WO2018154644A1 - Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device - Google Patents

Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device Download PDF

Info

Publication number
WO2018154644A1
WO2018154644A1 PCT/JP2017/006529 JP2017006529W WO2018154644A1 WO 2018154644 A1 WO2018154644 A1 WO 2018154644A1 JP 2017006529 W JP2017006529 W JP 2017006529W WO 2018154644 A1 WO2018154644 A1 WO 2018154644A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoelectric conversion
image sensor
wiring
layer
Prior art date
Application number
PCT/JP2017/006529
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 加藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/006529 priority Critical patent/WO2018154644A1/en
Publication of WO2018154644A1 publication Critical patent/WO2018154644A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a solid-state imaging device, a fluorescence observation endoscope apparatus, and a method of manufacturing a solid-state imaging device.
  • ICG indocyanine green
  • ICG fluorescent drug
  • an examiner such as a doctor determines the presence or absence of a lesion from the brightness of fluorescence emission observed by a medical system.
  • a configuration for observing fluorescence light in the infrared region such as near infrared light is irradiated as excitation light for exciting ICG, and fluorescence is emitted by the irradiated excitation light It is equipped with a fluorescence observation device for imaging a specific protein of the illuminated lesion.
  • Patent Document 1 discloses an endoscope apparatus capable of performing observation of fluorescence using excitation light in addition to ordinary observation using visible light.
  • visible light and excitation light are irradiated from the tip of the insertion portion onto the subject, and the visible light and the excitation light reflected from the subject are excited by the excitation light.
  • visible light, excitation light, and fluorescence guided to the camera head are visible light and excitation light by the dichroic mirror provided in the camera head. And separate into fluorescence and fluorescence.
  • the visible light separated here is imaged by the imaging means.
  • the excitation light is removed (cut) from the separated excitation light and fluorescence by the excitation light cut filter provided in the camera head, and only the fluorescence is intensified. It is amplified by the fire and imaged by an imaging means other than the imaging means for visible light.
  • endoscope apparatuses of the type in which the imaging unit is mounted outside the insertion unit there are endoscope apparatuses of the type in which the imaging unit is mounted outside the insertion unit and the type in which the imaging unit is mounted at the distal end of the insertion unit.
  • an endoscope apparatus of a type in which the imaging unit is mounted on the distal end of the insertion unit wide-range observation can be performed by bending the distal end of the insertion unit on which the imaging unit is mounted. Become.
  • Patent Document 1 has a configuration in which only one imaging unit is mounted at the tip of the insertion portion, and normal observation using visible light and fluorescence observation using excitation light are performed in time series.
  • An endoscopic device is also disclosed.
  • the tip of the insertion portion is limited by a band limiting filter for limiting the wavelength band of the light source. The light to be irradiated to the object to be inspected is switched. More specifically, in the endoscope apparatus disclosed in Patent Document 1, each of a visible light transmission filter for transmitting visible light and an infrared light transmission filter for transmitting infrared light is equally divided into two circles.
  • the displacement of the position of the object to be inspected appears more prominently in the case where there is a movement in the object to be inspected or the insertion part, for example, in an endoscope apparatus of a surgical system. Further, in the configuration of the endoscope apparatus disclosed in Patent Document 1 in which only one imaging unit is mounted at the tip of the insertion portion, the period (frame period) in which the imaging unit captures an image In order to synchronize, control of the imaging unit becomes complicated.
  • Patent Document 2 discloses a technique for arranging a stacked imaging element at the tip of an endoscope apparatus.
  • visible light and excitation light are irradiated to the subject from the tip of the endoscope scope, and the visible light and the excitation light reflected from the subject are excited.
  • the fluorescence emitted from the ICG by excitation with light is incident on the imaging device.
  • the mounting area of a small solid-state imaging device has a high proportion depending on the number of electrode pads disposed on the substrate. Therefore, the configuration in which the number of electrode pads is doubled as disclosed in Patent Document 2 causes an increase in the mounting area of the solid-state imaging device. Therefore, in the stacked solid-state imaging device as disclosed in Patent Document 2, the size (area) of each substrate is reduced by reducing the size (area) of the pixels arranged on each substrate. It is conceivable to reduce the mounting area.
  • the distance between the respective pixels that is, the so-called pixel pitch becomes narrow. It is conceivable that no light is incident. This is because in the stacked solid-state imaging device, the second substrate is at a position far from the light incident side, and the fluorescence has a long wavelength, so the influence of diffraction is large and the diffusion of light is fast (light The amount of light diffusion is large). Then, in the stacked solid-state imaging device, if the fluorescence is not efficiently incident on the second substrate, the image quality of the image of the fluorescence to be captured may be degraded.
  • FIG. 10 is a diagram showing an example of the structure of the stacked solid-state imaging device and the distribution characteristic of the light intensity.
  • FIG. 10A schematically shows an example of the cross-sectional structure of a region in which pixels are arranged in the stacked solid-state imaging device. More specifically, in (a) of FIG.
  • two “R pixels” and two pixels (hereinafter “G pixels”) to which an on-chip color filter for transmitting light (visible light) in the green (G) wavelength band is attached are alternately provided.
  • positioned one by one is shown typically.
  • the solid-state imaging device 930 has a structure in which a first substrate 931 and a second substrate 932 are stacked with a bonding layer 933 interposed therebetween, as shown in FIG. More specifically, in the solid-state imaging device 930, the microlens layer 935, the on-chip color filter layer 934, the first substrate 931, the bonding layer 933, the second, and the light traveling direction are from the light incident side. And the support substrate 936 in this order.
  • the first substrate 931 includes a photoelectric conversion layer 931-1 in which photoelectric conversion elements (light receiving elements) such as photodiodes forming a pixel are disposed (formed), and a circuit formed over the first substrate 931.
  • the second substrate 932 also includes a photoelectric conversion layer 932-1 on which a photoelectric conversion element (light receiving element) is disposed (formed) and a circuit formed on the second substrate 932 It is formed by the wiring layer 932-2 in which the wiring for connecting the elements is formed.
  • the result of optical simulation of the light intensity distribution of f is confirmed.
  • the distribution of the light intensity of the visible light G on the silicon surface on the light incident side to the photoelectric conversion layer 931-1 is near the center of the position where the G pixel is arranged, that is, , G (peak) at the center position which is the focal point of the microlens corresponding to the G pixel. Further, as shown in (b) of FIG.
  • the light intensity distribution of the fluorescence f on the silicon surface on the light incident side to the photoelectric conversion layer 931-1 is also weaker than that of the visible light G, Similar to the visible light G, it has a peak near the center of the position where the G pixel is disposed. As shown in (b) of FIG. 10, the light intensity of the fluorescent light f is weaker than that of the visible light G because the fluorescent light f is very weak light emitted from the ICG by the excitation light. It is for.
  • the G pixel is transmitted on the surface (surface of the silicon substrate) of the photoelectric conversion layer 931-1 on the side from which the light incident on the first substrate 931 is transmitted and emitted as shown in (c) of FIG.
  • the results of optical simulation of the distribution of the light intensity of the visible light G and the fluorescence f are confirmed. Note that since the visible light G transmitted without being absorbed by the photoelectric conversion layer 931-1 (silicon substrate) has a weak light intensity, in (c) of FIG. 10, the relative magnitude of the light intensity is The range of intensity (magnitude) is shown enlarged according to the visible light G and the fluorescence f where the light intensity is weak. As shown in (c) of FIG.
  • the distribution of the light intensity of the visible light G on the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted is the photoelectric conversion layer 931-1. Similar to the distribution of the light intensity of the visible light G on the silicon surface on the light incident side, it has a peak near the center of the position where the G pixel is disposed. On the other hand, as shown in (c) of FIG. 10, the distribution of the light intensity of the fluorescence f on the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted is the photoelectric conversion layer. Unlike the distribution of the light intensity of the fluorescence f on the silicon surface on the light incident side to 931-1, it has a peak near the position where the G pixel is arranged and the position where the R pixel is arranged.
  • the fluorescence f is transmitted through the photoelectric conversion layer 931-1 (silicon substrate), and the position where the light intensity distribution peaks is shifted from the vicinity of the center of the position where the pixels are arranged. It was confirmed by optical simulation that the That is, since the diffusion proceeds in the photoelectric conversion layer 931-1 due to the diffraction phenomenon from the time when the fluorescence f having a long wavelength enters from the silicon surface on the light incident side to the photoelectric conversion layer 931-1, it is close The position where the light intensity distribution peaks gradually as the light travels (as the light approaches the wiring layer 931-2) due to the interference with the fluorescence f which has similarly diffused in the (adjacent) pixels, It shifts to the position of the wiring in the wiring layer 931-2. For this reason, most of the fluorescent light f strikes the wiring in the wiring layer 931-2 and is reflected, and can not pass through the wiring layer 931-2 and can not reach the second substrate 932. It was confirmed by simulation.
  • the light intensity distribution of the fluorescent light f has a peak at the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted.
  • the wiring layer 931-2 of the first substrate 931 the wiring layer is overlapped with the region where the wiring is formed. In this case, the fluorescence that has entered the solid-state imaging device 930 and transmitted through the photoelectric conversion layer 931-1 is blocked by the wiring formed in the wiring layer 931-2 of the first substrate 931, and the photoelectric conversion of the second substrate 932 The proportion of fluorescence incident on the photoelectric conversion element (light receiving element) disposed (formed) in the conversion layer 932-1 is significantly reduced.
  • the light amount of the fluorescence incident on the photoelectric conversion element (light receiving element) disposed (formed) on the second substrate decreases and the sensitivity to the fluorescence decreases.
  • the image quality of the fluorescence image captured by the second substrate 932 is degraded.
  • the pixel area is reduced and the pixel pitch is narrowed in order to reduce the mounting area in the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, it is arranged on the second substrate ( The sensitivity to fluorescence in the formed pixel is reduced, and the resolution of the image of the fluorescence imaged on the second substrate is reduced. Therefore, in the stacked solid-state imaging device, in order to allow the fluorescence having a long wavelength to be transmitted through the first substrate and to be incident on the second substrate even when the light diffuses beyond the diffraction limit. In order to increase the area of the pixel, that is, to increase the pixel pitch.
  • the pixel pitch is 2 um or less
  • the influence of the diffraction of fluorescence is large, the deterioration of the image quality of the image of the fluorescence imaged by the second substrate is within the allowable range, that is, the second substrate
  • the sensitivity of the photoelectric conversion element (light receiving element) arranged (formed) and the resolution of the captured fluorescence image within the allowable range it is necessary to make the pixel pitch wider than 2 um.
  • the present invention is made based on the above problems, and is a solid-state imaging device configured to stack a plurality of semiconductor substrates in which photoelectric conversion parts are formed, and to simultaneously image visible light and fluorescence excited by a fluorescent substance.
  • a solid-state imaging device capable of achieving downsizing while suppressing deterioration in image quality of an image obtained by imaging fluorescence, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device. It is intended to be provided.
  • the first photoelectric conversion layer in which the first photoelectric conversion element that photoelectrically converts incident light is formed, and the first photoelectric conversion element A first semiconductor substrate on which a first wiring layer is formed on a surface opposite to the surface on which light is incident, and a side on which light is incident on the first semiconductor substrate; A second photoelectric conversion layer in which a second photoelectric conversion element for photoelectrically converting light transmitted through the first semiconductor substrate is formed, and a second wiring is formed.
  • the light transmitting region is formed of a high refractive index material having a light refractive index larger than that of the first wiring layer. It may have a light pipe.
  • the first wiring and the outside are formed on the first semiconductor substrate and penetrate the first photoelectric conversion layer.
  • a penetrating electrode which penetrates the dielectric multilayer filter and electrically connects the first wiring and the second wiring. It is also good.
  • the signal from V.4 may be connected to the second wiring through the through electrode and supplied to the second semiconductor substrate.
  • the solid-state imaging device of the third aspect or the fourth aspect it is formed on at least one of the first semiconductor substrate and the second semiconductor substrate.
  • Controlling the first photoelectric conversion element and the second photoelectric conversion element via the first wiring or the second wiring, and the first photoelectric conversion element and the second photoelectric conversion element A peripheral circuit for outputting the photoelectrically converted electric signal to the first wiring or the second wiring, the peripheral circuit formed on the first semiconductor substrate, and the second semiconductor substrate Among the formed peripheral circuits, at least one peripheral circuit which realizes the same function necessary for control of each of the first photoelectric conversion element and the second photoelectric conversion element is the first one. Photoelectric conversion element and before Even if a common peripheral circuit integrated with a function realized to correspond to both of the second photoelectric conversion element is formed on one of the first semiconductor substrate and the second semiconductor substrate Good.
  • the common peripheral circuit is a clock generator that generates the reference clock signal based on the supplied master clock.
  • a storage device as the peripheral circuit that stores setting values for defining the operation of the solid-state imaging device, or an electrical signal obtained by photoelectric conversion of the first photoelectric conversion element and the second photoelectric conversion element
  • the peripheral circuit may be any one of the serializers, which is the peripheral circuit that outputs a serial imaging signal to the outside.
  • the interval at which the first photoelectric conversion element is formed is incident on the first semiconductor substrate to be the first. It may be equal to or less than the interval at which the light transmitted through the photoelectric conversion layer starts to be affected by diffraction.
  • the fluorescence observation endoscope apparatus is a fluorescence observation endoscope apparatus for observing a fluorescent substance, and the test object is irradiated with visible light and the fluorescent substance.
  • a light source device capable of irradiating the inspection object with light including a wavelength band of excitation light for emitting fluorescence, and a first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed
  • a first semiconductor substrate having a first wiring layer on which a first wiring is formed on the surface opposite to the surface on which light is incident to the first photoelectric conversion element;
  • a second photoelectric conversion layer is formed on a surface of the first semiconductor substrate opposite to the light incident side, and a second photoelectric conversion element is formed to photoelectrically convert light transmitted through the first semiconductor substrate.
  • a second semiconductor substrate on which a second wiring layer in which a second wiring is formed is formed
  • a method of manufacturing a solid-state imaging device comprising: a first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed; A light is incident on a first semiconductor substrate having a first wiring layer on which a first wiring is formed on the surface opposite to the surface on which light is incident on the element, and the first semiconductor substrate.
  • the second photoelectric conversion layer is formed on the side opposite to the side where the light is transmitted, and the second photoelectric conversion element is formed to photoelectrically convert the light transmitted through the first semiconductor substrate, and the second wiring is formed.
  • the first photoelectric conversion element in the first wiring layer at least before the first step.
  • Forming a light transmitting region at a position corresponding to the second surface, and forming a back surface electrode for drawing out the first wiring on the surface opposite to the light incident side to the first semiconductor substrate to form a flat surface A third step of forming the first bonding surface, a fourth step of forming a dielectric multilayer filter on the surface on the side where light is incident to the second semiconductor substrate, and the dielectric multilayer film
  • a fifth step of forming a protective film thicker than the thickness of each layer of the dielectric forming the dielectric multilayer filter on the surface on the light incident side of the filter; the protective film and the dielectric multilayer Through the membrane filter and on the side where light is incident on the protective film A sixth step of forming a through electrode for drawing out the second wiring, and a second step in which the formed through electrode and the protective film are planarized together
  • the solid-state imaging device configured to stack a plurality of semiconductor substrates on which the photoelectric conversion portions are formed and simultaneously image visible light and fluorescence excited by the fluorescent substance, the image quality of the image obtained by imaging fluorescence It is possible to provide a solid-state imaging device capable of achieving downsizing while suppressing a drop in the size, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a fluorescence observation endoscope apparatus according to an embodiment of the present invention.
  • the fluorescence observation endoscope apparatus 1 includes an endoscope scope unit 10, a light source device 20, an external processing unit 30, and a color monitor 40.
  • the fluorescence observation endoscope apparatus 1 is, for example, an endoscope apparatus for laparoscopic surgery.
  • the insertion portion into the body in the endoscope unit 10 is inserted into the abdomen 900 of the person to be examined, and the object to be observed 901 such as a living tissue in the body of the person to be examined Take a picture.
  • FIG. 1 shows a state in which the insertion portion of the endoscopic scope unit 10 constituting the fluorescence observation endoscope apparatus 1 is inserted into the abdomen 900 of a person to be inspected to photograph the object to be inspected 901 .
  • the fluorescence observation endoscope apparatus 1 is used for a test subject in a state in which a derivative-labeled antibody (fluorescent drug) such as ICG is previously administered into the body.
  • a derivative-labeled antibody fluorescent drug
  • ICG fluorescent drug
  • the fluorescence observation endoscope apparatus 1 excites and fluoresces the ICG administered by the photographing of the test subject 901 with visible light (hereinafter referred to as “normal photographing”) and irradiation of excitation light such as near infrared light And imaging the subject 901 with fluorescence (hereinafter referred to as “fluorescent imaging”).
  • the endoscope unit 10 includes an insertion unit 11 and an operation unit 12.
  • the operation unit 12 of the endoscope unit 10 and the light source device 20 are connected by an optical signal cable 50.
  • the operation unit 12 of the endoscope unit 10 and the external processing unit 30 are connected by an electric signal cable 60.
  • the insertion unit 11 is inserted into the abdomen 900 or the like of a person to be examined, and captures an image of the subject 901.
  • the illumination light guided through the light signal cable 50 is irradiated to the object to be inspected 901 from the tip of the insertion portion 11.
  • the endoscope scope unit 10 outputs an imaging signal corresponding to the imaged image of the test subject 901 to the external processing unit 30 via the electric signal cable 60.
  • the insertion portion 11 is inserted into the body of the test subject from the abdomen 900 of the test subject in a state in which ICG has been previously administered.
  • the insertion unit 11 includes an imaging unit 13 at the distal end.
  • the imaging unit 13 generates an imaging signal obtained by converting an image of the inspection object 901 into an electrical signal. Then, the imaging unit 13 outputs the generated imaging signal to the external processing unit 30 via the insertion unit 11, the operation unit 12, and the electric signal cable 60.
  • the operation unit 12 is a support unit that controls the operation of the insertion unit 11 and the imaging unit 13 by, for example, an operation of an examiner (for example, a doctor who performs laparoscopic surgery).
  • the operation unit 12 includes an imaging control switch 14 for controlling imaging in the fluorescence observation endoscope apparatus 1.
  • the imaging control switch 14 outputs a control signal for instructing imaging (normal imaging or fluorescent imaging) to the external processing unit 30 via the operation unit 12 and the electric signal cable 60, for example, in accordance with the operation of the examiner. .
  • the light source device 20 emits illumination light to be applied to the object to be inspected 901 when observing the object to be inspected 901 in the fluorescence observation endoscope apparatus 1.
  • the illumination light emitted from the light source device 20 is guided to the operation unit 12 of the endoscope unit 10 through the light signal cable 50, and the imaging unit 13 provided at the tip of the insertion unit 11 irradiates the inspection object 901 Be done.
  • the light source device 20 emits illumination light in a wavelength band used to image the subject 901 in the fluorescence observation endoscope apparatus 1.
  • the light source device 20 visible light used by the fluorescence observation endoscope apparatus 1 to perform normal imaging of the inspection object 901 and fluorescence of the inspection object 901 by the fluorescence observation endoscope apparatus 1 And emitting excitation light including excitation light used to perform imaging.
  • the external processing unit 30 performs predetermined image processing on an imaging signal of the subject 901 to be inspected, which is input through the electrical signal cable 60 and captured by the imaging unit 13 included in the endoscope unit 10, This is an image processing apparatus that generates an image including the photographed subject 901.
  • the external processing unit 30 outputs the image signal of the image including the generated inspection object 901 to the color monitor 40 for display.
  • the external processing unit 30 transmits a control signal (drive signal) when the imaging unit 13 captures an image of the test object 901 to the imaging unit 13 via the electric signal cable 60.
  • the color monitor 40 is a display device such as, for example, a liquid crystal display (LCD) that displays an image including the test subject 901 according to the image signal input from the external processing unit 30.
  • LCD liquid crystal display
  • the fluorescence observation endoscope apparatus 1 performs normal imaging of the subject 901 with visible light and fluorescence imaging of the subject 901 with fluorescence in which the ICG administered to the subject is excited by excitation light. And do. Then, the fluorescence observation endoscope apparatus 1 presents, to the examiner, an image including the photographed subject 901 to be examined.
  • FIG. 2 is a block diagram showing a schematic configuration of the fluorescence observation endoscope apparatus 1 according to the embodiment of the present invention.
  • the imaging unit 13 provided at the tip of the endoscope scope unit 10 constituting the fluorescence observation endoscope apparatus 1 includes an imaging lens 130, an excitation light cut filter 131, and a laminated image sensor 132. And a light guide 51.
  • the light guide 51 is, for example, a light guide cable such as an optical fiber that guides the illumination light emitted by the light source device 20 to the imaging unit 13.
  • the illumination light emitted by the light source device 20 is guided by the light guide 51 to the imaging unit 13 through the light signal cable 50, the operation unit 12, and the insertion unit 11, and the tip of the light guide 51 irradiates the inspection object 901 Be done.
  • the imaging lens 130 emits the incident light, that is, the reflected light and fluorescence from the inspection object 901 irradiated with the illumination light emitted by the light source device 20 to the laminated image sensor 132 side, and Are formed on the imaging surface of the laminated image sensor 132.
  • the excitation light cut filter 131 is an optical filter that reflects or absorbs only the light of the wavelength band of the excitation light contained in the reflected light from the inspection object 901 emitted from the imaging lens 130 and the fluorescence and attenuating the light.
  • the excitation light cut filter 131 attenuates light in a wavelength band around 700 nm to 800 nm, which is the wavelength band of excitation light.
  • the excitation light cut filter 131 since the excitation light cut filter 131 attenuates the excitation light contained in the incident reflected light and the fluorescence to a level close to “0”, it is not “attenuation” but “cut (cut)”. It demonstrates using the expression ".”
  • the excitation light cut filter 131 emits the reflected light and fluorescence from the test object 901 whose excitation light has been cut to the stacked image sensor 132.
  • the stacked image sensor 132 exposes (detects) incident light according to control from the control unit 31 described later provided in the external processing unit 30, and outputs an electric signal obtained by photoelectric conversion of the exposed light as an imaging signal. It is a solid-state imaging device of the present invention.
  • the laminated image sensor 132 exposes the reflected light and fluorescence from the object to be inspected 901 from which the excitation light emitted from the excitation light cut filter 131 is cut, and the imaging signals corresponding to the exposed reflected light and fluorescence are Generate
  • the stacked image sensor 132 is an image sensor that exposes (detects) reflected light (hereinafter referred to as a “visible image pickup image sensor”) and an image sensor that exposes (detects) fluorescence transmitted through the visible image pickup image sensor (Hereinafter, referred to as “fluorescent image capturing image sensor”), and an interlayer filter disposed between the visible image capturing image sensor and the fluorescent image capturing image sensor. That is, the stacked image sensor 132 has a structure in which the visible image capturing image sensor substrate and the fluorescent image capturing image sensor substrate are stacked with an interlayer filter interposed therebetween.
  • the visible image pickup image sensor constituting the stacked image sensor 132 outputs an image pickup signal obtained by exposing light (visible light) in the visible region of the reflected light.
  • a visible image pickup image sensor a plurality of pixels provided with photoelectric conversion elements (light receiving elements) such as photodiodes for photoelectrically converting incident light are arranged in a matrix.
  • a pixel (hereinafter referred to as “R pixel”) attached with an on-chip color filter that transmits light (visible light) in the red (R) wavelength band is attached to the pixels arranged in the visible image pickup image sensor , Pixels (hereinafter referred to as “G pixels”) attached with an on-chip color filter that transmits light (visible light) in the green (G) wavelength band and light (visible light) in the blue (B) wavelength band
  • RGB pixels Pixels
  • G pixels attached with an on-chip color filter that transmits light (visible light) in the green (G) wavelength band and light (visible light) in the blue (B) wavelength band
  • B pixel a pixel (hereinafter referred to as a "B pixel") to which an on-chip color filter that transmits light is attached.
  • the interlayer filter constituting the layered image sensor 132 transmits a visible image pickup image sensor (more specifically, a region of R pixel, G pixel, and B pixel arranged in the visible image pickup image sensor) Among the lights, it is an optical filter that reflects or absorbs light in the visible region (visible light) to attenuate it.
  • a multilayer interference filter in which inorganic materials are stacked in multiple layers such as a dielectric multilayer filter or a Fabry-Perot filter, is used as an interlayer filter.
  • the interlayer filter is described as a dielectric multilayer filter.
  • the fluorescent image pickup image sensor constituting the laminated type image sensor 132 outputs a fluorescent light, that is, an image pickup signal obtained by exposing light in the infrared region (near infrared light).
  • the fluorescence image pickup image sensor includes light transmitted through a visible image pickup image sensor (more specifically, an R pixel area, a G pixel area, and a B pixel area disposed in the visible image pickup image sensor) and an interlayer filter.
  • a plurality of pixels provided with photoelectric conversion elements (light receiving elements) such as photodiodes for photoelectric conversion are arranged in a matrix.
  • the pixels disposed in the fluorescence image capturing image sensor are referred to as “fluorescent pixels”.
  • the fluorescent pixel is a pixel that exposes (detects) fluorescence emitted from the ICG excited and excited by the excitation light such as near-infrared light emitted by the light source device 20 to the subject.
  • the stacked image sensor 132 is an imaging signal (hereinafter referred to as “visible image pickup”) according to an electric signal (hereinafter referred to as “pixel signal”) obtained by exposing and photoelectrically converting each pixel disposed in the visible image pickup image sensor
  • a signal “)” is output to the external processing unit 30 by the imaging signal line 61 passing through the insertion unit 11, the operation unit 12, and the electric signal cable 60.
  • the multi-layered image sensor 132 can visualize an imaging signal (hereinafter referred to as “fluorescent image imaging signal”) corresponding to a pixel signal obtained by exposing and photoelectrically converting each pixel disposed in the fluorescent image imaging image sensor.
  • the image pickup signal line 61 passing through the insertion unit 11, the operation unit 12, and the electric signal cable 60 is output to the external processing unit 30.
  • imaging signals when the visible image pickup signal and the fluorescence image pickup signal are not distinguished from one another, they are simply referred to as “imaging signals”.
  • the layered image sensor 132 performs analog / digital conversion (A / D conversion) on analog pixel signals output from respective pixels arranged in the visible image capturing image sensor and the fluorescent image capturing image sensor.
  • a digital value representing the magnitude of the pixel signal so-called RAW data, is output to the external processing unit 30 as each imaging signal.
  • the RAW data is a parallel digital value representing the magnitude of each pixel signal.
  • the layered image sensor 132 is a parallel digital value RAW data (hereinafter referred to as “ After parallel / serial conversion of parallel RAW data into serial digital value RAW data (hereinafter referred to as “serial RAW data”), each serial RAW data is output as an imaging signal to the external processing unit 30.
  • the light source device 20 constituting the fluorescence observation endoscope apparatus 1 includes the setting unit 21, two white light sources 221 and two white light sources 222, two die clock mirrors 231 and a die clock mirror 232. And a light irradiation lens 24.
  • Each of the white light source 221 and the white light source 222 is a light source that emits white light.
  • the white light source 221 emits white light of an intensity corresponding to the control from the setting unit 21.
  • a xenon lamp is used as the white light source 221 and the white light source 222.
  • a halogen lamp or a white LED (Light Emitting Diode) light source may be used as the white light source 221 and the white light source 222.
  • white light source 220 when the white light source 221 and the white light source 222 are not distinguished from one another, they are referred to as “white light source 220”.
  • the dichroic mirror 231 and the dichroic mirror 232 correspond to the white light source 221 and the white light source 222, respectively, and select (split) light of a specific wavelength band from the white light emitted by the corresponding white light source 220. Do.
  • Each of the die clock mirror 231 and the die clock mirror 232 emits the separated light to the light irradiation lens 24.
  • the light irradiation lens 24 is disposed for light in the wavelength band of visible light (for example, light in the wavelength band of 400 nm to 700 nm) of the white light emitted by the corresponding white light source 221
  • the visible light (white light) separated by being reflected in the vertical direction is emitted to the light irradiation lens 24.
  • visible light emitted from the dichroic mirror 231 to the light irradiation lens 24 includes light in the blue (B) wavelength band (for example, light in the 400 nm to 500 nm wavelength band) and green (G) wavelength bands.
  • Light for example, light in a wavelength band of 500 nm to 600 nm
  • light in a red (R) wavelength band for example, light in a wavelength band of 600 nm to 700 nm
  • the dichroic mirror 232 reflects light in the wavelength band of excitation light (for example, light in the wavelength band of 700 nm to 800 nm) of the white light emitted by the corresponding white light source 222 in the direction in which the light irradiation lens 24 is disposed.
  • the excitation light near infrared light
  • for exciting the ICG separated by the irradiation is emitted to the light irradiation lens 24.
  • the light irradiation lens 24 is an optical lens which condenses the light of the specific wavelength band emitted from each of the die clock mirror 231 and the die clock mirror 232 to the same degree as the diameter of the light guide 51.
  • the light irradiation lens 24 emits the condensed light to the first end face of the light guide 51.
  • the light guide 51 guides the light emitted from the light irradiation lens 24 to the imaging unit 13 and emits the light from the second end face disposed at the tip of the imaging unit 13 as illumination light emitted by the light source device 20
  • the test object 901 is irradiated.
  • the setting unit 21 causes the white light source 221 to emit light based on the visible image pickup signal input from the external processing unit 30 and the digital value (parallel RAW data) representing the magnitude of each pixel signal included in the fluorescence image pickup signal. Control the intensity of the white light.
  • the external processing unit 30 constituting the fluorescence observation endoscope apparatus 1 includes a control unit 31, a deserializer 32, an image processing unit 33, and a digital / analog conversion unit (D / A conversion unit) 34. And is comprised.
  • the deserializer 32 is an original parallel signal obtained by analog-to-digital conversion of the stacked image sensor 132 from an imaging signal (serial RAW data) output from the stacked image sensor 132 included in the imaging unit 13 and transmitted through the imaging signal line 61. Restore RAW data. That is, the deserializer 32 performs serial / parallel conversion on the input serial RAW data to restore parallel RAW data. Then, the deserializer 32 outputs the restored parallel RAW data to the image processing unit 33.
  • the image processing unit 33 performs various types of image processing on each parallel RAW data output from the deserializer 32 under the control of the control unit 31, and the test object 901 captured by the layered image sensor 132. Generate an image of digital values including More specifically, under the control of the control unit 31, the image processing unit 33 selects one of red (R), green (G), and blue (B) based on parallel RAW data of the visible image pickup signal. Generate a visible image of the digital value of visible light. Further, the image processing unit 33 generates a fluorescence image of a digital value of fluorescence based on parallel RAW data of the fluorescence image imaging signal according to the control from the control unit 31.
  • image processing unit 33 Under the control of the control unit 31, the image processing unit 33 generates image data for display (hereinafter referred to as "image data for display") of the data of the visible image and the data of the fluorescence image including the inspection object 901 generated Output to the digital / analog converter 34.
  • the image processing unit 33 sets the intensity of the white light in parallel RAW data (parallel RAW data of the visible image pickup signal and the fluorescence image pickup signal) output from the deserializer 32 according to the control from the control unit 31. It outputs to the setting part 21 with which the light source device 20 was equipped as a monitoring signal for this.
  • the image processing unit 33 may be a digital value representing the magnitude of the pixel signal output from each pixel disposed in the visible image capturing image sensor and the fluorescent image capturing image sensor provided in the stacked image sensor 132. , And output to the setting unit 21 as a monitoring signal.
  • the image processing performed by the image processing unit 33 on parallel RAW data includes, for example, demosaicing processing, white balance processing, gamma correction processing, and the like.
  • demosaicing process based on the input parallel RAW data (reconstructed parallel RAW data), an image in which all pixels included in the image are represented by pixel signals (digital values) corresponding to the light of the same wavelength band
  • pixel signals digital values
  • the digital value of each pixel is set so that the magnitude of the digital value of the pixel signal corresponding to each pixel at the same position in the image data becomes the same value for the white (white) subject.
  • gamma correction processing when an image corresponding to image data subjected to white balance processing is output and displayed on the color monitor 40, the color of the image signal of the image to be output and the image actually displayed on the color monitor 40.
  • Image processing to correct non-linearity of taste The image processing performed by the image processing unit 33 on parallel RAW data is controlled by the control unit 31.
  • the digital / analog conversion unit 34 performs digital / analog conversion (D / A conversion) on each of the display image data (digital value) input from the image processing unit 33.
  • the digital / analog conversion unit 34 outputs the image signal (analog signal) subjected to digital / analog conversion to the color monitor 40 as an image signal for display generated by the external processing unit 30, and the color monitor 40 Display the image that contains.
  • the control unit 31 is a processing device such as a central processing unit (CPU), for example, and controls the operation of the layered image sensor 132 provided in the imaging unit 13. More specifically, the control unit 31 performs various settings or the like when the laminated image sensor 132 captures an image of the test object 901 in the normal photographing and the fluorescent photographing of the test object 901 by the fluorescence observation endoscope apparatus 1. The timing at which the subject 901 is imaged is controlled. For example, the control unit 31 sets parameters such as a time (exposure time) and an interval (so-called frame rate) for exposing light incident on the laminated image sensor 132, and exposes the laminated image sensor 132 with the set parameters. The operation of (imaging) is performed.
  • CPU central processing unit
  • control unit 31 sets an analog / digital conversion or parallel / serial conversion parameter to be performed when the laminated image sensor 132 outputs an imaging signal, and an imaging signal (serial RAW data) converted by the set parameter ) Is output to the stacked image sensor 132.
  • control unit 31 controls a method of image processing performed by the image processing unit 33. More specifically, the control unit 31 generates parallel RAW data when the image processing unit 33 generates image data such as a visible image or a fluorescent image including the inspection object 901 captured by the laminated image sensor 132. Control the type and order of image processing to be performed. For example, the control unit 31 causes the image processing unit 33 to generate image data subjected to the gamma correction processing as display image data, and causes the digital / analog conversion unit 34 to output the image data.
  • control unit 31 causes the image processing unit 33 to perform image processing on the image data of the fluorescence image subjected to the gamma correction processing, and the image data subjected to the superposition processing for superimposing the image data of the visible image subjected to the gamma correction processing. It is generated as display image data and output to the digital / analog converter 34. Further, for example, the control unit 31 causes the image processing unit 33 to generate the image data of the visible image and the fluorescence image subjected to the demosaicing process as a monitoring signal for setting the intensity of the white light, and causes the light source device 20 to It is output to the provided setting unit 21.
  • the fluorescence observation endoscope apparatus 1 captures an image including the object to be inspected 901 by normal imaging with visible light and fluorescence imaging with fluorescence. And the fluorescence observation endoscope apparatus 1 displays each image including the to-be-tested object 901 which image
  • FIG. 3 is a block diagram showing a schematic configuration of a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention.
  • stacked image sensor 132 two image sensors (solid-state imaging device) of a visible image capturing image sensor and a fluorescent image capturing image sensor are stacked.
  • each image sensor is provided with the same components.
  • the components for realizing the functions of the image sensor also include components that can be made common to the respective image sensors.
  • components that can be made common by integrating components realized by the respective components into one component or components that realize the same function as one component are also included. ing.
  • each of the visible image capturing image sensor and the fluorescent image capturing image sensor is not configured to include all components for realizing the function of the image sensor. That is, in the layered image sensor 132, only one of the components that can be made common to each of the visible image capturing image sensor and the fluorescent image capturing image sensor is provided in any of the image sensors. That is, in the layered image sensor 132, components common to each of the visible image capturing image sensor and the fluorescent image capturing image sensor are dispersedly provided.
  • the visible image pickup image sensor includes a pixel unit 1321, a reading unit 1322, an analog / digital converter 1323, a control circuit 1324, a serial access memory 1325, and a serializer 1326.
  • FIG. 3 illustrates an example of a pixel portion 1321 in which a plurality of pixels 1320 are two-dimensionally arranged in 7 rows and 8 columns.
  • Each pixel 1320 disposed in the pixel portion 1321 generates a signal charge of an amount corresponding to the intensity of light incident on each disposed position, and accumulates the generated signal charge.
  • the plurality of pixels 1320 arranged in the pixel portion 1321 in the visible image pickup image sensor include R pixels, G pixels, and B pixels.
  • all the pixels 1320 arranged in the pixel portion 1321 are fluorescent pixels.
  • the arrangement of the pixels 1320 in the visible image pickup image sensor substrate and the fluorescent image pickup image sensor substrate is not limited to the same arrangement. That is, the total number of R pixels, G pixels, and B pixels in the visible image pickup image sensor and the number of fluorescent pixels in the fluorescent image pickup image sensor are not limited to the same number of pixels. .
  • the number of pixels of the fluorescence image pickup image sensor may be smaller than that of the visible image pickup image sensor.
  • the area of one pixel 1320 (fluorescent pixel) disposed on the fluorescence image pickup image sensor substrate is equivalent to four (2 rows and 2 columns) of pixels 1320 disposed on the visible image pickup image sensor substrate. It may be an area of 4).
  • the opening area for receiving light in the fluorescent pixels arranged on the fluorescent image pickup image sensor substrate is the opening of any of the R pixel, G pixel or B pixel arranged on the visible image pickup image sensor substrate
  • the fluorescent pixel placed on the image sensor substrate for capturing a fluorescent image, which is four times the area, can receive more light.
  • the readout unit 1322 is a peripheral circuit that controls readout of signal charges generated and accumulated by the pixels 1320 disposed in the pixel unit 1321.
  • the reading unit 1322 includes, for example, a vertical scanning circuit 13221, a horizontal scanning circuit 13222, and the like.
  • the vertical scanning circuit 13221 drives each pixel 1320 in the pixel portion 1321 row by row under control of the control circuit 1324 and generates a pixel signal as a voltage signal corresponding to the signal charge stored in each pixel 1320. It is a peripheral circuit to be output to the vertical signal line 1327 as Thus, pixel signals (analog signals) output from the respective pixels 1320 for each row are input to the analog / digital conversion unit 1323.
  • the horizontal scanning circuit 13222 controls the analog / digital conversion unit 1323 for each column of the pixels 1320 in the pixel unit 1321 according to the control from the control circuit 1324, and the analog / digital conversion unit 1323 performs analog / digital conversion. It is a peripheral circuit that causes the horizontal signal line 1328 to sequentially output the pixel signal (digital value) after being processed for each column of the pixels 1320 in the pixel portion 1321. Accordingly, pixel signals of digital values representing the magnitudes of analog pixel signals output from the respective pixels 1320 analog-to-digital converted by the analog / digital conversion unit 1323 are included in the respective pixels 1320 disposed in the pixel unit 1321. Each column is sequentially input to the serializer 1326.
  • the analog / digital conversion unit 1323 is a peripheral circuit that performs analog / digital conversion of analog pixel signals output from the respective pixels 1320 in the pixel unit 1321 under the control of the vertical scanning circuit 13221 in the reading unit 1322. .
  • an analog / digital conversion circuit (A / D conversion circuit) 13230 that outputs a digital value obtained by analog / digital converting a voltage value of an input analog signal is arranged in each pixel portion 1321.
  • 16 shows an example of the analog / digital converter 1323 having a configuration provided for each column of.
  • Each of the analog / digital conversion circuits 13230 outputs a pixel signal of a digital value obtained by analog / digital converting the voltage value of the analog pixel signal input from the pixel 1320 of the corresponding column under the control of the control circuit 1324 Peripheral circuits.
  • the analog / digital conversion unit 1323 receives the horizontal signal line 1328 of the pixel signal of the digital value obtained by analog / digital conversion of each of the analog / digital conversion circuits 13230 according to the control from the horizontal scanning circuit 13222 in the reading unit 1322. It outputs to the serializer 1326 via
  • the analog / digital conversion unit 1323 having a configuration including the analog / digital conversion circuit 13230 in each column of the pixels 1320 in the pixel portion 1321, that is, one analog / digital conversion circuit 13230 in one column.
  • the configuration in the analog / digital converter 1323 is not limited to the configuration shown in FIG.
  • the analog / digital conversion unit 1323 may be configured to include one analog / digital conversion circuit 13230 for a plurality of columns of the pixels 1320 in the pixel unit 1321.
  • one analog / digital conversion circuit 13230 may be configured to sequentially perform analog / digital conversion on voltage values of analog pixel signals output from the pixels 1320 of the respective columns.
  • the serializer 1326 is a peripheral circuit that performs parallel / serial conversion of pixel signals (digital values) sequentially input from the analog / digital converter 1323, that is, parallel RAW data, in accordance with control from the control circuit 1324.
  • the serializer 1326 outputs the parallel / serial converted serial RAW data as an imaging signal (visible image imaging signal) to the outside of the visible image capturing image sensor.
  • the serializer 1326 outputs the serial RAW data to the outside of the visible image pickup image sensor as a visible image pickup signal in accordance with, for example, a low voltage differential signaling (LVDS) method which is a differential interface method.
  • LVDS low voltage differential signaling
  • the serializer 1326 also performs LVDS type termination processing and the like.
  • the control circuit 1324 is a peripheral circuit that controls the respective components included in the visible image capturing image sensor, that is, the entire visible image capturing image sensor.
  • the control circuit 1324 controls the operation of each component included in the visible image pickup image sensor based on the setting (parameter) regarding the operation of the visible image pickup image sensor stored in the serial access memory 1325.
  • the control circuit 1324 reads the reading unit 1322 (vertical scanning circuit 13221 and horizontal scanning circuit 13222) based on parameters related to the operation of exposure (imaging) of the visible image pickup image sensor stored in the serial access memory 1325.
  • a control signal for controlling each of the analog / digital converter 1323 and the serializer 1326 is generated, and the generated control signal is output to each component.
  • each component provided in the visible image capturing image sensor performs each of the operations described above to output to the outside serial RAW data obtained by exposing (detecting) light incident on the visible image capturing image sensor. Do.
  • the serial access memory 1325 is a storage device storing various setting values (parameters) for defining the operation of the visible image capturing image sensor, that is, a peripheral circuit serving as a so-called register.
  • the serial access memory 1325 is, for example, a SPI (Serial Peripheral Interface) memory.
  • the serial access memory 1325 stores parameters necessary for the visible image capturing image sensor to perform an operation of exposure (imaging) in accordance with the control from the control unit 31 provided in the external processing unit 30.
  • the serial access memory 1325 may be an exposure time (accumulation time) or a frame rate at which the visible image pickup image sensor performs an operation of exposure (pickup), an image size representing the size of an image to be exposed (pickup), It stores parameters such as a reading method when outputting a signal.
  • the serial access memory 1325 is not limited to the SPI type memory, and may be, for example, an I2C (Inter-Integrated Circuit) type memory.
  • the visible image capturing image sensor and the fluorescent image capturing image sensor having such a configuration are stacked.
  • only one component (peripheral circuit) common to the two image sensors is disposed on any of the image sensor substrates (dispersed on each of the image sensor substrates).
  • the arrangement of the respective components (peripheral circuits) in the visible image capturing image sensor substrate and the fluorescent image capturing image sensor substrate constituting the stacked image sensor 132 will be described.
  • FIG. 4 is a block diagram showing an example of the arrangement of respective components in a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention.
  • components peripheral circuits disposed on the image sensor substrate of the visible image capturing image sensor substrate 132-1 constituting the stacked image sensor 132 and the fluorescence image capturing image sensor substrate 132-2 are provided. And schematically show examples of signal line connections between respective image sensor substrates.
  • FIG. 4 also shows an example of the arrangement of terminals through which the laminated image sensor 132 inputs and outputs signals to and from the outside.
  • each electrode pad (input / output pad) serving as the respective terminals are disposed only on the visible image pickup image sensor substrate 132-1.
  • each electrode pad (input / output pad) is disposed along the outer periphery of the visible image capturing image sensor substrate 132-1.
  • the pixel unit 1321, the reading unit 1322, and the analog / digital converting unit 1323 are independent in each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. Are arranged as separate components (peripheral circuits).
  • the pixel unit 1321-1 which is a combination of the pixel unit 1321 and the analog / digital conversion unit 1323, is disposed on the visible image pickup image sensor substrate 132-1, and the vertical scanning included in the readout unit 1322 A state in which the circuit 13221 and the horizontal scanning circuit 13222 are arranged as the vertical scanning circuit 13221-1 and the horizontal scanning circuit 13222-1 is shown. Further, in FIG.
  • a pixel unit 1321-2 which is a combination of the pixel unit 1321 and the analog / digital conversion unit 1323, is disposed on the fluorescence image pickup image sensor substrate 132-2 and included in the readout unit 1322.
  • the control circuit 1324, the serial access memory 1325, and the serializer 1326 are used as components (peripheral circuits, common peripheral circuits) common to the respective image sensors, and an image sensor substrate for picking up a visible image It is disposed on either 132-1 or the image sensor substrate 132-2 for capturing a fluorescent image.
  • FIG. 4 shows a state in which the control circuit 1324 and the serializer 1326 are disposed on the visible image capturing image sensor substrate 132-1, and the serial access memory 1325 is disposed on the fluorescent image capturing image sensor substrate 132-2. ing.
  • the component (common peripheral circuit) provided commonly to each image sensor in the stacked image sensor 132 (common peripheral circuit)
  • necessary signals are received by the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor It exchanges with the substrate 132-2. That is, the signal lines of the components (common peripheral circuits) common to the respective image sensors are connected between the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. .
  • FIG. 4 shows the case where the serial access memory 1325 disposed on the fluorescence image pickup image sensor substrate 132-2 is a SPI type memory (SPI memory).
  • the serial access memory 1325 configures the stacked image sensor 132 based on the controller clock SCK input from the outside of the stacked image sensor 132, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO. It stores various setting values (parameters) and the like for defining the operation of the image sensor.
  • the serial access memory 1325 divides and stores the storage area of the parameter corresponding to the visible image capturing image sensor constituting the stacked image sensor 132 and the parameter corresponding to the fluorescent image capturing image sensor.
  • the serial access memory 1325 outputs stored parameters and the like based on the externally input controller clock SCK, SPI trigger signal CS, SPI input signal MOSI, and SPI output signal MISO (for confirmation (for confirmation) Including the output).
  • serial access memory 1325 (SPI memory) corresponding to each signal of the controller clock SCK, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO is the same as that of the existing SPI type memory . Therefore, detailed description of the operation of the serial access memory 1325 is omitted.
  • terminals (electrode pads) for inputting and outputting signals are disposed only on the visible image capturing image sensor substrate 132-1. Therefore, the controller clock SCK, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO input to the serial access memory 1325 are sent to the image sensor substrate 132-1 for capturing a visible image.
  • the signal is input from the outside to the arranged terminal (electrode pad), passes through the inside of the visible image pickup image sensor substrate 132-1, and is input to the serial access memory 1325 arranged on the fluorescent image pickup image sensor substrate 132-2. Ru.
  • the above-described two power supplies (power supply VDD1 and ground GND1, power supply VDD2 and ground GND2) are also included in the visible image pickup image sensor substrate 132-1 in the same manner as the respective signals input to the serial access memory 1325. , And is supplied to the fluorescence image pickup image sensor substrate 132-2. That is, in the stacked image sensor 132, the terminals of the two power supplies supplied to the fluorescent image capturing image sensor substrate 132-2 are shared with the visible image capturing image sensor substrate 132-1.
  • FIG. 4 shows each of a clock generator 13241 and a timing generator 13242 which are components of the control circuit 1324 disposed on the visible image pickup image sensor substrate 132-1.
  • the clock generator 13241 is a component (peripheral circuit) in the multilayer image sensor 132 based on the master clock MCLK input from the outside to a terminal (electrode pad) disposed on the visible image pickup image sensor substrate 132-1. Is a peripheral circuit that generates a reference clock signal to operate.
  • the clock generator 13241 is configured of, for example, a PLL (Phase Locked Loop).
  • the clock generator 13241 outputs (supplies) the generated reference clock signal to components (peripheral circuits) in the stacked image sensor 132.
  • the timing generator 13242 is a control signal synchronized with a reference clock signal for controlling the operation of each component (peripheral circuit) included in the stacked image sensor 132 based on the parameters stored in the serial access memory 1325. Are generated and output to corresponding components (peripheral circuits). More specifically, the timing generator 13242 generates the control signal in the vertical scanning circuit 13221-1, the horizontal scanning circuit 13222-1, and the pixel unit 1321-1 disposed on the visible image capturing image sensor substrate 132-1. The signal is output to each of an analog / digital conversion unit 1323 and a serializer 1326 (not shown).
  • the timing generator 13242 can generate the generated control signal in the vertical scanning circuit 13221-2, the horizontal scanning circuit 13222-2, and the pixel portion 1321-2 disposed on the fluorescence image capturing image sensor substrate 132-2.
  • the signal is output to each of the illustrated analog / digital converter 1323.
  • the serializer 1326 is not shown in the analog / digital conversion unit 1323 in the pixel unit 1321-1 disposed on the visible image capturing image sensor substrate 132-1, or a fluorescent image Pixel signals (parallel RAW data) sequentially input from an analog / digital conversion unit 1323 (not shown) in the pixel unit 1321-2 disposed on the image sensor substrate 132-2 for imaging are subjected to parallel / serial conversion.
  • the serializer 1326 outputs parallel / serial converted serial RAW data from terminals (electrode pads) of differential signals (differential positive signal pos and differential negative signal neg) for outputting to the outside.
  • the stacked image sensor 132 only one component (peripheral circuit, common peripheral circuit) common to two image sensors is provided to any of the image sensors (dispersed to each image sensor) ).
  • the number of components (peripheral circuits) arranged in each image sensor can be reduced, and the area (chip area) of the image sensor substrate can be reduced.
  • electrode pads (input / output pads) for inputting / outputting signals to / from the outside are disposed only on the visible image pickup image sensor substrate 132-1, and Common electrode pads (input and output pads) to be terminals. Accordingly, in the stacked image sensor 132, the number of electrode pads (input / output pads) serving as terminals can be reduced, and the chip area can be further reduced.
  • a component (peripheral circuit, common peripheral circuit) common to the respective image sensors in the stacked image sensor 132 may be transferred to the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2.
  • the arrangement is not limited to the arrangement as shown in FIG. 4 but various arrangements are conceivable.
  • a clock generator 13241 constituting a control circuit 1324 which is a common component (common peripheral circuit) in each image sensor is disposed on the image sensor substrate 132-2 for capturing a fluorescent light image.
  • the generator 13242 may be disposed on the visible image capturing image sensor substrate 132-1.
  • the master clock MCLK for the clock generator 13241 to generate the reference clock signal is also the image sensor substrate for capturing a visible image, similarly to the two power supplies described above and the respective signals input to the serial access memory 1325.
  • the signal passes through the inside of 132-1, and is input to the timing generator 13242 disposed on the fluorescence image pickup image sensor substrate 132-2. That is, the terminal (electrode pad) of the master clock MCLK is also shared by the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2.
  • FIG. 5 is a cross-sectional view showing an example of the structure of a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 according to the embodiment of the present invention.
  • FIG. 5 schematically shows the entire vertical structure of the stacked image sensor 132.
  • the stacked image sensor 132 has a structure in which the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 are stacked with an interlayer filter interposed therebetween. More specifically, in the pixel region, the stacked image sensor 132 is a visible image pickup image sensor substrate 132-1, a protective film 132-4, and a dielectric in the direction from the light incident side to the light traveling direction.
  • the multilayer film filter layer 132-3, the fluorescence image pickup image sensor substrate 132-2, and the support substrate 132-5 are stacked in this order.
  • the visible image capturing image sensor substrate 132-1 is a circuit element for realizing the function of a visible image capturing image sensor that outputs an imaging signal mainly exposed to the reflected light (visible light), and the stacked image sensor 132.
  • the semiconductor substrate forms the respective terminals (electrode pads) in the above.
  • the dielectric multi-layered film filter layer 132-3 attenuates visible light which passes through the visible image pickup image sensor substrate 132-1 and enters each pixel 1320 disposed on the fluorescent image pickup image sensor substrate 132-2.
  • Layer which is an optical filter in which inorganic materials such as dielectrics are laminated in multiple layers to form a dielectric multilayer filter.
  • the dielectric multilayer film filter is formed as an interlayer filter disposed between the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2.
  • the dielectric multilayer filter is formed, for example, by alternately laminating thin film layers made of silicon dioxide (SiO 2 ) and thin film layers made of titanium oxide (TiO 2 ). In the vertical structure of the stacked image sensor 132 shown in FIG.
  • the dielectric multilayer filter layer 132-3 alternately comprises a silicon dioxide (SiO 2 ) thin film layer 132031 and a titanium oxide (TiO 2 ) thin film layer 132032.
  • SiO 2 silicon dioxide
  • TiO 2 titanium oxide
  • the protective film 132-4 is a dielectric multilayer filter layer 132-3 in which the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 are stacked in the stacked image sensor 132. It is a layer which forms a protective film to protect.
  • the protective film 132-4 is formed of, for example, a low refractive index material such as silicon dioxide (SiO 2 ). In the vertical structure of the stacked image sensor 132 shown in FIG. 5, the protective film 132-4 protects the dielectric multilayer filter layer 132-3 at the bonding surface JS.
  • the fluorescent image pickup image sensor substrate 132-2 is a circuit for realizing the function of a fluorescent image pickup image sensor that outputs an image pickup signal mainly exposed to the fluorescence transmitted through the visible image pickup image sensor substrate 132-1. It is a semiconductor substrate which forms an element.
  • the support substrate 132-5 is a visible image pickup image sensor substrate 132-1 (including a microlens layer 132-7 to be described later, an on-chip color filter layer 132-6, terminals (electrode pads), etc.), and a protective film 132.
  • This is a semiconductor substrate for strongly supporting the whole of the multilayer image sensor 132 in which the dielectric multilayer filter layer 132-3 and the fluorescent image pickup image sensor substrate 132-2 are stacked.
  • the vertical structure of a partial region (hereinafter referred to as “pixel region”) in which the pixel portion 1321 is disposed (formed) and the configuration other than the pixel portion 1321
  • the vertical structure of a part of the area (hereinafter referred to as “area outside the pixel”) in which electrode pads (input / output pads) serving as the elements and terminals of the stacked image sensor 132 are disposed (formed) Is shown.
  • each region of the stacked image sensor 132 will be described.
  • the vertical structure of the pixel region in the stacked image sensor 132 will be described.
  • the pixels 1320 are disposed (formed) on the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2.
  • three pixels 1320 are disposed on each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. It shows the case of (formation).
  • the on-chip is directed to the side on which light is incident from the visible image capturing image sensor substrate 132-1, ie, on the upper layer of the visible image capturing image sensor substrate 132-1.
  • the color filter layer 132-6 and the microlens layer 132-7 are further stacked (formed).
  • the microlens layer 132-7 is a light for imaging visible light, that is, the reflected light (visible light) and fluorescence from the inspection object 901 from which the incident light, that is, the excitation light emitted from the excitation light cut filter 131 has been cut, It is a layer forming the microlenses 13205 to be focused on the respective pixels 1320 disposed on the sensor substrate 132-1 and the fluorescence image capturing image sensor substrate 132-2.
  • the microlenses 13205 are formed at positions corresponding to the respective pixels 1320 disposed (formed) on the visible image capturing image sensor substrate 132-1. In the vertical structure of the pixel region in the laminated image sensor 132 shown in FIG.
  • each of the microlenses 13205 corresponds to the reflected light (visible light) and fluorescence incident on the laminated image sensor 132 and the corresponding pixels 1320 disposed on the visible image pickup image sensor substrate 132-1 (more specifically, The light is condensed on a photoelectric conversion element 132011 described later.
  • the on-chip color filter layer 132-6 forms an on-chip color filter 13204 that transmits light of a predetermined wavelength band and causes the light to enter each pixel 1320 disposed on the visible image capturing image sensor substrate 132-1. It is a layer. In the on-chip color filter layer 132-6, red (R), green (G), or blue (B) at positions corresponding to the respective pixels 1320 disposed on the visible image capturing image sensor substrate 132-1.
  • the on-chip color filter 13204 is formed to transmit light in the wavelength band of (1) (visible light). In the vertical structure of the pixel region in the stacked image sensor 132 shown in FIG. 5, the on-chip color filter layer 132-6 has a wavelength band of any of red (R), green (G), or blue (B).
  • the on-chip color filter layer 132-6 in the pixel region is an on-chip color filter 13204R that transmits visible light in the red (R) wavelength band and visible light in the green (G) wavelength band.
  • a state in which each of the transmitting on-chip color filter 13204G and the on-chip color filter 13204B transmitting visible light in the blue (B) wavelength band is formed is schematically shown.
  • the on-chip color filter 13204R, the on-chip color filter 13204G, and the on-chip color filter 13204B are formed in a Bayer arrangement, for example.
  • Each of the on-chip color filters 13204 transmits visible light in one of the wavelength bands collected by the microlens 13205, and the corresponding pixel 1320 disposed on the visible image pickup image sensor substrate 132-1 Specifically, light is incident on a photoelectric conversion element 132011 described later.
  • each on-chip color filter 13204 transmits light in the near-infrared wavelength band, that is, light in the fluorescence wavelength band, in addition to visible light in the corresponding wavelength band, so an image sensor for capturing a visible image
  • the fluorescence is also incident on each of the pixels 1320 disposed on the substrate 132-1.
  • the pixel 1320 includes the photoelectric conversion element 132011 and the reflective layer 132014 formed in the photoelectric conversion layer 132-11, and the wiring 132012 and light pipe 132013 formed in the wiring layer 132-12. And the function of the pixel 1320 is realized.
  • a pixel 1320 (R pixel) in which the on-chip color filter 13204R is formed (pasted) on the light incident side of the visible image pickup image sensor substrate 132-1 is referred to as “R pixel 1320R”.
  • G pixel 1320G The pixel 1320 (G pixel) in which the on-chip color filter 13204G is formed (pasted) is referred to as "G pixel 1320G”
  • B pixel 1320B the pixel 1320 (B pixel) in which the on-chip color filter 13204B is formed (pasted) is referred to as "B pixel 1320B”
  • Each photoelectric conversion element 132011 generates and accumulates signal charges according to the light intensity of the incident light. More specifically, each photoelectric conversion element 132011 is focused by the microlens 13205 formed in the microlens layer 132-7, and the on-chip color filter 13204 formed in the on-chip color filter layer 132-6. A signal charge corresponding to the light intensity of the reflected light (visible light) transmitted and incident is generated and accumulated.
  • the wiring 132012 is a wiring that connects the circuit elements of the respective pixels 1320 and the circuit elements formed on the visible image capturing image sensor substrate 132-1.
  • Each of the R pixel 1320R, the G pixel 1320G, and the B pixel 1320B is a pixel signal (analog signal) corresponding to the drive signal from the vertical scanning circuit 13221-1 input through the wiring 132012 formed in the wiring layer 132-12. Is output to the vertical signal line 1327 through the wiring 132012.
  • the photoelectric conversion element 132011 transmits part of light in the visible light wavelength band and light in the fluorescence wavelength band that were not used to generate signal charges.
  • the photoelectric conversion element 132011 is an optical filter that absorbs and attenuates the light of the wavelength band of visible light used for generating the signal charge among the incident reflected light (visible light) and the fluorescence, and transmits only the fluorescence As well as functioning.
  • a part of visible light and fluorescence transmitted through the photoelectric conversion element 132011 is guided by the light pipe 132013 formed in the wiring layer 132-12 and emitted to the side of the image sensor substrate 132-2 for capturing a fluorescent image.
  • the light pipe 132013 is an optical path for guiding light transmitted through the photoelectric conversion element 132011 and incident from the photoelectric conversion layer 132-11 side to the protective film 132-4 side, that is, to the fluorescent image pickup image sensor substrate 132-2 side.
  • the photoelectric conversion element is formed by providing the area of the opening so that the wiring 132012 formed in the wiring layer 132-12 does not overlap the area of the photoelectric conversion element 132011 formed in the photoelectric conversion layer 132-11. 132011 secures a light transmission area for light transmission.
  • the light pipe 132013 is made of a high refractive index material such as silicon nitride (Si 3 N 4 ) having a larger refractive index of light than the periphery of the light transmission region in the wiring layer 132-12 in the secured light transmission region. Formed by filling.
  • the light incident on the light pipe 132013 passes through the inside of the light pipe 132013, and is efficiently emitted to the side of the image sensor substrate 132-2 for capturing a fluorescent light image.
  • the fluorescence has a long wavelength, so the influence of diffraction is large and the diffusion of light is fast (the amount of diffusion of light is large). is there. Therefore, when the distance between the pixels 1320 in the stacked image sensor 132, ie, the so-called pixel pitch is narrowed, the fluorescence transmitted through the on-chip color filter 13204 and incident on the visible image pickup image sensor substrate 132-1 Diffusion of light proceeds in the photoelectric conversion layer 132-11 from the time of incidence on the photoelectric conversion element 13 2011.
  • the fluorescence in the photoelectric conversion layer 132-11 has advanced (the light The position where the light intensity distribution peaks gradually shifts toward the position of the wiring in the wiring layer 132-12 as the position 132-12 is approached. For this reason, much of the fluorescence is reflected on the wiring 132012 in the wiring layer 132-12, and can not be transmitted through the wiring layer 132-12, and the fluorescence is guided to the image sensor substrate 132-2 for capturing a fluorescent image.
  • the multi-layer image sensor 132 even when the pixel pitch of the pixels 1320 is set to a distance at which the influence of diffraction of fluorescence is large, the amount of fluorescence incident on the light pipe 132013 decreases.
  • the reflection layer 132014 is formed between the photoelectric conversion elements 132011 so as not to be present.
  • the reflective layer 132014 is a reflective film that reflects fluorescence that diffuses beyond the diffraction limit in the photoelectric conversion layer 132-11.
  • Reflective layer 132,014 are adjacent in the photoelectric conversion layer 132-11 forms a depression or more from the surface of the depth 1um between the photoelectric conversion elements 132 011, for example, such as silicon dioxide (SiO 2), the photoelectric conversion layer 132 - It is filled with a low refractive index material having a light refractive index smaller than 11 and formed.
  • the reflective layer 132014 may be formed so as to surround the periphery of each of the photoelectric conversion elements 132011, for example. However, the reflective layer 132014 may not necessarily surround the periphery of the photoelectric conversion element 132011 without a gap. The reflective layer 132014 does not significantly reduce the ability to reflect fluorescence that diffuses beyond the diffraction limit by opening a slight gap between adjacent photoelectric conversion elements 132011, Allow clearance.
  • the structure of the reflective layer 132014 is a deeper depression than the conventional Shallow Trench Isolation (STI) structure.
  • STI Shallow Trench Isolation
  • part of visible light and fluorescence transmitted through the photoelectric conversion element 132011 led by the light pipe 132013 is incident on the protective film 132-4 and the dielectric multilayer filter layer 132-3, and the dielectric multilayer filter layer Visible light is attenuated by 132-3.
  • a thin film layer of silicon dioxide (SiO 2 ) and a thin film layer of titanium oxide (TiO 2 ) are alternately stacked on the dielectric multilayer filter layer 132-3. As a result, the dielectric multilayer filter 13203 is formed.
  • the dielectric multilayer film filter 13203 is a reflected light (visible light) and a fluorescence guided by the light pipe 132013 corresponding to each pixel 1320 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1. Among them, only light in the visible light wavelength band is reflected or absorbed and attenuated, and light in the fluorescence wavelength band is transmitted. Thereby, only the fluorescence transmitted through the photoelectric conversion element 132011 is incident on the corresponding pixel 1320 (more specifically, the photoelectric conversion element 132021 described later) disposed on the fluorescence image pickup image sensor substrate 132-2. .
  • the protective film 132-4 emits nothing to the incident light, as it is, to the dielectric multilayer filter layer 132-3.
  • the function of the pixel 1320 is realized by the photoelectric conversion element 132021 formed in the photoelectric conversion layer 132-21 and the wiring 132202 formed in the wiring layer 132-22. Be done.
  • a pixel 1320 (fluorescent pixel) disposed (formed) on the fluorescent image pickup image sensor substrate 132-2 is referred to as “fluorescent pixel 1320 IR”.
  • Each photoelectric conversion element 132021 generates and accumulates a signal charge according to the light intensity of the incident light. More specifically, each photoelectric conversion element 132021 is incident on the image sensor substrate 132-1 for picking up a visible image from the microlens layer 132-7 through the on-chip color filter layer 132-6 and is used for picking up a visible image. A signal charge corresponding to the light intensity of the fluorescence transmitted through the light pipe 132013 and the dielectric multilayer filter layer 132-3 of the corresponding pixel 1320 formed on the image sensor substrate 132-1 is generated and accumulated.
  • the wiring 132022 is a wiring for connecting the circuit elements of the respective fluorescent pixels 1320 IR and the circuit elements formed on the image sensor substrate 132-2 for fluorescent image capturing.
  • Each fluorescent pixel 1320 IR converts a pixel signal (analog signal) according to the drive signal from the vertical scanning circuit 1322-1 input through the wiring 132022 formed in the wiring layer 132-22 into a vertical signal line through the wiring 132022 Output.
  • the pixels 1320 are arranged (formed) at a pixel pitch at which the influence of diffraction largely appears on the fluorescence transmitted through the visible image capturing image sensor substrate 132-1. Even in this case, the decrease in the amount of fluorescence incident on the light pipe 132013, that is, the amount of fluorescence incident on the fluorescence image pickup image sensor substrate 132-2 is suppressed. Accordingly, in the stacked image sensor 132, the size (area) of the pixel 1320 can be reduced, that is, the size necessary for the pixel region can be reduced.
  • Electrode pads serving as respective terminals for the laminated image sensor 132 to input / output signals to / from the outside, and an image sensor for picking up a visible image in an area outside the pixel of the laminated image sensor 132.
  • a signal line for electrically connecting a component arranged (formed) on the substrate 132-1 and a component arranged (formed) on the image sensor substrate 132-2 for fluorescent image capturing is arranged (formed).
  • the components common to the visible image capturing image sensor and the fluorescent image capturing image sensor are the visible image capturing image sensor substrate 132-1 or the fluorescent image capturing image It is disposed on any of the sensor substrates 132-2. Therefore, the signal lines exchanged between the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are the wiring layers 132-12 of the visible image pickup image sensor substrate 132-1. And the wiring 132202 formed in the wiring layer 132-22 of the image sensor substrate 132-2 for fluorescent image capturing.
  • connection between the serial access memory 1325 and the timing generator 13242 in the control circuit 1324 shown in FIG. 4 and the connection between the timing generator 13242 and the vertical scanning circuit 13221-2 and the horizontal scanning circuit 1322-2 are different from the wiring 132012. It is connected to the wiring 132022.
  • the photoelectric conversion layer 132-21, the dielectric multilayer filter layer 132-3, and the protective film of the fluorescent image pickup image sensor substrate 132-2 Through-silicon through electrode (Through-Silicon-Via: TSV) leading out wiring 132202 formed in wiring layer 132-22 on the upper surface (surface) of the protective film 132-4 through which light penetrates 132-4.
  • the state in which 132023 is formed is schematically shown. Further, in the vertical structure of the region outside the pixel in the stacked image sensor 132 shown in FIG. 5, the light is emitted from the wiring 132012 formed in the wiring layer 132-12 of the visible image capturing image sensor substrate 132-1. The state which forms the back surface electrode 132016 withdraw
  • the wiring 132012 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1 and the wiring layer 132-22 of the fluorescent image pickup image sensor substrate 132-2 The wiring 132202 formed in the above is connected through the photoelectric conversion layer 132-21, the dielectric multilayer filter layer 132-3, and the protective film 132-4.
  • the stacked image sensor 132 electrode pads for inputting and outputting signals to and from the outside are disposed only on the visible image capturing image sensor substrate 132-1. Therefore, the signal lines exchanged between the components disposed on the fluorescent image pickup image sensor substrate 132-2 in the stacked image sensor 132 and the outside pass through the visible image pickup image sensor substrate 132-1. Then, it is connected to the wiring 132022 formed in the wiring layer 132-22 of the fluorescence image pickup image sensor substrate 132-2 (through).
  • the clock MCLK is connected to the wiring 132022 through (through) the inside of the visible image capturing image sensor substrate 132-1.
  • the silicon through electrode 132023 the vertical structure of the region outside the pixel in the multilayer image sensor 132 shown in FIG.
  • a silicon penetration electrode 132015 is formed on the upper surface (surface) on the side where light is incident, for drawing out the wiring 132012 formed in the wiring layer 132-12 ing.
  • the edge on the upper surface (surface) side where light is incident on the visible image pickup image sensor substrate 132-1 in the silicon through electrode 132015 A state in which a wire bonding pad 132017 which is an electrode pad (input / output pad) for connecting a signal of the stacked image sensor 132 to the outside is schematically shown.
  • the wire bonding pad 132017 is formed on the periphery of the upper surface (surface) of the side on which light is incident on the visible image pickup image sensor substrate 132-1.
  • the wiring 132022 formed on the wiring layer 132-22 of the fluorescent image pickup image sensor substrate 132-2 and the photoelectric conversion layer 132- of the visible image pickup image sensor substrate 132-1.
  • the wire bonding pad 132017 formed on the upper surface of the photoelectric conversion layer 132-21, the dielectric multilayer film filter layer 132-3, the protective film 132-4, the wiring 132012, and the photoelectric conversion layer 132-11.
  • a signal for exchanging signals with the outside through an electrode pad (input / output pad) disposed only on the visible image pickup image sensor substrate 132-1 is fluorescence image It is connected to the components disposed on the imaging image sensor substrate 132-2.
  • the number of wire bonding pads 132017 arranged (formed) in the area outside the pixel can be reduced, and the chip area of the stacked image sensor 132, that is, the mounting area can be reduced.
  • FIG. 6 is a view showing an example of the distribution characteristic of the light intensity in the solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention.
  • FIG. 6 shows an example of the result of optical simulation of the distribution of light intensity (light intensity) when the pixel pitch of the pixels 1320 arranged (formed) in the stacked image sensor 132 is 0.9 ⁇ m.
  • FIG. 6A schematically shows an example of the vertical structure of the pixel region of the laminated image sensor 132 shown in FIG.
  • 7 shows an example of the result of optical simulation of the distribution of. More specifically, in (a) of FIG. 6, the vertical direction in the case where two R pixels 1320R and two G pixels 1320G are alternately arranged in the pixel region of the stacked image sensor 132 shown in FIG. The structure is schematically shown.
  • the vertical structure of the pixel area of the stacked image sensor 132 shown in FIG. 6A is the vertical structure of the pixel area of the stacked image sensor 132 in which the arranged pixels 1320 are shown in FIG. And the detailed description is omitted.
  • the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 is used in the pixel region of the stacked image sensor 132 shown in (a) of FIG. 6, the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 is used.
  • An example of a result of performing optical simulation of distribution of light intensity of fluorescence f by the side of the upper surface (surface) which light enters is shown.
  • the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 is An example of a result of performing optical simulation of distribution of light intensity of fluorescence f by the side of the undersurface (back side) which light emits is shown.
  • a photoelectric conversion layer 132 constituting an image sensor substrate 132-1 for capturing a visible image in the pixel region of the laminated image sensor 132 shown in (a) of FIG.
  • An example of the result of optical simulation of the light intensity distribution of the fluorescence f on the lower surface (rear surface) side from which light is emitted when the reflective layer 132014 is not formed at ⁇ 11 is shown.
  • the relative magnitude (intensity) of light intensity is shown as the vertical axis. There is.
  • the fluorescence incident to the pixel 1320 on each surface of the photoelectric conversion layer 132-11 (silicon substrate) on the light incident side to the visible image pickup image sensor substrate 132-1 The distribution of the light intensity of f is maximum (peak) near the center of the position where the R pixel 1320R and the pixel 1320G are arranged, that is, at the center position which is the focal point of the microlens 13205 of each pixel 1320.
  • the distribution of the light intensity of the fluorescence f transmitted through the pixel 1320 is also the same as the distribution of the light intensity of the fluorescence f on the side where the light is incident on the photoelectric conversion layer 132-11 shown in (b) of FIG. It peaks near the center of the position where the pixel 1320R and the pixel 1320G are disposed.
  • the reflective layer 132014 When the reflective layer 132014 is not formed on the photoelectric conversion layer 132-11, as shown in (d) of FIG. 6, light incident on the visible image pickup image sensor substrate 132-1 is transmitted.
  • the position where the light intensity distribution of the fluorescent light f peaks on the surface of the photoelectric conversion layer 132-11 (silicon substrate) on the side to be emitted is the position between the positions where the respective pixels 1320 are arranged, that is, , And the position of the boundary with the adjacent pixel 1320. That is, when the reflective layer 132014 is not formed in the photoelectric conversion layer 132-11, the position at which the light intensity distribution of the fluorescence f transmitted through each pixel 1320 peaks is largely from the central position of the corresponding microlens 13205 It has slipped.
  • the fluorescence f which is light with a long wavelength, diffuses beyond the diffraction limit by the time it is transmitted through the photoelectric conversion layer 132-11, and mutually interacts with the fluorescence f that should be transmitted through the adjacent pixel 1320. It is due to having interfered.
  • the fluorescence f transmitted through the photoelectric conversion layer 132-11 is blocked by the wiring 132012 formed in the wiring layer 132-12, and is not efficiently incident on the light pipe 132013, so that an image sensor for fluorescence image pickup The light amount of the fluorescent light f incident on the substrate 132-2 decreases.
  • the fluorescence image including the test object 901 generated by the image processing unit 33 is used. It is not possible to suppress the decrease in image quality and resolution.
  • the laminated image sensor 132 As described above, the position at which the distribution of the light intensity of the fluorescence f on the light incident side to the photoelectric conversion layer 132-11 peaks and the photoelectric conversion layer 132-11.
  • the light intensity distribution of the fluorescence f on the side from which light is emitted through the light emission peak is near the center of the position where the respective pixels 1320 are disposed. This is because, in the laminated image sensor 132, the reflection layer 132014 formed on the photoelectric conversion layer 132-11 of the visible image pickup image sensor substrate 132-1 has a diffraction limit in the photoelectric conversion layer 132-11 before transmission. It is by condensing the fluorescence f which is diffused to the light pipe 132013.
  • the fluorescence f transmitted through the photoelectric conversion layer 132-11 is efficiently incident on the light pipe 132013, that is, the amount of light is reduced due to the influence of diffraction, and thus the fluorescence image
  • the light is incident on the image sensor substrate 132-2 for imaging. That is, in the stacked image sensor 132, the fluorescence f transmitted through the visible image capturing image sensor substrate 132-1 is transmitted from the back surface corresponding to the position where the respective pixels 1320 are disposed. Send to 2 Thereby, in the laminated image sensor 132, the fluorescent pixel 1320IR disposed on the fluorescent image pickup image sensor substrate 132-2 outputs parallel RAW data of the fluorescent light image pickup signal in which the fluorescent light f with a sufficient light amount is exposed.
  • the reflection layer 132014 is formed in the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 to cause diffusion beyond the diffraction limit.
  • the fluorescence f can be focused on the light pipe 132013, and a fluorescence image pickup signal for generating a fluorescence image in which the deterioration of the image quality is suppressed can be output.
  • FIG. 7 shows an outline of a manufacturing method (manufacturing process) of the visible image capturing image sensor substrate 132-1 constituting the stacked image sensor 132.
  • FIG. 8 shows an outline of a method of manufacturing a fluorescent image pickup image sensor substrate 132-2 constituting the laminated image sensor 132 (manufacturing process).
  • FIG. 9 shows an outline of a manufacturing method (manufacturing process) of a laminated type image sensor 132 in which an image sensor substrate 132-1 for visible image pickup and an image sensor substrate 132-2 for fluorescent image pickup are laminated. .
  • the photoelectric conversion element is formed in the photoelectric conversion layer.
  • the manufacturing method (manufacturing process) and the manufacturing method (manufacturing process) for forming the wiring in the wiring layer are the same as the existing manufacturing method (manufacturing process) in the image sensor. Therefore, in the following description, in order to facilitate the description, it relates to a method (manufacturing process) of photoelectric conversion elements and wires in the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. Detailed description is omitted.
  • Step 1 As shown in (a) of FIG. 7, an image sensor substrate 132-1 for imaging a visible image on which the light pipe 132013 is formed is manufactured. More specifically, first, the photoelectric conversion element 132011, that is, the photoelectric conversion layer 132-11 is formed on a silicon (Si) substrate to be an image sensor substrate 132-1 for capturing a visible image. After that, a region (light transmission region) of an opening for emitting light is provided so as not to overlap with the region of the photoelectric conversion element 132011 formed in the photoelectric conversion layer 132-11, that is, the light pipe 132013 is formed. A region is provided to form a wiring 132012 in the wiring layer 132-12.
  • the visible image pickup image sensor substrate 132-1 is considered as a front-side illumination (FSI) type solid-state imaging device
  • the wiring layer 132 on the light incident side to the photoelectric conversion element 132011 is an opening formed to allow light to enter the photoelectric conversion element 132011 at -12.
  • the light transmission region provided in the wiring layer 132-12 is filled with a high refractive index material such as silicon nitride (Si 3 N 4 ), for example, to form a light pipe 132013.
  • a back electrode 132016 is formed for extracting the wiring 132012 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1. More specifically, the back electrode 132016 connected to the wiring 132012 in the wiring layer 132-12 formed in step 1 is formed, and the surface on which the back electrode 132016 is formed is planarized by chemical mechanical polishing (CMP) or the like. Do. The surface on which the back electrode 132016 flattened in the process 2 is formed is a bonding surface JS-1 of the visible image pickup image sensor substrate 132-1.
  • CMP chemical mechanical polishing
  • Step 3 As shown in (a) of FIG. 8, it is laminated on a fluorescent image pickup image sensor substrate 132-2 configured as a back-side illumination (Backside Illumination: BSI) type solid-state imaging device, that is, a support substrate 132-5
  • the dielectric multilayer film filter layer 132-3 is formed (laminated) on the fluorescence image pickup image sensor substrate 132-2. More specifically, first, the surface on the light incident side (hereinafter referred to as “light receiving surface”) of the fluorescent image pickup image sensor substrate 132-2 is formed by chemical mechanical polishing (CMP) or the like. Flatten.
  • CMP chemical mechanical polishing
  • a silicon dioxide (SiO 2 ) thin film layer 132031 and a titanium oxide (TiO 2 ) thin film are formed on the planarized light receiving surface of the image sensor substrate 132-2 for fluorescent image imaging by ion assisted deposition (IAD) or the like.
  • the layers 132032 are alternately formed (laminated), and the dielectric multilayer filter 13203 is formed (laminated) in the dielectric multilayer filter layer 132-3.
  • the protective film 132-4 is formed (laminated) on the formed (laminated) dielectric multilayer filter layer 132-3. More specifically, the surface of the dielectric multilayer film filter layer 132-3 formed (laminated) in the step 3 opposite to the light receiving surface of the image sensor substrate 132-2 for capturing a fluorescent image, that is, the dielectric multilayer film filter A protective film 132-4 is formed (laminated) on the surface of the layer 132-3 on which light is incident by chemical vapor deposition (CVD) or the like.
  • CVD chemical vapor deposition
  • the thickness of the protective film 132-4 to form in step 4 at least a dielectric respective thin film layers forming a multilayer filter layer 132-3 (silicon dioxide (SiO 2) thin film layer 132,031 or titanium oxide (TiO 2 ) Thicker than the thickness of the thin film layer 132032).
  • a dielectric respective thin film layers forming a multilayer filter layer 132-3 silicon dioxide (SiO 2) thin film layer 132,031 or titanium oxide (TiO 2 ) Thicker than the thickness of the thin film layer 132032).
  • Step 5 As shown in FIG. 8C, through holes 132023a are formed in the fluorescence image pickup image sensor substrate 132-2. More specifically, the dielectric multilayer filter layer 132-3 and the protective film 132-4 formed (stacked) in the steps 3 and 4 and the photoelectric conversion layer 132 of the image sensor substrate 132-2 for capturing a fluorescent image 21 are formed by photolithography and etching to reach through-holes 132023a which reach through the through-holes 21 and reach the wiring 132022 formed in the wiring layer 132-22.
  • Step 6 As shown in (d) of FIG. 8, the silicon through electrode 132023 is formed on the fluorescence image pickup image sensor substrate 132-2. More specifically, the wiring 132022 formed in the wiring layer 132-22 of the image sensor substrate 1322 for capturing a fluorescent image is drawn to the through hole 132023a formed in step 5 by chemical vapor deposition (CVD) or the like. A metal material is filled to form through silicon vias 132023.
  • CVD chemical vapor deposition
  • Step 7) As shown in (e) of FIG. 8, the fluorescent image pickup image sensor substrate 132-2 on which the silicon through electrode 132023 is formed is planarized. More specifically, the surface filled with the metal material for forming the silicon through electrode 132023 in step 6, that is, the surface on the light receiving surface side of the fluorescent image pickup image sensor substrate 132-2, is subjected to chemical mechanical polishing (CMP) or the like. Flatten by. The surface on the light receiving surface side of the fluorescence image pickup image sensor substrate 132-2 flattened in step 7 is taken as the bonding surface JS-2 of the fluorescence image pickup image sensor substrate 132-2.
  • CMP chemical mechanical polishing
  • the silicon through electrode 132023 is polished including the protective film 132-4, that is, the protective film 132-4 is also polished together with the silicon through electrode 132023.
  • the thickness of the protective film 132-4 becomes thinner than the thickness formed in the process 4.
  • the protective film 132-4 formed in the step 4 since the protective film 132-4 formed in the step 4 is not entirely polished, the characteristics of the dielectric multilayer filter 13203 formed in the step 3 are not affected. Also, the difference in thickness of the protective film 132-4 does not affect the characteristics of the dielectric multilayer filter 13203.
  • the fluorescent image pickup image sensor substrate 132-2 having the silicon through electrode 132023 which forms the laminated image sensor 132 is manufactured.
  • each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 is separately manufactured, and thereafter, the respective image sensor substrates are stacked.
  • a manufacturing process (process 1 and process 2) for manufacturing the visible image capturing image sensor substrate 132-1 and a manufacturing process (process 3 to process 7) for manufacturing the fluorescent image capturing image sensor substrate 132-2 May be done in parallel.
  • Step 8 As shown in FIG. 9A, the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are stacked. More specifically, the bonding surface JS-1 of the visible image capturing image sensor substrate 132-1 and the bonding surface JS-2 of the fluorescent image capturing image sensor substrate 132-2 are stacked to face each other. At this time, in step 8, the position of the back electrode 132016 formed on the visible image pickup image sensor substrate 132-1 and the position of the silicon through electrode 132023 formed on the fluorescent image pickup image sensor substrate 132-2 are aligned. The bonding surface JS-1 and the bonding surface JS-2 are made to face each other and stacked. As a result, the back electrode 132016 formed on the visible image pickup image sensor substrate 132-1 and the silicon through electrode 132023 formed on the fluorescent image pickup image sensor substrate 132-2 are physically bonded at the bonding surface JS. , And electrically connected.
  • Step 9 As shown in (b) of FIG. 9, the silicon substrate of the visible image pickup image sensor substrate 132-1 is thinned, and the visible image pickup image sensor substrate 132-1 is configured as a backside illumination type solid-state imaging device.
  • the thickness of the silicon substrate on the side where the back surface electrode 132016 is not formed in the visible image pickup image sensor substrate 132-1 is, for example, a photoelectric formed by chemical mechanical polishing (CMP) or etching.
  • CMP chemical mechanical polishing
  • the conversion element 132011 is thin enough to allow light to enter.
  • the back surface of the visible image pickup image sensor substrate 132-1 is the light receiving surface It is configured as a back-illuminated solid-state imaging device.
  • the reflective layer 132014 is formed on the silicon substrate thinned in the visible image pickup image sensor substrate 132-1. More specifically, first, the silicon substrate thinned in the visible image capturing image sensor substrate 132-1, that is, between the respective photoelectric conversion elements 132011 formed in the photoelectric conversion layer 132-11, is subjected to photolithography. A recess of 1 ⁇ m or more in depth is formed from the surface of the photoelectric conversion layer 132-11 by etching and After that, the hollow formed in the photoelectric conversion layer 132-11 is filled with a low refractive index material such as silicon dioxide (SiO 2 ) by chemical vapor deposition (CVD) or the like to form a reflective layer 132014.
  • a low refractive index material such as silicon dioxide (SiO 2 ) by chemical vapor deposition (CVD) or the like to form a reflective layer 132014.
  • the surface of the photoelectric conversion layer 132-11 (silicon substrate) of the visible image pickup image sensor substrate 132-1 filled with the low refractive index material for forming the reflective layer 132014 is chemically mechanical polished ( It may be planarized by CMP or the like.
  • the photoelectric conversion layer 132-11 (silicon substrate) is polished including the reflective layer 132014, that is, the photoelectric conversion layer 132-11 is polished by polishing the reflective layer 132014 and the silicon substrate together.
  • the entire surface may be flattened.
  • the thickness of the photoelectric conversion layer 132-11 (silicon substrate) of the visible image pickup image sensor substrate 132-1 is thinner than the thickness when the silicon substrate is thinned in step 9.
  • the silicon substrate is thinned in a state in which the thickness is increased accordingly. May be
  • Step 11 As shown in (d) of FIG. 9, the on-chip color filter layer 132-6 and the microlens layer 132-7, and the wire bonding are provided on the photoelectric conversion layer 132-11 of the visible image pickup image sensor substrate 132-1.
  • the pad 132017 is formed. More specifically, first, a wire bonding pad 132017 is formed on the light receiving surface of the visible image capturing image sensor substrate 132-1.
  • a through hole which penetrates the photoelectric conversion layer 132-11 and reaches the wiring 132012 formed in the wiring layer 132-12 is formed by photolithography and etching,
  • a silicon through electrode 132015 filled with a metal material for extracting the wiring 132012 formed in the wiring layer 132-12 is formed by chemical vapor deposition (CVD) or the like.
  • CVD chemical vapor deposition
  • a wire bonding pad 132017 is formed by chemical vapor deposition (CVD) or the like, which is connected to the silicon through electrode 132015, that is, connected to the wiring 132012 in the wiring layer 132-12.
  • an on-chip color filter layer 132-6 in which on-chip color filters 13204 are disposed at positions corresponding to the respective photoelectric conversion elements 132011 is formed.
  • the on-chip color filter 13204R, the on-chip color filter 13204G, and the on-chip color filter 13204B are formed in the on-chip color filter layer 132-6, for example, in a Bayer arrangement.
  • a microlens layer 132-7 is formed in which the microlenses 13205 are disposed at positions corresponding to the on-chip color filters 13204 of the on-chip color filter layers 132-6.
  • a final laminated type image sensor 132 in which the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are laminated is manufactured.
  • the first photoelectric conversion layer in which the first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting the incident light (visible light and visible light among the visible light) is formed 132-11) and the first wiring layer (wiring layer 132-12) in which the first wiring (wiring 132012) is formed on the surface opposite to the surface on which light is incident to the photoelectric conversion element 132011).
  • the first semiconductor substrate (visible image pickup image sensor substrate 132-1) formed and the layer on the side opposite to the side where light is incident on the visible image pickup image sensor substrate 132-1 are visible images
  • the light transmission region is a light pipe (for example, silicon nitride (Si 3 N 4 ) or the like) having a light refractive index larger than that of the wiring layer 132-12 (eg, silicon nitride (Si 3 N 4 )).
  • a stacked image sensor 132 having a light pipe 132013) is configured.
  • an electrode pad (silicon (silicon) which is formed on the visible image pickup image sensor substrate 132-1 and which penetrates the photoelectric conversion layer 132-11 to conduct a signal between the wiring 132012 and the outside. Stacked image having a through electrode 132015 and a wire bonding pad 132017) and a through electrode (silicon through electrode 132023) which penetrates the dielectric multilayer filter 13203 and electrically connects the wiring 132012 and the wiring 132022
  • the sensor 132 is configured.
  • the power (power VDD1 or power VDD2), ground (ground GND1 or ground GND2) supplied to the corresponding wire bonding pad 132017 of the visible image capturing image sensor substrate 132-1, and the master A laminated image sensor 132 configured to connect an external signal of one of the clocks (master clock MCLK) to the wiring 132022 via the silicon through electrode 132023 and supply the signal to the fluorescence image pickup image sensor substrate 132-2 Be done.
  • the wiring 132012 or the wiring 132022 is formed on the semiconductor substrate (image sensor substrate) of at least one of the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2.
  • Control the photoelectric conversion element 132011 and the photoelectric conversion element 132021 via the photoelectric conversion element 132011 and the photoelectric conversion element 132021 pixel signal, visible image pickup signal according to pixel signal, fluorescent image pickup signal, etc.
  • a peripheral circuit readout unit 1322, vertical scanning circuit 13221, horizontal scanning circuit 13222, analog / digital conversion unit 1323, analog / digital converter, and the like
  • a peripheral circuit formed on a visible image pickup image sensor substrate 132-1 and a fluorescent image including a digital conversion circuit 13230, a control circuit 1324, a clock generator 13241, a timing generator 13242, a serial access memory 1325, and a serializer 1326).
  • At least one peripheral circuit for realizing the same function necessary for controlling each of the photoelectric conversion element 132011 and the photoelectric conversion element 132021 is photoelectric
  • a common peripheral circuit for example, a control circuit 1324, a clock generator 13241, a timing generator 13242, a serial access memory
  • the common peripheral circuit may be a clock generator (clock generator 13241 or timing generator 13242) that is a peripheral circuit that generates a reference clock signal based on the supplied master clock MCLK.
  • a storage device (serial access memory 1325) which is a peripheral circuit for storing setting values (parameters) for defining the operation of the stacked image sensor 132, or electricity obtained by photoelectric conversion of the photoelectric conversion element 132011 and the photoelectric conversion element 132021
  • the layered image sensor 132 is configured as any peripheral circuit of a serializer (serializer 1326) that is a peripheral circuit that outputs a serial imaging signal (serial RAW data) according to a signal (in particular, parallel RAW data) to the outside. And .
  • the interval (pixel pitch) at which the photoelectric conversion element 132011 is formed is light (fluorescent light) that is incident on the visible image pickup image sensor substrate 132-1 and transmits the photoelectric conversion layer 132-11.
  • the stacked image sensor 132 is configured to be equal to or less than an interval at which the influence of diffraction starts to appear (for example, an interval smaller than about 2 um).
  • the fluorescence observation endoscope apparatus for observing a fluorescent substance (for example, a fluorescent substance consisting of indocyanine green derivative labeled antibody (ICG)) is visible
  • a light source device capable of irradiating the test object with light including a wavelength band of excitation light (near infrared light) that causes the test object to emit fluorescence by irradiating light and fluorescent material
  • a first photoelectric conversion layer photoelectric conversion layer 132-11) in which a first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting incident light (visible light and visible light among visible light and fluorescence) is formed;
  • a first wiring layer (wiring layer 132-12) in which a first wiring (wiring 132012) is formed on the surface opposite to the surface on the light incident side to the photoelectric conversion element 132011
  • Semiconductor substrate visible image The image sensor substrate 132-1) for an image and the image sensor substrate 132-1 for visible image
  • a second photoelectric conversion layer in which a second photoelectric conversion element (photoelectric conversion element 132021) for photoelectrically converting light (fluorescence) is formed, and a second wiring (wiring 132022) are formed.
  • Semiconductor substrate fluorescent image pickup image sensor substrate 132-2) on which a second wiring layer (wiring layer 132-22) is formed, a visible image pickup image sensor substrate 132-1, and a fluorescent image
  • a dielectric multilayer filter (a dielectric multilayer filter 13203 formed on a dielectric multilayer filter layer 132-3) disposed between the imaging image sensor substrate 132-2 and In the photoelectric conversion layer 132-11 is formed between the photoelectric conversion elements 132 011, the refractive index of the light is smaller than the photoelectric conversion layer 132-11 low refractive index material (e.g., silicon dioxide (SiO 2), etc.) are filled
  • a light transmitting region (a region of an opening for light to be incident) formed at a position corresponding to the photoelectric conversion element 132011 in the wiring layer
  • a solid-state imaging device (laminated image sensor 132), and the laminated image sensor 132 is an insertion portion (insertion portion 11) inserted into the inside of a living body (a person to be inspected to which a fluorescent substance consisting of ICG is administered).
  • a fluorescence observation endoscope apparatus (fluorescent observation endoscope apparatus 1) is disposed at the distal end portion (imaging unit 13 provided at the distal end portion of the insertion unit 11).
  • the first photoelectric conversion layer in which the first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting the incident light (visible light and visible light among the visible light) is formed.
  • a first wiring layer in which a first wiring (wiring 132012) is formed on the conversion layer 132-11) and the surface opposite to the surface on which light is incident on the photoelectric conversion element 132011.
  • the first semiconductor substrate visible image imaging image sensor substrate 132-1
  • Second photoelectric conversion layer photoelectric conversion layer 132-21 in which a second photoelectric conversion element (photoelectric conversion element 132021) for photoelectrically converting light (fluorescent light) transmitted through the visible image pickup image sensor substrate 132-1 is formed
  • a second semiconductor substrate fluorescent image pickup image sensor substrate 132-2 on which a second wiring layer (wiring layer 132-22) on which the second wiring (wiring 132202) is formed is formed.
  • a method of manufacturing a solid-state imaging device (laminated image sensor 132), wherein the photoelectric conversion layer 132-11 has a depth of 1 um or more from the surface of the photoelectric conversion layer 132-11 between the photoelectric conversion elements 132011.
  • the formed recess is filled with a low refractive index material (for example, silicon dioxide (SiO 2 ) or the like) having a smaller refractive index of light than the photoelectric conversion layer 132-11, and a reflective layer (reflective layer 132014)
  • a manufacturing method of a solid-state imaging device including the first step (step 10) of forming
  • a light transmission region (a region of an opening for light to be incident) is formed at a position corresponding to the photoelectric conversion element 132011.
  • the back surface electrode (back surface electrode 132016) for extracting the wiring 132012 is formed and planarized on the surface opposite to the light incident side on the step 2 (step 1) and the image sensor substrate 132-1 for visible image capturing.
  • step 2 of forming the first bonding surface (bonding surface JS-1) and the dielectric multilayer film filter (surface on the side where light is incident on the fluorescent image pickup image sensor substrate 132-2
  • step 3 of forming the dielectric multilayer filter 13203) formed in the dielectric multilayer filter layer 132-3 and the surface on the side where light is incident on the dielectric multilayer filter 13203 Body multilayer film each layer (silicon dioxide (SiO 2) thin film layer 132,031 or titanium oxide (TiO 2) film layers 132,032) of the dielectric forming the filter 13203 thick protective film than the thickness of the (protective film 132-4)
  • step 4) of forming, a penetrating electrode (silicon) which penetrates the protective film 132-4 and the dielectric multilayer filter 13203 and draws the wiring 132022 on the surface on the side where light is incident on the protective film 132-4.
  • the formed silicon through electrode 132023 and the protective film 132-4 are together
  • the solid-state imaging device provided in the fluorescence observation endoscope apparatus includes a visible image capturing image sensor that exposes (detects) light (visible light) in a visible region. And an image sensor for imaging a fluorescence image that exposes (detects) light in the infrared region (near infrared light), with an interlayer filter interposed therebetween. Then, in the embodiment of the present invention, in the light source apparatus provided in the fluorescence observation endoscope apparatus, the white light in the wavelength band of visible light and the white light in the wavelength band of excitation light are irradiated as illumination light to the object to be inspected. .
  • a visible image pickup signal in which visible light is exposed, and a derivative-labeled antibody (fluorescent drug: fluorescent substance) such as ICG administered to a subject are excited. Then, it is possible to simultaneously obtain a fluorescence image pickup signal in which fluorescence that is light in the infrared region (near infrared light) that has been fluorescence-emitted is exposed.
  • any component that can be common to components provided in the visible image capturing image sensor and the fluorescent image capturing image sensor that constitute the solid-state imaging device is one of the image sensors. Have only one.
  • the electrode pad (input / output pad) as a terminal for inputting / outputting a signal to / from the outside is shared and disposed only in the visible image pickup image sensor (Form) to reduce the number. Accordingly, in the embodiment of the present invention, the mounting area of the solid-state imaging device can be reduced.
  • the reflection layer is formed between the photoelectric conversion elements constituting the respective pixels. More specifically, in the photoelectric conversion layer forming the photoelectric conversion element constituting the pixel of the visible image pickup image sensor, the reflection layer is formed between each photoelectric conversion element.
  • the solid-state imaging device fluorescence that is light in the infrared region (near infrared light) transmitted through the visible image pickup image sensor and incident on the fluorescent image pickup image sensor Even when each pixel is arranged in a narrow interval that diffuses beyond the diffraction limit in the photoelectric conversion layer (when the pixel pitch is narrowed), the near infrared light is efficiently fluorescently reflected by the reflection of the reflective layer. It can be introduced (entered) to the image sensor for image pickup.
  • the solid-state imaging device in the solid-state imaging device, the decrease in the light amount of the fluorescence is suppressed, and in the fluorescence observation endoscope device, the image quality and resolution of the fluorescence image generated based on the fluorescence imaging signal It is possible to suppress the decline.
  • the miniaturization of the solid-state imaging device can be realized by making the arrangement of the electrode pad (input / output pad) only on the visible image pickup image sensor compatible with each other.
  • the tip portion is curved to perform wide-range observation, and the function to perform imaging of visible light and imaging of fluorescence at the same time. Coexistence can be easily realized.
  • the image pickup signal output from the solid-state image pickup device (in the embodiment, the laminated image sensor 132) of the present invention corresponds to a signal charge generated by photoelectric conversion of each pixel in the pixel portion. It shows the case of a signal, that is, RAW data.
  • the format of the imaging signal output by the solid-state imaging device of the present invention is not limited to the RAW data shown in the embodiment of the present invention.
  • each of the R pixel 1320R, the G pixel 1320G, and the B pixel 1320B disposed in the visible image capturing image sensor For example, YC processing may be performed on the pixel signal, and the pixel signal may be converted into a so-called luminance color difference signal such as a YCbCr signal or a YUV signal, and output.
  • the visible image pickup image sensor converts the pixel signal of the digital value output from the analog / digital conversion unit 1323 into a luminance color difference signal of the digital value, and then converts the serial luminance color difference signal parallel / serial converted by the serializer 1326 Can be output to the outside as a visible image pickup signal.
  • the external processing unit 30 performs demosaicing processing of the image processing unit 33 for R pixel, G pixel, or B pixel.
  • a configuration may be considered in which respective image data consisting only of pixel signals of any of the pixels in FIG.
  • the light source device constituting the fluorescence observation endoscope apparatus of the present invention has a configuration in which light of a predetermined wavelength band is emitted by a combination of a white light source and a dichroic mirror.
  • the configuration of the light source device is not limited to the configuration shown in the embodiment of the present invention.
  • a light source that emits light in a predetermined wavelength band is provided, and the light emitted by each light source is collected and emitted by a light irradiation lens.
  • the light source device includes, for example, a white light source that emits light in a wavelength band from blue (B) to red (R) (for example, visible light in a wavelength band of 400 nm to 700 nm);
  • An infrared light source that emits light (for example, near infrared light in a wavelength band of 700 nm to 800 nm) can be considered.
  • the apparatus on which the solid-state imaging device of the present invention is mounted is not limited to the fluorescence observation endoscope apparatus shown in the embodiment.
  • the solid-state imaging device of the present invention can be mounted on a microscope device.
  • the solid-state imaging device configured to stack a plurality of semiconductor substrates on which the photoelectric conversion units are formed and simultaneously image visible light and fluorescence excited by the fluorescent substance, the image quality of the image obtained by imaging fluorescence It is possible to provide a solid-state imaging device capable of achieving downsizing while suppressing a drop in the size, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device.
  • Fluorescent observation endoscope Device 10 Endoscope Section 11 Insertion Part (Insertion Part) 12 operation unit 13 imaging unit (fluorescent observation endoscope apparatus, insertion unit, distal end) 130 Imaging lens 131 Excitation light cut filter 132 Stacked type image sensor (Fluorescent observation endoscope apparatus, solid-state imaging device, first semiconductor substrate, second semiconductor substrate) 1320 pixels (solid-state imaging device, first photoelectric conversion element, second photoelectric conversion element) 1320R R pixel (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element) 1320 G G pixels (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element) 1320B B pixel (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element) 1320IR Fluorescent pixel (Solid-state imaging device, second semiconductor substrate, second photoelectric conversion element) 1321 Pixel area (solid-state imaging device, first photoelectric conversion element, second photoelectric conversion element) 1322 Readout unit (solid-state imaging device, peripheral circuit) 13221 Vertical scanning circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Power Engineering (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)

Abstract

This solid-state image pickup device has a first semiconductor substrate having formed therein: a first photoelectric conversion layer, in which first photoelectric conversion elements for photoelectrically converting inputted light are formed; and first wiring layer, in which first wiring is formed, said first wiring layer being formed on a surface on the reverse side of the surface from which light is inputted to the first photoelectric conversion elements. The solid-state image pickup device also has a second semiconductor substrate that is laminated on a surface on the reverse side of the surface from which light is inputted to the first semiconductor substrate, said second semiconductor substrate having formed therein: a second photoelectric conversion layer, in which second photoelectric conversion elements for photoelectrically converting light that has passed through the first semiconductor substrate are formed; and a second wiring layer, in which second wiring is formed. Furthermore, the solid-state image pickup device has: a dielectric multilayer film filter disposed between the first semiconductor substrate and the second semiconductor substrate; a reflecting layer that is formed, in the first photoelectric conversion layer, among the first photoelectric conversion elements by applying a low refractive index material having a lower optical refractive index than the first photoelectric conversion layer; and light transmitting regions that are formed, in the first wiring layer, at positions corresponding to the first photoelectric conversion elements.

Description

固体撮像装置、蛍光観察内視鏡装置、および固体撮像装置の製造方法Solid-state imaging device, fluorescence observation endoscope apparatus, and method of manufacturing solid-state imaging device
 本発明は、固体撮像装置、蛍光観察内視鏡装置、および固体撮像装置の製造方法に関する。 The present invention relates to a solid-state imaging device, a fluorescence observation endoscope apparatus, and a method of manufacturing a solid-state imaging device.
 従来から、癌などを診断するために、ICG(インドシアニングリーン)といわれる誘導体標識抗体(蛍光薬剤)を予め検査対象者の体内に投与することによって、病変の有無を判断する診断法が知られている。ICGは、癌などの病巣に親和性をもった蛍光物質であり、赤外領域の光によって励起し、蛍光発光する。そして、従来から、ICGの蛍光発光を観察する機能を備えた様々な医療用のシステムが提案されている。なお、例えば、医師などの検査実施者は、医療用のシステムによって観察した蛍光発光の明るさから病変の有無を判断している。 Conventionally, in order to diagnose cancer and the like, a diagnostic method is known in which the presence or absence of a lesion is determined by administering a derivative-labeled antibody (fluorescent drug) called ICG (indocyanine green) in advance to the body of a test subject. ing. ICG is a fluorescent substance having affinity to a lesion such as cancer, and is excited by light in the infrared region to emit fluorescence. And conventionally, various medical systems provided with the function to observe the fluorescence emission of ICG are proposed. For example, an examiner such as a doctor determines the presence or absence of a lesion from the brightness of fluorescence emission observed by a medical system.
 従来の医療用のシステムには、蛍光発光を観察するための構成として、近赤外光などの赤外領域の光を、ICGを励起させるための励起光として照射し、照射した励起光によって蛍光発光した病巣部の特定のタンパク質を造影する蛍光観察装置を備えている。 In a conventional medical system, as a configuration for observing fluorescence, light in the infrared region such as near infrared light is irradiated as excitation light for exciting ICG, and fluorescence is emitted by the irradiated excitation light It is equipped with a fluorescence observation device for imaging a specific protein of the illuminated lesion.
 例えば、特許文献1には、可視光を用いた通常の観察に加えて、励起光を用いた蛍光の観察を行うことができる内視鏡装置が開示されている。特許文献1に開示された内視鏡装置では、挿入部の先端部から可視光と励起光とを被検査体に照射し、被検査体から反射した可視光および励起光と、励起光による励起によってICGが蛍光発光した蛍光とをイメージガイドファイバを介してカメラヘッドに導く。そして、特許文献1に開示された内視鏡装置では、まず、カメラヘッドに導かれた可視光、励起光、および蛍光を、カメラヘッド内に備えたダイクロックミラーによって、可視光と、励起光および蛍光とに分離する。ここで分離された可視光は、撮像手段によって撮像される。また、特許文献1に開示された内視鏡装置では、分離された励起光および蛍光は、カメラヘッド内に備えた励起光カットフィルタによって励起光が除去(カット)され、蛍光のみがイメージインテンシファイアによって増幅されて、可視光用の撮像手段とは別の撮像手段によって撮像される。 For example, Patent Document 1 discloses an endoscope apparatus capable of performing observation of fluorescence using excitation light in addition to ordinary observation using visible light. In the endoscope apparatus disclosed in Patent Document 1, visible light and excitation light are irradiated from the tip of the insertion portion onto the subject, and the visible light and the excitation light reflected from the subject are excited by the excitation light. Guides the fluorescence emitted from the ICG to the camera head through the image guide fiber. Then, in the endoscope apparatus disclosed in Patent Document 1, first, visible light, excitation light, and fluorescence guided to the camera head are visible light and excitation light by the dichroic mirror provided in the camera head. And separate into fluorescence and fluorescence. The visible light separated here is imaged by the imaging means. Further, in the endoscope apparatus disclosed in Patent Document 1, the excitation light is removed (cut) from the separated excitation light and fluorescence by the excitation light cut filter provided in the camera head, and only the fluorescence is intensified. It is amplified by the fire and imaged by an imaging means other than the imaging means for visible light.
 一般的に、内視鏡装置には、撮像部を挿入部の外部に搭載する種類のものと、撮像部を挿入部の先端部に搭載する種類のものとがある。撮像部を挿入部の先端部に搭載する種類の内視鏡装置では、撮像部が搭載されている挿入部の先端部を湾曲させる構成にすることによって、広範囲の観察を行うことができるようになる。ここで、先端部を湾曲させて広範囲の観察を行う機能を実現するためには、挿入部の先端部に搭載する撮像部を小さくする必要がある。しかしながら、特許文献1に開示された内視鏡装置の構成、つまり、ダイクロックミラーによって光を分離する構成では、複数の撮像手段を備えることによって、それぞれの撮像手段で可視光の撮像と蛍光の撮像とを同時に行うことができるが、撮像系、つまり、ダイクロックミラーや複数の撮像手段などで構成される撮像部の構成が大きくなってしまう。このため、特許文献1に開示された撮像部の構成を、先端部を湾曲させることができる構成の内視鏡装置の撮像部として、挿入部の先端部に搭載することは難しい。つまり、特許文献1に開示された内視鏡装置の技術では、先端部を湾曲させる構成によって広範囲の観察を行う機能を実現することが困難である。 Generally, there are endoscope apparatuses of the type in which the imaging unit is mounted outside the insertion unit and the type in which the imaging unit is mounted at the distal end of the insertion unit. In an endoscope apparatus of a type in which the imaging unit is mounted on the distal end of the insertion unit, wide-range observation can be performed by bending the distal end of the insertion unit on which the imaging unit is mounted. Become. Here, in order to realize a function of performing a wide-range observation by curving the distal end portion, it is necessary to make the imaging unit mounted on the distal end portion of the insertion portion smaller. However, in the configuration of the endoscope apparatus disclosed in Patent Document 1, that is, in the configuration in which light is separated by the dichroic mirror, by providing a plurality of imaging units, imaging of visible light and fluorescence of each imaging unit Although imaging can be performed simultaneously, the configuration of an imaging system, that is, an imaging unit including a dichroic mirror, a plurality of imaging units, and the like is enlarged. For this reason, it is difficult to mount the configuration of the imaging unit disclosed in Patent Document 1 on the distal end portion of the insertion unit as an imaging unit of an endoscope apparatus having a configuration capable of bending the distal end portion. That is, in the technique of the endoscope apparatus disclosed in Patent Document 1, it is difficult to realize the function of performing a wide-range observation by the configuration in which the distal end portion is curved.
 また、特許文献1には、挿入部の先端部に1つの撮像手段のみを搭載し、可視光を用いた通常の観察と、励起光を用いた蛍光の観察とを時系列的に行う構成の内視鏡装置も開示されている。特許文献1に開示された、挿入部の先端部に1つの撮像手段のみを搭載した構成の内視鏡装置では、光源の波長帯域に制限をかけるための帯域制限フィルタによって、挿入部の先端部から被検査体に照射する光を切り替えている。より具体的には、特許文献1に開示された内視鏡装置では、可視光を透過する可視光透過フィルタと、赤外光を透過する赤外光透過フィルタとのそれぞれが円形を2等分するように配置された帯域制限回転フィルタを、撮像手段が撮像する周期(フレーム周期)に同期して回転させることによって、挿入部の先端部から被検査体に照射する光を、可視光または励起光に切り替えている。これにより、特許文献1に開示された内視鏡装置では、1つの撮像手段によって、可視光の撮像と蛍光の撮像とを時系列に(交互に)行っている。このような構成であれば、先端部を湾曲させることができる構成の内視鏡装置の撮像部として、特許文献1に開示された内視鏡装置の技術を、挿入部の先端部に搭載することができる。 Further, Patent Document 1 has a configuration in which only one imaging unit is mounted at the tip of the insertion portion, and normal observation using visible light and fluorescence observation using excitation light are performed in time series. An endoscopic device is also disclosed. In the endoscope apparatus having a configuration in which only one imaging means is mounted at the tip of the insertion portion disclosed in Patent Document 1, the tip of the insertion portion is limited by a band limiting filter for limiting the wavelength band of the light source. The light to be irradiated to the object to be inspected is switched. More specifically, in the endoscope apparatus disclosed in Patent Document 1, each of a visible light transmission filter for transmitting visible light and an infrared light transmission filter for transmitting infrared light is equally divided into two circles. Visible light or excitation of the light irradiated to the inspection object from the tip of the insertion portion by rotating the band-limited rotation filter arranged to be synchronized with the cycle (frame cycle) captured by the imaging means Switch to light. Thereby, in the endoscope apparatus disclosed in Patent Document 1, imaging of visible light and imaging of fluorescence are performed in time series (alternately) by one imaging unit. If it is such composition, the technique of the endoscope apparatus indicated by patent documents 1 is carried in the tip part of an insertion part as an imaging part of the endoscope apparatus of the composition which can make a tip part curve. be able to.
 しかしながら、特許文献1に開示された、挿入部の先端部に1つの撮像手段のみを搭載した内視鏡装置の構成では、分離した可視光と、励起光および蛍光とのそれぞれを対応する撮像手段で撮像する構成のように、可視光の撮像と蛍光の撮像とを同一のタイミングで行うことができない。このため、挿入部の先端部に1つの撮像手段のみを搭載した特許文献1に開示された内視鏡装置において、例えば、医師などの検査実施者に、可視光を撮像した画像と蛍光を撮像した画像とを重畳して提示する場合には、重畳した画像に含まれる被検査体の位置に、それぞれの画像を撮像したタイミングの違いによるずれが発生してしまうことがある。この被検査体の位置のずれは、例えば、外科系の内視鏡装置など、被検査体や挿入部に動きがある場合において、より顕著に現れる。また、特許文献1に開示された、挿入部の先端部に1つの撮像手段のみを搭載した内視鏡装置の構成では、回転する帯域制限回転フィルタを撮像手段が撮像する周期(フレーム周期)に同期させるために、撮像部の制御が複雑になってしまう。 However, in the configuration of the endoscope apparatus disclosed in Patent Document 1 in which only one imaging means is mounted at the distal end of the insertion portion, imaging means corresponding to each of the separated visible light and the excitation light and the fluorescence As in the configuration in which imaging is performed, imaging of visible light and imaging of fluorescence can not be performed at the same timing. For this reason, in the endoscope apparatus disclosed in Patent Document 1 in which only one imaging means is mounted at the distal end of the insertion portion, for example, an examiner such as a doctor or the like takes an image of visible light and fluorescence When the images are superimposed and presented, a shift may occur at the position of the test object included in the superimposed images due to the difference in timing at which the respective images are captured. The displacement of the position of the object to be inspected appears more prominently in the case where there is a movement in the object to be inspected or the insertion part, for example, in an endoscope apparatus of a surgical system. Further, in the configuration of the endoscope apparatus disclosed in Patent Document 1 in which only one imaging unit is mounted at the tip of the insertion portion, the period (frame period) in which the imaging unit captures an image In order to synchronize, control of the imaging unit becomes complicated.
 そこで、従来から、例えば、特許文献2のように、可視帯域の光(可視光)を撮像するための第1の基板と、近赤外域の光(近赤外光)を撮像するための第2の基板とを積層した積層型の撮像素子が提案されている。そして、特許文献2には、積層型の撮像素子を内視鏡装置の先端部に配置する技術が開示されている。特許文献2に開示された内視鏡装置では、内視鏡スコープ部の先端部から可視光と励起光とを被検査体に照射し、被検査体から反射した可視光および励起光と、励起光による励起によってICGが蛍光発光した蛍光とが撮像素子に入射される。そして、特許文献2に開示された積層型の撮像素子では、光学フィルタによって励起波長帯域の光(励起光)を除去(カット)して、第1の基板で可視光を撮像し、第1の基板を透過した蛍光のみを第2の基板で撮像することによって、可視光を撮像した画像と蛍光を撮像した画像とを同時に生成する。 Therefore, conventionally, for example, as described in Patent Document 2, a first substrate for imaging light in the visible band (visible light) and a first substrate for imaging light in the near infrared range (near infrared light) A stacked imaging device in which two substrates are stacked is proposed. Patent Document 2 discloses a technique for arranging a stacked imaging element at the tip of an endoscope apparatus. In the endoscope apparatus disclosed in Patent Document 2, visible light and excitation light are irradiated to the subject from the tip of the endoscope scope, and the visible light and the excitation light reflected from the subject are excited. The fluorescence emitted from the ICG by excitation with light is incident on the imaging device. Then, in the stacked imaging device disclosed in Patent Document 2, light (excitation light) in the excitation wavelength band is removed (cut) by the optical filter, and visible light is imaged by the first substrate; By imaging only the fluorescence transmitted through the substrate with the second substrate, an image obtained by imaging visible light and an image obtained by imaging fluorescence are simultaneously generated.
 このことから、特許文献2に開示されたような積層型の構成の撮像素子(固体撮像装置)を先端部に搭載することによって、先端部を湾曲させることができる構成にすると共に、可視光の撮像と蛍光の撮像とを同一のタイミングで行う内視鏡装置を実現することができる。そして、特許文献2に開示されたような積層型の構成の撮像素子(固体撮像装置)を先端部に搭載した内視鏡装置では、可視光を撮像した画像と蛍光を撮像した画像とを重畳しても、被検査体の位置にずれが発生していない画像を、例えば、医師などの検査実施者に提示することができる。 From this, by mounting an imaging device (solid-state imaging device) having a stacked configuration as disclosed in Patent Document 2 at the tip, the tip can be curved, and at the same time, visible light It is possible to realize an endoscope apparatus that performs imaging and fluorescence imaging at the same timing. Then, in an endoscope apparatus in which an imaging device (solid-state imaging device) having a stacked structure as disclosed in Patent Document 2 is mounted at the tip, an image obtained by capturing visible light and an image obtained by capturing fluorescence are superimposed. Even in this case, for example, an image such as a doctor can be presented with an image in which no displacement occurs in the position of the subject.
日本国特許第3962122号公報Japanese Patent No. 3962122 日本国特開2016-058866号公報Japanese Patent Application Laid-Open No. 2016-058866
 ところで、内視鏡装置では、検査対象者の体の負担を軽減するなどの目的のため、先端部をさらに小型化することが望まれている。このため、先端部に搭載する固体撮像装置においても、小型化の要望がある。しかしながら、特許文献2に開示されたような、第1の基板と第2の基板とのそれぞれの基板に入射した光に応じた信号(画素信号)を、積層した2枚の基板のそれぞれから出力する構成の固体撮像装置では、画素信号などの信号を外部との間で入出力するための端子としての電極パッド(入出力パッド)を、第1の基板と第2の基板とのそれぞれに配置(形成)する必要がある。このため、特許文献2に開示されたような構成の積層型の固体撮像装置では、1枚の基板(単板)で構成される固体撮像装置に比べて、電極パッドの数が2倍になってしまう。 By the way, in the endoscope apparatus, for the purpose of reducing the burden on the body of the person to be examined, it is desired to further miniaturize the tip. For this reason, there is also a demand for downsizing of the solid-state imaging device mounted on the tip. However, as disclosed in Patent Document 2, signals (pixel signals) corresponding to light incident on each of the first substrate and the second substrate are output from each of the two stacked substrates. In the solid-state imaging device having the above configuration, an electrode pad (input / output pad) as a terminal for inputting / outputting a signal such as a pixel signal to / from the outside is disposed on each of the first substrate and the second substrate. It is necessary to (form). For this reason, in the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, the number of electrode pads is doubled as compared with the solid-state imaging device formed of one substrate (single plate). It will
 一般的に、小型の固体撮像装置の実装面積は、基板に配置する電極パッドの数に依存する割合が高い。このため、特許文献2に開示されたような電極パッドの数が2倍になる構成は、固体撮像装置の実装面積が増大する要因となってしまう。そこで、特許文献2に開示されたような積層型の固体撮像装置において、それぞれの基板に配置する画素の大きさ(面積)を小さくすることによって、それぞれの基板の大きさ(面積)を小さくし、実装面積を小さくすることが考えられる。 Generally, the mounting area of a small solid-state imaging device has a high proportion depending on the number of electrode pads disposed on the substrate. Therefore, the configuration in which the number of electrode pads is doubled as disclosed in Patent Document 2 causes an increase in the mounting area of the solid-state imaging device. Therefore, in the stacked solid-state imaging device as disclosed in Patent Document 2, the size (area) of each substrate is reduced by reducing the size (area) of the pixels arranged on each substrate. It is conceivable to reduce the mounting area.
 しかしながら、特許文献2に開示されたような構成の積層型の固体撮像装置において画素の面積を小さくすると、それぞれの画素の間隔、いわゆる、画素ピッチが狭くなるため、蛍光が第2の基板に効率的に入射されないことが考えられる。これは、積層型の固体撮像装置において第2の基板は、光が入射する側から遠い位置にあること、蛍光は波長が長い光であるため回折の影響が大きく、光の拡散が早い(光の拡散量が大きい)光であることによるものである。そして、積層型の固体撮像装置において、第2の基板に蛍光が効率的に入射されないと、撮像する蛍光の画像の画質が低下してしまう要因となる。 However, if the area of the pixels is reduced in the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, the distance between the respective pixels, that is, the so-called pixel pitch becomes narrow. It is conceivable that no light is incident. This is because in the stacked solid-state imaging device, the second substrate is at a position far from the light incident side, and the fluorescence has a long wavelength, so the influence of diffraction is large and the diffusion of light is fast (light The amount of light diffusion is large). Then, in the stacked solid-state imaging device, if the fluorescence is not efficiently incident on the second substrate, the image quality of the image of the fluorescence to be captured may be degraded.
 ここで、特許文献2に開示されたような積層型の固体撮像装置において、画素ピッチを狭くした場合の一例について説明する。図10は、積層型の固体撮像装置の構造および光の強度の分布特性の一例を示した図である。図10の(a)には、積層型の固体撮像装置において画素が配置された領域の断面の構造の一例を模式的に示している。より具体的には、図10の(a)には、積層型の固体撮像装置930において、赤色(R)の波長帯域の光(可視光)を透過するオンチップカラーフィルタが貼付された画素(以下、「R画素」という)と、緑色(G)の波長帯域の光(可視光)を透過するオンチップカラーフィルタが貼付された画素(以下、「G画素」という)とが交互に2つずつ配置された領域の縦構造を模式的に示している。 Here, in the stacked solid-state imaging device as disclosed in Patent Document 2, an example in the case where the pixel pitch is narrowed will be described. FIG. 10 is a diagram showing an example of the structure of the stacked solid-state imaging device and the distribution characteristic of the light intensity. FIG. 10A schematically shows an example of the cross-sectional structure of a region in which pixels are arranged in the stacked solid-state imaging device. More specifically, in (a) of FIG. 10, in the stacked solid-state imaging device 930, a pixel to which an on-chip color filter that transmits light (visible light) in the red (R) Hereinafter, two “R pixels” and two pixels (hereinafter “G pixels”) to which an on-chip color filter for transmitting light (visible light) in the green (G) wavelength band is attached are alternately provided. The vertical structure of the area | region arrange | positioned one by one is shown typically.
 また、図10の(b)および図10の(c)には、図10の(a)に示した固体撮像装置930内の対応する位置における光の強度(光強度)の分布を光学シミュレーションした結果の一例を示している。より具体的には、図10の(b)および図10の(c)には、緑色(G)の波長帯域の可視光Gと蛍光の波長帯域の蛍光fとのそれぞれの光強度の分布を光学シミュレーションした結果の一例を示している。図10の(b)および図10の(c)においては、画素ピッチを横軸にして、光強度の相対的な大きさ(強さ)を縦軸に示している。なお、図10の(b)および図10の(c)に示した光学シミュレーションの結果は、固体撮像装置930に配置された画素の画素ピッチが1.2umであるものとして、可視光Gと蛍光fとのそれぞれの光強度の分布を光学シミュレーションした結果である。 Also, in (b) of FIG. 10 and (c) of FIG. 10, the optical simulation of the distribution of light intensity (light intensity) at the corresponding position in the solid-state imaging device 930 shown in (a) of FIG. An example of the result is shown. More specifically, in (b) of FIG. 10 and (c) of FIG. 10, the respective light intensity distributions of the visible light G in the green (G) wavelength band and the fluorescence f of the fluorescence wavelength band are shown. An example of an optical simulation result is shown. In (b) of FIG. 10 and (c) of FIG. 10, the relative magnitude (intensity) of light intensity is shown on the vertical axis, with the pixel pitch on the horizontal axis. The results of the optical simulation shown in (b) in FIG. 10 and (c) in FIG. It is the result of optically simulating the distribution of each light intensity with f.
 固体撮像装置930は、図10の(a)に示したように、第1の基板931と第2の基板932とが、接合層933を挟んで積層された構造である。より具体的には、固体撮像装置930は、光が入射する側から光が進む方向に向かって、マイクロレンズ層935、オンチップカラーフィルタ層934、第1の基板931、接合層933、第2の基板932、および支持基板936の順番で積層された構造である。ここで、第1の基板931は、画素を構成するフォトダイオードなどの光電変換素子(受光素子)が配置(形成)された光電変換層931-1と、第1の基板931に形成された回路要素を接続するための配線が形成された配線層931-2とによって形成されている。また、第2の基板932も、第1の基板931と同様に、光電変換素子(受光素子)が配置(形成)された光電変換層932-1と、第2の基板932に形成された回路要素を接続するための配線が形成された配線層932-2とによって形成されている。 The solid-state imaging device 930 has a structure in which a first substrate 931 and a second substrate 932 are stacked with a bonding layer 933 interposed therebetween, as shown in FIG. More specifically, in the solid-state imaging device 930, the microlens layer 935, the on-chip color filter layer 934, the first substrate 931, the bonding layer 933, the second, and the light traveling direction are from the light incident side. And the support substrate 936 in this order. Here, the first substrate 931 includes a photoelectric conversion layer 931-1 in which photoelectric conversion elements (light receiving elements) such as photodiodes forming a pixel are disposed (formed), and a circuit formed over the first substrate 931. It is formed by the wiring layer 931-2 in which the wiring for connecting the elements is formed. In the same manner as the first substrate 931, the second substrate 932 also includes a photoelectric conversion layer 932-1 on which a photoelectric conversion element (light receiving element) is disposed (formed) and a circuit formed on the second substrate 932 It is formed by the wiring layer 932-2 in which the wiring for connecting the elements is formed.
 まず、図10の(b)に示した、第1の基板931に光が入射する側の光電変換層931-1の面、つまり、シリコン基板の面においてG画素に入射した可視光Gおよび蛍光fの光強度の分布を光学シミュレーションした結果を確認する。図10の(b)に示したように、光電変換層931-1に光が入射する側のシリコン面における可視光Gの光強度の分布は、G画素が配置された位置の中心付近、つまり、G画素に対応するマイクロレンズの焦点である中心位置で最大(ピーク)となっている。また、図10の(b)に示したように、光電変換層931-1に光が入射する側のシリコン面における蛍光fの光強度の分布も、可視光Gよりも光強度が弱いものの、可視光Gと同様に、G画素が配置された位置の中心付近でピークとなっている。なお、図10の(b)に示したように蛍光fの光強度が可視光Gよりも弱くなっているのは、蛍光fが、励起光によってICGが蛍光発光した非常に微弱な光であるためである。 First, as shown in FIG. 10B, the visible light G and the fluorescence incident on the G pixel on the surface of the photoelectric conversion layer 931-1 on the light incident side to the first substrate 931, that is, the surface of the silicon substrate. The result of optical simulation of the light intensity distribution of f is confirmed. As shown in (b) of FIG. 10, the distribution of the light intensity of the visible light G on the silicon surface on the light incident side to the photoelectric conversion layer 931-1 is near the center of the position where the G pixel is arranged, that is, , G (peak) at the center position which is the focal point of the microlens corresponding to the G pixel. Further, as shown in (b) of FIG. 10, the light intensity distribution of the fluorescence f on the silicon surface on the light incident side to the photoelectric conversion layer 931-1 is also weaker than that of the visible light G, Similar to the visible light G, it has a peak near the center of the position where the G pixel is disposed. As shown in (b) of FIG. 10, the light intensity of the fluorescent light f is weaker than that of the visible light G because the fluorescent light f is very weak light emitted from the ICG by the excitation light. It is for.
 続いて、図10の(c)に示した、第1の基板931に入射した光が透過して出射される側の光電変換層931-1の面(シリコン基板の面)においてG画素を透過した可視光Gおよび蛍光fの光強度の分布を光学シミュレーションした結果を確認する。なお、光電変換層931-1(シリコン基板)によって吸収されずに透過してきた可視光Gは、光強度が弱くなっているため、図10の(c)においては、光強度の相対的な大きさ(強さ)の範囲(レンジ)を、光強度が弱くなっている可視光Gと蛍光fとに合わせて拡大して示している。図10の(c)に示したように、光電変換層931-1に入射した光が透過して出射する側のシリコン面における可視光Gの光強度の分布は、光電変換層931-1に光が入射する側のシリコン面における可視光Gの光強度の分布と同様に、G画素が配置された位置の中心付近でピークとなっている。これに対して、図10の(c)に示したように、光電変換層931-1に入射した光が透過して出射する側のシリコン面における蛍光fの光強度の分布は、光電変換層931-1に光が入射する側のシリコン面における蛍光fの光強度の分布と異なり、G画素が配置された位置とR画素が配置された位置の間の付近でピークとなっている。 Subsequently, the G pixel is transmitted on the surface (surface of the silicon substrate) of the photoelectric conversion layer 931-1 on the side from which the light incident on the first substrate 931 is transmitted and emitted as shown in (c) of FIG. The results of optical simulation of the distribution of the light intensity of the visible light G and the fluorescence f are confirmed. Note that since the visible light G transmitted without being absorbed by the photoelectric conversion layer 931-1 (silicon substrate) has a weak light intensity, in (c) of FIG. 10, the relative magnitude of the light intensity is The range of intensity (magnitude) is shown enlarged according to the visible light G and the fluorescence f where the light intensity is weak. As shown in (c) of FIG. 10, the distribution of the light intensity of the visible light G on the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted is the photoelectric conversion layer 931-1. Similar to the distribution of the light intensity of the visible light G on the silicon surface on the light incident side, it has a peak near the center of the position where the G pixel is disposed. On the other hand, as shown in (c) of FIG. 10, the distribution of the light intensity of the fluorescence f on the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted is the photoelectric conversion layer. Unlike the distribution of the light intensity of the fluorescence f on the silicon surface on the light incident side to 931-1, it has a peak near the position where the G pixel is arranged and the position where the R pixel is arranged.
 このように、蛍光fは、光電変換層931-1(シリコン基板)を透過することによって、光強度の分布がピークとなる位置が、画素が配置された位置の中心付近からずれた位置になってしまうことが、光学シミュレーションによって確認された。つまり、波長が長い蛍光fは、光電変換層931-1に光が入射する側のシリコン面から入射したときから、回折現象によって光電変換層931-1内で拡散が進むため、近接している(隣接している)画素において同様に拡散が進んだ蛍光fとの干渉によって、光が進むにつれて(光が配線層931-2に近づくにつれて)徐々に光強度の分布がピークとなる位置が、配線層931-2内の配線の位置の方にずれてしまう。このため、蛍光fの多くは、配線層931-2内の配線に当たって反射してしまうことになり、配線層931-2を透過することができず、第2の基板932まで到達できないことが光学シミュレーションによって確認された。 Thus, the fluorescence f is transmitted through the photoelectric conversion layer 931-1 (silicon substrate), and the position where the light intensity distribution peaks is shifted from the vicinity of the center of the position where the pixels are arranged. It was confirmed by optical simulation that the That is, since the diffusion proceeds in the photoelectric conversion layer 931-1 due to the diffraction phenomenon from the time when the fluorescence f having a long wavelength enters from the silicon surface on the light incident side to the photoelectric conversion layer 931-1, it is close The position where the light intensity distribution peaks gradually as the light travels (as the light approaches the wiring layer 931-2) due to the interference with the fluorescence f which has similarly diffused in the (adjacent) pixels, It shifts to the position of the wiring in the wiring layer 931-2. For this reason, most of the fluorescent light f strikes the wiring in the wiring layer 931-2 and is reflected, and can not pass through the wiring layer 931-2 and can not reach the second substrate 932. It was confirmed by simulation.
 図10の(c)に示した光強度の分布では、光電変換層931-1に入射した光が透過して出射する側のシリコン面において、蛍光fの光強度の分布がピークとなる位置が、第1の基板931の配線層931-2に配線が形成される領域と重なる位置となってしまっている。これでは、固体撮像装置930に入射して光電変換層931-1を透過した蛍光が、第1の基板931の配線層931-2に形成された配線に遮られ、第2の基板932の光電変換層932-1に配置(形成)された光電変換素子(受光素子)に入射する蛍光の割合が著しく減少してしまう。このように、画素ピッチを狭くした積層型の固体撮像装置では、第2の基板に配置(形成)された光電変換素子(受光素子)に入射する蛍光の光量が少なくなり、蛍光に対する感度が低下したのと同様に、第2の基板932で撮像する蛍光の画像の画質が低下してしまう。 In the light intensity distribution shown in (c) of FIG. 10, the light intensity distribution of the fluorescent light f has a peak at the silicon surface on the side from which the light incident on the photoelectric conversion layer 931-1 is transmitted and emitted. In the wiring layer 931-2 of the first substrate 931, the wiring layer is overlapped with the region where the wiring is formed. In this case, the fluorescence that has entered the solid-state imaging device 930 and transmitted through the photoelectric conversion layer 931-1 is blocked by the wiring formed in the wiring layer 931-2 of the first substrate 931, and the photoelectric conversion of the second substrate 932 The proportion of fluorescence incident on the photoelectric conversion element (light receiving element) disposed (formed) in the conversion layer 932-1 is significantly reduced. As described above, in the stacked solid-state imaging device in which the pixel pitch is narrowed, the light amount of the fluorescence incident on the photoelectric conversion element (light receiving element) disposed (formed) on the second substrate decreases and the sensitivity to the fluorescence decreases. As described above, the image quality of the fluorescence image captured by the second substrate 932 is degraded.
 上述したように、特許文献2に開示されたような構成の積層型の固体撮像装置において実装面積を小さくするために画素の面積を小さくして画素ピッチを狭くすると、第2の基板に配置(形成)された画素における蛍光に対する感度が低下し、第2の基板で撮像する蛍光の画像の解像度が低下してしまう。このため、積層型の固体撮像装置において、波長が長い光である蛍光が、回折限界を超えて拡散する場合でも第1の基板を透過して第2の基板に入射されるようにするためには、画素の面積を大きくする、つまり、画素ピッチを広くする必要がある。例えば、画素ピッチが2um以下であるときに蛍光の回折の影響が大きく出るものとすると、第2の基板で撮像する蛍光の画像の画質の低下を許容範囲内にする、つまり、第2の基板に配置(形成)された光電変換素子(受光素子)の感度と、撮像した蛍光の画像の解像度とを許容範囲内にするためには、画素ピッチを2umよりも広くする必要がある。 As described above, when the pixel area is reduced and the pixel pitch is narrowed in order to reduce the mounting area in the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, it is arranged on the second substrate ( The sensitivity to fluorescence in the formed pixel is reduced, and the resolution of the image of the fluorescence imaged on the second substrate is reduced. Therefore, in the stacked solid-state imaging device, in order to allow the fluorescence having a long wavelength to be transmitted through the first substrate and to be incident on the second substrate even when the light diffuses beyond the diffraction limit. In order to increase the area of the pixel, that is, to increase the pixel pitch. For example, when the pixel pitch is 2 um or less, if the influence of the diffraction of fluorescence is large, the deterioration of the image quality of the image of the fluorescence imaged by the second substrate is within the allowable range, that is, the second substrate In order to make the sensitivity of the photoelectric conversion element (light receiving element) arranged (formed) and the resolution of the captured fluorescence image within the allowable range, it is necessary to make the pixel pitch wider than 2 um.
 上述したように、特許文献2に開示されたような構成の積層型の固体撮像装置における小型化の実現には、第2の基板に電極パッドを配置(形成)するための領域を確保するために画素ピッチを狭くするということと、波長が長い光である蛍光が回折限界を超えることなく第1の基板を透過するために画素ピッチを広くするということとの相反する2つの課題を解決する必要がある。このため、特許文献2に開示されたような構成の積層型の固体撮像装置では、それぞれの基板に配置する画素の面積(画素ピッチにも関わる)に制限が発生し、固体撮像装置の小型化を容易に実現することができない。例えば、上述した例では、画素ピッチを2um以下にした積層型の固体撮像装置を実現することができない。 As described above, in order to realize miniaturization of the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, in order to secure a region for arranging (forming) the electrode pad on the second substrate Solve the two contradictory problems of narrowing the pixel pitch and widening the pixel pitch so that fluorescence with long wavelength light passes through the first substrate without exceeding the diffraction limit There is a need. For this reason, in the stacked solid-state imaging device having the configuration as disclosed in Patent Document 2, the area (also related to the pixel pitch) of the pixels disposed on each substrate is limited, and the solid-state imaging device is miniaturized Can not be easily realized. For example, in the above-described example, it is impossible to realize a stacked solid-state imaging device in which the pixel pitch is 2 μm or less.
 本発明は、上記の課題に基づいてなされたものであり、光電変換部が形成された複数の半導体基板を積層し、可視光と蛍光物質が励起した蛍光とを同時に撮像する構成の固体撮像装置において、蛍光を撮像した画像における画質の低下を抑えると共に、小型化を実現することができる固体撮像装置、この固体撮像装置を用いた蛍光観察内視鏡装置、およびこの固体撮像装置の製造方法を提供することを目的としている。 The present invention is made based on the above problems, and is a solid-state imaging device configured to stack a plurality of semiconductor substrates in which photoelectric conversion parts are formed, and to simultaneously image visible light and fluorescence excited by a fluorescent substance. A solid-state imaging device capable of achieving downsizing while suppressing deterioration in image quality of an image obtained by imaging fluorescence, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device. It is intended to be provided.
 本発明の第1の態様によれば、固体撮像装置は、入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、前記第1の半導体基板と前記第2の半導体基板との間に配置される誘電体多層膜フィルタと、前記第1の光電変換層において、前記第1の光電変換素子の間に形成され、前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料が充填されて形成される反射層と、前記第1の配線層において、前記第1の光電変換素子に対応する位置に形成される光透過領域と、を有する。 According to the first aspect of the present invention, in the solid-state imaging device, the first photoelectric conversion layer in which the first photoelectric conversion element that photoelectrically converts incident light is formed, and the first photoelectric conversion element A first semiconductor substrate on which a first wiring layer is formed on a surface opposite to the surface on which light is incident, and a side on which light is incident on the first semiconductor substrate; A second photoelectric conversion layer in which a second photoelectric conversion element for photoelectrically converting light transmitted through the first semiconductor substrate is formed, and a second wiring is formed. A second semiconductor substrate on which two wiring layers are formed, a dielectric multilayer filter disposed between the first semiconductor substrate and the second semiconductor substrate, and the first photoelectric conversion layer Formed between the first photoelectric conversion elements, wherein the refractive index of light is higher than that of the first photoelectric conversion layer Has a reflecting layer again low refractive index material is formed by filling in the first wiring layer, and a light transmissive region formed at a position corresponding to the first photoelectric conversion element.
 本発明の第2の態様によれば、上記第1の態様の固体撮像装置において、前記光透過領域は、前記第1の配線層よりも光の屈折率が大きい高屈折率材料によって形成されたライトパイプを有してもよい。 According to a second aspect of the present invention, in the solid-state imaging device according to the first aspect, the light transmitting region is formed of a high refractive index material having a light refractive index larger than that of the first wiring layer. It may have a light pipe.
 本発明の第3の態様によれば、上記第1の態様の固体撮像装置において、前記第1の半導体基板に形成され、前記第1の光電変換層を貫通して前記第1の配線と外部との間で信号を導通させるための電極パッドと、前記誘電体多層膜フィルタを貫通し、前記第1の配線と前記第2の配線とを電気的に接続する貫通電極と、を有してもよい。 According to a third aspect of the present invention, in the solid-state imaging device according to the first aspect, the first wiring and the outside are formed on the first semiconductor substrate and penetrate the first photoelectric conversion layer. And a penetrating electrode which penetrates the dielectric multilayer filter and electrically connects the first wiring and the second wiring. It is also good.
 本発明の第4の態様によれば、上記第3の態様の固体撮像装置において、前記第1の半導体基板の対応する前記電極パッドに供給された電源、グラウンド、およびマスタークロックのいずれかの外部からの信号を、前記貫通電極を介して前記第2の配線に接続して前記第2の半導体基板に供給してもよい。 According to a fourth aspect of the present invention, in the solid-state imaging device according to the third aspect, the power supply supplied to the corresponding electrode pad of the first semiconductor substrate, the ground, and the external of any one of the master clocks. The signal from V.4 may be connected to the second wiring through the through electrode and supplied to the second semiconductor substrate.
 本発明の第5の態様によれば、上記第3の態様または上記第4の態様の固体撮像装置において、前記第1の半導体基板および前記第2の半導体基板の少なくとも一方の半導体基板に形成され、前記第1の配線または前記第2の配線を介して前記第1の光電変換素子および前記第2の光電変換素子を制御し、前記第1の光電変換素子および前記第2の光電変換素子が光電変換した電気信号を、前記第1の配線または前記第2の配線に出力させる周辺回路、を有し、前記第1の半導体基板に形成された前記周辺回路と、前記第2の半導体基板に形成された前記周辺回路との内、前記第1の光電変換素子と前記第2の光電変換素子とのそれぞれの制御に必要となる同一の機能を実現する少なくとも1つの周辺回路は、前記第1の光電変換素子と前記第2の光電変換素子との双方に対応するように実現する機能が統合された共通周辺回路として、前記第1の半導体基板および第2の半導体基板のいずれか一方の半導体基板に形成されてもよい。 According to a fifth aspect of the present invention, in the solid-state imaging device of the third aspect or the fourth aspect, it is formed on at least one of the first semiconductor substrate and the second semiconductor substrate. Controlling the first photoelectric conversion element and the second photoelectric conversion element via the first wiring or the second wiring, and the first photoelectric conversion element and the second photoelectric conversion element A peripheral circuit for outputting the photoelectrically converted electric signal to the first wiring or the second wiring, the peripheral circuit formed on the first semiconductor substrate, and the second semiconductor substrate Among the formed peripheral circuits, at least one peripheral circuit which realizes the same function necessary for control of each of the first photoelectric conversion element and the second photoelectric conversion element is the first one. Photoelectric conversion element and before Even if a common peripheral circuit integrated with a function realized to correspond to both of the second photoelectric conversion element is formed on one of the first semiconductor substrate and the second semiconductor substrate Good.
 本発明の第6の態様によれば、上記第5の態様の固体撮像装置において、前記共通周辺回路は、供給されたマスタークロックに基づいて基準のクロック信号を生成する前記周辺回路であるクロックジェネレータ、この固体撮像装置の動作を規定するための設定値を記憶する前記周辺回路である記憶装置、または前記第1の光電変換素子および前記第2の光電変換素子が光電変換した電気信号に応じたシリアルの撮像信号を外部に出力する前記周辺回路であるシリアライザのいずれかの前記周辺回路であってもよい。 According to a sixth aspect of the present invention, in the solid-state imaging device of the fifth aspect, the common peripheral circuit is a clock generator that generates the reference clock signal based on the supplied master clock. A storage device as the peripheral circuit that stores setting values for defining the operation of the solid-state imaging device, or an electrical signal obtained by photoelectric conversion of the first photoelectric conversion element and the second photoelectric conversion element The peripheral circuit may be any one of the serializers, which is the peripheral circuit that outputs a serial imaging signal to the outside.
 本発明の第7の態様によれば、上記第1の態様の固体撮像装置において、前記第1の光電変換素子が形成される間隔は、前記第1の半導体基板に入射されて前記第1の光電変換層を透過する光に回折の影響が出始める間隔以下であってもよい。 According to a seventh aspect of the present invention, in the solid-state imaging device according to the first aspect, the interval at which the first photoelectric conversion element is formed is incident on the first semiconductor substrate to be the first. It may be equal to or less than the interval at which the light transmitted through the photoelectric conversion layer starts to be affected by diffraction.
 本発明の第8の態様によれば、蛍光観察内視鏡装置は、蛍光物質を観察する蛍光観察内視鏡装置であって、可視光、および前記蛍光物質に照射することで被検査体に蛍光を発光させる励起光の波長帯域を含む光を前記被検査体に照射することができる光源装置と、入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、前記第1の半導体基板と前記第2の半導体基板との間に配置される誘電体多層膜フィルタと、前記第1の光電変換層において、前記第1の光電変換素子の間に形成され、前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料が充填されて形成される反射層と、前記第1の配線層において、前記第1の光電変換素子に対応する位置に形成される光透過領域と、を有する固体撮像装置と、を備え、前記固体撮像装置は、生体の内部に挿入される挿入部の先端部に配置される。 According to the eighth aspect of the present invention, the fluorescence observation endoscope apparatus is a fluorescence observation endoscope apparatus for observing a fluorescent substance, and the test object is irradiated with visible light and the fluorescent substance. A light source device capable of irradiating the inspection object with light including a wavelength band of excitation light for emitting fluorescence, and a first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed And a first semiconductor substrate having a first wiring layer on which a first wiring is formed on the surface opposite to the surface on which light is incident to the first photoelectric conversion element; A second photoelectric conversion layer is formed on a surface of the first semiconductor substrate opposite to the light incident side, and a second photoelectric conversion element is formed to photoelectrically convert light transmitted through the first semiconductor substrate. And a second semiconductor substrate on which a second wiring layer in which a second wiring is formed is formed A dielectric multilayer filter disposed between the first semiconductor substrate and the second semiconductor substrate, and the first photoelectric conversion layer formed between the first photoelectric conversion element, A reflective layer formed by being filled with a low refractive index material having a smaller refractive index of light than the first photoelectric conversion layer, and the first wiring layer formed at a position corresponding to the first photoelectric conversion element And a solid-state imaging device having a light transmission region, and the solid-state imaging device is disposed at a distal end portion of an insertion portion inserted into the inside of a living body.
 本発明の第9の態様によれば、固体撮像装置の製造方法は、入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、を有する固体撮像装置の製造方法であって、前記第1の光電変換層において、それぞれの前記第1の光電変換素子の間に、前記第1の光電変換層の表面から1um以上の深さの窪みを形成した後、形成した前記窪みに前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料を充填して反射層を形成する第1の工程、を含む。 According to a ninth aspect of the present invention, there is provided a method of manufacturing a solid-state imaging device, comprising: a first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed; A light is incident on a first semiconductor substrate having a first wiring layer on which a first wiring is formed on the surface opposite to the surface on which light is incident on the element, and the first semiconductor substrate The second photoelectric conversion layer is formed on the side opposite to the side where the light is transmitted, and the second photoelectric conversion element is formed to photoelectrically convert the light transmitted through the first semiconductor substrate, and the second wiring is formed. Method of manufacturing a solid-state imaging device having a second semiconductor substrate on which a second wiring layer is formed, and in the first photoelectric conversion layer, between the first photoelectric conversion elements After forming a recess with a depth of 1 um or more from the surface of the first photoelectric conversion layer First step of forming the first reflective layer is filled with a low refractive index material having a refractive index less light than photoelectric conversion layer to said recess including,.
 本発明の第10の態様によれば、上記第9の態様の固体撮像装置の製造方法において、少なくとも前記第1の工程の前に、前記第1の配線層において、前記第1の光電変換素子に対応する位置に光透過領域を形成する第2の工程と、前記第1の半導体基板に光が入射する側とは反対側の面に前記第1の配線を引き出す裏面電極を形成して平坦化した第1の接合面を形成する第3の工程と、前記第2の半導体基板に光が入射する側の面に誘電体多層膜フィルタを形成する第4の工程と、前記誘電体多層膜フィルタに光が入射する側の面に、前記誘電体多層膜フィルタを形成する誘電体のそれぞれの層の厚さよりも厚い保護膜を形成する第5の工程と、前記保護膜および前記誘電体多層膜フィルタを貫通し、前記保護膜に光が入射する側の面に前記第2の配線を引き出す貫通電極を形成する第6の工程と、前記保護膜に光が入射する側の面において、形成した前記貫通電極と前記保護膜とを一緒に平坦化した第2の接合面を形成する第7の工程と、前記第1の接合面と前記第2の接合面とを対向させて接合し、対応する前記裏面電極と前記貫通電極とを物理的かつ電気的に接続する第8の工程と、を含んでもよい。 According to a tenth aspect of the present invention, in the method for manufacturing a solid-state imaging device according to the ninth aspect, the first photoelectric conversion element in the first wiring layer at least before the first step. Forming a light transmitting region at a position corresponding to the second surface, and forming a back surface electrode for drawing out the first wiring on the surface opposite to the light incident side to the first semiconductor substrate to form a flat surface A third step of forming the first bonding surface, a fourth step of forming a dielectric multilayer filter on the surface on the side where light is incident to the second semiconductor substrate, and the dielectric multilayer film A fifth step of forming a protective film thicker than the thickness of each layer of the dielectric forming the dielectric multilayer filter on the surface on the light incident side of the filter; the protective film and the dielectric multilayer Through the membrane filter and on the side where light is incident on the protective film A sixth step of forming a through electrode for drawing out the second wiring, and a second step in which the formed through electrode and the protective film are planarized together on the surface on the light incident side to the protective film A seventh step of forming a bonding surface, the first bonding surface and the second bonding surface are opposed to and bonded, and the corresponding back surface electrode and the through electrode are connected physically and electrically And the eighth step of
 上記各態様によれば、光電変換部が形成された複数の半導体基板を積層し、可視光と蛍光物質が励起した蛍光とを同時に撮像する構成の固体撮像装置において、蛍光を撮像した画像における画質の低下を抑えると共に、小型化を実現することができる固体撮像装置、この固体撮像装置を用いた蛍光観察内視鏡装置、およびこの固体撮像装置の製造方法を提供することができる。 According to each of the above aspects, in the solid-state imaging device configured to stack a plurality of semiconductor substrates on which the photoelectric conversion portions are formed and simultaneously image visible light and fluorescence excited by the fluorescent substance, the image quality of the image obtained by imaging fluorescence It is possible to provide a solid-state imaging device capable of achieving downsizing while suppressing a drop in the size, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device.
本発明の実施形態における蛍光観察内視鏡装置の概略構成を示した構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the block diagram which showed schematic structure of the fluorescence observation endoscope apparatus in embodiment of this invention. 本発明の実施形態の蛍光観察内視鏡装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the fluorescence observation endoscope apparatus of embodiment of this invention. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置におけるそれぞれの構成要素の配置の一例を示したブロック図である。It is the block diagram which showed an example of arrangement | positioning of each component in the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置の構造の一例を示した断面図である。It is sectional drawing which showed an example of the structure of the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置における光の強度の分布特性の一例を示した図である。It is the figure which showed an example of the distribution characteristic of the intensity | strength of the light in the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置の製造方法の概略を説明する断面図である。It is sectional drawing explaining the outline of the manufacturing method of the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置の製造方法の概略を説明する断面図である。It is sectional drawing explaining the outline of the manufacturing method of the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 本発明の実施形態の蛍光観察内視鏡装置に備えた固体撮像装置の製造方法の概略を説明する断面図である。It is sectional drawing explaining the outline of the manufacturing method of the solid-state imaging device with which the fluorescence observation endoscope apparatus of embodiment of this invention was equipped. 従来の積層型の固体撮像装置の構造および光の強度の分布特性の一例を示した図である。It is the figure which showed an example of the structure of the conventional laminated | stacked solid-state imaging device, and the distribution characteristic of the intensity | strength of light.
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明においては、本発明の固体撮像装置が、本発明の蛍光観察内視鏡装置に搭載されている場合について説明する。図1は、本発明の実施形態における蛍光観察内視鏡装置の概略構成を示した構成図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the case where the solid-state imaging device of the present invention is mounted on the fluorescence observation endoscope device of the present invention will be described. FIG. 1 is a configuration diagram showing a schematic configuration of a fluorescence observation endoscope apparatus according to an embodiment of the present invention.
 図1において、蛍光観察内視鏡装置1は、内視鏡スコープ部10と、光源装置20と、外部処理部30と、カラーモニタ40と、を備えている。蛍光観察内視鏡装置1は、例えば、腹腔鏡手術用の内視鏡装置である。蛍光観察内視鏡装置1は、内視鏡スコープ部10における体内への挿入部が検査対象者の腹部900に挿入され、検査対象者の体内の生体組織など、観察対象の被検査体901を撮影する。図1には、蛍光観察内視鏡装置1を構成する内視鏡スコープ部10の挿入部が、検査対象者の腹部900に挿入されて被検査体901を撮影している状態を示している。 In FIG. 1, the fluorescence observation endoscope apparatus 1 includes an endoscope scope unit 10, a light source device 20, an external processing unit 30, and a color monitor 40. The fluorescence observation endoscope apparatus 1 is, for example, an endoscope apparatus for laparoscopic surgery. In the fluorescence observation endoscope apparatus 1, the insertion portion into the body in the endoscope unit 10 is inserted into the abdomen 900 of the person to be examined, and the object to be observed 901 such as a living tissue in the body of the person to be examined Take a picture. FIG. 1 shows a state in which the insertion portion of the endoscopic scope unit 10 constituting the fluorescence observation endoscope apparatus 1 is inserted into the abdomen 900 of a person to be inspected to photograph the object to be inspected 901 .
 蛍光観察内視鏡装置1は、ICGなどの誘導体標識抗体(蛍光薬剤)が体内に予め投与された状態の検査対象者に対して使用される。以下の説明においては、蛍光薬剤としてICGが検査対象者の体内に投与されているものとして説明する。 The fluorescence observation endoscope apparatus 1 is used for a test subject in a state in which a derivative-labeled antibody (fluorescent drug) such as ICG is previously administered into the body. In the following description, it is assumed that ICG is administered as a fluorescent drug in the body of the subject.
 蛍光観察内視鏡装置1は、可視光による被検査体901の撮影(以下、「通常撮影」という)と、近赤外光などの励起光の照射によって投与したICGが励起して蛍光発光した蛍光による被検査体901の撮影(以下、「蛍光撮影」という)と、を行う。 The fluorescence observation endoscope apparatus 1 excites and fluoresces the ICG administered by the photographing of the test subject 901 with visible light (hereinafter referred to as “normal photographing”) and irradiation of excitation light such as near infrared light And imaging the subject 901 with fluorescence (hereinafter referred to as “fluorescent imaging”).
 蛍光観察内視鏡装置1において、内視鏡スコープ部10は、挿入部11と、操作部12と、を備えている。蛍光観察内視鏡装置1において、内視鏡スコープ部10の操作部12と光源装置20とは、光信号ケーブル50によって接続されている。また、蛍光観察内視鏡装置1において、内視鏡スコープ部10の操作部12と外部処理部30とは、電気信号ケーブル60によって接続されている。 In the fluorescence observation endoscope apparatus 1, the endoscope unit 10 includes an insertion unit 11 and an operation unit 12. In the fluorescence observation endoscope apparatus 1, the operation unit 12 of the endoscope unit 10 and the light source device 20 are connected by an optical signal cable 50. In the fluorescence observation endoscope apparatus 1, the operation unit 12 of the endoscope unit 10 and the external processing unit 30 are connected by an electric signal cable 60.
 内視鏡スコープ部10は、挿入部11が検査対象者の腹部900などに挿入され、被検査体901の像を撮像する。このとき、被検査体901には、光信号ケーブル50を介して導かれた照明光が挿入部11の先端部から照射される。内視鏡スコープ部10は、撮像した被検査体901の像に応じた撮像信号を、電気信号ケーブル60介して外部処理部30に出力する。 In the endoscope 10, the insertion unit 11 is inserted into the abdomen 900 or the like of a person to be examined, and captures an image of the subject 901. At this time, the illumination light guided through the light signal cable 50 is irradiated to the object to be inspected 901 from the tip of the insertion portion 11. The endoscope scope unit 10 outputs an imaging signal corresponding to the imaged image of the test subject 901 to the external processing unit 30 via the electric signal cable 60.
 挿入部11は、ICGが予め投与された状態の検査対象者の腹部900から検査対象者の体内に挿入される。内視鏡スコープ部10において、挿入部11は、先端部に撮像部13を備えている。撮像部13は、被検査体901の像を電気信号に変換した撮像信号を生成する。そして、撮像部13は、生成した撮像信号を、挿入部11、操作部12、および電気信号ケーブル60を介して外部処理部30に出力する。 The insertion portion 11 is inserted into the body of the test subject from the abdomen 900 of the test subject in a state in which ICG has been previously administered. In the endoscope scope unit 10, the insertion unit 11 includes an imaging unit 13 at the distal end. The imaging unit 13 generates an imaging signal obtained by converting an image of the inspection object 901 into an electrical signal. Then, the imaging unit 13 outputs the generated imaging signal to the external processing unit 30 via the insertion unit 11, the operation unit 12, and the electric signal cable 60.
 操作部12は、例えば、検査実施者(例えば、腹腔鏡手術を実施している医師など)が操作することによって、挿入部11および撮像部13の動作を制御する支持部である。内視鏡スコープ部10において、操作部12は、蛍光観察内視鏡装置1における撮影を制御するための撮影制御スイッチ14を備えている。撮影制御スイッチ14は、例えば、検査実施者の操作に応じて、撮影(通常撮影や蛍光撮影)を指示する制御信号を、操作部12および電気信号ケーブル60を介して外部処理部30に出力する。 The operation unit 12 is a support unit that controls the operation of the insertion unit 11 and the imaging unit 13 by, for example, an operation of an examiner (for example, a doctor who performs laparoscopic surgery). In the endoscope scope unit 10, the operation unit 12 includes an imaging control switch 14 for controlling imaging in the fluorescence observation endoscope apparatus 1. The imaging control switch 14 outputs a control signal for instructing imaging (normal imaging or fluorescent imaging) to the external processing unit 30 via the operation unit 12 and the electric signal cable 60, for example, in accordance with the operation of the examiner. .
 光源装置20は、蛍光観察内視鏡装置1において被検査体901を観察する際に被検査体901に照射する照明光を出射する。光源装置20が出射した照明光は、光信号ケーブル50を介して内視鏡スコープ部10の操作部12に導かれ、挿入部11の先端部に備えた撮像部13から被検査体901に照射される。光源装置20は、蛍光観察内視鏡装置1において被検査体901を撮影するために使用する波長帯域の照明光を出射する。より具体的には、光源装置20は、蛍光観察内視鏡装置1が被検査体901の通常撮影を行うために使用する可視光と、蛍光観察内視鏡装置1が被検査体901の蛍光撮影を行うために使用する励起光と、を含む照明光を出射する。 The light source device 20 emits illumination light to be applied to the object to be inspected 901 when observing the object to be inspected 901 in the fluorescence observation endoscope apparatus 1. The illumination light emitted from the light source device 20 is guided to the operation unit 12 of the endoscope unit 10 through the light signal cable 50, and the imaging unit 13 provided at the tip of the insertion unit 11 irradiates the inspection object 901 Be done. The light source device 20 emits illumination light in a wavelength band used to image the subject 901 in the fluorescence observation endoscope apparatus 1. More specifically, in the light source device 20, visible light used by the fluorescence observation endoscope apparatus 1 to perform normal imaging of the inspection object 901 and fluorescence of the inspection object 901 by the fluorescence observation endoscope apparatus 1 And emitting excitation light including excitation light used to perform imaging.
 外部処理部30は、電気信号ケーブル60を介して入力された、内視鏡スコープ部10に備えた撮像部13が撮影した被検査体901の撮像信号に対して予め定めた画像処理を行い、撮影した被検査体901を含む画像を生成する画像処理装置である。外部処理部30は、生成した被検査体901を含む画像の画像信号をカラーモニタ40に出力して表示させる。また、外部処理部30は、撮像部13が被検査体901を撮影する際の制御信号(駆動信号)を、電気信号ケーブル60を介して撮像部13に伝送する。 The external processing unit 30 performs predetermined image processing on an imaging signal of the subject 901 to be inspected, which is input through the electrical signal cable 60 and captured by the imaging unit 13 included in the endoscope unit 10, This is an image processing apparatus that generates an image including the photographed subject 901. The external processing unit 30 outputs the image signal of the image including the generated inspection object 901 to the color monitor 40 for display. In addition, the external processing unit 30 transmits a control signal (drive signal) when the imaging unit 13 captures an image of the test object 901 to the imaging unit 13 via the electric signal cable 60.
 カラーモニタ40は、外部処理部30から入力された画像信号に応じた被検査体901を含む画像を表示する、例えば、液晶ディスプレイ(Liquid Crystal Display:LCD)などの表示装置である。 The color monitor 40 is a display device such as, for example, a liquid crystal display (LCD) that displays an image including the test subject 901 according to the image signal input from the external processing unit 30.
 このような構成によって蛍光観察内視鏡装置1は、可視光による被検査体901の通常撮影と、検査対象者に投与されたICGを励起光によって励起させた蛍光による被検査体901の蛍光撮影とを行う。そして、蛍光観察内視鏡装置1は、撮影した被検査体901を含む画像を、検査実施者に提示する。 With such a configuration, the fluorescence observation endoscope apparatus 1 performs normal imaging of the subject 901 with visible light and fluorescence imaging of the subject 901 with fluorescence in which the ICG administered to the subject is excited by excitation light. And do. Then, the fluorescence observation endoscope apparatus 1 presents, to the examiner, an image including the photographed subject 901 to be examined.
 次に、蛍光観察内視鏡装置1のより詳細な構成について説明する。図2は、本発明の実施形態の蛍光観察内視鏡装置1の概略構成を示したブロック図である。図2において、蛍光観察内視鏡装置1を構成する内視鏡スコープ部10の先端部に備えた撮像部13は、撮像レンズ130と、励起光カットフィルタ131と、積層型イメージセンサ132と、ライトガイド51と、を含んで構成される。 Next, a more detailed configuration of the fluorescence observation endoscope apparatus 1 will be described. FIG. 2 is a block diagram showing a schematic configuration of the fluorescence observation endoscope apparatus 1 according to the embodiment of the present invention. In FIG. 2, the imaging unit 13 provided at the tip of the endoscope scope unit 10 constituting the fluorescence observation endoscope apparatus 1 includes an imaging lens 130, an excitation light cut filter 131, and a laminated image sensor 132. And a light guide 51.
 ライトガイド51は、光源装置20が発光した照明光を撮像部13まで導く、例えば、光ファイバなどの導光ケーブルである。ライトガイド51によって、光源装置20が発光した照明光が、光信号ケーブル50、操作部12、および挿入部11を通って撮像部13まで導かれ、ライトガイド51の先端から被検査体901に照射される。 The light guide 51 is, for example, a light guide cable such as an optical fiber that guides the illumination light emitted by the light source device 20 to the imaging unit 13. The illumination light emitted by the light source device 20 is guided by the light guide 51 to the imaging unit 13 through the light signal cable 50, the operation unit 12, and the insertion unit 11, and the tip of the light guide 51 irradiates the inspection object 901 Be done.
 撮像レンズ130は、入射した光、すなわち、光源装置20が発光した照明光が照射された被検査体901からの反射光および蛍光を積層型イメージセンサ132側に出射し、被検査体901の像を積層型イメージセンサ132の撮像面に結像させる光学レンズである。 The imaging lens 130 emits the incident light, that is, the reflected light and fluorescence from the inspection object 901 irradiated with the illumination light emitted by the light source device 20 to the laminated image sensor 132 side, and Are formed on the imaging surface of the laminated image sensor 132.
 励起光カットフィルタ131は、撮像レンズ130から出射された被検査体901からの反射光および蛍光に含まれる励起光の波長帯域の光のみを反射または吸収して減衰させる光学フィルタである。例えば、励起光カットフィルタ131は、励起光の波長帯域である700nm~800nm近辺の波長帯域の光を減衰させる。なお、以下の説明においては、励起光カットフィルタ131は、入射した反射光および蛍光に含まれる励起光をほぼ“0”に近いレベルまで減衰させるため、「減衰」ではなく、「除去(カット)」という表現を用いて説明する。励起光カットフィルタ131は、励起光をカットした被検査体901からの反射光および蛍光を、積層型イメージセンサ132に出射する。 The excitation light cut filter 131 is an optical filter that reflects or absorbs only the light of the wavelength band of the excitation light contained in the reflected light from the inspection object 901 emitted from the imaging lens 130 and the fluorescence and attenuating the light. For example, the excitation light cut filter 131 attenuates light in a wavelength band around 700 nm to 800 nm, which is the wavelength band of excitation light. In the following description, since the excitation light cut filter 131 attenuates the excitation light contained in the incident reflected light and the fluorescence to a level close to “0”, it is not “attenuation” but “cut (cut)”. It demonstrates using the expression "." The excitation light cut filter 131 emits the reflected light and fluorescence from the test object 901 whose excitation light has been cut to the stacked image sensor 132.
 積層型イメージセンサ132は、外部処理部30に備えた後述する制御部31からの制御に応じて、入射した光を露光(検出)し、露光した光を光電変換した電気信号を撮像信号として出力する、本発明の固体撮像装置である。積層型イメージセンサ132は、励起光カットフィルタ131から出射された励起光がカットされた被検査体901からの反射光および蛍光を露光し、露光した反射光および蛍光に応じたそれぞれの撮像信号を生成する。積層型イメージセンサ132は、反射光を露光(検出)するイメージセンサ(以下、「可視画像撮像用イメージセンサ」という)と、可視画像撮像用イメージセンサを透過した蛍光を露光(検出)するイメージセンサ(以下、「蛍光画像撮像用イメージセンサ」という)と、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとの間に配置される層間フィルタと、を含んで構成される。つまり、積層型イメージセンサ132は、可視画像撮像用イメージセンサ基板と蛍光画像撮像用イメージセンサ基板とが、層間フィルタを挟んで積層された構造である。 The stacked image sensor 132 exposes (detects) incident light according to control from the control unit 31 described later provided in the external processing unit 30, and outputs an electric signal obtained by photoelectric conversion of the exposed light as an imaging signal. It is a solid-state imaging device of the present invention. The laminated image sensor 132 exposes the reflected light and fluorescence from the object to be inspected 901 from which the excitation light emitted from the excitation light cut filter 131 is cut, and the imaging signals corresponding to the exposed reflected light and fluorescence are Generate The stacked image sensor 132 is an image sensor that exposes (detects) reflected light (hereinafter referred to as a “visible image pickup image sensor”) and an image sensor that exposes (detects) fluorescence transmitted through the visible image pickup image sensor (Hereinafter, referred to as “fluorescent image capturing image sensor”), and an interlayer filter disposed between the visible image capturing image sensor and the fluorescent image capturing image sensor. That is, the stacked image sensor 132 has a structure in which the visible image capturing image sensor substrate and the fluorescent image capturing image sensor substrate are stacked with an interlayer filter interposed therebetween.
 積層型イメージセンサ132を構成する可視画像撮像用イメージセンサは、反射光の内、可視領域の光(可視光)を露光した撮像信号を出力する。可視画像撮像用イメージセンサには、入射した光を光電変換するフォトダイオードなどの光電変換素子(受光素子)を備えた画素が、行列状に複数配置されている。可視画像撮像用イメージセンサ内に配置された画素には、赤色(R)の波長帯域の光(可視光)を透過するオンチップカラーフィルタが貼付された画素(以下、「R画素」という)と、緑色(G)の波長帯域の光(可視光)を透過するオンチップカラーフィルタが貼付された画素(以下、「G画素」という)と、青色(B)の波長帯域の光(可視光)を透過するオンチップカラーフィルタが貼付された画素(以下、「B画素」という)とがある。 The visible image pickup image sensor constituting the stacked image sensor 132 outputs an image pickup signal obtained by exposing light (visible light) in the visible region of the reflected light. In a visible image pickup image sensor, a plurality of pixels provided with photoelectric conversion elements (light receiving elements) such as photodiodes for photoelectrically converting incident light are arranged in a matrix. A pixel (hereinafter referred to as “R pixel”) attached with an on-chip color filter that transmits light (visible light) in the red (R) wavelength band is attached to the pixels arranged in the visible image pickup image sensor , Pixels (hereinafter referred to as "G pixels") attached with an on-chip color filter that transmits light (visible light) in the green (G) wavelength band and light (visible light) in the blue (B) wavelength band There is a pixel (hereinafter referred to as a "B pixel") to which an on-chip color filter that transmits light is attached.
 また、積層型イメージセンサ132を構成する層間フィルタは、可視画像撮像用イメージセンサ(より具体的には、可視画像撮像用イメージセンサに配置されたR画素、G画素、B画素の領域)を透過した光の内、可視領域の光(可視光)を反射または吸収して減衰させる光学フィルタである。積層型イメージセンサ132においては、例えば、誘電体多層膜フィルタやファブリペローフィルタなど、無機材料を多層に積層した多層膜干渉フィルタを、層間フィルタとして用いる。なお、誘電体多層膜フィルタとファブリペローフィルタとでは、誘電体多層膜フィルタの方が、広い波長帯域の光を減衰させる特性の層間フィルタを実現することが容易であると考えられる。以下の説明においては、層間フィルタが、誘電体多層膜フィルタであるものとして説明する。 In addition, the interlayer filter constituting the layered image sensor 132 transmits a visible image pickup image sensor (more specifically, a region of R pixel, G pixel, and B pixel arranged in the visible image pickup image sensor) Among the lights, it is an optical filter that reflects or absorbs light in the visible region (visible light) to attenuate it. In the multilayer image sensor 132, for example, a multilayer interference filter in which inorganic materials are stacked in multiple layers, such as a dielectric multilayer filter or a Fabry-Perot filter, is used as an interlayer filter. In the dielectric multilayer filter and the Fabry-Perot filter, it is considered that it is easier for the dielectric multilayer filter to realize an interlayer filter having a characteristic of attenuating light in a wide wavelength band. In the following description, the interlayer filter is described as a dielectric multilayer filter.
 また、積層型イメージセンサ132を構成する蛍光画像撮像用イメージセンサは、蛍光、つまり、赤外領域の光(近赤外光)を露光した撮像信号を出力する。蛍光画像撮像用イメージセンサには、可視画像撮像用イメージセンサ(より具体的には、可視画像撮像用イメージセンサに配置されたR画素、G画素、B画素の領域)および層間フィルタを透過した光を光電変換するフォトダイオードなどの光電変換素子(受光素子)を備えた画素が、行列状に複数配置されている。以下の説明においては、蛍光画像撮像用イメージセンサに配置された画素を、「蛍光画素」という。蛍光画素は、光源装置20が照射した近赤外光などの励起光によって検査対象者に投与したICGが励起して蛍光発光した蛍光を露光(検出)する画素である。 Further, the fluorescent image pickup image sensor constituting the laminated type image sensor 132 outputs a fluorescent light, that is, an image pickup signal obtained by exposing light in the infrared region (near infrared light). The fluorescence image pickup image sensor includes light transmitted through a visible image pickup image sensor (more specifically, an R pixel area, a G pixel area, and a B pixel area disposed in the visible image pickup image sensor) and an interlayer filter. A plurality of pixels provided with photoelectric conversion elements (light receiving elements) such as photodiodes for photoelectric conversion are arranged in a matrix. In the following description, the pixels disposed in the fluorescence image capturing image sensor are referred to as “fluorescent pixels”. The fluorescent pixel is a pixel that exposes (detects) fluorescence emitted from the ICG excited and excited by the excitation light such as near-infrared light emitted by the light source device 20 to the subject.
 なお、積層型イメージセンサ132の構造や、可視画像撮像用イメージセンサ基板および蛍光画像撮像用イメージセンサ基板におけるそれぞれの画素の配置や構成、層間フィルタの構成に関する詳細な説明は、後述する。 A detailed description of the structure of the laminated image sensor 132, the arrangement and configuration of each pixel in the visible image capturing image sensor substrate and the fluorescent image capturing image sensor substrate, and the configuration of the interlayer filter will be described later.
 積層型イメージセンサ132は、可視画像撮像用イメージセンサに配置されたそれぞれの画素が露光して光電変換した電気信号(以下、「画素信号」という)に応じた撮像信号(以下、「可視画像撮像信号」という)を、挿入部11、操作部12、および電気信号ケーブル60を通る撮像信号線61によって、外部処理部30に出力する。また、積層型イメージセンサ132は、蛍光画像撮像用イメージセンサに配置されたそれぞれの画素が露光して光電変換した画素信号に応じた撮像信号(以下、「蛍光画像撮像信号」という)を、可視画像撮像信号と同様に、挿入部11、操作部12、および電気信号ケーブル60を通る撮像信号線61によって、外部処理部30に出力する。以下の説明において、可視画像撮像信号および蛍光画像撮像信号のそれぞれを区別しない場合には、単に「撮像信号」という。 The stacked image sensor 132 is an imaging signal (hereinafter referred to as “visible image pickup”) according to an electric signal (hereinafter referred to as “pixel signal”) obtained by exposing and photoelectrically converting each pixel disposed in the visible image pickup image sensor A signal “)” is output to the external processing unit 30 by the imaging signal line 61 passing through the insertion unit 11, the operation unit 12, and the electric signal cable 60. In addition, the multi-layered image sensor 132 can visualize an imaging signal (hereinafter referred to as “fluorescent image imaging signal”) corresponding to a pixel signal obtained by exposing and photoelectrically converting each pixel disposed in the fluorescent image imaging image sensor. Similar to the image pickup signal, the image pickup signal line 61 passing through the insertion unit 11, the operation unit 12, and the electric signal cable 60 is output to the external processing unit 30. In the following description, when the visible image pickup signal and the fluorescence image pickup signal are not distinguished from one another, they are simply referred to as “imaging signals”.
 なお、積層型イメージセンサ132は、可視画像撮像用イメージセンサおよび蛍光画像撮像用イメージセンサ内に配置されたそれぞれの画素が出力したアナログの画素信号をアナログ/デジタル変換(A/D変換)し、画素信号の大きさを表すデジタル値、いわゆる、RAWデータを、それぞれの撮像信号として外部処理部30に出力する。このRAWデータは、それぞれの画素信号の大きさを表すパラレルのデジタル値である。 The layered image sensor 132 performs analog / digital conversion (A / D conversion) on analog pixel signals output from respective pixels arranged in the visible image capturing image sensor and the fluorescent image capturing image sensor. A digital value representing the magnitude of the pixel signal, so-called RAW data, is output to the external processing unit 30 as each imaging signal. The RAW data is a parallel digital value representing the magnitude of each pixel signal.
 積層型イメージセンサ132は、それぞれのRAWデータを撮像信号として外部処理部30に伝送するための撮像信号線61の信号線の数を削減するため、パラレルのデジタル値であるRAWデータ(以下、「パラレルRAWデータ」という)をシリアルのデジタル値のRAWデータ(以下、「シリアルRAWデータ」という)にパラレル/シリアル変換してから、それぞれのシリアルRAWデータを撮像信号として外部処理部30に出力する。 In order to reduce the number of signal lines of the imaging signal line 61 for transmitting each RAW data as an imaging signal to the external processing unit 30, the layered image sensor 132 is a parallel digital value RAW data (hereinafter referred to as “ After parallel / serial conversion of parallel RAW data into serial digital value RAW data (hereinafter referred to as “serial RAW data”), each serial RAW data is output as an imaging signal to the external processing unit 30.
 また、図2において、蛍光観察内視鏡装置1を構成する光源装置20は、設定部21と、2個の白色光源221および白色光源222と、2個のダイクロックミラー231およびダイクロックミラー232と、光照射レンズ24と、を含んで構成される。 Further, in FIG. 2, the light source device 20 constituting the fluorescence observation endoscope apparatus 1 includes the setting unit 21, two white light sources 221 and two white light sources 222, two die clock mirrors 231 and a die clock mirror 232. And a light irradiation lens 24.
 白色光源221および白色光源222のそれぞれは、白色光を発光する光源である。ただし、白色光源221は、設定部21からの制御に応じた強度の白色光を発光する。なお、白色光源221および白色光源222としては、例えば、キセノンランプを用いる。しかし、白色光源221および白色光源222として、例えば、ハロゲンランプや白色LED(Light Emitting Diode)光源などを用いてもよい。以下の説明において、白色光源221および白色光源222のそれぞれを区別しない場合には、「白色光源220」という。 Each of the white light source 221 and the white light source 222 is a light source that emits white light. However, the white light source 221 emits white light of an intensity corresponding to the control from the setting unit 21. As the white light source 221 and the white light source 222, for example, a xenon lamp is used. However, as the white light source 221 and the white light source 222, for example, a halogen lamp or a white LED (Light Emitting Diode) light source may be used. In the following description, when the white light source 221 and the white light source 222 are not distinguished from one another, they are referred to as “white light source 220”.
 ダイクロックミラー231およびダイクロックミラー232のそれぞれは、白色光源221および白色光源222のそれぞれに対応し、対応する白色光源220のそれぞれが発光した白色光から特定の波長帯域の光を選択(分離)する。ダイクロックミラー231およびダイクロックミラー232のそれぞれは、分離した光を光照射レンズ24に出射する。 The dichroic mirror 231 and the dichroic mirror 232 correspond to the white light source 221 and the white light source 222, respectively, and select (split) light of a specific wavelength band from the white light emitted by the corresponding white light source 220. Do. Each of the die clock mirror 231 and the die clock mirror 232 emits the separated light to the light irradiation lens 24.
 より具体的には、ダイクロックミラー231は、対応する白色光源221が発光した白色光における可視光の波長帯域の光(例えば、400nm~700nmの波長帯域の光)を光照射レンズ24が配置された方向に反射することによって分離した可視光(白色の光)を、光照射レンズ24に出射する。ここで、ダイクロックミラー231が光照射レンズ24に出射する可視光には、青色(B)の波長帯域の光(例えば、400nm~500nmの波長帯域の光)、緑色(G)の波長帯域の光(例えば、500nm~600nmの波長帯域の光)、および赤色(R)の波長帯域の光(例えば、600nm~700nmの波長帯域の光)が含まれている。また、ダイクロックミラー232は、対応する白色光源222が発光した白色光における励起光の波長帯域の光(例えば、700nm~800nmの波長帯域の光)を光照射レンズ24が配置された方向に反射することによって分離したICGを励起させるための励起光(近赤外光)を、光照射レンズ24に出射する。 More specifically, in the dichroic mirror 231, the light irradiation lens 24 is disposed for light in the wavelength band of visible light (for example, light in the wavelength band of 400 nm to 700 nm) of the white light emitted by the corresponding white light source 221 The visible light (white light) separated by being reflected in the vertical direction is emitted to the light irradiation lens 24. Here, visible light emitted from the dichroic mirror 231 to the light irradiation lens 24 includes light in the blue (B) wavelength band (for example, light in the 400 nm to 500 nm wavelength band) and green (G) wavelength bands. Light (for example, light in a wavelength band of 500 nm to 600 nm) and light in a red (R) wavelength band (for example, light in a wavelength band of 600 nm to 700 nm) are included. In addition, the dichroic mirror 232 reflects light in the wavelength band of excitation light (for example, light in the wavelength band of 700 nm to 800 nm) of the white light emitted by the corresponding white light source 222 in the direction in which the light irradiation lens 24 is disposed. The excitation light (near infrared light) for exciting the ICG separated by the irradiation is emitted to the light irradiation lens 24.
 光照射レンズ24は、ダイクロックミラー231およびダイクロックミラー232のそれぞれから出射された特定の波長帯域の光を、ライトガイド51の径と同程度まで集光させる光学レンズである。光照射レンズ24は、集光させた光をライトガイド51の第1の端面に出射する。これにより、ライトガイド51は、光照射レンズ24から出射された光を撮像部13まで導き、光源装置20が発光した照明光として、撮像部13の先端に配置された第2の端面から出射(被検査体901に照射)する。 The light irradiation lens 24 is an optical lens which condenses the light of the specific wavelength band emitted from each of the die clock mirror 231 and the die clock mirror 232 to the same degree as the diameter of the light guide 51. The light irradiation lens 24 emits the condensed light to the first end face of the light guide 51. Thereby, the light guide 51 guides the light emitted from the light irradiation lens 24 to the imaging unit 13 and emits the light from the second end face disposed at the tip of the imaging unit 13 as illumination light emitted by the light source device 20 The test object 901 is irradiated.
 設定部21は、外部処理部30から入力された可視画像撮像信号および蛍光画像撮像信号に含まれるそれぞれの画素信号の大きさを表すデジタル値(パラレルRAWデータ)に基づいて、白色光源221が発光する白色光の強度を制御する。 The setting unit 21 causes the white light source 221 to emit light based on the visible image pickup signal input from the external processing unit 30 and the digital value (parallel RAW data) representing the magnitude of each pixel signal included in the fluorescence image pickup signal. Control the intensity of the white light.
 また、図2において、蛍光観察内視鏡装置1を構成する外部処理部30は、制御部31と、デシリアライザ32と、画像処理部33と、デジタル/アナログ変換部(D/A変換部)34と、を含んで構成される。 Further, in FIG. 2, the external processing unit 30 constituting the fluorescence observation endoscope apparatus 1 includes a control unit 31, a deserializer 32, an image processing unit 33, and a digital / analog conversion unit (D / A conversion unit) 34. And is comprised.
 デシリアライザ32は、撮像部13に備えた積層型イメージセンサ132から出力されて撮像信号線61によって伝送された撮像信号(シリアルRAWデータ)から、積層型イメージセンサ132がアナログ/デジタル変換した元のパラレルRAWデータを復元する。つまり、デシリアライザ32は、入力されたシリアルRAWデータに対してシリアル/パラレル変換を行って、パラレルRAWデータに復元する。そして、デシリアライザ32は、復元したパラレルRAWデータを、画像処理部33に出力する。 The deserializer 32 is an original parallel signal obtained by analog-to-digital conversion of the stacked image sensor 132 from an imaging signal (serial RAW data) output from the stacked image sensor 132 included in the imaging unit 13 and transmitted through the imaging signal line 61. Restore RAW data. That is, the deserializer 32 performs serial / parallel conversion on the input serial RAW data to restore parallel RAW data. Then, the deserializer 32 outputs the restored parallel RAW data to the image processing unit 33.
 画像処理部33は、制御部31からの制御に応じて、デシリアライザ32から出力されたそれぞれのパラレルRAWデータに対して種々の画像処理を行って、積層型イメージセンサ132が撮像した被検査体901を含むデジタル値の画像を生成する。より具体的には、画像処理部33は、制御部31からの制御に応じて、可視画像撮像信号のパラレルRAWデータに基づいた、赤色(R)、緑色(G)、および青色(B)の可視光のデジタル値の可視画像を生成する。また、画像処理部33は、制御部31からの制御に応じて、蛍光画像撮像信号のパラレルRAWデータに基づいた、蛍光のデジタル値の蛍光画像を生成する。画像処理部33は、制御部31からの制御に応じて、生成した被検査体901を含む可視画像のデータと蛍光画像のデータとを、表示用の画像データ(以下、「表示用画像データ」という)として、デジタル/アナログ変換部34に出力する。 The image processing unit 33 performs various types of image processing on each parallel RAW data output from the deserializer 32 under the control of the control unit 31, and the test object 901 captured by the layered image sensor 132. Generate an image of digital values including More specifically, under the control of the control unit 31, the image processing unit 33 selects one of red (R), green (G), and blue (B) based on parallel RAW data of the visible image pickup signal. Generate a visible image of the digital value of visible light. Further, the image processing unit 33 generates a fluorescence image of a digital value of fluorescence based on parallel RAW data of the fluorescence image imaging signal according to the control from the control unit 31. Under the control of the control unit 31, the image processing unit 33 generates image data for display (hereinafter referred to as "image data for display") of the data of the visible image and the data of the fluorescence image including the inspection object 901 generated Output to the digital / analog converter 34.
 また、画像処理部33は、制御部31からの制御に応じて、デシリアライザ32から出力されたパラレルRAWデータ(可視画像撮像信号および蛍光画像撮像信号のパラレルRAWデータ)を、白色光の強度を設定するための監視信号として、光源装置20に備えた設定部21に出力する。例えば、画像処理部33は、積層型イメージセンサ132に備えた可視画像撮像用イメージセンサおよび蛍光画像撮像用イメージセンサ内に配置されたそれぞれの画素が出力した画素信号の大きさを表すデジタル値を、監視信号として設定部21に出力する。 Further, the image processing unit 33 sets the intensity of the white light in parallel RAW data (parallel RAW data of the visible image pickup signal and the fluorescence image pickup signal) output from the deserializer 32 according to the control from the control unit 31. It outputs to the setting part 21 with which the light source device 20 was equipped as a monitoring signal for this. For example, the image processing unit 33 may be a digital value representing the magnitude of the pixel signal output from each pixel disposed in the visible image capturing image sensor and the fluorescent image capturing image sensor provided in the stacked image sensor 132. , And output to the setting unit 21 as a monitoring signal.
 なお、画像処理部33がパラレルRAWデータに対して行う画像処理としては、例えば、デモザイキング処理、ホワイトバランス処理、ガンマ補正処理などがある。デモザイキング処理は、入力されたパラレルRAWデータ(復元されたパラレルRAWデータ)に基づいて、画像に含まれる全ての画素が同じ波長帯域の光に応じた画素信号(デジタル値)で表された画像データを生成する、いわゆる、三板化の処理と同様の画像処理である。ホワイトバランス処理は、画像データにおける同じ位置のそれぞれの画素に対応した画素信号のデジタル値の大きさが、白(ホワイト)の被写体に対して同様の値になるように、それぞれの画素のデジタル値にゲイン値を乗じることによってレベルを調整する画像処理である。ガンマ補正処理は、ホワイトバランス処理された画像データに応じた画像をカラーモニタ40に出力して表示させる際に、出力する画像の画像信号と、実際にカラーモニタ40に表示される画像との色味の非線形性を補正する画像処理である。画像処理部33がパラレルRAWデータに対して行う画像処理は、制御部31によって制御される。 The image processing performed by the image processing unit 33 on parallel RAW data includes, for example, demosaicing processing, white balance processing, gamma correction processing, and the like. In the demosaicing process, based on the input parallel RAW data (reconstructed parallel RAW data), an image in which all pixels included in the image are represented by pixel signals (digital values) corresponding to the light of the same wavelength band This is image processing similar to so-called three-plate processing that generates data. In the white balance processing, the digital value of each pixel is set so that the magnitude of the digital value of the pixel signal corresponding to each pixel at the same position in the image data becomes the same value for the white (white) subject. Image processing to adjust the level by multiplying the gain value by. In gamma correction processing, when an image corresponding to image data subjected to white balance processing is output and displayed on the color monitor 40, the color of the image signal of the image to be output and the image actually displayed on the color monitor 40. Image processing to correct non-linearity of taste. The image processing performed by the image processing unit 33 on parallel RAW data is controlled by the control unit 31.
 デジタル/アナログ変換部34は、画像処理部33から入力された表示用画像データ(デジタル値)のそれぞれをデジタル/アナログ変換(D/A変換)する。デジタル/アナログ変換部34は、デジタル/アナログ変換した画像信号(アナログ信号)を、外部処理部30が生成した表示用の画像信号としてカラーモニタ40に出力し、カラーモニタ40に被検査体901を含む画像を表示させる。 The digital / analog conversion unit 34 performs digital / analog conversion (D / A conversion) on each of the display image data (digital value) input from the image processing unit 33. The digital / analog conversion unit 34 outputs the image signal (analog signal) subjected to digital / analog conversion to the color monitor 40 as an image signal for display generated by the external processing unit 30, and the color monitor 40 Display the image that contains.
 制御部31は、例えば、CPU(Central Processing Unit)などの処理装置であり、撮像部13に備えた積層型イメージセンサ132の動作を制御する。より具体的には、制御部31は、蛍光観察内視鏡装置1による被検査体901の通常撮影や蛍光撮影において、積層型イメージセンサ132が被検査体901を撮像する際の種々の設定や、被検査体901を撮像するタイミングなどを制御する。例えば、制御部31は、積層型イメージセンサ132が入射した光を露光する時間(露光時間)や間隔(いわゆる、フレームレート)などのパラメータを設定し、設定したパラメータで積層型イメージセンサ132に露光(撮像)の動作を行わせる。また、例えば、制御部31は、積層型イメージセンサ132が撮像信号を出力する際に行うアナログ/デジタル変換やパラレル/シリアル変換のパラメータを設定し、設定したパラメータで変換した撮像信号(シリアルRAWデータ)を積層型イメージセンサ132に出力させる。 The control unit 31 is a processing device such as a central processing unit (CPU), for example, and controls the operation of the layered image sensor 132 provided in the imaging unit 13. More specifically, the control unit 31 performs various settings or the like when the laminated image sensor 132 captures an image of the test object 901 in the normal photographing and the fluorescent photographing of the test object 901 by the fluorescence observation endoscope apparatus 1. The timing at which the subject 901 is imaged is controlled. For example, the control unit 31 sets parameters such as a time (exposure time) and an interval (so-called frame rate) for exposing light incident on the laminated image sensor 132, and exposes the laminated image sensor 132 with the set parameters. The operation of (imaging) is performed. Further, for example, the control unit 31 sets an analog / digital conversion or parallel / serial conversion parameter to be performed when the laminated image sensor 132 outputs an imaging signal, and an imaging signal (serial RAW data) converted by the set parameter ) Is output to the stacked image sensor 132.
 また、制御部31は、画像処理部33が行う画像処理の方式を制御する。より具体的には、制御部31は、画像処理部33が、積層型イメージセンサ132が撮像した被検査体901を含む可視画像や蛍光画像などの画像データを生成する際に、パラレルRAWデータに対して行う画像処理の種類や順番などを制御する。例えば、制御部31は、画像処理部33に、ガンマ補正処理まで施した画像データを表示用画像データとして生成させ、デジタル/アナログ変換部34に出力させる。また、例えば、制御部31は、画像処理部33に、ガンマ補正処理まで施した蛍光画像の画像データに、ガンマ補正処理まで施した可視画像の画像データを重畳する重畳処理を行った画像データを表示用画像データとして生成させ、デジタル/アナログ変換部34に出力させる。また、例えば、制御部31は、画像処理部33に、デモザイキング処理まで施した可視画像および蛍光画像の画像データを、白色光の強度を設定するための監視信号として生成させ、光源装置20に備えた設定部21に出力させる。 Further, the control unit 31 controls a method of image processing performed by the image processing unit 33. More specifically, the control unit 31 generates parallel RAW data when the image processing unit 33 generates image data such as a visible image or a fluorescent image including the inspection object 901 captured by the laminated image sensor 132. Control the type and order of image processing to be performed. For example, the control unit 31 causes the image processing unit 33 to generate image data subjected to the gamma correction processing as display image data, and causes the digital / analog conversion unit 34 to output the image data. Further, for example, the control unit 31 causes the image processing unit 33 to perform image processing on the image data of the fluorescence image subjected to the gamma correction processing, and the image data subjected to the superposition processing for superimposing the image data of the visible image subjected to the gamma correction processing. It is generated as display image data and output to the digital / analog converter 34. Further, for example, the control unit 31 causes the image processing unit 33 to generate the image data of the visible image and the fluorescence image subjected to the demosaicing process as a monitoring signal for setting the intensity of the white light, and causes the light source device 20 to It is output to the provided setting unit 21.
 このような構成によって蛍光観察内視鏡装置1は、可視光による通常撮影と、蛍光による蛍光撮影とによって、被検査体901を含む画像を撮影する。そして、蛍光観察内視鏡装置1は、撮影した被検査体901を含むそれぞれの画像をカラーモニタ40に表示して検査実施者に提示する。 With such a configuration, the fluorescence observation endoscope apparatus 1 captures an image including the object to be inspected 901 by normal imaging with visible light and fluorescence imaging with fluorescence. And the fluorescence observation endoscope apparatus 1 displays each image including the to-be-tested object 901 which image | photographed to the color monitor 40, and shows it to a test operator.
 次に、蛍光観察内視鏡装置1に搭載されている本発明の固体撮像装置である積層型イメージセンサ132について説明する。まず、積層型イメージセンサ132の構成について説明する。図3は、本発明の実施形態の蛍光観察内視鏡装置1に備えた固体撮像装置(積層型イメージセンサ132)の概略構成を示したブロック図である。なお、積層型イメージセンサ132は、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとの2つのイメージセンサ(固体撮像装置)が積層されている。積層型イメージセンサ132では、それぞれのイメージセンサに同様の構成要素を備えている。 Next, a laminated image sensor 132 which is a solid-state imaging device of the present invention mounted on the fluorescence observation endoscope apparatus 1 will be described. First, the configuration of the stacked image sensor 132 will be described. FIG. 3 is a block diagram showing a schematic configuration of a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention. In the stacked image sensor 132, two image sensors (solid-state imaging device) of a visible image capturing image sensor and a fluorescent image capturing image sensor are stacked. In the stacked image sensor 132, each image sensor is provided with the same components.
 しかし、イメージセンサの機能を実現するための構成要素には、それぞれのイメージセンサにおいて共通化することができる構成要素も含まれている。例えば、それぞれの構成要素が実現する機能を統合することによって1つの構成要素としたり、同じ機能を実現する構成要素を1つの構成要素としたりすることによって共通化することができる構成要素も含まれている。このため、積層型イメージセンサ132では、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとのそれぞれに、イメージセンサの機能を実現するための全ての構成要素を備える構成としていない。つまり、積層型イメージセンサ132では、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとのそれぞれにおいて共通化することができる構成要素は、いずれかのイメージセンサに1つのみ備える構成としている。すなわち、積層型イメージセンサ132では、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとのそれぞれに共通の構成要素を、分散して備えている。 However, the components for realizing the functions of the image sensor also include components that can be made common to the respective image sensors. For example, components that can be made common by integrating components realized by the respective components into one component or components that realize the same function as one component are also included. ing. For this reason, in the multilayer image sensor 132, each of the visible image capturing image sensor and the fluorescent image capturing image sensor is not configured to include all components for realizing the function of the image sensor. That is, in the layered image sensor 132, only one of the components that can be made common to each of the visible image capturing image sensor and the fluorescent image capturing image sensor is provided in any of the image sensors. That is, in the layered image sensor 132, components common to each of the visible image capturing image sensor and the fluorescent image capturing image sensor are dispersedly provided.
 以下の説明においては、説明を容易にするため、それぞれのイメージセンサに分散して備えている共通化した構成要素を区別せずに、イメージセンサの機能を実現するための全ての構成要素を1つのイメージセンサに備えているものとして説明する。なお、それぞれのイメージセンサにおいて共通化することができる構成要素や、共通化した構成要素のそれぞれのイメージセンサ基板への配置に関する説明は、後述する。以下の説明においては、代表して、積層型イメージセンサ132に積層される可視画像撮像用イメージセンサに、イメージセンサの機能を実現するための全ての構成要素を備えているものとして説明する。 In the following description, in order to facilitate the description, all the components for realizing the function of the image sensor are distinguished without distinguishing the common components provided separately in the respective image sensors. It is described as being provided for one image sensor. In addition, the description regarding the arrangement | positioning to each image sensor board | substrate of the component which can be made common in each image sensor, and each made common component is mentioned later. In the following description, it is representatively described that the visible image capturing image sensor stacked on the stacked image sensor 132 includes all the components for realizing the function of the image sensor.
 図3において、可視画像撮像用イメージセンサは、画素部1321と、読み出し部1322と、アナログ/デジタル変換部1323と、制御回路1324と、シリアルアクセスメモリ1325と、シリアライザ1326と、を備えている。 In FIG. 3, the visible image pickup image sensor includes a pixel unit 1321, a reading unit 1322, an analog / digital converter 1323, a control circuit 1324, a serial access memory 1325, and a serializer 1326.
 画素部1321は、複数の画素1320が配置されている。図3には、複数の画素1320が、7行8列に2次元的に配置された画素部1321の一例を示している。画素部1321内に配置されたそれぞれの画素1320は、配置されたそれぞれの位置に入射してきた光の強度に応じた電荷量の信号電荷を発生し、発生した信号電荷を蓄積する。 In the pixel portion 1321, a plurality of pixels 1320 are arranged. FIG. 3 illustrates an example of a pixel portion 1321 in which a plurality of pixels 1320 are two-dimensionally arranged in 7 rows and 8 columns. Each pixel 1320 disposed in the pixel portion 1321 generates a signal charge of an amount corresponding to the intensity of light incident on each disposed position, and accumulates the generated signal charge.
 なお、可視画像撮像用イメージセンサにおいて画素部1321に複数配置される画素1320には、上述したように、R画素と、G画素と、B画素とがある。また、蛍光画像撮像用イメージセンサにおいて画素部1321に複数配置される画素1320は、全て蛍光画素である。 Note that, as described above, the plurality of pixels 1320 arranged in the pixel portion 1321 in the visible image pickup image sensor include R pixels, G pixels, and B pixels. In addition, in the image sensor for capturing a fluorescent image, all the pixels 1320 arranged in the pixel portion 1321 are fluorescent pixels.
 なお、可視画像撮像用イメージセンサ基板と蛍光画像撮像用イメージセンサ基板とにおける画素1320の配置は同じ配置に限定されるものではない。つまり、可視画像撮像用イメージセンサにおけるR画素、G画素、およびB画素の合計の画素数と、蛍光画像撮像用イメージセンサにおける蛍光画素の画素数とは、同じ画素数に限定されるものではない。例えば、蛍光画像撮像用イメージセンサの方が、可視画像撮像用イメージセンサよりも少ない画素数であってもよい。この場合、例えば、蛍光画像撮像用イメージセンサ基板に配置する1個の画素1320(蛍光画素)の領域は、可視画像撮像用イメージセンサ基板に配置する画素1320の4個分(2行2列の4個分)の領域であってもよい。これにより、蛍光画像撮像用イメージセンサ基板に配置する蛍光画素において光を受光する開口面積は、可視画像撮像用イメージセンサ基板に配置するR画素、G画素、またはB画素のいずれかの画素の開口面積の4倍になり、蛍光画像撮像用イメージセンサ基板に配置した蛍光画素は、より多くの光を受光することができる。 The arrangement of the pixels 1320 in the visible image pickup image sensor substrate and the fluorescent image pickup image sensor substrate is not limited to the same arrangement. That is, the total number of R pixels, G pixels, and B pixels in the visible image pickup image sensor and the number of fluorescent pixels in the fluorescent image pickup image sensor are not limited to the same number of pixels. . For example, the number of pixels of the fluorescence image pickup image sensor may be smaller than that of the visible image pickup image sensor. In this case, for example, the area of one pixel 1320 (fluorescent pixel) disposed on the fluorescence image pickup image sensor substrate is equivalent to four (2 rows and 2 columns) of pixels 1320 disposed on the visible image pickup image sensor substrate. It may be an area of 4). Thus, the opening area for receiving light in the fluorescent pixels arranged on the fluorescent image pickup image sensor substrate is the opening of any of the R pixel, G pixel or B pixel arranged on the visible image pickup image sensor substrate The fluorescent pixel placed on the image sensor substrate for capturing a fluorescent image, which is four times the area, can receive more light.
 読み出し部1322は、画素部1321内に配置されたそれぞれの画素1320が発生して蓄積した信号電荷の読み出しを制御する周辺回路である。読み出し部1322は、例えば、垂直走査回路13221、水平走査回路13222などを含んで構成される。垂直走査回路13221は、制御回路1324からの制御に応じて画素部1321内のそれぞれの画素1320を行ごとに駆動し、それぞれの画素1320に蓄積された信号電荷に応じた電圧信号を、画素信号として垂直信号線1327に出力させる周辺回路である。これにより、それぞれの画素1320が行ごとに出力した画素信号(アナログ信号)が、アナログ/デジタル変換部1323に入力される。水平走査回路13222は、制御回路1324からの制御に応じて画素部1321内のそれぞれの画素1320の列ごとに、アナログ/デジタル変換部1323を制御し、アナログ/デジタル変換部1323がアナログ/デジタル変換した後の画素信号(デジタル値)を、画素部1321内のそれぞれの画素1320の列ごとに順次、水平信号線1328に出力させる周辺回路である。これにより、アナログ/デジタル変換部1323がアナログ/デジタル変換したそれぞれの画素1320が出力したアナログの画素信号の大きさを表すデジタル値の画素信号が、画素部1321に配置されたそれぞれの画素1320の列ごとに、シリアライザ1326に順次入力される。 The readout unit 1322 is a peripheral circuit that controls readout of signal charges generated and accumulated by the pixels 1320 disposed in the pixel unit 1321. The reading unit 1322 includes, for example, a vertical scanning circuit 13221, a horizontal scanning circuit 13222, and the like. The vertical scanning circuit 13221 drives each pixel 1320 in the pixel portion 1321 row by row under control of the control circuit 1324 and generates a pixel signal as a voltage signal corresponding to the signal charge stored in each pixel 1320. It is a peripheral circuit to be output to the vertical signal line 1327 as Thus, pixel signals (analog signals) output from the respective pixels 1320 for each row are input to the analog / digital conversion unit 1323. The horizontal scanning circuit 13222 controls the analog / digital conversion unit 1323 for each column of the pixels 1320 in the pixel unit 1321 according to the control from the control circuit 1324, and the analog / digital conversion unit 1323 performs analog / digital conversion. It is a peripheral circuit that causes the horizontal signal line 1328 to sequentially output the pixel signal (digital value) after being processed for each column of the pixels 1320 in the pixel portion 1321. Accordingly, pixel signals of digital values representing the magnitudes of analog pixel signals output from the respective pixels 1320 analog-to-digital converted by the analog / digital conversion unit 1323 are included in the respective pixels 1320 disposed in the pixel unit 1321. Each column is sequentially input to the serializer 1326.
 アナログ/デジタル変換部1323は、読み出し部1322内の垂直走査回路13221からの制御に応じて画素部1321内のそれぞれの画素1320から出力されたアナログの画素信号をアナログ/デジタル変換する周辺回路である。図3には、入力されたアナログ信号の電圧値をアナログ/デジタル変換したデジタル値を出力するアナログ/デジタル変換回路(A/D変換回路)13230を、画素部1321に配置されたそれぞれの画素1320の列ごとに備えた構成のアナログ/デジタル変換部1323の一例を示している。アナログ/デジタル変換回路13230のそれぞれは、制御回路1324からの制御に応じて、対応する列の画素1320から入力されたアナログの画素信号の電圧値をアナログ/デジタル変換したデジタル値の画素信号を出力する周辺回路である。アナログ/デジタル変換部1323は、読み出し部1322内の水平走査回路13222からの制御に応じて、アナログ/デジタル変換回路13230のそれぞれがアナログ/デジタル変換したデジタル値の画素信号を、水平信号線1328を介してシリアライザ1326に出力する。 The analog / digital conversion unit 1323 is a peripheral circuit that performs analog / digital conversion of analog pixel signals output from the respective pixels 1320 in the pixel unit 1321 under the control of the vertical scanning circuit 13221 in the reading unit 1322. . In FIG. 3, an analog / digital conversion circuit (A / D conversion circuit) 13230 that outputs a digital value obtained by analog / digital converting a voltage value of an input analog signal is arranged in each pixel portion 1321. 16 shows an example of the analog / digital converter 1323 having a configuration provided for each column of. Each of the analog / digital conversion circuits 13230 outputs a pixel signal of a digital value obtained by analog / digital converting the voltage value of the analog pixel signal input from the pixel 1320 of the corresponding column under the control of the control circuit 1324 Peripheral circuits. The analog / digital conversion unit 1323 receives the horizontal signal line 1328 of the pixel signal of the digital value obtained by analog / digital conversion of each of the analog / digital conversion circuits 13230 according to the control from the horizontal scanning circuit 13222 in the reading unit 1322. It outputs to the serializer 1326 via
 なお、図3には、アナログ/デジタル変換回路13230を画素部1321内の画素1320の列ごと、つまり、1列に1個のアナログ/デジタル変換回路13230を備える構成のアナログ/デジタル変換部1323を示した。しかし、アナログ/デジタル変換部1323内の構成は、図3に示した構成に限定されるものではない。例えば、アナログ/デジタル変換部1323は、画素部1321内の画素1320の複数列に対して1個のアナログ/デジタル変換回路13230を備える構成であってもよい。また、1個のアナログ/デジタル変換回路13230が、それぞれの列の画素1320から出力されたアナログの画素信号の電圧値を順次、アナログ/デジタル変換する構成であってもよい。 Note that, in FIG. 3, the analog / digital conversion unit 1323 having a configuration including the analog / digital conversion circuit 13230 in each column of the pixels 1320 in the pixel portion 1321, that is, one analog / digital conversion circuit 13230 in one column. Indicated. However, the configuration in the analog / digital converter 1323 is not limited to the configuration shown in FIG. For example, the analog / digital conversion unit 1323 may be configured to include one analog / digital conversion circuit 13230 for a plurality of columns of the pixels 1320 in the pixel unit 1321. Further, one analog / digital conversion circuit 13230 may be configured to sequentially perform analog / digital conversion on voltage values of analog pixel signals output from the pixels 1320 of the respective columns.
 シリアライザ1326は、制御回路1324からの制御に応じて、アナログ/デジタル変換部1323から順次入力された画素信号(デジタル値)、つまり、パラレルRAWデータをパラレル/シリアル変換する周辺回路である。シリアライザ1326は、パラレル/シリアル変換したシリアルRAWデータを、撮像信号(可視画像撮像信号)として可視画像撮像用イメージセンサの外部に出力する。このとき、シリアライザ1326は、シリアルRAWデータを、例えば、差動インターフェース方式であるLVDS(Low voltage differential signaling)方式に対応させて、可視画像撮像信号として可視画像撮像用イメージセンサの外部に出力する。この場合、シリアライザ1326は、LVDS方式の終端の処理なども行う。 The serializer 1326 is a peripheral circuit that performs parallel / serial conversion of pixel signals (digital values) sequentially input from the analog / digital converter 1323, that is, parallel RAW data, in accordance with control from the control circuit 1324. The serializer 1326 outputs the parallel / serial converted serial RAW data as an imaging signal (visible image imaging signal) to the outside of the visible image capturing image sensor. At this time, the serializer 1326 outputs the serial RAW data to the outside of the visible image pickup image sensor as a visible image pickup signal in accordance with, for example, a low voltage differential signaling (LVDS) method which is a differential interface method. In this case, the serializer 1326 also performs LVDS type termination processing and the like.
 制御回路1324は、可視画像撮像用イメージセンサに備えたそれぞれの構成要素、つまり、可視画像撮像用イメージセンサの全体を制御する周辺回路である。制御回路1324は、シリアルアクセスメモリ1325に記憶された、可視画像撮像用イメージセンサの動作に関する設定(パラメータ)に基づいて、可視画像撮像用イメージセンサに備えたそれぞれの構成要素の動作を制御する。例えば、制御回路1324は、シリアルアクセスメモリ1325に記憶された、可視画像撮像用イメージセンサの露光(撮像)の動作に関するパラメータに基づいて、読み出し部1322(垂直走査回路13221および水平走査回路13222)、アナログ/デジタル変換部1323、およびシリアライザ1326のそれぞれを制御するための制御信号を生成し、生成した制御信号をそれぞれの構成要素に出力する。これにより、可視画像撮像用イメージセンサに備えたそれぞれの構成要素は、上述したそれぞれの動作を行って、可視画像撮像用イメージセンサに入射した光を露光(検出)したシリアルRAWデータを外部に出力する。 The control circuit 1324 is a peripheral circuit that controls the respective components included in the visible image capturing image sensor, that is, the entire visible image capturing image sensor. The control circuit 1324 controls the operation of each component included in the visible image pickup image sensor based on the setting (parameter) regarding the operation of the visible image pickup image sensor stored in the serial access memory 1325. For example, the control circuit 1324 reads the reading unit 1322 (vertical scanning circuit 13221 and horizontal scanning circuit 13222) based on parameters related to the operation of exposure (imaging) of the visible image pickup image sensor stored in the serial access memory 1325. A control signal for controlling each of the analog / digital converter 1323 and the serializer 1326 is generated, and the generated control signal is output to each component. As a result, each component provided in the visible image capturing image sensor performs each of the operations described above to output to the outside serial RAW data obtained by exposing (detecting) light incident on the visible image capturing image sensor. Do.
 シリアルアクセスメモリ1325は、可視画像撮像用イメージセンサの動作を規定するための種々の設定値(パラメータ)を記憶する記憶装置、いわゆる、レジスタとなる周辺回路である。シリアルアクセスメモリ1325は、例えば、SPI(Serial Peripheral Interface:シリアル・ペリフェラル・インタフェース)方式のメモリである。シリアルアクセスメモリ1325は、可視画像撮像用イメージセンサが、外部処理部30に備えた制御部31からの制御に応じた露光(撮像)の動作をするために必要なパラメータを記憶する。例えば、シリアルアクセスメモリ1325は、可視画像撮像用イメージセンサが露光(撮像)の動作を行う際の露光時間(蓄積時間)やフレームレート、露光(撮像)する画像の大きさを表す画像サイズ、撮像信号を出力する際の読み出し方法などのパラメータを記憶する。なお、シリアルアクセスメモリ1325は、SPI方式のメモリに限定されるものではなく、例えば、I2C(Inter-Integrated Circuit)方式のメモリであってもよい。 The serial access memory 1325 is a storage device storing various setting values (parameters) for defining the operation of the visible image capturing image sensor, that is, a peripheral circuit serving as a so-called register. The serial access memory 1325 is, for example, a SPI (Serial Peripheral Interface) memory. The serial access memory 1325 stores parameters necessary for the visible image capturing image sensor to perform an operation of exposure (imaging) in accordance with the control from the control unit 31 provided in the external processing unit 30. For example, the serial access memory 1325 may be an exposure time (accumulation time) or a frame rate at which the visible image pickup image sensor performs an operation of exposure (pickup), an image size representing the size of an image to be exposed (pickup), It stores parameters such as a reading method when outputting a signal. The serial access memory 1325 is not limited to the SPI type memory, and may be, for example, an I2C (Inter-Integrated Circuit) type memory.
 積層型イメージセンサ132では、このような構成の可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとが積層されている。ただし、上述したように、2つのイメージセンサにおいて共通化した構成要素(周辺回路)は、いずれかのイメージセンサ基板に1つのみ配置(それぞれのイメージセンサ基板に分散して配置)される。ここで、積層型イメージセンサ132を構成する可視画像撮像用イメージセンサ基板と蛍光画像撮像用イメージセンサ基板とにおけるそれぞれの構成要素(周辺回路)の配置について説明する。 In the stacked image sensor 132, the visible image capturing image sensor and the fluorescent image capturing image sensor having such a configuration are stacked. However, as described above, only one component (peripheral circuit) common to the two image sensors is disposed on any of the image sensor substrates (dispersed on each of the image sensor substrates). Here, the arrangement of the respective components (peripheral circuits) in the visible image capturing image sensor substrate and the fluorescent image capturing image sensor substrate constituting the stacked image sensor 132 will be described.
 図4は、本発明の実施形態の蛍光観察内視鏡装置1に備えた固体撮像装置(積層型イメージセンサ132)におけるそれぞれの構成要素の配置の一例を示したブロック図である。図4には、積層型イメージセンサ132を構成する可視画像撮像用イメージセンサ基板132-1と、蛍光画像撮像用イメージセンサ基板132-2とのそれぞれのイメージセンサ基板に配置する構成要素(周辺回路)、およびそれぞれのイメージセンサ基板の間での信号線の接続の一例を模式的に示している。また、図4には、積層型イメージセンサ132が外部との間で信号を入出力する端子の配置の一例も示している。 FIG. 4 is a block diagram showing an example of the arrangement of respective components in a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention. In FIG. 4, components (peripheral circuits disposed on the image sensor substrate of the visible image capturing image sensor substrate 132-1 constituting the stacked image sensor 132 and the fluorescence image capturing image sensor substrate 132-2 are provided. And schematically show examples of signal line connections between respective image sensor substrates. FIG. 4 also shows an example of the arrangement of terminals through which the laminated image sensor 132 inputs and outputs signals to and from the outside.
 なお、図4には、積層型イメージセンサ132が外部との間でやり取りする信号線の端子以外にも、積層型イメージセンサ132が動作するための2系統の電源の端子(電源VDD1およびグラウンドGND1と、電源VDD2およびグラウンドGND2)も示している。積層型イメージセンサ132では、それぞれの端子となる電極パッド(入出力パッド)が、可視画像撮像用イメージセンサ基板132-1のみに配置される。例えば、積層型イメージセンサ132では、それぞれの電極パッド(入出力パッド)が、可視画像撮像用イメージセンサ基板132-1の外周に沿って配置される。 Note that, in FIG. 4, in addition to the terminal of the signal line with which the stacked image sensor 132 exchanges with the outside, the terminals of two power supplies for operating the stacked image sensor 132 (power supply VDD1 and ground GND1 And the power supply VDD2 and the ground GND2). In the stacked image sensor 132, electrode pads (input / output pads) serving as the respective terminals are disposed only on the visible image pickup image sensor substrate 132-1. For example, in the stacked image sensor 132, each electrode pad (input / output pad) is disposed along the outer periphery of the visible image capturing image sensor substrate 132-1.
 積層型イメージセンサ132では、画素部1321、読み出し部1322、およびアナログ/デジタル変換部1323が、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とのそれぞれにおいて独立した構成要素(周辺回路)として配置される。図4には、可視画像撮像用イメージセンサ基板132-1に、画素部1321とアナログ/デジタル変換部1323とを合わせて表した画素部1321-1を配置し、読み出し部1322に含まれる垂直走査回路13221および水平走査回路13222のそれぞれを垂直走査回路13221-1および水平走査回路13222-1として配置した状態を示している。また、図4には、蛍光画像撮像用イメージセンサ基板132-2に、画素部1321とアナログ/デジタル変換部1323とを合わせて表した画素部1321-2を配置し、読み出し部1322に含まれる垂直走査回路13221および水平走査回路13222のそれぞれを垂直走査回路13221-2および水平走査回路13222-2として配置した状態を示している。 In the stacked image sensor 132, the pixel unit 1321, the reading unit 1322, and the analog / digital converting unit 1323 are independent in each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. Are arranged as separate components (peripheral circuits). In FIG. 4, the pixel unit 1321-1, which is a combination of the pixel unit 1321 and the analog / digital conversion unit 1323, is disposed on the visible image pickup image sensor substrate 132-1, and the vertical scanning included in the readout unit 1322 A state in which the circuit 13221 and the horizontal scanning circuit 13222 are arranged as the vertical scanning circuit 13221-1 and the horizontal scanning circuit 13222-1 is shown. Further, in FIG. 4, a pixel unit 1321-2, which is a combination of the pixel unit 1321 and the analog / digital conversion unit 1323, is disposed on the fluorescence image pickup image sensor substrate 132-2 and included in the readout unit 1322. A state in which the vertical scanning circuit 13221 and the horizontal scanning circuit 13222 are respectively arranged as the vertical scanning circuit 13221-2 and the horizontal scanning circuit 1322-2 is shown.
 また、積層型イメージセンサ132では、制御回路1324、シリアルアクセスメモリ1325、およびシリアライザ1326を、それぞれのイメージセンサにおいて共通化した構成要素(周辺回路、共通周辺回路)として、可視画像撮像用イメージセンサ基板132-1または蛍光画像撮像用イメージセンサ基板132-2のいずれかに配置している。図4には、可視画像撮像用イメージセンサ基板132-1に、制御回路1324とシリアライザ1326とを配置し、蛍光画像撮像用イメージセンサ基板132-2に、シリアルアクセスメモリ1325を配置した状態を示している。積層型イメージセンサ132においてそれぞれのイメージセンサに共通して1つのみ備えられる構成要素(共通周辺回路)では、必要な信号を、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間でやり取りする。つまり、それぞれのイメージセンサにおいて共通化した構成要素(共通周辺回路)の信号線は、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間で接続される。 In the multilayer image sensor 132, the control circuit 1324, the serial access memory 1325, and the serializer 1326 are used as components (peripheral circuits, common peripheral circuits) common to the respective image sensors, and an image sensor substrate for picking up a visible image It is disposed on either 132-1 or the image sensor substrate 132-2 for capturing a fluorescent image. FIG. 4 shows a state in which the control circuit 1324 and the serializer 1326 are disposed on the visible image capturing image sensor substrate 132-1, and the serial access memory 1325 is disposed on the fluorescent image capturing image sensor substrate 132-2. ing. In the component (common peripheral circuit) provided commonly to each image sensor in the stacked image sensor 132 (common peripheral circuit), necessary signals are received by the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor It exchanges with the substrate 132-2. That is, the signal lines of the components (common peripheral circuits) common to the respective image sensors are connected between the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. .
 図4においては、蛍光画像撮像用イメージセンサ基板132-2に配置されるシリアルアクセスメモリ1325が、SPI方式のメモリ(SPIメモリ)である場合を示している。シリアルアクセスメモリ1325は、積層型イメージセンサ132の外部から入力されるコントローラクロックSCK、SPIトリガ信号CS、SPI入力信号MOSI、およびSPI出力信号MISOに基づいて、積層型イメージセンサ132を構成するそれぞれのイメージセンサの動作を規定するための種々の設定値(パラメータ)などを記憶する。このとき、シリアルアクセスメモリ1325は、積層型イメージセンサ132を構成する可視画像撮像用イメージセンサに対応するパラメータと、蛍光画像撮像用イメージセンサに対応するパラメータとを、記憶領域を分けて記憶する。また、シリアルアクセスメモリ1325は、外部から入力されるコントローラクロックSCK、SPIトリガ信号CS、SPI入力信号MOSI、およびSPI出力信号MISOに基づいて、記憶しているパラメータなどを出力する(確認のための出力も含む)。 FIG. 4 shows the case where the serial access memory 1325 disposed on the fluorescence image pickup image sensor substrate 132-2 is a SPI type memory (SPI memory). The serial access memory 1325 configures the stacked image sensor 132 based on the controller clock SCK input from the outside of the stacked image sensor 132, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO. It stores various setting values (parameters) and the like for defining the operation of the image sensor. At this time, the serial access memory 1325 divides and stores the storage area of the parameter corresponding to the visible image capturing image sensor constituting the stacked image sensor 132 and the parameter corresponding to the fluorescent image capturing image sensor. In addition, the serial access memory 1325 outputs stored parameters and the like based on the externally input controller clock SCK, SPI trigger signal CS, SPI input signal MOSI, and SPI output signal MISO (for confirmation (for confirmation) Including the output).
 なお、コントローラクロックSCK、SPIトリガ信号CS、SPI入力信号MOSI、およびSPI出力信号MISOのそれぞれの信号に応じたシリアルアクセスメモリ1325(SPIメモリ)の動作は、既存のSPI方式のメモリと同様である。従って、シリアルアクセスメモリ1325の動作に関する詳細な説明は省略する。 The operation of the serial access memory 1325 (SPI memory) corresponding to each signal of the controller clock SCK, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO is the same as that of the existing SPI type memory . Therefore, detailed description of the operation of the serial access memory 1325 is omitted.
 上述したように、図4に示した積層型イメージセンサ132の構成では、可視画像撮像用イメージセンサ基板132-1のみに、信号を入出力するための端子(電極パッド)が配置されている。このため、シリアルアクセスメモリ1325に入力されるコントローラクロックSCKと、SPIトリガ信号CSと、SPI入力信号MOSIと、SPI出力信号MISOとのそれぞれの信号は、可視画像撮像用イメージセンサ基板132-1に配置された端子(電極パッド)に外部から入力され、可視画像撮像用イメージセンサ基板132-1内を通って、蛍光画像撮像用イメージセンサ基板132-2に配置されたシリアルアクセスメモリ1325に入力される。 As described above, in the configuration of the laminated image sensor 132 shown in FIG. 4, terminals (electrode pads) for inputting and outputting signals are disposed only on the visible image capturing image sensor substrate 132-1. Therefore, the controller clock SCK, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO input to the serial access memory 1325 are sent to the image sensor substrate 132-1 for capturing a visible image. The signal is input from the outside to the arranged terminal (electrode pad), passes through the inside of the visible image pickup image sensor substrate 132-1, and is input to the serial access memory 1325 arranged on the fluorescent image pickup image sensor substrate 132-2. Ru.
 なお、上述した2系統の電源(電源VDD1およびグラウンドGND1と、電源VDD2およびグラウンドGND2)も、シリアルアクセスメモリ1325に入力されるそれぞれの信号と同様に、可視画像撮像用イメージセンサ基板132-1内を通って、蛍光画像撮像用イメージセンサ基板132-2に供給される。つまり、積層型イメージセンサ132では、蛍光画像撮像用イメージセンサ基板132-2に供給される2系統の電源の端子が、可視画像撮像用イメージセンサ基板132-1と共有されている。 The above-described two power supplies (power supply VDD1 and ground GND1, power supply VDD2 and ground GND2) are also included in the visible image pickup image sensor substrate 132-1 in the same manner as the respective signals input to the serial access memory 1325. , And is supplied to the fluorescence image pickup image sensor substrate 132-2. That is, in the stacked image sensor 132, the terminals of the two power supplies supplied to the fluorescent image capturing image sensor substrate 132-2 are shared with the visible image capturing image sensor substrate 132-1.
 また、図4においては、可視画像撮像用イメージセンサ基板132-1に配置する制御回路1324の構成要素であるクロックジェネレータ13241およびタイミングジェネレータ13242のそれぞれを示している。クロックジェネレータ13241は、可視画像撮像用イメージセンサ基板132-1に配置された端子(電極パッド)に外部から入力されたマスタークロックMCLKに基づいて、積層型イメージセンサ132内の構成要素(周辺回路)が動作する基準のクロック信号を生成する周辺回路である。クロックジェネレータ13241は、例えば、PLL(Phase Locked Loop)によって構成される。クロックジェネレータ13241は、生成した基準のクロック信号を、積層型イメージセンサ132内の構成要素(周辺回路)に出力(供給)する。 Further, FIG. 4 shows each of a clock generator 13241 and a timing generator 13242 which are components of the control circuit 1324 disposed on the visible image pickup image sensor substrate 132-1. The clock generator 13241 is a component (peripheral circuit) in the multilayer image sensor 132 based on the master clock MCLK input from the outside to a terminal (electrode pad) disposed on the visible image pickup image sensor substrate 132-1. Is a peripheral circuit that generates a reference clock signal to operate. The clock generator 13241 is configured of, for example, a PLL (Phase Locked Loop). The clock generator 13241 outputs (supplies) the generated reference clock signal to components (peripheral circuits) in the stacked image sensor 132.
 タイミングジェネレータ13242は、シリアルアクセスメモリ1325に記憶されたパラメータに基づいて、積層型イメージセンサ132に備えたそれぞれの構成要素(周辺回路)の動作を制御するための基準のクロック信号に同期した制御信号を生成し、対応するそれぞれの構成要素(周辺回路)に出力する周辺回路である。より具体的には、タイミングジェネレータ13242は、生成した制御信号を、可視画像撮像用イメージセンサ基板132-1に配置された垂直走査回路13221-1、水平走査回路13222-1、画素部1321-1内の不図示のアナログ/デジタル変換部1323、およびシリアライザ1326のそれぞれに出力する。また、タイミングジェネレータ13242は、生成した制御信号を、蛍光画像撮像用イメージセンサ基板132-2に配置された垂直走査回路13221-2、水平走査回路13222-2、および画素部1321-2内の不図示のアナログ/デジタル変換部1323のそれぞれに出力する。 The timing generator 13242 is a control signal synchronized with a reference clock signal for controlling the operation of each component (peripheral circuit) included in the stacked image sensor 132 based on the parameters stored in the serial access memory 1325. Are generated and output to corresponding components (peripheral circuits). More specifically, the timing generator 13242 generates the control signal in the vertical scanning circuit 13221-1, the horizontal scanning circuit 13222-1, and the pixel unit 1321-1 disposed on the visible image capturing image sensor substrate 132-1. The signal is output to each of an analog / digital conversion unit 1323 and a serializer 1326 (not shown). Further, the timing generator 13242 can generate the generated control signal in the vertical scanning circuit 13221-2, the horizontal scanning circuit 13222-2, and the pixel portion 1321-2 disposed on the fluorescence image capturing image sensor substrate 132-2. The signal is output to each of the illustrated analog / digital converter 1323.
 図4に示した積層型イメージセンサ132において、シリアライザ1326は、可視画像撮像用イメージセンサ基板132-1に配置された画素部1321-1内の不図示のアナログ/デジタル変換部1323、または蛍光画像撮像用イメージセンサ基板132-2に配置された画素部1321-2内の不図示のアナログ/デジタル変換部1323から順次入力された画素信号(パラレルRAWデータ)をパラレル/シリアル変換する。シリアライザ1326は、パラレル/シリアル変換したシリアルRAWデータを、外部に出力するための差動信号(差動正信号posおよび差動負信号neg)の端子(電極パッド)から出力する。 In the stacked image sensor 132 shown in FIG. 4, the serializer 1326 is not shown in the analog / digital conversion unit 1323 in the pixel unit 1321-1 disposed on the visible image capturing image sensor substrate 132-1, or a fluorescent image Pixel signals (parallel RAW data) sequentially input from an analog / digital conversion unit 1323 (not shown) in the pixel unit 1321-2 disposed on the image sensor substrate 132-2 for imaging are subjected to parallel / serial conversion. The serializer 1326 outputs parallel / serial converted serial RAW data from terminals (electrode pads) of differential signals (differential positive signal pos and differential negative signal neg) for outputting to the outside.
 このように、積層型イメージセンサ132では、2つのイメージセンサにおいて共通化した構成要素(周辺回路、共通周辺回路)をいずれかのイメージセンサに1つのみ備える(それぞれのイメージセンサに分散して備える)。これにより、積層型イメージセンサ132では、それぞれのイメージセンサに配置する構成要素(周辺回路)の数を少なくして、イメージセンサ基板の面積(チップ面積)を小さくすることができる。また、積層型イメージセンサ132では、外部との間で信号を入出力するための電極パッド(入出力パッド)を可視画像撮像用イメージセンサ基板132-1のみに配置して、それぞれのイメージセンサにおける端子となる電極パッド(入出力パッド)を共通にする。これにより、積層型イメージセンサ132では、端子となる電極パッド(入出力パッド)の数も少なくし、チップ面積をさらに小さくすることができる。 As described above, in the stacked image sensor 132, only one component (peripheral circuit, common peripheral circuit) common to two image sensors is provided to any of the image sensors (dispersed to each image sensor) ). Thus, in the stacked image sensor 132, the number of components (peripheral circuits) arranged in each image sensor can be reduced, and the area (chip area) of the image sensor substrate can be reduced. Further, in the stacked image sensor 132, electrode pads (input / output pads) for inputting / outputting signals to / from the outside are disposed only on the visible image pickup image sensor substrate 132-1, and Common electrode pads (input and output pads) to be terminals. Accordingly, in the stacked image sensor 132, the number of electrode pads (input / output pads) serving as terminals can be reduced, and the chip area can be further reduced.
 なお、積層型イメージセンサ132においてそれぞれのイメージセンサにおいて共通化した構成要素(周辺回路、共通周辺回路)の可視画像撮像用イメージセンサ基板132-1および蛍光画像撮像用イメージセンサ基板132-2への配置は、図4に示した一例のような配置に限定されるものではなく、様々な配置が考えられる。例えば、積層型イメージセンサ132は、それぞれのイメージセンサにおいて共通の構成要素(共通周辺回路)である制御回路1324を構成するクロックジェネレータ13241を蛍光画像撮像用イメージセンサ基板132-2に配置し、タイミングジェネレータ13242を可視画像撮像用イメージセンサ基板132-1に配置する構成であってもよい。この場合、クロックジェネレータ13241が基準のクロック信号を生成するためのマスタークロックMCLKも、上述した2系統の電源やシリアルアクセスメモリ1325に入力されるそれぞれの信号と同様に、可視画像撮像用イメージセンサ基板132-1内を通って、蛍光画像撮像用イメージセンサ基板132-2に配置されたタイミングジェネレータ13242に入力される。つまり、マスタークロックMCLKの端子(電極パッド)も、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とで共有される。 A component (peripheral circuit, common peripheral circuit) common to the respective image sensors in the stacked image sensor 132 may be transferred to the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. The arrangement is not limited to the arrangement as shown in FIG. 4 but various arrangements are conceivable. For example, in the multi-layer image sensor 132, a clock generator 13241 constituting a control circuit 1324 which is a common component (common peripheral circuit) in each image sensor is disposed on the image sensor substrate 132-2 for capturing a fluorescent light image. The generator 13242 may be disposed on the visible image capturing image sensor substrate 132-1. In this case, the master clock MCLK for the clock generator 13241 to generate the reference clock signal is also the image sensor substrate for capturing a visible image, similarly to the two power supplies described above and the respective signals input to the serial access memory 1325. The signal passes through the inside of 132-1, and is input to the timing generator 13242 disposed on the fluorescence image pickup image sensor substrate 132-2. That is, the terminal (electrode pad) of the master clock MCLK is also shared by the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2.
 次に、積層型イメージセンサ132の構造について説明する。図5は、本発明の実施形態の蛍光観察内視鏡装置1に備えた固体撮像装置(積層型イメージセンサ132)の構造の一例を示した断面図である。図5には、積層型イメージセンサ132の全体の縦構造を模式的に示している。 Next, the structure of the stacked image sensor 132 will be described. FIG. 5 is a cross-sectional view showing an example of the structure of a solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 according to the embodiment of the present invention. FIG. 5 schematically shows the entire vertical structure of the stacked image sensor 132.
 上述したように、積層型イメージセンサ132は、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とが、層間フィルタを挟んで積層された構造である。より具体的には、積層型イメージセンサ132は、画素領域において、光が入射する側から光が進む方向に向かって、可視画像撮像用イメージセンサ基板132-1、保護膜132-4、誘電体多層膜フィルタ層132-3、蛍光画像撮像用イメージセンサ基板132-2、および支持基板132-5の順番で積層された構造である。 As described above, the stacked image sensor 132 has a structure in which the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 are stacked with an interlayer filter interposed therebetween. More specifically, in the pixel region, the stacked image sensor 132 is a visible image pickup image sensor substrate 132-1, a protective film 132-4, and a dielectric in the direction from the light incident side to the light traveling direction. The multilayer film filter layer 132-3, the fluorescence image pickup image sensor substrate 132-2, and the support substrate 132-5 are stacked in this order.
 可視画像撮像用イメージセンサ基板132-1は、反射光(可視光)を主に露光した撮像信号を出力する可視画像撮像用イメージセンサの機能を実現するそれぞれの回路要素、および積層型イメージセンサ132におけるそれぞれの端子(電極パッド)を形成する半導体基板である。 The visible image capturing image sensor substrate 132-1 is a circuit element for realizing the function of a visible image capturing image sensor that outputs an imaging signal mainly exposed to the reflected light (visible light), and the stacked image sensor 132. The semiconductor substrate forms the respective terminals (electrode pads) in the above.
 誘電体多層膜フィルタ層132-3は、可視画像撮像用イメージセンサ基板132-1を透過して蛍光画像撮像用イメージセンサ基板132-2に配置されたそれぞれの画素1320に入射する可視光を減衰させる、誘電体などの無機材料を多層に積層した光学フィルタである誘電体多層膜フィルタを形成する層である。誘電体多層膜フィルタは、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間に配置される層間フィルタとして形成される。誘電体多層膜フィルタは、例えば、二酸化シリコン(SiO)を材料とした薄膜層と、酸化チタン(TiO)を材料とした薄膜層とを交互に積層することによって形成する。図5に示した積層型イメージセンサ132の縦構造において誘電体多層膜フィルタ層132-3は、二酸化シリコン(SiO)薄膜層132031と、酸化チタン(TiO)薄膜層132032とを交互に5層ずつ積層して誘電体多層膜フィルタ13203を形成した状態を模式的に示している。 The dielectric multi-layered film filter layer 132-3 attenuates visible light which passes through the visible image pickup image sensor substrate 132-1 and enters each pixel 1320 disposed on the fluorescent image pickup image sensor substrate 132-2. Layer, which is an optical filter in which inorganic materials such as dielectrics are laminated in multiple layers to form a dielectric multilayer filter. The dielectric multilayer film filter is formed as an interlayer filter disposed between the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. The dielectric multilayer filter is formed, for example, by alternately laminating thin film layers made of silicon dioxide (SiO 2 ) and thin film layers made of titanium oxide (TiO 2 ). In the vertical structure of the stacked image sensor 132 shown in FIG. 5, the dielectric multilayer filter layer 132-3 alternately comprises a silicon dioxide (SiO 2 ) thin film layer 132031 and a titanium oxide (TiO 2 ) thin film layer 132032. The state which laminated | stacked layer by layer and formed the dielectric multilayer filter 13203 is shown typically.
 保護膜132-4は、積層型イメージセンサ132において可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とが積層される、誘電体多層膜フィルタ層132-3を保護する保護膜を形成する層である。保護膜132-4は、例えば、二酸化シリコン(SiO)などの低屈折率材料によって形成する。図5に示した積層型イメージセンサ132の縦構造において保護膜132-4は、接合面JSにおいて、誘電体多層膜フィルタ層132-3を保護している。 The protective film 132-4 is a dielectric multilayer filter layer 132-3 in which the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 are stacked in the stacked image sensor 132. It is a layer which forms a protective film to protect. The protective film 132-4 is formed of, for example, a low refractive index material such as silicon dioxide (SiO 2 ). In the vertical structure of the stacked image sensor 132 shown in FIG. 5, the protective film 132-4 protects the dielectric multilayer filter layer 132-3 at the bonding surface JS.
 蛍光画像撮像用イメージセンサ基板132-2は、可視画像撮像用イメージセンサ基板132-1を透過した蛍光を主に露光した撮像信号を出力する蛍光画像撮像用イメージセンサの機能を実現するそれぞれの回路要素を形成する半導体基板である。 The fluorescent image pickup image sensor substrate 132-2 is a circuit for realizing the function of a fluorescent image pickup image sensor that outputs an image pickup signal mainly exposed to the fluorescence transmitted through the visible image pickup image sensor substrate 132-1. It is a semiconductor substrate which forms an element.
 支持基板132-5は、可視画像撮像用イメージセンサ基板132-1(後述するマイクロレンズ層132-7、オンチップカラーフィルタ層132-6、および端子(電極パッド)などを含む)、保護膜132-4、誘電体多層膜フィルタ層132-3、および蛍光画像撮像用イメージセンサ基板132-2が積層された積層型イメージセンサ132の全体を強度的に支持するための半導体基板である。 The support substrate 132-5 is a visible image pickup image sensor substrate 132-1 (including a microlens layer 132-7 to be described later, an on-chip color filter layer 132-6, terminals (electrode pads), etc.), and a protective film 132. This is a semiconductor substrate for strongly supporting the whole of the multilayer image sensor 132 in which the dielectric multilayer filter layer 132-3 and the fluorescent image pickup image sensor substrate 132-2 are stacked.
 図5に示した積層型イメージセンサ132の縦構造には、画素部1321が配置(形成)される一部の領域(以下、「画素領域」という)の縦構造と、画素部1321以外の構成要素や積層型イメージセンサ132のそれぞれの端子となる電極パッド(入出力パッド)が配置(形成)される一部の領域(以下、「画素外領域」という)の縦構造とを併せて模式的に示している。 In the vertical structure of the stacked image sensor 132 shown in FIG. 5, the vertical structure of a partial region (hereinafter referred to as “pixel region”) in which the pixel portion 1321 is disposed (formed) and the configuration other than the pixel portion 1321 The vertical structure of a part of the area (hereinafter referred to as “area outside the pixel”) in which electrode pads (input / output pads) serving as the elements and terminals of the stacked image sensor 132 are disposed (formed) Is shown.
 ここで、積層型イメージセンサ132のそれぞれの領域におけるより詳細な縦構造について説明する。まず、積層型イメージセンサ132における画素領域の縦構造について説明する。積層型イメージセンサ132の画素領域では、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とのそれぞれに、画素1320を配置(形成)する。図5に示した積層型イメージセンサ132における画素領域の縦構造では、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とのそれぞれに、3つの画素1320を配置(形成)した場合を示している。そして、積層型イメージセンサ132の画素領域では、可視画像撮像用イメージセンサ基板132-1から光が入射する側に向かって、つまり、可視画像撮像用イメージセンサ基板132-1の上層に、オンチップカラーフィルタ層132-6とマイクロレンズ層132-7とがさらに積層(形成)される。 Here, a more detailed vertical structure in each region of the stacked image sensor 132 will be described. First, the vertical structure of the pixel region in the stacked image sensor 132 will be described. In the pixel region of the laminated image sensor 132, the pixels 1320 are disposed (formed) on the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. In the vertical structure of the pixel region in the stacked image sensor 132 shown in FIG. 5, three pixels 1320 are disposed on each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. It shows the case of (formation). Then, in the pixel region of the laminated image sensor 132, the on-chip is directed to the side on which light is incident from the visible image capturing image sensor substrate 132-1, ie, on the upper layer of the visible image capturing image sensor substrate 132-1. The color filter layer 132-6 and the microlens layer 132-7 are further stacked (formed).
 マイクロレンズ層132-7は、入射した光、つまり、励起光カットフィルタ131から出射された励起光がカットされた被検査体901からの反射光(可視光)および蛍光を、可視画像撮像用イメージセンサ基板132-1および蛍光画像撮像用イメージセンサ基板132-2に配置されたそれぞれの画素1320に集光させるマイクロレンズ13205を形成する層である。マイクロレンズ層132-7には、可視画像撮像用イメージセンサ基板132-1に配置(形成)されたそれぞれの画素1320に対応する位置に、マイクロレンズ13205を形成する。図5に示した積層型イメージセンサ132における画素領域の縦構造においてマイクロレンズ層132-7には、可視画像撮像用イメージセンサ基板132-1に配置(形成)された画素1320に対応する3つのマイクロレンズ13205を形成した状態を模式的に示している。マイクロレンズ13205のそれぞれは、積層型イメージセンサ132に入射した反射光(可視光)および蛍光を、可視画像撮像用イメージセンサ基板132-1に配置された対応する画素1320(より具体的には、後述する光電変換素子132011)に集光させる。 The microlens layer 132-7 is a light for imaging visible light, that is, the reflected light (visible light) and fluorescence from the inspection object 901 from which the incident light, that is, the excitation light emitted from the excitation light cut filter 131 has been cut, It is a layer forming the microlenses 13205 to be focused on the respective pixels 1320 disposed on the sensor substrate 132-1 and the fluorescence image capturing image sensor substrate 132-2. In the microlens layer 132-7, the microlenses 13205 are formed at positions corresponding to the respective pixels 1320 disposed (formed) on the visible image capturing image sensor substrate 132-1. In the vertical structure of the pixel region in the laminated image sensor 132 shown in FIG. 5, in the microlens layer 132-7, three corresponding to the pixels 1320 disposed (formed) on the visible image pickup image sensor substrate 132-1 The state in which the micro lens 13205 is formed is schematically shown. Each of the microlenses 13205 corresponds to the reflected light (visible light) and fluorescence incident on the laminated image sensor 132 and the corresponding pixels 1320 disposed on the visible image pickup image sensor substrate 132-1 (more specifically, The light is condensed on a photoelectric conversion element 132011 described later.
 オンチップカラーフィルタ層132-6は、予め定めた波長帯域の光を透過して可視画像撮像用イメージセンサ基板132-1に配置されたそれぞれの画素1320に入射させるオンチップカラーフィルタ13204を形成する層である。オンチップカラーフィルタ層132-6には、可視画像撮像用イメージセンサ基板132-1に配置されたそれぞれの画素1320に対応する位置に、赤色(R)、緑色(G)、または青色(B)の波長帯域の光(可視光)を透過するいずれかのオンチップカラーフィルタ13204を形成する。図5に示した積層型イメージセンサ132における画素領域の縦構造においてオンチップカラーフィルタ層132-6には、赤色(R)、緑色(G)、または青色(B)のいずれかの波長帯域の可視光を透過する3つのオンチップカラーフィルタ13204を形成した状態を模式的に示している。より具体的には、画素領域のオンチップカラーフィルタ層132-6に、赤色(R)の波長帯域の可視光を透過するオンチップカラーフィルタ13204Rと、緑色(G)の波長帯域の可視光を透過するオンチップカラーフィルタ13204Gと、青色(B)の波長帯域の可視光を透過するオンチップカラーフィルタ13204Bとのそれぞれを形成した状態を模式的に示している。なお、積層型イメージセンサ132では、オンチップカラーフィルタ13204R、オンチップカラーフィルタ13204G、およびオンチップカラーフィルタ13204Bのそれぞれを、例えば、ベイヤー配列に並べて形成する。オンチップカラーフィルタ13204のそれぞれは、マイクロレンズ13205によって集光されたいずれかの波長帯域の可視光を透過させて、可視画像撮像用イメージセンサ基板132-1に配置された対応する画素1320(より具体的には、後述する光電変換素子132011)に入射させる。 The on-chip color filter layer 132-6 forms an on-chip color filter 13204 that transmits light of a predetermined wavelength band and causes the light to enter each pixel 1320 disposed on the visible image capturing image sensor substrate 132-1. It is a layer. In the on-chip color filter layer 132-6, red (R), green (G), or blue (B) at positions corresponding to the respective pixels 1320 disposed on the visible image capturing image sensor substrate 132-1. The on-chip color filter 13204 is formed to transmit light in the wavelength band of (1) (visible light). In the vertical structure of the pixel region in the stacked image sensor 132 shown in FIG. 5, the on-chip color filter layer 132-6 has a wavelength band of any of red (R), green (G), or blue (B). A state in which three on-chip color filters 13204 for transmitting visible light are formed is schematically shown. More specifically, the on-chip color filter layer 132-6 in the pixel region is an on-chip color filter 13204R that transmits visible light in the red (R) wavelength band and visible light in the green (G) wavelength band. A state in which each of the transmitting on-chip color filter 13204G and the on-chip color filter 13204B transmitting visible light in the blue (B) wavelength band is formed is schematically shown. In the layered image sensor 132, the on-chip color filter 13204R, the on-chip color filter 13204G, and the on-chip color filter 13204B are formed in a Bayer arrangement, for example. Each of the on-chip color filters 13204 transmits visible light in one of the wavelength bands collected by the microlens 13205, and the corresponding pixel 1320 disposed on the visible image pickup image sensor substrate 132-1 Specifically, light is incident on a photoelectric conversion element 132011 described later.
 なお、オンチップカラーフィルタ13204のそれぞれは、対応する波長帯域の可視光に加えて、近赤外の波長帯域の光、つまり、蛍光の波長帯域の光も透過させるため、可視画像撮像用イメージセンサ基板132-1に配置されたそれぞれの画素1320には、蛍光も入射される。 Note that each on-chip color filter 13204 transmits light in the near-infrared wavelength band, that is, light in the fluorescence wavelength band, in addition to visible light in the corresponding wavelength band, so an image sensor for capturing a visible image The fluorescence is also incident on each of the pixels 1320 disposed on the substrate 132-1.
 可視画像撮像用イメージセンサ基板132-1において画素1320は、光電変換層132-11に形成される光電変換素子132011および反射層132014と、配線層132-12に形成される配線132012およびライトパイプ132013とによって画素1320の機能が実現される。以下の説明においては、可視画像撮像用イメージセンサ基板132-1の光が入射する側にオンチップカラーフィルタ13204Rが形成(貼付)された画素1320(R画素)を「R画素1320R」といい、オンチップカラーフィルタ13204Gが形成(貼付)された画素1320(G画素)を「G画素1320G」といい、オンチップカラーフィルタ13204Bが形成(貼付)された画素1320(B画素)を「B画素1320B」という。 In the visible image capturing image sensor substrate 132-1, the pixel 1320 includes the photoelectric conversion element 132011 and the reflective layer 132014 formed in the photoelectric conversion layer 132-11, and the wiring 132012 and light pipe 132013 formed in the wiring layer 132-12. And the function of the pixel 1320 is realized. In the following description, a pixel 1320 (R pixel) in which the on-chip color filter 13204R is formed (pasted) on the light incident side of the visible image pickup image sensor substrate 132-1 is referred to as “R pixel 1320R”. The pixel 1320 (G pixel) in which the on-chip color filter 13204G is formed (pasted) is referred to as "G pixel 1320G", and the pixel 1320 (B pixel) in which the on-chip color filter 13204B is formed (pasted) is referred to as "B pixel 1320B "
 それぞれの光電変換素子132011は、入射した光の光強度に応じた信号電荷を発生して蓄積する。より具体的には、それぞれの光電変換素子132011は、マイクロレンズ層132-7に形成されたマイクロレンズ13205によって集光され、オンチップカラーフィルタ層132-6に形成されたオンチップカラーフィルタ13204を透過して入射した反射光(可視光)の光強度に応じた信号電荷を発生して蓄積する。 Each photoelectric conversion element 132011 generates and accumulates signal charges according to the light intensity of the incident light. More specifically, each photoelectric conversion element 132011 is focused by the microlens 13205 formed in the microlens layer 132-7, and the on-chip color filter 13204 formed in the on-chip color filter layer 132-6. A signal charge corresponding to the light intensity of the reflected light (visible light) transmitted and incident is generated and accumulated.
 配線132012は、それぞれの画素1320の回路要素や可視画像撮像用イメージセンサ基板132-1に形成された回路要素を接続する配線である。R画素1320R、G画素1320G、およびB画素1320Bのそれぞれは、配線層132-12に形成された配線132012を通して入力された垂直走査回路13221-1からの駆動信号に応じた画素信号(アナログ信号)を、配線132012を通して垂直信号線1327に出力する。 The wiring 132012 is a wiring that connects the circuit elements of the respective pixels 1320 and the circuit elements formed on the visible image capturing image sensor substrate 132-1. Each of the R pixel 1320R, the G pixel 1320G, and the B pixel 1320B is a pixel signal (analog signal) corresponding to the drive signal from the vertical scanning circuit 13221-1 input through the wiring 132012 formed in the wiring layer 132-12. Is output to the vertical signal line 1327 through the wiring 132012.
 なお、光電変換素子132011は、入射した反射光(可視光)および蛍光の内、信号電荷の発生に用いられなかった一部の可視光の波長帯域の光と蛍光の波長帯域の光とを透過する。言い換えれば、光電変換素子132011は、入射した反射光(可視光)および蛍光の内、信号電荷の発生に用いた可視光の波長帯域の光を吸収して減衰させ、蛍光のみを透過する光学フィルタとしても機能している。 Note that among the incident reflected light (visible light) and fluorescence, the photoelectric conversion element 132011 transmits part of light in the visible light wavelength band and light in the fluorescence wavelength band that were not used to generate signal charges. Do. In other words, the photoelectric conversion element 132011 is an optical filter that absorbs and attenuates the light of the wavelength band of visible light used for generating the signal charge among the incident reflected light (visible light) and the fluorescence, and transmits only the fluorescence As well as functioning.
 光電変換素子132011を透過した一部の可視光と蛍光は、配線層132-12に形成されたライトパイプ132013によって導かれて、蛍光画像撮像用イメージセンサ基板132-2側に出射される。ライトパイプ132013は、光電変換素子132011を透過して光電変換層132-11側から入射した光を保護膜132-4側、つまり、蛍光画像撮像用イメージセンサ基板132-2側に導く光路である。ライトパイプ132013は、配線層132-12に形成する配線132012が、光電変換層132-11に形成される光電変換素子132011の領域に重ならないように開口部の領域を設けることによって、光電変換素子132011を光が透過するための光透過領域を確保する。そして、ライトパイプ132013は、確保した光透過領域に、例えば、窒化シリコン(Si)など、配線層132-12における光透過領域の周囲よりも光の屈折率が大きい高屈折率材料を充填することによって形成される。このライトパイプ132013に入射した光は、ライトパイプ132013内を通過して、効率的に蛍光画像撮像用イメージセンサ基板132-2側に出射される。 A part of visible light and fluorescence transmitted through the photoelectric conversion element 132011 is guided by the light pipe 132013 formed in the wiring layer 132-12 and emitted to the side of the image sensor substrate 132-2 for capturing a fluorescent image. The light pipe 132013 is an optical path for guiding light transmitted through the photoelectric conversion element 132011 and incident from the photoelectric conversion layer 132-11 side to the protective film 132-4 side, that is, to the fluorescent image pickup image sensor substrate 132-2 side. . In the light pipe 132013, the photoelectric conversion element is formed by providing the area of the opening so that the wiring 132012 formed in the wiring layer 132-12 does not overlap the area of the photoelectric conversion element 132011 formed in the photoelectric conversion layer 132-11. 132011 secures a light transmission area for light transmission. Then, the light pipe 132013 is made of a high refractive index material such as silicon nitride (Si 3 N 4 ) having a larger refractive index of light than the periphery of the light transmission region in the wiring layer 132-12 in the secured light transmission region. Formed by filling. The light incident on the light pipe 132013 passes through the inside of the light pipe 132013, and is efficiently emitted to the side of the image sensor substrate 132-2 for capturing a fluorescent light image.
 なお、光電変換素子132011に入射する反射光(可視光)と蛍光の内、蛍光は波長が長い光であるため回折の影響が大きく、光の拡散が早い(光の拡散量が大きい)光である。このため、積層型イメージセンサ132において画素1320の間隔、いわゆる、画素ピッチが狭くすると、オンチップカラーフィルタ13204を透過して可視画像撮像用イメージセンサ基板132-1に入射された蛍光は、それぞれの光電変換素子132011に入射したときから光電変換層132-11内で光の拡散が進んでしまう。そして、光電変換層132-11内で拡散が進んだ蛍光は、近接している(隣接している)画素において同様に拡散が進んだ蛍光との干渉によって、光が進むにつれて(光が配線層132-12に近づくにつれて)徐々に光強度の分布がピークとなる位置が、配線層132-12内の配線の位置の方にずれてしまう。このため、蛍光の多くは、配線層132-12内の配線132012に当たって反射してしまい、配線層132-12を透過することができず、蛍光画像撮像用イメージセンサ基板132-2に導かれる蛍光の光量が減少してしまうと考えられる。より具体的には、蛍光は、近赤外の波長帯域の光(近赤外光)であるため、例えば、画素1320の画素ピッチを2um程度よりも狭くすると回折の影響が大きく出始めて、ライトパイプ132013によって蛍光画像撮像用イメージセンサ基板132-2側に導かれる蛍光の光量が、回折の影響を受けた分だけ少なくなってしまうと考えられる。そこで、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1に形成するそれぞれの画素1320の間に反射層132014を形成している。より具体的には、積層型イメージセンサ132では、画素1320の画素ピッチを、蛍光における回折の影響が大きく出てしまう間隔にした場合でも、ライトパイプ132013に入射する蛍光の光量が少なくなってしまわないように、可視画像撮像用イメージセンサ基板132-1を構成する光電変換層132-11において、それぞれの光電変換素子132011の間に反射層132014を形成している。 Among the reflected light (visible light) and the fluorescence incident on the photoelectric conversion element 132011, the fluorescence has a long wavelength, so the influence of diffraction is large and the diffusion of light is fast (the amount of diffusion of light is large). is there. Therefore, when the distance between the pixels 1320 in the stacked image sensor 132, ie, the so-called pixel pitch is narrowed, the fluorescence transmitted through the on-chip color filter 13204 and incident on the visible image pickup image sensor substrate 132-1 Diffusion of light proceeds in the photoelectric conversion layer 132-11 from the time of incidence on the photoelectric conversion element 13 2011. Then, as the light travels due to the interference with the fluorescence in which diffusion has progressed in the adjacent (adjacent) pixel, the fluorescence in the photoelectric conversion layer 132-11 has advanced (the light The position where the light intensity distribution peaks gradually shifts toward the position of the wiring in the wiring layer 132-12 as the position 132-12 is approached. For this reason, much of the fluorescence is reflected on the wiring 132012 in the wiring layer 132-12, and can not be transmitted through the wiring layer 132-12, and the fluorescence is guided to the image sensor substrate 132-2 for capturing a fluorescent image. It is believed that the amount of light of More specifically, since fluorescence is light in the near-infrared wavelength band (near-infrared light), for example, if the pixel pitch of the pixels 1320 is narrower than about 2 um, the influence of diffraction starts to appear significantly, and light It is considered that the light amount of the fluorescence guided to the side of the image sensor substrate 132-2 for capturing a fluorescent image by the pipe 132013 is reduced by an amount affected by the diffraction. Therefore, in the multilayer image sensor 132, the reflective layer 132014 is formed between the pixels 1320 formed on the visible image capturing image sensor substrate 132-1. More specifically, in the multi-layer image sensor 132, even when the pixel pitch of the pixels 1320 is set to a distance at which the influence of diffraction of fluorescence is large, the amount of fluorescence incident on the light pipe 132013 decreases. In the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1, the reflection layer 132014 is formed between the photoelectric conversion elements 132011 so as not to be present.
 反射層132014は、光電変換層132-11内で回折限界を超えて拡散してしまう蛍光を反射させる反射膜である。反射層132014は、光電変換層132-11において隣接する光電変換素子132011との間に表面から1um以上の深さの窪みを形成し、例えば、二酸化シリコン(SiO)など、光電変換層132-11よりも光の屈折率が小さい低屈折率材料を充填して形成する。これにより、光電変換素子132011を透過した蛍光は、回折限界を超えて拡散する光が反射層132014によって反射されてライトパイプ132013に集光され、光量の減少が抑えられて効率的にライトパイプ132013に入射される。そして、ライトパイプ132013に入射された蛍光は、蛍光画像撮像用イメージセンサ基板132-2側に出射される。 The reflective layer 132014 is a reflective film that reflects fluorescence that diffuses beyond the diffraction limit in the photoelectric conversion layer 132-11. Reflective layer 132,014 are adjacent in the photoelectric conversion layer 132-11 forms a depression or more from the surface of the depth 1um between the photoelectric conversion elements 132 011, for example, such as silicon dioxide (SiO 2), the photoelectric conversion layer 132 - It is filled with a low refractive index material having a light refractive index smaller than 11 and formed. As a result, in the fluorescent light transmitted through the photoelectric conversion element 132011, light diffused beyond the diffraction limit is reflected by the reflective layer 132014 and condensed on the light pipe 132013, and a decrease in light quantity is suppressed, so that the light pipe 132013 is efficiently used. It is incident on Then, the fluorescence incident to the light pipe 132013 is emitted to the side of the image sensor substrate 132-2 for imaging a fluorescence image.
 なお、反射層132014は、例えば、それぞれの光電変換素子132011の周囲を囲むように形成してもよい。しかし、反射層132014は、必ずしも光電変換素子132011の周囲を隙間なく囲まなくてもよい。反射層132014は、隣接する光電変換素子132011との間に多少の隙間が空くことによって、回折限界を超えて拡散してしまう蛍光を反射させる性能が著しく低下してしまうことはないため、多少の隙間が空くことを許容する。 The reflective layer 132014 may be formed so as to surround the periphery of each of the photoelectric conversion elements 132011, for example. However, the reflective layer 132014 may not necessarily surround the periphery of the photoelectric conversion element 132011 without a gap. The reflective layer 132014 does not significantly reduce the ability to reflect fluorescence that diffuses beyond the diffraction limit by opening a slight gap between adjacent photoelectric conversion elements 132011, Allow clearance.
 なお、反射層132014の構造は、従来のシャロートレンチアイソレーション(Shallow Trench Isolation:STI)構造よりも深い窪みの構造である。 The structure of the reflective layer 132014 is a deeper depression than the conventional Shallow Trench Isolation (STI) structure.
 そして、ライトパイプ132013によって導かれた光電変換素子132011を透過した一部の可視光と蛍光は、保護膜132-4および誘電体多層膜フィルタ層132-3に入射され、誘電体多層膜フィルタ層132-3によって可視光が減衰される。より具体的には、誘電体多層膜フィルタ層132-3には、上述したように、例えば、二酸化シリコン(SiO)の薄膜層と、酸化チタン(TiO)の薄膜層とを交互に積層することによって誘電体多層膜フィルタ13203を形成する。誘電体多層膜フィルタ13203は、可視画像撮像用イメージセンサ基板132-1の配線層132-12に形成されたそれぞれの画素1320に対応するライトパイプ132013によって導かれた反射光(可視光)および蛍光の内、可視光の波長帯域の光のみを反射または吸収して減衰させ、蛍光の波長帯域の光を透過させる。これにより、光電変換素子132011を透過した蛍光のみが、蛍光画像撮像用イメージセンサ基板132-2に配置された対応する画素1320(より具体的には、後述する光電変換素子132021)に入射される。なお、保護膜132-4は、入射した光に対して特に何も行わず、そのまま誘電体多層膜フィルタ層132-3に出射する。 Then, part of visible light and fluorescence transmitted through the photoelectric conversion element 132011 led by the light pipe 132013 is incident on the protective film 132-4 and the dielectric multilayer filter layer 132-3, and the dielectric multilayer filter layer Visible light is attenuated by 132-3. More specifically, as described above, for example, a thin film layer of silicon dioxide (SiO 2 ) and a thin film layer of titanium oxide (TiO 2 ) are alternately stacked on the dielectric multilayer filter layer 132-3. As a result, the dielectric multilayer filter 13203 is formed. The dielectric multilayer film filter 13203 is a reflected light (visible light) and a fluorescence guided by the light pipe 132013 corresponding to each pixel 1320 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1. Among them, only light in the visible light wavelength band is reflected or absorbed and attenuated, and light in the fluorescence wavelength band is transmitted. Thereby, only the fluorescence transmitted through the photoelectric conversion element 132011 is incident on the corresponding pixel 1320 (more specifically, the photoelectric conversion element 132021 described later) disposed on the fluorescence image pickup image sensor substrate 132-2. . The protective film 132-4 emits nothing to the incident light, as it is, to the dielectric multilayer filter layer 132-3.
 蛍光画像撮像用イメージセンサ基板132-2において画素1320は、光電変換層132-21に形成される光電変換素子132021と、配線層132-22に形成される配線132022とによって画素1320の機能が実現される。以下の説明においては、蛍光画像撮像用イメージセンサ基板132-2に配置(形成)された画素1320(蛍光画素)を「蛍光画素1320IR」という。 In the image sensor substrate 132-2 for capturing a fluorescent image, the function of the pixel 1320 is realized by the photoelectric conversion element 132021 formed in the photoelectric conversion layer 132-21 and the wiring 132202 formed in the wiring layer 132-22. Be done. In the following description, a pixel 1320 (fluorescent pixel) disposed (formed) on the fluorescent image pickup image sensor substrate 132-2 is referred to as “fluorescent pixel 1320 IR”.
 それぞれの光電変換素子132021は、入射した光の光強度に応じた信号電荷を発生して蓄積する。より具体的には、それぞれの光電変換素子132021は、マイクロレンズ層132-7からオンチップカラーフィルタ層132-6を介して可視画像撮像用イメージセンサ基板132-1に入射され、可視画像撮像用イメージセンサ基板132-1に形成された対応する画素1320のライトパイプ132013と誘電体多層膜フィルタ層132-3とを透過した蛍光の光強度に応じた信号電荷を発生して蓄積する。 Each photoelectric conversion element 132021 generates and accumulates a signal charge according to the light intensity of the incident light. More specifically, each photoelectric conversion element 132021 is incident on the image sensor substrate 132-1 for picking up a visible image from the microlens layer 132-7 through the on-chip color filter layer 132-6 and is used for picking up a visible image. A signal charge corresponding to the light intensity of the fluorescence transmitted through the light pipe 132013 and the dielectric multilayer filter layer 132-3 of the corresponding pixel 1320 formed on the image sensor substrate 132-1 is generated and accumulated.
 配線132022は、それぞれの蛍光画素1320IRの回路要素や蛍光画像撮像用イメージセンサ基板132-2に形成された回路要素を接続する配線である。それぞれの蛍光画素1320IRは、配線層132-22に形成された配線132022を通して入力された垂直走査回路13221-2からの駆動信号に応じた画素信号(アナログ信号)を、配線132022を通して垂直信号線に出力する。 The wiring 132022 is a wiring for connecting the circuit elements of the respective fluorescent pixels 1320 IR and the circuit elements formed on the image sensor substrate 132-2 for fluorescent image capturing. Each fluorescent pixel 1320 IR converts a pixel signal (analog signal) according to the drive signal from the vertical scanning circuit 1322-1 input through the wiring 132022 formed in the wiring layer 132-22 into a vertical signal line through the wiring 132022 Output.
 このような構造によって積層型イメージセンサ132における画素領域では、可視画像撮像用イメージセンサ基板132-1を透過する蛍光に回折の影響が大きく出てしまうような画素ピッチで画素1320を配置(形成)した場合でも、ライトパイプ132013に入射する蛍光、つまり、蛍光画像撮像用イメージセンサ基板132-2に入射する蛍光の光量の減少を抑える。これにより、積層型イメージセンサ132では、画素1320の大きさ(面積)を小さくする、つまり、画素領域として必要な大きさを小さくすることができる。 With such a structure, in the pixel region in the stacked image sensor 132, the pixels 1320 are arranged (formed) at a pixel pitch at which the influence of diffraction largely appears on the fluorescence transmitted through the visible image capturing image sensor substrate 132-1. Even in this case, the decrease in the amount of fluorescence incident on the light pipe 132013, that is, the amount of fluorescence incident on the fluorescence image pickup image sensor substrate 132-2 is suppressed. Accordingly, in the stacked image sensor 132, the size (area) of the pixel 1320 can be reduced, that is, the size necessary for the pixel region can be reduced.
 続いて、積層型イメージセンサ132における画素外領域の縦構造について説明する。積層型イメージセンサ132の画素外領域には、積層型イメージセンサ132が外部との間で信号を入出力するためのそれぞれの端子となる電極パッド(入出力パッド)や、可視画像撮像用イメージセンサ基板132-1に配置(形成)された構成要素と蛍光画像撮像用イメージセンサ基板132-2に配置(形成)された構成要素とを電気的に接続する信号線を配置(形成)する。 Subsequently, the vertical structure of the non-pixel area in the stacked image sensor 132 will be described. Electrode pads (input / output pads) serving as respective terminals for the laminated image sensor 132 to input / output signals to / from the outside, and an image sensor for picking up a visible image in an area outside the pixel of the laminated image sensor 132. A signal line for electrically connecting a component arranged (formed) on the substrate 132-1 and a component arranged (formed) on the image sensor substrate 132-2 for fluorescent image capturing is arranged (formed).
 上述したように、積層型イメージセンサ132では、可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとにおいて共通化した構成要素は、可視画像撮像用イメージセンサ基板132-1または蛍光画像撮像用イメージセンサ基板132-2のいずれかに配置される。このため、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間でやり取りする信号線は、可視画像撮像用イメージセンサ基板132-1の配線層132-12に形成された配線132012と、蛍光画像撮像用イメージセンサ基板132-2の配線層132-22に形成された配線132022との間で接続する。 As described above, in the multi-layer image sensor 132, the components common to the visible image capturing image sensor and the fluorescent image capturing image sensor are the visible image capturing image sensor substrate 132-1 or the fluorescent image capturing image It is disposed on any of the sensor substrates 132-2. Therefore, the signal lines exchanged between the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are the wiring layers 132-12 of the visible image pickup image sensor substrate 132-1. And the wiring 132202 formed in the wiring layer 132-22 of the image sensor substrate 132-2 for fluorescent image capturing.
 例えば、図4に示したシリアルアクセスメモリ1325と制御回路1324内のタイミングジェネレータ13242との接続や、タイミングジェネレータ13242と垂直走査回路13221-2および水平走査回路13222-2との接続は、配線132012と配線132022との間で接続する。図5に示した積層型イメージセンサ132における画素外領域の縦構造では、蛍光画像撮像用イメージセンサ基板132-2の光電変換層132-21、誘電体多層膜フィルタ層132-3、および保護膜132-4を貫通して、保護膜132-4において光が入射する側の上面(表面)に、配線層132-22に形成された配線132022を引き出すシリコン貫通電極(Through-Silicon-Via:TSV)132023を形成している状態を模式的に示している。また、図5に示した積層型イメージセンサ132における画素外領域の縦構造では、可視画像撮像用イメージセンサ基板132-1の配線層132-12に形成された配線132012を、光が出射する側の下面(裏面)に引き出す裏面電極132016を形成している状態を模式的に示している。そして、図5に示した積層型イメージセンサ132における画素外領域の縦構造では、シリコン貫通電極132023と裏面電極132016とを接続している状態を模式的に示している。これにより、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1の配線層132-12に形成された配線132012と、蛍光画像撮像用イメージセンサ基板132-2の配線層132-22に形成された配線132022とが、光電変換層132-21、誘電体多層膜フィルタ層132-3、および保護膜132-4を貫通して接続される。 For example, the connection between the serial access memory 1325 and the timing generator 13242 in the control circuit 1324 shown in FIG. 4 and the connection between the timing generator 13242 and the vertical scanning circuit 13221-2 and the horizontal scanning circuit 1322-2 are different from the wiring 132012. It is connected to the wiring 132022. In the vertical structure of the region outside the pixel in the multilayer image sensor 132 shown in FIG. 5, the photoelectric conversion layer 132-21, the dielectric multilayer filter layer 132-3, and the protective film of the fluorescent image pickup image sensor substrate 132-2 Through-silicon through electrode (Through-Silicon-Via: TSV) leading out wiring 132202 formed in wiring layer 132-22 on the upper surface (surface) of the protective film 132-4 through which light penetrates 132-4. The state in which 132023 is formed is schematically shown. Further, in the vertical structure of the region outside the pixel in the stacked image sensor 132 shown in FIG. 5, the light is emitted from the wiring 132012 formed in the wiring layer 132-12 of the visible image capturing image sensor substrate 132-1. The state which forms the back surface electrode 132016 withdraw | derived on the lower surface (back surface) of these is shown typically. The vertical structure of the region outside the pixel in the stacked image sensor 132 shown in FIG. 5 schematically shows a state in which the silicon through electrode 132023 and the back electrode 132016 are connected. Thus, in the multilayer image sensor 132, the wiring 132012 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1 and the wiring layer 132-22 of the fluorescent image pickup image sensor substrate 132-2 The wiring 132202 formed in the above is connected through the photoelectric conversion layer 132-21, the dielectric multilayer filter layer 132-3, and the protective film 132-4.
 また、上述したように、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1のみに、外部との間で信号を入出力するための電極パッドが配置される。このため、積層型イメージセンサ132において蛍光画像撮像用イメージセンサ基板132-2に配置された構成要素と外部との間でやり取りする信号線は、可視画像撮像用イメージセンサ基板132-1内を通って(貫通して)、蛍光画像撮像用イメージセンサ基板132-2の配線層132-22に形成された配線132022に接続される。 Further, as described above, in the stacked image sensor 132, electrode pads for inputting and outputting signals to and from the outside are disposed only on the visible image capturing image sensor substrate 132-1. Therefore, the signal lines exchanged between the components disposed on the fluorescent image pickup image sensor substrate 132-2 in the stacked image sensor 132 and the outside pass through the visible image pickup image sensor substrate 132-1. Then, it is connected to the wiring 132022 formed in the wiring layer 132-22 of the fluorescence image pickup image sensor substrate 132-2 (through).
 例えば、図4に示した蛍光画像撮像用イメージセンサ基板132-2の電源(電源VDD1およびグラウンドGND1と、電源VDD2およびグラウンドGND2)や、蛍光画像撮像用イメージセンサ基板132-2に入力されるマスタークロックMCLKは、可視画像撮像用イメージセンサ基板132-1内を通って(貫通して)、配線132022に接続する。また、例えば、図4に示したシリアルアクセスメモリ1325に入力されるコントローラクロックSCK、SPIトリガ信号CS、SPI入力信号MOSI、およびSPI出力信号MISOも同様に、可視画像撮像用イメージセンサ基板132-1内を通って(貫通して)、配線132022に接続する。図5に示した積層型イメージセンサ132における画素外領域の縦構造では、シリコン貫通電極132023に加えて、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11を貫通して、可視画像撮像用イメージセンサ基板132-1において光が入射する側の上面(表面)に、配線層132-12に形成された配線132012を引き出すシリコン貫通電極132015を形成している状態を模式的に示している。また、図5に示した積層型イメージセンサ132における画素外領域の縦構造では、シリコン貫通電極132015における可視画像撮像用イメージセンサ基板132-1に光が入射する上面(表面)側の端部に、積層型イメージセンサ132の信号を外部に接続する電極パッド(入出力パッド)であるワイヤボンディング用パッド132017を形成している状態を模式的に示している。なお、ワイヤボンディング用パッド132017は、可視画像撮像用イメージセンサ基板132-1に光が入射する側の上面(表面)において、基板の周辺部分に形成されている。これにより、積層型イメージセンサ132では、蛍光画像撮像用イメージセンサ基板132-2の配線層132-22に形成された配線132022と、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11に形成されたワイヤボンディング用パッド132017とが、光電変換層132-21、誘電体多層膜フィルタ層132-3、保護膜132-4、配線132012、および光電変換層132-11を貫通して接続される。 For example, a master input to the power supply (power supply VDD1 and ground GND1, power supply VDD2 and ground GND2) of the fluorescence image pickup image sensor substrate 132-2 shown in FIG. 4 or the fluorescence image pickup image sensor substrate 132-2 The clock MCLK is connected to the wiring 132022 through (through) the inside of the visible image capturing image sensor substrate 132-1. Also, for example, the controller clock SCK, the SPI trigger signal CS, the SPI input signal MOSI, and the SPI output signal MISO input to the serial access memory 1325 shown in FIG. Through the inside (through), it connects to the wiring 132022. In addition to the silicon through electrode 132023, the vertical structure of the region outside the pixel in the multilayer image sensor 132 shown in FIG. 5 is visible through the photoelectric conversion layer 132-11 of the visible image pickup image sensor substrate 132-1. In the image sensor substrate 132-1 for image pickup, a state is schematically shown where a silicon penetration electrode 132015 is formed on the upper surface (surface) on the side where light is incident, for drawing out the wiring 132012 formed in the wiring layer 132-12 ing. Further, in the vertical structure of the region outside the pixel in the laminated image sensor 132 shown in FIG. 5, the edge on the upper surface (surface) side where light is incident on the visible image pickup image sensor substrate 132-1 in the silicon through electrode 132015 A state in which a wire bonding pad 132017 which is an electrode pad (input / output pad) for connecting a signal of the stacked image sensor 132 to the outside is schematically shown. The wire bonding pad 132017 is formed on the periphery of the upper surface (surface) of the side on which light is incident on the visible image pickup image sensor substrate 132-1. Thus, in the multilayer image sensor 132, the wiring 132022 formed on the wiring layer 132-22 of the fluorescent image pickup image sensor substrate 132-2 and the photoelectric conversion layer 132- of the visible image pickup image sensor substrate 132-1. And the wire bonding pad 132017 formed on the upper surface of the photoelectric conversion layer 132-21, the dielectric multilayer film filter layer 132-3, the protective film 132-4, the wiring 132012, and the photoelectric conversion layer 132-11. Connected
 このような構造によって積層型イメージセンサ132における画素外領域では、可視画像撮像用イメージセンサ基板132-1のみに配置した電極パッド(入出力パッド)によって外部との間でやり取りする信号を、蛍光画像撮像用イメージセンサ基板132-2に配置された構成要素に接続する。これにより、積層型イメージセンサ132では、画素外領域に配置(形成)するワイヤボンディング用パッド132017の数を少なくして、積層型イメージセンサ132のチップ面積、つまり、実装面積を小さくすることができる。 With such a structure, in an area outside the pixel in the stacked image sensor 132, a signal for exchanging signals with the outside through an electrode pad (input / output pad) disposed only on the visible image pickup image sensor substrate 132-1 is fluorescence image It is connected to the components disposed on the imaging image sensor substrate 132-2. As a result, in the stacked image sensor 132, the number of wire bonding pads 132017 arranged (formed) in the area outside the pixel can be reduced, and the chip area of the stacked image sensor 132, that is, the mounting area can be reduced. .
 上述した構造によって積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1を透過する蛍光に回折の影響が大きく出てしまうような画素ピッチでの画素1320の配置(形成)と、電極パッド(入出力パッド)の可視画像撮像用イメージセンサ基板132-1のみへの配置とを両立することによって、積層型イメージセンサ132の小型化を実現する。 Due to the above-described structure, in the stacked image sensor 132, the arrangement (formation) of the pixels 1320 at a pixel pitch at which the influence of diffraction largely appears on the fluorescence transmitted through the visible image capturing image sensor substrate 132-1; By making the arrangement of the pads (input / output pads) only on the visible image pickup image sensor substrate 132-1, the miniaturization of the multilayer image sensor 132 is realized.
 次に、積層型イメージセンサ132における反射層132014の効果について説明する。図6は、本発明の実施形態の蛍光観察内視鏡装置1に備えた固体撮像装置(積層型イメージセンサ132)における光の強度の分布特性の一例を示した図である。図6には、積層型イメージセンサ132に配置(形成)する画素1320の画素ピッチを0.9umとした場合における光の強度(光強度)の分布を光学シミュレーションした結果の一例を示している。 Next, the effect of the reflective layer 132014 in the stacked image sensor 132 will be described. FIG. 6 is a view showing an example of the distribution characteristic of the light intensity in the solid-state imaging device (stacked image sensor 132) provided in the fluorescence observation endoscope apparatus 1 of the embodiment of the present invention. FIG. 6 shows an example of the result of optical simulation of the distribution of light intensity (light intensity) when the pixel pitch of the pixels 1320 arranged (formed) in the stacked image sensor 132 is 0.9 μm.
 図6の(a)には、図5に示した積層型イメージセンサ132の画素領域の縦構造の一例を模式的に示している。また、図6の(b)、図6の(c)、および図6の(d)には、積層型イメージセンサ132の画素領域における蛍光の波長帯域の蛍光fの光の強度(光強度)の分布を光学シミュレーションした結果の一例を示している。より具体的には、図6の(a)には、図5に示した積層型イメージセンサ132の画素領域に、R画素1320RとG画素1320Gが交互に2つずつ配置されている場合の縦構造を模式的に示している。なお、図6の(a)に示した積層型イメージセンサ132の画素領域の縦構造は、配置(形成)されている画素1320が図5に示した積層型イメージセンサ132の画素領域の縦構造と異なるのみであるため、詳細な説明は省略する。 FIG. 6A schematically shows an example of the vertical structure of the pixel region of the laminated image sensor 132 shown in FIG. Further, in (b) of FIG. 6, (c) of FIG. 6, and (d) of FIG. 6, the intensity (light intensity) of light of fluorescence f in the wavelength band of fluorescence in the pixel region of the laminated image sensor 132. 7 shows an example of the result of optical simulation of the distribution of. More specifically, in (a) of FIG. 6, the vertical direction in the case where two R pixels 1320R and two G pixels 1320G are alternately arranged in the pixel region of the stacked image sensor 132 shown in FIG. The structure is schematically shown. The vertical structure of the pixel area of the stacked image sensor 132 shown in FIG. 6A is the vertical structure of the pixel area of the stacked image sensor 132 in which the arranged pixels 1320 are shown in FIG. And the detailed description is omitted.
 また、図6の(b)には、図6の(a)に示した積層型イメージセンサ132の画素領域において、可視画像撮像用イメージセンサ基板132-1を構成する光電変換層132-11に光が入射する上面(表面)側の蛍光fの光強度の分布を光学シミュレーションした結果の一例を示している。また、図6の(c)には、図6の(a)に示した積層型イメージセンサ132の画素領域において、可視画像撮像用イメージセンサ基板132-1を構成する光電変換層132-11から光が出射する下面(裏面)側の蛍光fの光強度の分布を光学シミュレーションした結果の一例を示している。また、図6の(d)には、参考として、図6の(a)に示した積層型イメージセンサ132の画素領域において、可視画像撮像用イメージセンサ基板132-1を構成する光電変換層132-11に反射層132014を形成しなかった場合に、光が出射する下面(裏面)側の蛍光fの光強度の分布を光学シミュレーションした結果の一例を示している。図6の(b)、図6の(c)、および図6の(d)においては、画素ピッチを横軸にして、光強度の相対的な大きさ(強さ)を縦軸に示している。 Further, in (b) of FIG. 6, in the pixel region of the stacked image sensor 132 shown in (a) of FIG. 6, the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 is used. An example of a result of performing optical simulation of distribution of light intensity of fluorescence f by the side of the upper surface (surface) which light enters is shown. Further, in (c) of FIG. 6, in the pixel region of the stacked image sensor 132 shown in (a) of FIG. 6, the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 is An example of a result of performing optical simulation of distribution of light intensity of fluorescence f by the side of the undersurface (back side) which light emits is shown. Further, in (d) of FIG. 6, as a reference, a photoelectric conversion layer 132 constituting an image sensor substrate 132-1 for capturing a visible image in the pixel region of the laminated image sensor 132 shown in (a) of FIG. An example of the result of optical simulation of the light intensity distribution of the fluorescence f on the lower surface (rear surface) side from which light is emitted when the reflective layer 132014 is not formed at −11 is shown. In (b) of FIG. 6, (c) of FIG. 6, and (d) of FIG. 6, with the pixel pitch as the horizontal axis, the relative magnitude (intensity) of light intensity is shown as the vertical axis. There is.
 図6の(b)に示したように、可視画像撮像用イメージセンサ基板132-1に光が入射する側の光電変換層132-11(シリコン基板)の面におけるそれぞれに画素1320に入射した蛍光fの光強度の分布は、R画素1320Rおよび画素1320Gが配置された位置の中心付近、つまり、それぞれの画素1320のマイクロレンズ13205の焦点である中心位置で最大(ピーク)となっている。また、図6の(c)に示したように、可視画像撮像用イメージセンサ基板132-1に入射した光が透過して出射される側の光電変換層132-11(シリコン基板)の面におけるそれぞれに画素1320を透過した蛍光fの光強度の分布も、図6の(b)に示した光電変換層132-11に光が入射する側の蛍光fの光強度の分布と同様に、R画素1320Rおよび画素1320Gが配置された位置の中心付近でピークとなっている。 As shown in (b) of FIG. 6, the fluorescence incident to the pixel 1320 on each surface of the photoelectric conversion layer 132-11 (silicon substrate) on the light incident side to the visible image pickup image sensor substrate 132-1 The distribution of the light intensity of f is maximum (peak) near the center of the position where the R pixel 1320R and the pixel 1320G are arranged, that is, at the center position which is the focal point of the microlens 13205 of each pixel 1320. Further, as shown in (c) of FIG. 6, in the surface of the photoelectric conversion layer 132-11 (silicon substrate) on the side from which the light incident on the visible image pickup image sensor substrate 132-1 is transmitted and emitted. The distribution of the light intensity of the fluorescence f transmitted through the pixel 1320 is also the same as the distribution of the light intensity of the fluorescence f on the side where the light is incident on the photoelectric conversion layer 132-11 shown in (b) of FIG. It peaks near the center of the position where the pixel 1320R and the pixel 1320G are disposed.
 また、光電変換層132-11に反射層132014を形成しなかった場合には、図6の(d)に示したように、可視画像撮像用イメージセンサ基板132-1に入射した光が透過して出射される側の光電変換層132-11(シリコン基板)の面における蛍光fの光強度の分布がピークとなっている位置が、それぞれの画素1320が配置された位置の間の位置、つまり、隣接する画素1320との境界の位置となっている。つまり、光電変換層132-11に反射層132014を形成しなかった場合、それぞれの画素1320を透過する蛍光fの光強度の分布がピークとなる位置は、対応するマイクロレンズ13205の中心位置から大きくずれてしまっている。これは、波長が長い光である蛍光fが、光電変換層132-11を透過してくるまでに回折限界を超えて拡散してしまい、隣接する画素1320を透過するはずの蛍光fと相互に干渉してしまったことによるものである。これでは、光電変換層132-11を透過した蛍光fは、配線層132-12に形成された配線132012に遮られて、効率的にライトパイプ132013に入射されずに、蛍光画像撮像用イメージセンサ基板132-2に入射される蛍光fの光量が少なくなってしまう。そして、光電変換層132-11に反射層132014を形成しなかった積層型イメージセンサ132を搭載した蛍光観察内視鏡装置1では、画像処理部33が生成する被検査体901を含む蛍光画像の画質や解像度の低下を抑えることができない。 When the reflective layer 132014 is not formed on the photoelectric conversion layer 132-11, as shown in (d) of FIG. 6, light incident on the visible image pickup image sensor substrate 132-1 is transmitted. The position where the light intensity distribution of the fluorescent light f peaks on the surface of the photoelectric conversion layer 132-11 (silicon substrate) on the side to be emitted is the position between the positions where the respective pixels 1320 are arranged, that is, , And the position of the boundary with the adjacent pixel 1320. That is, when the reflective layer 132014 is not formed in the photoelectric conversion layer 132-11, the position at which the light intensity distribution of the fluorescence f transmitted through each pixel 1320 peaks is largely from the central position of the corresponding microlens 13205 It has slipped. This means that the fluorescence f, which is light with a long wavelength, diffuses beyond the diffraction limit by the time it is transmitted through the photoelectric conversion layer 132-11, and mutually interacts with the fluorescence f that should be transmitted through the adjacent pixel 1320. It is due to having interfered. In this case, the fluorescence f transmitted through the photoelectric conversion layer 132-11 is blocked by the wiring 132012 formed in the wiring layer 132-12, and is not efficiently incident on the light pipe 132013, so that an image sensor for fluorescence image pickup The light amount of the fluorescent light f incident on the substrate 132-2 decreases. Then, in the fluorescence observation endoscope apparatus 1 in which the stacked image sensor 132 in which the reflective layer 132014 is not formed in the photoelectric conversion layer 132-11 is mounted, the fluorescence image including the test object 901 generated by the image processing unit 33 is used. It is not possible to suppress the decrease in image quality and resolution.
 これに対して、積層型イメージセンサ132では、上述したように、光電変換層132-11に光が入射する側の蛍光fの光強度の分布がピークとなる位置と、光電変換層132-11を透過して光が出射される側の蛍光fの光強度の分布がピークとなる位置とは、共に、それぞれの画素1320が配置された位置の中心付近となっている。これは、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11に形成した反射層132014が、透過するまでに光電変換層132-11内で回折限界を超えて拡散してしまう蛍光fをライトパイプ132013に集光させることによるものである。これにより、積層型イメージセンサ132では、光電変換層132-11を透過した蛍光fが、効率的にライトパイプ132013に入射され、つまり、回折の影響を受けて光量が少なくなることなく、蛍光画像撮像用イメージセンサ基板132-2に入射される。つまり、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1を透過する蛍光fを、それぞれの画素1320が配置された位置に対応する裏面から、蛍光画像撮像用イメージセンサ基板132-2に出射させる。これにより、積層型イメージセンサ132では、蛍光画像撮像用イメージセンサ基板132-2に配置された蛍光画素1320IRが、十分な光量の蛍光fを露光した蛍光画像撮像信号のパラレルRAWデータを出力することができる。このことにより、蛍光観察内視鏡装置1では、積層型イメージセンサ132が出力した蛍光画像撮像信号のパラレルRAWデータに基づいて画像処理部33が生成する蛍光画像における画質や解像度の低下を抑えることができる。つまり、蛍光観察内視鏡装置1では、画質や解像度の劣化がない、被検査体901を含む蛍光画像を生成することができる。 On the other hand, in the laminated image sensor 132, as described above, the position at which the distribution of the light intensity of the fluorescence f on the light incident side to the photoelectric conversion layer 132-11 peaks and the photoelectric conversion layer 132-11. The light intensity distribution of the fluorescence f on the side from which light is emitted through the light emission peak is near the center of the position where the respective pixels 1320 are disposed. This is because, in the laminated image sensor 132, the reflection layer 132014 formed on the photoelectric conversion layer 132-11 of the visible image pickup image sensor substrate 132-1 has a diffraction limit in the photoelectric conversion layer 132-11 before transmission. It is by condensing the fluorescence f which is diffused to the light pipe 132013. Thereby, in the stacked image sensor 132, the fluorescence f transmitted through the photoelectric conversion layer 132-11 is efficiently incident on the light pipe 132013, that is, the amount of light is reduced due to the influence of diffraction, and thus the fluorescence image The light is incident on the image sensor substrate 132-2 for imaging. That is, in the stacked image sensor 132, the fluorescence f transmitted through the visible image capturing image sensor substrate 132-1 is transmitted from the back surface corresponding to the position where the respective pixels 1320 are disposed. Send to 2 Thereby, in the laminated image sensor 132, the fluorescent pixel 1320IR disposed on the fluorescent image pickup image sensor substrate 132-2 outputs parallel RAW data of the fluorescent light image pickup signal in which the fluorescent light f with a sufficient light amount is exposed. Can. By this, in the fluorescence observation endoscope apparatus 1, it is possible to suppress the deterioration of the image quality and the resolution in the fluorescence image generated by the image processing unit 33 based on the parallel RAW data of the fluorescence image pickup signal output by the laminated image sensor 132. Can. That is, in the fluorescence observation endoscope apparatus 1, it is possible to generate a fluorescence image including the inspection object 901 without deterioration of the image quality and the resolution.
 このように、積層型イメージセンサ132では、可視画像撮像用イメージセンサ基板132-1を構成する光電変換層132-11内に反射層132014を形成することによって、回折限界を超えて拡散してしまう蛍光fをライトパイプ132013に集光させ、画質の低下を抑えた蛍光画像を生成するための蛍光画像撮像信号を出力することができる。 As described above, in the stacked image sensor 132, the reflection layer 132014 is formed in the photoelectric conversion layer 132-11 constituting the visible image capturing image sensor substrate 132-1 to cause diffusion beyond the diffraction limit. The fluorescence f can be focused on the light pipe 132013, and a fluorescence image pickup signal for generating a fluorescence image in which the deterioration of the image quality is suppressed can be output.
 次に、積層型イメージセンサ132の製造方法(製造工程)について説明する。図7~図9は、本発明の実施形態の蛍光観察内視鏡装置1に備えた固体撮像装置(積層型イメージセンサ132)の製造方法(製造工程)の概略を説明する断面図である。図7には、積層型イメージセンサ132を構成する可視画像撮像用イメージセンサ基板132-1の製造方法(製造工程)の概略を示している。また、図8には、積層型イメージセンサ132を構成する蛍光画像撮像用イメージセンサ基板132-2の製造方法(製造工程)の概略を示している。また、図9には、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とを積層した積層型イメージセンサ132の製造方法(製造工程)の概略を示している。 Next, a method of manufacturing the multilayer image sensor 132 (manufacturing process) will be described. 7 to 9 are cross-sectional views for explaining an outline of a method of manufacturing a solid-state imaging device (laminated image sensor 132) provided in the fluorescence observation endoscope apparatus 1 according to the embodiment of the present invention. FIG. 7 shows an outline of a manufacturing method (manufacturing process) of the visible image capturing image sensor substrate 132-1 constituting the stacked image sensor 132. Further, FIG. 8 shows an outline of a method of manufacturing a fluorescent image pickup image sensor substrate 132-2 constituting the laminated image sensor 132 (manufacturing process). Further, FIG. 9 shows an outline of a manufacturing method (manufacturing process) of a laminated type image sensor 132 in which an image sensor substrate 132-1 for visible image pickup and an image sensor substrate 132-2 for fluorescent image pickup are laminated. .
 なお、積層型イメージセンサ132を構成する可視画像撮像用イメージセンサ基板132-1や蛍光画像撮像用イメージセンサ基板132-2の製造方法(製造工程)において、光電変換層に光電変換素子を形成する製造方法(製造工程)や、配線層に配線を形成する製造方法(製造工程)は、イメージセンサにおける既存の製造方法(製造工程)と同様である。従って、以下の説明においては、説明を容易にするため、可視画像撮像用イメージセンサ基板132-1や蛍光画像撮像用イメージセンサ基板132-2における光電変換素子や配線の製造方法(製造工程)に関する詳細な説明は省略する。 In the manufacturing method (manufacturing process) of the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 constituting the stacked image sensor 132, the photoelectric conversion element is formed in the photoelectric conversion layer. The manufacturing method (manufacturing process) and the manufacturing method (manufacturing process) for forming the wiring in the wiring layer are the same as the existing manufacturing method (manufacturing process) in the image sensor. Therefore, in the following description, in order to facilitate the description, it relates to a method (manufacturing process) of photoelectric conversion elements and wires in the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2. Detailed description is omitted.
 まず、図7に示した積層型イメージセンサ132を構成する可視画像撮像用イメージセンサ基板132-1の製造方法(製造工程)と、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とを積層する製造方法(製造工程)について説明する。 First, a manufacturing method (manufacturing process) of the visible image pickup image sensor substrate 132-1 constituting the stacked type image sensor 132 shown in FIG. 7, and the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image The manufacturing method (manufacturing process) of laminating the sensor substrate 132-2 will be described.
 (工程1)
 図7の(a)に示したように、ライトパイプ132013を形成した可視画像撮像用イメージセンサ基板132-1を製造する。より具体的には、まず、可視画像撮像用イメージセンサ基板132-1となるシリコン(Si)基板に光電変換素子132011、つまり、光電変換層132-11を形成する。その後、光電変換層132-11に形成した光電変換素子132011の領域に重ならないように、光を出射させるための開口部の領域(光透過領域)を設けて、つまり、ライトパイプ132013を形成する領域を設けて、配線層132-12内に配線132012を形成する。なお、光透過領域は、可視画像撮像用イメージセンサ基板132-1を表面照射(FrontSide Illumination:FSI)型の固体撮像装置と考えた場合、光電変換素子132011に光が入射する側の配線層132-12において、光電変換素子132011に光を入射させるために形成する開口部の領域であるともいえる。そして、配線層132-12内に設けた光透過領域に、例えば、窒化シリコン(Si)などの高屈折率材料が充填してライトパイプ132013を形成する。
(Step 1)
As shown in (a) of FIG. 7, an image sensor substrate 132-1 for imaging a visible image on which the light pipe 132013 is formed is manufactured. More specifically, first, the photoelectric conversion element 132011, that is, the photoelectric conversion layer 132-11 is formed on a silicon (Si) substrate to be an image sensor substrate 132-1 for capturing a visible image. After that, a region (light transmission region) of an opening for emitting light is provided so as not to overlap with the region of the photoelectric conversion element 132011 formed in the photoelectric conversion layer 132-11, that is, the light pipe 132013 is formed. A region is provided to form a wiring 132012 in the wiring layer 132-12. In the light transmission area, when the visible image pickup image sensor substrate 132-1 is considered as a front-side illumination (FSI) type solid-state imaging device, the wiring layer 132 on the light incident side to the photoelectric conversion element 132011. It can also be said that the region is an opening formed to allow light to enter the photoelectric conversion element 132011 at -12. Then, the light transmission region provided in the wiring layer 132-12 is filled with a high refractive index material such as silicon nitride (Si 3 N 4 ), for example, to form a light pipe 132013.
 (工程2)
 図7の(b)に示したように、可視画像撮像用イメージセンサ基板132-1の配線層132-12に形成された配線132012を引き出すための裏面電極132016を形成する。より具体的には、工程1において形成した配線層132-12内の配線132012に接続する裏面電極132016を形成し、さらに、裏面電極132016を形成した面を化学機械研磨(CMP) などによって平坦化する。なお、工程2において平坦化した裏面電極132016を形成した面を、可視画像撮像用イメージセンサ基板132-1における接合面JS-1とする。
(Step 2)
As shown in (b) of FIG. 7, a back electrode 132016 is formed for extracting the wiring 132012 formed in the wiring layer 132-12 of the visible image pickup image sensor substrate 132-1. More specifically, the back electrode 132016 connected to the wiring 132012 in the wiring layer 132-12 formed in step 1 is formed, and the surface on which the back electrode 132016 is formed is planarized by chemical mechanical polishing (CMP) or the like. Do. The surface on which the back electrode 132016 flattened in the process 2 is formed is a bonding surface JS-1 of the visible image pickup image sensor substrate 132-1.
 このような製造方法(製造工程)によって、積層型イメージセンサ132を構成する、ライトパイプ132013および裏面電極132016が形成された可視画像撮像用イメージセンサ基板132-1を製造する。 According to such a manufacturing method (manufacturing process), the visible image capturing image sensor substrate 132-1 having the light pipe 132013 and the back surface electrode 132016, which constitutes the stacked image sensor 132, is manufactured.
 続いて、図8に示した積層型イメージセンサ132を構成する蛍光画像撮像用イメージセンサ基板132-2の製造方法(製造工程)について説明する。 Subsequently, a manufacturing method (manufacturing process) of the fluorescent image pickup image sensor substrate 132-2 constituting the laminated image sensor 132 shown in FIG. 8 will be described.
 (工程3)
 図8の(a)に示したように、裏面照射(BackSide Illumination:BSI)型の固体撮像装置として構成された蛍光画像撮像用イメージセンサ基板132-2、つまり、支持基板132-5に積層された蛍光画像撮像用イメージセンサ基板132-2に、誘電体多層膜フィルタ層132-3を形成(積層)する。より具体的には、まず、蛍光画像撮像用イメージセンサ基板132-2において、光が入射する側の面(以下、「受光面」という)を、化学機械研磨(Chemical Mechanical Polishing:CMP) などによって平坦化する。その後、蛍光画像撮像用イメージセンサ基板132-2の平坦化した受光面に、イオンアシスト蒸着(Ion Assisted Deposition:IAD)などによって、二酸化シリコン(SiO)薄膜層132031と酸化チタン(TiO)薄膜層132032とを交互に形成(積層)して、誘電体多層膜フィルタ13203を誘電体多層膜フィルタ層132-3に形成(積層)する。
(Step 3)
As shown in (a) of FIG. 8, it is laminated on a fluorescent image pickup image sensor substrate 132-2 configured as a back-side illumination (Backside Illumination: BSI) type solid-state imaging device, that is, a support substrate 132-5 The dielectric multilayer film filter layer 132-3 is formed (laminated) on the fluorescence image pickup image sensor substrate 132-2. More specifically, first, the surface on the light incident side (hereinafter referred to as “light receiving surface”) of the fluorescent image pickup image sensor substrate 132-2 is formed by chemical mechanical polishing (CMP) or the like. Flatten. Thereafter, a silicon dioxide (SiO 2 ) thin film layer 132031 and a titanium oxide (TiO 2 ) thin film are formed on the planarized light receiving surface of the image sensor substrate 132-2 for fluorescent image imaging by ion assisted deposition (IAD) or the like. The layers 132032 are alternately formed (laminated), and the dielectric multilayer filter 13203 is formed (laminated) in the dielectric multilayer filter layer 132-3.
 (工程4)
 図8の(b)に示したように、形成(積層)した誘電体多層膜フィルタ層132-3に、保護膜132-4を形成(積層)する。より具体的には、工程3において形成(積層)した誘電体多層膜フィルタ層132-3における蛍光画像撮像用イメージセンサ基板132-2の受光面と反対側の面、つまり、誘電体多層膜フィルタ層132-3に光が入射する側の面に、化学気相成長(Chemical Vapor Deposition:CVD)などによって、保護膜132-4を形成(積層)する。なお、工程4において形成する保護膜132-4の厚さは、少なくとも誘電体多層膜フィルタ層132-3を形成するそれぞれの薄膜層(二酸化シリコン(SiO)薄膜層132031や酸化チタン(TiO)薄膜層132032)の厚さよりも厚くする。
(Step 4)
As shown in FIG. 8B, the protective film 132-4 is formed (laminated) on the formed (laminated) dielectric multilayer filter layer 132-3. More specifically, the surface of the dielectric multilayer film filter layer 132-3 formed (laminated) in the step 3 opposite to the light receiving surface of the image sensor substrate 132-2 for capturing a fluorescent image, that is, the dielectric multilayer film filter A protective film 132-4 is formed (laminated) on the surface of the layer 132-3 on which light is incident by chemical vapor deposition (CVD) or the like. The thickness of the protective film 132-4 to form in step 4, at least a dielectric respective thin film layers forming a multilayer filter layer 132-3 (silicon dioxide (SiO 2) thin film layer 132,031 or titanium oxide (TiO 2 ) Thicker than the thickness of the thin film layer 132032).
 (工程5)
 図8の(c)に示したように、蛍光画像撮像用イメージセンサ基板132-2にスルーホール132023aを形成する。より具体的には、工程3および工程4において形成(積層)した誘電体多層膜フィルタ層132-3および保護膜132-4と、蛍光画像撮像用イメージセンサ基板132-2の光電変換層132-21とを貫通して配線層132-22に形成された配線132022まで到達するスルーホール132023aを、フォトリソグラフィ―とエッチングとによって形成する。
(Step 5)
As shown in FIG. 8C, through holes 132023a are formed in the fluorescence image pickup image sensor substrate 132-2. More specifically, the dielectric multilayer filter layer 132-3 and the protective film 132-4 formed (stacked) in the steps 3 and 4 and the photoelectric conversion layer 132 of the image sensor substrate 132-2 for capturing a fluorescent image 21 are formed by photolithography and etching to reach through-holes 132023a which reach through the through-holes 21 and reach the wiring 132022 formed in the wiring layer 132-22.
 (工程6)
 図8の(d)に示したように、蛍光画像撮像用イメージセンサ基板132-2にシリコン貫通電極132023を形成する。より具体的には、工程5において形成したスルーホール132023aに、化学気相成長(CVD)などによって、蛍光画像撮像用イメージセンサ基板132-2の配線層132-22に形成された配線132022を引き出すための金属材料を充填してシリコン貫通電極132023を形成する。
(Step 6)
As shown in (d) of FIG. 8, the silicon through electrode 132023 is formed on the fluorescence image pickup image sensor substrate 132-2. More specifically, the wiring 132022 formed in the wiring layer 132-22 of the image sensor substrate 1322 for capturing a fluorescent image is drawn to the through hole 132023a formed in step 5 by chemical vapor deposition (CVD) or the like. A metal material is filled to form through silicon vias 132023.
 (工程7)
 図8の(e)に示したように、シリコン貫通電極132023を形成した蛍光画像撮像用イメージセンサ基板132-2を平坦化する。より具体的には、工程6においてシリコン貫通電極132023を形成する金属材料を充填した面、つまり、蛍光画像撮像用イメージセンサ基板132-2の受光面側の面を、化学機械研磨(CMP) などによって平坦化する。なお、工程7において平坦化した蛍光画像撮像用イメージセンサ基板132-2の受光面側の面を、蛍光画像撮像用イメージセンサ基板132-2における接合面JS-2とする。
(Step 7)
As shown in (e) of FIG. 8, the fluorescent image pickup image sensor substrate 132-2 on which the silicon through electrode 132023 is formed is planarized. More specifically, the surface filled with the metal material for forming the silicon through electrode 132023 in step 6, that is, the surface on the light receiving surface side of the fluorescent image pickup image sensor substrate 132-2, is subjected to chemical mechanical polishing (CMP) or the like. Flatten by. The surface on the light receiving surface side of the fluorescence image pickup image sensor substrate 132-2 flattened in step 7 is taken as the bonding surface JS-2 of the fluorescence image pickup image sensor substrate 132-2.
 なお、工程7における平坦化では、保護膜132-4を含めてシリコン貫通電極132023を研磨する、つまり、保護膜132-4もシリコン貫通電極132023と一緒に研磨する。これにより、保護膜132-4の厚さは、工程4において形成した厚さよりも薄くなる。しかし、工程7における平坦化では、工程4において形成した保護膜132-4を全て研磨しないため、工程3において形成した誘電体多層膜フィルタ13203の特性に影響を及ぼすことはない。そして、保護膜132-4の厚さの違いも、誘電体多層膜フィルタ13203の特性に影響を及ぼすことはない。 In the planarization in the step 7, the silicon through electrode 132023 is polished including the protective film 132-4, that is, the protective film 132-4 is also polished together with the silicon through electrode 132023. Thereby, the thickness of the protective film 132-4 becomes thinner than the thickness formed in the process 4. However, in the planarization in the step 7, since the protective film 132-4 formed in the step 4 is not entirely polished, the characteristics of the dielectric multilayer filter 13203 formed in the step 3 are not affected. Also, the difference in thickness of the protective film 132-4 does not affect the characteristics of the dielectric multilayer filter 13203.
 このような製造方法(製造工程)によって、積層型イメージセンサ132を構成する、シリコン貫通電極132023が形成された蛍光画像撮像用イメージセンサ基板132-2を製造する。 According to such a manufacturing method (manufacturing process), the fluorescent image pickup image sensor substrate 132-2 having the silicon through electrode 132023 which forms the laminated image sensor 132 is manufactured.
 なお、積層型イメージセンサ132においては、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とのそれぞれを別々に製造し、その後に、それぞれのイメージセンサ基板を積層することによって最終的な積層型イメージセンサ132を製造する。このため、可視画像撮像用イメージセンサ基板132-1を製造する製造工程(工程1および工程2)と、蛍光画像撮像用イメージセンサ基板132-2を製造する製造工程(工程3~工程7)とは、並列に行ってもよい。 In the layered image sensor 132, each of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 is separately manufactured, and thereafter, the respective image sensor substrates are stacked. To manufacture the final stacked image sensor 132. Therefore, a manufacturing process (process 1 and process 2) for manufacturing the visible image capturing image sensor substrate 132-1 and a manufacturing process (process 3 to process 7) for manufacturing the fluorescent image capturing image sensor substrate 132-2 May be done in parallel.
 続いて、図9に示した積層型イメージセンサ132の製造方法(製造工程)について説明する。 Subsequently, a method of manufacturing the laminated image sensor 132 shown in FIG. 9 (manufacturing process) will be described.
 (工程8)
 図9の(a)に示したように、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とを積層する。より具体的には、可視画像撮像用イメージセンサ基板132-1の接合面JS-1と、蛍光画像撮像用イメージセンサ基板132-2の接合面JS-2とを対向させて積層する。このとき、工程8では、可視画像撮像用イメージセンサ基板132-1に形成した裏面電極132016の位置と、蛍光画像撮像用イメージセンサ基板132-2に形成したシリコン貫通電極132023の位置とを合わせるように接合面JS-1と接合面JS-2とを対向させて積層する。これにより、可視画像撮像用イメージセンサ基板132-1に形成した裏面電極132016と、蛍光画像撮像用イメージセンサ基板132-2に形成したシリコン貫通電極132023とが、接合面JSで物理的に接合され、かつ電気的に接続される。
(Step 8)
As shown in FIG. 9A, the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are stacked. More specifically, the bonding surface JS-1 of the visible image capturing image sensor substrate 132-1 and the bonding surface JS-2 of the fluorescent image capturing image sensor substrate 132-2 are stacked to face each other. At this time, in step 8, the position of the back electrode 132016 formed on the visible image pickup image sensor substrate 132-1 and the position of the silicon through electrode 132023 formed on the fluorescent image pickup image sensor substrate 132-2 are aligned. The bonding surface JS-1 and the bonding surface JS-2 are made to face each other and stacked. As a result, the back electrode 132016 formed on the visible image pickup image sensor substrate 132-1 and the silicon through electrode 132023 formed on the fluorescent image pickup image sensor substrate 132-2 are physically bonded at the bonding surface JS. , And electrically connected.
 (工程9)
 図9の(b)に示したように、可視画像撮像用イメージセンサ基板132-1のシリコン基板を薄化して、可視画像撮像用イメージセンサ基板132-1を裏面照射型の固体撮像装置として構成させる。より具体的には、可視画像撮像用イメージセンサ基板132-1において裏面電極132016を形成していない側のシリコン基板の厚さを、例えば、化学機械研磨(CMP)やエッチングなどによって、形成した光電変換素子132011に光が十分に入射する厚さまで薄くする。これにより、可視画像撮像用イメージセンサ基板132-1は、シリコン基板を薄化した裏面から光電変換素子132011に光が入射する、つまり、可視画像撮像用イメージセンサ基板132-1の裏面が受光面となった裏面照射型の固体撮像装置として構成される。
(Step 9)
As shown in (b) of FIG. 9, the silicon substrate of the visible image pickup image sensor substrate 132-1 is thinned, and the visible image pickup image sensor substrate 132-1 is configured as a backside illumination type solid-state imaging device. Let More specifically, the thickness of the silicon substrate on the side where the back surface electrode 132016 is not formed in the visible image pickup image sensor substrate 132-1 is, for example, a photoelectric formed by chemical mechanical polishing (CMP) or etching. The conversion element 132011 is thin enough to allow light to enter. As a result, light is incident on the photoelectric conversion element 132011 from the back surface of the silicon substrate after thinning the visible image pickup image sensor substrate 132-1, that is, the back surface of the visible image pickup image sensor substrate 132-1 is the light receiving surface It is configured as a back-illuminated solid-state imaging device.
 (工程10)
 図9の(c)に示したように、可視画像撮像用イメージセンサ基板132-1において薄化したシリコン基板に反射層132014を形成する。より具体的には、まず、可視画像撮像用イメージセンサ基板132-1において薄化したシリコン基板、つまり、光電変換層132-11に形成されているそれぞれの光電変換素子132011の間に、フォトリソグラフィ―とエッチングとによって、光電変換層132-11の表面から1um以上の深さの窪みを形成する。その後、光電変換層132-11に形成した窪みに、化学気相成長(CVD)などによって、例えば、二酸化シリコン(SiO)などの低屈折率材料を充填して反射層132014を形成する。
(Step 10)
As shown in FIG. 9C, the reflective layer 132014 is formed on the silicon substrate thinned in the visible image pickup image sensor substrate 132-1. More specifically, first, the silicon substrate thinned in the visible image capturing image sensor substrate 132-1, that is, between the respective photoelectric conversion elements 132011 formed in the photoelectric conversion layer 132-11, is subjected to photolithography. A recess of 1 μm or more in depth is formed from the surface of the photoelectric conversion layer 132-11 by etching and After that, the hollow formed in the photoelectric conversion layer 132-11 is filled with a low refractive index material such as silicon dioxide (SiO 2 ) by chemical vapor deposition (CVD) or the like to form a reflective layer 132014.
 なお、工程10において、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11(シリコン基板)に反射層132014を形成するための低屈折率材料を充填した面を、化学機械研磨(CMP) などによって平坦化してもよい。このときの平坦化では、反射層132014を含めて光電変換層132-11(シリコン基板)を研磨する、つまり、反射層132014とシリコン基板とを一緒に研磨することによって、光電変換層132-11の全体を平坦化してもよい。この場合、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11(シリコン基板)の厚さは、工程9においてシリコン基板を薄化したときの厚さよりも薄くなる。このため、工程9では、工程10において反射層132014を形成した後の平坦化によって光電変換層132-11が薄くなることを考慮して、その分だけシリコン基板に厚みをもたせた状態で薄化してもよい。 In step 10, the surface of the photoelectric conversion layer 132-11 (silicon substrate) of the visible image pickup image sensor substrate 132-1 filled with the low refractive index material for forming the reflective layer 132014 is chemically mechanical polished ( It may be planarized by CMP or the like. In the planarization at this time, the photoelectric conversion layer 132-11 (silicon substrate) is polished including the reflective layer 132014, that is, the photoelectric conversion layer 132-11 is polished by polishing the reflective layer 132014 and the silicon substrate together. The entire surface may be flattened. In this case, the thickness of the photoelectric conversion layer 132-11 (silicon substrate) of the visible image pickup image sensor substrate 132-1 is thinner than the thickness when the silicon substrate is thinned in step 9. For this reason, in the process 9, in view of the fact that the photoelectric conversion layer 132-11 becomes thinner by planarization after forming the reflective layer 132014 in the process 10, the silicon substrate is thinned in a state in which the thickness is increased accordingly. May be
 (工程11)
 図9の(d)に示したように、可視画像撮像用イメージセンサ基板132-1の光電変換層132-11に、オンチップカラーフィルタ層132-6およびマイクロレンズ層132-7と、ワイヤボンディング用パッド132017とを形成する。より具体的には、最初に、可視画像撮像用イメージセンサ基板132-1の受光面にワイヤボンディング用パッド132017を形成する。このワイヤボンディング用パッド132017の形成では、まず、フォトリソグラフィ―とエッチングとによって、光電変換層132-11を貫通して配線層132-12に形成された配線132012まで到達するスルーホールを形成し、化学気相成長(CVD)などによって、配線層132-12に形成された配線132012を引き出すための金属材料を充填したシリコン貫通電極132015を形成する。その後、化学気相成長(CVD)などによって、シリコン貫通電極132015と接続する、つまり、配線層132-12内の配線132012に接続するワイヤボンディング用パッド132017を形成する。続いて、それぞれの光電変換素子132011に対応する位置にオンチップカラーフィルタ13204を配置した、オンチップカラーフィルタ層132-6を形成する。このとき、オンチップカラーフィルタ層132-6で、例えば、ベイヤー配列になるように、オンチップカラーフィルタ13204R、オンチップカラーフィルタ13204G、およびオンチップカラーフィルタ13204Bのそれぞれを形成する。最後に、オンチップカラーフィルタ層132-6のそれぞれのオンチップカラーフィルタ13204に対応する位置にマイクロレンズ13205を配置した、マイクロレンズ層132-7を形成する。
(Step 11)
As shown in (d) of FIG. 9, the on-chip color filter layer 132-6 and the microlens layer 132-7, and the wire bonding are provided on the photoelectric conversion layer 132-11 of the visible image pickup image sensor substrate 132-1. The pad 132017 is formed. More specifically, first, a wire bonding pad 132017 is formed on the light receiving surface of the visible image capturing image sensor substrate 132-1. In the formation of the pad 132017 for wire bonding, first, a through hole which penetrates the photoelectric conversion layer 132-11 and reaches the wiring 132012 formed in the wiring layer 132-12 is formed by photolithography and etching, A silicon through electrode 132015 filled with a metal material for extracting the wiring 132012 formed in the wiring layer 132-12 is formed by chemical vapor deposition (CVD) or the like. Thereafter, a wire bonding pad 132017 is formed by chemical vapor deposition (CVD) or the like, which is connected to the silicon through electrode 132015, that is, connected to the wiring 132012 in the wiring layer 132-12. Subsequently, an on-chip color filter layer 132-6 in which on-chip color filters 13204 are disposed at positions corresponding to the respective photoelectric conversion elements 132011 is formed. At this time, the on-chip color filter 13204R, the on-chip color filter 13204G, and the on-chip color filter 13204B are formed in the on-chip color filter layer 132-6, for example, in a Bayer arrangement. Finally, a microlens layer 132-7 is formed in which the microlenses 13205 are disposed at positions corresponding to the on-chip color filters 13204 of the on-chip color filter layers 132-6.
 このような製造方法(製造工程)によって、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2とを積層した、最終的な積層型イメージセンサ132を製造する。 By such a manufacturing method (manufacturing process), a final laminated type image sensor 132 in which the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2 are laminated is manufactured.
 実施形態によれば、入射した光(可視光および蛍光の内、可視光)を光電変換する第1の光電変換素子(光電変換素子132011)が形成される第1の光電変換層(光電変換層132-11)、および光電変換素子132011に光が入射する側の面とは反対側の面に第1の配線(配線132012)が形成される第1の配線層(配線層132-12)が形成された第1の半導体基板(可視画像撮像用イメージセンサ基板132-1)と、可視画像撮像用イメージセンサ基板132-1に光が入射する側とは反対側の面に積層され、可視画像撮像用イメージセンサ基板132-1を透過した光(蛍光)を光電変換する第2の光電変換素子(光電変換素子132021)が形成される第2の光電変換層(光電変換層132-21)、および第2の配線(配線132022)が形成される第2の配線層(配線層132-22)が形成された第2の半導体基板(蛍光画像撮像用イメージセンサ基板132-2)と、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間に配置される誘電体多層膜フィルタ(誘電体多層膜フィルタ層132-3に形成される誘電体多層膜フィルタ13203)と、光電変換層132-11において、光電変換素子132011の間に形成され、光電変換層132-11よりも光の屈折率が小さい低屈折率材料(例えば、二酸化シリコン(SiO)など)が充填されて形成される反射層(反射層132014)と、配線層132-12において、光電変換素子132011に対応する位置に形成される光透過領域(光を入射させるための開口部の領域)と、を有する、固体撮像装置(積層型イメージセンサ132)が構成される。 According to the embodiment, the first photoelectric conversion layer (photoelectric conversion layer) in which the first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting the incident light (visible light and visible light among the visible light) is formed 132-11) and the first wiring layer (wiring layer 132-12) in which the first wiring (wiring 132012) is formed on the surface opposite to the surface on which light is incident to the photoelectric conversion element 132011). The first semiconductor substrate (visible image pickup image sensor substrate 132-1) formed and the layer on the side opposite to the side where light is incident on the visible image pickup image sensor substrate 132-1 are visible images A second photoelectric conversion layer (photoelectric conversion layer 132-21) in which a second photoelectric conversion element (photoelectric conversion element 132021) for photoelectrically converting light (fluorescent light) transmitted through the imaging image sensor substrate 132-1 is formed; And And a second semiconductor substrate (fluorescent image pickup image sensor substrate 132-2) on which a second wiring layer (wiring layer 132-22) on which the wiring (wiring 132202) is formed is formed, and an image for visible image pickup A dielectric multilayer filter (a dielectric multilayer filter 13203 formed on the dielectric multilayer filter layer 132-3) disposed between the sensor substrate 132-1 and the fluorescence image pickup image sensor substrate 132-2 , in the photoelectric conversion layer 132-11 is formed between the photoelectric conversion elements 132 011, the refractive index of the light is smaller than the photoelectric conversion layer 132-11 low refractive index material (e.g., silicon dioxide (SiO 2), etc.) is filled And the light transmission layer formed at the position corresponding to the photoelectric conversion element 132011 in the reflection layer (reflection layer 132014) formed by A solid-state imaging device (stacked image sensor 132) is configured to have an over area (an area of an opening for light incidence).
 また、実施形態によれば、光透過領域は、配線層132-12よりも光の屈折率が大きい高屈折率材料(例えば、窒化シリコン(Si)など)によって形成されたライトパイプ(ライトパイプ132013)を有する、積層型イメージセンサ132が構成される。 Further, according to the embodiment, the light transmission region is a light pipe (for example, silicon nitride (Si 3 N 4 ) or the like) having a light refractive index larger than that of the wiring layer 132-12 (eg, silicon nitride (Si 3 N 4 )). A stacked image sensor 132 having a light pipe 132013) is configured.
 また、実施形態によれば、可視画像撮像用イメージセンサ基板132-1に形成され、光電変換層132-11を貫通して配線132012と外部との間で信号を導通させるための電極パッド(シリコン貫通電極132015およびワイヤボンディング用パッド132017)と、誘電体多層膜フィルタ13203を貫通し、配線132012と配線132022とを電気的に接続する貫通電極(シリコン貫通電極132023)と、を有する、積層型イメージセンサ132が構成される。 Further, according to the embodiment, an electrode pad (silicon (silicon) which is formed on the visible image pickup image sensor substrate 132-1 and which penetrates the photoelectric conversion layer 132-11 to conduct a signal between the wiring 132012 and the outside. Stacked image having a through electrode 132015 and a wire bonding pad 132017) and a through electrode (silicon through electrode 132023) which penetrates the dielectric multilayer filter 13203 and electrically connects the wiring 132012 and the wiring 132022 The sensor 132 is configured.
 また、実施形態によれば、可視画像撮像用イメージセンサ基板132-1の対応するワイヤボンディング用パッド132017に供給された電源(電源VDD1や電源VDD2)、グラウンド(グラウンドGND1やグラウンドGND2)、およびマスタークロック(マスタークロックMCLK)のいずれかの外部からの信号を、シリコン貫通電極132023を介して配線132022に接続して蛍光画像撮像用イメージセンサ基板132-2に供給する、積層型イメージセンサ132が構成される。 Further, according to the embodiment, the power (power VDD1 or power VDD2), ground (ground GND1 or ground GND2) supplied to the corresponding wire bonding pad 132017 of the visible image capturing image sensor substrate 132-1, and the master A laminated image sensor 132 configured to connect an external signal of one of the clocks (master clock MCLK) to the wiring 132022 via the silicon through electrode 132023 and supply the signal to the fluorescence image pickup image sensor substrate 132-2 Be done.
 また、実施形態によれば、可視画像撮像用イメージセンサ基板132-1および蛍光画像撮像用イメージセンサ基板132-2の少なくとも一方の半導体基板(イメージセンサ基板)に形成され、配線132012または配線132022を介して光電変換素子132011および光電変換素子132021を制御し、光電変換素子132011および光電変換素子132021が光電変換した電気信号(画素信号、画素信号に応じた可視画像撮像信号や蛍光画像撮像信号などの撮像信号、パラレルRAWデータ、シリアルRAWデータなど)を、配線132012または配線132022に出力させる周辺回路(読み出し部1322、垂直走査回路13221、水平走査回路13222、アナログ/デジタル変換部1323、アナログ/デジタル変換回路13230、制御回路1324、クロックジェネレータ13241、タイミングジェネレータ13242、シリアルアクセスメモリ1325、シリアライザ1326)、を有し、可視画像撮像用イメージセンサ基板132-1に形成された周辺回路と、蛍光画像撮像用イメージセンサ基板132-2に形成された周辺回路との内、光電変換素子132011と光電変換素子132021とのそれぞれの制御に必要となる同一の機能を実現する少なくとも1つの周辺回路は、光電変換素子132011と光電変換素子132021との双方に対応するように実現する機能が統合された共通周辺回路(例えば、制御回路1324、クロックジェネレータ13241、タイミングジェネレータ13242、シリアルアクセスメモリ1325、シリアライザ1326)として、可視画像撮像用イメージセンサ基板132-1および蛍光画像撮像用イメージセンサ基板132-2のいずれか一方の半導体基板(イメージセンサ基板)に形成される、積層型イメージセンサ132が構成される。 Further, according to the embodiment, the wiring 132012 or the wiring 132022 is formed on the semiconductor substrate (image sensor substrate) of at least one of the visible image pickup image sensor substrate 132-1 and the fluorescent image pickup image sensor substrate 132-2. Control the photoelectric conversion element 132011 and the photoelectric conversion element 132021 via the photoelectric conversion element 132011 and the photoelectric conversion element 132021 (pixel signal, visible image pickup signal according to pixel signal, fluorescent image pickup signal, etc.) A peripheral circuit (readout unit 1322, vertical scanning circuit 13221, horizontal scanning circuit 13222, analog / digital conversion unit 1323, analog / digital converter, and the like) which outputs an imaging signal, parallel RAW data, serial RAW data, and the like to the wiring 132012 or the wiring 132022 A peripheral circuit formed on a visible image pickup image sensor substrate 132-1 and a fluorescent image, including a digital conversion circuit 13230, a control circuit 1324, a clock generator 13241, a timing generator 13242, a serial access memory 1325, and a serializer 1326). Among the peripheral circuits formed on the imaging image sensor substrate 132-2, at least one peripheral circuit for realizing the same function necessary for controlling each of the photoelectric conversion element 132011 and the photoelectric conversion element 132021 is photoelectric A common peripheral circuit (for example, a control circuit 1324, a clock generator 13241, a timing generator 13242, a serial access memory) in which functions realized to correspond to both the conversion element 132011 and the photoelectric conversion element 132021 are integrated A multilayer image sensor 132 formed on a semiconductor substrate (image sensor substrate) of any one of the visible image capturing image sensor substrate 132-1 and the fluorescent image capturing image sensor substrate 132-2 as the serializer 1326). Is configured.
 また、実施形態によれば、共通周辺回路は、供給されたマスタークロックMCLKに基づいて基準のクロック信号を生成する周辺回路であるクロックジェネレータ(クロックジェネレータ13241、なお、タイミングジェネレータ13242であってもよい)、積層型イメージセンサ132の動作を規定するための設定値(パラメータ)を記憶する周辺回路である記憶装置(シリアルアクセスメモリ1325)、または光電変換素子132011および光電変換素子132021が光電変換した電気信号(特に、パラレルRAWデータ)に応じたシリアルの撮像信号(シリアルRAWデータ)を外部に出力する周辺回路であるシリアライザ(シリアライザ1326)のいずれかの周辺回路である、積層型イメージセンサ132が構成される。 Further, according to the embodiment, the common peripheral circuit may be a clock generator (clock generator 13241 or timing generator 13242) that is a peripheral circuit that generates a reference clock signal based on the supplied master clock MCLK. A storage device (serial access memory 1325) which is a peripheral circuit for storing setting values (parameters) for defining the operation of the stacked image sensor 132, or electricity obtained by photoelectric conversion of the photoelectric conversion element 132011 and the photoelectric conversion element 132021 The layered image sensor 132 is configured as any peripheral circuit of a serializer (serializer 1326) that is a peripheral circuit that outputs a serial imaging signal (serial RAW data) according to a signal (in particular, parallel RAW data) to the outside. And .
 また、実施形態によれば、光電変換素子132011が形成される間隔(画素ピッチ)は、可視画像撮像用イメージセンサ基板132-1に入射されて光電変換層132-11を透過する光(蛍光)に回折の影響が出始める間隔以下(例えば、2um程度よりも狭い間隔)である、積層型イメージセンサ132が構成される。 Further, according to the embodiment, the interval (pixel pitch) at which the photoelectric conversion element 132011 is formed is light (fluorescent light) that is incident on the visible image pickup image sensor substrate 132-1 and transmits the photoelectric conversion layer 132-11. The stacked image sensor 132 is configured to be equal to or less than an interval at which the influence of diffraction starts to appear (for example, an interval smaller than about 2 um).
 また、実施形態によれば、蛍光物質(例えば、インドシアニングリーン誘導体標識抗体(ICG)からなる蛍光物質)を観察する蛍光観察内視鏡装置(蛍光観察内視鏡装置1)であって、可視光、および蛍光物質に照射することで被検査体に蛍光を発光させる励起光(近赤外光)の波長帯域を含む光を被検査体に照射することができる光源装置(光源装置20)と、入射した光(可視光および蛍光の内、可視光)を光電変換する第1の光電変換素子(光電変換素子132011)が形成される第1の光電変換層(光電変換層132-11)、および光電変換素子132011に光が入射する側の面とは反対側の面に第1の配線(配線132012)が形成される第1の配線層(配線層132-12)が形成された第1の半導体基板(可視画像撮像用イメージセンサ基板132-1)と、可視画像撮像用イメージセンサ基板132-1に光が入射する側とは反対側の面に積層され、可視画像撮像用イメージセンサ基板132-1を透過した光(蛍光)を光電変換する第2の光電変換素子(光電変換素子132021)が形成される第2の光電変換層(光電変換層132-21)、および第2の配線(配線132022)が形成される第2の配線層(配線層132-22)が形成された第2の半導体基板(蛍光画像撮像用イメージセンサ基板132-2)と、可視画像撮像用イメージセンサ基板132-1と蛍光画像撮像用イメージセンサ基板132-2との間に配置される誘電体多層膜フィルタ(誘電体多層膜フィルタ層132-3に形成される誘電体多層膜フィルタ13203)と、光電変換層132-11において、光電変換素子132011の間に形成され、光電変換層132-11よりも光の屈折率が小さい低屈折率材料(例えば、二酸化シリコン(SiO)など)が充填されて形成される反射層(反射層132014)と、配線層132-12において、光電変換素子132011に対応する位置に形成される光透過領域(光を入射させるための開口部の領域)と、を有する固体撮像装置(積層型イメージセンサ132)と、を備え、積層型イメージセンサ132は、生体(ICGからなる蛍光物質が投与された検査対象者)の内部に挿入される挿入部(挿入部11)の先端部(挿入部11の先端部に備えた撮像部13)に配置される、蛍光観察内視鏡装置(蛍光観察内視鏡装置1)が構成される。 Further, according to the embodiment, the fluorescence observation endoscope apparatus (fluorescent observation endoscope apparatus 1) for observing a fluorescent substance (for example, a fluorescent substance consisting of indocyanine green derivative labeled antibody (ICG)) is visible A light source device (light source device 20) capable of irradiating the test object with light including a wavelength band of excitation light (near infrared light) that causes the test object to emit fluorescence by irradiating light and fluorescent material A first photoelectric conversion layer (photoelectric conversion layer 132-11) in which a first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting incident light (visible light and visible light among visible light and fluorescence) is formed; And a first wiring layer (wiring layer 132-12) in which a first wiring (wiring 132012) is formed on the surface opposite to the surface on the light incident side to the photoelectric conversion element 132011 Semiconductor substrate (visible image The image sensor substrate 132-1) for an image and the image sensor substrate 132-1 for visible image pickup were laminated on the side opposite to the light incident side, and the image sensor substrate 132-1 for visible image pickup was transmitted. A second photoelectric conversion layer (photoelectric conversion layer 132-21) in which a second photoelectric conversion element (photoelectric conversion element 132021) for photoelectrically converting light (fluorescence) is formed, and a second wiring (wiring 132022) are formed. Semiconductor substrate (fluorescent image pickup image sensor substrate 132-2) on which a second wiring layer (wiring layer 132-22) is formed, a visible image pickup image sensor substrate 132-1, and a fluorescent image A dielectric multilayer filter (a dielectric multilayer filter 13203 formed on a dielectric multilayer filter layer 132-3) disposed between the imaging image sensor substrate 132-2 and In the photoelectric conversion layer 132-11 is formed between the photoelectric conversion elements 132 011, the refractive index of the light is smaller than the photoelectric conversion layer 132-11 low refractive index material (e.g., silicon dioxide (SiO 2), etc.) are filled And a light transmitting region (a region of an opening for light to be incident) formed at a position corresponding to the photoelectric conversion element 132011 in the wiring layer 132-12. A solid-state imaging device (laminated image sensor 132), and the laminated image sensor 132 is an insertion portion (insertion portion 11) inserted into the inside of a living body (a person to be inspected to which a fluorescent substance consisting of ICG is administered). A fluorescence observation endoscope apparatus (fluorescent observation endoscope apparatus 1) is disposed at the distal end portion (imaging unit 13 provided at the distal end portion of the insertion unit 11).
 また、実施形態によれば、入射した光(可視光および蛍光の内、可視光)を光電変換する第1の光電変換素子(光電変換素子132011)が形成される第1の光電変換層(光電変換層132-11)、および光電変換素子132011に光が入射する側の面とは反対側の面に第1の配線(配線132012)が形成される第1の配線層(配線層132-12)が形成された第1の半導体基板(可視画像撮像用イメージセンサ基板132-1)と、可視画像撮像用イメージセンサ基板132-1に光が入射する側とは反対側の面に積層され、可視画像撮像用イメージセンサ基板132-1を透過した光(蛍光)を光電変換する第2の光電変換素子(光電変換素子132021)が形成される第2の光電変換層(光電変換層132-21)、および第2の配線(配線132022)が形成される第2の配線層(配線層132-22)が形成された第2の半導体基板(蛍光画像撮像用イメージセンサ基板132-2)と、を有する固体撮像装置(積層型イメージセンサ132)の製造方法であって、光電変換層132-11において、それぞれの光電変換素子132011の間に、光電変換層132-11の表面から1um以上の深さの窪みを形成した後、形成した窪みに光電変換層132-11よりも光の屈折率が小さい低屈折率材料(例えば、二酸化シリコン(SiO)など)を充填して反射層(反射層132014)を形成する第1の工程(工程10)、を含む、固体撮像装置(積層型イメージセンサ132)の製造方法が構成される。 Further, according to the embodiment, the first photoelectric conversion layer (photoelectric element) in which the first photoelectric conversion element (photoelectric conversion element 132011) for photoelectrically converting the incident light (visible light and visible light among the visible light) is formed. A first wiring layer (wiring layer 132-12) in which a first wiring (wiring 132012) is formed on the conversion layer 132-11) and the surface opposite to the surface on which light is incident on the photoelectric conversion element 132011. And the first semiconductor substrate (visible image imaging image sensor substrate 132-1) on which the light is formed and the surface on the opposite side to the side where light is incident on the visible image imaging image substrate 132-1 Second photoelectric conversion layer (photoelectric conversion layer 132-21) in which a second photoelectric conversion element (photoelectric conversion element 132021) for photoelectrically converting light (fluorescent light) transmitted through the visible image pickup image sensor substrate 132-1 is formed ), And a second semiconductor substrate (fluorescent image pickup image sensor substrate 132-2) on which a second wiring layer (wiring layer 132-22) on which the second wiring (wiring 132202) is formed is formed. A method of manufacturing a solid-state imaging device (laminated image sensor 132), wherein the photoelectric conversion layer 132-11 has a depth of 1 um or more from the surface of the photoelectric conversion layer 132-11 between the photoelectric conversion elements 132011. After forming the recess, the formed recess is filled with a low refractive index material (for example, silicon dioxide (SiO 2 ) or the like) having a smaller refractive index of light than the photoelectric conversion layer 132-11, and a reflective layer (reflective layer 132014) A manufacturing method of a solid-state imaging device (stacked image sensor 132) including the first step (step 10) of forming
 また、実施形態によれば、少なくとも工程10の前に、配線層132-12において、光電変換素子132011に対応する位置に光透過領域(光を入射させるための開口部の領域)を形成する第2の工程(工程1)と、可視画像撮像用イメージセンサ基板132-1に光が入射する側とは反対側の面に配線132012を引き出す裏面電極(裏面電極132016)を形成して平坦化した第1の接合面(接合面JS-1)を形成する第3の工程(工程2)と、蛍光画像撮像用イメージセンサ基板132-2に光が入射する側の面に誘電体多層膜フィルタ(誘電体多層膜フィルタ層132-3に形成される誘電体多層膜フィルタ13203)を形成する第4の工程(工程3)と、誘電体多層膜フィルタ13203に光が入射する側の面に、誘電体多層膜フィルタ13203を形成する誘電体のそれぞれの層(二酸化シリコン(SiO)薄膜層132031や酸化チタン(TiO)薄膜層132032)の厚さよりも厚い保護膜(保護膜132-4)を形成する第5の工程(工程4)と、保護膜132-4および誘電体多層膜フィルタ13203を貫通し、保護膜132-4に光が入射する側の面に配線132022を引き出す貫通電極(シリコン貫通電極132023)を形成する第6の工程(工程5および工程6)と、保護膜132-4に光が入射する側の面において、形成したシリコン貫通電極132023と保護膜132-4とを一緒に平坦化した第2の接合面(接合面JS-2)を形成する第7の工程(工程7)と、接合面JS-1と接合面JS-2とを対向させて(接合面JSで)接合し、対応する裏面電極132016とシリコン貫通電極132023とを物理的かつ電気的に接続する第8の工程(工程8)と、を含む、積層型イメージセンサ132の製造方法が構成される。 Further, according to the embodiment, at least before Step 10, in the wiring layer 132-12, a light transmission region (a region of an opening for light to be incident) is formed at a position corresponding to the photoelectric conversion element 132011. The back surface electrode (back surface electrode 132016) for extracting the wiring 132012 is formed and planarized on the surface opposite to the light incident side on the step 2 (step 1) and the image sensor substrate 132-1 for visible image capturing. In the third step (step 2) of forming the first bonding surface (bonding surface JS-1) and the dielectric multilayer film filter (surface on the side where light is incident on the fluorescent image pickup image sensor substrate 132-2 The fourth step (step 3) of forming the dielectric multilayer filter 13203) formed in the dielectric multilayer filter layer 132-3 and the surface on the side where light is incident on the dielectric multilayer filter 13203 Body multilayer film each layer (silicon dioxide (SiO 2) thin film layer 132,031 or titanium oxide (TiO 2) film layers 132,032) of the dielectric forming the filter 13203 thick protective film than the thickness of the (protective film 132-4) A fifth step (step 4) of forming, a penetrating electrode (silicon) which penetrates the protective film 132-4 and the dielectric multilayer filter 13203 and draws the wiring 132022 on the surface on the side where light is incident on the protective film 132-4. In the sixth step (steps 5 and 6) of forming the through electrode 132023) and the surface on the light incident side of the protective film 132-4, the formed silicon through electrode 132023 and the protective film 132-4 are together The seventh step (step 7) of forming the second bonding surface (bonding surface JS-2) planarized to the second bonding surface, the bonding surface JS-1 and the bonding surface JS-2 facing each other An eighth step (step 8) of bonding the corresponding back surface electrode 132016 and the silicon through electrode 132023 at the bonding surface JS) and physically and electrically connecting the corresponding back surface electrode 132016 to the silicon through electrode 132023; Configured
 上記に述べたように、本発明の実施形態によれば、蛍光観察内視鏡装置に備える固体撮像装置は、可視領域の光(可視光)を露光(検出)する可視画像撮像用イメージセンサと、赤外領域の光(近赤外光)を露光(検出)する蛍光画像撮像用イメージセンサとを、層間フィルタを挟んで積層する。そして、本発明の実施形態では、蛍光観察内視鏡装置に備える光源装置において、可視光の波長帯域の白色光と励起光の波長帯域の白色光とを、照明光として被検査体に照射する。これにより、本発明の実施形態では、蛍光観察内視鏡装置において、可視光を露光した可視画像撮像信号と、被検査体に投与したICGなどの誘導体標識抗体(蛍光薬剤:蛍光物質)が励起して蛍光発光した赤外領域の光(近赤外光)である蛍光を露光した蛍光画像撮像信号とを同時期に得ることができる。 As described above, according to the embodiment of the present invention, the solid-state imaging device provided in the fluorescence observation endoscope apparatus includes a visible image capturing image sensor that exposes (detects) light (visible light) in a visible region. And an image sensor for imaging a fluorescence image that exposes (detects) light in the infrared region (near infrared light), with an interlayer filter interposed therebetween. Then, in the embodiment of the present invention, in the light source apparatus provided in the fluorescence observation endoscope apparatus, the white light in the wavelength band of visible light and the white light in the wavelength band of excitation light are irradiated as illumination light to the object to be inspected. . Thereby, in the embodiment of the present invention, in the fluorescence observation endoscope apparatus, a visible image pickup signal in which visible light is exposed, and a derivative-labeled antibody (fluorescent drug: fluorescent substance) such as ICG administered to a subject are excited. Then, it is possible to simultaneously obtain a fluorescence image pickup signal in which fluorescence that is light in the infrared region (near infrared light) that has been fluorescence-emitted is exposed.
 また、本発明の実施形態では、固体撮像装置を構成する可視画像撮像用イメージセンサと蛍光画像撮像用イメージセンサとに備える構成要素において共通化することができる構成要素を、いずれかのイメージセンサに1つのみ備える。そして、本発明の実施形態では、固体撮像装置において、外部との間で信号の入出力を行うための端子としての電極パッド(入出力パッド)を共通化して可視画像撮像用イメージセンサのみに配置(形成)して数を少なくする。これにより、本発明の実施形態では、固体撮像装置の実装面積を小さくすることができる。 Further, in the embodiment of the present invention, any component that can be common to components provided in the visible image capturing image sensor and the fluorescent image capturing image sensor that constitute the solid-state imaging device is one of the image sensors. Have only one. In the embodiment of the present invention, in the solid-state imaging device, the electrode pad (input / output pad) as a terminal for inputting / outputting a signal to / from the outside is shared and disposed only in the visible image pickup image sensor (Form) to reduce the number. Accordingly, in the embodiment of the present invention, the mounting area of the solid-state imaging device can be reduced.
 また、本発明の実施形態では、固体撮像装置を構成する可視画像撮像用イメージセンサにおいて、それぞれの画素を構成する光電変換素子の間に、反射層を形成する。より具体的には、可視画像撮像用イメージセンサの画素を構成する光電変換素子を形成する光電変換層において、それぞれの光電変換素子の間に反射層を形成する。これにより、本発明の実施形態では、固体撮像装置において、可視画像撮像用イメージセンサを透過して蛍光画像撮像用イメージセンサに入射される赤外領域の光(近赤外光)である蛍光が光電変換層内で回折限界を超えて拡散してしまうような狭い間隔でそれぞれの画素を配置した場合(画素ピッチを狭くした場合)でも、反射層の反射によって効率的に近赤外光を蛍光画像撮像用イメージセンサに導く(入射させる)ことができる。このことにより、本発明の実施形態では、固体撮像装置において、蛍光の光量の減少が抑えられ、蛍光観察内視鏡装置において、蛍光画像撮像信号に基づいて生成する蛍光の画像の画質や解像度の低下を抑えることができる。 Further, in the embodiment of the present invention, in the visible image pickup image sensor constituting the solid-state imaging device, the reflection layer is formed between the photoelectric conversion elements constituting the respective pixels. More specifically, in the photoelectric conversion layer forming the photoelectric conversion element constituting the pixel of the visible image pickup image sensor, the reflection layer is formed between each photoelectric conversion element. Thus, in the embodiment of the present invention, in the solid-state imaging device, fluorescence that is light in the infrared region (near infrared light) transmitted through the visible image pickup image sensor and incident on the fluorescent image pickup image sensor Even when each pixel is arranged in a narrow interval that diffuses beyond the diffraction limit in the photoelectric conversion layer (when the pixel pitch is narrowed), the near infrared light is efficiently fluorescently reflected by the reflection of the reflective layer. It can be introduced (entered) to the image sensor for image pickup. As a result, in the embodiment of the present invention, in the solid-state imaging device, the decrease in the light amount of the fluorescence is suppressed, and in the fluorescence observation endoscope device, the image quality and resolution of the fluorescence image generated based on the fluorescence imaging signal It is possible to suppress the decline.
 これらのことにより、本発明の実施形態では、固体撮像装置において、可視画像撮像用イメージセンサを透過する蛍光に回折の影響が大きく出てしまうような画素ピッチでの画素の配置(形成)と、電極パッド(入出力パッド)の可視画像撮像用イメージセンサのみへの配置とを両立することによって、固体撮像装置の小型化を実現することができる。このことにより、本発明の実施形態では、蛍光観察内視鏡装置において、先端部を湾曲させて広範囲の観察を行う機能と、可視光の撮像と蛍光の撮像とを同時期に行う機能との両立を、容易に実現することができる。 As a result, in the embodiment of the present invention, in the solid-state imaging device, the arrangement (formation) of pixels at a pixel pitch at which the influence of diffraction largely appears on the fluorescence transmitted through the visible image pickup image sensor; The miniaturization of the solid-state imaging device can be realized by making the arrangement of the electrode pad (input / output pad) only on the visible image pickup image sensor compatible with each other. By this, in the embodiment of the present invention, in the fluorescence observation endoscope apparatus, the tip portion is curved to perform wide-range observation, and the function to perform imaging of visible light and imaging of fluorescence at the same time. Coexistence can be easily realized.
 なお、本発明の実施形態では、本発明の固体撮像装置(実施形態においては、積層型イメージセンサ132)が出力する撮像信号が、画素部内のそれぞれの画素が光電変換した信号電荷に応じた画素信号、つまり、RAWデータである場合を示した。しかし、本発明の固体撮像装置が出力する撮像信号の形式は、本発明の実施形態において示したRAWデータに限定されるものではない。例えば、積層型イメージセンサ132が撮像信号線61によって伝送する撮像信号のデータ量を削減するため、可視画像撮像用イメージセンサに配置されたR画素1320R、G画素1320G、およびB画素1320Bのそれぞれの画素信号に対してYC処理を行って、例えば、YCbCr信号、YUV信号などの、いわゆる、輝度色差信号に変換して出力してもよい。この場合、可視画像撮像用イメージセンサは、アナログ/デジタル変換部1323が出力したデジタル値の画素信号をデジタル値の輝度色差信号に変換した後、シリアライザ1326がパラレル/シリアル変換したシリアルの輝度色差信号を、可視画像撮像信号として外部に出力する構成が考えられる。また、この場合、外部処理部30は、デシリアライザ32がシリアルの輝度色差信号を元のパラレルの輝度色差信号に復元した後、画像処理部33のデモザイキング処理によってR画素、G画素、またはB画素のいずれかの画素の画素信号のみからなるそれぞれの画像データを生成する構成が考えられる。 In the embodiment of the present invention, the image pickup signal output from the solid-state image pickup device (in the embodiment, the laminated image sensor 132) of the present invention corresponds to a signal charge generated by photoelectric conversion of each pixel in the pixel portion. It shows the case of a signal, that is, RAW data. However, the format of the imaging signal output by the solid-state imaging device of the present invention is not limited to the RAW data shown in the embodiment of the present invention. For example, in order to reduce the data amount of the imaging signal transmitted by the laminated image sensor 132 through the imaging signal line 61, each of the R pixel 1320R, the G pixel 1320G, and the B pixel 1320B disposed in the visible image capturing image sensor For example, YC processing may be performed on the pixel signal, and the pixel signal may be converted into a so-called luminance color difference signal such as a YCbCr signal or a YUV signal, and output. In this case, the visible image pickup image sensor converts the pixel signal of the digital value output from the analog / digital conversion unit 1323 into a luminance color difference signal of the digital value, and then converts the serial luminance color difference signal parallel / serial converted by the serializer 1326 Can be output to the outside as a visible image pickup signal. Also, in this case, after the deserializer 32 restores the serial luminance chrominance signal to the original parallel luminance chrominance signal, the external processing unit 30 performs demosaicing processing of the image processing unit 33 for R pixel, G pixel, or B pixel. A configuration may be considered in which respective image data consisting only of pixel signals of any of the pixels in FIG.
 なお、本発明の実施形態では、本発明の蛍光観察内視鏡装置を構成する光源装置が、白色光源とダイクロックミラーとの組によって、予め定めた波長帯域の光を発光する構成を示した。しかし、光源装置の構成は、本発明の実施形態において示した構成に限定されるものではない。例えば、白色光源とダイクロックミラーとの組の代わりに、予め定めた波長帯域の光を発光する光源を備え、それぞれの光源が発光した光を、光照射レンズが集光して出射する構成にしてもよい。この場合、光源装置は、例えば、青色(B)から赤色(R)までの波長帯域の光(例えば、400nm~700nmの波長帯域の可視光)を発光する白色光源と、励起光の波長帯域の光(例えば、700nm~800nmの波長帯域の近赤外光)を発光する赤外光源と、のそれぞれを備える構成が考えられる。 In the embodiment of the present invention, the light source device constituting the fluorescence observation endoscope apparatus of the present invention has a configuration in which light of a predetermined wavelength band is emitted by a combination of a white light source and a dichroic mirror. . However, the configuration of the light source device is not limited to the configuration shown in the embodiment of the present invention. For example, instead of a combination of a white light source and a dichroic mirror, a light source that emits light in a predetermined wavelength band is provided, and the light emitted by each light source is collected and emitted by a light irradiation lens. May be In this case, the light source device includes, for example, a white light source that emits light in a wavelength band from blue (B) to red (R) (for example, visible light in a wavelength band of 400 nm to 700 nm); An infrared light source that emits light (for example, near infrared light in a wavelength band of 700 nm to 800 nm) can be considered.
 なお、本発明の実施形態では、本発明の固体撮像装置が、本発明の蛍光観察内視鏡装置に搭載される場合について説明した。しかし、本発明の固体撮像装置が搭載される装置は、実施形態において示した蛍光観察内視鏡装置に限定されるものではない。例えば、本発明の固体撮像装置を、顕微鏡装置に搭載することもできる。 In the embodiment of the present invention, the case where the solid-state imaging device of the present invention is mounted on the fluorescence observation endoscope apparatus of the present invention has been described. However, the apparatus on which the solid-state imaging device of the present invention is mounted is not limited to the fluorescence observation endoscope apparatus shown in the embodiment. For example, the solid-state imaging device of the present invention can be mounted on a microscope device.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更をすることができる。
 また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments and their modifications. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Also, the present invention is not limited by the above description, and is limited only by the scope of the attached claims.
 上記実施形態によれば、光電変換部が形成された複数の半導体基板を積層し、可視光と蛍光物質が励起した蛍光とを同時に撮像する構成の固体撮像装置において、蛍光を撮像した画像における画質の低下を抑えると共に、小型化を実現することができる固体撮像装置、この固体撮像装置を用いた蛍光観察内視鏡装置、およびこの固体撮像装置の製造方法を提供することができる。 According to the above embodiment, in the solid-state imaging device configured to stack a plurality of semiconductor substrates on which the photoelectric conversion units are formed and simultaneously image visible light and fluorescence excited by the fluorescent substance, the image quality of the image obtained by imaging fluorescence It is possible to provide a solid-state imaging device capable of achieving downsizing while suppressing a drop in the size, a fluorescence observation endoscope apparatus using the solid-state imaging device, and a method of manufacturing the solid-state imaging device.
 1 蛍光観察内視鏡装置
 10 内視鏡スコープ部
 11 挿入部(挿入部)
 12 操作部
 13 撮像部(蛍光観察内視鏡装置,挿入部,先端部)
 130 撮像レンズ
 131 励起光カットフィルタ
 132 積層型イメージセンサ(蛍光観察内視鏡装置,固体撮像装置,第1の半導体基板,第2の半導体基板)
 1320 画素(固体撮像装置,第1の光電変換素子,第2の光電変換素子)
 1320R R画素(固体撮像装置,第1の半導体基板,第1の光電変換素子)
 1320G G画素(固体撮像装置,第1の半導体基板,第1の光電変換素子)
 1320B B画素(固体撮像装置,第1の半導体基板,第1の光電変換素子)
 1320IR 蛍光画素(固体撮像装置,第2の半導体基板,第2の光電変換素子)
 1321 画素部(固体撮像装置,第1の光電変換素子,第2の光電変換素子)
 1322 読み出し部(固体撮像装置,周辺回路)
 13221 垂直走査回路(固体撮像装置,周辺回路)
 13222 水平走査回路(固体撮像装置,周辺回路)
 1323 アナログ/デジタル変換部(固体撮像装置,周辺回路)
 13230 アナログ/デジタル変換回路(固体撮像装置,周辺回路)
 1324 制御回路(固体撮像装置,周辺回路,共通周辺回路)
 13241 クロックジェネレータ(固体撮像装置,周辺回路,共通周辺回路)
 13242 タイミングジェネレータ(固体撮像装置,周辺回路,共通周辺回路)
 1325 シリアルアクセスメモリ(固体撮像装置,周辺回路,共通周辺回路)
 1326 シリアライザ(固体撮像装置,周辺回路,共通周辺回路)
 1327 垂直信号線(固体撮像装置,第1の配線,第2の配線)
 1328 水平信号線(固体撮像装置,第1の配線,第2の配線)
 132-1 可視画像撮像用イメージセンサ基板(固体撮像装置,第1の半導体基板)
 132-11 光電変換層(固体撮像装置,第1の半導体基板,第1の光電変換層)
 132-12 配線層(固体撮像装置,第1の半導体基板,第1の配線層)
 132011 光電変換素子(固体撮像装置,第1の半導体基板,第1の光電変換層,第1の光電変換素子)
 132012 配線(固体撮像装置,第1の半導体基板,第1の配線層,第1の配線)
 132013 ライトパイプ(固体撮像装置,第1の半導体基板,第1の光電変換層,光透過領域,ライトパイプ)
 132014 反射層(固体撮像装置,第1の半導体基板,第1の光電変換層,反射層)
 132016 裏面電極(固体撮像装置,第1の半導体基板,裏面電極)
 132015 シリコン貫通電極(固体撮像装置,第1の半導体基板,電極パッド)
 132017 ワイヤボンディング用パッド(固体撮像装置,第1の半導体基板,電極パッド)
 132-2 蛍光画像撮像用イメージセンサ基板(固体撮像装置,第2の半導体基板)
 132-21 光電変換層(固体撮像装置,第2の半導体基板,第2の光電変換層)
 132-22 配線層(固体撮像装置,第2の半導体基板,第2の配線層)
 132021 光電変換素子(固体撮像装置,第2の半導体基板,第2の光電変換層,第2の光電変換素子)
 132022 配線(固体撮像装置,第2の半導体基板,第2の配線層,第2の配線)
 132023 シリコン貫通電極(固体撮像装置,第2の半導体基板,貫通電極)
 132023a スルーホール
 132-3 誘電体多層膜フィルタ層(固体撮像装置,誘電体多層膜フィルタ)
 13203 誘電体多層膜フィルタ(固体撮像装置,誘電体多層膜フィルタ)
 132031 二酸化シリコン薄膜層(固体撮像装置,誘電体多層膜フィルタ)
 132032 酸化チタン薄膜層(固体撮像装置,誘電体多層膜フィルタ)
 132-4 保護膜(固体撮像装置,保護膜)
 132-5 支持基板(固体撮像装置)
 132-6 オンチップカラーフィルタ層(固体撮像装置)
 13204 オンチップカラーフィルタ(固体撮像装置)
 13204R オンチップカラーフィルタ(固体撮像装置)
 13204G オンチップカラーフィルタ(固体撮像装置)
 13204B オンチップカラーフィルタ(固体撮像装置)
 132-7 マイクロレンズ層(固体撮像装置)
 13205 マイクロレンズ(固体撮像装置)
 1321-1 画素部(固体撮像装置,第1の光電変換素子)
 13221-1 垂直走査回路(固体撮像装置,第1の半導体基板,周辺回路)
 13222-1 水平走査回路(固体撮像装置,第1の半導体基板,周辺回路)
 1321-2 画素部(固体撮像装置,第2の光電変換素子)
 13221-2 垂直走査回路(固体撮像装置,第2の半導体基板,周辺回路)
 13222-2 水平走査回路(固体撮像装置,第2の半導体基板,周辺回路)
 JS 接合面(固体撮像装置,第1の半導体基板,第2の半導体基板)
 JS-1 接合面(固体撮像装置,第1の半導体基板,第1の接合面)
 JS-2 接合面(固体撮像装置,第2の半導体基板,第2の接合面)
 14 撮影制御スイッチ
 20 光源装置(蛍光観察内視鏡装置,光源装置)
 21 設定部(蛍光観察内視鏡装置,光源装置)
 220,221,222 白色光源(蛍光観察内視鏡装置,光源装置)
 231,232 ダイクロックミラー(蛍光観察内視鏡装置,光源装置)
 24 光照射レンズ(蛍光観察内視鏡装置,光源装置)
 30 外部処理部
 31 制御部
 32 デシリアライザ
 33 画像処理部
 34 デジタル/アナログ変換部
 40 カラーモニタ
 50 光信号ケーブル
 51 ライトガイド
 60 電気信号ケーブル
 61 撮像信号線
 900 腹部
 901 被検査体
 930 固体撮像装置
 931 第1の基板
 931-1 光電変換層
 931-2 配線層
 932 第2の基板
 932-1 光電変換層
 932-2 配線層
 933 接合層
 934 オンチップカラーフィルタ層
 935 マイクロレンズ層
 936 支持基板
1 Fluorescent Observation Endoscope Device 10 Endoscope Section 11 Insertion Part (Insertion Part)
12 operation unit 13 imaging unit (fluorescent observation endoscope apparatus, insertion unit, distal end)
130 Imaging lens 131 Excitation light cut filter 132 Stacked type image sensor (Fluorescent observation endoscope apparatus, solid-state imaging device, first semiconductor substrate, second semiconductor substrate)
1320 pixels (solid-state imaging device, first photoelectric conversion element, second photoelectric conversion element)
1320R R pixel (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element)
1320 G G pixels (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element)
1320B B pixel (solid-state imaging device, first semiconductor substrate, first photoelectric conversion element)
1320IR Fluorescent pixel (Solid-state imaging device, second semiconductor substrate, second photoelectric conversion element)
1321 Pixel area (solid-state imaging device, first photoelectric conversion element, second photoelectric conversion element)
1322 Readout unit (solid-state imaging device, peripheral circuit)
13221 Vertical scanning circuit (solid-state imaging device, peripheral circuit)
13222 Horizontal scanning circuit (solid-state imaging device, peripheral circuit)
1323 Analog / Digital Converter (Solid-state Imaging Device, Peripheral Circuit)
13230 Analog to Digital Converter (Solid-state Imaging Device, Peripheral Circuit)
1324 Control circuit (solid-state imaging device, peripheral circuit, common peripheral circuit)
13241 Clock generator (solid-state imaging device, peripheral circuit, common peripheral circuit)
13242 Timing generator (solid-state imaging device, peripheral circuit, common peripheral circuit)
1325 Serial Access Memory (Solid-state Imaging Device, Peripheral Circuit, Common Peripheral Circuit)
1326 Serializer (Solid-state Imaging Device, Peripheral Circuit, Common Peripheral Circuit)
1327 Vertical signal line (solid-state imaging device, first wiring, second wiring)
1328 Horizontal signal line (solid-state imaging device, first wiring, second wiring)
132-1 Image Sensor Substrate for Visible Image Capture (Solid-state Imaging Device, First Semiconductor Substrate)
132-11 Photoelectric Conversion Layer (Solid-state Imaging Device, First Semiconductor Substrate, First Photoelectric Conversion Layer)
132-12 Wiring Layer (Solid-state Imaging Device, First Semiconductor Substrate, First Wiring Layer)
132011 Photoelectric conversion device (solid-state imaging device, first semiconductor substrate, first photoelectric conversion layer, first photoelectric conversion device)
132012 Wiring (solid-state imaging device, first semiconductor substrate, first wiring layer, first wiring)
132013 Light pipe (solid-state imaging device, first semiconductor substrate, first photoelectric conversion layer, light transmission area, light pipe)
132014 Reflective layer (solid-state imaging device, first semiconductor substrate, first photoelectric conversion layer, reflective layer)
132016 Back electrode (solid-state image sensor, first semiconductor substrate, back electrode)
132015 Silicon penetration electrode (solid-state image sensor, first semiconductor substrate, electrode pad)
132017 Pads for wire bonding (solid-state imaging device, first semiconductor substrate, electrode pad)
132-2 Image Sensor Substrate for Fluorescent Imaging (Solid-state Imaging Device, Second Semiconductor Substrate)
132-21 Photoelectric Conversion Layer (Solid-state Imaging Device, Second Semiconductor Substrate, Second Photoelectric Conversion Layer)
132-22 Wiring Layer (Solid-state Imaging Device, Second Semiconductor Substrate, Second Wiring Layer)
132021 Photoelectric conversion device (solid-state imaging device, second semiconductor substrate, second photoelectric conversion layer, second photoelectric conversion device)
132022 Wiring (solid-state imaging device, second semiconductor substrate, second wiring layer, second wiring)
132023 Silicon penetration electrode (solid-state imaging device, second semiconductor substrate, penetration electrode)
132023a Through Hole 132-3 Dielectric Multilayer Filter Layer (Solid-state Imaging Device, Dielectric Multilayer Filter)
13203 Dielectric Multilayer Filter (Solid-state Imaging Device, Dielectric Multilayer Filter)
132031 Silicon dioxide thin film layer (solid-state imaging device, dielectric multilayer film filter)
132032 Titanium oxide thin film layer (solid-state imaging device, dielectric multilayer film filter)
132-4 Protective film (solid-state image sensor, protective film)
132-5 Support Substrate (Solid-state Imaging Device)
132-6 On-chip color filter layer (solid-state imaging device)
13204 On-chip color filter (solid-state imaging device)
13204R On-chip color filter (solid-state imaging device)
13204G On-chip color filter (solid-state imaging device)
13204B On-chip color filter (solid-state imaging device)
132-7 Microlens Layer (Solid-state Imaging Device)
13205 Micro lens (solid-state imaging device)
1321-1 Pixel part (solid-state imaging device, first photoelectric conversion element)
13221-1 Vertical scanning circuit (solid-state imaging device, first semiconductor substrate, peripheral circuit)
13222-1 Horizontal scanning circuit (solid-state imaging device, first semiconductor substrate, peripheral circuit)
1321-2 Pixel area (solid-state imaging device, second photoelectric conversion element)
13221-2 Vertical scanning circuit (solid-state imaging device, second semiconductor substrate, peripheral circuit)
132222-2 Horizontal scanning circuit (solid-state imaging device, second semiconductor substrate, peripheral circuit)
JS bonding surface (solid-state imaging device, first semiconductor substrate, second semiconductor substrate)
JS-1 Bonding surface (solid-state imaging device, first semiconductor substrate, first bonding surface)
JS-2 Bonding surface (solid-state imaging device, second semiconductor substrate, second bonding surface)
14 Shooting control switch 20 Light source device (Fluorescent observation endoscope device, light source device)
21 Setting unit (Fluorescent observation endoscope device, light source device)
220, 221, 222 White Light Source (Fluorescent Observation Endoscope, Light Source)
231, 232 dichroic mirror (fluorescence observation endoscope apparatus, light source apparatus)
24 Light Irradiation Lens (Fluorescent Observation Endoscope, Light Source)
Reference Signs List 30 external processing unit 31 control unit 32 deserializer 33 image processing unit 34 digital / analog conversion unit 40 color monitor 50 light signal cable 51 light guide 60 electric signal cable 61 imaging signal line 900 abdomen 901 inspection object 930 solid-state imaging device 931 first Substrate 931-1 photoelectric conversion layer 931-2 wiring layer 932 second substrate 932-1 photoelectric conversion layer 932-2 wiring layer 933 bonding layer 934 on-chip color filter layer 935 microlens layer 936 support substrate

Claims (10)

  1.  入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、
     前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、
     前記第1の半導体基板と前記第2の半導体基板との間に配置される誘電体多層膜フィルタと、
     前記第1の光電変換層において、前記第1の光電変換素子の間に形成され、前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料が充填されて形成される反射層と、
     前記第1の配線層において、前記第1の光電変換素子に対応する位置に形成される光透過領域と、
     を有する、
     固体撮像装置。
    A first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed, and a surface on the side opposite to the surface on which light is incident to the first photoelectric conversion element is a first A first semiconductor substrate on which a first wiring layer in which a wiring is formed is formed;
    A second photoelectric conversion element is formed on a surface opposite to the light incident side of the first semiconductor substrate, and a second photoelectric conversion element is formed to photoelectrically convert the light transmitted through the first semiconductor substrate. A second semiconductor substrate on which a conversion layer and a second wiring layer in which a second wiring is formed are formed;
    A dielectric multilayer filter disposed between the first semiconductor substrate and the second semiconductor substrate;
    A reflective layer formed between the first photoelectric conversion elements in the first photoelectric conversion layer and filled with a low refractive index material having a smaller refractive index of light than the first photoelectric conversion layer When,
    A light transmission region formed at a position corresponding to the first photoelectric conversion element in the first wiring layer;
    Have
    Solid-state imaging device.
  2.  前記光透過領域は、
     前記第1の配線層よりも光の屈折率が大きい高屈折率材料によって形成されたライトパイプを有する、
     請求項1に記載の固体撮像装置。
    The light transmission area is
    It has a light pipe formed of a high refractive index material having a light refractive index larger than that of the first wiring layer,
    The solid-state imaging device according to claim 1.
  3.  前記第1の半導体基板に形成され、前記第1の光電変換層を貫通して前記第1の配線と外部との間で信号を導通させるための電極パッドと、
     前記誘電体多層膜フィルタを貫通し、前記第1の配線と前記第2の配線とを電気的に接続する貫通電極と、
     を有する、
     請求項1に記載の固体撮像装置。
    An electrode pad formed on the first semiconductor substrate and penetrating the first photoelectric conversion layer to conduct a signal between the first wiring and the outside;
    A penetrating electrode which penetrates the dielectric multilayer filter and electrically connects the first wiring and the second wiring;
    Have
    The solid-state imaging device according to claim 1.
  4.  前記第1の半導体基板の対応する前記電極パッドに供給された電源、グラウンド、およびマスタークロックのいずれかの外部からの信号を、前記貫通電極を介して前記第2の配線に接続して前記第2の半導体基板に供給する、
     請求項3に記載の固体撮像装置。
    An external signal supplied from any one of a power supply, a ground, and a master clock supplied to the corresponding electrode pad of the first semiconductor substrate is connected to the second wiring through the through electrode, Supply to 2 semiconductor substrates,
    The solid-state imaging device according to claim 3.
  5.  前記第1の半導体基板および前記第2の半導体基板の少なくとも一方の半導体基板に形成され、前記第1の配線または前記第2の配線を介して前記第1の光電変換素子および前記第2の光電変換素子を制御し、前記第1の光電変換素子および前記第2の光電変換素子が光電変換した電気信号を、前記第1の配線または前記第2の配線に出力させる周辺回路、
     を有し、
     前記第1の半導体基板に形成された前記周辺回路と、前記第2の半導体基板に形成された前記周辺回路との内、前記第1の光電変換素子と前記第2の光電変換素子とのそれぞれの制御に必要となる同一の機能を実現する少なくとも1つの周辺回路は、前記第1の光電変換素子と前記第2の光電変換素子との双方に対応するように実現する機能が統合された共通周辺回路として、前記第1の半導体基板および第2の半導体基板のいずれか一方の半導体基板に形成される、
     請求項3または請求項4に記載の固体撮像装置。
    The first photoelectric conversion element and the second photoelectric conversion element are formed on a semiconductor substrate of at least one of the first semiconductor substrate and the second semiconductor substrate, via the first wiring or the second wiring. A peripheral circuit that controls a conversion element and outputs an electric signal photoelectrically converted by the first photoelectric conversion element and the second photoelectric conversion element to the first wiring or the second wiring.
    Have
    Among the peripheral circuit formed on the first semiconductor substrate and the peripheral circuit formed on the second semiconductor substrate, each of the first photoelectric conversion element and the second photoelectric conversion element A common function in which at least one peripheral circuit for realizing the same function necessary for control of the functions is integrated so as to correspond to both of the first photoelectric conversion element and the second photoelectric conversion element The peripheral circuit is formed on one of the first semiconductor substrate and the second semiconductor substrate.
    The solid-state imaging device according to claim 3 or 4.
  6.  前記共通周辺回路は、
     供給されたマスタークロックに基づいて基準のクロック信号を生成する前記周辺回路であるクロックジェネレータ、当該固体撮像装置の動作を規定するための設定値を記憶する前記周辺回路である記憶装置、または前記第1の光電変換素子および前記第2の光電変換素子が光電変換した電気信号に応じたシリアルの撮像信号を外部に出力する前記周辺回路であるシリアライザのいずれかの前記周辺回路である、
     請求項5に記載の固体撮像装置。
    The common peripheral circuit is
    A clock generator that is the peripheral circuit that generates a reference clock signal based on a supplied master clock; a storage device that is the peripheral circuit that stores a setting value for defining the operation of the solid-state imaging device; The peripheral circuit according to any one of the peripheral circuits according to the first aspect of the present invention, wherein the first photoelectric conversion element and a serial imaging signal corresponding to an electrical signal obtained by photoelectric conversion of the second photoelectric conversion element are output to the outside.
    The solid-state imaging device according to claim 5.
  7.  前記第1の光電変換素子が形成される間隔は、
     前記第1の半導体基板に入射されて前記第1の光電変換層を透過する光に回折の影響が出始める間隔以下である、
     請求項1に記載の固体撮像装置。
    The interval at which the first photoelectric conversion element is formed is
    It is equal to or less than the interval at which the influence of diffraction starts to appear on the light incident on the first semiconductor substrate and transmitted through the first photoelectric conversion layer
    The solid-state imaging device according to claim 1.
  8.  蛍光物質を観察する蛍光観察内視鏡装置であって、
     可視光、および前記蛍光物質に照射することで被検査体に蛍光を発光させる励起光の波長帯域を含む光を前記被検査体に照射することができる光源装置と、
     入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、前記第1の半導体基板と前記第2の半導体基板との間に配置される誘電体多層膜フィルタと、前記第1の光電変換層において、前記第1の光電変換素子の間に形成され、前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料が充填されて形成される反射層と、前記第1の配線層において、前記第1の光電変換素子に対応する位置に形成される光透過領域と、を有する固体撮像装置と、
     を備え、
     前記固体撮像装置は、
     生体の内部に挿入される挿入部の先端部に配置される、
     蛍光観察内視鏡装置。
    A fluorescence observation endoscope apparatus for observing a fluorescent substance, comprising:
    A light source device capable of irradiating the test object with light including a wavelength band of visible light and excitation light that causes the test object to emit fluorescence by irradiating the fluorescent material;
    A first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed, and a surface on the side opposite to the surface on which light is incident to the first photoelectric conversion element is a first A first semiconductor substrate on which a first wiring layer in which a wiring is formed is formed, and a surface on the side opposite to the side where light is incident on the first semiconductor substrate are laminated, and the first semiconductor substrate A second semiconductor substrate on which a second photoelectric conversion layer in which a second photoelectric conversion element that photoelectrically converts transmitted light is formed, and a second wiring layer in which a second wiring is formed; A dielectric multilayer filter disposed between a first semiconductor substrate and the second semiconductor substrate, and the first photoelectric conversion layer formed between the first photoelectric conversion element, A reflective layer formed by being filled with a low refractive index material having a smaller refractive index of light than the photoelectric conversion layer 1 In the first wiring layer, and a solid-state imaging device having a light transmissive region formed at a position corresponding to the first photoelectric conversion element,
    Equipped with
    The solid-state imaging device is
    Placed at the tip of the insertion part inserted inside the living body,
    Fluorescent observation endoscope device.
  9.  入射した光を光電変換する第1の光電変換素子が形成される第1の光電変換層、および前記第1の光電変換素子に光が入射する側の面とは反対側の面に第1の配線が形成される第1の配線層が形成された第1の半導体基板と、前記第1の半導体基板に光が入射する側とは反対側の面に積層され、前記第1の半導体基板を透過した光を光電変換する第2の光電変換素子が形成される第2の光電変換層、および第2の配線が形成される第2の配線層が形成された第2の半導体基板と、を有する固体撮像装置の製造方法であって、
     前記第1の光電変換層において、それぞれの前記第1の光電変換素子の間に、前記第1の光電変換層の表面から1um以上の深さの窪みを形成した後、形成した前記窪みに前記第1の光電変換層よりも光の屈折率が小さい低屈折率材料を充填して反射層を形成する第1の工程、
     を含む、
     固体撮像装置の製造方法。
    A first photoelectric conversion layer in which a first photoelectric conversion element for photoelectrically converting incident light is formed, and a surface on the side opposite to the surface on which light is incident to the first photoelectric conversion element is a first A first semiconductor substrate on which a first wiring layer in which a wiring is formed is formed, and a surface on the side opposite to the side where light is incident on the first semiconductor substrate are laminated, and the first semiconductor substrate A second photoelectric conversion layer in which a second photoelectric conversion element that photoelectrically converts transmitted light is formed, and a second semiconductor substrate on which a second wiring layer in which a second wiring is formed is formed; A method of manufacturing a solid-state imaging device,
    In the first photoelectric conversion layer, after forming a depression having a depth of 1 um or more from the surface of the first photoelectric conversion layer between the respective first photoelectric conversion elements, A first step of filling a low refractive index material having a smaller refractive index of light than the first photoelectric conversion layer to form a reflective layer;
    including,
    Method of manufacturing a solid-state imaging device
  10.  少なくとも前記第1の工程の前に、
     前記第1の配線層において、前記第1の光電変換素子に対応する位置に光透過領域を形成する第2の工程と、
     前記第1の半導体基板に光が入射する側とは反対側の面に前記第1の配線を引き出す裏面電極を形成して平坦化した第1の接合面を形成する第3の工程と、
     前記第2の半導体基板に光が入射する側の面に誘電体多層膜フィルタを形成する第4の工程と、
     前記誘電体多層膜フィルタに光が入射する側の面に、前記誘電体多層膜フィルタを形成する誘電体のそれぞれの層の厚さよりも厚い保護膜を形成する第5の工程と、
     前記保護膜および前記誘電体多層膜フィルタを貫通し、前記保護膜に光が入射する側の面に前記第2の配線を引き出す貫通電極を形成する第6の工程と、
     前記保護膜に光が入射する側の面において、形成した前記貫通電極と前記保護膜とを一緒に平坦化した第2の接合面を形成する第7の工程と、
     前記第1の接合面と前記第2の接合面とを対向させて接合し、対応する前記裏面電極と前記貫通電極とを物理的かつ電気的に接続する第8の工程と、
     を含む、
     請求項9に記載の固体撮像装置の製造方法。
    At least before the first step,
    Forming a light transmission region at a position corresponding to the first photoelectric conversion element in the first wiring layer;
    A third step of forming a back surface electrode for drawing out the first wiring on a surface opposite to the light incident side of the first semiconductor substrate to form a planarized first bonding surface;
    Forming a dielectric multi-layered film filter on a surface on the light incident side of the second semiconductor substrate;
    A fifth step of forming a protective film thicker than the thickness of each layer of the dielectric forming the dielectric multilayer filter on the surface on the light incident side of the dielectric multilayer filter;
    A sixth step of forming a through electrode which passes through the protective film and the dielectric multilayer filter and draws the second wiring on the surface on the light incident side of the protective film;
    A seventh step of forming a second bonding surface in which the formed through electrode and the protective film are planarized on the surface on the light incident side to the protective film;
    An eighth step of opposing and bonding the first bonding surface and the second bonding surface, and physically and electrically connecting the corresponding back surface electrode and the through electrode;
    including,
    The manufacturing method of the solid-state imaging device according to claim 9.
PCT/JP2017/006529 2017-02-22 2017-02-22 Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device WO2018154644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006529 WO2018154644A1 (en) 2017-02-22 2017-02-22 Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006529 WO2018154644A1 (en) 2017-02-22 2017-02-22 Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device

Publications (1)

Publication Number Publication Date
WO2018154644A1 true WO2018154644A1 (en) 2018-08-30

Family

ID=63253616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006529 WO2018154644A1 (en) 2017-02-22 2017-02-22 Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device

Country Status (1)

Country Link
WO (1) WO2018154644A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248003A (en) * 2003-02-14 2004-09-02 Sanyo Electric Co Ltd Imaging apparatus
JP2008177362A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2009206356A (en) * 2008-02-28 2009-09-10 Toshiba Corp Solid-state imaging device and manufacturing method thereof
JP2012010160A (en) * 2010-06-25 2012-01-12 Hoya Corp Transmitter-receiver of multiplex transmission system and multiplex transmission method
JP2012094720A (en) * 2010-10-27 2012-05-17 Sony Corp Solid state image pick up device, semiconductor device, method for manufacturing solid state image pick up device and semiconductor device, and electronic apparatus
US20140015932A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd. 3dimension image sensor and system including the same
WO2014017314A1 (en) * 2012-07-24 2014-01-30 ソニー株式会社 Image pickup element, electronic device, and information processing device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
WO2015050000A1 (en) * 2013-10-04 2015-04-09 ソニー株式会社 Semiconductor device and solid-state imaging element
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
JP2015115420A (en) * 2013-12-10 2015-06-22 オリンパス株式会社 Solid-state imaging device, imaging device, and method of manufacturing solid-state imaging device
WO2016103315A1 (en) * 2014-12-22 2016-06-30 オリンパス株式会社 Solid-state image pickup device, and image pickup device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248003A (en) * 2003-02-14 2004-09-02 Sanyo Electric Co Ltd Imaging apparatus
JP2008177362A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP2009206356A (en) * 2008-02-28 2009-09-10 Toshiba Corp Solid-state imaging device and manufacturing method thereof
JP2012010160A (en) * 2010-06-25 2012-01-12 Hoya Corp Transmitter-receiver of multiplex transmission system and multiplex transmission method
JP2012094720A (en) * 2010-10-27 2012-05-17 Sony Corp Solid state image pick up device, semiconductor device, method for manufacturing solid state image pick up device and semiconductor device, and electronic apparatus
US20140015932A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd. 3dimension image sensor and system including the same
WO2014017314A1 (en) * 2012-07-24 2014-01-30 ソニー株式会社 Image pickup element, electronic device, and information processing device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
WO2015050000A1 (en) * 2013-10-04 2015-04-09 ソニー株式会社 Semiconductor device and solid-state imaging element
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
JP2015115420A (en) * 2013-12-10 2015-06-22 オリンパス株式会社 Solid-state imaging device, imaging device, and method of manufacturing solid-state imaging device
WO2016103315A1 (en) * 2014-12-22 2016-06-30 オリンパス株式会社 Solid-state image pickup device, and image pickup device

Similar Documents

Publication Publication Date Title
US11419501B2 (en) Fluorescence observation device and fluorescence observation endoscope device
US10784293B2 (en) Imaging element, electronic device, and information processing device
US11508773B2 (en) Image pickup device and electronic apparatus
US10335019B2 (en) Image pickup element and endoscope device
JP2021192534A (en) Imaging device and method for imaging
KR20200037244A (en) Imaging element and imaging device
JP6266185B2 (en) Image sensor, endoscope, and endoscope system
JP2005334257A (en) Endoscope
JP2016075825A (en) Color separation prism and imaging apparatus
JP5627910B2 (en) Electronic endoscope system and color image sensor
JP2014064196A (en) Image pick-up device
JPWO2018163500A1 (en) Endoscope device
WO2018154644A1 (en) Solid-state image pickup device, fluorescent observation endoscope device, and method for manufacturing solid-state image pickup device
JP7387600B2 (en) Solid-state imaging devices and endoscopic cameras
US11563049B2 (en) Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and electronic equipment equipped with solid-state imaging apparatus
JP2022027195A (en) Three-plate type camera
WO2017042980A1 (en) Fluoroscopic apparatus and fluoroscopic endoscope apparatus
WO2020026387A1 (en) Imaging element and endoscope
JPWO2017056537A1 (en) Imaging device and imaging apparatus
WO2024057990A1 (en) Imaging device and medical observation system
WO2024203101A1 (en) Semiconductor device and method for manufacturing same, and electronic apparatus
WO2023189579A1 (en) Imaging device and electronic apparatus
WO2024058019A1 (en) Imaging device and medical observation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP