WO2018154252A1 - Process for manufacturing a dental article using 3d printing - Google Patents

Process for manufacturing a dental article using 3d printing Download PDF

Info

Publication number
WO2018154252A1
WO2018154252A1 PCT/FR2018/050437 FR2018050437W WO2018154252A1 WO 2018154252 A1 WO2018154252 A1 WO 2018154252A1 FR 2018050437 W FR2018050437 W FR 2018050437W WO 2018154252 A1 WO2018154252 A1 WO 2018154252A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
dental
printing
dental element
support
Prior art date
Application number
PCT/FR2018/050437
Other languages
French (fr)
Inventor
Alexandre FOREST
Original Assignee
Mojito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mojito filed Critical Mojito
Publication of WO2018154252A1 publication Critical patent/WO2018154252A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C1/00Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
    • A61C1/08Machine parts specially adapted for dentistry
    • A61C1/082Positioning or guiding, e.g. of drills
    • A61C1/084Positioning or guiding, e.g. of drills of implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0013Production methods using stereolithographic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/225Fastening prostheses in the mouth
    • A61C13/2255Frames for partial dentures; Lingual bars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/225Fastening prostheses in the mouth
    • A61C13/267Clasp fastening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/43Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the manufacture of a dental element, for example a dental prosthetic element, an implant-borne element or a denture-supported or removable prosthesis, or even surgical guides, by a three-dimensional printing process, in particular by a printing process called “NanoParticle Jetting” ("NPJ" - it is also sometimes referred to printing technique by jet nanoparticles, or printing by jets of metallic ink).
  • NPJ NanoParticle Jetting
  • a dental element in particular a denture-supported prosthesis, is traditionally manufactured by a prosthetist.
  • a very commonly used process is the casting wax technique.
  • the three-dimensional printing by laser fusion gradually supplants the technique of casting wax.
  • three-dimensional laser fusion printing has some shortcomings, in some cases, for example: - It is often necessary to generate supports for supporting undercut areas of the element to be manufactured and / or to reattach the dental element to a three-dimensional printing plate on which the dental element is generated. These supports represent lost material, and therefore have a cost. In addition, these supports require firing time of the laser beam, thus increasing the time required for the manufacture of the dental element. In addition, these supports must then be removed, often manually and individually, from the dental element. After that, points of attachment of these supports leaving substantial traces on the surface of the dental element must be polished, for example to the turbine or the grinder, separately. Such a phase is therefore time-consuming and expensive.
  • a dental element When a dental element is manufactured by three-dimensional printing by conventional laser fusion, it occasionally has a relatively rough surface that requires a finishing step, which includes a polishing step, wherein at least a portion of the surface of the element dental is polite.
  • Certain dental elements may require manufacturing precision that exceeds the precision capabilities of a conventional laser-based three-dimensional printing process.
  • a dental element in particular implant-borne, is traditionally manufactured for example according to one of the following methods:
  • At least one of the objectives of the present application is thus to improve at least in part the aforementioned drawbacks, leading in addition to other advantages.
  • a method of manufacturing a dental element comprising:
  • This step can be done according to various temperature levels corresponding to sublimation steps of the various compounds of the printed part. For example, a bearing to sublimate all organic components and then a gradual rise in temperature before finishing at the sintering temperature of the printed material.
  • This step can be carried out in a vacuum chamber or vice versa under pressure, or in an inert atmosphere, such as argon for example, to facilitate the diffusion of atoms.
  • the nanoparticles bind; in the following, the notions of binder and suspending medium are equivalent since the binder has both a role of maintaining nanoparticles but also a medium in which these nanoparticles are distributed.
  • NPJ for “NanoParticle Jetting” is a three-dimensional printing process by jets of nanoparticles, metal or even ceramic.
  • Such a method thus consists mainly in successively depositing layers of material by spraying fine droplets of at least one so-called “effective” material, for example by one or more piezoelectric printing heads (like a conventional "poly-jet” printing process).
  • a layer has a characteristic thickness of the order of 2 ⁇ (micrometers), that is to say between 1 and 3 micrometers or even between 1.5 and 2.5 micrometers, or even between 1 .9 and 2.1 micrometers .
  • the effective material comprises nanoparticles and a binder in which the nanoparticles are in suspension.
  • the binder may for example comprise at least some of the following elements and / or compounds:
  • Transport compound carrying, in suspension, the nanoparticles of the material to be printed.
  • compounds are: Solsperce 6100 or 6300, for example of the brand Lubrizol; or Dysperbyk 163 of the brand BYK Chemie GMBH.
  • Solvent compound for adding particles of the material to be printed in the matrix of the binder. This compound allows a better diffusion of the atoms of said material during the sintering in the oven.
  • a dispersing compound that prevents the molecules of the final material from agglomerating with each other or on the walls of the tanks or channels.
  • the nanoparticles have, for example, a diameter of between approximately 10 nm (nanometers) and approximately 40 nm.
  • the nanoparticles of the effective material comprise a biocompatible material.
  • the biocompatible material comprises biocompatible metal, for example titanium and / or chromium and / or a chromium-cobalt alloy, or a biocompatible ceramic material.
  • the nanoparticles may comprise at least one of the following materials:
  • Empress o Ceramic reinforced with lithium disilicate crystals IPS eMAX
  • the effective material comprises a colloidal suspension.
  • the colloidal suspension comprises stochastic metal nanoparticles, that is to say which are randomly distributed, that is to say non-aligned or arranged in an orderly manner.
  • the layers are deposited on a manufacturing plate of a printing device, in a confinement chamber of the device, according to a principle similar to that of a poly-jet printing process.
  • the deposited layers are called "ultra-thin", that is to say they have a thickness of the order of 2 ⁇ (micrometers).
  • the binder for example of the colloidal solution of the actual material, is sublimed and, then, the nanoparticles agglomerate, according to a phenomenon of coalescence, to form a solid part forming the part of the dental element.
  • the binder sublimes once deposited.
  • the stack of these layers ultimately forms a volume corresponding to the portion of the desired dental element.
  • the three-dimensional printing step comprises at least one sub-step of producing a support by projection of a support material configured to fill, during at least part of the process, at least an area underdeep of the portion of the dental element in progress.
  • a material called "support” is deposited.
  • the role of the support material is to maintain the initially sprayed material on areas that are likely to be backpainted and / or cantilevered, and this until solidification thereof.
  • the actual material is deposited when it is a section of the part to be produced, while the support material is deposited if it is necessary to fill a void and / or support a subsequent part in cantilevered.
  • the support material is, for example, wax.
  • the support material is projected by a nozzle different from the same head as the nozzle through which the actual material is projected.
  • the support material has a melting temperature equal to or greater than a sintering temperature of the nanoparticles of the effective material.
  • the wax has only a temporary, fleeting interest, namely during the phase of deposition of the colloidal suspension for example.
  • the nanoparticles are supposed to be maintained by their interarticular friction.
  • said part of the dental element is sintered, in an enclosure, possibly different from the confinement enclosure of the printing device, for example an oven or an oven , in order to consolidate the links between agglomerated nanoparticles.
  • the cohesion of the piece is then ensured.
  • the method comprises for example a support melting step.
  • the method then possibly comprises a step of supercooling a portion of the dental element on the part of the dental element obtained at the outlet of the sintering step, that is to say say that one forms a first part of the element by jets of nanoparticles, then a second part on this first part.
  • the part to be produced, the dental element is modeled numerically, then the corresponding numerical model is divided into slices, each slice of which corresponds to a layer that will be deposited by the printing device, at least for the part of the part which is to be realized by three-dimensional printing.
  • the digital model is for example provided in the form of an STL file or other. Each slice therefore represents for example a thickness of the order of 2 ⁇ .
  • Such an NPJ printing method has for example the following advantages over a conventional additive manufacturing technology, that is to say for example a three-dimensional laser melting process:
  • the level of resolution of the parts is more precise because of the thin thicknesses used, which allows better dimensional and geometrical accuracies, approaching those obtained by machining. For example, it is thus possible to obtain a very good precision of a marginal line of the dental element.
  • the level of residual stress is negligible in that the constituent material of at least the portion of the dental element made via this process is not fully heated to its melting point; there are no deformations or constraints related to clusters of material or heat treatment restrictive detention for the material, for example made just before detaching the parts of the tray on which they are built; this prevents them from being expressed and therefore deform during this operation or during the cutting phase.
  • the surface condition obtained is better, as well as accuracy, compared to laser melting or electron beam technologies, for example close to a machining by chip removal, that is to say that the Average roughness Ra obtained for the surface is for example between about 0.2 ⁇ and about 1 ⁇ .
  • the porosity of the material constituting the finished part is much more constant because the imbrication of nanoparticles leaves no gaps or macroscopic porosity.
  • the commonly accepted rate is typically less than 1% whereas it may be less than 0.1% with an NPJ process.
  • the NPJ uses only the volume of material corresponding to that of the parts to be printed.
  • the chamber of the device used is not necessarily an inert atmosphere of nitrogen or argon, because the method uses the material in the liquid state which reduces the risks inherent in the use of powder.
  • the printing time is faster (for example up to 5 times more productive) than the time required to achieve the same element by means of a laser or electron beam printing process (roughly estimated between 2 and 8 mm 3 / s depending on the type of material). It is also possible to make several elements in the same batch, that is to say simultaneously. Productivity is thus improved. It is thus possible to be more responsive to any request. - There is no loss of effective material related to the production of support, which reduces production costs.
  • the dental elements can exit directly ready for use of such a process, or else with only a minimum of post-treatment steps, for example to obtain a mirror-polished appearance on certain surfaces of the dental element.
  • a major advantage of such a method is that the level of finish and accuracy output allows to overcome a step of recovery in machining, currently commonly used for parts to be assembled with other parts (implants, "multi-units").
  • Another major advantage of this method lies in the fact that it is possible to overcome the problems of media, while allowing the use of metal or ceramic that have more interesting mechanical properties.
  • an NPJ printing device mainly comprises a containment chamber and a manufacturing plate, positioned in the containment chamber and from which it can be extracted if necessary.
  • Such a device also comprises an arm, which may comprise one or more print heads, the head or heads opening into the confinement enclosure, for example at least ten or twenty heads, for example twenty-four (24) heads (number mentioned by some manufacturers in the field of NPJ), or more.
  • an arm which may comprise one or more print heads, the head or heads opening into the confinement enclosure, for example at least ten or twenty heads, for example twenty-four (24) heads (number mentioned by some manufacturers in the field of NPJ), or more.
  • each head may possibly comprise one or more nozzles, for example at least ten or even fifty or even one hundred or even several hundred nozzles, for example five hundred and twelve (512) nozzles.
  • nozzles for example at least ten or even fifty or even one hundred or even several hundred nozzles, for example five hundred and twelve (512) nozzles.
  • Such a device then allows for example to project several thousand droplets per second, for example about 18,000 droplets per second according to the above values for illustrative purposes.
  • FIG. 1 shows implant abutments with their support in the form of network rods, according to one embodiment by three-dimensional printing of the prior art
  • FIG. 2 shows implant abutments, similar to those of FIG. 1, with their support, as obtained by a method according to an embodiment of the present invention
  • Figure 3 shows the implant abutments of Figure 2 without their support, as obtained by the method according to an embodiment of the present invention
  • FIG. 4 shows an example of dento-carried element with its support, as obtained by a method according to an embodiment of the present invention
  • FIG. 5 shows a stellite frame with its support, as obtained by a method according to an embodiment of the present invention
  • FIG. 6 shows the stellite frame of FIG. 5 devoid of its support, as obtained by the method according to an embodiment of the present invention
  • Figure 7 shows a guide as obtained by a traditionally used embodiment method
  • Fig. 8 shows a guide as obtained by a method according to an embodiment of the present invention.
  • a unitary dental prosthesis whether pillar or unitary infrastructure, traditionally comprises three main elements: a crown (not shown), a pillar 10 and an implant (not shown).
  • the implant traditionally manufactured by machining, behaves like a foundation that is anchored in the bone. This is usually a monoblock element. To be anchored in the bone, it often has an outer thread formed on at least one lower sector.
  • the implant In an upper sector and excluding intraosseous burial, the implant is often provided with a cavity that typically allows an insert 30 of the pillar 10 to come and connect to it. For this, the cavity thus opens at an upper end of the implant, that is to say a free end of the upper sector.
  • the implant further generally comprises means for attaching at least the abutment in the implant, such as, for example, a threaded bore in the cavity configured to receive a screw.
  • a pillar 10 forms an interface between the implant and the crown.
  • the pillar qualified as dental or implant, has a preponderant role in the success of the implant case in that it ensures both a transmission of occlusal forces and an aesthetic component by healing the gingival tissues ensuring the respect of the biological space. Therefore, each pillar is specific to an implant and a crown, which is performed on a case by case basis. For the positioning of the pillar to be good, it is necessary precisely to conform a lower part of the pillar, called insert 30, according to the implant, and an upper part of the pillar, called body 20, according to the crown which represents the tooth To replace.
  • the pillar 10 thus comprises here by definition two main parts: an insert 30, in the lower part, and a body 20, in the upper part.
  • the insert 30 and the body 20 may be of any type of biocompatible metallic material, for example titanium or a cobalt-chromium alloy.
  • the insert 30 can have different shapes and different profiles.
  • the range of inserts thus makes it possible to cover the various clinical cases encountered.
  • it can have a generic form, standard, that is to say be identical for several different pillars depending on the type of implant for which it is intended.
  • the insert 30 comprises, by definition, an upper portion 31, in an extension of the body 20, and a lower portion 32, in an extension of the upper portion 31, which comprises a connector 33 configured to connect the insert 30 to the implant, at least axially.
  • the upper part 31 is situated between the lower part 32 and the body 20.
  • the insert 30 is for example mainly axisymmetric, except the connector 33 and, generally, has a flared shape from the connector to the body, as shown in Figure 1.
  • the body 20 and the upper part 31 may have any type of shape.
  • the bodies are made to measure, case by case, depending on the morphology of the tooth to be replaced, that is to say the crown to which it is intended to be connected, and the profile of the bone ridge and the gum.
  • the body 20 generally needs to be made to measure while the insert 30 may be standard, but the insert has a connector that must be made precisely for its assembly with an implant.
  • Figure 1 shows pillars 10 obtained by an example of implementation of such a method.
  • the implant abutments are then formed "upside down” on a platen 50 of manufacture.
  • the connectors 33 are then a free portion oriented upwardly relative to the plate 50 of manufacture.
  • a pillar 10 before finishing, further comprises a support 40, for example a reinforcement allowing a maintenance and a primer to the manufacture of the corresponding pillar.
  • the support 40 comprises rods, for example arranged in a network. Such rods are then for example easily scored for detach from the pillar.
  • such a method then requires a subsequent withdrawal of the support 40 which generally generates a recovery step in finishing, for example a polishing.
  • a manufacturing process comprising at least one step of successive deposition of layers by NanoParticle Jetting (NPJ) was then particularly interesting.
  • Such a method also makes it possible to produce simultaneously, that is to say during the same batch on the same plate, a plurality of dental elements, it being understood that "plurality” here means at least two; but, in the present context, it is possible to produce for example at least five or even ten or even twenty dental elements simultaneously, or even more.
  • the three-dimensional printing step then comprises in particular a substep of forming the layer of the portion of the dental element by projection of droplets of at least one effective material, for example in a confinement enclosure of a printing device, and a substep of heating said layer in which nanoparticles of the effective material agglomerate and a binder of the effective material is sublimated in the containment.
  • the three-dimensional printing step also comprises at least one sub-step of producing a support by projection of a support material configured to fill, during at least part of the process, with the least an area underdeep of the portion of the dental element in progress.
  • Figure 2 shows dental elements which are abutments obtained at the end of such steps.
  • the pillar 10 shown to the right of Figure 2 is shown in section so as to better illustrate the presence of the support 40, which is here massive, formed around the body 20.
  • the method comprises a step of sintering the abutment 10 printed by NPJ in an enclosure, the sintering step being configured to consolidate the bonds between the nanoparticles of the agglomerated effective material.
  • Such a step can take place in a different enclosure or in the same enclosure.
  • the method then comprises a step of melting the support.
  • the material constituting the support has a melting temperature equal to or greater than a sintering temperature of the nanoparticles of the effective material.
  • FIG. 3 shows pillars 10 obtained at the end of such a step, that is to say that they are now devoid of their support 40.
  • FIG. 4 illustrates the method according to an exemplary implementation applied to a dento-carried element 10 'with its support 40'.
  • FIG. 5 illustrates the method according to an implementation example applied to a stellite frame 10 "with its support 40" and FIG. 6 shows the stellite frame 10 "of FIG. 5 devoid of its support 40", such as obtained by the method according to an embodiment of the present invention after a step of melting the support 40 ".
  • FIGS. 5 and 6 make it possible to better illustrate the advantage of the presence of a support made in an embodiment of the present invention when the dental element to be made comprises various highly complex or cantilever parts. .
  • FIGS. 7 and 8 make it possible to compare two guides: one obtained by a method of realization conventionally used (FIG. 7) by 3D printing and the other obtained by a method according to an embodiment of the present invention (FIG. 8).
  • the guide of Figure 7 is for example solid and integrally resin. Metal inserts can be added in the active parts for the guidance of ancillary tools.
  • the guide 10 "'of Figure 8 is then feasible metal, which allows to sterilize hot and have a mechanically stronger guide, more solid.In addition, it may have a more ventilated structure and / or more complex - that is to say also more adaptable to any type of morphology - and at the same time allows better accessibility to the implant site.
  • such a method makes it possible to produce, during the same batch, several dental elements, whatever they may be (for example both one or more pillar (s) and / or one or more dental element (s). carried 10 'and / or one or more stellite frames 10 "and / or one or more guide (s) 10" etc.), for example on the same plate 50.
  • several dental elements whatever they may be (for example both one or more pillar (s) and / or one or more dental element (s). carried 10 'and / or one or more stellite frames 10 "and / or one or more guide (s) 10" etc.), for example on the same plate 50.

Abstract

The application relates to a process for manufacturing a dental article, said process involving a step of 3D printing at least one portion of the dental article by consecutively depositing layers using NanoParticle Jetting, and a step of sintering at least the portion of the dental article obtained by the NanoParticle Jetting operation.

Description

Procédé de fabrication d'un élément dentaire  Method of manufacturing a dental element
par impression tridimensionnelle  by three-dimensional printing
La présente demande concerne la fabrication d'un élément dentaire, par exemple un élément prothétique dentaire, un élément implanto-porté ou une prothèse dento-portée, ou amovible, ou encore des guides chirurgicaux, par un procédé d'impression tridimensionnelle, en particulier par un procédé d'impression appelé « NanoParticle Jetting » (« NPJ » - on parle aussi, parfois, de technique d'impression par jet de nanoparticules, voire d'impression par jets d'encre métallique). The present application relates to the manufacture of a dental element, for example a dental prosthetic element, an implant-borne element or a denture-supported or removable prosthesis, or even surgical guides, by a three-dimensional printing process, in particular by a printing process called "NanoParticle Jetting" ("NPJ" - it is also sometimes referred to printing technique by jet nanoparticles, or printing by jets of metallic ink).
Un « élément dentaire » désigne ici principalement, mais non exclusivement, une prothèse dentaire du type dento-portées (comme par exemple une chape, une couronne céramo-métallique, un bridge céramo- métallique, ou encore un inlay-core) ou par exemple un élément prothétique du type implanto-porté (comme par exemple un pilier unitaire (pour couronne scellée par exemple), une infrastructure unitaire (pour couronne céramique cuite par exemple), un bridge implanto-porté transvissé, une barre implantaire pour prothèse adjointe (que ce soit transvissées sur pilier conique ou encore en direct-implant, mais encore du type Ackermann, Dolder, Hader,RE bourke barres pour attachement type Locator, barre avec pilier boule, ou autre), ou encore une prothèse sur pilotis (par exemple de type Montréal, Wrap-around, Lock'n'release ou autres)). Un « élément dentaire » désigne un élément prothétique dentaire ou aussi possiblement ici un châssis de stellite ou encore un guide chirurgical.  A "dental element" here mainly, but not exclusively, refers to a dental prosthesis of the dento-worn type (such as a screed, a metal-ceramic crown, a ceramic-metal bridge, or an inlay-core) or, for example a prosthetic element of the implant-worn type (such as for example a unitary abutment (for sealed crown for example), a unitary infrastructure (for a fired ceramic crown for example), an implant-borne transvissé bridge, an implant bar for an adjoined prosthesis (that either transvissées on conical abutment or in direct-implant, but still of the type Ackermann, Dolder, Hader, RE bourke bars for attachment type Locator, bar with pillar ball, or other), or a prosthesis on stilts (for example of type Montreal, Wrap-around, Lock'n'release or others)). A "dental element" denotes a dental prosthetic element or possibly also a stellite frame or a surgical guide.
Un élément dentaire, en particulier une prothèse dento-portée, est traditionnellement fabriqué par un prothésiste.  A dental element, in particular a denture-supported prosthesis, is traditionally manufactured by a prosthetist.
Un procédé très couramment utilisé est la technique de cire coulée. Or, depuis peu de temps, l'impression tridimensionnelle par fusion laser supplante progressivement la technique de la cire coulée.  A very commonly used process is the casting wax technique. However, since a short time, the three-dimensional printing by laser fusion gradually supplants the technique of casting wax.
Cependant, il s'avère que l'impression tridimensionnelle par fusion laser a quelques lacunes, dans certains cas, comme par exemple : - Il est souvent nécessaire de générer des supports destinés à supporter des zones en contre-dépouille de l'élément à fabriquer et/ou à rattacher l'élément dentaire à un plateau d'impression tridimensionnelle sur lequel l'élément dentaire est généré. Ces supports représentent de la matière perdue, et par conséquent ont un coût. De plus, ces supports requièrent un temps de tir du faisceau laser, accroissant ainsi le temps nécessaire à la fabrication de l'élément dentaire. En outre ces supports doivent ensuite être retirés, souvent manuellement et individuellement, de l'élément dentaire. Après quoi, des points d'attaches de ces supports laissant des traces conséquentes en surface de l'élément dentaire doivent être polis, par exemple à la turbine ou à la meuleuse, séparément. Une telle phase est donc chronophage et coûteuse. However, it turns out that three-dimensional laser fusion printing has some shortcomings, in some cases, for example: - It is often necessary to generate supports for supporting undercut areas of the element to be manufactured and / or to reattach the dental element to a three-dimensional printing plate on which the dental element is generated. These supports represent lost material, and therefore have a cost. In addition, these supports require firing time of the laser beam, thus increasing the time required for the manufacture of the dental element. In addition, these supports must then be removed, often manually and individually, from the dental element. After that, points of attachment of these supports leaving substantial traces on the surface of the dental element must be polished, for example to the turbine or the grinder, separately. Such a phase is therefore time-consuming and expensive.
- Lorsqu'un élément dentaire est fabriqué par impression tridimensionnelle par fusion laser classique, il présente occasionnellement une surface relativement rugueuse qui requiert une étape de finition, laquelle comporte une étape de polissage, dans laquelle au moins une partie de la surface de l'élément dentaire est polie.  - When a dental element is manufactured by three-dimensional printing by conventional laser fusion, it occasionally has a relatively rough surface that requires a finishing step, which includes a polishing step, wherein at least a portion of the surface of the element dental is polite.
- Certains éléments dentaires peuvent nécessiter une précision de fabrication qui dépasse les capacités de précision d'un procédé d'impression tridimensionnelle par fusion laser classique.  Certain dental elements may require manufacturing precision that exceeds the precision capabilities of a conventional laser-based three-dimensional printing process.
Selon d'autres exemples, un élément dentaire, en particulier implanto-porté, est traditionnellement fabriqué par exemple selon l'un des procédés suivants :  According to other examples, a dental element, in particular implant-borne, is traditionally manufactured for example according to one of the following methods:
- Selon un procédé de sur-coulés avec des gaines calcinables pour des parties représentant des connectiques. Les caractéristiques dimensionnelles et ajustements mécaniques peuvent alors être très mauvais.  - According to a method of over-cast with burnout ducts for parts representing connectors. The dimensional characteristics and mechanical adjustments can then be very bad.
- Selon un procédé de sur-coulées mais avec des connectiques rapportées et collées. Cependant, un tel ajout de colle peut engendrer des risques d'anfractuosité génératrice de prolifération bactérienne.  - According to a process of over-cast but with connections reported and glued. However, such an addition of glue can cause risks of crevice generating bacterial proliferation.
- Par usinage uniquement, ce qui engendre un coût de revient important. - Selon un procédé d'impression tridimensionnelle d'un corps et reprise par usinage de zones fonctionnelles aux caractéristiques dimensionnelles précises, ce qui peut induire un certain coût. - By machining only, which generates a significant cost. - According to a method of three-dimensional printing of a body and machining functional areas with precise dimensional characteristics, which can induce a certain cost.
Enfin, l'utilisation d'un guide chirurgical en implantologie dentaire a connu un vaste développement avec l'arrivée du « cone-beam », par les guides qui en dérivent. Cette technologie permet de positionner des implants de manière optimale, tant pour la prothèse que pour le support osseux. L'essentiel de ces guides est actuellement réalisé par impression 3D en résine et non pas en métal, par commodité. En effet les machines pour de l'impression en résine sont plus faciles d'utilisation et moins chères. Cependant, cette technologie présente aussi des limites en terme de précision et surtout, en lien avec les faibles résistances mécaniques d'une résine, ce qui oblige à dimensionner le guide d'une manière conséquente, ce qui se fait au détriment de l'accessibilité, par exemple pour l'irrigation lors du forage du support osseux, et du visuel du site implantaire pour, par exemple, s'assurer du bon déroulement de l'intervention. De plus, il n'est alors pas possible de stériliser à chaud la plupart de ces guides car les résines utilisées présentent souvent un point de fusion inférieur aux températures de stérilisation voulues. Il est toutefois possible de réaliser ces guides en impression 3D de métal mais une limite à cette technologie est par exemple de générer des supports en métal très fastidieux et délicats à retirer. La précision d'un guide en métal est aussi tributaire de l'état de surface qui dépend de la présence ou non de ces supports, et de la marque de la machine d'impression tridimensionnelle utilisée.  Finally, the use of a surgical guide in dental implantology has undergone a vast development with the arrival of the "cone-beam", by the guides that derive from it. This technology makes it possible to position implants optimally, both for the prosthesis and for the bone support. Most of these guides are currently produced by 3D printing in resin and not in metal, for convenience. Indeed machines for resin printing are easier to use and cheaper. However, this technology also has limitations in terms of accuracy and especially, in connection with the low mechanical resistance of a resin, which requires sizing the guide in a consistent manner, which is at the expense of accessibility for example for irrigation during drilling of the bone support, and visual implant site for, for example, ensure the smooth operation of the intervention. In addition, it is not possible to hot sterilize most of these guides because the resins used often have a melting point below the desired sterilization temperatures. However, it is possible to make these guides in 3D printing of metal but a limit to this technology is for example to generate metal supports very tedious and delicate to remove. The accuracy of a metal guide is also dependent on the surface condition that depends on the presence or absence of these supports, and the brand of the three-dimensional printing machine used.
Au moins un des objectifs de la présente demande est ainsi d'améliorer au moins en partie les inconvénients précités, menant en outre à d'autres avantages.  At least one of the objectives of the present application is thus to improve at least in part the aforementioned drawbacks, leading in addition to other advantages.
A cet effet, est proposé selon un premier aspect, un procédé de fabrication d'un élément dentaire comportant :  For this purpose, is proposed in a first aspect, a method of manufacturing a dental element comprising:
- une étape d'impression tridimensionnelle d'au moins une partie de l'élément dentaire par un dépôt successif de couches par jets de nanoparticules, pour chaque couche l'étape d'impression tridimensionnelle comportant une sous-étape de formation de la couche de la partie de l'élément dentaire par projection de gouttelettes d'au moins un matériau effectif dans une enceinte de confinement d'un dispositif d'impression et une sous-étape de chauffage de ladite couche dans laquelle des nanoparticules du matériau effectif s'agglomèrent et un liant formant un milieu suspensif pour les nanoparticules du matériau effectif est sublimé, dans l'enceinte de confinement, et a step of three-dimensional printing of at least a portion of the dental element by a successive deposition of layers by jets of nanoparticles, for each layer the three-dimensional printing step comprising a sub-step of forming the layer of the part of the element projection of droplets of at least one effective material in a confinement enclosure of a printing device and a substep of heating said layer in which nanoparticles of the effective material agglomerate and a binder forming a medium suspensive for the nanoparticles of the effective material is sublimated, in the containment, and
- une étape de frittage d'au moins la partie de l'élément dentaire imprimée par jets de nanoparticules dans une enceinte, l'étape de frittage étant configurée pour consolider les liens entre les nanoparticules du matériau effectif agglomérées.  a step of sintering at least the portion of the dental element printed by jets of nanoparticles in an enclosure, the sintering step being configured to consolidate the bonds between the nanoparticles of the agglomerated effective material.
Cette étape peut se faire selon divers paliers de températures correspondant à des étapes de sublimation des différents composés de la pièce imprimée. Par exemple, un palier pour sublimer tous les composants organiques puis une élévation progressive de la température avant de finir à la température de frittage du matériau imprimé.  This step can be done according to various temperature levels corresponding to sublimation steps of the various compounds of the printed part. For example, a bearing to sublimate all organic components and then a gradual rise in temperature before finishing at the sintering temperature of the printed material.
Cette étape peut se réaliser dans une enceinte sous vide ou inversement sous pression, ou encore sous atmosphère inerte, comme de l'argon par exemple, afin de faciliter la diffusion des atomes.  This step can be carried out in a vacuum chamber or vice versa under pressure, or in an inert atmosphere, such as argon for example, to facilitate the diffusion of atoms.
En effet, il s'est avéré qu'un procédé d'impression « NPJ » est particulièrement avantageux pour réaliser des éléments dentaires.  Indeed, it has been found that an "NPJ" printing method is particularly advantageous for producing dental elements.
Lorsque le liant se sublime, les nanoparticules se lient ; dans la suite, les notions de liant et de milieu suspensif sont équivalentes puisque le liant a, à la fois, un rôle de maintien des nanoparticules mais aussi de milieu dans lequel ces nanoparticules sont réparties.  When the binder sublimes, the nanoparticles bind; in the following, the notions of binder and suspending medium are equivalent since the binder has both a role of maintaining nanoparticles but also a medium in which these nanoparticles are distributed.
Ainsi que cela est mentionné ci-dessus, un procédé d'impression As mentioned above, a printing process
« NPJ », pour « NanoParticule Jetting », est un procédé d'impression tridimensionnelle par jets de nanoparticules, de métal, voire de céramique. "NPJ", for "NanoParticle Jetting", is a three-dimensional printing process by jets of nanoparticles, metal or even ceramic.
Un tel procédé consiste ainsi principalement à déposer successivement des couches de matériau par projection de fines gouttelettes d'au moins un matériau dit « effectif », par exemple par une ou plusieurs têtes d'impression piézo-électriques (à l'instar d'un procédé d'impression « poly-jet » classique). Par exemple, une couche a une épaisseur caractéristique de l'ordre de 2 μιτι (micromètres), c'est-à-dire entre 1 et 3 micromètres voire entre 1 .5 et 2.5 micromètres, voire même entre 1 .9 et 2.1 micromètres. Such a method thus consists mainly in successively depositing layers of material by spraying fine droplets of at least one so-called "effective" material, for example by one or more piezoelectric printing heads (like a conventional "poly-jet" printing process). For example, a layer has a characteristic thickness of the order of 2 μιτι (micrometers), that is to say between 1 and 3 micrometers or even between 1.5 and 2.5 micrometers, or even between 1 .9 and 2.1 micrometers .
Par exemple, le matériau effectif comporte des nanoparticules et un liant dans lequel les nanoparticules sont en suspension.  For example, the effective material comprises nanoparticles and a binder in which the nanoparticles are in suspension.
Le liant peut par exemple comporter au moins certains des éléments et/ou composés suivants :  The binder may for example comprise at least some of the following elements and / or compounds:
• Composé de transport, transportant, en suspension, les nano particules du matériau à imprimer. Des exemples de composés sont : Solsperce 6100 ou 6300, par exemple de la marque Lubrizol ; ou encore Dysperbyk 163 de la marque BYK Chemie GMBH.  • Transport compound, carrying, in suspension, the nanoparticles of the material to be printed. Examples of compounds are: Solsperce 6100 or 6300, for example of the brand Lubrizol; or Dysperbyk 163 of the brand BYK Chemie GMBH.
• Composé dissolvant permettant de d'adjoindre des particules du matériau à imprimer dans la matrice du liant. Ce composé permettant une meilleure diffusion des atomes dudit matériau lors du frittage au four.  • Solvent compound for adding particles of the material to be printed in the matrix of the binder. This compound allows a better diffusion of the atoms of said material during the sintering in the oven.
· Composé dispersant évitant aux molécules du matériau final de s'agglomérer entres elles ou sur les parois des réservoirs ou canaux. · A dispersing compound that prevents the molecules of the final material from agglomerating with each other or on the walls of the tanks or channels.
Les nanoparticules présentent par exemple un diamètre compris entre environ 10 nm (nanomètres) et environ 40 nm.  The nanoparticles have, for example, a diameter of between approximately 10 nm (nanometers) and approximately 40 nm.
Selon un exemple privilégié, les nanoparticules du matériau effectif comportent un matériau biocompatible.  According to a preferred example, the nanoparticles of the effective material comprise a biocompatible material.
Par exemple, le matériau biocompatible comporte du métal biocompatible, par exemple du titane et/ou du chrome et/ou un alliage chrome- cobalt, ou un matériau céramique biocompatible.  For example, the biocompatible material comprises biocompatible metal, for example titanium and / or chromium and / or a chromium-cobalt alloy, or a biocompatible ceramic material.
Par exemple, les nanoparticules peuvent comporter au moins l'un des matériaux suivants :  For example, the nanoparticles may comprise at least one of the following materials:
- Des céramiques feldspathiques  - feldspathic ceramics
- Des vitrocéramiques :  - Vitroceramics:
o Céramique renforcée aux cristaux de leucite : Empress o Céramique renforcée aux cristaux de disilicate de lithium : IPS eMAX  o Ceramic reinforced with leucite crystals: Empress o Ceramic reinforced with lithium disilicate crystals: IPS eMAX
- Des céramiques poly-cristallines : alumine  - Polycrystalline ceramics: alumina
- Des céramiques infiltrées : o Verre infiltré dans des cristaux d'alumine pure : InCeram Alumina o Verre infiltré dans des cristaux d'alumine et de magnésium : - Ceramics infiltrated: o Glass infiltrated in crystals of pure alumina: InCeram Alumina o Glass infiltrated in crystals of alumina and magnesium:
InCeram Spinell  InCeram Spinell
o Verre infiltré dans des cristaux d'alumine et de zircone : InCeram Zirconia  o Glass infiltrated in crystals of alumina and zirconia: InCeram Zirconia
Par exemple, le matériau effectif comporte une suspension colloïdale.  For example, the effective material comprises a colloidal suspension.
Selon un exemple particulier, la suspension colloïdale comporte des nanoparticules métalliques stochastiques, c'est à dire qui sont réparties d'une manière aléatoire, c'est-à-dire non alignées ou rangées d'une manière ordonnée.  In a particular example, the colloidal suspension comprises stochastic metal nanoparticles, that is to say which are randomly distributed, that is to say non-aligned or arranged in an orderly manner.
Les couches sont déposées sur un plateau de fabrication d'un dispositif d'impression, dans une enceinte de confinement du dispositif, selon un principe analogue à celui d'un procédé d'impression poly-jet.  The layers are deposited on a manufacturing plate of a printing device, in a confinement chamber of the device, according to a principle similar to that of a poly-jet printing process.
Les couches déposées sont dites « ultra-minces », c'est-à-dire qu'elles ont une épaisseur de l'ordre de 2 μιτι (micromètres).  The deposited layers are called "ultra-thin", that is to say they have a thickness of the order of 2 μιτι (micrometers).
Lorsqu'une section correspondant à une couche atteint une température de l'enceinte de confinement d'au moins 250°C, voire 280°C, voire davantage, le liant, par exemple de la solution colloïdale du matériau effectif, est sublimé et, alors, les nanoparticules s'agglomèrent, selon un phénomène de coalescence, pour former une partie solide formant la partie de l'élément dentaire.  When a section corresponding to a layer reaches a confinement chamber temperature of at least 250 ° C, or even 280 ° C or more, the binder, for example of the colloidal solution of the actual material, is sublimed and, then, the nanoparticles agglomerate, according to a phenomenon of coalescence, to form a solid part forming the part of the dental element.
Ainsi, typiquement, c'est quand la solution colloïdale est projetée dans l'enceinte chauffée que le liant se sublime une fois déposé.  Thus, typically, it is when the colloidal solution is projected into the heated enclosure that the binder sublimes once deposited.
L'empilement de ces couches forme, au final, un volume correspondant à la partie de l'élément dentaire souhaité.  The stack of these layers ultimately forms a volume corresponding to the portion of the desired dental element.
Dans un exemple de mise en œuvre, l'étape d'impression tridimensionnelle comporte au moins une sous-étape de réalisation d'un support par projection d'un matériau de support configuré pour combler, pendant au moins une partie du procédé, au moins une zone en contredépouille de la partie de l'élément dentaire en cours de réalisation. Autrement dit, si cela semble utile, lors de la même phase, un matériau dit « de support » est déposé. Le rôle du matériau de support est de maintenir le matériau projeté initialement sur des zones qui sont susceptibles d'être en contredépouilles et/ou en porte-à-faux, et ceci jusqu'à solidification de celles-ci. In an exemplary implementation, the three-dimensional printing step comprises at least one sub-step of producing a support by projection of a support material configured to fill, during at least part of the process, at least an area underdeep of the portion of the dental element in progress. In other words, if it seems useful, during the same phase, a material called "support" is deposited. The role of the support material is to maintain the initially sprayed material on areas that are likely to be backpainted and / or cantilevered, and this until solidification thereof.
Ainsi, pour une même couche, le matériau effectif est déposé quand il s'agit d'une section de la pièce à réaliser, tandis que le matériau de support est déposé s'il faut combler un vide et/ou soutenir une partie ultérieure en porte- à-faux.  Thus, for the same layer, the actual material is deposited when it is a section of the part to be produced, while the support material is deposited if it is necessary to fill a void and / or support a subsequent part in cantilevered.
Le matériau de support est par exemple de la cire.  The support material is, for example, wax.
Par exemple, le matériau de support est projeté par une buse différente d'une même tête que la buse par laquelle le matériau effectif est projeté.  For example, the support material is projected by a nozzle different from the same head as the nozzle through which the actual material is projected.
Par exemple, le matériau de support a une température de fusion égale ou supérieure à une température d'agglomération des nanoparticules du matériau effectif.  For example, the support material has a melting temperature equal to or greater than a sintering temperature of the nanoparticles of the effective material.
On peut penser que la cire n'a qu'un intérêt temporaire, fugace, à savoir pendant la phase de dépose de la suspension colloïdale par exemple. Après la sublimation du fluide de transport, c'est-à-dire du liant, les nanoparticules sont censées se maintenir grâce à leurs frottements interarticulaires.  It may be thought that the wax has only a temporary, fleeting interest, namely during the phase of deposition of the colloidal suspension for example. After the sublimation of the transport fluid, that is to say the binder, the nanoparticles are supposed to be maintained by their interarticular friction.
Lorsque l'impression de la partie de l'élément dentaire est terminée, ladite partie de l'élément dentaire est frittée, dans une enceinte, possiblement différente de l'enceinte de confinement du dispositif d'impression, par exemple un four ou une étuve, afin de consolider les liens entre les nanoparticules agglomérées. La cohésion de la pièce est alors assurée.  When the printing of the portion of the dental element is complete, said part of the dental element is sintered, in an enclosure, possibly different from the confinement enclosure of the printing device, for example an oven or an oven , in order to consolidate the links between agglomerated nanoparticles. The cohesion of the piece is then ensured.
Lors de cette phase, d'éventuels supports sont fondus, donnant alors à la pièce sa forme finale.  During this phase, any supports are melted, giving the piece its final shape.
Autrement dit, le procédé comporte par exemple une étape de fusion du support.  In other words, the method comprises for example a support melting step.
Un résultat métallurgique est pratiquement identique à du métal issu de fabrication traditionnelle, par exemple par fonderie. Dans un exemple de mise en œuvre, le procédé comporte ensuite possiblement une étape de surfusion d'une partie de l'élément dentaire sur la partie de l'élément dentaire obtenue en sortie de l'étape de frittage, c'est-à-dire qu'on forme une première partie de l'élément par jets de nanoparticules, puis une seconde partie sur cette première partie. A metallurgical result is virtually identical to metal from traditional manufacturing, for example by foundry. In an exemplary implementation, the method then possibly comprises a step of supercooling a portion of the dental element on the part of the dental element obtained at the outlet of the sintering step, that is to say say that one forms a first part of the element by jets of nanoparticles, then a second part on this first part.
Au préalable, la pièce à réaliser, l'élément dentaire, est modélisée numériquement puis le modèle numérique correspondant est sectionné en tranches dont chaque tranche correspond à une couche qui sera déposée par le dispositif d'impression, au moins pour la partie de la pièce qui est à réaliser par impression tridimensionnelle. Le modèle numérique est par exemple fourni sous la forme d'un fichier STL ou autre. Chaque tranche représente donc par exemple une épaisseur de l'ordre de 2 μιτι.  Beforehand, the part to be produced, the dental element, is modeled numerically, then the corresponding numerical model is divided into slices, each slice of which corresponds to a layer that will be deposited by the printing device, at least for the part of the part which is to be realized by three-dimensional printing. The digital model is for example provided in the form of an STL file or other. Each slice therefore represents for example a thickness of the order of 2 μιτι.
Un tel procédé d'impression NPJ présente par exemple les avantages suivants par rapport à une technologie de fabrication additive classique, c'est-à-dire par exemple un procédé d'impression tridimensionnelle par fusion laser :  Such an NPJ printing method has for example the following advantages over a conventional additive manufacturing technology, that is to say for example a three-dimensional laser melting process:
- Le niveau de résolution des pièces est plus précis du fait des fines épaisseurs employées, ce qui permet de meilleures précisions dimensionnelles et géométriques, approchant celles obtenues par de l'usinage. Par exemple, il est ainsi possible d'obtenir un très bon rendu de précision d'une ligne marginale de l'élément dentaire.  - The level of resolution of the parts is more precise because of the thin thicknesses used, which allows better dimensional and geometrical accuracies, approaching those obtained by machining. For example, it is thus possible to obtain a very good precision of a marginal line of the dental element.
- Le niveau de contraintes résiduelles est négligeable de par le fait que le matériau constitutif d'au moins la partie de l'élément dentaire réalisée via ce procédé n'est pas intégralement chauffé jusqu'à son point de fusion ; il n'y pas de déformations ou de contraintes liées à des amas de matériau ou à des traitements thermiques de détentionnement contraignants pour la matière, par exemple réalisés juste avant de détacher les pièces du plateau sur lequel elles sont construites ; cela évite que celles-ci ne s'expriment et donc se déforment lors de cette opération ou lors de la phase de découpage.  - The level of residual stress is negligible in that the constituent material of at least the portion of the dental element made via this process is not fully heated to its melting point; there are no deformations or constraints related to clusters of material or heat treatment restrictive detention for the material, for example made just before detaching the parts of the tray on which they are built; this prevents them from being expressed and therefore deform during this operation or during the cutting phase.
- L'état de surface obtenu est meilleur, ainsi que la précision, comparativement aux technologies par fusion laser ou par faisceau d'électron, par exemple proche d'un usinage par enlèvement de copeau, c'est-à-dire que la rugosité moyenne Ra obtenue pour la surface est par exemple comprise entre environ 0,2 μιτι et environ 1 μιτι. - The surface condition obtained is better, as well as accuracy, compared to laser melting or electron beam technologies, for example close to a machining by chip removal, that is to say that the Average roughness Ra obtained for the surface is for example between about 0.2 μιτι and about 1 μιτι.
- Le taux de porosité du matériau constituant la pièce finie est bien plus constant car l'imbrication de nanoparticules ne laisse pas de lacunes ou de porosité macroscopique. A titre purement illustratif, en fabrication additive traditionnelle, le taux communément admis est typiquement inférieur à 1 % alors qu'il peut être inférieur à 0,1 % avec un procédé NPJ.  - The porosity of the material constituting the finished part is much more constant because the imbrication of nanoparticles leaves no gaps or macroscopic porosity. As a purely illustrative example, in traditional additive manufacturing, the commonly accepted rate is typically less than 1% whereas it may be less than 0.1% with an NPJ process.
- Il est possible de se dispenser d'utiliser un lit de poudre, qui implique un emploi de poudre conséquent dans l'enceinte de fabrication, et un surcoût lié au stockage de celle-ci.  - It is possible to dispense with the use of a bed of powder, which implies the use of powder in the manufacturing chamber, and an additional cost related to the storage thereof.
- La NPJ n'utilise que le volume de matière correspondant à celui des pièces à imprimer.  - The NPJ uses only the volume of material corresponding to that of the parts to be printed.
- Les matériaux utilisés sont plus faciles à manipuler car ils se présentent sous forme de cartouches, de manière similaire aux cartouches d'encre dans les procédés de jet d'encre, et présentent ainsi bien moins de danger que lorsqu'il s'agit de manipuler des poudres métalliques libres. Non seulement il est ainsi possible de s'affranchir du caractère dangereux de l'utilisation de produits pulvérulents pour la santé, mais aussi pour l'environnement.  - The materials used are easier to handle because they are in the form of cartridges, similar to ink cartridges in inkjet processes, and thus present much less danger than when it comes to handle free metal powders. Not only is it possible to overcome the dangerous nature of the use of powdered products for health, but also for the environment.
- L'enceinte du dispositif utilisé n'est pas nécessairement sous atmosphère inerte d'azote ou d'argon, car le procédé utilise le matériau à l'état liquide ce qui permet de réduire des risques inhérents à l'utilisation de poudre.  - The chamber of the device used is not necessarily an inert atmosphere of nitrogen or argon, because the method uses the material in the liquid state which reduces the risks inherent in the use of powder.
- Les supports destinés à soutenir les zones en contredépouille des pièces réalisées sont faciles à retirer et ne présentent pas, de ce fait, de contrainte générant des restrictions géométriques.  - The supports intended to support the areas underdepth of the parts made are easy to remove and therefore do not present a constraint generating geometric restrictions.
- Le temps d'impression est plus rapide (par exemple jusqu'à 5 fois plus productif) que le temps nécessaire pour réaliser le même élément au moyen d'un procédé d'impression par fusion laser ou par faisceau d'électron (grossièrement estimé entre 2 et 8 mm3/s en fonction du type de matière). Il est aussi possible de réaliser plusieurs éléments en une même fournée, c'est-à-dire simultanément. La productivité en est ainsi améliorée. Il est ainsi possible d'être plus réactif à toute demande. - Il n'y a pas de perte de matériau effectif liée à la réalisation de support, ce qui permet de réduire les coûts de production. - The printing time is faster (for example up to 5 times more productive) than the time required to achieve the same element by means of a laser or electron beam printing process (roughly estimated between 2 and 8 mm 3 / s depending on the type of material). It is also possible to make several elements in the same batch, that is to say simultaneously. Productivity is thus improved. It is thus possible to be more responsive to any request. - There is no loss of effective material related to the production of support, which reduces production costs.
En effet, par exemple, il est possible de se dispenser d'une étape de polissage de points d'attache de supports qui est souvent chronophage et coûteuse et susceptible d'altérer la pièce imprimée car dans un procédé NPJ les supports sont réalisés avec un matériau d'origine différente du matériau effectif utilisé pour la partie d'élément dentaire réalisée et il n'y pas de jonction physique préalable, et de là, pas de marques résiduelles qu'il faudrait polir. Ainsi, un tel procédé permet de retirer ces supports d'une manière aisée et autonome, par sublimation du matériau les constituant, par exemple lors de la phase de frittage de la partie de l'élément dentaire réalisée.  Indeed, for example, it is possible to dispense with a step of polishing media attachment points which is often time-consuming and expensive and likely to alter the printed part because in a process NPJ the supports are made with a material of different origin of the actual material used for the part of dental element made and there is no physical junction before, and from there, no residual marks that should be polished. Thus, such a method makes it possible to remove these supports in an easy and autonomous manner, by sublimation of the material constituting them, for example during the sintering phase of the portion of the dental element produced.
Ainsi, dans certains cas, les éléments dentaires peuvent sortir directement prêts à l'emploi d'un tel procédé, ou alors avec seulement un minimum d'étapes de post-traitement, par exemple pour obtenir un aspect poli- miroir sur certaines surfaces de l'élément dentaire.  Thus, in some cases, the dental elements can exit directly ready for use of such a process, or else with only a minimum of post-treatment steps, for example to obtain a mirror-polished appearance on certain surfaces of the dental element.
En d'autres termes, un intérêt majeur d'un tel procédé est que le niveau de finition et de précision en sortie permet de s'affranchir d'une étape de reprise en usinage, actuellement couramment usitée, pour les parties destinées à être assemblées avec d'autres pièces (implants, « multi-units »).  In other words, a major advantage of such a method is that the level of finish and accuracy output allows to overcome a step of recovery in machining, currently commonly used for parts to be assembled with other parts (implants, "multi-units").
Néanmoins, il peut s'avérer quand même pertinent et/ou nécessaire de pratiquer un usinage dans des cas où la précision requise est importante et dépasse la résolution du procédé de NPJ.  Nevertheless, it may still be relevant and / or necessary to perform machining in cases where the required accuracy is important and exceeds the resolution of the NPJ process.
Un autre des intérêts majeurs de ce procédé réside ainsi dans le fait qu'il est possible de pallier aux problèmes de supports, tout en permettant d'utiliser du métal ou de la céramique qui présentent des propriétés mécaniques plus intéressantes.  Another major advantage of this method lies in the fact that it is possible to overcome the problems of media, while allowing the use of metal or ceramic that have more interesting mechanical properties.
Dans le cas de guides obtenus par ce procédé, ceux-ci présentent alors les avantages suivants par exemple :  In the case of guides obtained by this method, these then have the following advantages, for example:
- ils peuvent être stérilisés dans un autoclave,  they can be sterilized in an autoclave,
- ils peuvent être minces et évidés afin de pouvoir accéder visuellement et physiquement aux sites implantaires, et de pouvoir irriguer ceux-ci sans qu'ils soient masqués par un amas géométrique, - ils présentent une bonne précision géométrique par rapport à l'impression tridimensionnelle de métal traditionnelle, malgré un rapport de la section par rapport à la longueur un peu moins favorable, - They can be thin and hollow in order to visually and physically access the implant sites, and to irrigate them without being masked by a geometric cluster, - They have good geometric accuracy compared to the three-dimensional printing of traditional metal, despite a ratio of the section compared to the less favorable length,
- ils présentent une bonne rugosité, ce qui permet de gagner du temps sur le post-traitement de finition, voire de s'en affranchir.  - They have a good roughness, which saves time on the post-finishing treatment, or even to emancipate.
Pour mettre en œuvre un tel procédé, un dispositif d'impression NPJ comporte principalement une enceinte de confinement et un plateau de fabrication, positionné dans l'enceinte de confinement et de laquelle il est possible de l'extraire si nécessaire.  To implement such a method, an NPJ printing device mainly comprises a containment chamber and a manufacturing plate, positioned in the containment chamber and from which it can be extracted if necessary.
Un tel dispositif comporte aussi un bras, lequel peut comporter une ou plusieurs têtes d'impression, la ou les têtes débouchant dans l'enceinte de confinement, par exemple au moins dix, voire vingt têtes, par exemple vingt- quatre (24) têtes (nombre mentionné par certains fabricants dans le domaine de la NPJ), voire davantage.  Such a device also comprises an arm, which may comprise one or more print heads, the head or heads opening into the confinement enclosure, for example at least ten or twenty heads, for example twenty-four (24) heads (number mentioned by some manufacturers in the field of NPJ), or more.
Parallèlement, chaque tête peut possiblement comprendre une ou plusieurs buses, par exemple au moins dix, voire cinquante, voire cent, voire plusieurs centaines de buses, par exemple cinq cent douze (512) buses. Un tel dispositif permet alors par exemple de projeter plusieurs milliers de gouttelettes par seconde, par exemple environ 18 000 gouttelettes par seconde selon les valeurs précitées à titre illustratif.  In parallel, each head may possibly comprise one or more nozzles, for example at least ten or even fifty or even one hundred or even several hundred nozzles, for example five hundred and twelve (512) nozzles. Such a device then allows for example to project several thousand droplets per second, for example about 18,000 droplets per second according to the above values for illustrative purposes.
Est également proposée, selon un autre aspect, une utilisation d'un procédé d'impression tridimensionnelle par jets de nanoparticules pour fabriquer au moins une partie d'un élément dentaire.  It is also proposed, in another aspect, a use of a three-dimensional printing process by jets of nanoparticles to manufacture at least a portion of a dental element.
Il s'agit par exemple d'utiliser un procédé d'impression tridimensionnelle de « NanoParticle Jetting » comportant au moins une partie des caractéristiques décrites précédemment, pour fabriquer au moins une partie d'un élément dentaire.  This is for example to use a three-dimensional process of printing "NanoParticle Jetting" comprising at least a portion of the features described above, to manufacture at least a portion of a dental element.
L'utilisation d'un tel procédé présente ainsi des avantages analogues à ceux décrits ci-dessus.  The use of such a method thus has advantages similar to those described above.
L'invention, selon un exemple de réalisation, sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, donnée à titre indicatif et nullement limitatif, en référence aux dessins annexés dans lesquels : The invention, according to an exemplary embodiment, will be well understood and its advantages will appear better on reading the detailed description which follows, given for information only and in no way limitative, with reference to the appended drawings in which:
La figure 1 montre des piliers implantaires avec leur support sous forme de baguettes en réseau, selon un mode de réalisation par impression tridimensionnelle de l'art antérieur,  FIG. 1 shows implant abutments with their support in the form of network rods, according to one embodiment by three-dimensional printing of the prior art,
La figure 2 montre des piliers implantaires, analogues à ceux de la figure 1 , avec leur support, tels qu'obtenus par un procédé selon un mode de réalisation de la présente invention,  FIG. 2 shows implant abutments, similar to those of FIG. 1, with their support, as obtained by a method according to an embodiment of the present invention,
La figure 3 montre les piliers implantaires de la figure 2 dépourvus de leur support, tels qu'obtenus par le procédé selon un mode de réalisation de la présente invention,  Figure 3 shows the implant abutments of Figure 2 without their support, as obtained by the method according to an embodiment of the present invention,
La figure 4 montre un exemple d'élément dento-porté avec son support, tel qu'obtenu par un procédé selon un mode de réalisation de la présente invention,  FIG. 4 shows an example of dento-carried element with its support, as obtained by a method according to an embodiment of the present invention,
La figure 5 montre un châssis de stellite avec son support, tel qu'obtenu par un procédé selon un mode de réalisation de la présente invention,  FIG. 5 shows a stellite frame with its support, as obtained by a method according to an embodiment of the present invention,
La figure 6 montre le châssis de stellite de la figure 5 dépourvu de son support, tel qu'obtenu par le procédé selon un mode de réalisation de la présente invention,  FIG. 6 shows the stellite frame of FIG. 5 devoid of its support, as obtained by the method according to an embodiment of the present invention,
La figure 7 montre un guide tel qu'obtenu par un procédé de réalisation traditionnellement utilisé, et  Figure 7 shows a guide as obtained by a traditionally used embodiment method, and
La figure 8 montre un guide tel qu'obtenu par un procédé selon un mode de réalisation de la présente invention.  Fig. 8 shows a guide as obtained by a method according to an embodiment of the present invention.
Les éléments identiques ou analogues représentés sur les figures précitées sont identifiés par des références numériques identiques ou analogues.  Identical or similar elements shown in the above figures are identified by identical or similar numerical references.
Une prothèse dentaire unitaire, dite « implanto-portée », que ce soit pilier ou infrastructure unitaire, comporte traditionnellement trois éléments principaux : une couronne (non représentée), un pilier 10 et un implant (non représenté). L'implant, fabriqué de manière traditionnelle par usinage se comporte comme une fondation venant prendre ancrage dans l'os. Il s'agit généralement d'un élément monobloc. Pour être ancré dans l'os, il comporte souvent un pas de vis extérieur formé sur au moins un secteur inférieur. Dans un secteur supérieur et hors enfouissement intra-osseux, l'implant est souvent nanti d'une cavité permettant typiquement à un insert 30 du pilier 10 de venir s'y connecter. Pour cela, la cavité débouche donc à une extrémité supérieure de l'implant, c'est-à-dire une extrémité libre du secteur supérieur. La cavité permet les fonctions classiques d'une connectique traditionnelle qui sont, notamment, un bridage et une indexation angulaire grâce à des géométries de repositionnement. Enfin, l'implant comporte en outre généralement un moyen d'attache d'au moins le pilier dans l'implant, comme par exemple un alésage fileté dans la cavité configuré pour recevoir une vis. A unitary dental prosthesis, called "implant-borne", whether pillar or unitary infrastructure, traditionally comprises three main elements: a crown (not shown), a pillar 10 and an implant (not shown). The implant, traditionally manufactured by machining, behaves like a foundation that is anchored in the bone. This is usually a monoblock element. To be anchored in the bone, it often has an outer thread formed on at least one lower sector. In an upper sector and excluding intraosseous burial, the implant is often provided with a cavity that typically allows an insert 30 of the pillar 10 to come and connect to it. For this, the cavity thus opens at an upper end of the implant, that is to say a free end of the upper sector. The cavity allows the conventional functions of a traditional connection that are, in particular, clamping and angular indexing through repositioning geometries. Finally, the implant further generally comprises means for attaching at least the abutment in the implant, such as, for example, a threaded bore in the cavity configured to receive a screw.
Un pilier 10 forme une interface entre l'implant et la couronne. Le pilier, qualifié de dentaire ou implantaire, a un rôle prépondérant dans la réussite du cas implantaire de par le fait qu'il assure à la fois une transmission des efforts occlusaux et une composante esthétique par la cicatrisation des tissus gingivaux en garantissant le respect de l'espace biologique. Par conséquent, chaque pilier est propre à un implant et une couronne, laquelle est réalisée au cas par cas. Pour que le positionnement du pilier soit bon, il faut conformer précisément une partie basse du pilier, appelée insert 30, en fonction de l'implant, et une partie haute du pilier, appelée corps 20, en fonction de la couronne qui représente la dent à remplacer.  A pillar 10 forms an interface between the implant and the crown. The pillar, qualified as dental or implant, has a preponderant role in the success of the implant case in that it ensures both a transmission of occlusal forces and an aesthetic component by healing the gingival tissues ensuring the respect of the biological space. Therefore, each pillar is specific to an implant and a crown, which is performed on a case by case basis. For the positioning of the pillar to be good, it is necessary precisely to conform a lower part of the pillar, called insert 30, according to the implant, and an upper part of the pillar, called body 20, according to the crown which represents the tooth To replace.
Le pilier 10 comporte donc ici par définition deux parties principales : un insert 30, en partie basse, et un corps 20, en partie haute.  The pillar 10 thus comprises here by definition two main parts: an insert 30, in the lower part, and a body 20, in the upper part.
L'insert 30 et le corps 20 sont possiblement en tout type de matériau métallique biocompatible, par exemple du titane ou un alliage chrome-cobalt.  The insert 30 and the body 20 may be of any type of biocompatible metallic material, for example titanium or a cobalt-chromium alloy.
Afin de fixer le pilier 10 à l'implant dentaire, l'insert 30 peut avoir différentes formes et différents profils. La gamme d'inserts permet ainsi de couvrir les différents cas cliniques rencontrés. Cependant, il peut avoir une forme générique, standard, c'est-à-dire être identique pour plusieurs piliers différents en fonction du type d'implant auquel il est destiné. L'insert 30 comporte, par définition, une partie supérieure 31 , dans un prolongement du corps 20, et une partie inférieure 32, dans un prolongement de la partie supérieure 31 , qui comporte une connectique 33 configurée pour relier l'insert 30 à l'implant, au moins axialement. Autrement dit, la partie supérieure 31 est située entre la partie inférieure 32 et le corps 20. In order to fix the abutment 10 to the dental implant, the insert 30 can have different shapes and different profiles. The range of inserts thus makes it possible to cover the various clinical cases encountered. However, it can have a generic form, standard, that is to say be identical for several different pillars depending on the type of implant for which it is intended. The insert 30 comprises, by definition, an upper portion 31, in an extension of the body 20, and a lower portion 32, in an extension of the upper portion 31, which comprises a connector 33 configured to connect the insert 30 to the implant, at least axially. In other words, the upper part 31 is situated between the lower part 32 and the body 20.
L'insert 30 est par exemple principalement axisymétrique, hormis la connectique 33 et, généralement, présente une forme évasée depuis la connectique en direction du corps, comme l'illustre la figure 1 .  The insert 30 is for example mainly axisymmetric, except the connector 33 and, generally, has a flared shape from the connector to the body, as shown in Figure 1.
Le corps 20 et la partie supérieure 31 peuvent présenter tout type de forme.  The body 20 and the upper part 31 may have any type of shape.
Les corps sont réalisés sur mesure, au cas par cas, en fonction de la morphologie de la dent à remplacer, c'est-à-dire de la couronne à laquelle il est destiné à être relié, ainsi que du profil de la crête osseuse et de la gencive.  The bodies are made to measure, case by case, depending on the morphology of the tooth to be replaced, that is to say the crown to which it is intended to be connected, and the profile of the bone ridge and the gum.
Ainsi, le corps 20 nécessite généralement d'être réalisé sur mesure tandis que l'insert 30 peut être standard, mais l'insert comporte une connectique qui doit être réalisée précisément en vue de son assemblage avec un implant.  Thus, the body 20 generally needs to be made to measure while the insert 30 may be standard, but the insert has a connector that must be made precisely for its assembly with an implant.
Pour cela, il s'était par exemple avéré particulièrement intéressant de combiner un procédé de fabrication additive, en particulier par fusion laser, avec un procédé d'électroérosion. Un tel procédé a par exemple été décrit dans la demande de brevet français n°1655629 déposée le 16 juin 2016.  For this, it had for example proved particularly interesting to combine an additive manufacturing process, in particular by laser melting, with an electroerosion process. Such a method has for example been described in French Patent Application No. 1655629 filed on June 16, 2016.
La figure 1 présente des piliers 10 obtenus par un exemple de mise en œuvre d'un tel procédé.  Figure 1 shows pillars 10 obtained by an example of implementation of such a method.
Les piliers implantaires sont alors formés « la tête en bas » sur un plateau 50 de fabrication. Ainsi, les connectiques 33 sont alors une partie libre orientée vers le haut par rapport au plateau 50 de fabrication.  The implant abutments are then formed "upside down" on a platen 50 of manufacture. Thus, the connectors 33 are then a free portion oriented upwardly relative to the plate 50 of manufacture.
Cependant, dans un tel procédé, un pilier 10, avant finitions, comporte en outre un support 40, par exemple une armature permettant un maintien et une amorce à la fabrication du pilier correspondant. Dans un exemple de réalisation particulièrement intéressant qui est ici représenté, le support 40 comporte des baguettes, par exemple disposées en réseau. De telles baguettes sont ensuite par exemple facilement sécables pour les détacher du pilier. Toutefois, un tel procédé requiert alors un retrait ultérieur du support 40 qui engendre généralement une étape de reprise en finition, par exemple un polissage. However, in such a method, a pillar 10, before finishing, further comprises a support 40, for example a reinforcement allowing a maintenance and a primer to the manufacture of the corresponding pillar. In a particularly interesting embodiment which is shown here, the support 40 comprises rods, for example arranged in a network. Such rods are then for example easily scored for detach from the pillar. However, such a method then requires a subsequent withdrawal of the support 40 which generally generates a recovery step in finishing, for example a polishing.
De même, il est également possible de reprendre en usinage le corps 20 et la partie supérieure 31 .  Similarly, it is also possible to resume machining the body 20 and the upper part 31.
Or, il est intéressant de pouvoir se dispenser d'une telle étape dans certains cas.  However, it is interesting to be able to dispense with such a step in certain cases.
Un procédé de fabrication comportant au moins une étape de dépôt successif de couches par NanoParticle Jetting (NPJ) s'est alors révélé particulièrement intéressant.  A manufacturing process comprising at least one step of successive deposition of layers by NanoParticle Jetting (NPJ) was then particularly interesting.
Un tel procédé permet aussi de réaliser simultanément, c'est-à-dire au cours d'une même fournée sur un même plateau, une pluralité d'éléments dentaires, étant entendu que « pluralité » signifie ici au moins deux ; mais, dans le présent contexte, il est possible de réaliser par exemple au moins cinq, voire dix, voire vingt éléments dentaires simultanément, voire davantage.  Such a method also makes it possible to produce simultaneously, that is to say during the same batch on the same plate, a plurality of dental elements, it being understood that "plurality" here means at least two; but, in the present context, it is possible to produce for example at least five or even ten or even twenty dental elements simultaneously, or even more.
En particulier, pour chaque couche, l'étape d'impression tridimensionnelle comporte alors notamment une sous-étape de formation de la couche de la partie de l'élément dentaire par projection de gouttelettes d'au moins un matériau effectif, par exemple dans une enceinte de confinement d'un dispositif d'impression, et une sous-étape de chauffage de ladite couche dans laquelle des nanoparticules du matériau effectif s'agglomèrent et un liant du matériau effectif est sublimé, dans l'enceinte de confinement.  In particular, for each layer, the three-dimensional printing step then comprises in particular a substep of forming the layer of the portion of the dental element by projection of droplets of at least one effective material, for example in a confinement enclosure of a printing device, and a substep of heating said layer in which nanoparticles of the effective material agglomerate and a binder of the effective material is sublimated in the containment.
Dans un exemple de mise en œuvre, l'étape d'impression tridimensionnelle comporte aussi au moins une sous-étape de réalisation d'un support par projection d'un matériau de support configuré pour combler, pendant au moins une partie du procédé, au moins une zone en contredépouille de la partie de l'élément dentaire en cours de réalisation.  In an exemplary implementation, the three-dimensional printing step also comprises at least one sub-step of producing a support by projection of a support material configured to fill, during at least part of the process, with the least an area underdeep of the portion of the dental element in progress.
La figure 2 présente des éléments dentaires qui sont des piliers 10 obtenus à l'issue de telles étapes.  Figure 2 shows dental elements which are abutments obtained at the end of such steps.
Le pilier 10 représenté à droite de la figure 2 est représenté en coupe de sorte à mieux illustrer la présence du support 40, qui est alors ici massif, formé autour du corps 20. Ensuite, par exemple, le procédé comporte une étape de frittage du pilier 10 imprimé par NPJ dans une enceinte, l'étape de frittage étant configurée pour consolider les liens entre les nanoparticules du matériau effectif agglomérées. The pillar 10 shown to the right of Figure 2 is shown in section so as to better illustrate the presence of the support 40, which is here massive, formed around the body 20. Then, for example, the method comprises a step of sintering the abutment 10 printed by NPJ in an enclosure, the sintering step being configured to consolidate the bonds between the nanoparticles of the agglomerated effective material.
Une telle étape peut avoir lieu dans une enceinte différente ou dans une même enceinte.  Such a step can take place in a different enclosure or in the same enclosure.
Pendant cette étape par exemple, le procédé comporte alors une étape de fusion du support.  During this step for example, the method then comprises a step of melting the support.
Le cas échéant, il est alors préférable que le matériau constituant le support ait une température de fusion égale ou supérieure à une température d'agglomération des nanoparticules du matériau effectif.  If necessary, it is then preferable that the material constituting the support has a melting temperature equal to or greater than a sintering temperature of the nanoparticles of the effective material.
La figure 3 présente des piliers 10 obtenus à l'issue d'une telle étape, c'est-à-dire qu'ils sont désormais dépourvus de leur support 40.  FIG. 3 shows pillars 10 obtained at the end of such a step, that is to say that they are now devoid of their support 40.
La figure 4 illustre le procédé selon un exemple de mise en œuvre appliqué à un élément dento-porté 10' avec son support 40'.  FIG. 4 illustrates the method according to an exemplary implementation applied to a dento-carried element 10 'with its support 40'.
La figure 5 illustre le procédé selon un exemple de mise en œuvre appliqué un châssis de stellite 10" avec son support 40" et la figure 6 montre le châssis de stellite 10" de la figure 5 dépourvu de son support 40", tel qu'obtenu par le procédé selon un mode de mise en œuvre de la présente invention après une étape de fusion du support 40".  FIG. 5 illustrates the method according to an implementation example applied to a stellite frame 10 "with its support 40" and FIG. 6 shows the stellite frame 10 "of FIG. 5 devoid of its support 40", such as obtained by the method according to an embodiment of the present invention after a step of melting the support 40 ".
Ces figures 5 et 6 permettent de mieux illustrer l'intérêt de la présence d'un support réalisé dans un mode de mise en œuvre de la présente invention lorsque l'élément dentaire à réaliser comporte diverses parties très complexes ou en porte-à-faux.  These FIGS. 5 and 6 make it possible to better illustrate the advantage of the presence of a support made in an embodiment of the present invention when the dental element to be made comprises various highly complex or cantilever parts. .
Les figures 7 et 8 permettent de comparer deux guides : l'un obtenu par un procédé de réalisation traditionnellement utilisé (figure 7) par impression 3D et l'autre obtenu par un procédé selon un mode de mise en œuvre de la présente invention (figure 8).  FIGS. 7 and 8 make it possible to compare two guides: one obtained by a method of realization conventionally used (FIG. 7) by 3D printing and the other obtained by a method according to an embodiment of the present invention (FIG. 8).
Le guide de la figure 7 est par exemple massif et intégralement en résine. Des inserts métalliques peuvent être rajoutés dans les parties actives pour le guidage des outils ancillaires. Le guide 10"' de la figure 8 est alors réalisable en métal, ce qui permet de le stériliser à chaud et d'avoir un guide mécaniquement plus résistant, plus solide. En outre, il peut présenter une structure plus aérée et/ou plus complexe - c'est-à-dire aussi plus adaptable à tout type de morphologie - et permet parallèlement une meilleure accessibilité au site implantaire. The guide of Figure 7 is for example solid and integrally resin. Metal inserts can be added in the active parts for the guidance of ancillary tools. The guide 10 "'of Figure 8 is then feasible metal, which allows to sterilize hot and have a mechanically stronger guide, more solid.In addition, it may have a more ventilated structure and / or more complex - that is to say also more adaptable to any type of morphology - and at the same time allows better accessibility to the implant site.
Ainsi, un tel procédé permet de réaliser au cours d'une même fournée plusieurs éléments dentaires, quels qu'ils soient (par exemple à la fois un ou plusieurs pilier(s) 10 et/ou un ou plusieurs élément(s) dento-porté(s) 10' et/ou un ou plusieurs châssis de stellite 10" et/ou un ou plusieurs guide(s) 10"' etc.), par exemple sur un même plateau 50.  Thus, such a method makes it possible to produce, during the same batch, several dental elements, whatever they may be (for example both one or more pillar (s) and / or one or more dental element (s). carried 10 'and / or one or more stellite frames 10 "and / or one or more guide (s) 10" etc.), for example on the same plate 50.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un élément dentaire (10, 10', 10", 10"') comportant : 1. A method of manufacturing a dental element (10, 10 ', 10 ", 10"') comprising:
- une étape d'impression tridimensionnelle d'au moins une partie de l'élément dentaire (10, 10', 10", 10"') par un dépôt successif de couches par jets de nanoparticules, pour chaque couche l'étape d'impression tridimensionnelle comportant une sous-étape de formation de la couche de la partie de l'élément dentaire (10, 10', 10", 10"') par projection de gouttelettes d'au moins un matériau effectif dans une enceinte de confinement d'un dispositif d'impression et une sous-étape de chauffage de ladite couche dans laquelle des nanoparticules du matériau effectif s'agglomèrent et un liant formant un milieu suspensif pour ces nanoparticules du matériau effectif est sublimé, dans l'enceinte de confinement, et  a step of three-dimensional printing of at least a portion of the dental element (10, 10 ', 10 ", 10"') by a successive deposition of layers by jets of nanoparticles, for each layer the step of three-dimensional printing comprising a substep of forming the layer of the portion of the dental element (10, 10 ', 10 ", 10"') by projecting droplets of at least one effective material into a confinement enclosure a printing device and a substep of heating said layer in which nanoparticles of the effective material agglomerate and a binder forming a suspending medium for these nanoparticles of the effective material is sublimated in the containment, and
- une étape de frittage d'au moins la partie de l'élément dentaire (10, 10', 10", 10"') imprimée par jets de nanoparticules dans une enceinte, l'étape de frittage étant configurée pour consolider les liens entre les nanoparticules du matériau effectif agglomérées.  a step of sintering at least the portion of the dental element (10, 10 ', 10 ", 10"') printed by jets of nanoparticles in an enclosure, the sintering step being configured to consolidate the links between the nanoparticles of the actual material agglomerated.
2. Procédé selon la revendication 1 dans lequel les nanoparticules du matériau effectif comportent un matériau biocompatible qui comporte du métal biocompatible ou un matériau céramique biocompatible. 2. The method of claim 1 wherein the nanoparticles of the effective material comprise a biocompatible material which comprises biocompatible metal or a biocompatible ceramic material.
3. Procédé selon l'une quelconque des revendications 1 ou 2 dans lequel l'étape d'impression tridimensionnelle comporte au moins une sous- étape de réalisation d'un support (40, 40', 40") par projection d'un matériau de support configuré pour combler, pendant au moins une partie du procédé, au moins une zone en contredépouille de la partie de l'élément dentaire (10, 10', 10", 10"') en cours de réalisation. 3. Method according to any one of claims 1 or 2 wherein the three-dimensional printing step comprises at least one sub-step of producing a support (40, 40 ', 40 ") by projection of a material carrier assembly configured to fill, during at least a portion of the method, at least one area in a counterpane of the portion of the dental element (10, 10 ', 10 ", 10"') in progress.
4. Procédé selon la revendication 3, comportant une étape de fusion du support (40, 40', 40"). 4. The method of claim 3, comprising a step of melting the support (40, 40 ', 40 ").
5. Utilisation d'un procédé d'impression tridimensionnelle par jets de nanoparticules pour fabriquer au moins une partie d'un élément dentaire (10, 10', 10", 10"'). 5. Using a three-dimensional printing process by jets of nanoparticles to manufacture at least a portion of a dental element (10, 10 ', 10 ", 10"').
PCT/FR2018/050437 2017-02-24 2018-02-23 Process for manufacturing a dental article using 3d printing WO2018154252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751495 2017-02-24
FR1751495A FR3063221B1 (en) 2017-02-24 2017-02-24 METHOD FOR MANUFACTURING A DENTAL ELEMENT BY THREE DIMENSIONAL PRINTING

Publications (1)

Publication Number Publication Date
WO2018154252A1 true WO2018154252A1 (en) 2018-08-30

Family

ID=58670003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050437 WO2018154252A1 (en) 2017-02-24 2018-02-23 Process for manufacturing a dental article using 3d printing

Country Status (2)

Country Link
FR (1) FR3063221B1 (en)
WO (1) WO2018154252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679547B2 (en) 2019-03-27 2023-06-20 3D Systems, Inc. High productivity system for printing precision articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056230A1 (en) * 2013-10-17 2015-04-23 Xjet Ltd. Methods and systems for printing 3d object by inkjet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056230A1 (en) * 2013-10-17 2015-04-23 Xjet Ltd. Methods and systems for printing 3d object by inkjet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALON ZIV ET AL: "XJET ANNOUNCES 3D CERAMIC CAPABILITIES", 8 November 2016 (2016-11-08), XP055421199, Retrieved from the Internet <URL:http://xjet3d.com/news/xjet-announces-3d-ceramic-capabilities/> [retrieved on 20171102] *
EBERT J ET AL: "Direct inkjet printing of dental prostheses made of zirconia", vol. 88, no. 7, 1 July 2009 (2009-07-01), pages 673 - 676, XP002745570, ISSN: 0022-0345, Retrieved from the Internet <URL:http://jdr.sagepub.com/content/88/7/673> [retrieved on 20151005], DOI: 10.1177/0022034509339988 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679547B2 (en) 2019-03-27 2023-06-20 3D Systems, Inc. High productivity system for printing precision articles

Also Published As

Publication number Publication date
FR3063221A1 (en) 2018-08-31
FR3063221B1 (en) 2019-04-19

Similar Documents

Publication Publication Date Title
EP3860785B1 (en) Method for manufacturing a part of complex shape by pressure sintering starting from a preform
EP0437390B1 (en) Femoral component for a knee prosthesis
EP2794170B1 (en) Method for assembling, by brazing, a substrate comprising pyrocarbon with parts comprising pyrocarbon
WO2016102876A1 (en) Tool for manufacturing parts by selective melting or selective sintering on a powder bed, and manufacturing method implementing such a tool
EP2632877A1 (en) Process for coating a part with an oxidation-protective coating
EP3444050B1 (en) Method and machine for producing at least one part in at least one ceramic and/or metal material by additive manufacturing
CA2350655C (en) Method for making self-brazing components using powder metallurgy
EP3860783B1 (en) Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form
EP2421668B1 (en) Method for manufacturing an assembly including a plurality of blades mounted in a platform
WO2020254145A1 (en) Method for laser beam additive manufacturing of a machine part with technical and/or decorative function and machine part with technical and/or decorative function
WO2018154252A1 (en) Process for manufacturing a dental article using 3d printing
JPH0741930A (en) Method of joining of material by metal spray
CH707351A2 (en) Decoration part for use in e.g. clock element such as dial, has set of cleavage lines of stones mounted in and out with regard to each other such that single base is masked, where material is provided as partially amorphous alloy
EP3257469B1 (en) Method for producing a dental prosthesis implant pillar by additive manufacturing and spark machining and facility for implementing such a method
EP2796065B1 (en) Invisible set decoration element
CH716026B1 (en) Additive manufacturing process by laser beam of a mechanical part with a technical and / or decorative function and a mechanical part with a technical and / or decorative function.
FR3038702A1 (en) TOOLS FOR SUPPORTING A PREFORM IN POWDER DURING THERMAL TREATMENT
WO2022269143A1 (en) Method for fabricating a mirror by 3d printing
WO2020245551A1 (en) Method for manufacturing a turbomachine part by mim molding
JPH0741929A (en) Preparation of composite article by metal spray
FR3038703A1 (en) TOOLS FOR SUPPORTING A PREFORM IN POWDER DURING THERMAL TREATMENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18709695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205 EN DATE DU 19/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18709695

Country of ref document: EP

Kind code of ref document: A1