulator 16 and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the compressor 11 can be configured by, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor. Moreover, the compressor 11 is good to comprise with the capacity
  • the check valve 12 is provided on the discharge side of the compressor 11 and allows the refrigerant to flow in only one direction.
  • the flow path switching device 13 is provided on the discharge side of the compressor 11 via the check valve 12, and switches the refrigerant flow between the cooling operation mode and the heating operation mode.
  • the flow path switching device 13 can be composed of, for example, a two-way valve or a combination of three-way valves, or a four-way valve.
  • the flow path switching device 13 connects the discharge side of the compressor 11 and the outdoor unit heat exchanger 14, and the refrigerant discharged from the compressor 11 is sent to the outdoor unit heat exchanger 14.
  • the flow path switching device 13 connects the discharge side of the compressor 11 and the refrigerant pipe 4, and the refrigerant discharged from the compressor 11 is sent to the indoor unit 50 via the refrigerant pipe 4.
  • the air conditioner 1 is a cooling only machine or a heating only machine, it is not necessary to provide the flow path switching device 13.
  • the outdoor unit heat exchanger 14 acts as an evaporator during heating operation, and acts as a condenser during cooling operation, and between the heat exchange fluid such as air supplied from a fluid transfer device such as the outdoor unit blower 15 and the refrigerant. Heat exchange.
  • the outdoor unit heat exchanger 14 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double tube heat exchanger, or It can be composed of a plate heat exchanger or the like. In the first embodiment, the case where the outdoor unit heat exchanger 14 is a fin-and-tube heat exchanger will be described as an example.
  • the outdoor unit blower 15 is an example of a fluid transfer device, and supplies air to the outdoor unit heat exchanger 14.
  • the outdoor unit blower 15 can be composed of, for example, a propeller fan having a plurality of blades.
  • the outdoor unit blower 15 may be installed anywhere as long as it is installed in a place where air can be supplied to the outdoor unit heat exchanger 14.
  • the fluid conveyance apparatus according to the type of the outdoor unit heat exchanger 14 may be selected.
  • the air conditioner 1 may be equipped with, for example, a pump instead of the outdoor unit blower 15.
  • the accumulator 16 is provided on the suction side of the compressor 11 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, excess refrigerant due to a transient change in operation, or excess refrigerant generated due to load conditions. is there.
  • the transitional change in operation refers to, for example, a case where the number of operating indoor units 50 changes.
  • the accumulator 16 separates the liquid refrigerant and the gas refrigerant and supplies only the gas refrigerant to the compressor 11.
  • the outdoor unit 10 is further equipped with a control device 70 that performs overall control of the air conditioner 1.
  • Each actuator (drive component) is connected to the control device 70, and the control device 70 controls the operation of each actuator.
  • the actuator include the compressor 11, the flow path switching device 13, the outdoor unit blower 15, a throttle device 52 and an indoor unit blower 53, which will be described later.
  • the control device 70 is configured to detect a power failure of the regular power supply and transmit a detection signal to a communicable device such as a centralized management controller 80 (see FIG. 2) described later.
  • the control device 70 controls the operation of each actuator based on detection values from various sensors (not shown) (hereinafter referred to as a sensor group 60).
  • a sensor group 60 for example, a pressure sensor that is provided on the discharge side of the compressor 11 and detects the pressure of refrigerant discharged from the compressor 11, and a temperature sensor that is installed in each indoor unit 50 and detects the temperature. Etc. are included.
  • the control device 70 may be configured by hardware such as a circuit device, or may be configured by a microcomputer or the like.
  • control apparatus 70 is mounted in the outdoor unit 10 as an example, the mounting location of the control apparatus 70 is not particularly limited.
  • the indoor unit 50 may be provided with a control device, and the control device of the indoor unit 50 and the control device 70 may be connected to be communicable. In this case, an instruction from a remote controller (not shown) is input to the control device 70 via the control device of the indoor unit 50.
  • the indoor unit 50 is installed indoors or the like, for example, and has a function of cooling or heating the air-conditioning target space by the cold or warm heat supplied from the outdoor unit 10.
  • Each indoor unit 50 includes an indoor unit heat exchanger 51, an expansion device 52, an indoor unit blower 53, and the like.
  • the indoor unit heat exchanger 51 acts as a condenser during the heating operation, and acts as an evaporator during the cooling operation.
  • the indoor unit heat exchanger 51 performs heat exchange between a heat exchange fluid such as air supplied from a fluid transfer device such as the indoor unit blower 53 and the refrigerant, and supplies air to the air-conditioning target space. Produce air.
  • the indoor unit heat exchanger 51 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like. In the first embodiment, the case where the indoor unit heat exchanger 51 is a fin-and-tube heat exchanger will be described as an example.
  • the indoor unit blower 53 is an example of a fluid transfer device, and supplies air to the indoor unit heat exchanger 51.
  • the indoor unit blower 53 can be composed of, for example, a propeller fan having a plurality of blades.
  • the indoor unit blower 53 may be disposed anywhere as long as it is installed in a place where air can be supplied to the indoor unit heat exchanger 51.
  • what is necessary is just to select a fluid conveying apparatus according to the type of the indoor unit heat exchanger 51. For example, when the heat exchange fluid is water or brine, a pump is mounted on the indoor unit 50 instead of the indoor unit blower 53 as a fluid transfer device.
  • the expansion device 52 expands and depressurizes the refrigerant that has passed through the indoor unit heat exchanger 51 or the outdoor unit heat exchanger 14.
  • the expansion device 52 is provided between the outdoor unit heat exchanger 14 and each indoor unit heat exchanger 51.
  • the expansion device 52 may be constituted by, for example, an electric expansion valve that can adjust the flow rate of the refrigerant.
  • a mechanical expansion valve using a diaphragm as a pressure receiving portion, a capillary tube, or the like may be used instead of using an electric expansion valve.
  • the air conditioner 1 is configured such that the indoor unit 50 can perform a cooling operation or a heating operation based on an instruction from the indoor unit 50, for example.
  • the air conditioner 1 can execute the same operation of the cooling operation or the heating operation in all of the connected indoor units 50a and 50b.
  • the outdoor unit 10 causes the flow path of the refrigerant discharged from the compressor 11 to flow into the indoor unit heat exchanger 51 via the outdoor unit heat exchanger 14.
  • the flow path switching device 13 performs switching.
  • the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor unit heat exchanger 14 via the check valve 12 and the flow path switching device 13.
  • the refrigerant that has flowed into the outdoor unit heat exchanger 14 is heat-exchanged with the air supplied by the outdoor unit blower 15, and becomes a high-temperature and high-pressure liquid refrigerant that flows out of the outdoor unit heat exchanger 14.
  • the high-temperature and high-pressure liquid refrigerant flowing into the indoor unit 50 is converted into a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant by the expansion device 52 provided in the indoor unit 50 and flows into the indoor unit heat exchanger 51.
  • the refrigerant that has flowed into the indoor unit heat exchanger 51 is heat-exchanged with the air supplied by the indoor unit blower 53 to become a low-temperature and low-pressure gas refrigerant and flows out of the indoor unit heat exchanger 51.
  • the refrigerant absorbs heat from the air in the indoor unit heat exchanger 51 the room that is the air-conditioning target space is cooled.
  • the refrigerant that has flowed out of the indoor unit heat exchanger 51 passes through the refrigerant pipe 4 and flows into the outdoor unit 10.
  • the refrigerant that has flowed into the outdoor unit 10 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated.
  • Heating operation mode Next, the heating operation mode performed by the air conditioner 1 will be described.
  • the flow of the refrigerant in the heating operation mode is indicated by a solid line arrow.
  • the heating operation mode of the air conditioner 1 will be described by taking as an example a case where the heat exchange fluid is air and the heat exchange fluid is a refrigerant.
  • the outdoor unit 10 passes the flow path of the refrigerant discharged from the compressor 11 to the indoor unit heat exchanger 51 without passing through the outdoor unit heat exchanger 14. It switches by the flow-path switching apparatus 13 so that it may flow in.
  • the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor unit heat exchanger 51 via the check valve 12 and the flow path switching device 13.
  • the refrigerant that has flowed into the indoor unit heat exchanger 51 is heat-exchanged with the air supplied by the indoor unit blower 53 and becomes a high-temperature and high-pressure liquid refrigerant that flows out of the indoor unit heat exchanger 51.
  • the refrigerant radiates heat to the air, thereby heating the room.
  • the high-temperature and high-pressure liquid refrigerant that has flowed out of the indoor unit heat exchanger 51 becomes a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant by the expansion device 52 provided in each indoor unit 50, and enters the outdoor unit heat exchanger 14 of the outdoor unit 10. Inflow.
  • the refrigerant that has flowed into the outdoor unit heat exchanger 14 is heat-exchanged with the air supplied by the outdoor unit blower 15, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the outdoor unit heat exchanger 14.
  • the refrigerant that has flowed out of the outdoor unit heat exchanger 14 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated.
  • FIG. 2 is a block diagram showing a schematic configuration of the air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 100 includes one or a plurality of the air conditioners 1 described above, a centralized management controller 80, and the like.
  • the air conditioning system 100 includes a plurality of air conditioners 1A, 1B, 1C will be described.
  • each of the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C is referred to as the air conditioner 1. explain.
  • the centralized management controller 80 is a control device that manages the plurality of air conditioners 1A, 1B, and 1C.
  • FIG. 2 a case where three air conditioners 1A, 1B, 1C each including two indoor units 50 and one outdoor unit 10 are connected in parallel to one centralized controller 80.
  • the number of connected air conditioners 1 and indoor units 50 is not particularly limited to this.
  • a plurality of air conditioners 1 are connected to the central control controller 80 so that they can communicate with each other by communication wiring or wirelessly.
  • a plurality of control devices 70 a, 70 b and 70 c are connected to the centralized management controller 80.
  • the centralized management controller 80 acquires information from the plurality of outdoor units 10a, 10b, 10c and the plurality of indoor units 50a, 50b, 50c, 50d, 50e, 50f via the plurality of control devices 70a, 70b, 70c, I manage.
  • the centralized management controller 80 can transmit the operation command regarding control of the air conditioner 1 to the control apparatus 70 in an emergency, and can make an operation command carry out with priority.
  • FIG. 3 is a functional block diagram showing a functional configuration of the air-conditioning system according to Embodiment 1 of the present invention.
  • the functions of the centralized management controller 80 and the control device 70 will be described with reference to FIG. In FIG. 3, only the centralized management controller 80 and the control device 70a of the air conditioner 1A are shown. However, the control device 70b and the control device 70c also have a centralized management controller 80 as in the control device 70a. And connected.
  • the control device 70 a includes a power failure determination unit 71 and an operation control unit 72.
  • the power failure determination unit 71 detects a power failure of the regular power supply.
  • the power failure determination unit 71 is configured to constantly monitor the input power from the regular power source and detect a power failure by detecting a phase failure of the input power.
  • the power failure determination unit 71 transmits a power failure signal to the centralized management controller 80 when detecting a power failure of the regular power supply.
  • the power failure determination part 71 transmits the reset signal which is a reset signal to the centralized management controller 80, when the input power supply from a regular power supply returns from a power failure.
  • the operation control unit 72 controls each actuator of the air conditioner 1A based on information input from the remote controller, information acquired from the sensor group 60, and the like.
  • the operation control unit 72 switches the drive frequency of the compressor 11, the switching of the flow path switching device 13, the rotation speed of the outdoor unit blower 15, the opening degree of the expansion device 52 of each indoor unit 50, and the rotation number of the indoor unit blower 53. Control etc.
  • the operation control unit 72 transmits information on the indoor unit 50 and the outdoor unit 10 to the centralized management controller 80 and receives an operation command from the centralized management controller 80.
  • the operation control unit 72 transmits information related to the operation and air conditioning setting of each indoor unit 50, control information of the outdoor unit 10, and the like to the centralized management controller 80.
  • the operation control unit 72 controls the air conditioner 1A based on the received operation command.
  • the central management controller 80 has an information management unit 81, an operation unit 82, an operation command unit 83, and the like.
  • the information management unit 81 manages information on each outdoor unit 10 and each indoor unit 50 acquired via each control device 70a, 70b, 70c.
  • the information on the outdoor unit 10 includes, for example, control information of the actuator, and the information on the indoor unit 50 includes, for example, information such as an operation mode, an operation state such as operation or stop, and a set temperature.
  • the information management unit 81 can transmit such information collectively or individually. Further, the information management unit 81 manages the power information of the emergency power supply and the priority information for each air conditioner 1.
  • the power information includes, for example, set power Ps set in advance as power that can be supplied from the emergency power supply to the air conditioning system 100, the amount of power that can be allocated to the air conditioning system 100, and the like.
  • a priority is a priority which continues a driving
  • the priority may be set in advance from the operation unit 82 or the like at the time of installation or the like, or set by the operation command unit 83 based on operation information or the like during operation of each air conditioner 1. May be.
  • the operation unit 82 is input with commands or settings by an administrator or the like of the air conditioning system 100, and includes, for example, a touch panel having a liquid crystal screen or a display unit and a keyboard.
  • the input setting is reflected in the information management unit 81, and the input command is executed by the operation command unit 83 as necessary.
  • the operation command unit 83 manages the operation of the plurality of air conditioners 1A, 1B, and 1C connected to the centralized management controller 80.
  • the normal operation mode the operation of each air conditioner 1 is controlled by each control device 70 based on the input from the remote controller, the set information, and the information from the sensor group 60 and the like.
  • the operation command unit 83 receives the power failure signal from the power failure determination unit 71, and switches the operation mode from the normal operation mode to the power limited operation mode when the normal power supply has a power failure.
  • the power limited operation mode is an operation mode in which the power used by the connected air conditioner 1 is limited based on a preset set power Ps.
  • the operation command unit 83 transmits an operation command to the control device 70 as necessary, and causes the operation control unit 72 to control the air conditioner 1 based on the operation command. Specifically, the operation command unit 83 sends one operation control unit 72 to the operation control unit 72 within a range in which the total power use Pu of one or more connected air conditioners 1A, 1B, 1C is equal to or less than the set power Ps. Alternatively, the operation of the plurality of air conditioners 1 is controlled. The operation command unit 83 ends the power limited operation when receiving the return signal.
  • FIG. 4 is a flowchart showing control of the air-conditioning system according to Embodiment 1 of the present invention. Hereinafter, control performed by the centralized management controller 80 and the control device 70 in the air conditioning system 100 will be described.
  • step ST101 When the air conditioning system 100 starts operation, normal operation is performed (step ST101).
  • the power failure determination unit 71 monitors the input power from the normal power source, and determines whether a power failure of the normal power source is detected during normal operation (step ST102).
  • step ST102 YES
  • a power failure signal is transmitted to the centralized management controller 80.
  • the operation command unit 83 starts the power limited operation (step ST103).
  • step ST102 NO
  • normal operation is continued (step ST101), and the power failure determination of step ST102 is repeated every predetermined time.
  • the operation command unit 83 limits the power used by the air conditioning system 100 to be within the power supplied by the emergency power source.
  • the operation command unit 83 performs power determination for determining whether the used power Pu is greater than the set power Ps (step ST104).
  • the operation command unit 83 transmits a request signal to notify each control device 70a, 70b, 70c of the power of the air conditioner 1.
  • the operation control unit 72 calculates the amount of power from the operating frequency of the compressor 11 and the rotational speed of the outdoor unit blower 15 and notifies the centralized management controller 80 of the calculated amount of power. To do.
  • the operation command unit 83 totals the notified power amounts of the air conditioners 1A, 1B, and 1C, and compares the used power Pu obtained by totaling with the set power Ps set in the information management unit 81. To do.
  • step ST104: NO When it is determined that the used electric power Pu is equal to or lower than the set electric power Ps in the electric power determination (step ST104: NO), the operation command unit 83 does not need to suppress the operation of the air conditioner 1; The operating state of the air conditioners 1A, 1B, 1C is maintained. On the other hand, when it is determined that the used power Pu is greater than the set power Ps (step ST104: YES), the operation command unit 83 further determines whether there are a plurality of air conditioners 1 that are in operation. (Step ST105). Then, when only one air conditioner 1 is in operation (step ST105: NO), the operation command unit 83 starts the power limited operation during the single operation (step ST201).
  • the operation command unit 83 has the lowest priority among the plurality of air conditioners 1 in operation. Is stopped (step ST106). At this time, the operation command unit 83 refers to the priority of each air conditioner 1 stored in the information management unit 81, and issues an operation command to stop the operation of the air conditioner 1 for which the lowest priority is set. To the control device 70. Specifically, when priority “high”, “medium”, or “low” is set for the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C, respectively, the priority “low” is set. An operation command for stopping the operation of the air conditioner 1C is transmitted. Then, the controller 70c of the air conditioner 1C stops each actuator of the air conditioner 1C based on the operation command. On the other hand, the operation of the air conditioner 1A and the air conditioner 1B is continued.
  • step ST107 After step ST106 or when the current operation state of each air conditioner 1A, 1B, 1C is maintained by the power determination in step ST104, a power failure recovery determination is performed (step ST107).
  • the power failure determination unit 71 determines that the power failure has been restored when the input power from the utility power returns (step ST107: YES), and transmits a return signal to the centralized management controller 80.
  • Operation command unit 83 ends the power limited operation when a return signal is received from power failure determination unit 71 (step ST108). Thereafter, normal operation is performed (step ST101). On the other hand, when the return signal is not transmitted from the power failure determination unit 71 (step ST107: NO), the operation command unit 83 performs the power determination of step ST104 again.
  • step ST104 The processing from step ST104 to step ST107 is repeated until the central control controller 80 receives a return signal.
  • the total used power Pu2 counted in the second power determination (step ST104) is smaller than the used power Pu1 at the previous power determination because the air conditioner 1C is stopped.
  • the air conditioner for which the second lowest priority is set in the second step ST106. 1B is stopped.
  • FIG. 5 is a flowchart showing the control of the power limiting operation during the single operation of the air-conditioning system according to Embodiment 1 of the present invention.
  • the power limiting operation during the single operation is to limit the power consumption of the air conditioner 1 during the operation so as to be equal to or less than the set power Ps.
  • the operation command unit 83 calculates the frequency Fs of the compressor 11 and the rotation speed Ns of the outdoor unit fan 15 when operating with the preset set power Ps. (Step ST202). Then, the operation command unit 83 sets the calculated frequency Fs as the upper limit frequency of the compressor 11 and sets the calculated rotation speed Ns as the upper limit rotation speed of the outdoor unit blower 15 for the operating air conditioner 1A. (Step ST203). At this time, the operation command unit 83 reflects the set upper limit frequency and upper limit rotation number in the information management unit 81 and transmits the operation command to the control device 70a.
  • step ST204 a power failure recovery determination is performed (step ST204).
  • the power failure determination unit 71 determines that the power failure has been restored when the input power from the utility power returns (step ST204: YES), and transmits a return signal to the centralized management controller 80.
  • the operation command unit 83 ends the power limited operation when receiving a return signal from the power failure determination unit 71 (step ST205). Thereafter, normal operation is performed (step ST101).
  • step ST204 NO
  • the power limited operation is continued based on the set upper limit frequency and upper limit rotation speed. Thereafter, the power failure recovery determination in step ST204 is repeated until the centralized management controller 80 receives a recovery signal.
  • the air conditioning system 100 includes the operation control unit 72, the power failure determination unit 71, and the operation command unit 83.
  • the operation command unit 83 limits the power used by one or more air conditioners 1A, 1B, and 1C based on the upper limit power (set power Ps) when a power failure is detected by the power failure determination unit 71. Carry out driving.
  • the operation control unit 72 when the power instruction operation is performed by the operation command unit 83, the total power use Pu of one or a plurality of the air conditioners 1A, 1B, 1C is equal to or less than the upper limit power (set power Ps).
  • the operation of one or more air conditioners 1 is controlled within a range.
  • the overall power consumption is limited based on the preset upper limit power (set power Ps) at the time of a power failure of the utility power supply, but the operation control unit 72 controls the operation within the range of the upper limit power.
  • set power Ps the preset upper limit power
  • the air conditioning system 100 can be operated with the maximum air conditioning capability in the range of the supply power. Therefore, as compared with the suppression operation mode set as in the prior art, the degree of freedom of control when using the emergency power supply is increased, and the overall power usage Pu is limited to the upper limit power (set power Ps) or less. It is possible to avoid stopping the operation of the entire system. That is, the air conditioning system 100 can continue the operation commensurate with the set power Ps even when the supplied power is limited.
  • the power failure determination unit 71 detects a power failure when a phase failure of the regular power supply is detected.
  • the air conditioning system 100 can perform stable operation by performing maintenance or switching to an emergency power supply.
  • the air conditioning system 100 further includes a centralized management controller 80 that manages one or a plurality of air conditioners 1A, 1B, and 1C, and the operation command unit 83 is included in the centralized management controller 80.
  • the air conditioning system 100 can perform power limited operation or transmit an operation command using the operation information of one or more air conditioners 1A, 1B, and 1C managed by the centralized management controller 80. it can.
  • the operation command unit 83 is a case where a power failure is detected by the power failure determination unit 71, and the total power use Pu of one or a plurality of air conditioners 1A, 1B, 1C is higher than the upper limit power (set power Ps). If it is larger, carry out power limited operation.
  • the air conditioning system 100 continues operation by limiting the total power consumption Pu when the power supply is insufficient during a power failure of the normal power supply, while the total power consumption Pu becomes the set power Ps. For example, a normal operation can be performed and a highly efficient operation can be performed.
  • the operation command unit 83 gives the operation control unit 72 a low priority among the plurality of air conditioners 1 in operation.
  • the operation of the air conditioner for example, the air conditioner 1C is stopped.
  • the air conditioning system 100 can continue the operation even in an emergency for an air conditioner (for example, the air conditioner 1A) to be prioritized.
  • each of the one or more air conditioners 1A, 1B, 1C has a compressor 11 and an outdoor unit blower 15.
  • the operation control unit 72 controls the compressor 11 and the outdoor unit blower 15.
  • the operation command unit 83 sets the upper limit power (for example, set power) when only one air conditioner (the air conditioner 1A) among the one or more air conditioners 1A, 1B, 1C is operating in the power limited operation.
  • the frequency of the compressor 11 and the rotational speed of the outdoor unit fan 15 at Ps) are calculated.
  • the operation command unit 83 causes the operation control unit 72 to control the compressor 11 and the outdoor unit blower 15 of the operating air conditioner 1A with the calculated frequency Fs and rotation speed Ns as upper limits.
  • the operation control unit 72 can arbitrarily control the compressor 11 and the outdoor unit blower 15 with the frequency Fs and the rotation speed Ns at the set power Ps as upper limits in the power limited operation. Therefore, compared with the suppression operation mode which operates at the compressor frequency and the rotation speed of the indoor unit blower set as in the prior art, the air conditioning system 100 is high within the set range even when the emergency power supply is used. Efficient air conditioning can be provided.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • the plurality of air conditioners 1A, 1B, and 1C are each provided with the control device 70, and the centralized management controller 80 is described as managing the plurality of air conditioners 1A, 1B, and 1C. It is not limited to such a configuration.
  • the control device 70 may have the function of the centralized management controller 80.
  • the refrigeration cycle is not limited to the circuit configuration of FIG. 1.
  • the outdoor unit 10 may have a mechanism for switching the refrigerant flow for each indoor unit 50.
  • the central management controller 80 may be provided with a part or all of the functions of the control device 70, or the control device 70 may be provided with a part or all of the functions of the central management controller 80.
  • a configuration in which a power failure or power failure recovery is determined by the centralized management controller 80 instead of the control device 70 may be employed.
  • step ST104 the operation command unit 83 transmits a request signal to notify each control device 70 of the electric power used by the air conditioner 1.
  • the operation command unit 83 may be configured to calculate the power usage of each air conditioner 1 and the total power usage Pu based on the latest operation information stored in the information management unit 81.
  • FIG. FIG. 6 is a flowchart showing the control of the defrosting operation during the power limited operation of the air-conditioning system according to Embodiment 2 of the present invention.
  • each air conditioner 1A, 1B, 1C performs a defrosting operation in addition to the heating operation and the cooling operation described above.
  • Each of the air conditioners 1A, 1B, and 1C further includes a refrigerant temperature sensor as the sensor group 60.
  • the refrigerant temperature sensor is disposed in the outdoor unit heat exchanger 14 and detects the temperature of the refrigerant flowing through the outdoor unit heat exchanger 14. In the air conditioner 1, when the amount of frost formation in the outdoor unit heat exchanger 14 increases during the heating operation mode, a defrosting operation for melting frost is performed.
  • the operation control unit 72 of the control device 70 performs control so as to start the defrosting operation when the temperature of the refrigerant detected by the refrigerant temperature sensor becomes equal to or lower than a set temperature, for example. Moreover, the operation control part 72 is controlled to complete
  • the start condition of the defrosting operation is not limited to the determination based on the temperature of the refrigerant.
  • a low pressure sensor may be disposed on the suction side of the compressor 11 and the defrosting operation may be started when the refrigerant pressure detected by the low pressure sensor becomes equal to or lower than a set pressure.
  • the defrosting time Tdef is an execution time per defrosting operation.
  • the defrost frequency Fdef and the defrost time Tdef are determined by the amount of heat necessary for the defrosting of the outdoor unit heat exchanger 14 of the own unit in the control devices 70a, 70b, 70c of the air conditioners 1A, 1B, 1C. Set values are stored in advance.
  • the control device 70a of the air conditioner 1A stores the set frequency Fdef1 as the set value of the defrost frequency Fdef and the set defrost time Tdef1 as the set value of the defrost time Tdef.
  • the centralized management controller 80 acquires the set values of the defrost frequency Fdef and the defrost time Tdef described above, and these acquired set values are managed by the information management unit 81 as information on the outdoor unit 10.
  • the control device 70 performs the defrosting operation in the air conditioner 1, the flow switching device 13 is switched to the flow channel in the cooling operation mode, and the outdoor unit blower 15 and the indoor unit blower 53 are controlled to stop. Further, the control device 70 controls the compressor 11 to operate at the set defrost frequency Fdef. For example, at the normal time, the defrost frequency Fdef is set to the maximum frequency of the compressor 11 in order to melt frost in a short time.
  • the compressor 11 compresses the low-temperature and low-pressure refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor unit heat exchanger 14 via the check valve 12 and the flow path switching device 13.
  • the refrigerant that has flowed into the outdoor unit heat exchanger 14 melts frost by radiating heat to become a liquid refrigerant and flows out of the outdoor unit heat exchanger 14.
  • the liquid refrigerant flowing out of the outdoor unit heat exchanger 14 flows into the indoor unit 50 through the refrigerant pipe 5.
  • the liquid refrigerant flowing into the indoor unit 50 passes through the expansion device 52 provided in the indoor unit 50 and flows into the indoor unit heat exchanger 51.
  • the refrigerant that has flowed into the indoor unit heat exchanger 51 evaporates due to the heat of the piping, and part or all of the refrigerant becomes a gas refrigerant and flows out of the indoor unit heat exchanger 51.
  • the refrigerant that has flowed out of the indoor unit heat exchanger 51 flows into the outdoor unit 10 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 10 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated until the defrosting operation is completed.
  • the power consumption is suppressed by uniformly setting the compressor to the lowest frequency.
  • the upper limit of the operation frequency of the compressor 11 is limited to the frequency Fs. Therefore, in the power suppression operation mode in which the compressor 11 is driven at a frequency lower than the normal defrost frequency Fdef, the frost is sufficiently melted even if the defrost operation of the normal defrost time Tdef is performed. May not be possible.
  • the defrosting time Tdef necessary for the defrosting of the outdoor unit heat exchanger 14 is calculated, and the calculated defrosting time Tdef is removed.
  • a frost operation is performed.
  • the control in the case where the defrosting operation is performed when the power limiting operation during the single operation of FIG. 5 is performed will be described based on FIG. 6.
  • the air conditioner 1A is in operation, and the air conditioner 1A is performing the heating operation while the power failure recovery determination in step ST204 of FIG. 5 is repeated.
  • the control of FIG. 6 is started.
  • the operation command unit 83 calculates the defrost frequency Fs2 of the compressor 11 when operating with the preset set power Ps (step ST301). And the operation instruction
  • the amount of heat Q required for defrosting of the outdoor unit heat exchanger 14 of the air conditioner 1A is expressed by the following formula 1 using the set defrosting time Tdef1 set in the normal defrosting operation.
  • Gr Refrigerant flow rate
  • ⁇ H Enthalpy difference before and after heat exchange
  • the refrigerant flow rate Gr in Equation 1 above is expressed by Equation 2 below using the set frequency Fdef1 set in the normal defrosting operation.
  • Ts (Fdef1 ⁇ Tdef1) / Fs2 (Formula 4)
  • the operation command unit 83 transmits an operation command to the control device 70a of the air conditioner 1A, and the operation control unit 72 of the control device 70a performs the defrosting operation based on the operation command received from the operation command unit 83. Is executed (step ST303). At this time, the operation control unit 72 switches the flow path switching device 13 to the flow path in the cooling operation mode and controls the outdoor unit blower 15 to stop, and the compressor 11 is calculated based on the operation command. Control is performed to operate at the frost frequency Fs2.
  • the operation control part 72 complete
  • the operation control unit 72 controls the flow path switching device 13 to switch to the flow path in the heating operation mode and to resume the heating operation.
  • the operation control unit 72 controls the operation frequency of the compressor 11 with the frequency Fs as the upper limit, and controls the rotation speed of the outdoor unit heat exchanger 14 with the rotation speed Ns as the upper limit. Thereafter, while the power failure recovery determination in step ST204 in FIG. 5 is repeated, the operation control unit 72 interrupts the heating operation when the start condition of the defrosting operation is satisfied, and executes the defrosting operation in step ST303 in FIG. .
  • step ST301 may be omitted, and the necessary defrosting time at the upper limit frequency Fs may be calculated in step ST302.
  • the electric power limiting operation at the time of an independent operation was demonstrated, also when a plurality of air conditioners (for example, the air conditioner 1A and the air conditioner 1B) are operating at the time of the electric power limiting operation, FIG. 5 and FIG.
  • the operation command unit 83 assigns the power that can be used to the plurality of air conditioners 1A and 1B in which the operation is maintained so that the total used power Pu is equal to or less than the set power Ps. It is good to allocate to each of the harmony machines 1A and 1B. Then, in step ST202 of FIG.
  • the operation command unit 83 calculates the frequency Fs of the compressor 11 with the allocated power and the rotation speed Ns of the outdoor unit blower 15, and in step ST301 of FIG.
  • the defrost frequency Fs2 of the compressor 11 with electric power is calculated.
  • the power allocated to each of the air conditioners 1A and 1B may be determined by dividing the set power Ps by the number of the plurality of air conditioners 1A and 1B in which the operation is maintained. With such a configuration, even when the plurality of air conditioners 1A and 1B are operating in the power limited operation, the cooling operation, the heating operation, and the defrosting operation are efficiently performed within the range of the electric power allocated to each. can do.
  • the operation control unit 72 uses the entire power consumption Pu of one or more air conditioners 1A, 1B, 1C.
  • the defrosting operation is controlled within a range in which the power becomes equal to or lower than the upper limit power (set power Ps).
  • the operation control unit 72 keeps the total power consumption Pu below the upper limit power (set power Ps) and is within the range of the upper limit power. The operation can be controlled with.
  • the operation control unit 72 controls the compressor 11 to operate at a preset set frequency Fdef1 during the defrosting operation.
  • the operation command unit 83 defrosts the compressor 11 at the upper limit power (set power Ps) when only the air conditioner 1A is operating in the power limited operation and the air conditioner 1A executes the defrosting operation.
  • the frequency Fs2 is calculated.
  • the operation command unit 83 causes the operation control unit 72 to control the compressor 11 to operate at the calculated defrost frequency Fs2.
  • the defrosting operation is performed by driving the compressor 11 with the upper limit power within the range of the power supplied in the power limiting operation.
  • the defrosting of the outdoor unit heat exchanger 14 can be efficiently performed within the range.
  • the operation control unit 72 performs control so that the defrosting operation for the set defrosting time Tdef1 is executed and terminated.
  • the operation command unit 83 instructs the operation control unit 72 to set the defrosting time Tdef1 when the air conditioner 1A performs the defrosting operation.
  • Control is performed to execute a defrosting operation with a long required defrosting time Ts.
  • the operation command unit 83 calculates the necessary defrost time Ts by dividing the product of the set frequency Fdef1 and the set defrost time Tdef1 by the calculated defrost frequency Fs2. Thereby, the calorie

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning system equipped with one or a plurality of air conditioners that, during normal conditions, operate by receiving power supply from a normal power source and that, during a power outage of the normal power source, operate by receiving power supply from an emergency power source, wherein: the air conditioning system is equipped with an operation control unit for controlling the operation of the one or plurality of air conditioners, a power outage determination unit for detecting a power outage of the normal power source, and an operation command unit for executing, when a power outage has been detected by the power outage determination unit, power-limiting operation in which the power used by the one or plurality of air conditioners is limited on the basis of a preset upper limit power; and the operation control unit controls the operation of the one or plurality of air conditioners such that the overall power used by the one or plurality of air conditioners does not exceed the upper limit power when the power-limiting operation is being executed by the operation command unit.

Description

空気調和システムAir conditioning system
 本発明は、非常用電源の使用時に使用電力を抑制する空気調和システムに関する。 The present invention relates to an air conditioning system that suppresses power consumption when an emergency power supply is used.
 一般に、ビル用マルチエアコン等の空気調和システムは、建物外に配置された熱源機である室外機と、建物内に配置された複数の室内機とが接続され、通常は商用電源から供給される電力によって冷房または暖房等の運転を行う。このような空気調和システムにおいて、さらに、非常用電源として無停電装置または非常用発電機等を有し、常用電源である商用電源が停止した場合に非常用電源からの電力により運転を行うものがある(例えば、特許文献1参照)。 In general, an air conditioning system such as a multi air conditioning system for buildings is connected to an outdoor unit that is a heat source unit arranged outside a building and a plurality of indoor units arranged inside the building, and is usually supplied from a commercial power source. Operation such as cooling or heating is performed by electric power. Such an air conditioning system further includes an uninterruptible power supply or an emergency generator as an emergency power supply, and operates with power from the emergency power supply when the commercial power supply that is a normal power supply stops. Yes (see, for example, Patent Document 1).
 特許文献1には、圧縮機と、室内機送風機と、商用電源遮断を検知する手段と、商用電源遮断を検知したときに圧縮機回転数および室内機送風機風量の両方または一方の能力を抑制する手段と、を備えた空気調和システムが開示されている。特許文献1の空気調和システムは、例えば、圧縮機を最低周波数で運転し、かつ室内機送風機の風量を抑制するといった抑制運転モードを有しており、商用電源の停電時に抑制運転モードが実施される構成となっている。 In Patent Document 1, the compressor, the indoor unit blower, the means for detecting the commercial power supply cutoff, and the capacity of the compressor rotation speed and / or the indoor unit blower air volume are suppressed when the commercial power supply cutoff is detected. And an air conditioning system comprising the means. The air conditioning system of Patent Document 1 has a suppression operation mode in which, for example, the compressor is operated at the lowest frequency and the air volume of the indoor unit blower is suppressed, and the suppression operation mode is performed during a power failure of the commercial power supply. It is the composition which becomes.
特開2007-24431号公報JP 2007-24431 A
 しかしながら、特許文献1の空気調和システムでは、非常用電源の供給電力に関わらず圧縮機の周波数および室内機送風機の風量が設定される。そのため、例えば圧縮機が最低周波数に設定される場合に、空気調和システムは、供給電力の上限まで余力があるにも関わらず、最低限の空調能力しか発揮することができず、空調負荷に対して能力が不足する場合があった。 However, in the air conditioning system of Patent Document 1, the frequency of the compressor and the air volume of the indoor unit blower are set regardless of the power supplied from the emergency power supply. For this reason, for example, when the compressor is set to the lowest frequency, the air conditioning system can only exhibit a minimum air conditioning capacity even though there is a surplus up to the upper limit of the supplied power. In some cases, the ability was insufficient.
 本発明は、上記のような課題を解決するためになされたものであり、常用電源が停電し、非常用電源から電力が供給される場合に、供給電力が抑制された状態でも最大限の空調運転を実施する空気調和システムの提供を目的としている。 The present invention has been made in order to solve the above-described problems. When the power supply is interrupted and power is supplied from the emergency power supply, the maximum air conditioning is achieved even when the power supply is suppressed. The purpose is to provide an air conditioning system for operation.
 本発明に係る空気調和システムは、通常時には常用電源から電力供給を受けて稼動し、前記常用電源の停電時には非常用電源により電力供給を受けて稼動する一または複数の空気調和機を備えた空気調和システムにおいて、一または複数の前記空気調和機の運転を制御する運転制御部と、前記常用電源の停電を検知する停電判定部と、前記停電判定部により停電が検知された場合に、一または複数の前記空気調和機が使用する電力を予め設定された上限電力に基づいて制限する電力制限運転を実施する運転指令部と、を備え、前記運転制御部は、前記運転指令部により前記電力制限運転が実施されているときには、一または複数の前記空気調和機の全体の使用電力が前記上限電力以下となる範囲で、一または複数の前記空気調和機の運転を制御するものである。 An air conditioning system according to the present invention operates normally with power supplied from a normal power source, and includes one or a plurality of air conditioners that operate with power supplied from an emergency power source during a power failure of the normal power source. In the harmony system, when a power failure is detected by the operation control unit that controls the operation of one or a plurality of the air conditioners, the power failure determination unit that detects a power failure of the regular power supply, and the power failure determination unit, An operation command unit that performs an electric power limiting operation that limits electric power used by the plurality of air conditioners based on a preset upper limit electric power, and the operation control unit is configured to limit the electric power by the operation command unit. When the operation is being performed, the operation of the one or more air conditioners is performed within a range where the total power used by the one or more air conditioners is equal to or less than the upper limit power. It is Gosuru thing.
 本発明に係る空気調和システムによれば、常用電源の停電時に、予め設定された上限電力に基づいて一または複数の空気調和機が使用する電力が制限される。つまり、本発明に係る空気調和システムは、電力が上限電力で制限される構成であり、運転制御部は上限電力の範囲内で運転を制御することができる。したがって、従来のような抑制運転モードに比べ、非常用電源の使用時における運転効率が改善される。例えば、上限電力が非常用電源の供給電力である場合には、空気調和システムは、供給電力の範囲において最大限の空調能力で運転を実施することができる。 According to the air conditioning system according to the present invention, the power used by one or a plurality of air conditioners is limited based on the preset upper limit power at the time of power failure of the regular power supply. That is, the air conditioning system according to the present invention has a configuration in which the power is limited by the upper limit power, and the operation control unit can control the operation within the range of the upper limit power. Therefore, the operation efficiency at the time of using the emergency power supply is improved as compared with the conventional suppression operation mode. For example, when the upper limit power is the power supplied from the emergency power supply, the air conditioning system can be operated with the maximum air conditioning capability within the range of the power supplied.
本発明の実施の形態1に係る空気調和システムの空気調和機の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the air conditioner of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの機能構成を示す機能ブロック図である。It is a functional block diagram which shows the function structure of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの制御を示すフローチャート図である。It is a flowchart figure which shows control of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システムの単独運転時の電力制限運転の制御を示すフローチャート図である。It is a flowchart figure which shows control of the electric power limiting operation at the time of the independent operation of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和システムの電力制限運転時の除霜運転の制御を示すフローチャート図である。It is a flowchart figure which shows control of the defrost operation at the time of the electric power restriction | limiting operation | movement of the air conditioning system which concerns on Embodiment 2 of this invention.
 以下に、本発明の空気調和システム100について、図面を参照して説明する。 Hereinafter, the air conditioning system 100 of the present invention will be described with reference to the drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和システムの空気調和機の回路構成を示す回路図である。図1に基づいて、空気調和機1について説明する。空気調和機1は、例えば、対象空間を暖房または冷房する空気調和装置として利用される。空気調和機1は、通常時には商用電源等の常用電源から供給される電力によって稼動しているが、常用電源からの電力供給が遮断された場合には、非常用電源により電力供給がなされる。非常用電源とは、例えば無停電装置または非常用発電機等をいう。
Embodiment 1 FIG.
1 is a circuit diagram showing a circuit configuration of an air conditioner of an air conditioning system according to Embodiment 1 of the present invention. The air conditioner 1 will be described based on FIG. The air conditioner 1 is used as, for example, an air conditioner that heats or cools a target space. The air conditioner 1 is normally operated by electric power supplied from an ordinary power source such as a commercial power source. However, when the electric power supply from the ordinary power source is interrupted, electric power is supplied from an emergency power source. The emergency power source refers to, for example, an uninterruptible device or an emergency generator.
<空気調和機1の構成>
 空気調和機1は、室外機10および2台の室内機50a、50b等で構成される。空気調和機1は、冷媒を循環させる冷凍サイクルを有しており、各室内機50a、50bは、運転モードとして冷房運転モードあるいは暖房運転モードを選択することができる。具体的には、空気調和機1は、室外機10に搭載された流路切替装置13により、各室内機50a、50bの運転モードを冷房運転モードまたは暖房運転モードにすることができる。
<Configuration of air conditioner 1>
The air conditioner 1 includes an outdoor unit 10 and two indoor units 50a and 50b. The air conditioner 1 has a refrigeration cycle for circulating a refrigerant, and each of the indoor units 50a and 50b can select a cooling operation mode or a heating operation mode as an operation mode. Specifically, the air conditioner 1 can set the operation mode of each of the indoor units 50a and 50b to the cooling operation mode or the heating operation mode by the flow path switching device 13 mounted on the outdoor unit 10.
 室外機10と各室内機50a、50bとは、冷媒配管4および冷媒配管5で接続されている。また、図1には、2台の室内機50a、50bが、1台の室外機10に対して並列に接続されている場合を例に示しているが、室外機10および室内機50の台数は、特にこれに限定されない。 The outdoor unit 10 and the indoor units 50 a and 50 b are connected by a refrigerant pipe 4 and a refrigerant pipe 5. FIG. 1 shows an example in which two indoor units 50a and 50b are connected in parallel to one outdoor unit 10, but the number of outdoor units 10 and indoor units 50 is the same. Is not particularly limited to this.
 なお、以下の説明において、室内機50aと室内機50bとを特に区別する必要がない場合には、室内機50aと室内機50bのそれぞれを室内機50として説明するものとする。また、室内機50aおよび室内機50bにそれぞれ搭載されている各構成についても各符号の末尾に「a」、「b」を付記して図示するが、特に区別する必要がない場合には「a」、「b」を省略して説明するものとする。 In the following description, when it is not necessary to distinguish between the indoor unit 50a and the indoor unit 50b, each of the indoor unit 50a and the indoor unit 50b will be described as the indoor unit 50. In addition, the components mounted in the indoor unit 50a and the indoor unit 50b are also illustrated by adding “a” and “b” at the end of each symbol. "And" b "are omitted.
(室外機10)
 室外機10は、主に屋外に設置され、室内機50に冷熱または温熱を供給する機能を有する。室外機10は、圧縮機11、逆止弁12、流路切替装置13、室外機熱交換器14、およびアキュムレータ16等を有している。また室外機10には、室外機送風機15が搭載されている。
(Outdoor unit 10)
The outdoor unit 10 is mainly installed outdoors, and has a function of supplying cold or warm heat to the indoor unit 50. The outdoor unit 10 includes a compressor 11, a check valve 12, a flow path switching device 13, an outdoor unit heat exchanger 14, an accumulator 16, and the like. The outdoor unit 10 is equipped with an outdoor unit blower 15.
 圧縮機11は、アキュムレータ16を介して流入してきた冷媒を、圧縮して高温高圧のガス冷媒として吐出するものである。圧縮機11は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、または往復圧縮機等で構成することができる。また圧縮機11は、容量制御可能なインバータ圧縮機で構成するとよい。 The compressor 11 compresses the refrigerant flowing in through the accumulator 16 and discharges it as a high-temperature and high-pressure gas refrigerant. The compressor 11 can be configured by, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor. Moreover, the compressor 11 is good to comprise with the capacity | capacitance-controllable inverter compressor.
 逆止弁12は、圧縮機11の吐出側に設けられ、冷媒の流れを一方向のみに許容するものである。 The check valve 12 is provided on the discharge side of the compressor 11 and allows the refrigerant to flow in only one direction.
 流路切替装置13は、逆止弁12を介して圧縮機11の吐出側に設けられ、冷房運転モードと暖房運転モードとにおいて冷媒の流れを切り替えるものである。流路切替装置13は、例えば、二方弁または三方弁の組み合わせ、あるいは四方弁等で構成することができる。冷房運転時には、流路切替装置13は圧縮機11の吐出側と室外機熱交換器14とを接続し、圧縮機11から吐出された冷媒が室外機熱交換器14へ送られる。一方、暖房運転時には、流路切替装置13は圧縮機11の吐出側と冷媒配管4とを接続し、圧縮機11から吐出された冷媒が冷媒配管4を介して室内機50へ送られる。なお、空気調和機1が冷房専用機または暖房専用機である場合には、流路切替装置13を設ける必要はない。 The flow path switching device 13 is provided on the discharge side of the compressor 11 via the check valve 12, and switches the refrigerant flow between the cooling operation mode and the heating operation mode. The flow path switching device 13 can be composed of, for example, a two-way valve or a combination of three-way valves, or a four-way valve. During the cooling operation, the flow path switching device 13 connects the discharge side of the compressor 11 and the outdoor unit heat exchanger 14, and the refrigerant discharged from the compressor 11 is sent to the outdoor unit heat exchanger 14. On the other hand, at the time of heating operation, the flow path switching device 13 connects the discharge side of the compressor 11 and the refrigerant pipe 4, and the refrigerant discharged from the compressor 11 is sent to the indoor unit 50 via the refrigerant pipe 4. In addition, when the air conditioner 1 is a cooling only machine or a heating only machine, it is not necessary to provide the flow path switching device 13.
 室外機熱交換器14は、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用し、室外機送風機15等の流体搬送装置から供給される空気等の熱交換流体と冷媒との間で熱交換を行なうものである。室外機熱交換器14は、例えば、フィン・アンド・チューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、またはプレート熱交換器等で構成することができる。なお、実施の形態1では、室外機熱交換器14がフィン・アンド・チューブ型熱交換器である場合を例に説明する。 The outdoor unit heat exchanger 14 acts as an evaporator during heating operation, and acts as a condenser during cooling operation, and between the heat exchange fluid such as air supplied from a fluid transfer device such as the outdoor unit blower 15 and the refrigerant. Heat exchange. The outdoor unit heat exchanger 14 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double tube heat exchanger, or It can be composed of a plate heat exchanger or the like. In the first embodiment, the case where the outdoor unit heat exchanger 14 is a fin-and-tube heat exchanger will be described as an example.
 室外機送風機15は、流体搬送装置の一例であり、室外機熱交換器14に空気を供給するものである。室外機送風機15は、例えば、複数の翼を有するプロペラファンで構成することができる。室外機送風機15は、室外機熱交換器14に空気を供給することができる場所に設置されていれば、どこに設置されてもよい。なお、室外機熱交換器14のタイプに応じた流体搬送装置が選択されるとよい。例えば、熱交換流体が水またはブライン等である場合、空気調和機1は、室外機送風機15の代わりに例えばポンプを搭載すればよい。 The outdoor unit blower 15 is an example of a fluid transfer device, and supplies air to the outdoor unit heat exchanger 14. The outdoor unit blower 15 can be composed of, for example, a propeller fan having a plurality of blades. The outdoor unit blower 15 may be installed anywhere as long as it is installed in a place where air can be supplied to the outdoor unit heat exchanger 14. In addition, the fluid conveyance apparatus according to the type of the outdoor unit heat exchanger 14 may be selected. For example, when the heat exchange fluid is water, brine, or the like, the air conditioner 1 may be equipped with, for example, a pump instead of the outdoor unit blower 15.
 アキュムレータ16は、圧縮機11の吸入側に設けられ、暖房運転時と冷房運転時の違いによる余剰冷媒、過渡的な運転の変化に対する余剰冷媒、あるいは負荷条件によって発生した余剰冷媒を貯留するものである。過渡的な運転の変化とは、例えば、室内機50の運転台数が変化した場合等をいう。アキュムレータ16は、液冷媒とガス冷媒とを分離し、ガス冷媒のみを圧縮機11に供給する。 The accumulator 16 is provided on the suction side of the compressor 11 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, excess refrigerant due to a transient change in operation, or excess refrigerant generated due to load conditions. is there. The transitional change in operation refers to, for example, a case where the number of operating indoor units 50 changes. The accumulator 16 separates the liquid refrigerant and the gas refrigerant and supplies only the gas refrigerant to the compressor 11.
 室外機10には、さらに、空気調和機1を統括制御する制御装置70が搭載されている。制御装置70には各アクチュエータ(駆動部品)が接続され、制御装置70は各アクチュエータの動作を制御する。アクチュエータとしては、例えば、圧縮機11、流路切替装置13、室外機送風機15、並びに、後述する絞り装置52および室内機送風機53等が含まれる。また制御装置70は、常用電源の停電を検知し、検知信号を、後述する集中管理コントローラ80等(図2参照)の通信可能な機器に送信する構成となっている。 The outdoor unit 10 is further equipped with a control device 70 that performs overall control of the air conditioner 1. Each actuator (drive component) is connected to the control device 70, and the control device 70 controls the operation of each actuator. Examples of the actuator include the compressor 11, the flow path switching device 13, the outdoor unit blower 15, a throttle device 52 and an indoor unit blower 53, which will be described later. Further, the control device 70 is configured to detect a power failure of the regular power supply and transmit a detection signal to a communicable device such as a centralized management controller 80 (see FIG. 2) described later.
 また制御装置70は、図示しない各種センサー(以下、センサ群60という)からの検出値に基づき、各アクチュエータの動作を制御する。センサ群60としては、例えば、圧縮機11の吐出側に設けられ、圧縮機11から吐出される冷媒の圧力を検出する圧力センサ、および、各室内機50に設置され、温度を検出する温度センサ等が含まれる。制御装置70は、回路デバイスのようなハードウェアで構成してもよく、あるいは、マイコン等により構成してもよい。 The control device 70 controls the operation of each actuator based on detection values from various sensors (not shown) (hereinafter referred to as a sensor group 60). As the sensor group 60, for example, a pressure sensor that is provided on the discharge side of the compressor 11 and detects the pressure of refrigerant discharged from the compressor 11, and a temperature sensor that is installed in each indoor unit 50 and detects the temperature. Etc. are included. The control device 70 may be configured by hardware such as a circuit device, or may be configured by a microcomputer or the like.
 なお、図1には、制御装置70が室外機10に搭載されている場合を例に示しているが、制御装置70の搭載場所を特に限定するものではない。さらに、室内機50にも制御装置を備え、室内機50の制御装置と制御装置70とを通信可能に接続してもよい。この場合、図示しないリモコン等からの指示は、室内機50の制御装置を介して制御装置70に入力される。 In addition, although the case where the control apparatus 70 is mounted in the outdoor unit 10 is illustrated in FIG. 1 as an example, the mounting location of the control apparatus 70 is not particularly limited. Furthermore, the indoor unit 50 may be provided with a control device, and the control device of the indoor unit 50 and the control device 70 may be connected to be communicable. In this case, an instruction from a remote controller (not shown) is input to the control device 70 via the control device of the indoor unit 50.
(室内機50)
 室内機50は、例えば屋内等に設置され、室外機10から供給される冷熱または温熱により、空調対象空間を冷房または暖房する機能を有する。各室内機50は、室内機熱交換器51、絞り装置52および室内機送風機53等を備えている。
(Indoor unit 50)
The indoor unit 50 is installed indoors or the like, for example, and has a function of cooling or heating the air-conditioning target space by the cold or warm heat supplied from the outdoor unit 10. Each indoor unit 50 includes an indoor unit heat exchanger 51, an expansion device 52, an indoor unit blower 53, and the like.
 室内機熱交換器51は、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用するものである。室内機熱交換器51は、室内機送風機53等の流体搬送装置から供給される空気等の熱交換流体と冷媒との間で熱交換を行ない、空調対象空間に供給する暖房用空気あるいは冷房用空気を生成する。室内機熱交換器51は、例えば、フィン・アンド・チューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、またはプレート熱交換器等で構成することができる。なお、実施の形態1では、室内機熱交換器51がフィン・アンド・チューブ型熱交換器である場合を例に説明する。 The indoor unit heat exchanger 51 acts as a condenser during the heating operation, and acts as an evaporator during the cooling operation. The indoor unit heat exchanger 51 performs heat exchange between a heat exchange fluid such as air supplied from a fluid transfer device such as the indoor unit blower 53 and the refrigerant, and supplies air to the air-conditioning target space. Produce air. The indoor unit heat exchanger 51 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like. In the first embodiment, the case where the indoor unit heat exchanger 51 is a fin-and-tube heat exchanger will be described as an example.
 室内機送風機53は、流体搬送装置の一例であり、室内機熱交換器51に空気を供給するものである。室内機送風機53は、例えば、複数の翼を有するプロペラファンで構成することができる。室内機送風機53は、室内機熱交換器51に空気を供給できる場所に設置されていればどこに配置されてもよい。また、室内機熱交換器51のタイプに応じて流体搬送装置が選択されればよい。例えば、熱交換流体が水またはブラインなどの場合には、流体搬送装置として、室内機送風機53の代わりにポンプが室内機50に搭載される。 The indoor unit blower 53 is an example of a fluid transfer device, and supplies air to the indoor unit heat exchanger 51. The indoor unit blower 53 can be composed of, for example, a propeller fan having a plurality of blades. The indoor unit blower 53 may be disposed anywhere as long as it is installed in a place where air can be supplied to the indoor unit heat exchanger 51. Moreover, what is necessary is just to select a fluid conveying apparatus according to the type of the indoor unit heat exchanger 51. For example, when the heat exchange fluid is water or brine, a pump is mounted on the indoor unit 50 instead of the indoor unit blower 53 as a fluid transfer device.
 絞り装置52は、室内機熱交換器51または室外機熱交換器14を経由した冷媒を膨張させて減圧するものである。図1において絞り装置52は、室外機熱交換器14と各室内機熱交換器51との間にそれぞれ設けられている。絞り装置52は、例えば、冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置52としては、電動膨張弁を採用する替わりに、受圧部にダイアフラムを採用した機械式膨張弁、またはキャピラリーチューブ等が採用されてもよい。 The expansion device 52 expands and depressurizes the refrigerant that has passed through the indoor unit heat exchanger 51 or the outdoor unit heat exchanger 14. In FIG. 1, the expansion device 52 is provided between the outdoor unit heat exchanger 14 and each indoor unit heat exchanger 51. The expansion device 52 may be constituted by, for example, an electric expansion valve that can adjust the flow rate of the refrigerant. As the expansion device 52, a mechanical expansion valve using a diaphragm as a pressure receiving portion, a capillary tube, or the like may be used instead of using an electric expansion valve.
<空気調和機1が実行する運転モード>
 次に、空気調和機1が実行する運転モードについて、冷媒の流れとともに説明する。空気調和機1は、例えば室内機50からの指示に基づいて、室内機50で冷房運転あるいは暖房運転ができるよう構成されている。実施の形態1では、空気調和機1は、接続されている室内機50a、50bの全部で冷房運転または暖房運転の同一運転を実行することができる。
<Operation mode executed by the air conditioner 1>
Next, the operation mode executed by the air conditioner 1 will be described together with the flow of the refrigerant. The air conditioner 1 is configured such that the indoor unit 50 can perform a cooling operation or a heating operation based on an instruction from the indoor unit 50, for example. In Embodiment 1, the air conditioner 1 can execute the same operation of the cooling operation or the heating operation in all of the connected indoor units 50a and 50b.
(冷房運転モード)
 まず、空気調和機1が実行する冷房運転モードについて説明する。図1には、冷房運転モード時の冷媒の流れが破線矢印で示されている。以下、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、空気調和機1の冷房運転モードについて説明する。
(Cooling operation mode)
First, the cooling operation mode performed by the air conditioner 1 will be described. In FIG. 1, the refrigerant flow in the cooling operation mode is indicated by broken-line arrows. Hereinafter, the cooling operation mode of the air conditioner 1 will be described by taking as an example a case where the heat exchange fluid is air and the heat exchange fluid is a refrigerant.
 空気調和機1が冷房運転モードを実行する場合、室外機10では、圧縮機11から吐出された冷媒の流路を、室外機熱交換器14を経由し、室内機熱交換器51へ流入させるように、流路切替装置13により切り替える。 When the air conditioner 1 executes the cooling operation mode, the outdoor unit 10 causes the flow path of the refrigerant discharged from the compressor 11 to flow into the indoor unit heat exchanger 51 via the outdoor unit heat exchanger 14. Thus, the flow path switching device 13 performs switching.
 圧縮機11では、低温低圧の冷媒が圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、逆止弁12および流路切替装置13を経由して、室外機熱交換器14に流入する。室外機熱交換器14に流入した冷媒は、室外機送風機15により供給される空気と熱交換され、高温高圧の液冷媒となって室外機熱交換器14から流出する。 In the compressor 11, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor unit heat exchanger 14 via the check valve 12 and the flow path switching device 13. The refrigerant that has flowed into the outdoor unit heat exchanger 14 is heat-exchanged with the air supplied by the outdoor unit blower 15, and becomes a high-temperature and high-pressure liquid refrigerant that flows out of the outdoor unit heat exchanger 14.
 室外機熱交換器14から流出した高温高圧の液冷媒は、冷媒配管5を通って室内機50に流入する。室内機50に流入した高温高圧の液冷媒は、室内機50に設けられた絞り装置52によって低温低圧の液冷媒または二相冷媒となり、室内機熱交換器51に流入する。室内機熱交換器51に流入した冷媒は、室内機送風機53により供給される空気と熱交換され、低温低圧のガス冷媒となって室内機熱交換器51から流出する。室内機熱交換器51において冷媒が空気から吸熱することで、空調対象空間である室内が冷房される。 The high-temperature and high-pressure liquid refrigerant that has flowed out of the outdoor unit heat exchanger 14 flows into the indoor unit 50 through the refrigerant pipe 5. The high-temperature and high-pressure liquid refrigerant flowing into the indoor unit 50 is converted into a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant by the expansion device 52 provided in the indoor unit 50 and flows into the indoor unit heat exchanger 51. The refrigerant that has flowed into the indoor unit heat exchanger 51 is heat-exchanged with the air supplied by the indoor unit blower 53 to become a low-temperature and low-pressure gas refrigerant and flows out of the indoor unit heat exchanger 51. As the refrigerant absorbs heat from the air in the indoor unit heat exchanger 51, the room that is the air-conditioning target space is cooled.
 室内機熱交換器51から流出した冷媒は、冷媒配管4を通り、室外機10に流入する。室外機10に流入した冷媒は、流路切替装置13およびアキュムレータ16を介して圧縮機11へ再度吸入される。その後、上記のサイクルが繰り返される。 The refrigerant that has flowed out of the indoor unit heat exchanger 51 passes through the refrigerant pipe 4 and flows into the outdoor unit 10. The refrigerant that has flowed into the outdoor unit 10 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated.
(暖房運転モード)
 次に、空気調和機1が実行する暖房運転モードについて説明する。図1には、暖房運転モード時の冷媒の流れが実線矢印で示されている。以下、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、空気調和機1の暖房運転モードについて説明する。
(Heating operation mode)
Next, the heating operation mode performed by the air conditioner 1 will be described. In FIG. 1, the flow of the refrigerant in the heating operation mode is indicated by a solid line arrow. Hereinafter, the heating operation mode of the air conditioner 1 will be described by taking as an example a case where the heat exchange fluid is air and the heat exchange fluid is a refrigerant.
 空気調和機1が暖房運転モードを実行する場合、室外機10では、圧縮機11から吐出された冷媒の流路を、室外機熱交換器14を経由せずに、室内機熱交換器51へ流入させるように、流路切替装置13により切り替える。 When the air conditioner 1 executes the heating operation mode, the outdoor unit 10 passes the flow path of the refrigerant discharged from the compressor 11 to the indoor unit heat exchanger 51 without passing through the outdoor unit heat exchanger 14. It switches by the flow-path switching apparatus 13 so that it may flow in.
 圧縮機11では、低温低圧の冷媒が圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、逆止弁12および流路切替装置13を経由して、室内機熱交換器51に流入する。室内機熱交換器51に流入した冷媒は、室内機送風機53により供給される空気と熱交換され、高温高圧の液冷媒となって室内機熱交換器51から流出する。室内機熱交換器51において冷媒が空気に放熱することで、室内が暖房される。 In the compressor 11, the low-temperature and low-pressure refrigerant is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor unit heat exchanger 51 via the check valve 12 and the flow path switching device 13. The refrigerant that has flowed into the indoor unit heat exchanger 51 is heat-exchanged with the air supplied by the indoor unit blower 53 and becomes a high-temperature and high-pressure liquid refrigerant that flows out of the indoor unit heat exchanger 51. In the indoor unit heat exchanger 51, the refrigerant radiates heat to the air, thereby heating the room.
 室内機熱交換器51から流出した高温高圧の液冷媒は、各室内機50に設けられた絞り装置52によって低温低圧の液冷媒または二相冷媒となり、室外機10の室外機熱交換器14に流入する。室外機熱交換器14に流入した冷媒は、室外機送風機15により供給される空気と熱交換され、低温低圧のガス冷媒となって室外機熱交換器14から流出する。 The high-temperature and high-pressure liquid refrigerant that has flowed out of the indoor unit heat exchanger 51 becomes a low-temperature and low-pressure liquid refrigerant or a two-phase refrigerant by the expansion device 52 provided in each indoor unit 50, and enters the outdoor unit heat exchanger 14 of the outdoor unit 10. Inflow. The refrigerant that has flowed into the outdoor unit heat exchanger 14 is heat-exchanged with the air supplied by the outdoor unit blower 15, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the outdoor unit heat exchanger 14.
 室外機熱交換器14から流出した冷媒は、流路切替装置13およびアキュムレータ16を介して圧縮機11へ再度吸入される。その後、上記のサイクルが繰り返される。 The refrigerant that has flowed out of the outdoor unit heat exchanger 14 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated.
<空気調和システム100の構成>
 図2は、本発明の実施の形態1に係る空気調和システムの概略構成を示すブロック図である。空気調和システム100は、一または複数の上記の空気調和機1と、集中管理コントローラ80等とを有している。ここでは、空気調和システム100が複数の空気調和機1A、1B、1Cを含む場合について説明する。以下、空気調和機1Aと空気調和機1Bと空気調和機1Cとを特に区別する必要がない場合には、空気調和機1Aと空気調和機1Bと空気調和機1Cのそれぞれを空気調和機1として説明する。また、空気調和機1A、空気調和機1Bおよび空気調和機1Cにそれぞれ搭載されている各構成についても、特に区別しない場合には符号の末尾のアルファベットを省略して説明する。集中管理コントローラ80は、複数の空気調和機1A、1B、1Cを管理する制御装置である。図2では、それぞれ2台の室内機50と1台の室外機10とを含む3つの空気調和機1A、1B、1Cが、1台の集中管理コントローラ80に対して並列に接続された場合を例に示しているが、空気調和機1および室内機50の接続台数は特にこれに限定されない。
<Configuration of the air conditioning system 100>
FIG. 2 is a block diagram showing a schematic configuration of the air-conditioning system according to Embodiment 1 of the present invention. The air conditioning system 100 includes one or a plurality of the air conditioners 1 described above, a centralized management controller 80, and the like. Here, the case where the air conditioning system 100 includes a plurality of air conditioners 1A, 1B, 1C will be described. Hereinafter, when it is not necessary to particularly distinguish the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C, each of the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C is referred to as the air conditioner 1. explain. Further, the components mounted in the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C will also be described by omitting the alphabet at the end of the reference unless otherwise distinguished. The centralized management controller 80 is a control device that manages the plurality of air conditioners 1A, 1B, and 1C. In FIG. 2, a case where three air conditioners 1A, 1B, 1C each including two indoor units 50 and one outdoor unit 10 are connected in parallel to one centralized controller 80. Although shown in the example, the number of connected air conditioners 1 and indoor units 50 is not particularly limited to this.
 集中管理コントローラ80には、複数の空気調和機1が、通信配線または無線により通信できるように接続されている。具体的には、集中管理コントローラ80に複数の制御装置70a、70b、70cが接続されている。そして集中管理コントローラ80は、複数の制御装置70a、70b、70cを介して複数の室外機10a、10b、10cおよび複数の室内機50a、50b、50c、50d、50e、50fから情報を取得し、管理している。また集中管理コントローラ80は、非常時には、制御装置70に空気調和機1の制御に関する運転指令を送信し、運転指令を優先して実施させることができる。 A plurality of air conditioners 1 are connected to the central control controller 80 so that they can communicate with each other by communication wiring or wirelessly. Specifically, a plurality of control devices 70 a, 70 b and 70 c are connected to the centralized management controller 80. The centralized management controller 80 acquires information from the plurality of outdoor units 10a, 10b, 10c and the plurality of indoor units 50a, 50b, 50c, 50d, 50e, 50f via the plurality of control devices 70a, 70b, 70c, I manage. Moreover, the centralized management controller 80 can transmit the operation command regarding control of the air conditioner 1 to the control apparatus 70 in an emergency, and can make an operation command carry out with priority.
 図3は、本発明の実施の形態1に係る空気調和システムの機能構成を示す機能ブロック図である。図3に基づき、集中管理コントローラ80および制御装置70の機能について説明する。なお、図3には、集中管理コントローラ80と、空気調和機1Aの制御装置70aのみが示されているが、制御装置70bおよび制御装置70cについても、制御装置70aと同様に、集中管理コントローラ80と接続されているものとする。 FIG. 3 is a functional block diagram showing a functional configuration of the air-conditioning system according to Embodiment 1 of the present invention. The functions of the centralized management controller 80 and the control device 70 will be described with reference to FIG. In FIG. 3, only the centralized management controller 80 and the control device 70a of the air conditioner 1A are shown. However, the control device 70b and the control device 70c also have a centralized management controller 80 as in the control device 70a. And connected.
 制御装置70aは、停電判定部71と運転制御部72とを有している。停電判定部71は、常用電源の停電を検知するものである。例えば、停電判定部71は常用電源からの入力電源を常時モニターしており、入力電源の欠相を検出することで停電を検知する構成となっている。停電判定部71は、常用電源の停電を検知した場合に、集中管理コントローラ80に停電信号を送信する。また停電判定部71は、常用電源からの入力電源が停電から復帰した場合に、集中管理コントローラ80にリセット信号である復帰信号を送信する。 The control device 70 a includes a power failure determination unit 71 and an operation control unit 72. The power failure determination unit 71 detects a power failure of the regular power supply. For example, the power failure determination unit 71 is configured to constantly monitor the input power from the regular power source and detect a power failure by detecting a phase failure of the input power. The power failure determination unit 71 transmits a power failure signal to the centralized management controller 80 when detecting a power failure of the regular power supply. Moreover, the power failure determination part 71 transmits the reset signal which is a reset signal to the centralized management controller 80, when the input power supply from a regular power supply returns from a power failure.
 運転制御部72は、通常運転モードでは、リモコンから入力された情報およびセンサ群60から取得した情報等に基づき、空気調和機1Aの各アクチュエータを制御する。運転制御部72は、圧縮機11の駆動周波数、流路切替装置13の切り替え、室外機送風機15の回転数、並びに、各室内機50の絞り装置52の開度および室内機送風機53の回転数等を制御する。また運転制御部72は、集中管理コントローラ80に室内機50および室外機10の情報を送信し、集中管理コントローラ80から運転指令を受信する。具体的には、運転制御部72は、各室内機50の運転および空調設定に関する情報、並びに、室外機10の制御情報等を、集中管理コントローラ80に送信する。運転制御部72は、集中管理コントローラ80から運転指令を受信した場合には、受信した運転指令に基づいて空気調和機1Aを制御する。 In the normal operation mode, the operation control unit 72 controls each actuator of the air conditioner 1A based on information input from the remote controller, information acquired from the sensor group 60, and the like. The operation control unit 72 switches the drive frequency of the compressor 11, the switching of the flow path switching device 13, the rotation speed of the outdoor unit blower 15, the opening degree of the expansion device 52 of each indoor unit 50, and the rotation number of the indoor unit blower 53. Control etc. In addition, the operation control unit 72 transmits information on the indoor unit 50 and the outdoor unit 10 to the centralized management controller 80 and receives an operation command from the centralized management controller 80. Specifically, the operation control unit 72 transmits information related to the operation and air conditioning setting of each indoor unit 50, control information of the outdoor unit 10, and the like to the centralized management controller 80. When the operation control unit 72 receives an operation command from the centralized management controller 80, the operation control unit 72 controls the air conditioner 1A based on the received operation command.
 集中管理コントローラ80は、情報管理部81と操作部82と運転指令部83等とを有している。情報管理部81は、各制御装置70a、70b、70cを介して取得した各室外機10および各室内機50の情報を管理する。室外機10の情報とは、例えばアクチュエータの制御情報を含み、室内機50の情報とは、例えば、運転モード、運転あるいは停止といった運転状態、および設定温度等の情報を含む。情報管理部81は、このような情報を、一括または個別に送信することができる。さらに、情報管理部81は、非常用電源の電力情報、および、各空気調和機1に対する優先度の情報を管理している。電力情報とは、例えば、非常用電源から空気調和システム100に供給できる電力として予め設定された設定電力Ps、および、空気調和システム100に割り振ることができる電力量等が含まれる。また優先度とは、常用電源の停電時に運転を継続させる優先度である。優先度は、例えば据え付け時等に、操作部82等から予め設定されてもよく、あるいは、各空気調和機1の運転時の運転情報等に基づいて運転指令部83により設定されるものであってもよい。 The central management controller 80 has an information management unit 81, an operation unit 82, an operation command unit 83, and the like. The information management unit 81 manages information on each outdoor unit 10 and each indoor unit 50 acquired via each control device 70a, 70b, 70c. The information on the outdoor unit 10 includes, for example, control information of the actuator, and the information on the indoor unit 50 includes, for example, information such as an operation mode, an operation state such as operation or stop, and a set temperature. The information management unit 81 can transmit such information collectively or individually. Further, the information management unit 81 manages the power information of the emergency power supply and the priority information for each air conditioner 1. The power information includes, for example, set power Ps set in advance as power that can be supplied from the emergency power supply to the air conditioning system 100, the amount of power that can be allocated to the air conditioning system 100, and the like. Moreover, a priority is a priority which continues a driving | operation at the time of a power failure of a common power source. The priority may be set in advance from the operation unit 82 or the like at the time of installation or the like, or set by the operation command unit 83 based on operation information or the like during operation of each air conditioner 1. May be.
 操作部82は、空気調和システム100の管理者等により指令または設定が入力されるものであり、例えば液晶画面を有するタッチパネル、あるいは、表示部とキーボード等で構成される。入力された設定は情報管理部81に反映され、入力された指令は必要に応じて運転指令部83により実施される。 The operation unit 82 is input with commands or settings by an administrator or the like of the air conditioning system 100, and includes, for example, a touch panel having a liquid crystal screen or a display unit and a keyboard. The input setting is reflected in the information management unit 81, and the input command is executed by the operation command unit 83 as necessary.
 運転指令部83は、集中管理コントローラ80に接続されている複数の空気調和機1A、1B、1Cの運転を管理する。通常運転モードにおいて、各空気調和機1は、リモコンからの入力、設定された情報およびセンサ群60等からの情報に基づき、各制御装置70により運転が制御されている。運転指令部83は、停電判定部71から停電信号を受信し、常用電源が停電している場合には、運転モードを通常運転モードから電力制限運転モードに切り替える。電力制限運転モードとは、接続されている空気調和機1が使用する電力を、予め設定された設定電力Psに基づいて制限する運転モードである。電力制限運転時に、運転指令部83は、必要に応じて制御装置70に運転指令を送信し、運転制御部72に運転指令に基づいて空気調和機1を制御させる。具体的には、運転指令部83は、接続されている一または複数の空気調和機1A、1B、1Cの全体の使用電力Puが設定電力Ps以下となる範囲で、運転制御部72に、一または複数の空気調和機1の運転を制御させる。また運転指令部83は、復帰信号を受信したときに電力制限運転を終了する。 The operation command unit 83 manages the operation of the plurality of air conditioners 1A, 1B, and 1C connected to the centralized management controller 80. In the normal operation mode, the operation of each air conditioner 1 is controlled by each control device 70 based on the input from the remote controller, the set information, and the information from the sensor group 60 and the like. The operation command unit 83 receives the power failure signal from the power failure determination unit 71, and switches the operation mode from the normal operation mode to the power limited operation mode when the normal power supply has a power failure. The power limited operation mode is an operation mode in which the power used by the connected air conditioner 1 is limited based on a preset set power Ps. During the power limited operation, the operation command unit 83 transmits an operation command to the control device 70 as necessary, and causes the operation control unit 72 to control the air conditioner 1 based on the operation command. Specifically, the operation command unit 83 sends one operation control unit 72 to the operation control unit 72 within a range in which the total power use Pu of one or more connected air conditioners 1A, 1B, 1C is equal to or less than the set power Ps. Alternatively, the operation of the plurality of air conditioners 1 is controlled. The operation command unit 83 ends the power limited operation when receiving the return signal.
<電力制限運転>
 図4は、本発明の実施の形態1に係る空気調和システムの制御を示すフローチャート図である。以下、空気調和システム100において、集中管理コントローラ80および制御装置70が行う制御について説明する。
<Power limited operation>
FIG. 4 is a flowchart showing control of the air-conditioning system according to Embodiment 1 of the present invention. Hereinafter, control performed by the centralized management controller 80 and the control device 70 in the air conditioning system 100 will be described.
 空気調和システム100が運転を開始すると、通常運転が実施される(ステップST101)。停電判定部71は、常用電源からの入力電源をモニターしており、通常運転時には、常用電源の停電が検知されたか否かを判定する(ステップST102)。そして停電判定部71により常用電源の停電が検知されると(ステップST102:YES)、集中管理コントローラ80に停電信号が送信される。集中管理コントローラ80が停電信号を受信すると、運転指令部83により電力制限運転が開始される(ステップST103)。一方、停電判定部71により停電が検知されない場合には(ステップST102:NO)、通常運転が続行され(ステップST101)、所定時間ごとにステップST102の停電判定が繰り返される。 When the air conditioning system 100 starts operation, normal operation is performed (step ST101). The power failure determination unit 71 monitors the input power from the normal power source, and determines whether a power failure of the normal power source is detected during normal operation (step ST102). When a power failure is detected by the power failure determination unit 71 (step ST102: YES), a power failure signal is transmitted to the centralized management controller 80. When the central management controller 80 receives the power failure signal, the operation command unit 83 starts the power limited operation (step ST103). On the other hand, when a power failure is not detected by power failure determination unit 71 (step ST102: NO), normal operation is continued (step ST101), and the power failure determination of step ST102 is repeated every predetermined time.
 電力制限運転において、運転指令部83は、空気調和システム100の使用電力が非常用電源により供給される電力以内となるように制限する。まず運転指令部83は、使用電力Puが設定電力Psより大きいか否かを判定する電力判定を行う(ステップST104)。このとき運転指令部83は、各制御装置70a、70b、70cに空気調和機1の電力を通知するよう要求信号を送信する。制御装置70は要求信号を受信すると、運転制御部72が、圧縮機11の運転周波数と室外機送風機15の回転数等とから電力量を算出し、算出した電力量を集中管理コントローラ80に通知する。運転指令部83は、通知された各空気調和機1A、1B、1Cの電力量を集計し、集計して得た使用電力Puと、情報管理部81に設定されている設定電力Psとを比較する。 In the power limited operation, the operation command unit 83 limits the power used by the air conditioning system 100 to be within the power supplied by the emergency power source. First, the operation command unit 83 performs power determination for determining whether the used power Pu is greater than the set power Ps (step ST104). At this time, the operation command unit 83 transmits a request signal to notify each control device 70a, 70b, 70c of the power of the air conditioner 1. When the control device 70 receives the request signal, the operation control unit 72 calculates the amount of power from the operating frequency of the compressor 11 and the rotational speed of the outdoor unit blower 15 and notifies the centralized management controller 80 of the calculated amount of power. To do. The operation command unit 83 totals the notified power amounts of the air conditioners 1A, 1B, and 1C, and compares the used power Pu obtained by totaling with the set power Ps set in the information management unit 81. To do.
 運転指令部83は、電力判定において使用電力Puが設定電力Ps以下であると判定された場合には(ステップST104:NO)、空気調和機1の運転を抑制する必要がないため、現在の各空気調和機1A、1B、1Cの運転状態が維持される。一方、使用電力Puが設定電力Psより大きいと判定された場合には(ステップST104:YES)、運転指令部83は、さらに、運転中である空気調和機1が複数存在するか否かを判定する(ステップST105)。そして、運転指令部83は、一の空気調和機1のみが運転中である場合に(ステップST105:NO)、単独運転時の電力制限運転を開始する(ステップST201)。 When it is determined that the used electric power Pu is equal to or lower than the set electric power Ps in the electric power determination (step ST104: NO), the operation command unit 83 does not need to suppress the operation of the air conditioner 1; The operating state of the air conditioners 1A, 1B, 1C is maintained. On the other hand, when it is determined that the used power Pu is greater than the set power Ps (step ST104: YES), the operation command unit 83 further determines whether there are a plurality of air conditioners 1 that are in operation. (Step ST105). Then, when only one air conditioner 1 is in operation (step ST105: NO), the operation command unit 83 starts the power limited operation during the single operation (step ST201).
 一方、複数の空気調和機1が運転中である場合には(ステップST105:YES)、運転指令部83は、運転中である複数の空気調和機1のうち最も優先度の低い空気調和機1の運転を停止する(ステップST106)。このとき、運転指令部83は、情報管理部81に格納された各空気調和機1の優先度を参照し、最も低い優先度が設定されている空気調和機1の運転を停止する運転指令を、制御装置70に送信する。具体的には、空気調和機1A、空気調和機1Bおよび空気調和機1Cに対してそれぞれ優先度「高」、「中」または「低」が設定されている場合、優先度「低」が設定されている空気調和機1Cの運転を停止する運転指令が送信される。そして、空気調和機1Cの制御装置70cは、運転指令に基づいて空気調和機1Cの各アクチュエータを停止する。一方、空気調和機1Aおよび空気調和機1Bの運転は続行される。 On the other hand, when the plurality of air conditioners 1 are in operation (step ST105: YES), the operation command unit 83 has the lowest priority among the plurality of air conditioners 1 in operation. Is stopped (step ST106). At this time, the operation command unit 83 refers to the priority of each air conditioner 1 stored in the information management unit 81, and issues an operation command to stop the operation of the air conditioner 1 for which the lowest priority is set. To the control device 70. Specifically, when priority “high”, “medium”, or “low” is set for the air conditioner 1A, the air conditioner 1B, and the air conditioner 1C, respectively, the priority “low” is set. An operation command for stopping the operation of the air conditioner 1C is transmitted. Then, the controller 70c of the air conditioner 1C stops each actuator of the air conditioner 1C based on the operation command. On the other hand, the operation of the air conditioner 1A and the air conditioner 1B is continued.
 ステップST106の後、あるいはステップST104の電力判定により現在の各空気調和機1A、1B、1Cの運転状態が維持されているとき、停電復帰判定が行われる(ステップST107)。停電判定部71は、常用電源からの入力電源が戻った場合に停電が復帰したと判定し(ステップST107:YES)、集中管理コントローラ80に復帰信号を送信する。運転指令部83は、停電判定部71から復帰信号を受信した場合には電力制限運転を終了する(ステップST108)。その後、通常運転が実施される(ステップST101)。一方、停電判定部71から復帰信号が送信されない場合には(ステップST107:NO)、運転指令部83はステップST104の電力判定を再度行う。そして、集中管理コントローラ80で復帰信号を受信するまで、ステップST104~ステップST107までの処理が繰り返される。例えば、2回目の電力判定(ステップST104)にて集計された全体の使用電力Pu2は、空気調和機1Cが停止されているため、前回の電力判定時の使用電力Pu1よりも少なくなっている。また、空気調和機1Cが停止された後であっても、使用電力Pu2が設定電力Psを上回る場合には、2回目のステップST106において、2番目に低い優先度が設定されている空気調和機1Bが停止される。 After step ST106 or when the current operation state of each air conditioner 1A, 1B, 1C is maintained by the power determination in step ST104, a power failure recovery determination is performed (step ST107). The power failure determination unit 71 determines that the power failure has been restored when the input power from the utility power returns (step ST107: YES), and transmits a return signal to the centralized management controller 80. Operation command unit 83 ends the power limited operation when a return signal is received from power failure determination unit 71 (step ST108). Thereafter, normal operation is performed (step ST101). On the other hand, when the return signal is not transmitted from the power failure determination unit 71 (step ST107: NO), the operation command unit 83 performs the power determination of step ST104 again. The processing from step ST104 to step ST107 is repeated until the central control controller 80 receives a return signal. For example, the total used power Pu2 counted in the second power determination (step ST104) is smaller than the used power Pu1 at the previous power determination because the air conditioner 1C is stopped. In addition, even after the air conditioner 1C is stopped, if the used power Pu2 exceeds the set power Ps, the air conditioner for which the second lowest priority is set in the second step ST106. 1B is stopped.
<単独運転時の電力制限運転>
 図5は、本発明の実施の形態1に係る空気調和システムの単独運転時の電力制限運転の制御を示すフローチャート図である。以下に、一つの空気調和機1Aのみが運転中である場合の電力制限運転について説明する。単独運転時の電力制限運転は、運転中の空気調和機1の消費電力が設定電力Ps以下となるように制限するものである。
<Power limited operation during single operation>
FIG. 5 is a flowchart showing the control of the power limiting operation during the single operation of the air-conditioning system according to Embodiment 1 of the present invention. Hereinafter, the power limit operation when only one air conditioner 1A is in operation will be described. The power limiting operation during the single operation is to limit the power consumption of the air conditioner 1 during the operation so as to be equal to or less than the set power Ps.
 単独運転時の電力制限運転が開始すると(ステップST201)、運転指令部83は、予め設定された設定電力Psで運転する場合の圧縮機11の周波数Fsおよび室外機送風機15の回転数Nsを算出する(ステップST202)。そして、運転指令部83は、運転中の空気調和機1Aに対し、算出した周波数Fsを圧縮機11の上限周波数として設定し、算出した回転数Nsを室外機送風機15の上限回転数として設定する(ステップST203)。このとき運転指令部83は、設定した上限周波数および上限回転数を、情報管理部81に反映するとともに、制御装置70aに運転指令として送信する。そして、運転制御部72は、運転指令に基づき、周波数Fsおよび回転数Nsを上限として運転中の空気調和機1Aの圧縮機11および室外機送風機15を制御する。ステップST203の設定が終わると、停電復帰判定が行われる(ステップST204)。停電判定部71は、常用電源からの入力電源が戻った場合に停電が復帰したと判定し(ステップST204:YES)、集中管理コントローラ80に復帰信号を送信する。運転指令部83は、停電判定部71から復帰信号を受信した場合に、電力制限運転を終了する(ステップST205)。その後、通常運転が実施される(ステップST101)。一方、停電判定部71から復帰信号を受信しない場合には(ステップST204:NO)、設定された上限周波数および上限回転数に基づいて電力制限運転が続行される。その後、集中管理コントローラ80で復帰信号を受信するまで、ステップST204の停電復帰判定が繰り返される。 When the power limited operation at the time of the single operation is started (step ST201), the operation command unit 83 calculates the frequency Fs of the compressor 11 and the rotation speed Ns of the outdoor unit fan 15 when operating with the preset set power Ps. (Step ST202). Then, the operation command unit 83 sets the calculated frequency Fs as the upper limit frequency of the compressor 11 and sets the calculated rotation speed Ns as the upper limit rotation speed of the outdoor unit blower 15 for the operating air conditioner 1A. (Step ST203). At this time, the operation command unit 83 reflects the set upper limit frequency and upper limit rotation number in the information management unit 81 and transmits the operation command to the control device 70a. Then, the operation control unit 72 controls the compressor 11 and the outdoor unit blower 15 of the air conditioner 1A during operation based on the operation command with the frequency Fs and the rotation speed Ns as upper limits. When the setting in step ST203 is completed, a power failure recovery determination is performed (step ST204). The power failure determination unit 71 determines that the power failure has been restored when the input power from the utility power returns (step ST204: YES), and transmits a return signal to the centralized management controller 80. The operation command unit 83 ends the power limited operation when receiving a return signal from the power failure determination unit 71 (step ST205). Thereafter, normal operation is performed (step ST101). On the other hand, when the return signal is not received from the power failure determination unit 71 (step ST204: NO), the power limited operation is continued based on the set upper limit frequency and upper limit rotation speed. Thereafter, the power failure recovery determination in step ST204 is repeated until the centralized management controller 80 receives a recovery signal.
 以上のように、実施の形態1において、空気調和システム100は、運転制御部72と、停電判定部71と、運転指令部83と、を備える。運転指令部83は、停電判定部71により停電が検知された場合に、一または複数の空気調和機1A、1B、1Cが使用する電力を上限電力(設定電力Ps)に基づいて制限する電力制限運転を実施する。運転制御部72は、運転指令部83により電力制限運転が実施されているときには、一または複数の空気調和機1A、1B、1Cの全体の使用電力Puが上限電力(設定電力Ps)以下となる範囲で、一または複数の空気調和機1の運転を制御する。 As described above, in the first embodiment, the air conditioning system 100 includes the operation control unit 72, the power failure determination unit 71, and the operation command unit 83. The operation command unit 83 limits the power used by one or more air conditioners 1A, 1B, and 1C based on the upper limit power (set power Ps) when a power failure is detected by the power failure determination unit 71. Carry out driving. In the operation control unit 72, when the power instruction operation is performed by the operation command unit 83, the total power use Pu of one or a plurality of the air conditioners 1A, 1B, 1C is equal to or less than the upper limit power (set power Ps). The operation of one or more air conditioners 1 is controlled within a range.
 これより、常用電源の停電時に、予め設定された上限電力(設定電力Ps)に基づいて全体の消費電力が制限されるが、運転制御部72は、上限電力の範囲内で運転を制御することができる。例えば、上限電力として非常用電源の供給電力が設定されている場合には、空気調和システム100は、供給電力の範囲において最大限の空調能力で運転を実施することができる。したがって、従来のように設定された抑制運転モードに比べ、非常用電源の使用時における制御の自由度が増すとともに、全体の使用電力Puが上限電力(設定電力Ps)以下に制限されることでシステム全体の運転が停止することを回避できる。つまり、空気調和システム100は、供給電力が制限された場合でも設定電力Psに見合った運転を継続することができる。 As a result, the overall power consumption is limited based on the preset upper limit power (set power Ps) at the time of a power failure of the utility power supply, but the operation control unit 72 controls the operation within the range of the upper limit power. Can do. For example, when the supply power of the emergency power supply is set as the upper limit power, the air conditioning system 100 can be operated with the maximum air conditioning capability in the range of the supply power. Therefore, as compared with the suppression operation mode set as in the prior art, the degree of freedom of control when using the emergency power supply is increased, and the overall power usage Pu is limited to the upper limit power (set power Ps) or less. It is possible to avoid stopping the operation of the entire system. That is, the air conditioning system 100 can continue the operation commensurate with the set power Ps even when the supplied power is limited.
 また、停電判定部71は、常用電源の欠相を検出した場合に停電を検知するものである。これより、入力電源の異常状態が早い段階で検知されるため、メンテナンスまたは非常用電源への切り替えを行うことで、空気調和システム100は安定運転を行うことができる。 Further, the power failure determination unit 71 detects a power failure when a phase failure of the regular power supply is detected. Thus, since the abnormal state of the input power supply is detected at an early stage, the air conditioning system 100 can perform stable operation by performing maintenance or switching to an emergency power supply.
 また、空気調和システム100は、一または複数の空気調和機1A、1B、1Cを管理する集中管理コントローラ80をさらに備え、運転指令部83は、集中管理コントローラ80に含まれるものである。これより、空気調和システム100は、集中管理コントローラ80が管理する一または複数の空気調和機1A、1B、1Cの運転情報を用いて、電力制限運転を実施する、あるいは運転指令を送信することができる。 The air conditioning system 100 further includes a centralized management controller 80 that manages one or a plurality of air conditioners 1A, 1B, and 1C, and the operation command unit 83 is included in the centralized management controller 80. Thus, the air conditioning system 100 can perform power limited operation or transmit an operation command using the operation information of one or more air conditioners 1A, 1B, and 1C managed by the centralized management controller 80. it can.
 また、運転指令部83は、停電判定部71により停電が検知された場合であって、一または複数の空気調和機1A、1B、1Cの全体の使用電力Puが上限電力(設定電力Ps)より大きい場合に、電力制限運転を実施する。 Further, the operation command unit 83 is a case where a power failure is detected by the power failure determination unit 71, and the total power use Pu of one or a plurality of air conditioners 1A, 1B, 1C is higher than the upper limit power (set power Ps). If it is larger, carry out power limited operation.
 これより、空気調和システム100は、通常電源の停電時に、供給電力が不足する場合には全体の使用電力Puを制限して運転を続ける一方で、全体の使用電力Puが設定電力Psとなるまでは例えば通常運転を実施して高効率な運転を行うことができる。 As a result, the air conditioning system 100 continues operation by limiting the total power consumption Pu when the power supply is insufficient during a power failure of the normal power supply, while the total power consumption Pu becomes the set power Ps. For example, a normal operation can be performed and a highly efficient operation can be performed.
 また、運転指令部83は、電力制限運転時に複数の空気調和機1A、1B、1Cが運転中であるときには、運転制御部72に、運転中の複数の空気調和機1のうち優先度が低い空気調和機(例えば空気調和機1C)の運転を停止させる。 In addition, when the plurality of air conditioners 1A, 1B, and 1C are in operation during the power limited operation, the operation command unit 83 gives the operation control unit 72 a low priority among the plurality of air conditioners 1 in operation. The operation of the air conditioner (for example, the air conditioner 1C) is stopped.
 これより、電力制限運転時に複数の空気調和機1A、1B、1Cが運転している場合には、優先度に基づいて全体の使用電力Puが制限される。そのため、空気調和システム100は、優先させたい空気調和機(例えば空気調和機1A)について、非常時においても運転を継続することができる。 Thus, when a plurality of air conditioners 1A, 1B, and 1C are operating during the power limited operation, the total power usage Pu is limited based on the priority. Therefore, the air conditioning system 100 can continue the operation even in an emergency for an air conditioner (for example, the air conditioner 1A) to be prioritized.
 また、一または複数の空気調和機1A、1B、1Cはそれぞれ、圧縮機11および室外機送風機15を有している。運転制御部72は、圧縮機11および室外機送風機15を制御する。運転指令部83は、電力制限運転において、一または複数の空気調和機1A、1B、1Cのうち一の空気調和機(空気調和機1A)のみが運転中であるときには、上限電力(例えば設定電力Ps)での圧縮機11の周波数および室外機送風機15の回転数を算出する。そして運転指令部83は、運転制御部72に、算出された周波数Fsおよび回転数Nsを上限として、運転中の空気調和機1Aの圧縮機11および室外機送風機15を制御させる。 Further, each of the one or more air conditioners 1A, 1B, 1C has a compressor 11 and an outdoor unit blower 15. The operation control unit 72 controls the compressor 11 and the outdoor unit blower 15. The operation command unit 83 sets the upper limit power (for example, set power) when only one air conditioner (the air conditioner 1A) among the one or more air conditioners 1A, 1B, 1C is operating in the power limited operation. The frequency of the compressor 11 and the rotational speed of the outdoor unit fan 15 at Ps) are calculated. Then, the operation command unit 83 causes the operation control unit 72 to control the compressor 11 and the outdoor unit blower 15 of the operating air conditioner 1A with the calculated frequency Fs and rotation speed Ns as upper limits.
 これより、運転制御部72は、電力制限運転において、設定電力Psでの周波数Fsおよび回転数Nsを上限として、圧縮機11および室外機送風機15を任意に制御できる。したがって、従来のように設定された圧縮機の周波数および室内機送風機の回転数で運転する抑制運転モードに比べ、空気調和システム100は、非常用電源の使用時においても設定された範囲内で高効率の空調を提供することができる。 Thus, the operation control unit 72 can arbitrarily control the compressor 11 and the outdoor unit blower 15 with the frequency Fs and the rotation speed Ns at the set power Ps as upper limits in the power limited operation. Therefore, compared with the suppression operation mode which operates at the compressor frequency and the rotation speed of the indoor unit blower set as in the prior art, the air conditioning system 100 is high within the set range even when the emergency power supply is used. Efficient air conditioning can be provided.
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、実施の形態1において、複数の空気調和機1A、1B、1Cがそれぞれ制御装置70を備え、集中管理コントローラ80が複数の空気調和機1A、1B、1Cを管理するものとして説明したが、このような構成に限定されない。空気調和システム100が一の空気調和機1で構成される場合には、集中管理コントローラ80の機能を制御装置70が備えるものとしてもよい。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, in the first embodiment, the plurality of air conditioners 1A, 1B, and 1C are each provided with the control device 70, and the centralized management controller 80 is described as managing the plurality of air conditioners 1A, 1B, and 1C. It is not limited to such a configuration. When the air conditioning system 100 is configured by one air conditioner 1, the control device 70 may have the function of the centralized management controller 80.
 また、冷凍サイクルは図1の回路構成に限定されず、例えば、室外機10は室内機50ごとに冷媒流れを切替える機構を有していてもよい。 Further, the refrigeration cycle is not limited to the circuit configuration of FIG. 1. For example, the outdoor unit 10 may have a mechanism for switching the refrigerant flow for each indoor unit 50.
 また、集中管理コントローラ80に、制御装置70の機能の一部または全部を備えたり、あるいは、集中管理コントローラ80の機能の一部または全部を制御装置70に備える構成にしてもよい。例えば、制御装置70の代わりに集中管理コントローラ80にて停電あるいは停電復帰が判定される構成であってもよい。 Further, the central management controller 80 may be provided with a part or all of the functions of the control device 70, or the control device 70 may be provided with a part or all of the functions of the central management controller 80. For example, a configuration in which a power failure or power failure recovery is determined by the centralized management controller 80 instead of the control device 70 may be employed.
 また、ステップST104において、運転指令部83は、各制御装置70に空気調和機1の使用電力を通知するよう要求信号を送信するものとしたが、既に取得した情報が用いられてもよい。運転指令部83は、情報管理部81に格納された直近の運転情報に基づき、各空気調和機1の使用電力および全体の使用電力Puを算出する構成であってもよい。 In step ST104, the operation command unit 83 transmits a request signal to notify each control device 70 of the electric power used by the air conditioner 1. However, already acquired information may be used. The operation command unit 83 may be configured to calculate the power usage of each air conditioner 1 and the total power usage Pu based on the latest operation information stored in the information management unit 81.
実施の形態2.
 図6は、本発明の実施の形態2に係る空気調和システムの電力制限運転時の除霜運転の制御を示すフローチャート図である。実施の形態2において、各空気調和機1A、1B、1Cは、上述した暖房運転および冷房運転の他に除霜運転を行う。各空気調和機1A、1B、1Cは、センサ群60としてさらに冷媒温度センサを備えている。冷媒温度センサは、室外機熱交換器14に配置されており、室外機熱交換器14を流れる冷媒の温度を検出する。空気調和機1において、暖房運転モードの実施中に室外機熱交換器14の着霜量が多くなると、霜を溶かす除霜運転が行われる。
Embodiment 2. FIG.
FIG. 6 is a flowchart showing the control of the defrosting operation during the power limited operation of the air-conditioning system according to Embodiment 2 of the present invention. In Embodiment 2, each air conditioner 1A, 1B, 1C performs a defrosting operation in addition to the heating operation and the cooling operation described above. Each of the air conditioners 1A, 1B, and 1C further includes a refrigerant temperature sensor as the sensor group 60. The refrigerant temperature sensor is disposed in the outdoor unit heat exchanger 14 and detects the temperature of the refrigerant flowing through the outdoor unit heat exchanger 14. In the air conditioner 1, when the amount of frost formation in the outdoor unit heat exchanger 14 increases during the heating operation mode, a defrosting operation for melting frost is performed.
 制御装置70の運転制御部72は、例えば、冷媒温度センサで検出された冷媒の温度が設定温度以下になった場合に除霜運転を開始するように制御する。また運転制御部72は、除霜運転の開始から、設定されている除霜時間Tdefが経過したときに、除霜運転を終了して暖房運転を再開するように制御する。除霜運転において、運転制御部72は、設定されている除霜周波数Fdefで圧縮機11を運転するように制御する。なお、除霜運転の開始条件は、上記冷媒の温度による判定に限定されない。例えば、圧縮機11の吸入側に低圧圧力センサを配置し、低圧圧力センサにより検出された冷媒の圧力が設定圧力以下になった場合に除霜運転が開始されてもよい。 The operation control unit 72 of the control device 70 performs control so as to start the defrosting operation when the temperature of the refrigerant detected by the refrigerant temperature sensor becomes equal to or lower than a set temperature, for example. Moreover, the operation control part 72 is controlled to complete | finish a defrost operation and restart a heating operation, when the set defrost time Tdef passes from the start of a defrost operation. In the defrosting operation, the operation control unit 72 performs control so that the compressor 11 is operated at the set defrosting frequency Fdef. Note that the start condition of the defrosting operation is not limited to the determination based on the temperature of the refrigerant. For example, a low pressure sensor may be disposed on the suction side of the compressor 11 and the defrosting operation may be started when the refrigerant pressure detected by the low pressure sensor becomes equal to or lower than a set pressure.
 ここで、除霜時間Tdefは、除霜運転1回あたりの実行時間である。除霜周波数Fdefおよび除霜時間Tdefとしては、各空気調和機1A、1B、1Cの制御装置70a、70b、70cに、自機の室外機熱交換器14の除霜に必要な熱量により決定された設定値が予め記憶されている。以下、空気調和機1Aの制御装置70aには、除霜周波数Fdefの設定値として設定周波数Fdef1が記憶され、除霜時間Tdefの設定値として設定除霜時間Tdef1が記憶されているものとする。 Here, the defrosting time Tdef is an execution time per defrosting operation. The defrost frequency Fdef and the defrost time Tdef are determined by the amount of heat necessary for the defrosting of the outdoor unit heat exchanger 14 of the own unit in the control devices 70a, 70b, 70c of the air conditioners 1A, 1B, 1C. Set values are stored in advance. Hereinafter, it is assumed that the control device 70a of the air conditioner 1A stores the set frequency Fdef1 as the set value of the defrost frequency Fdef and the set defrost time Tdef1 as the set value of the defrost time Tdef.
 集中管理コントローラ80は、上述した除霜周波数Fdefおよび除霜時間Tdefの各設定値を取得し、取得したこれらの設定値は、室外機10の情報として情報管理部81により管理される。 The centralized management controller 80 acquires the set values of the defrost frequency Fdef and the defrost time Tdef described above, and these acquired set values are managed by the information management unit 81 as information on the outdoor unit 10.
(除霜運転)
 制御装置70が空気調和機1で除霜運転を実行する場合、流路切替装置13を冷房運転モード時の流路に切り替え、室外機送風機15および室内機送風機53を停止するように制御する。また制御装置70は、圧縮機11を、設定されている除霜周波数Fdefで運転するように制御する。例えば、通常時において、除霜周波数Fdefは、短時間で霜を溶かすために圧縮機11の最大周波数に設定されている。
(Defrosting operation)
When the control device 70 performs the defrosting operation in the air conditioner 1, the flow switching device 13 is switched to the flow channel in the cooling operation mode, and the outdoor unit blower 15 and the indoor unit blower 53 are controlled to stop. Further, the control device 70 controls the compressor 11 to operate at the set defrost frequency Fdef. For example, at the normal time, the defrost frequency Fdef is set to the maximum frequency of the compressor 11 in order to melt frost in a short time.
 除霜運転が実行されているとき、圧縮機11では、低温低圧の冷媒が圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、逆止弁12および流路切替装置13を経由して、室外機熱交換器14に流入する。室外機熱交換器14に流入した冷媒は、放熱することで霜を溶かし、液冷媒となって室外機熱交換器14から流出する。 During the defrosting operation, the compressor 11 compresses the low-temperature and low-pressure refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor unit heat exchanger 14 via the check valve 12 and the flow path switching device 13. The refrigerant that has flowed into the outdoor unit heat exchanger 14 melts frost by radiating heat to become a liquid refrigerant and flows out of the outdoor unit heat exchanger 14.
 室外機熱交換器14から流出した液冷媒は、冷媒配管5を通って室内機50に流入する。室内機50に流入した液冷媒は、室内機50に設けられた絞り装置52を通過して室内機熱交換器51に流入する。室内機熱交換器51に流入した冷媒は、配管の熱により蒸発して一部または全てがガス冷媒となって室内機熱交換器51から流出する。室内機熱交換器51から流出した冷媒は、冷媒配管4を通って室外機10に流入する。室外機10に流入した冷媒は、流路切替装置13およびアキュムレータ16を介して圧縮機11へ再度吸入される。その後、除霜運転が終了するまで上記のサイクルが繰り返される。 The liquid refrigerant flowing out of the outdoor unit heat exchanger 14 flows into the indoor unit 50 through the refrigerant pipe 5. The liquid refrigerant flowing into the indoor unit 50 passes through the expansion device 52 provided in the indoor unit 50 and flows into the indoor unit heat exchanger 51. The refrigerant that has flowed into the indoor unit heat exchanger 51 evaporates due to the heat of the piping, and part or all of the refrigerant becomes a gas refrigerant and flows out of the indoor unit heat exchanger 51. The refrigerant that has flowed out of the indoor unit heat exchanger 51 flows into the outdoor unit 10 through the refrigerant pipe 4. The refrigerant that has flowed into the outdoor unit 10 is again sucked into the compressor 11 via the flow path switching device 13 and the accumulator 16. Thereafter, the above cycle is repeated until the defrosting operation is completed.
 ところで、従来の空気調和システムでは、圧縮機を一律に最低周波数に設定することで使用電力が抑制される。また、実施の形態1の単独運転時の電力抑制運転では、圧縮機11の運転周波数の上限が周波数Fsに制限される。そのため、通常時の除霜周波数Fdefよりも小さい周波数で圧縮機11が駆動される電力抑制運転モードでは、通常時の除霜時間Tdefの除霜運転が実行されても、十分に霜を溶かすことができない場合がある。 By the way, in the conventional air conditioning system, the power consumption is suppressed by uniformly setting the compressor to the lowest frequency. Further, in the power suppression operation during the single operation of the first embodiment, the upper limit of the operation frequency of the compressor 11 is limited to the frequency Fs. Therefore, in the power suppression operation mode in which the compressor 11 is driven at a frequency lower than the normal defrost frequency Fdef, the frost is sufficiently melted even if the defrost operation of the normal defrost time Tdef is performed. May not be possible.
 そこで、実施の形態2では、電力制限運転において除霜運転が実行される場合に室外機熱交換器14の除霜に必要な除霜時間Tdefが算出され、算出された除霜時間Tdefの除霜運転が実行される。以下、図6に基づき、一例として、図5の単独運転時の電力制限運転が実施されているときに除霜運転が実行される場合の制御について説明する。ここで、空気調和機1Aのみが運転中であり、図5のステップST204の停電復帰判定が繰り返される間、空気調和機1Aは暖房運転を実施しているものとする。空気調和機1Aにおいて除霜運転の開始条件が成立し、運転制御部72が除霜運転を実行するときに、図6の制御が開始される。 Therefore, in the second embodiment, when the defrosting operation is performed in the power limited operation, the defrosting time Tdef necessary for the defrosting of the outdoor unit heat exchanger 14 is calculated, and the calculated defrosting time Tdef is removed. A frost operation is performed. Hereinafter, as an example, the control in the case where the defrosting operation is performed when the power limiting operation during the single operation of FIG. 5 is performed will be described based on FIG. 6. Here, it is assumed that only the air conditioner 1A is in operation, and the air conditioner 1A is performing the heating operation while the power failure recovery determination in step ST204 of FIG. 5 is repeated. When the start condition of the defrosting operation is established in the air conditioner 1A and the operation control unit 72 executes the defrosting operation, the control of FIG. 6 is started.
 まず、運転指令部83は、予め設定された設定電力Psで運転する場合の圧縮機11の除霜周波数Fs2を算出する(ステップST301)。そして運転指令部83は、空気調和機1Aにおいて、算出された除霜周波数Fs2で圧縮機11を駆動して除霜運転が実行される場合の必要除霜時間Tsを算出する(ステップST302)。 First, the operation command unit 83 calculates the defrost frequency Fs2 of the compressor 11 when operating with the preset set power Ps (step ST301). And the operation instruction | command part 83 calculates the required defrost time Ts in case the defrost operation is performed by driving the compressor 11 with the calculated defrost frequency Fs2 in the air conditioner 1A (step ST302).
 ここで、必要除霜時間Tsの算出方法について説明する。空気調和機1Aの室外機熱交換器14の除霜に必要な熱量Qは、通常時の除霜運転で設定されている設定除霜時間Tdef1を用いて以下の式1で表される。 Here, a method for calculating the necessary defrosting time Ts will be described. The amount of heat Q required for defrosting of the outdoor unit heat exchanger 14 of the air conditioner 1A is expressed by the following formula 1 using the set defrosting time Tdef1 set in the normal defrosting operation.
[数1]
 Q=Gr×Tdef1×ΔH   (式1)
    Gr:冷媒流量
    ΔH:熱交前後のエンタルピー差
 上記の式1の冷媒流量Grは、通常時の除霜運転で設定されている設定周波数Fdef1を用いて以下の式2で表される。
[Equation 1]
Q = Gr × Tdef1 × ΔH (Formula 1)
Gr: Refrigerant flow rate ΔH: Enthalpy difference before and after heat exchange The refrigerant flow rate Gr in Equation 1 above is expressed by Equation 2 below using the set frequency Fdef1 set in the normal defrosting operation.
[数2]
 Gr=V×ηv×Fdef1×ρ   (式2)
   V:圧縮機11の押しのけ量
   ηv:体積効率
   ρ:冷媒密度
 つまり、空気調和機1Aの室外機熱交換器14の除霜に必要な熱量Qを得るためには、除霜周波数Fdefと除霜時間Tdefとの積が一定であればよい。つまり、以下の式3の関係が成立する。
[Equation 2]
Gr = V × ηv × Fdef1 × ρ (Formula 2)
V: Displacement amount of the compressor 11 ηv: Volumetric efficiency ρ: Refrigerant density That is, in order to obtain the heat quantity Q necessary for defrosting of the outdoor unit heat exchanger 14 of the air conditioner 1A, the defrost frequency Fdef and the defrosting are performed. The product with time Tdef should just be constant. That is, the relationship of the following formula 3 is established.
[数3]
 Fdef1×Tdef1=Fs2×Ts   (式3)
 したがって、電力制限運転の除霜運転時に圧縮機11が除霜周波数Fs2で駆動される場合の必要除霜時間Tsは、以下の式4により算出される。
[Equation 3]
Fdef1 × Tdef1 = Fs2 × Ts (Formula 3)
Therefore, the necessary defrosting time Ts when the compressor 11 is driven at the defrosting frequency Fs2 during the defrosting operation in the power limiting operation is calculated by the following equation 4.
[数4]
 Ts=(Fdef1×Tdef1)/Fs2   (式4)
 ステップST302の後、運転指令部83は、空気調和機1Aの制御装置70aに運転指令を送信し、制御装置70aの運転制御部72は、運転指令部83から受信した運転指令に基づき除霜運転を実行する(ステップST303)。このとき、運転制御部72は、流路切替装置13を冷房運転モード時の流路に切り替え、室外機送風機15を停止するよう制御するとともに、運転指令に基づき、圧縮機11を算出された除霜周波数Fs2で運転するように制御する。そして運転制御部72は、除霜運転の開始から必要除霜時間Tsが経過したときに、除霜運転を終了する。このとき運転制御部72は、流路切替装置13を暖房運転モード時の流路に切り替え、暖房運転を再開するように制御する。
[Equation 4]
Ts = (Fdef1 × Tdef1) / Fs2 (Formula 4)
After step ST302, the operation command unit 83 transmits an operation command to the control device 70a of the air conditioner 1A, and the operation control unit 72 of the control device 70a performs the defrosting operation based on the operation command received from the operation command unit 83. Is executed (step ST303). At this time, the operation control unit 72 switches the flow path switching device 13 to the flow path in the cooling operation mode and controls the outdoor unit blower 15 to stop, and the compressor 11 is calculated based on the operation command. Control is performed to operate at the frost frequency Fs2. And the operation control part 72 complete | finishes a defrost operation, when the required defrost time Ts passes from the start of a defrost operation. At this time, the operation control unit 72 controls the flow path switching device 13 to switch to the flow path in the heating operation mode and to resume the heating operation.
 そして、運転制御部72は、暖房運転の実行中、周波数Fsを上限として圧縮機11の運転周波数を制御し、回転数Nsを上限として室外機熱交換器14の回転数を制御する。その後、図5のステップST204の停電復帰判定が繰り返される間、運転制御部72は、除霜運転の開始条件が成立したときには暖房運転を中断し、図6のステップST303の除霜運転を実行する。 And during the heating operation, the operation control unit 72 controls the operation frequency of the compressor 11 with the frequency Fs as the upper limit, and controls the rotation speed of the outdoor unit heat exchanger 14 with the rotation speed Ns as the upper limit. Thereafter, while the power failure recovery determination in step ST204 in FIG. 5 is repeated, the operation control unit 72 interrupts the heating operation when the start condition of the defrosting operation is satisfied, and executes the defrosting operation in step ST303 in FIG. .
 なお、上述したように単独運転時の電力制限運転中に除霜運転が実行される構成では、ステップST301を省略し、ステップST302において上限の周波数Fsでの必要除霜時間が算出されてもよい。 As described above, in the configuration in which the defrosting operation is performed during the power limited operation during the single operation, step ST301 may be omitted, and the necessary defrosting time at the upper limit frequency Fs may be calculated in step ST302. .
 また、単独運転時の電力制限運転について説明したが、電力制限運転時に複数の空気調和機(例えば空気調和機1Aと空気調和機1B)が運転中である場合にも、図5および図6の制御により、設定電力Ps以下で効率的な運転を実施することができる。この場合、例えば、運転指令部83は、運転が維持されている複数の空気調和機1A、1Bに対して、全体の使用電力Puが設定電力Ps以下となるように使用可能な電力を各空気調和機1A、1Bにそれぞれ割り当てるとよい。そして運転指令部83は、図5のステップST202では、割り当てられた電力での圧縮機11の周波数Fsと室外機送風機15の回転数Nsとを算出し、図6のステップST301では、割り当てられた電力での圧縮機11の除霜周波数Fs2を算出する。ここで、各空気調和機1A、1Bに割り当てられる電力は、設定電力Psを、運転が維持されている複数の空気調和機1A、1Bの台数で除算して決定されてもよい。このような構成により、電力制限運転において複数の空気調和機1A、1Bが運転中であっても、それぞれに割り当てられた電力の範囲内で効率的に冷房運転、暖房運転および除霜運転を実施することができる。 Moreover, although the electric power limiting operation at the time of an independent operation was demonstrated, also when a plurality of air conditioners (for example, the air conditioner 1A and the air conditioner 1B) are operating at the time of the electric power limiting operation, FIG. 5 and FIG. By the control, an efficient operation can be carried out with the set power Ps or less. In this case, for example, the operation command unit 83 assigns the power that can be used to the plurality of air conditioners 1A and 1B in which the operation is maintained so that the total used power Pu is equal to or less than the set power Ps. It is good to allocate to each of the harmony machines 1A and 1B. Then, in step ST202 of FIG. 5, the operation command unit 83 calculates the frequency Fs of the compressor 11 with the allocated power and the rotation speed Ns of the outdoor unit blower 15, and in step ST301 of FIG. The defrost frequency Fs2 of the compressor 11 with electric power is calculated. Here, the power allocated to each of the air conditioners 1A and 1B may be determined by dividing the set power Ps by the number of the plurality of air conditioners 1A and 1B in which the operation is maintained. With such a configuration, even when the plurality of air conditioners 1A and 1B are operating in the power limited operation, the cooling operation, the heating operation, and the defrosting operation are efficiently performed within the range of the electric power allocated to each. can do.
 以上のように、実施の形態2において、運転制御部72は、運転指令部83により電力制限運転が実施されているときには、一または複数の空気調和機1A、1B、1Cの全体の使用電力Puが上限電力(設定電力Ps)以下となる範囲で除霜運転を制御する。これにより、運転中の空気調和機1で除霜運転が実施される場合でも、全体の使用電力Puを上限電力(設定電力Ps)以下に制限しつつ、運転制御部72により上限電力の範囲内で運転を制御することができる。 As described above, in the second embodiment, when the power control operation is performed by the operation command unit 83, the operation control unit 72 uses the entire power consumption Pu of one or more air conditioners 1A, 1B, 1C. The defrosting operation is controlled within a range in which the power becomes equal to or lower than the upper limit power (set power Ps). As a result, even when the defrosting operation is performed in the operating air conditioner 1, the operation control unit 72 keeps the total power consumption Pu below the upper limit power (set power Ps) and is within the range of the upper limit power. The operation can be controlled with.
 また運転制御部72は、除霜運転時に、圧縮機11を予め設定された設定周波数Fdef1で運転するように制御する。運転指令部83は、電力制限運転において空気調和機1Aのみが運転中であり、空気調和機1Aが除霜運転を実行するときに、上限電力(設定電力Ps)での圧縮機11の除霜周波数Fs2を算出する。そして運転指令部83は、運転制御部72に、算出された除霜周波数Fs2で圧縮機11を運転するように制御させる。これにより、電力制限運転において供給される電力の範囲内であり、かつ上限電力で圧縮機11を駆動して除霜運転が実行されるため、電力制限運転時であっても供給される電力の範囲内で効率良く室外機熱交換器14の除霜を行うことができる。 Also, the operation control unit 72 controls the compressor 11 to operate at a preset set frequency Fdef1 during the defrosting operation. The operation command unit 83 defrosts the compressor 11 at the upper limit power (set power Ps) when only the air conditioner 1A is operating in the power limited operation and the air conditioner 1A executes the defrosting operation. The frequency Fs2 is calculated. Then, the operation command unit 83 causes the operation control unit 72 to control the compressor 11 to operate at the calculated defrost frequency Fs2. As a result, the defrosting operation is performed by driving the compressor 11 with the upper limit power within the range of the power supplied in the power limiting operation. The defrosting of the outdoor unit heat exchanger 14 can be efficiently performed within the range.
 また運転制御部72は、設定除霜時間Tdef1の除霜運転を実行して終了するように制御する。運転指令部83は、電力制限運転において一の空気調和機1Aのみが運転中である場合に、空気調和機1Aが除霜運転を行うときには、運転制御部72に、設定除霜時間Tdef1よりも長い必要除霜時間Tsの除霜運転を実行するように制御させる。これにより、電力制限運転時には通常時よりも長く除霜運転が実行されるので、電力制限運転において圧縮機11の運転周波数が制限されている場合でも、室外機熱交換器14の霜を溶かし、着霜による熱交換効率の低下を抑制することができる。 Also, the operation control unit 72 performs control so that the defrosting operation for the set defrosting time Tdef1 is executed and terminated. When only one air conditioner 1A is in operation in the power limited operation, the operation command unit 83 instructs the operation control unit 72 to set the defrosting time Tdef1 when the air conditioner 1A performs the defrosting operation. Control is performed to execute a defrosting operation with a long required defrosting time Ts. Thereby, since the defrosting operation is executed longer than usual at the time of the power limiting operation, even if the operation frequency of the compressor 11 is limited in the power limiting operation, the frost of the outdoor unit heat exchanger 14 is melted, A decrease in heat exchange efficiency due to frost formation can be suppressed.
 また運転指令部83は、設定周波数Fdef1と設定除霜時間Tdef1との積を、算出された除霜周波数Fs2で除算することにより必要除霜時間Tsを算出する。これにより、室外機熱交換器14の除霜に必要な熱量Qを確保して霜を確実に溶かすことができる。 Further, the operation command unit 83 calculates the necessary defrost time Ts by dividing the product of the set frequency Fdef1 and the set defrost time Tdef1 by the calculated defrost frequency Fs2. Thereby, the calorie | heat amount Q required for the defrosting of the outdoor unit heat exchanger 14 can be ensured, and frost can be melt | dissolved reliably.
 1(1A、1B、1C) 空気調和機、4 冷媒配管、5 冷媒配管、10(10a、10b、10c) 室外機、11 圧縮機、12 逆止弁、13 流路切替装置、14 室外機熱交換器、15 室外機送風機、16 アキュムレータ、50(50a、50b、50c、50d、50e、50f) 室内機、51(51a、51b) 室内機熱交換器、52(52a、52b) 絞り装置、53(53a、53b) 室内機送風機、60 センサ群、70(70a、70b、70c) 制御装置、71 停電判定部、72 運転制御部、80 集中管理コントローラ、81 情報管理部、82 操作部、83 運転指令部、100 空気調和システム、Fdef 除霜周波数、Fdef1 設定周波数、Fs 周波数、Fs2 算出された除霜周波数、Ns 回転数、Ps 設定電力、Pu、Pu1、Pu2 使用電力、Q 熱量、Tdef 除霜時間、Tdef1 設定除霜時間、Ts 必要除霜時間。 1 (1A, 1B, 1C) air conditioner, 4 refrigerant pipe, 5 refrigerant pipe, 10 (10a, 10b, 10c) outdoor unit, 11 compressor, 12 check valve, 13 flow path switching device, 14 outdoor unit heat Exchanger, 15 outdoor unit blower, 16 accumulator, 50 (50a, 50b, 50c, 50d, 50e, 50f) indoor unit, 51 (51a, 51b) indoor unit heat exchanger, 52 (52a, 52b) throttle device, 53 (53a, 53b) Indoor unit blower, 60 sensors, 70 (70a, 70b, 70c) control device, 71 power failure determination unit, 72 operation control unit, 80 centralized management controller, 81 information management unit, 82 operation unit, 83 operation Command section, 100 air conditioning system, Fdef defrost frequency, Fdef1 set frequency, Fs frequency, Fs2 calculated Defrost frequency, Ns rotational speed, Ps set power, Pu, Pu1, Pu2 use power, Q heat, Tdef defrosting time, Tdef1 set defrost time, Ts necessary defrosting time.

Claims (11)

  1.  通常時には常用電源から電力供給を受けて稼動し、前記常用電源の停電時には非常用電源により電力供給を受けて稼動する一または複数の空気調和機を備えた空気調和システムにおいて、
     一または複数の前記空気調和機の運転を制御する運転制御部と、
     前記常用電源の停電を検知する停電判定部と、
     前記停電判定部により停電が検知された場合に、一または複数の前記空気調和機が使用する電力を予め設定された上限電力に基づいて制限する電力制限運転を実施する運転指令部と、を備え、
     前記運転制御部は、前記運転指令部により前記電力制限運転が実施されているときには、一または複数の前記空気調和機の全体の使用電力が前記上限電力以下となる範囲で、一または複数の前記空気調和機の運転を制御する
     空気調和システム。
    In an air conditioning system including one or a plurality of air conditioners that are normally operated by receiving power supply from an ordinary power source and that are operated by receiving power supply from an emergency power source in the event of a power failure of the ordinary power source,
    An operation control unit that controls the operation of the one or more air conditioners;
    A power failure determination unit that detects a power failure of the utility power supply;
    An operation command unit that performs a power limit operation that limits power used by one or a plurality of the air conditioners based on a preset upper limit power when a power failure is detected by the power failure determination unit. ,
    When the power control operation is performed by the operation command unit, the operation control unit is configured so that one or a plurality of the air conditioners are used in a range where the total power consumption of the one or a plurality of the air conditioners is equal to or less than the upper limit power. An air conditioning system that controls the operation of the air conditioner.
  2.  前記停電判定部は、前記常用電源の欠相を検出した場合に停電を検知する請求項1記載の空気調和システム。 The air conditioning system according to claim 1, wherein the power failure determination unit detects a power failure when an open phase of the regular power source is detected.
  3.  一または複数の前記空気調和機を管理する集中管理コントローラをさらに備え、
     前記運転指令部は、前記集中管理コントローラに含まれるものである請求項1または2記載の空気調和システム。
    A central control controller for managing one or a plurality of the air conditioners;
    The air conditioning system according to claim 1 or 2, wherein the operation command unit is included in the centralized controller.
  4.  前記運転指令部は、前記停電判定部により停電が検知された場合であって、前記全体の使用電力が前記上限電力より大きい場合に、前記電力制限運転を実施する請求項1~3のいずれか一項記載の空気調和システム。 4. The power operation unit according to claim 1, wherein the operation command unit performs the power limited operation when a power outage is detected by the power outage determination unit and the overall power consumption is larger than the upper limit power. The air conditioning system according to one item.
  5.  前記運転指令部は、前記電力制限運転において、複数の前記空気調和機が運転中であるときには、前記運転制御部に、運転中の複数の前記空気調和機のうち設定された優先度がより低い前記空気調和機の運転を停止させることにより、前記全体の使用電力を制限する請求項1~4のいずれか一項記載の空気調和システム。 When the plurality of air conditioners are in operation in the power limited operation, the operation command unit has a lower priority set in the operation control unit among the plurality of air conditioners in operation. The air conditioning system according to any one of claims 1 to 4, wherein the overall power consumption is limited by stopping the operation of the air conditioner.
  6.  一または複数の前記空気調和機はそれぞれ、冷媒を圧縮する圧縮機を有し、
     前記運転制御部は、前記圧縮機を制御する請求項1~5のいずれか一項記載の空気調和システム。
    Each of the one or more air conditioners has a compressor that compresses the refrigerant,
    The air conditioning system according to any one of claims 1 to 5, wherein the operation control unit controls the compressor.
  7.  一または複数の前記空気調和機はそれぞれ、室外機送風機を有し、
     前記運転制御部は、前記室外機送風機を制御し、
     前記運転指令部は、前記電力制限運転において、一または複数の前記空気調和機のうち一の前記空気調和機のみが運転中であるときには、前記上限電力での前記圧縮機の周波数および前記室外機送風機の回転数を算出し、前記運転制御部に、算出された前記周波数および前記回転数を上限として、運転中の前記空気調和機の前記圧縮機および前記室外機送風機を制御させる請求項6記載の空気調和システム。
    Each of the one or more air conditioners has an outdoor unit blower,
    The operation control unit controls the outdoor unit blower,
    In the power limited operation, when only one of the air conditioners is operating, the operation command unit is configured to determine the frequency of the compressor at the upper limit power and the outdoor unit. The rotational speed of the blower is calculated, and the operation control unit is configured to control the compressor and the outdoor unit blower of the air conditioner during operation with the calculated frequency and the rotational speed as upper limits. Air conditioning system.
  8.  前記運転制御部は、前記運転指令部により前記電力制限運転が実施されているときには、一または複数の前記空気調和機の前記全体の使用電力が前記上限電力以下となる範囲で、一または複数の前記空気調和機の除霜運転を制御する請求項6または7記載の空気調和システム。 The operation control unit is configured so that when the power command operation is performed by the operation command unit, the entire power usage of the one or more air conditioners is less than or equal to the upper limit power. The air conditioning system according to claim 6 or 7, wherein a defrosting operation of the air conditioner is controlled.
  9.  一または複数の前記空気調和機はそれぞれ、前記圧縮機からの冷媒の流路を切り替える流路切替装置と、冷媒と熱交換流体とを熱交換させる室外機熱交換器とを有し、
     前記運転制御部は、前記除霜運転時に、前記室外機熱交換器に前記圧縮機の吐出側を接続するように前記流路切替装置を制御し、前記圧縮機を予め設定された設定周波数で運転するように制御し、
     前記運転指令部は、前記電力制限運転において、一または複数の前記空気調和機のうち一の前記空気調和機のみが運転中であり、運転中の前記空気調和機が前記除霜運転を行う場合に、前記上限電力での前記圧縮機の除霜周波数を算出し、前記運転制御部に、算出された前記除霜周波数で前記圧縮機を運転するように制御させる請求項8記載の空気調和システム。
    Each of the one or more air conditioners includes a flow path switching device that switches a flow path of the refrigerant from the compressor, and an outdoor unit heat exchanger that exchanges heat between the refrigerant and the heat exchange fluid.
    The operation control unit controls the flow path switching device to connect the discharge side of the compressor to the outdoor unit heat exchanger during the defrosting operation, and sets the compressor at a preset frequency. Control to drive,
    In the power limited operation, the operation command unit is configured such that only one of the air conditioners is operating, and the operating air conditioner performs the defrosting operation. The air conditioning system according to claim 8, wherein a defrost frequency of the compressor at the upper limit power is calculated, and the operation control unit is controlled to operate the compressor at the calculated defrost frequency. .
  10.  前記運転制御部は、予め設定された設定除霜時間、前記除霜運転を実行して終了するように制御し、
     前記運転指令部は、前記電力制限運転において、一または複数の前記空気調和機のうち一の前記空気調和機のみが運転中であり、運転中の前記空気調和機が前記除霜運転を行う場合に、前記運転制御部に、前記設定除霜時間よりも長い必要除霜時間、前記除霜運転を実行するように制御させる請求項9記載の空気調和システム。
    The operation control unit performs control so as to execute a predetermined defrosting time set in advance and the defrosting operation to be finished,
    In the power limited operation, the operation command unit is configured such that only one of the air conditioners is operating, and the operating air conditioner performs the defrosting operation. The air conditioning system according to claim 9, wherein the operation control unit is controlled to execute the defrost operation for a required defrost time longer than the set defrost time.
  11.  前記運転指令部は、前記設定周波数と前記設定除霜時間との積を、算出された前記除霜周波数で除算することにより前記必要除霜時間を算出する請求項10記載の空気調和システム。 The air conditioning system according to claim 10, wherein the operation command unit calculates the necessary defrost time by dividing the product of the set frequency and the set defrost time by the calculated defrost frequency.
PCT/JP2017/039385 2017-02-24 2017-10-31 Air conditioning system WO2018154853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501038A JP6710313B2 (en) 2017-02-24 2017-10-31 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/007138 WO2018154718A1 (en) 2017-02-24 2017-02-24 Air conditioning system
JPPCT/JP2017/007138 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154853A1 true WO2018154853A1 (en) 2018-08-30

Family

ID=63252504

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/007138 WO2018154718A1 (en) 2017-02-24 2017-02-24 Air conditioning system
PCT/JP2017/039385 WO2018154853A1 (en) 2017-02-24 2017-10-31 Air conditioning system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007138 WO2018154718A1 (en) 2017-02-24 2017-02-24 Air conditioning system

Country Status (2)

Country Link
JP (1) JP6710313B2 (en)
WO (2) WO2018154718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197370A (en) * 2019-05-28 2020-12-10 ダイキン工業株式会社 Air conditioning system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351752B2 (en) * 2020-01-17 2023-09-27 トヨタホーム株式会社 building
JP7465725B2 (en) * 2020-05-27 2024-04-11 積水化学工業株式会社 Air Conditioning System
WO2022038716A1 (en) * 2020-08-19 2022-02-24 三菱電機株式会社 Centralized management system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325539A (en) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd Demand control method for air conditioner
JP2002013778A (en) * 2000-06-29 2002-01-18 Mitsubishi Heavy Ind Ltd Power control method and device of air conditioner, and computer-readable record medium
JP2007024431A (en) * 2005-07-20 2007-02-01 Ntt Facilities Inc Air conditioning system, and operating method during its emergency power feeding
US20080058997A1 (en) * 2005-04-08 2008-03-06 Powersecure, Inc. System and method for interactive generator and building electric load control
JP2008209018A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Control device of large refrigerator and its power failure detecting method
JP2013001239A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Air conditioning system for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325539A (en) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd Demand control method for air conditioner
JP2002013778A (en) * 2000-06-29 2002-01-18 Mitsubishi Heavy Ind Ltd Power control method and device of air conditioner, and computer-readable record medium
US20080058997A1 (en) * 2005-04-08 2008-03-06 Powersecure, Inc. System and method for interactive generator and building electric load control
JP2007024431A (en) * 2005-07-20 2007-02-01 Ntt Facilities Inc Air conditioning system, and operating method during its emergency power feeding
JP2008209018A (en) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd Control device of large refrigerator and its power failure detecting method
JP2013001239A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Air conditioning system for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197370A (en) * 2019-05-28 2020-12-10 ダイキン工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
JPWO2018154853A1 (en) 2019-11-07
WO2018154718A1 (en) 2018-08-30
JP6710313B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2018154853A1 (en) Air conditioning system
US9829224B2 (en) Air-conditioning apparatus
WO2013088482A1 (en) Air conditioning device
CN109716035B (en) System for air conditioning and hot water supply
CN109716033B (en) System for air conditioning and hot water supply
WO2018025382A1 (en) Heat source system
JP2020085318A (en) Heat pump device
JP5900463B2 (en) Air conditioning system
US20230304711A1 (en) Refrigeration cycle system
JP6719651B2 (en) Refrigeration cycle system and communication traffic adjustment method
WO2021224962A1 (en) Air conditioning device
WO2020241507A1 (en) Air-conditioning system
JP7453536B2 (en) Refrigeration cycle equipment
CN109790984B (en) System for air conditioning and hot water supply
JP6716024B2 (en) Air conditioner
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system
JP2021001718A (en) Heat pump type hot water heating system
KR20140091794A (en) Air conditioner and method for controlling the same
WO2021220651A1 (en) Air-conditioning management system and refrigerant-recovery management device
CN109716032B (en) System for air conditioning and hot water supply
JP7233568B2 (en) Air conditioning system and its control method
US20230304709A1 (en) Refrigeration cycle system
JP2008190767A (en) Refrigeration system
JPH10332186A (en) Air conditioner
JPH09178277A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897565

Country of ref document: EP

Kind code of ref document: A1