WO2018154832A1 - Thermally conductive resin composition, cured product thereof, and thermally conductive sheet and method for manufacturing same - Google Patents

Thermally conductive resin composition, cured product thereof, and thermally conductive sheet and method for manufacturing same Download PDF

Info

Publication number
WO2018154832A1
WO2018154832A1 PCT/JP2017/036103 JP2017036103W WO2018154832A1 WO 2018154832 A1 WO2018154832 A1 WO 2018154832A1 JP 2017036103 W JP2017036103 W JP 2017036103W WO 2018154832 A1 WO2018154832 A1 WO 2018154832A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermally conductive
conductive resin
compound
cured product
Prior art date
Application number
PCT/JP2017/036103
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 中谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019501024A priority Critical patent/JP6678809B2/en
Publication of WO2018154832A1 publication Critical patent/WO2018154832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a thermally conductive resin composition, a cured product thereof, a thermally conductive sheet, and a production method thereof.
  • a heat conductive sheet that promotes heat transfer from the heat generating portion to the cooling member can be cited.
  • a heat conductive sheet a sheet made of resin or rubber in which a filler having electrical insulation and heat conductivity is dispersed is known.
  • the heat conductive sheet is required to have electrical insulation, and high adhesion to a contact member (a heat generating component or a cooling member) is required to reduce thermal resistance (contact resistance).
  • thermal resistance contact resistance
  • Patent Documents 1 and 2 disclose a curable resin composition that can form a cured product having excellent flexibility without using silicone rubber and a plasticizer.
  • Patent Document 1 although polybutadiene is used for the resin skeleton, since the olefin bond contained in the polybutadiene is a chemical bond that is easily oxidized, there is a problem that sufficient heat resistance cannot be obtained in the cured product due to oxidation.
  • the hydrogenated olefin bond of polybutadiene also disappears due to the reduction reaction by hydrogenation, but it is impossible to completely reduce the olefin bond, and a part of the remaining olefin bond is oxidized. There was a problem that the heat resistance of the cured product was not sufficient.
  • Patent Document 2 an epoxy resin having a polyether skeleton that does not contain an olefin structure is used. However, when the polyether structure contains a hydrophilic component such as a polyethylene glycol (PEG) skeleton, There was a problem that sufficient moisture resistance and water resistance could not be obtained.
  • PEG polyethylene glycol
  • the present invention is capable of forming a cured product having excellent flexibility without using silicone rubber and a plasticizer, and a new curable resin composition that can be suitably used as a heat conductive sheet material and the cured product thereof
  • An object of the present invention is to provide a thermally conductive sheet formed from the curable resin composition.
  • Another object of the present invention is to provide a curable resin composition containing a resin that does not contain an olefin structure and a polyethylene glycol structure as a resin component, and a cured product thereof, and the cured product. It is providing the heat conductive sheet formed from a conductive resin composition.
  • the present invention provides a heat conductive resin composition
  • a heat conductive resin composition comprising an epoxy compound (A), an amine compound (B), and a heat conductive filler (C).
  • the heat conductive resin composition according to the present invention may be a one-component type, or a two-component type comprising a first agent containing an epoxy compound (A) and a second agent containing an amine compound (B). It may be.
  • the epoxy compound (A) has an epoxy equivalent of 400 to 2000 and a polyether structure other than the polyethylene glycol structure or the following formula [1]:
  • m represents an integer of 1 or more, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group.
  • the amine compound (B) has an amine hydrogen equivalent of 80 to 1000.
  • the present invention further provides a cured product of the above-described thermally conductive resin composition, a thermally conductive sheet containing the cured product, and a method for producing the thermally conductive sheet.
  • the method for producing the heat conductive sheet includes a step of forming the heat conductive resin composition into a sheet shape to obtain a sheet-like formed product, and a step of curing the sheet-like formed product by heating.
  • a cured product having excellent flexibility without using silicone rubber and a plasticizer, and a new curability that can be suitably used as a heat conductive sheet material.
  • a resin composition, a cured product thereof, and a thermally conductive sheet formed from the curable resin composition can be provided.
  • cured material exhibits excellent heat resistance, moisture resistance, and water resistance can be provided.
  • FIG. Thermally conductive resin composition which concerns on this embodiment contains an epoxy compound (A), an amine compound (B), and a thermally conductive filler (C).
  • A epoxy compound
  • B amine compound
  • C thermally conductive filler
  • Epoxy compound (A) The epoxy compound (A) is a compound containing an epoxy group.
  • the epoxy compound (A) can react with the amino group of the amine compound (B) described later to form a cured product having a crosslinked structure.
  • a cured product (and a heat conductive sheet, the same applies hereinafter) obtained by a crosslinking reaction involving an epoxy group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance.
  • a cured product having an epoxy-amine crosslinking site formed by a crosslinking reaction involving an epoxy group and an amino group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance.
  • the number of epoxy groups of the epoxy compound (A) is preferably 2 or more, more preferably 2 to 6, more preferably 2 to 5, per molecule from the viewpoint of forming a flexible cured product.
  • the number of epoxy groups is excessively large, the crosslinking density becomes too high and it tends to be difficult to form a flexible cured product.
  • the number of epoxy groups is less than 2, the crosslinking reaction does not proceed sufficiently and a cured product that is sufficiently cured tends to be not obtained.
  • epoxy compound (A) one having an epoxy equivalent of 400 to 2000 is used.
  • the “epoxy equivalent” means a value obtained by dividing the molecular weight (or number average molecular weight) of the epoxy compound (A) by the number of epoxy groups that the compound has per molecule.
  • the epoxy equivalent can be calculated from the molecular weight calculated from the chemical structure (or the measured value of the number average molecular weight) and the number of epoxy groups calculated from the chemical structure.
  • an epoxy compound (A) containing two or more epoxy groups in one molecule and having an epoxy equivalent weight within the above range a cured product having an appropriate crosslinking density can be formed.
  • (Low) can be obtained.
  • the epoxy equivalent of the epoxy compound (A) is more preferably 400 to 1500, and still more preferably 420 to 1200. If the epoxy equivalent is less than 400, the crosslink density becomes too high, and it becomes difficult to form a flexible cured product. When the epoxy equivalent is greater than 2000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured may not be obtained.
  • the heat conductive sheet is flexible (has low hardness), which suppresses the biting of air when sticking the heat conductive sheet to a member such as a heat generating component or a cooling member, thereby improving adhesion. Increases and contributes to reduction of thermal resistance (contact resistance). Thereby, thermal conductivity can be improved.
  • the molecular weight (or number average molecular weight) of the epoxy compound (A) is usually from 400 to 4000, preferably from 500 to 3500, more preferably from 800 to 3000, from the viewpoint of enhancing the flexibility of the cured product.
  • the molecular weight (or number average molecular weight) of the epoxy compound (A) is less than 400, the crosslinking density tends to be too high, and it tends to be difficult to form a flexible cured product.
  • the molecular weight (or number average molecular weight) of the epoxy compound (A) is greater than 4000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured tends to be difficult to obtain.
  • the number average molecular weight of an epoxy compound (A) can be calculated
  • the epoxy compound (A) having a molecular weight (or number average molecular weight) of 500 or more tends to be liquid. Therefore, when using a liquid epoxy compound (A), the heat conductive resin composition does not necessarily require a solvent for dissolving or diluting the epoxy compound (A). This facilitates the preparation operation of the heat conductive resin composition. Furthermore, when an epoxy compound (A) having a molecular weight (or number average molecular weight) of 500 or more is used, the flexibility and heat resistance of the cured product tend to be improved.
  • the epoxy compound (A) is a polyether structure other than the polyethylene glycol structure or the following formula [1]:
  • m represents an integer of 1 or more
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group.
  • the polyethylene glycol structure means a structure having two or more structural units represented by —OCH 2 CH 2 — in one molecule, and is typically a structure formed by repeating two or more of the above structures.
  • (Meth) acryl means at least one selected from methacryl and acryl.
  • the epoxy compound (A) having a polyether structure other than the polyethylene glycol structure contributes to improvement in flexibility and electrical insulation of the obtained cured product. Moreover, the moisture resistance and water resistance of hardened
  • the epoxy compound (A) preferably does not contain an olefin structure, and does not contain an olefin structure.
  • a chain compound is more preferable.
  • the olefin structure refers to a structure represented by —C ⁇ C—.
  • a chain compound is a compound having a molecular structure that is linear or branched, and does not contain any cyclic structure other than an epoxy ring. Examples of the cyclic structure include an alicyclic ring and an aromatic ring.
  • an epoxy compound (A) that does not contain an olefin structure By using an epoxy compound (A) that does not contain an olefin structure, the heat resistance of the cured product can be improved.
  • an epoxy resin having a polybutadiene or hydrogenated polybutadiene skeleton is used.
  • the olefin structure contained in the polybutadiene is easily oxidized, and the resulting cured product is also easily oxidized and deteriorated and has heat resistance. Can be inadequate.
  • the olefin structure is less than that before hydrogenation, but it is difficult to completely eliminate the olefin structure. Accordingly, even when an epoxy resin having a hydrogenated polybutadiene skeleton is used, the heat resistance of the cured product may be insufficient.
  • the heat resistance of the obtained cured product can be improved and the flexibility of the cured product can be further increased.
  • a suitable example of the polyether structure of the epoxy compound (A) is the following formula [2]:
  • R 3 represents a chain alkylene group.
  • the epoxy compound (A) can include two or more structural units represented by the formula [2] with different R 3 .
  • the polyether structure is preferably a structure formed by repeating two or more structural units represented by the formula [2], that is, the following formula [2-1]:
  • Epoxy compound (A) may contain a structural unit wherein R 3 represented by two or more different formula [2-1].
  • N in the formula [2-1] is an integer of 2 or more, and is a value corresponding to the molecular weight of the epoxy compound (A).
  • the integer n is usually about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 35.
  • the chain alkylene group represented by R 3 may be linear or branched.
  • the number of carbon atoms of the chain alkylene group is usually 3 to 12, preferably 3 to 8, and more preferably 3 to 6.
  • Specific examples of the chain alkylene group include propane-1,2-diyl group, propane-1,3-diyl group (trimethylene group), 2-methylpropane-1,3-diyl group, butane-1,4- Diyl group (tetramethylene group), 2-methylbutane-1,4-diyl group, 3-methylbutane-1,4-diyl group, pentane-1,5-diyl group (pentamethylene group), 2,2-dimethylpropane -1,3-diyl group, hexane-1,6-diyl group (hexamethylene group), octane-1,8-diyl group (octamethylene group) and the like.
  • the polyether structure that the epoxy compound (A) may have is one or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5]. Is preferably a structure containing 2 or more in total, and two or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5] It is more preferable that the structure which repeats more than is included.
  • Use of the epoxy compound (A) having a (meth) acrylic structure represented by the above formula [1] also contributes to improvement in flexibility and electrical insulation of the obtained cured product. Moreover, by using the epoxy compound (A) having the (meth) acrylic structure, the moisture resistance, water resistance, weather resistance, and chemical resistance of the cured product can be improved. Since the (meth) acrylic structure does not contain an olefin structure, the use of the epoxy compound (A) having the (meth) acrylic structure improves the heat resistance of the resulting cured product and improves the heat resistance of the cured product. Flexibility can be increased.
  • the epoxy compound (A) having the (meth) acrylic structure is preferably a chain compound having no cyclic structure.
  • M in the above formula [1] is a value corresponding to the molecular weight of the epoxy compound (A), and is usually 2 or more.
  • m is, for example, about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 40.
  • examples of the alkyl group represented by R 2 include alkyl groups having 1 to 12 carbon atoms.
  • the number of carbon atoms of the alkyl group is preferably 1 to 6.
  • the alkyl group preferably has a linear structure such as a linear or branched chain, and more preferably does not include a cyclic structure such as an alicyclic ring.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group and the like. It is done.
  • Amine compound (B) The amine compound (B) is a compound containing amine hydrogen.
  • “Amine hydrogen” means a hydrogen atom constituting a primary or secondary amino group (a hydrogen atom bonded to a nitrogen atom of a primary or secondary amino group).
  • the primary and / or secondary amino group of the amine compound (B) can react with the epoxy group of the epoxy compound (A) to form a crosslinked structure.
  • a cured product (and a heat conductive sheet, the same applies hereinafter) obtained by a crosslinking reaction involving an amino group can have good electrical insulation, heat resistance, moisture resistance and water resistance.
  • a cured product having an epoxy-amine crosslinking site formed by a crosslinking reaction involving an epoxy group and an amino group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance.
  • the number of amine hydrogens in the amine compound (B) is preferably 4 or more, more preferably 4 to 10, even more preferably 4 to 8, per molecule. Particularly preferred is 4 to 6. If the amine hydrogen number is excessively large, the crosslinking density tends to be too high and it becomes difficult to form a flexible cured product. If the number of amine hydrogens is less than 4, the crosslinking reaction does not proceed sufficiently and a cured product that is sufficiently cured tends not to be obtained.
  • amine compound (B) those having an amine hydrogen equivalent of 80 to 1000 are used.
  • the “amine hydrogen equivalent” means a value obtained by dividing the molecular weight (or number average molecular weight) of the amine compound (B) by the number of amine hydrogens that the compound has per molecule.
  • the epoxy equivalent can be calculated from the molecular weight calculated from the chemical structure (or the measured value of the number average molecular weight) and the amine hydrogen number calculated from the chemical structure.
  • a cured product having an appropriate crosslinking density By using an epoxy compound (A) containing 4 or more amine hydrogens in one molecule and having an amine hydrogen equivalent weight within the above range, a cured product having an appropriate crosslinking density can be formed. A cured product having a low hardness can be obtained.
  • the amine hydrogen equivalent of the amine compound (B) is preferably 80 to 960. When the amine hydrogen equivalent is less than 80, the crosslinking density becomes too high, and it becomes difficult to form a flexible cured product. If the amine hydrogen equivalent is greater than 1000, the crosslinking reaction does not proceed sufficiently, and a sufficiently cured product may not be obtained.
  • the molecular weight (or number average molecular weight) of the amine compound (B) is usually 300 to 8000, preferably 400 to 7000, more preferably 500 to 6000, from the viewpoint of increasing the flexibility of the cured product.
  • the molecular weight (or number average molecular weight) of the amine compound (B) is less than 300, the crosslinking density tends to be too high, and it tends to be difficult to form a flexible cured product. If the molecular weight (or number average molecular weight) of the amine compound (B) is greater than 8000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured tends to be difficult to obtain.
  • the number average molecular weight of an amine compound (B) can be calculated
  • the amine compound (B) having a molecular weight (or number average molecular weight) of 500 or more tends to be liquid. Therefore, when the liquid amine compound (B) is used, a solvent for dissolving or diluting the amine compound (B) is not necessarily required in the heat conductive resin composition. This facilitates the preparation operation of the heat conductive resin composition. Furthermore, when the amine compound (B) having a molecular weight (or number average molecular weight) of 500 or more is used, the flexibility and heat resistance of the cured product tend to be improved.
  • the amine compound (B) preferably has a polyether structure other than the polyethylene glycol structure from the viewpoint of increasing the flexibility of the cured product and from the viewpoint of increasing the heat resistance, electrical insulation, moisture resistance and water resistance of the cured product.
  • the amine compound (B) preferably contains no olefin structure, and more preferably is a chain compound containing no olefin structure.
  • the heat resistance of the cured product can be improved.
  • the amine compound (B) which is a chain compound not containing an olefin structure the heat resistance of the obtained cured product can be improved and the flexibility of the cured product can be further increased.
  • a suitable example of the polyether structure possessed by the amine compound (B) is the following formula [3]:
  • R 4 represents a chain alkylene group.
  • the amine compound (B) can include two or more structural units represented by the formula [3] in which R 4 is different.
  • the polyether structure is preferably a structure formed by repeating two or more structural units represented by the formula [3], that is, the following formula [3-1]:
  • R 4 in formula [3-1] has the same meaning as in formula [3].
  • the amine compound (B) can contain two or more structural units represented by the formula [3-1] having different R 4 .
  • P in the formula [3-1] is an integer of 2 or more, and is a value corresponding to the molecular weight of the amine compound (B).
  • the integer p is usually about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 35.
  • Specific examples of the chain alkylene group represented by R 4 are the same as the chain alkylene group represented by R 3 .
  • the structural unit represented by the formula [3] include a structural unit represented by the above formula [4] and a structural unit represented by the above formula [5]. That is, the polyether structure that the amine compound (B) may have is one or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5]. Is preferably a structure containing 2 or more in total, and two or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5] It is more preferable that the structure which repeats more than is included.
  • the amine compound (B) preferably has at least a primary amino group, and more preferably has 2 or 3 primary amino groups in one molecule.
  • the amine compound (B) may have a secondary amino group together with the primary amino group.
  • the content of epoxy compound (A) and amine compound (B) in the thermally conductive resin composition is the amount of amine hydrogen contained in amine compound (B).
  • the ratio (number of amine hydrogens / number of epoxy groups) between the number and the number of epoxy groups of the epoxy compound (A) is preferably adjusted to be 0.2 to 5.
  • the amine hydrogen number / epoxy group number is within the above range, it is possible to form a cured product having excellent flexibility even when a large amount of the heat conductive filler (C) is contained. If the amine hydrogen number / epoxy group number is outside the above range, it becomes difficult to form a cured product having excellent flexibility.
  • amine hydrogen number / epoxy group number it is also effective to set the value of amine hydrogen number / epoxy group number to a value shifted from 1.
  • setting the number of amine hydrogens / number of epoxy groups to 0.2 to 0.5 or 2 to 5 is preferable for forming a cured product having excellent flexibility.
  • the amine hydrogen number / epoxy group number is more preferably 0.2 to 0.4 or 2.5 to 5, and further preferably 0.2 to 0.25 or 3 to 5.
  • Thermally conductive filler (C) A heat conductive resin composition contains a heat conductive filler (C). Thereby, heat conductivity (heat dissipation performance) can be provided to the hardened
  • the heat conductive filler (C) is preferably electrically insulating and preferably has high heat conductivity.
  • the content of the thermally conductive filler (C) in the thermally conductive resin composition is preferably 100 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the total amount of the epoxy compound (A) and the amine compound (B). Yes, more preferably from 230 to 650 parts by mass, and even more preferably from 230 to 450 parts by mass.
  • content of a heat conductive filler (C) is smaller than 50 mass parts, the hardened
  • the content of the thermally conductive filler (C) is larger than 1000 parts by mass, the flexibility of the cured product is impaired even when the thermally conductive filler (C) is not sufficiently uniformly dispersed or evenly dispersed. It is.
  • the thermal conductive filler (C) is selected from the group consisting of metal hydroxide filler, metal oxide filler, metal nitride filler, metal carbonate filler and silicon compound filler. 1 type, or 2 or more types of fillers are preferably included, and one or more types of fillers selected from the group consisting of metal hydroxide fillers, metal oxide fillers, metal nitride fillers, and silicon compound fillers. More preferably.
  • Examples of the metal hydroxide constituting the metal hydroxide filler include aluminum hydroxide and magnesium hydroxide.
  • Examples of the metal oxide constituting the metal oxide filler include alumina, hydrated alumina, magnesium oxide, zinc oxide, beryllium oxide, and titanium oxide.
  • Examples of the metal nitride constituting the metal nitride filler include boron nitride and aluminum nitride.
  • Examples of the metal carbonate constituting the metal carbonate filler include magnesium carbonate.
  • Examples of the silicon compound constituting the silicon compound filler include silicon carbide, silicon nitride, silicon oxide, and silica.
  • the heat conductive filler (C) may contain a surface-treated filler.
  • a surface-treated filler As a result, the dispersibility of the thermally conductive filler (C) in the cured product can be enhanced, so that mechanical properties such as tensile strength and tear strength and electrical properties such as thermal conductivity in the cured product and the thermally conductive sheet can be obtained. Physical properties can be improved.
  • the surface-treated filler when used, the filler can be highly filled, thereby increasing the thermal conductivity of the cured product and the heat conductive sheet.
  • the surface treatment include a silane coupling agent; a surfactant; a treatment (modification treatment) with an organic acid such as oleic acid or stearic acid.
  • the thermally conductive resin composition may contain one or more components other than the epoxy compound (A), the amine compound (B) and the thermally conductive filler (C).
  • Other components include plasticizers, flame retardants, flame retardant aids, colorants, antioxidants, UV absorbers, heat stabilizers, crystallization accelerators, dispersants, surface conditioners, antifoaming agents, and adhesion imparting. Agents, solvents (for example, organic solvents), and the like.
  • thermally conductive resin composition comprises an epoxy compound (A), an amine compound (B), a thermally conductive filler (C), and other components used as necessary.
  • a mixing method is not particularly limited, and a kneader such as a roll, a kneader, a Banbury mixer, or a planetary mixer, a vacuum defoaming stirrer, or the like can be used.
  • a kneader such as a roll, a kneader, a Banbury mixer, or a planetary mixer, a vacuum defoaming stirrer, or the like can be used.
  • a mixing device capable of suppressing the mixing of bubbles, for example, a vacuum defoaming stirrer or a planetary mixer is preferably used. Among them, it is more preferable to use a rotation and revolution type vacuum defoaming mixer or to use a planetary mixer under vacuum conditions.
  • the epoxy compound (A) contains two or more epoxy groups in one molecule, has an epoxy equivalent of 400 to 2000, and has a structure other than a polyethylene glycol structure.
  • the amine compound (B) has a (meth) acrylic structure represented by the formula: 4 amine hydrogens per molecule, the amine hydrogen equivalent is 80 to 1000, and the amine compound (B)
  • the ratio of the number of amine hydrogens in the epoxy compound to the number of epoxy groups in the epoxy compound (A) is 0.2 to 5, and the epoxy compound (A) and the amine compound 100 parts by mass to 1000 parts by mass of the thermally conductive filler (C) is included with respect to 100 parts by mass of the total amount of (B).
  • the epoxy compound (A) and the amine compound (B) in the heat conductive resin composition are chain compounds that do not contain an olefin structure.
  • Embodiment 2 FIG. Cured Product
  • the cured product according to the present embodiment is obtained by curing the thermally conductive resin composition according to the first embodiment.
  • the cured product according to this embodiment can be obtained by curing the thermally conductive resin composition by heating or irradiation with active energy rays.
  • the cured product obtained by curing the thermally conductive resin composition according to Embodiment 1 can have a hardness value of 95 or less, further 80 or less, and even 65 or less.
  • the hardness value referred to here is Asker C hardness measured according to JIS K 7312 using an Asker C hardness meter. Whether to measure the hardness of the cured molded product according to the standard of Asker C, Type D durometer, or Type A durometer is appropriately selected in consideration of the use and properties of the object to be measured. If the hardness of the molded product is measured according to Asker C standard and the hardness Asker C95 or less, it follows the unevenness, improves adhesion, and improves heat dissipation.
  • a material whose Asker C hardness of the cured product is Asker C95 or less is a soft material, which improves followability to uneven surfaces and improves heat dissipation.
  • the Asker C hardness of the cured product is preferably 2 or more, more preferably 5 or more, from the viewpoint of handleability of the cured product.
  • the cured product according to the present embodiment can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance since the cross-linked site is an epoxy-amine cross-linked site.
  • the shape of the cured product according to the present embodiment is not particularly limited, and may be a sheet shape (also a film shape) like a heat conductive sheet described later, or may be a shape other than that, or It may be indefinite.
  • FIG. Thermally Conductive Sheet The thermally conductive sheet according to the present embodiment includes a cured product of the thermally conductive resin composition according to Embodiment 1, and typically includes the cured product. As will be described later, the thermally conductive sheet can be obtained by curing a thermally conductive resin composition formed in a sheet shape by heating or irradiation with active energy rays.
  • Asker C hardness is a low thermal conductivity sheet (excellent flexibility), it is possible to suppress the biting of air when sticking to a member (a heat generating component or a cooling member) and to improve the adhesion. Thereby, since the contact resistance in the interface of the said member and a heat conductive sheet is reduced, the total heat resistance as the whole product is reduced, and it becomes possible to implement
  • the heat conductive sheet according to the present embodiment since the high flexibility can be shown, it is possible to follow the unevenness, and it is possible to adhere the heat conductive sheet to the member without interposing air that causes a decrease in heat dissipation. Become.
  • the thermally conductive sheet according to the present embodiment can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance since the crosslinking site is an epoxy-amine crosslinking site.
  • the thermal conductivity sheet according to the present embodiment preferably has a thermal conductivity of 1.0 W / (m ⁇ K) or more, more preferably 1.2 W / (m ⁇ K) or more. More preferably, it is 3 W / (m ⁇ K) or more, and particularly preferably 1.5 W / (m ⁇ K) or more.
  • it also improves the overall heat-resistance performance of the heat-conductive sheet itself. Better heat dissipation can be realized.
  • the thermal conductive sheet according to the present embodiment uses the flexibility to lower the total thermal resistance and It is possible to ensure the necessary heat dissipation, but in order to obtain better heat dissipation of the product, the thermal conductivity of the thermal conductive sheet should be 1.0 W / (m ⁇ K) or more. Is preferred.
  • the thermal conductive sheet according to the present embodiment can exhibit sufficient flexibility even if a relatively large amount of the thermal conductive filler (C) is contained in order to increase the thermal conductivity.
  • the thickness of the heat conductive sheet is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.3 to 3 mm.
  • the handleability of a heat conductive sheet may fall that the thickness of a heat conductive sheet is less than 0.1 mm.
  • the thickness of the heat conductive sheet exceeds 5 mm, the heat resistance may be increased and the heat dissipation may be reduced.
  • Embodiment 4 FIG. Manufacturing method of heat conductive sheet
  • the manufacturing method of the heat conductive sheet which concerns on this embodiment can be used suitably as a method for manufacturing the heat conductive sheet which concerns on Embodiment 3, and includes the following process.
  • a step of adjusting the shape and size of the heat conductive sheet, such as punching the sheet, may be provided as necessary.
  • the method for molding the heat conductive resin composition into a sheet shape is not particularly limited, and can be performed using a press machine, a roll, a bar coater or the like. Among these, roll forming is preferable from the viewpoint of production efficiency.
  • Examples of the method of curing the sheet-shaped molded product by heating include a method of heating the sheet-shaped molded product and a method of irradiating the sheet-shaped molded product with active energy rays such as ultraviolet rays. Of these, the heating method is preferably used.
  • the heating temperature for curing by heating is, for example, 80 to 150 ° C, preferably 120 to 140 ° C.
  • the heating time is, for example, 0.5 to 72 hours, preferably 2 to 48 hours.
  • a step of curing the heat conductive sheet may be provided as necessary.
  • the curing temperature is, for example, 60 to 120 ° C.
  • the curing time is, for example, 0.5 to 72 hours.
  • the curing step and the curing step may be performed in any atmosphere such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or a vacuum.
  • A-1 Polytetramethylene glycol diglycidyl ether (“Epogosei PT (polymer grade)” manufactured by Yokkaichi Gosei Co., Ltd., number average molecular weight Mn: 2144).
  • A-1 has the following chemical structure:
  • A-2 Polytetramethylene glycol diglycidyl ether (“Epogosei PT (general grade)” manufactured by Yokkaichi Gosei Co., Ltd., number average molecular weight Mn: 870).
  • the chemical structure of A-2 is the same as A-1 except that the value of the integer x is different.
  • A-3 An epoxy group-containing (meth) acrylic polymer having a (meth) acrylic structure represented by the above formula [1] as a main chain skeleton (“ARUFON UG-4010 manufactured by Toagosei Co., Ltd.) “Number average molecular weight Mn: 2900).
  • A-4 Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, number average molecular weight Mn: 370).
  • B-1 Polyetheramine (“JEFFAMINE T5000” manufactured by Huntsman, number average molecular weight Mn: 5712). B-1 has the following chemical structure. a + b + c is about 85.
  • B-2 Polyetheramine (“JEFFAMINE T403” manufactured by Huntsman, number average molecular weight Mn: 486). B-2 has the following chemical structure. a + b + c is 5 to 6.
  • B-3 Polyetheramine (“ELASTAMINE RT1000” manufactured by Huntsman, number average molecular weight Mn: 1040). B-3 is a poly (tetramethylene ether glycol) / polypropylene glycol copolymer having two primary amino groups in one molecule.
  • B-4 Diethylenetriamine (DTA) manufactured by Tokyo Chemical Industry Co., Ltd., number average molecular weight Mn: 103.
  • C-1 Aluminum hydroxide filler (“SBX73” manufactured by Nippon Light Metal Co., Ltd.).
  • C-2 Aluminum nitride filler (“HF-01” manufactured by Tokuyama Corporation).
  • C-3 Alumina filler (“AA-18” manufactured by Sumitomo Chemical Co., Ltd.).
  • thermoly conductive resin composition was poured into a 100 mL fluororesin beaker so that the thickness after curing was 10 mm, and the conditions shown in Tables 1 to 3 And cured by heating to obtain a cured product for hardness measurement.
  • the obtained heat conductive resin composition was apply
  • thermo conductivity The thermal conductive sheet for measuring thermal conductivity was cut into a disk-shaped sheet having a diameter of 10 mm and used as a measurement sample. About the obtained measurement sample, heat conductivity [W / (m * K)] was measured by the laser flash method (unsteady method). The results are shown in Tables 1 to 3.
  • Example 1 to 34 it was possible to achieve low hardness of the cured product while maintaining good electrical insulation.
  • Example 1 to Example 27 when Example 1 to Example 27 is compared with Comparative Example 1 to Comparative Example 8, they have the same content of the heat conductive filler (C), but in Comparative Examples 1 to 8, the amine compound is used. Since the amine hydrogen equivalent of (B) is not within the predetermined range, the ASKER C hardness did not become 95 or less. Even in Comparative Example 9, although the content of the heat conductive filler (C) is smaller than those of Comparative Example 1 to Comparative Example 8, the amine hydrogen equivalent of the amine compound (B) is not within the predetermined range. C hardness did not become 95 or less.
  • Example 1 to Example 27 and Comparative Example 10 have the same heat conductive filler (C) content, but in Comparative Example 10, the epoxy equivalent of the epoxy compound (A) is predetermined. As a result, the ASKER C hardness did not become 95 or less.
  • the cured products obtained in Examples 1 to 34 were obtained from a curable resin composition containing a resin that does not contain an olefin structure and a polyethylene glycol structure as a resin component. It is understood that it has excellent properties and water resistance.
  • Example 1 When the AH / EP ratio is greatly shifted from 1, for example, 2.5 to 5 (or 3 to 5), or 0.2 to 0.5 (or 0.2 to 0.25), the hardness is further reduced.
  • a cured product tends to be easily obtained (for example, Example 1, Example 4, Example 5, Example 8, Example 9, Example 10, Example 13, Example 14, Example 16, Example 16, Example) (17, Example 18, Example 21, Example 22, Example 23, Example 24, Example 27, Example 28, Example 30, Example 31, Example 32, Example 33, Example 34) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide: a new curable resin composition which can form a cured product having excellent flexibility without using silicone rubber or a plasticizer and which can be suitably used as a material for a thermally conductive sheet; a cured product of the curable resin composition; and a thermally conductive sheet formed from the curable resin composition. The present invention provides: a thermally conductive resin composition which comprises (A) an epoxy compound having a polyether structure other than a polyethylene glycol structure or a (meth)acrylic structure represented by formula [1], (B) an amine compound, and (C) a thermally conductive filler; a cured product of the thermally conductive resin composition; and a thermally conductive sheet formed from the resin composition.

Description

熱伝導性樹脂組成物、その硬化物、ならびに熱伝導性シートおよびその製造方法Thermally conductive resin composition, cured product thereof, and thermally conductive sheet and method for producing the same
 本発明は、熱伝導性樹脂組成物、その硬化物、ならびに熱伝導性シートおよびその製造方法に関する。 The present invention relates to a thermally conductive resin composition, a cured product thereof, a thermally conductive sheet, and a production method thereof.
 電子および電気製品やそれに含まれる部品は、使用時に発生する熱によって特性が劣化したり、破損が生じたりするおそれがある。このような問題を抑制するために、発熱する部分とヒートシンカー等の冷却部材との間に放熱部材を介在させて、発熱する部分の放熱を促進させることが知られている(例えば特許文献1および2参照)。 ∙ Electronic and electrical products and components included in them may be deteriorated in characteristics or damaged by heat generated during use. In order to suppress such a problem, it is known that a heat radiating member is interposed between a portion that generates heat and a cooling member such as a heat sinker to promote heat dissipation of the portion that generates heat (for example, Patent Document 1). And 2).
特許第4296588号明細書Japanese Patent No. 4296588 特開2010-116515号公報JP 2010-116515 A
 上記放熱部材としては、発熱する部分から冷却部材への熱移動を促進させる熱伝導性シートが挙げられる。熱伝導性シートとしては、樹脂やゴムで構成されるシートに電気絶縁性および熱伝導性を有するフィラーを分散させたものが知られている。熱伝導性シートには電気絶縁性が求められるとともに、熱抵抗(接触抵抗)を低減させるために接触部材(発熱部品や冷却部材)に対する高い密着性が求められる。密着性を高めるためには、熱伝導性シートに柔軟性を持たせること、すなわち、熱伝導性シートの硬度を小さくすることが有効である。 As the heat radiating member, a heat conductive sheet that promotes heat transfer from the heat generating portion to the cooling member can be cited. As a heat conductive sheet, a sheet made of resin or rubber in which a filler having electrical insulation and heat conductivity is dispersed is known. The heat conductive sheet is required to have electrical insulation, and high adhesion to a contact member (a heat generating component or a cooling member) is required to reduce thermal resistance (contact resistance). In order to improve the adhesion, it is effective to give the heat conductive sheet flexibility, that is, to reduce the hardness of the heat conductive sheet.
 熱伝導性シートの硬度を小さくするための手段として、上記ゴムとしてシリコーンゴムを用いたり、熱伝導性シートに多量の可塑剤を含有させることが知られている。しかし、シリコーンゴムを使用する場合には、低分子シロキサンガスの発生により電気接点障害を起こすという問題があった。可塑剤を使用する場合には、ブリードアウト(熱伝導性シートからの可塑剤の滲み出し)が生じるという問題があった。 As means for reducing the hardness of the heat conductive sheet, it is known to use silicone rubber as the rubber or to contain a large amount of plasticizer in the heat conductive sheet. However, when silicone rubber is used, there is a problem that electric contact failure occurs due to generation of low molecular siloxane gas. When a plasticizer is used, there is a problem that bleed out (exudation of the plasticizer from the heat conductive sheet) occurs.
 特許文献1および特許文献2には、シリコーンゴムおよび可塑剤を用いることなく、柔軟性に優れた硬化物を形成し得る硬化性樹脂組成物が開示されている。 Patent Documents 1 and 2 disclose a curable resin composition that can form a cured product having excellent flexibility without using silicone rubber and a plasticizer.
 特許文献1では、樹脂骨格にポリブタジエンを使用しているが、ポリブタジエンに含まれるオレフィン結合は酸化しやすい化学結合であるため、酸化により硬化物において十分な耐熱性が得られない問題があった。ポリブタジエンのオレフィン結合を水素添加したものについても、水素添加によってオレフィン結合は還元反応により消失するが、完全にオレフィン結合を還元することは不可能であり、一部残存するオレフィン結合が酸化することにより硬化物の耐熱性が十分ではない問題があった。また、特許文献2では、オレフィン構造を含まないポリエーテル骨格を有するエポキシ樹脂が使用されているが、ポリエーテル構造中にポリエチレングリコール(PEG)骨格等の親水性成分を含む場合は、硬化物において十分な耐湿性および耐水性が得られない問題があった。 In Patent Document 1, although polybutadiene is used for the resin skeleton, since the olefin bond contained in the polybutadiene is a chemical bond that is easily oxidized, there is a problem that sufficient heat resistance cannot be obtained in the cured product due to oxidation. The hydrogenated olefin bond of polybutadiene also disappears due to the reduction reaction by hydrogenation, but it is impossible to completely reduce the olefin bond, and a part of the remaining olefin bond is oxidized. There was a problem that the heat resistance of the cured product was not sufficient. In Patent Document 2, an epoxy resin having a polyether skeleton that does not contain an olefin structure is used. However, when the polyether structure contains a hydrophilic component such as a polyethylene glycol (PEG) skeleton, There was a problem that sufficient moisture resistance and water resistance could not be obtained.
 本発明は、シリコーンゴムおよび可塑剤を用いなくとも柔軟性に優れた硬化物を形成することが可能であり、熱伝導性シート材料として好適に用い得る新たな硬化性樹脂組成物およびその硬化物、該硬化性樹脂組成物から形成される熱伝導性シートの提供を目的とする。また、本発明の別の目的は、耐熱性、ならびに耐湿性および耐水性に優れることからオレフィン構造とポリエチレングリコール構造を含まない樹脂を樹脂成分として含む硬化性樹脂組成物およびその硬化物、該硬化性樹脂組成物から形成される熱伝導性シートを提供することである。 The present invention is capable of forming a cured product having excellent flexibility without using silicone rubber and a plasticizer, and a new curable resin composition that can be suitably used as a heat conductive sheet material and the cured product thereof An object of the present invention is to provide a thermally conductive sheet formed from the curable resin composition. Another object of the present invention is to provide a curable resin composition containing a resin that does not contain an olefin structure and a polyethylene glycol structure as a resin component, and a cured product thereof, and the cured product. It is providing the heat conductive sheet formed from a conductive resin composition.
 本発明は、第一の要旨において、エポキシ化合物(A)と、アミン化合物(B)と、熱伝導性フィラー(C)とを含む熱伝導性樹脂組成物を提供する。本発明に係る熱伝導性樹脂組成物は、1液型であってもよいし、エポキシ化合物(A)を含む第1剤と、アミン化合物(B)を含む第2剤とからなる2液型であってもよい。 In the first aspect, the present invention provides a heat conductive resin composition comprising an epoxy compound (A), an amine compound (B), and a heat conductive filler (C). The heat conductive resin composition according to the present invention may be a one-component type, or a two-component type comprising a first agent containing an epoxy compound (A) and a second agent containing an amine compound (B). It may be.
 エポキシ化合物(A)は、エポキシ当量が400から2000であり、かつ、ポリエチレングリコール構造以外のポリエーテル構造または下記式[1]: The epoxy compound (A) has an epoxy equivalent of 400 to 2000 and a polyether structure other than the polyethylene glycol structure or the following formula [1]:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式[1]中、mは1以上の整数を表し、Rは水素原子またはメチル基を表し、Rはアルキル基を表す。)
で表される(メタ)アクリル系構造を有する。アミン化合物(B)は、アミン水素当量が80から1000である。
(In formula [1], m represents an integer of 1 or more, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group.)
(Meth) acrylic structure represented by. The amine compound (B) has an amine hydrogen equivalent of 80 to 1000.
 本発明は、第二の要旨において、上記熱伝導性樹脂組成物の硬化物、該硬化物を含む熱伝導性シート、および熱伝導性シートの製造方法をさらに提供する。 In the second aspect, the present invention further provides a cured product of the above-described thermally conductive resin composition, a thermally conductive sheet containing the cured product, and a method for producing the thermally conductive sheet.
 上記熱伝導性シートの製造方法は、上記熱伝導性樹脂組成物をシート状に成形してシート状成形物を得る工程と、該シート状成形物を加熱により硬化させる工程と、を含む。 The method for producing the heat conductive sheet includes a step of forming the heat conductive resin composition into a sheet shape to obtain a sheet-like formed product, and a step of curing the sheet-like formed product by heating.
 本発明の一つの実施形態によれば、シリコーンゴムおよび可塑剤を用いなくとも柔軟性に優れた硬化物を形成することが可能であり、熱伝導性シート材料として好適に用い得る新たな硬化性樹脂組成物およびその硬化物、該硬化性樹脂組成物から形成される熱伝導性シートを提供することができる。また、本発明の別の実施形態によれば、硬化物が優れた耐熱性、ならびに耐湿性および耐水性を発揮する硬化性樹脂組成物を提供することができる。 According to one embodiment of the present invention, it is possible to form a cured product having excellent flexibility without using silicone rubber and a plasticizer, and a new curability that can be suitably used as a heat conductive sheet material. A resin composition, a cured product thereof, and a thermally conductive sheet formed from the curable resin composition can be provided. Moreover, according to another embodiment of this invention, the curable resin composition which hardened | cured material exhibits excellent heat resistance, moisture resistance, and water resistance can be provided.
 実施形態1.熱伝導性樹脂組成物
 本実施形態に係る熱伝導性樹脂組成物は、エポキシ化合物(A)と、アミン化合物(B)と、熱伝導性フィラー(C)と、を含む。以下、各成分について詳細に説明する。なお、本明細書において各成分として例示する化合物は、特に断りのない限り、単独で、または複数種を組み合わせて使用することができる。
Embodiment 1. FIG. Thermally conductive resin composition The thermally conductive resin composition which concerns on this embodiment contains an epoxy compound (A), an amine compound (B), and a thermally conductive filler (C). Hereinafter, each component will be described in detail. In addition, unless otherwise indicated, the compound illustrated as each component in this specification can be used individually or in combination of multiple types.
 〔1〕エポキシ化合物(A)
 エポキシ化合物(A)は、エポキシ基を含む化合物である。エポキシ化合物(A)は、それが有するエポキシ基が後述するアミン化合物(B)のアミノ基と反応して、架橋構造を有する硬化物を形成することができる。
[1] Epoxy compound (A)
The epoxy compound (A) is a compound containing an epoxy group. The epoxy compound (A) can react with the amino group of the amine compound (B) described later to form a cured product having a crosslinked structure.
 エポキシ基が関与する架橋反応によって得られる硬化物(および熱伝導性シート。以下同様。)は、電気絶縁性、耐熱性、耐湿性および耐水性に良好なものとなり得る。とりわけ、エポキシ基とアミノ基とが関与する架橋反応によって形成されるエポキシ-アミン架橋部位を有する硬化物は、電気絶縁性、耐熱性、耐湿性および耐水性に優れたものとなり得る。 A cured product (and a heat conductive sheet, the same applies hereinafter) obtained by a crosslinking reaction involving an epoxy group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance. In particular, a cured product having an epoxy-amine crosslinking site formed by a crosslinking reaction involving an epoxy group and an amino group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance.
 エポキシ化合物(A)のエポキシ基数は、柔軟な硬化物を形成する観点から、1分子あたり、好ましくは2以上、より好ましくは2から6であり、さらに好ましくは2から5である。エポキシ基数が過度に大きいと、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難になる傾向がある。エポキシ基数が2未満であると、架橋反応が十分に進行せず、十分に硬化した硬化物が得られない傾向にある。 The number of epoxy groups of the epoxy compound (A) is preferably 2 or more, more preferably 2 to 6, more preferably 2 to 5, per molecule from the viewpoint of forming a flexible cured product. When the number of epoxy groups is excessively large, the crosslinking density becomes too high and it tends to be difficult to form a flexible cured product. When the number of epoxy groups is less than 2, the crosslinking reaction does not proceed sufficiently and a cured product that is sufficiently cured tends to be not obtained.
 エポキシ化合物(A)としては、エポキシ当量が400から2000のものが用いられる。「エポキシ当量」とは、エポキシ化合物(A)の分子量(または数平均分子量)をその化合物が1分子あたりに有するエポキシ基の数で除した値を意味する。エポキシ当量は、化学構造から算出される分子量(または数平均分子量の測定値)と、化学構造から算出されるエポキシ基数とから算出することができる。 As the epoxy compound (A), one having an epoxy equivalent of 400 to 2000 is used. The “epoxy equivalent” means a value obtained by dividing the molecular weight (or number average molecular weight) of the epoxy compound (A) by the number of epoxy groups that the compound has per molecule. The epoxy equivalent can be calculated from the molecular weight calculated from the chemical structure (or the measured value of the number average molecular weight) and the number of epoxy groups calculated from the chemical structure.
 1分子中にエポキシ基を2個以上含み、上記範囲内のエポキシ当量を有するエポキシ化合物(A)を用いることにより、適度な架橋密度を有する硬化物を形成することができるため、柔軟な(硬度の低い)硬化物を得ることが可能になる。エポキシ化合物(A)のエポキシ当量は、より好ましくは400から1500であり、さらに好ましくは420から1200である。エポキシ当量が400未満であると、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難となる。エポキシ当量が2000より大きいと、架橋反応が十分に進行せず、十分に硬化した硬化物が得られないことがある。 By using an epoxy compound (A) containing two or more epoxy groups in one molecule and having an epoxy equivalent weight within the above range, a cured product having an appropriate crosslinking density can be formed. (Low) can be obtained. The epoxy equivalent of the epoxy compound (A) is more preferably 400 to 1500, and still more preferably 420 to 1200. If the epoxy equivalent is less than 400, the crosslink density becomes too high, and it becomes difficult to form a flexible cured product. When the epoxy equivalent is greater than 2000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured may not be obtained.
 上述のように、熱伝導性シートが柔軟である(硬度が低い)ことは、熱伝導性シートを発熱部品や冷却部材等の部材に貼付する際の空気の噛み込みを抑制して密着性を高め、熱抵抗(接触抵抗)の低減に寄与する。これにより、熱伝導性を高めることができる。 As described above, the heat conductive sheet is flexible (has low hardness), which suppresses the biting of air when sticking the heat conductive sheet to a member such as a heat generating component or a cooling member, thereby improving adhesion. Increases and contributes to reduction of thermal resistance (contact resistance). Thereby, thermal conductivity can be improved.
 エポキシ化合物(A)の分子量(または数平均分子量)は、通常400から4000であり、硬化物の柔軟性を高める観点から、好ましくは500から3500であり、より好ましくは800から3000である。エポキシ化合物(A)の分子量(または数平均分子量)が400未満であると、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難になる傾向がある。エポキシ化合物(A)の分子量(または数平均分子量)が4000より大きいと、架橋反応が十分に進行せず、十分に硬化した硬化物が得られにくい傾向にある。エポキシ化合物(A)の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として求めることができる。 The molecular weight (or number average molecular weight) of the epoxy compound (A) is usually from 400 to 4000, preferably from 500 to 3500, more preferably from 800 to 3000, from the viewpoint of enhancing the flexibility of the cured product. When the molecular weight (or number average molecular weight) of the epoxy compound (A) is less than 400, the crosslinking density tends to be too high, and it tends to be difficult to form a flexible cured product. When the molecular weight (or number average molecular weight) of the epoxy compound (A) is greater than 4000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured tends to be difficult to obtain. The number average molecular weight of an epoxy compound (A) can be calculated | required as a standard polystyrene conversion value by a gel permeation chromatography (GPC).
 また、分子量(または数平均分子量)が500以上であるエポキシ化合物(A)は、液状となりやすい。したがって、液状のエポキシ化合物(A)を用いる場合には、熱伝導性樹脂組成物において、エポキシ化合物(A)を溶解または希釈するための溶剤を必ずしも要しない。このことは、熱伝導性樹脂組成物の調製操作を容易にする。さらに、分子量(または数平均分子量)が500以上であるエポキシ化合物(A)を用いると、硬化物の柔軟性および耐熱性が向上する傾向にある。 Moreover, the epoxy compound (A) having a molecular weight (or number average molecular weight) of 500 or more tends to be liquid. Therefore, when using a liquid epoxy compound (A), the heat conductive resin composition does not necessarily require a solvent for dissolving or diluting the epoxy compound (A). This facilitates the preparation operation of the heat conductive resin composition. Furthermore, when an epoxy compound (A) having a molecular weight (or number average molecular weight) of 500 or more is used, the flexibility and heat resistance of the cured product tend to be improved.
 エポキシ化合物(A)は、ポリエチレングリコール構造以外のポリエーテル構造または下記式[1]: The epoxy compound (A) is a polyether structure other than the polyethylene glycol structure or the following formula [1]:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
で表される(メタ)アクリル系構造を有する。式[1]中、mは1以上の整数を表し、Rは水素原子またはメチル基を表し、Rはアルキル基を表す。 (Meth) acrylic structure represented by. In the formula [1], m represents an integer of 1 or more, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group.
 ポリエチレングリコール構造とは、-OCHCH-で表される構成単位を1分子中に2個以上有する構造を意味し、典型的には上記構造を2個以上繰り返してなる構造である。(メタ)アクリルとは、メタクリルおよびアクリルから選択される少なくとも1種を意味する。 The polyethylene glycol structure means a structure having two or more structural units represented by —OCH 2 CH 2 — in one molecule, and is typically a structure formed by repeating two or more of the above structures. (Meth) acryl means at least one selected from methacryl and acryl.
 ポリエチレングリコール構造以外のポリエーテル構造を有するエポキシ化合物(A)を用いることは、得られる硬化物の柔軟性向上および電気絶縁性向上に寄与する。また、ポリエチレングリコール構造以外のポリエーテル構造を有するエポキシ化合物(A)を用いることにより、硬化物の耐湿性および耐水性を高め得る。ポリエチレングリコール構造を有するエポキシ化合物を用いると、該化合物の親水性が比較的高いために、得られる硬化物の耐湿性および耐水性が低下し得る。 Use of the epoxy compound (A) having a polyether structure other than the polyethylene glycol structure contributes to improvement in flexibility and electrical insulation of the obtained cured product. Moreover, the moisture resistance and water resistance of hardened | cured material can be improved by using the epoxy compound (A) which has polyether structures other than a polyethyleneglycol structure. When an epoxy compound having a polyethylene glycol structure is used, since the hydrophilicity of the compound is relatively high, the moisture resistance and water resistance of the resulting cured product can be lowered.
 硬化物の柔軟性を高める観点および硬化物の耐熱性や電気絶縁性、耐湿性および耐水性を高める観点から、エポキシ化合物(A)は、オレフィン構造を含まないことが好ましく、オレフィン構造を含まない鎖状化合物であることがより好ましい。オレフィン構造とは、-C=C-で表される構造をいう。鎖状化合物とは、分子構造が直鎖状または分岐鎖状等の鎖状である化合物であって、エポキシ環以外の環式構造を含まない化合物をいう。環式構造とは、例えば、脂環式環、芳香族環等である。 From the viewpoint of increasing the flexibility of the cured product and from the viewpoint of increasing the heat resistance, electrical insulation, moisture resistance and water resistance of the cured product, the epoxy compound (A) preferably does not contain an olefin structure, and does not contain an olefin structure. A chain compound is more preferable. The olefin structure refers to a structure represented by —C═C—. A chain compound is a compound having a molecular structure that is linear or branched, and does not contain any cyclic structure other than an epoxy ring. Examples of the cyclic structure include an alicyclic ring and an aromatic ring.
 オレフィン構造を含まないエポキシ化合物(A)を用いることにより、硬化物の耐熱性を高め得る。一方、上述の特許文献1には、ポリブタジエンまたは水添ポリブタジエン骨格を有するエポキシ樹脂が使用されているが、ポリブタジエンに含まれるオレフィン構造は酸化されやすく、得られる硬化物も酸化劣化しやすく耐熱性が不十分となり得る。水添ポリブタジエン骨格を有するエポキシ樹脂においては、水添前に比べてオレフィン構造は少なくなるが、完全にオレフィン構造を消失させることは困難である。したがって、水添ポリブタジエン骨格を有するエポキシ樹脂を用いる場合においてもなお、硬化物の耐熱性は不十分となり得る。 By using an epoxy compound (A) that does not contain an olefin structure, the heat resistance of the cured product can be improved. On the other hand, in the above-mentioned Patent Document 1, an epoxy resin having a polybutadiene or hydrogenated polybutadiene skeleton is used. However, the olefin structure contained in the polybutadiene is easily oxidized, and the resulting cured product is also easily oxidized and deteriorated and has heat resistance. Can be inadequate. In an epoxy resin having a hydrogenated polybutadiene skeleton, the olefin structure is less than that before hydrogenation, but it is difficult to completely eliminate the olefin structure. Accordingly, even when an epoxy resin having a hydrogenated polybutadiene skeleton is used, the heat resistance of the cured product may be insufficient.
 オレフィン構造を含まない鎖状化合物であるエポキシ化合物(A)を用いることにより、得られる硬化物の耐熱性を向上し得るとともに、硬化物の柔軟性をより高めることが可能となる。 By using the epoxy compound (A) which is a chain compound not containing an olefin structure, the heat resistance of the obtained cured product can be improved and the flexibility of the cured product can be further increased.
 エポキシ化合物(A)が有するポリエーテル構造の好適な例は、下記式[2]: A suitable example of the polyether structure of the epoxy compound (A) is the following formula [2]:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表される構成単位を2個以上含む構造である。式[2]中、Rは鎖状アルキレン基を表す。エポキシ化合物(A)は、Rが異なる2種以上の式[2]で表される構成単位を含むことができる。ポリエーテル構造は、硬化物の柔軟性を高める観点から、好ましくは式[2]で表される構成単位を2個以上繰り返してなる構造、すなわち、下記式[2-1]: It is a structure containing two or more structural units represented by these. In the formula [2], R 3 represents a chain alkylene group. The epoxy compound (A) can include two or more structural units represented by the formula [2] with different R 3 . From the viewpoint of enhancing the flexibility of the cured product, the polyether structure is preferably a structure formed by repeating two or more structural units represented by the formula [2], that is, the following formula [2-1]:
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で表される構造を含む。式[2-1]中のRは式[2]における意味と同じである。エポキシ化合物(A)は、Rが異なる2種以上の式[2-1]で表される構成単位を含むことができる。式[2-1]中のnは2以上の整数であり、エポキシ化合物(A)の分子量に応じた値となる。整数nは、通常2から50程度であり、好ましくは3から50、より好ましくは5から40、さらに好ましくは8から35である。 The structure represented by is included. R 3 in formula [2-1] has the same meaning as in formula [2]. Epoxy compound (A) may contain a structural unit wherein R 3 represented by two or more different formula [2-1]. N in the formula [2-1] is an integer of 2 or more, and is a value corresponding to the molecular weight of the epoxy compound (A). The integer n is usually about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 35.
 Rで表される鎖状アルキレン基は、直鎖状であってもよいし、分岐鎖状であってもよい。鎖状アルキレン基の炭素原子数は、通常3から12であり、好ましくは3から8であり、さらに好ましくは3から6である。鎖状アルキレン基の具体例としては、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基(トリメチレン基)、2-メチルプロパン-1,3-ジイル基、ブタン-1,4-ジイル基(テトラメチレン基)、2-メチルブタン-1,4-ジイル基、3-メチルブタン-1,4-ジイル基、ペンタン-1,5-ジイル基(ペンタメチレン基)、2,2-ジメチルプロパン-1,3-ジイル基、ヘキサン-1,6-ジイル基(ヘキサメチレン基)、オクタン-1,8-ジイル基(オクタメチレン基)等が挙げられる。 The chain alkylene group represented by R 3 may be linear or branched. The number of carbon atoms of the chain alkylene group is usually 3 to 12, preferably 3 to 8, and more preferably 3 to 6. Specific examples of the chain alkylene group include propane-1,2-diyl group, propane-1,3-diyl group (trimethylene group), 2-methylpropane-1,3-diyl group, butane-1,4- Diyl group (tetramethylene group), 2-methylbutane-1,4-diyl group, 3-methylbutane-1,4-diyl group, pentane-1,5-diyl group (pentamethylene group), 2,2-dimethylpropane -1,3-diyl group, hexane-1,6-diyl group (hexamethylene group), octane-1,8-diyl group (octamethylene group) and the like.
 式[2]で表される構成単位の好適な例としては、下記式[4]: As a suitable example of the structural unit represented by the formula [2], the following formula [4]:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
で表される構成単位、および下記式[5]: And the following unit [5]:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
で表される構成単位が挙げられる。すなわち、エポキシ化合物(A)が有し得るポリエーテル構造は、式[4]で表される構成単位および式[5]で表される構成単位からなる群より選択される1種以上の構成単位を合計で2個以上含む構造であることが好ましく、式[4]で表される構成単位および式[5]で表される構成単位からなる群より選択される1種以上の構成単位を2個以上繰り返してなる構造を含むことがより好ましい。 The structural unit represented by these is mentioned. That is, the polyether structure that the epoxy compound (A) may have is one or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5]. Is preferably a structure containing 2 or more in total, and two or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5] It is more preferable that the structure which repeats more than is included.
 上記式[1]で表される(メタ)アクリル系構造を有するエポキシ化合物(A)を用いることもまた、得られる硬化物の柔軟性向上および電気絶縁性向上に寄与する。また、該(メタ)アクリル系構造を有するエポキシ化合物(A)を用いることにより、硬化物の耐湿性および耐水性、耐候性、耐薬品性を高め得る。該(メタ)アクリル系構造はオレフィン構造を含まないことから、該(メタ)アクリル系構造を有するエポキシ化合物(A)を用いることにより、得られる硬化物の耐熱性を向上させつつ、硬化物の柔軟性を高めることが可能となる。 Use of the epoxy compound (A) having a (meth) acrylic structure represented by the above formula [1] also contributes to improvement in flexibility and electrical insulation of the obtained cured product. Moreover, by using the epoxy compound (A) having the (meth) acrylic structure, the moisture resistance, water resistance, weather resistance, and chemical resistance of the cured product can be improved. Since the (meth) acrylic structure does not contain an olefin structure, the use of the epoxy compound (A) having the (meth) acrylic structure improves the heat resistance of the resulting cured product and improves the heat resistance of the cured product. Flexibility can be increased.
 ポリエーテル構造を有するエポキシ化合物(A)と同様の理由で、該(メタ)アクリル系構造を有するエポキシ化合物(A)は、環式構造を含まない鎖状化合物であることが好ましい。 For the same reason as the epoxy compound (A) having a polyether structure, the epoxy compound (A) having the (meth) acrylic structure is preferably a chain compound having no cyclic structure.
 上記式[1]中のmは、エポキシ化合物(A)の分子量に応じた値となり、通常2以上である。mは、例えば2から50程度であり、好ましくは3から50、より好ましくは5から40、さらに好ましくは8から40である。 M in the above formula [1] is a value corresponding to the molecular weight of the epoxy compound (A), and is usually 2 or more. m is, for example, about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 40.
 上記式[1]において、Rで表されるアルキル基としては、炭素原子数1から12のアルキル基を挙げることができる。アルキル基の炭素原子数は、好ましくは1から6である。硬化物の柔軟性を高める観点から、該アルキル基は、直鎖状、分岐鎖状等の鎖状構造を有することが好ましく、脂環式環等の環式構造を含まないことがより好ましい。該アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基等が挙げられる。 In the above formula [1], examples of the alkyl group represented by R 2 include alkyl groups having 1 to 12 carbon atoms. The number of carbon atoms of the alkyl group is preferably 1 to 6. From the viewpoint of increasing the flexibility of the cured product, the alkyl group preferably has a linear structure such as a linear or branched chain, and more preferably does not include a cyclic structure such as an alicyclic ring. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group and the like. It is done.
 〔2〕アミン化合物(B)
 アミン化合物(B)は、アミン水素を含む化合物である。「アミン水素」とは、第1級または第2級アミノ基を構成する水素原子(第1級または第2級アミノ基の窒素原子に結合している水素原子)を意味する。アミン化合物(B)が有する第1級および/または第2級アミノ基は、エポキシ化合物(A)のエポキシ基と反応して架橋構造を形成することができる。
[2] Amine compound (B)
The amine compound (B) is a compound containing amine hydrogen. “Amine hydrogen” means a hydrogen atom constituting a primary or secondary amino group (a hydrogen atom bonded to a nitrogen atom of a primary or secondary amino group). The primary and / or secondary amino group of the amine compound (B) can react with the epoxy group of the epoxy compound (A) to form a crosslinked structure.
 アミノ基が関与する架橋反応によって得られる硬化物(および熱伝導性シート。以下同様。)は、電気絶縁性、耐熱性、耐湿性および耐水性に良好なものとなり得る。とりわけ、エポキシ基とアミノ基とが関与する架橋反応によって形成されるエポキシ-アミン架橋部位を有する硬化物は、電気絶縁性、耐熱性、耐湿性および耐水性に優れたものとなり得る。 A cured product (and a heat conductive sheet, the same applies hereinafter) obtained by a crosslinking reaction involving an amino group can have good electrical insulation, heat resistance, moisture resistance and water resistance. In particular, a cured product having an epoxy-amine crosslinking site formed by a crosslinking reaction involving an epoxy group and an amino group can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance.
 アミン化合物(B)のアミン水素数は、柔軟な硬化物を形成する観点から、1分子あたり、好ましくは4個以上であり、より好ましくは4から10であり、さらに好ましくは4から8であり、特に好ましくは4から6である。アミン水素数が過度に大きいと、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難になる傾向がある。アミン水素数が4未満であると、架橋反応が十分に進行せず、十分に硬化した硬化物が得られない傾向にある。 From the viewpoint of forming a flexible cured product, the number of amine hydrogens in the amine compound (B) is preferably 4 or more, more preferably 4 to 10, even more preferably 4 to 8, per molecule. Particularly preferred is 4 to 6. If the amine hydrogen number is excessively large, the crosslinking density tends to be too high and it becomes difficult to form a flexible cured product. If the number of amine hydrogens is less than 4, the crosslinking reaction does not proceed sufficiently and a cured product that is sufficiently cured tends not to be obtained.
 アミン化合物(B)としては、アミン水素当量が80から1000であるものが用いられる。「アミン水素当量」とは、アミン化合物(B)の分子量(または数平均分子量)をその化合物が1分子あたりに有するアミン水素の数で除した値を意味する。エポキシ当量は、化学構造から算出される分子量(または数平均分子量の測定値)と、化学構造から算出されるアミン水素数とから算出することができる。 As the amine compound (B), those having an amine hydrogen equivalent of 80 to 1000 are used. The “amine hydrogen equivalent” means a value obtained by dividing the molecular weight (or number average molecular weight) of the amine compound (B) by the number of amine hydrogens that the compound has per molecule. The epoxy equivalent can be calculated from the molecular weight calculated from the chemical structure (or the measured value of the number average molecular weight) and the amine hydrogen number calculated from the chemical structure.
 1分子中にアミン水素を4個以上含み、上記範囲内のアミン水素当量を有するエポキシ化合物(A)を用いることにより、適度な架橋密度を有する硬化物を形成することができるため、柔軟な(硬度の低い)硬化物を得ることが可能になる。アミン化合物(B)のアミン水素当量は、好ましくは80から960である。アミン水素当量が80未満であると、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難となる。アミン水素当量が1000より大きいと、架橋反応が十分に進行せず、十分に硬化した硬化物が得られないことがある。 By using an epoxy compound (A) containing 4 or more amine hydrogens in one molecule and having an amine hydrogen equivalent weight within the above range, a cured product having an appropriate crosslinking density can be formed. A cured product having a low hardness can be obtained. The amine hydrogen equivalent of the amine compound (B) is preferably 80 to 960. When the amine hydrogen equivalent is less than 80, the crosslinking density becomes too high, and it becomes difficult to form a flexible cured product. If the amine hydrogen equivalent is greater than 1000, the crosslinking reaction does not proceed sufficiently, and a sufficiently cured product may not be obtained.
 アミン化合物(B)の分子量(または数平均分子量)は、通常300から8000であり、硬化物の柔軟性を高める観点から、好ましくは400から7000であり、より好ましくは500から6000である。アミン化合物(B)の分子量(または数平均分子量)が300未満であると、架橋密度が高くなり過ぎて柔軟な硬化物を形成することが困難になる傾向がある。アミン化合物(B)の分子量(または数平均分子量)が8000より大きいと、架橋反応が十分に進行せず、十分に硬化した硬化物が得られにくい傾向にある。アミン化合物(B)の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として求めることができる。 The molecular weight (or number average molecular weight) of the amine compound (B) is usually 300 to 8000, preferably 400 to 7000, more preferably 500 to 6000, from the viewpoint of increasing the flexibility of the cured product. When the molecular weight (or number average molecular weight) of the amine compound (B) is less than 300, the crosslinking density tends to be too high, and it tends to be difficult to form a flexible cured product. If the molecular weight (or number average molecular weight) of the amine compound (B) is greater than 8000, the crosslinking reaction does not proceed sufficiently, and a cured product that is sufficiently cured tends to be difficult to obtain. The number average molecular weight of an amine compound (B) can be calculated | required as a standard polystyrene conversion value by a gel permeation chromatography (GPC).
 また、分子量(または数平均分子量)が500以上であるアミン化合物(B)は、液状となりやすい。したがって、液状のアミン化合物(B)を用いる場合には、熱伝導性樹脂組成物において、アミン化合物(B)を溶解または希釈するための溶剤を必ずしも要しない。このことは、熱伝導性樹脂組成物の調製操作を容易にする。さらに、分子量(または数平均分子量)が500以上であるアミン化合物(B)を用いると、硬化物の柔軟性および耐熱性が向上する傾向にある。 Also, the amine compound (B) having a molecular weight (or number average molecular weight) of 500 or more tends to be liquid. Therefore, when the liquid amine compound (B) is used, a solvent for dissolving or diluting the amine compound (B) is not necessarily required in the heat conductive resin composition. This facilitates the preparation operation of the heat conductive resin composition. Furthermore, when the amine compound (B) having a molecular weight (or number average molecular weight) of 500 or more is used, the flexibility and heat resistance of the cured product tend to be improved.
 アミン化合物(B)は、硬化物の柔軟性を高める観点および硬化物の耐熱性や電気絶縁性、耐湿性および耐水性を高める観点から、ポリエチレングリコール構造以外のポリエーテル構造を有することが好ましい。同様の観点から、アミン化合物(B)は、オレフィン構造を含まないことが好ましく、オレフィン構造を含まない鎖状化合物であることがより好ましい。オレフィン構造を含まないアミン化合物(B)を用いることにより、硬化物の耐熱性を高め得る。オレフィン構造を含まない鎖状化合物であるアミン化合物(B)を用いることにより、得られる硬化物の耐熱性を向上し得るとともに、硬化物の柔軟性をより高めることが可能となる。 The amine compound (B) preferably has a polyether structure other than the polyethylene glycol structure from the viewpoint of increasing the flexibility of the cured product and from the viewpoint of increasing the heat resistance, electrical insulation, moisture resistance and water resistance of the cured product. From the same viewpoint, the amine compound (B) preferably contains no olefin structure, and more preferably is a chain compound containing no olefin structure. By using the amine compound (B) not containing an olefin structure, the heat resistance of the cured product can be improved. By using the amine compound (B) which is a chain compound not containing an olefin structure, the heat resistance of the obtained cured product can be improved and the flexibility of the cured product can be further increased.
 アミン化合物(B)が有するポリエーテル構造の好適な例は、下記式[3]: A suitable example of the polyether structure possessed by the amine compound (B) is the following formula [3]:
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
で表される構成単位を2個以上含む構造である。式[3]中、Rは鎖状アルキレン基を表す。アミン化合物(B)は、Rが異なる2種以上の式[3]で表される構成単位を含むことができる。ポリエーテル構造は、硬化物の柔軟性を高める観点から、好ましくは式[3]で表される構成単位を2個以上繰り返してなる構造、すなわち、下記式[3-1]: It is a structure containing two or more structural units represented by these. In the formula [3], R 4 represents a chain alkylene group. The amine compound (B) can include two or more structural units represented by the formula [3] in which R 4 is different. From the viewpoint of enhancing the flexibility of the cured product, the polyether structure is preferably a structure formed by repeating two or more structural units represented by the formula [3], that is, the following formula [3-1]:
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
で表される構造を含む。式[3-1]中のRは式[3]における意味と同じである。アミン化合物(B)は、Rが異なる2種以上の式[3-1]で表される構成単位を含むことができる。式[3-1]中のpは2以上の整数であり、アミン化合物(B)の分子量に応じた値となる。整数pは、通常2から50程度であり、好ましくは3から50、より好ましくは5から40、さらに好ましくは8から35である。Rで表される鎖状アルキレン基の具体例は、Rで表される鎖状アルキレン基と同様である。 The structure represented by is included. R 4 in formula [3-1] has the same meaning as in formula [3]. The amine compound (B) can contain two or more structural units represented by the formula [3-1] having different R 4 . P in the formula [3-1] is an integer of 2 or more, and is a value corresponding to the molecular weight of the amine compound (B). The integer p is usually about 2 to 50, preferably 3 to 50, more preferably 5 to 40, and still more preferably 8 to 35. Specific examples of the chain alkylene group represented by R 4 are the same as the chain alkylene group represented by R 3 .
 式[3]で表される構成単位の好適な例としては、上記式[4]で表される構成単位、および上記式[5]で表される構成単位が挙げられる。すなわち、アミン化合物(B)が有し得るポリエーテル構造は、式[4]で表される構成単位および式[5]で表される構成単位からなる群より選択される1種以上の構成単位を合計で2個以上含む構造であることが好ましく、式[4]で表される構成単位および式[5]で表される構成単位からなる群より選択される1種以上の構成単位を2個以上繰り返してなる構造を含むことがより好ましい。 Preferred examples of the structural unit represented by the formula [3] include a structural unit represented by the above formula [4] and a structural unit represented by the above formula [5]. That is, the polyether structure that the amine compound (B) may have is one or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5]. Is preferably a structure containing 2 or more in total, and two or more structural units selected from the group consisting of the structural unit represented by the formula [4] and the structural unit represented by the formula [5] It is more preferable that the structure which repeats more than is included.
 アミン化合物(B)は、少なくとも第1級アミノ基を有することが好ましく、1分子中に2個または3個の第1級アミノ基を有することがより好ましい。これにより、適度な架橋密度を有する硬化物を形成することができるため、柔軟な硬化物を得られやすくなる。柔軟な硬化物を得られやすくなることから、これらの2個または3個の第1級アミノ基は、アミン化合物(B)の分子末端に配置されていることが好ましい。アミン化合物(B)は、第1級アミノ基とともに、第2級アミノ基を有していてもよい。 The amine compound (B) preferably has at least a primary amino group, and more preferably has 2 or 3 primary amino groups in one molecule. Thereby, since the hardened | cured material which has moderate crosslinking density can be formed, it becomes easy to obtain a flexible hardened | cured material. Since it becomes easy to obtain a flexible cured product, it is preferable that these two or three primary amino groups are arranged at the molecular ends of the amine compound (B). The amine compound (B) may have a secondary amino group together with the primary amino group.
 〔3〕エポキシ化合物(A)およびアミン化合物(B)の含有量
 熱伝導性樹脂組成物におけるエポキシ化合物(A)およびアミン化合物(B)の含有量は、アミン化合物(B)が有するアミン水素の数とエポキシ化合物(A)が有するエポキシ基の数との比(アミン水素数/エポキシ基数)が好ましくは0.2から5となるように調整される。アミン水素数/エポキシ基数が上記範囲内であると、熱伝導性フィラー(C)を多く含有させても、柔軟性に優れた硬化物を形成することが可能となる。アミン水素数/エポキシ基数が上記範囲外であると、柔軟性に優れた硬化物を形成することが困難となる。
[3] Content of epoxy compound (A) and amine compound (B) The content of epoxy compound (A) and amine compound (B) in the thermally conductive resin composition is the amount of amine hydrogen contained in amine compound (B). The ratio (number of amine hydrogens / number of epoxy groups) between the number and the number of epoxy groups of the epoxy compound (A) is preferably adjusted to be 0.2 to 5. When the amine hydrogen number / epoxy group number is within the above range, it is possible to form a cured product having excellent flexibility even when a large amount of the heat conductive filler (C) is contained. If the amine hydrogen number / epoxy group number is outside the above range, it becomes difficult to form a cured product having excellent flexibility.
 アミン水素数/エポキシ基数の値を1からずらした値とすることも有効である。例えば、アミン水素数/エポキシ基数を0.2から0.5または2から5とすることは、柔軟性に優れた硬化物を形成するうえで好ましい。アミン水素数/エポキシ基数は、より好ましくは0.2から0.4または2.5から5であり、さらに好ましくは0.2から0.25または3から5である。 It is also effective to set the value of amine hydrogen number / epoxy group number to a value shifted from 1. For example, setting the number of amine hydrogens / number of epoxy groups to 0.2 to 0.5 or 2 to 5 is preferable for forming a cured product having excellent flexibility. The amine hydrogen number / epoxy group number is more preferably 0.2 to 0.4 or 2.5 to 5, and further preferably 0.2 to 0.25 or 3 to 5.
 〔4〕熱伝導性フィラー(C)
 熱伝導性樹脂組成物は、熱伝導性フィラー(C)を含む。これにより、熱伝導性樹脂組成物の硬化物に熱伝導性(放熱性能)を付与することができる。熱伝導性フィラー(C)は、電気絶縁性であることが好ましく、また、高い熱伝導性を有することが好ましい。
[4] Thermally conductive filler (C)
A heat conductive resin composition contains a heat conductive filler (C). Thereby, heat conductivity (heat dissipation performance) can be provided to the hardened | cured material of a heat conductive resin composition. The heat conductive filler (C) is preferably electrically insulating and preferably has high heat conductivity.
 熱伝導性樹脂組成物における熱伝導性フィラー(C)の含有量は、エポキシ化合物(A)およびアミン化合物(B)の合計量100質量部に対して、好ましくは100質量部から1000質量部であり、より好ましくは230質量部から650質量部、さらに好ましくは230質量部から450質量部である。熱伝導性フィラー(C)の含有量が50質量部より小さいと、十分な熱伝導性(放熱性能)を有する硬化物および熱伝導性シートが得られない。熱伝導性フィラー(C)の含有量が1000質量部より大きいと、熱伝導性フィラー(C)が十分均一に分散しないか、または均一に分散できる場合であっても硬化物の柔軟性が損なわれる。 The content of the thermally conductive filler (C) in the thermally conductive resin composition is preferably 100 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the total amount of the epoxy compound (A) and the amine compound (B). Yes, more preferably from 230 to 650 parts by mass, and even more preferably from 230 to 450 parts by mass. When content of a heat conductive filler (C) is smaller than 50 mass parts, the hardened | cured material and heat conductive sheet which have sufficient heat conductivity (heat dissipation performance) cannot be obtained. When the content of the thermally conductive filler (C) is larger than 1000 parts by mass, the flexibility of the cured product is impaired even when the thermally conductive filler (C) is not sufficiently uniformly dispersed or evenly dispersed. It is.
 熱伝導性および電気絶縁性の観点から、熱伝導性フィラー(C)は、金属水酸化物フィラー、金属酸化物フィラー、金属窒化物フィラー、金属炭酸塩フィラーおよびケイ素化合物フィラーからなる群より選択される1種または2種以上のフィラーを含むことが好ましく、金属水酸化物フィラー、金属酸化物フィラー、金属窒化物フィラーおよびケイ素化合物フィラーからなる群より選択される1種または2種以上のフィラーを含むことがより好ましい。 From the viewpoint of thermal conductivity and electrical insulation, the thermal conductive filler (C) is selected from the group consisting of metal hydroxide filler, metal oxide filler, metal nitride filler, metal carbonate filler and silicon compound filler. 1 type, or 2 or more types of fillers are preferably included, and one or more types of fillers selected from the group consisting of metal hydroxide fillers, metal oxide fillers, metal nitride fillers, and silicon compound fillers. More preferably.
 金属水酸化物フィラーを構成する金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。金属酸化物フィラーを構成する金属酸化物としては、アルミナ、水和アルミナ、酸化マグネシウム、酸化亜鉛、酸化ベリリウム、酸化チタン等が挙げられる。金属窒化物フィラーを構成する金属窒化物としては、窒化ホウ素、窒化アルミニウム等が挙げられる。金属炭酸塩フィラーを構成する金属炭酸塩としては、炭酸マグネシウム等が挙げられる。ケイ素化合物フィラーを構成するケイ素化合物としては、炭化ケイ素、窒化ケイ素、酸化ケイ素、シリカ等が挙げられる。 Examples of the metal hydroxide constituting the metal hydroxide filler include aluminum hydroxide and magnesium hydroxide. Examples of the metal oxide constituting the metal oxide filler include alumina, hydrated alumina, magnesium oxide, zinc oxide, beryllium oxide, and titanium oxide. Examples of the metal nitride constituting the metal nitride filler include boron nitride and aluminum nitride. Examples of the metal carbonate constituting the metal carbonate filler include magnesium carbonate. Examples of the silicon compound constituting the silicon compound filler include silicon carbide, silicon nitride, silicon oxide, and silica.
 熱伝導性フィラー(C)は、表面処理されたフィラーを含んでいてもよい。これにより、硬化物における熱伝導性フィラー(C)の分散性を高めることができ、もって、硬化物および熱伝導性シートにおける引張強度や引裂き強度等の機械的物性および熱伝導率等の電気的物性を高め得る。また、表面処理されたフィラーを用いると、フィラーの高充填化が可能となり、これにより硬化物および熱伝導性シートの熱伝導率等を高め得る。表面処理としては、シランカップリング剤;界面活性剤;オレイン酸、ステアリン酸等の有機酸等による処理(修飾処理)が挙げられる。 The heat conductive filler (C) may contain a surface-treated filler. As a result, the dispersibility of the thermally conductive filler (C) in the cured product can be enhanced, so that mechanical properties such as tensile strength and tear strength and electrical properties such as thermal conductivity in the cured product and the thermally conductive sheet can be obtained. Physical properties can be improved. Moreover, when the surface-treated filler is used, the filler can be highly filled, thereby increasing the thermal conductivity of the cured product and the heat conductive sheet. Examples of the surface treatment include a silane coupling agent; a surfactant; a treatment (modification treatment) with an organic acid such as oleic acid or stearic acid.
 〔5〕その他の成分
 熱伝導性樹脂組成物は、エポキシ化合物(A)、アミン化合物(B)および熱伝導性フィラー(C)以外のその他の成分を1種または2種以上含むことができる。その他の成分としては、可塑剤、難燃剤、難燃助剤、着色剤、酸化防止剤、紫外線吸収剤、熱安定剤、結晶促進剤、分散剤、表面調整剤、消泡剤、密着性付与剤、溶剤(例えば有機溶剤)等が挙げられる。
[5] Other components The thermally conductive resin composition may contain one or more components other than the epoxy compound (A), the amine compound (B) and the thermally conductive filler (C). Other components include plasticizers, flame retardants, flame retardant aids, colorants, antioxidants, UV absorbers, heat stabilizers, crystallization accelerators, dispersants, surface conditioners, antifoaming agents, and adhesion imparting. Agents, solvents (for example, organic solvents), and the like.
 〔6〕熱伝導性樹脂組成物の調製
 熱伝導性樹脂組成物は、エポキシ化合物(A)、アミン化合物(B)、熱伝導性フィラー(C)、および必要に応じて使用されるその他の成分を混合することによって調製することができる。混合方法は特に制限されず、ロール、ニーダー、バンバリーミキサー、プラネタリーミキサー等の混練機、真空脱泡撹拌機等が用いることができる。混合時に気泡が混入すると、硬化物および熱伝導性シートにおける引張強度や引裂き強度等の機械的物性および熱伝導率等の電気的物性に悪影響を与えるおそれがある。したがって、気泡の混入を抑制可能な混合装置、例えば、真空脱泡撹拌機またはプラネタリーミキサーが好ましく用いられる。中でも、自転公転式真空脱泡ミキサーを用いるか、またはプラネタリーミキサーを真空条件下で使用することがより好ましい。
[6] Preparation of thermally conductive resin composition The thermally conductive resin composition comprises an epoxy compound (A), an amine compound (B), a thermally conductive filler (C), and other components used as necessary. Can be prepared by mixing. A mixing method is not particularly limited, and a kneader such as a roll, a kneader, a Banbury mixer, or a planetary mixer, a vacuum defoaming stirrer, or the like can be used. When air bubbles are mixed during mixing, there is a risk of adversely affecting mechanical properties such as tensile strength and tear strength and electrical properties such as thermal conductivity in the cured product and the heat conductive sheet. Therefore, a mixing device capable of suppressing the mixing of bubbles, for example, a vacuum defoaming stirrer or a planetary mixer is preferably used. Among them, it is more preferable to use a rotation and revolution type vacuum defoaming mixer or to use a planetary mixer under vacuum conditions.
 本発明の好ましい態様では、熱伝導性樹脂組成物は、前記エポキシ化合物(A)は、1分子中にエポキシ基を2個以上含み、エポキシ当量が400~2000であり、かつ、ポリエチレングリコール構造以外のポリエーテル構造または下記式[1]: In a preferred embodiment of the present invention, in the thermally conductive resin composition, the epoxy compound (A) contains two or more epoxy groups in one molecule, has an epoxy equivalent of 400 to 2000, and has a structure other than a polyethylene glycol structure. Or the following formula [1]:
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式[1]中、mは1以上の整数を表し、Rは水素原子またはメチル基を表し、Rはアルキル基を表す。)
で表される(メタ)アクリル系構造を有し、前記アミン化合物(B)は、1分子中にアミン水素を4個以上含み、アミン水素当量が80~1000であり、前記アミン化合物(B)が有するアミン水素の数と前記エポキシ化合物(A)が有するエポキシ基の数との比(アミン水素数/エポキシ基数)は、0.2~5であり、前記エポキシ化合物(A)および前記アミン化合物(B)の合計量100質量部に対して、前記熱伝導性フィラー(C)を100質量部~1000質量部含む。
(In formula [1], m represents an integer of 1 or more, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group.)
The amine compound (B) has a (meth) acrylic structure represented by the formula: 4 amine hydrogens per molecule, the amine hydrogen equivalent is 80 to 1000, and the amine compound (B) The ratio of the number of amine hydrogens in the epoxy compound to the number of epoxy groups in the epoxy compound (A) (number of amine hydrogens / number of epoxy groups) is 0.2 to 5, and the epoxy compound (A) and the amine compound 100 parts by mass to 1000 parts by mass of the thermally conductive filler (C) is included with respect to 100 parts by mass of the total amount of (B).
 また、本発明の別の好ましい態様では、熱伝導性樹脂組成物中のエポキシ化合物(A)およびアミン化合物(B)は、オレフィン構造を含まない鎖状化合物である。 In another preferred embodiment of the present invention, the epoxy compound (A) and the amine compound (B) in the heat conductive resin composition are chain compounds that do not contain an olefin structure.
 実施形態2.硬化物
 本実施形態に係る硬化物は、実施形態1に係る熱伝導性樹脂組成物を硬化してなるものである。本実施形態に係る硬化物は、熱伝導性樹脂組成物を加熱または活性エネルギー線の照射により硬化させることによって得ることができる。
Embodiment 2. FIG. Cured Product The cured product according to the present embodiment is obtained by curing the thermally conductive resin composition according to the first embodiment. The cured product according to this embodiment can be obtained by curing the thermally conductive resin composition by heating or irradiation with active energy rays.
 実施形態1に係る熱伝導性樹脂組成物を硬化してなる硬化物によれば、95以下、さらには80以下、なおさらには65以下の硬度値を有することができる。ここでいう硬度値は、Asker C硬度計を用い、JIS K 7312に準拠して測定されるAsker C硬度である。硬化成形物の硬さをAsker C、タイプDデュロメータ、及びタイプAデュロメータのいずれの規格で測定するかについては、測定対象物の用途、性状などを考慮して適宜選択され、軟質材料は、硬化成形物の硬さをAsker C規格で測定し、硬度Asker C95以下であれば、凹凸に追従し、密着性が向上し、放熱性が向上する。硬化物のAsker C硬度が、Asker C95以下の材料は軟質材料となり、凹凸面への追従性が向上し、放熱性が向上する。硬化物のAsker C硬度は、硬化物の取扱性の観点から、好ましくは2以上、より好ましくは5以上である。 The cured product obtained by curing the thermally conductive resin composition according to Embodiment 1 can have a hardness value of 95 or less, further 80 or less, and even 65 or less. The hardness value referred to here is Asker C hardness measured according to JIS K 7312 using an Asker C hardness meter. Whether to measure the hardness of the cured molded product according to the standard of Asker C, Type D durometer, or Type A durometer is appropriately selected in consideration of the use and properties of the object to be measured. If the hardness of the molded product is measured according to Asker C standard and the hardness Asker C95 or less, it follows the unevenness, improves adhesion, and improves heat dissipation. A material whose Asker C hardness of the cured product is Asker C95 or less is a soft material, which improves followability to uneven surfaces and improves heat dissipation. The Asker C hardness of the cured product is preferably 2 or more, more preferably 5 or more, from the viewpoint of handleability of the cured product.
 また、本実施形態に係る硬化物は、架橋部位がエポキシ-アミン架橋部位からなるので、電気絶縁性、耐熱性、耐湿性および耐水性に優れたものとなり得る。 Further, the cured product according to the present embodiment can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance since the cross-linked site is an epoxy-amine cross-linked site.
 本実施形態に係る硬化物の形状は特に制限されず、後述する熱伝導性シートのようにシート状(またフィルム状)であってもよいし、それ以外の形状であってもよいし、あるいは不定形であってもよい。 The shape of the cured product according to the present embodiment is not particularly limited, and may be a sheet shape (also a film shape) like a heat conductive sheet described later, or may be a shape other than that, or It may be indefinite.
 実施形態3.熱伝導性シート
 本実施形態に係る熱伝導性シートは、実施形態1に係る熱伝導性樹脂組成物の硬化物を含み、典型的には該硬化物からなる。後述するように、熱伝導性シートは、シート状に形成された熱伝導性樹脂組成物を加熱または活性エネルギー線の照射により硬化させることによって得ることができる。
Embodiment 3. FIG. Thermally Conductive Sheet The thermally conductive sheet according to the present embodiment includes a cured product of the thermally conductive resin composition according to Embodiment 1, and typically includes the cured product. As will be described later, the thermally conductive sheet can be obtained by curing a thermally conductive resin composition formed in a sheet shape by heating or irradiation with active energy rays.
 Asker C硬度が低い(柔軟性に優れた)熱伝導性シートであると、部材(発熱部品や冷却部材)に貼付する際の空気の噛み込みを抑制して密着性を高めることができる。これにより、上記部材と熱伝導性シートとの界面における接触抵抗が低減されるので、製品全体としての総熱抵抗が低減され、優れた放熱性を実現することが可能になる。 Asker C hardness is a low thermal conductivity sheet (excellent flexibility), it is possible to suppress the biting of air when sticking to a member (a heat generating component or a cooling member) and to improve the adhesion. Thereby, since the contact resistance in the interface of the said member and a heat conductive sheet is reduced, the total heat resistance as the whole product is reduced, and it becomes possible to implement | achieve the outstanding heat dissipation.
 また、熱伝導性シートが貼付される部材の表面が凹凸を有していると、熱伝導性シートを貼付する際、空気の噛み込みが生じやすいが、本実施形態に係る熱伝導性シートによれば、高い柔軟性を示すことができるので、上記凹凸に追従することができ、放熱性を低下させる要因となる空気を介在させることなく上記部材に熱伝導性シートを密着させることが可能になる。 In addition, if the surface of the member to which the heat conductive sheet is affixed has irregularities, when the heat conductive sheet is affixed, air is likely to be caught, but the heat conductive sheet according to the present embodiment According to the present invention, since the high flexibility can be shown, it is possible to follow the unevenness, and it is possible to adhere the heat conductive sheet to the member without interposing air that causes a decrease in heat dissipation. Become.
 また、本実施形態に係る熱伝導性シートは、架橋部位がエポキシ-アミン架橋部位からなるので、電気絶縁性、耐熱性、耐湿性および耐水性に優れたものとなり得る。 Also, the thermally conductive sheet according to the present embodiment can be excellent in electrical insulation, heat resistance, moisture resistance and water resistance since the crosslinking site is an epoxy-amine crosslinking site.
 本実施形態に係る熱伝導性シートは、熱伝導率が1.0W/(m・K)以上であることが好ましく、1.2W/(m・K)以上であることがより好ましく、1.3W/(m・K)以上であることがさらに好ましく、1.5W/(m・K)以上であることが特に好ましい。熱伝導性シートの柔軟性を高めて貼付される部材との総熱抵抗を低減させるだけでなく、熱伝導性シートそれ自体の特性である熱伝導性能を優れたものとすることによって製品全体において、より良好な放熱性を実現することができる。熱伝導率が1.0W/(m・K)よりも小さい場合であっても、本実施形態に係る熱伝導性シートによれば、その柔軟性を利用して総熱抵抗を下げ、製品に必要な放熱性を確保することも可能であるが、より優れた製品の放熱性を得るためには、熱伝導性シートの熱伝導率は、1.0W/(m・K)以上であることが好ましい。 The thermal conductivity sheet according to the present embodiment preferably has a thermal conductivity of 1.0 W / (m · K) or more, more preferably 1.2 W / (m · K) or more. More preferably, it is 3 W / (m · K) or more, and particularly preferably 1.5 W / (m · K) or more. In addition to reducing the total heat resistance of the heat-conductive sheet and increasing the flexibility of the member to be applied, it also improves the overall heat-resistance performance of the heat-conductive sheet itself. Better heat dissipation can be realized. Even when the thermal conductivity is smaller than 1.0 W / (m · K), the thermal conductive sheet according to the present embodiment uses the flexibility to lower the total thermal resistance and It is possible to ensure the necessary heat dissipation, but in order to obtain better heat dissipation of the product, the thermal conductivity of the thermal conductive sheet should be 1.0 W / (m · K) or more. Is preferred.
 本実施形態に係る熱伝導性シートによれば、熱伝導率を高めるために熱伝導性フィラー(C)を比較的多く含有させても、十分な柔軟性を示すことが可能である。 The thermal conductive sheet according to the present embodiment can exhibit sufficient flexibility even if a relatively large amount of the thermal conductive filler (C) is contained in order to increase the thermal conductivity.
 熱伝導性シートの厚みは特に制限されないが、好ましくは0.1から5mmであり、より好ましくは0.3から3mmである。熱伝導性シートの厚みが0.1mm未満であると、熱伝導性シートの取扱性が低下し得る。熱伝導性シートの厚みが5mmを超えると、熱抵抗を大きくなって放熱性が低下し得る。 The thickness of the heat conductive sheet is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.3 to 3 mm. The handleability of a heat conductive sheet may fall that the thickness of a heat conductive sheet is less than 0.1 mm. When the thickness of the heat conductive sheet exceeds 5 mm, the heat resistance may be increased and the heat dissipation may be reduced.
 実施形態4.熱伝導性シートの製造方法
 本実施形態に係る熱伝導性シートの製造方法は、実施形態3に係る熱伝導性シートを製造するための方法として好適に用いることができ、下記の工程を含む。
Embodiment 4 FIG. Manufacturing method of heat conductive sheet The manufacturing method of the heat conductive sheet which concerns on this embodiment can be used suitably as a method for manufacturing the heat conductive sheet which concerns on Embodiment 3, and includes the following process.
 実施形態1に係る熱伝導性樹脂組成物をシート状に成形してシート状成形物を得る工程、およびシート状成形物を加熱により硬化させる工程。 The process of shape | molding the heat conductive resin composition which concerns on Embodiment 1 in a sheet form, and obtaining a sheet-like molded article, and the process of hardening a sheet-like molded article by heating.
 上記硬化させる工程の後、必要に応じて、シートの打ち抜きを行う等、熱伝導性シートの形状やサイズを調整する工程を設けてもよい。 After the step of curing, a step of adjusting the shape and size of the heat conductive sheet, such as punching the sheet, may be provided as necessary.
 シート状成形物を得る工程において、熱伝導性樹脂組成物をシート状に成形する方法は特に制限されず、プレス機、ロール、バーコーター等を用いて行うことができる。中でも、生産効率性の面からロール成形が好ましい。 In the step of obtaining the sheet-like molded product, the method for molding the heat conductive resin composition into a sheet shape is not particularly limited, and can be performed using a press machine, a roll, a bar coater or the like. Among these, roll forming is preferable from the viewpoint of production efficiency.
 シート状成形物を加熱により硬化させる方法としては、シート状成形物を加熱する方法、シート状成形物に紫外線等の活性エネルギー線を照射する方法が挙げられる。中でも、加熱する方法が好ましく用いられる。 Examples of the method of curing the sheet-shaped molded product by heating include a method of heating the sheet-shaped molded product and a method of irradiating the sheet-shaped molded product with active energy rays such as ultraviolet rays. Of these, the heating method is preferably used.
 加熱によって硬化させる際の加熱温度は、例えば80から150℃であり、好ましくは120から140℃である。加熱時間は、例えば0.5から72時間であり、好ましくは2から48時間である。硬化させる工程の後、必要に応じて、熱伝導性シートを養生させる工程を設けてもよい。養生温度は例えば60から120℃であり、養生時間は例えば0.5から72時間である。硬化させる工程および養生させる工程は、大気雰囲気、窒素雰囲気、アルゴン雰囲気、真空下のいずれの雰囲気下で行ってもよい。 The heating temperature for curing by heating is, for example, 80 to 150 ° C, preferably 120 to 140 ° C. The heating time is, for example, 0.5 to 72 hours, preferably 2 to 48 hours. After the step of curing, a step of curing the heat conductive sheet may be provided as necessary. The curing temperature is, for example, 60 to 120 ° C., and the curing time is, for example, 0.5 to 72 hours. The curing step and the curing step may be performed in any atmosphere such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or a vacuum.
 以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 <実施例1から34、比較例1から10>
 (1)熱伝導性樹脂組成物の調製
 表1から表3に示されるエポキシ化合物(A)、アミン化合物(B)および熱伝導性フィラー(C)を、同表に示される配合量で配合した後、自公転式真空撹拌ミキサー(株式会社EME社製の「V-mini300」)を用いて混練を行って、熱伝導性樹脂組成物を得た。同表に示されるアミン化合物(B)の配合量の単位は、エポキシ化合物(A)100質量部に対する質量部である。同表に示される熱伝導性フィラー(C)の配合量の単位は、エポキシ化合物(A)およびアミン化合物(B)の合計量100質量部に対する質量部である。
<Examples 1 to 34, Comparative Examples 1 to 10>
(1) Preparation of thermally conductive resin composition Epoxy compound (A), amine compound (B) and thermally conductive filler (C) shown in Tables 1 to 3 were blended in the blending amounts shown in the same table. Thereafter, kneading was performed using a self-revolving vacuum stirring mixer (“V-mini300” manufactured by EME Co., Ltd.) to obtain a heat conductive resin composition. The unit of the compounding amount of the amine compound (B) shown in the table is a part by mass with respect to 100 parts by mass of the epoxy compound (A). The unit of the blending amount of the thermally conductive filler (C) shown in the table is a part by mass with respect to 100 parts by mass of the total amount of the epoxy compound (A) and the amine compound (B).
 用いたエポキシ化合物(A)の種類、1分子中のエポキシ基数およびエポキシ当量、アミン化合物(B)の種類、1分子中のアミン水素数およびアミン水素当量、アミン化合物(B)が有するアミン水素の数とエポキシ化合物(A)が有するエポキシ基の数との比(アミン水素数/エポキシ基数。表1においては「AH/EP比」と称する。)、ならびに、用いた熱伝導性フィラー(C)の種類および配合量を併せて表1から表3に示す。 Kind of epoxy compound (A) used, number of epoxy groups and epoxy equivalent in one molecule, kind of amine compound (B), number of amine hydrogen and amine hydrogen equivalent in molecule, amine hydrogen of amine compound (B) The ratio of the number of the epoxy group (A) to the number of epoxy groups (the number of amine hydrogens / the number of epoxy groups, referred to as “AH / EP ratio” in Table 1), and the thermally conductive filler (C) used Tables 1 to 3 show the types and blending amounts.
 表1から表3に示される配合成分の詳細は次のとおりである。
〔1〕A-1:ポリテトラメチレングリコールジグリシジルエーテル(四日市合成株式会社製の「エポゴーセーPT(高分子グレード)」、数平均分子量Mn:2144)。A-1は、次の化学構造を有する。
The details of the ingredients shown in Tables 1 to 3 are as follows.
[1] A-1: Polytetramethylene glycol diglycidyl ether (“Epogosei PT (polymer grade)” manufactured by Yokkaichi Gosei Co., Ltd., number average molecular weight Mn: 2144). A-1 has the following chemical structure:
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
〔2〕A-2:ポリテトラメチレングリコールジグリシジルエーテル(四日市合成株式会社製の「エポゴーセーPT(一般グレード)」、数平均分子量Mn:870)。A-2の化学構造は、整数xの値が異なること以外はA-1と同じである。
〔3〕A-3:上記式[1]で表される(メタ)アクリル系構造を主鎖骨格として有するエポキシ基含有(メタ)アクリル系重合体(東亜合成株式会社製の「ARUFON UG-4010」、数平均分子量Mn:2900)。
〔4〕A-4:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製の「JER828」、数平均分子量Mn:370)。
〔5〕B-1:ポリエーテルアミン(ハンツマン社製の「JEFFAMINE T5000」、数平均分子量Mn:5712)。B-1は、次の化学構造を有する。a+b+cは約85である。
[2] A-2: Polytetramethylene glycol diglycidyl ether (“Epogosei PT (general grade)” manufactured by Yokkaichi Gosei Co., Ltd., number average molecular weight Mn: 870). The chemical structure of A-2 is the same as A-1 except that the value of the integer x is different.
[3] A-3: An epoxy group-containing (meth) acrylic polymer having a (meth) acrylic structure represented by the above formula [1] as a main chain skeleton (“ARUFON UG-4010 manufactured by Toagosei Co., Ltd.) “Number average molecular weight Mn: 2900).
[4] A-4: Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, number average molecular weight Mn: 370).
[5] B-1: Polyetheramine (“JEFFAMINE T5000” manufactured by Huntsman, number average molecular weight Mn: 5712). B-1 has the following chemical structure. a + b + c is about 85.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
〔6〕B-2:ポリエーテルアミン(ハンツマン社製の「JEFFAMINE T403」、数平均分子量Mn:486)。B-2は、次の化学構造を有する。a+b+cは5から6である。 [6] B-2: Polyetheramine (“JEFFAMINE T403” manufactured by Huntsman, number average molecular weight Mn: 486). B-2 has the following chemical structure. a + b + c is 5 to 6.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
〔7〕B-3:ポリエーテルアミン(ハンツマン社製の「ELASTAMINE RT1000」、数平均分子量Mn:1040)。B-3は、第1級アミノ基を1分子中に2個有するポリ(テトラメチレンエーテルグリコール)/ポリプロピレングリコール共重合体である。
〔8〕B-4:東京化成工業株式会社製のジエチレントリアミン(DTA)、数平均分子量Mn:103。
〔9〕C-1:水酸化アルミニウムフィラー(日本軽金属株式会社製の「SBX73」)。
〔10〕C-2:窒化アルミニウムフィラー(株式会社トクヤマ製の「HF-01」)。
〔11〕C-3:アルミナフィラー(住友化学株式会社製の「AA-18」)。
[7] B-3: Polyetheramine (“ELASTAMINE RT1000” manufactured by Huntsman, number average molecular weight Mn: 1040). B-3 is a poly (tetramethylene ether glycol) / polypropylene glycol copolymer having two primary amino groups in one molecule.
[8] B-4: Diethylenetriamine (DTA) manufactured by Tokyo Chemical Industry Co., Ltd., number average molecular weight Mn: 103.
[9] C-1: Aluminum hydroxide filler (“SBX73” manufactured by Nippon Light Metal Co., Ltd.).
[10] C-2: Aluminum nitride filler (“HF-01” manufactured by Tokuyama Corporation).
[11] C-3: Alumina filler (“AA-18” manufactured by Sumitomo Chemical Co., Ltd.).
 (2)硬化物および熱伝導性シートの作製
 得られた熱伝導性樹脂組成物を100mLのフッ素樹脂製ビーカーに硬化後の厚みが10mmとなるように注ぎ込み、表1から表3に示される条件で加熱硬化させて、硬度測定用の硬化物を得た。
(2) Preparation of cured product and thermally conductive sheet The obtained thermally conductive resin composition was poured into a 100 mL fluororesin beaker so that the thickness after curing was 10 mm, and the conditions shown in Tables 1 to 3 And cured by heating to obtain a cured product for hardness measurement.
 また、得られた熱伝導性樹脂組成物をバーコーターにてフッ素樹脂シート上に硬化後の厚みが1.0mmとなるようにシート状に塗布し、表1から表3に示される条件で加熱硬化させて、熱伝導率測定用の熱伝導性シートを得た。 Moreover, the obtained heat conductive resin composition was apply | coated to the sheet form so that the thickness after hardening on a fluororesin sheet | seat might be set to 1.0 mm with a bar coater, and it heated on the conditions shown in Table 1 to Table 3 Curing was performed to obtain a thermal conductive sheet for measuring thermal conductivity.
 (3)評価試験
 (3-1)硬度
 上記硬度測定用の硬化物について、Asker C硬度計(高分子計器株式会社製)を用いて、JIS K 7312に準拠してAsker C硬度を測定した。結果を表1から表3に示す。
(3) Evaluation Test (3-1) Hardness The Asker C hardness of the cured product for measuring the hardness was measured according to JIS K 7312 using an Asker C hardness meter (manufactured by Kobunshi Keiki Co., Ltd.). The results are shown in Tables 1 to 3.
 (3-2)熱伝導率
 上記熱伝導率測定用の熱伝導性シートから直径10mmの円盤状のシートに切り出して、これを測定サンプルとした。得られた測定サンプルについて、レーザーフラッシュ法(非定常法)により熱伝導率〔W/(m・K)〕を測定した。結果を表1から表3に示す。
(3-2) Thermal conductivity The thermal conductive sheet for measuring thermal conductivity was cut into a disk-shaped sheet having a diameter of 10 mm and used as a measurement sample. About the obtained measurement sample, heat conductivity [W / (m * K)] was measured by the laser flash method (unsteady method). The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例1から実施例34では、良好な電気絶縁性を維持しながら、硬化物の低硬度化を達成することができた。例えば、実施例1から実施例27と比較例1から比較例8とを対比すると、これらは熱伝導性フィラー(C)の含有量が同じであるが、比較例1から比較例8ではアミン化合物(B)のアミン水素当量が所定の範囲でないために、ASKER C硬度が95以下とならなかった。比較例9においても、比較例1から比較例8よりも熱伝導性フィラー(C)の含有量が小さいにもかかわらず、アミン化合物(B)のアミン水素当量が所定の範囲でないために、ASKER C硬度が95以下とならなかった。また、実施例1から実施例27と比較例10とを対比すると、これらは熱伝導性フィラー(C)の含有量が同じであるが、比較例10ではエポキシ化合物(A)のエポキシ当量が所定の範囲でないために、ASKER C硬度が95以下とならなかった。実施例1から実施例34において得られた硬化物は、オレフィン構造とポリエチレングリコール構造を含まない樹脂を樹脂成分として含む硬化性樹脂組成物から得られたものであることから、耐熱性、ならびに耐湿性および耐水性に優れるものであることが理解される。 In Examples 1 to 34, it was possible to achieve low hardness of the cured product while maintaining good electrical insulation. For example, when Example 1 to Example 27 is compared with Comparative Example 1 to Comparative Example 8, they have the same content of the heat conductive filler (C), but in Comparative Examples 1 to 8, the amine compound is used. Since the amine hydrogen equivalent of (B) is not within the predetermined range, the ASKER C hardness did not become 95 or less. Even in Comparative Example 9, although the content of the heat conductive filler (C) is smaller than those of Comparative Example 1 to Comparative Example 8, the amine hydrogen equivalent of the amine compound (B) is not within the predetermined range. C hardness did not become 95 or less. Moreover, when Example 1 to Example 27 and Comparative Example 10 are compared, they have the same heat conductive filler (C) content, but in Comparative Example 10, the epoxy equivalent of the epoxy compound (A) is predetermined. As a result, the ASKER C hardness did not become 95 or less. The cured products obtained in Examples 1 to 34 were obtained from a curable resin composition containing a resin that does not contain an olefin structure and a polyethylene glycol structure as a resin component. It is understood that it has excellent properties and water resistance.
 AH/EP比を1から大きくずらし、例えば2.5から5(もしくは3から5)、または0.2から0.5(もしくは0.2から0.25)とすると、より低硬度化された硬化物が得られやすい傾向にある(例えば、実施例1、実施例4、実施例5、実施例8、実施例9、実施例10、実施例13、実施例14、実施例16、実施例17、実施例18、実施例21、実施例22、実施例23、実施例24、実施例27、実施例28、実施例30、実施例31、実施例32、実施例33、実施例34)。 When the AH / EP ratio is greatly shifted from 1, for example, 2.5 to 5 (or 3 to 5), or 0.2 to 0.5 (or 0.2 to 0.25), the hardness is further reduced. A cured product tends to be easily obtained (for example, Example 1, Example 4, Example 5, Example 8, Example 9, Example 10, Example 13, Example 14, Example 16, Example 16, Example) (17, Example 18, Example 21, Example 22, Example 23, Example 24, Example 27, Example 28, Example 30, Example 31, Example 32, Example 33, Example 34) .
 硬化物の低硬度化のためには、アミン化合物(B)として、B-1およびB-3のような数平均分子量が500以上のものを使用することが好ましい傾向にある。 In order to reduce the hardness of the cured product, it is preferable to use an amine compound (B) having a number average molecular weight of 500 or more such as B-1 and B-3.

Claims (13)

  1.  エポキシ化合物(A)と、アミン化合物(B)と、熱伝導性フィラー(C)と、を含む熱伝導性樹脂組成物であって、
     前記エポキシ化合物(A)は、ポリエチレングリコール構造以外のポリエーテル構造または下記式[1]:
    Figure JPOXMLDOC01-appb-C000001

    (式[1]中、mは1以上の整数を表し、Rは水素原子またはメチル基を表し、R
    アルキル基を表す。)
    で表される(メタ)アクリル系構造を有し、エポキシ当量が400から2000であり、前記アミン化合物(B)は、アミン水素当量が80から1000である
    、熱伝導性樹脂組成物。
    A thermally conductive resin composition comprising an epoxy compound (A), an amine compound (B), and a thermally conductive filler (C),
    The epoxy compound (A) is a polyether structure other than the polyethylene glycol structure or the following formula [1]:
    Figure JPOXMLDOC01-appb-C000001

    (In formula [1], m represents an integer of 1 or more, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group.)
    A thermally conductive resin composition having an (meth) acrylic structure represented by: an epoxy equivalent of 400 to 2000, and the amine compound (B) having an amine hydrogen equivalent of 80 to 1000.
  2.  前記ポリエーテル構造は、下記式[2]:

    (式[2]中、Rは鎖状アルキレン基を表す。)
    で表される構成単位を2個以上含む構造である、請求項1に記載の熱伝導性樹脂組成物。
    The polyether structure has the following formula [2]:

    (In the formula [2], R 3 represents a chain alkylene group.)
    The heat conductive resin composition of Claim 1 which is a structure containing two or more structural units represented by these.
  3.  前記エポキシ化合物(A)は、1分子中にエポキシ基を2個以上含み、前記アミン化合物(B)は、1分子中にアミン水素を4個以上含み、前記アミン化合物(B)が有するアミン水素の数と前記エポキシ化合物(A)が有するエポキシ基との比(アミン水素数/エポキシ基数)は、0.2から5であり、および前記熱伝導性樹脂組成物は、前記エポキシ化合物(A)および前記アミン化合物(B)の合計量100質量部に対して、前記熱伝導フィラー(C)を100質量部から1000質量部含む、請求項1または請求項2に記載の熱伝導性樹脂組成物。 The epoxy compound (A) contains two or more epoxy groups in one molecule, the amine compound (B) contains four or more amine hydrogens in one molecule, and the amine hydrogen that the amine compound (B) has The ratio of the number of the epoxy groups to the epoxy groups of the epoxy compound (A) (number of amine hydrogens / number of epoxy groups) is 0.2 to 5, and the thermally conductive resin composition comprises the epoxy compound (A) And the heat conductive resin composition of Claim 1 or Claim 2 which contains the said heat conductive filler (C) with respect to 100 mass parts of total amounts of the said amine compound (B) from 100 mass parts to 1000 mass parts. .
  4.  前記アミン化合物(B)は、分子末端に2個または3個の第1級アミノ基を有する、請求項1から請求項3のいずれか1項に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 3, wherein the amine compound (B) has two or three primary amino groups at a molecular end.
  5.  前記アミン化合物(B)は、ポリエチレングリコール構造以外のポリエーテル構造を有する、請求項1から請求項4のいずれか1項に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 4, wherein the amine compound (B) has a polyether structure other than a polyethylene glycol structure.
  6.  前記ポリエーテル構造は、下記式[3]:
    Figure JPOXMLDOC01-appb-C000003

    (式[3]中、Rは鎖状アルキレン基を表す。)
    で表される構成単位を2個以上含む構造である、請求項5に記載の熱伝導性樹脂組成物。
    The polyether structure has the following formula [3]:
    Figure JPOXMLDOC01-appb-C000003

    (In Formula [3], R 4 represents a chain alkylene group.)
    The heat conductive resin composition of Claim 5 which is a structure containing two or more structural units represented by these.
  7.  前記エポキシ化合物(A)および前記アミン化合物(B)は、ポリエチレングリコール構造以外のポリエーテル構造を有し、
     前記ポリエーテル構造は、下記式[4]:
    Figure JPOXMLDOC01-appb-C000004

    で表される構成単位、および下記式[5]:
    Figure JPOXMLDOC01-appb-C000005

    で表される構成単位からなる群より選択される1種以上の構成単位を合計で2個以上含む構造である、請求項1から請求項6のいずれか1項に記載の熱伝導性樹脂組成物。
    The epoxy compound (A) and the amine compound (B) have a polyether structure other than a polyethylene glycol structure,
    The polyether structure has the following formula [4]:
    Figure JPOXMLDOC01-appb-C000004

    And the following unit [5]:
    Figure JPOXMLDOC01-appb-C000005

    The thermally conductive resin composition according to any one of claims 1 to 6, which has a structure including at least two structural units selected from the group consisting of structural units represented by: object.
  8.  前記熱伝導性フィラー(C)は、金属水酸化物フィラー、金属酸化物フィラー、金属窒化物フィラーおよびケイ素化合物フィラーからなる群より選択される1種以上のフィラーを含む、請求項1から請求項7のいずれか1項に記載の熱伝導性樹脂組成物。 The said heat conductive filler (C) contains 1 or more types of fillers selected from the group which consists of a metal hydroxide filler, a metal oxide filler, a metal nitride filler, and a silicon compound filler. 8. The thermally conductive resin composition according to any one of 7 above.
  9.  前記エポキシ化合物(A)および前記アミン化合物(B)の合計量100質量部に対して、前記熱伝導性フィラー(C)を230質量部から450質量部含む、請求項1から請求項8のいずれか1項に記載の熱伝導性樹脂組成物。 Any of Claims 1-8 which contain the said heat conductive filler (C) from 230 mass parts to 450 mass parts with respect to 100 mass parts of total amounts of the said epoxy compound (A) and the said amine compound (B). The heat conductive resin composition of Claim 1.
  10.  請求項1から請求項9のいずれか1項に記載の熱伝導性樹脂組成物の硬化物。 A cured product of the thermally conductive resin composition according to any one of claims 1 to 9.
  11.  ASKER C硬度が95以下である、請求項10に記載の硬化物。 The hardened | cured material of Claim 10 whose ASKER C hardness is 95 or less.
  12.  請求項1から請求項9のいずれか1項に記載の熱伝導性樹脂組成物の硬化物を含む、熱伝導性シート。 A heat conductive sheet comprising a cured product of the heat conductive resin composition according to any one of claims 1 to 9.
  13.  熱伝導性シートの製造方法であって、
     請求項1から請求項9のいずれか1項に記載の熱伝導性樹脂組成物をシート状に成形してシート状成形物を得る工程と、
     前記シート状成形物を加熱により硬化させる工程と、
    を含む、製造方法。
    A method for producing a thermally conductive sheet, comprising:
    A step of molding the thermally conductive resin composition according to any one of claims 1 to 9 into a sheet to obtain a sheet-like molded product;
    Curing the sheet-shaped molding by heating;
    Manufacturing method.
PCT/JP2017/036103 2017-02-24 2017-10-04 Thermally conductive resin composition, cured product thereof, and thermally conductive sheet and method for manufacturing same WO2018154832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501024A JP6678809B2 (en) 2017-02-24 2017-10-04 Thermal conductive resin composition, cured product thereof, thermal conductive sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033454 2017-02-24
JP2017033454 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154832A1 true WO2018154832A1 (en) 2018-08-30

Family

ID=63253133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036103 WO2018154832A1 (en) 2017-02-24 2017-10-04 Thermally conductive resin composition, cured product thereof, and thermally conductive sheet and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6678809B2 (en)
WO (1) WO2018154832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108035A1 (en) * 2019-11-26 2021-06-03 Ddp Specialty Electronic Materials Us, Llc Epoxy based thermal interface material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256788A (en) * 2002-11-29 2004-09-16 Sekisui Chem Co Ltd Thermally eliminable material
JP2013071960A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Insulating material and laminated structure
WO2016010067A1 (en) * 2014-07-18 2016-01-21 積水化学工業株式会社 Material for semiconductor element protection and semiconductor device
WO2016142452A1 (en) * 2015-03-11 2016-09-15 Basf Se Method for producing compact polyurethanes with improved hydrolytic stability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256788A (en) * 2002-11-29 2004-09-16 Sekisui Chem Co Ltd Thermally eliminable material
JP2013071960A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Insulating material and laminated structure
WO2016010067A1 (en) * 2014-07-18 2016-01-21 積水化学工業株式会社 Material for semiconductor element protection and semiconductor device
WO2016142452A1 (en) * 2015-03-11 2016-09-15 Basf Se Method for producing compact polyurethanes with improved hydrolytic stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108035A1 (en) * 2019-11-26 2021-06-03 Ddp Specialty Electronic Materials Us, Llc Epoxy based thermal interface material
CN114746469A (en) * 2019-11-26 2022-07-12 Ddp特种电子材料美国有限责任公司 Epoxy-based thermal interface materials

Also Published As

Publication number Publication date
JP6678809B2 (en) 2020-04-08
JPWO2018154832A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US9029438B2 (en) Thermosetting resin composition, B-stage heat conductive sheet, and power module
TWI574913B (en) The method of granulating insulating fins and boron nitride
JP5171798B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP2013189625A (en) High thermal conductive resin cured product, high thermal conductive semicured resin film, and high thermal conductive resin composition
JP2009292881A (en) High heat-conductive epoxy resin-based composition
JP5721416B2 (en) Thermally conductive adhesive
JP2009149736A (en) Heat-conductive silicone gel composition
JP6558671B2 (en) Epoxy resin composition for sealing and semiconductor device
JP6493287B2 (en) Liquid resin composition
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
EP2952539B1 (en) Heat-curable resin composition
JP5627196B2 (en) Epoxy resin composition and cured product thereof
WO2019130960A1 (en) Ultraviolet curable organopolysiloxane composition, silicone gel cured product and method for producing same, and pressure sensor
JP2009167372A (en) Adhesive for electrical part
JP6678809B2 (en) Thermal conductive resin composition, cured product thereof, thermal conductive sheet and method for producing the same
TW201516088A (en) Film forming resin composition, insulating film and semiconductor device
JP2008277768A (en) Insulative heat conductive sheet
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP7404127B2 (en) epoxy resin composition
TW202033668A (en) Resin composition, resin cured product, and composite molded body
JP2020063438A (en) Resin composition, resin cured product and composite molding
JP2020084086A (en) Thermosetting resin composition
JP2020084088A (en) Thermosetting resin composition
KR20210018867A (en) Thermally conductive resin composition
JP2020181672A (en) Conductive adhesion sheet, method for manufacturing conductive adhesion sheet, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897300

Country of ref document: EP

Kind code of ref document: A1