WO2018154159A1 - Método y aparato para determinar zonas de crecimiento vegetal favorable - Google Patents

Método y aparato para determinar zonas de crecimiento vegetal favorable Download PDF

Info

Publication number
WO2018154159A1
WO2018154159A1 PCT/ES2018/070117 ES2018070117W WO2018154159A1 WO 2018154159 A1 WO2018154159 A1 WO 2018154159A1 ES 2018070117 W ES2018070117 W ES 2018070117W WO 2018154159 A1 WO2018154159 A1 WO 2018154159A1
Authority
WO
WIPO (PCT)
Prior art keywords
areas
electrodes
plant growth
favorable
terrestrial
Prior art date
Application number
PCT/ES2018/070117
Other languages
English (en)
French (fr)
Inventor
José María MARTÍ SAURAS
Original Assignee
Marti Sauras Jose Maria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marti Sauras Jose Maria filed Critical Marti Sauras Jose Maria
Publication of WO2018154159A1 publication Critical patent/WO2018154159A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/245Earth materials for agricultural purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields

Definitions

  • the present invention concerns a method and an apparatus for determining areas of favorable plant growth in a given terrain, to be analyzed, by measuring the field of terrestrial electric potential, naturally generated by the terrain, at a plurality of points of sounding, detecting in said land the zones of favorable plant growth and the areas in which the plant growth is less favorable, allowing to determine the areas in which it is more conducive to plant a plantation or in which it is desirable to modify the electric potential field land.
  • the field of terrestrial electric potential means in this description the difference of electric potential, generated naturally, between two points distant from a land.
  • Some techniques for measuring terrestrial electric potential fields are known, and are mainly used to detect underground water currents, and to perform geological analyzes of large areas of territory using electrodes spaced hundreds or thousands of meters apart.
  • the present invention concerns a method and apparatus for determining areas of favorable plant growth, based on the measurement of terrestrial electric potential fields that are generated naturally in different areas of a land.
  • the main known causes that generate or alter these fields of terrestrial electric potential are the pressure gradients, temperature or chemical concentrations in the earth, as well as the electrochemical potentials in a heterogeneous chemical field, the flow potentials due to water circulation underground, to the existence of geological boundaries, or corrosion phenomena of buried metals.
  • Said field of terrestrial electrical potential, detected in a field has been related by the present inventors to the growth of plant species demonstrating the existence of a correlation between said value of the field of terrestrial electric potential and the vigor of the existing plant species in said analyzed terrain.
  • the areas where plant growth is favorable are those in which a field of terrestrial electric potential of negative value has been detected, that is to say of a smaller magnitude with respect to a reference point, while the areas of less favorable plant growth are those areas where it has been a field of terrestrial electric potential of positive value detected, that is to say of a greater magnitude with respect to said reference point.
  • the present invention proposes in a first aspect a method for determining areas of favorable growth of plant species comprising the following steps:
  • Define a surface of a land in which it is desired to determine the zones of favorable plant growth for said plant species (for example, fescue, vineyard, willow, beans, peppers, tomatoes, onions, among others);
  • the proposed method includes delimiting a study area, generally a land with agricultural interest, and selecting a plurality of sounding points spaced apart and distributed over said land where a plurality of electrodes are arranged, said electrodes being preferably distributed in a homogeneous way.
  • Each electrode is placed in electrical contact with the ground, preferably nailing it inside, thus achieving a better contact between the electrode and the ground, and the measurements of the fields of terrestrial electric potential between each of said electrodes are carried out. and said reference point, or first electrode, by means of the measuring device connected to said electrodes.
  • the data obtained refer to the difference in electrical potential between said reference point and the electrodes of the plurality of electrodes used in each measurement, therefore these data are indicative of a gradient, which will also occur between contiguous points of electrodes
  • the data obtained allow us to know in which areas of the land it is more favorable or more unfavorable to carry out a plantation, and the differences in agricultural productivity between the different areas of the studied land.
  • the analysis of the terrain can be performed at one time, said plurality of electrodes being arranged throughout the surface of the terrain, or preferably it can be carried out in stages, analyzing a portion of the terrain at each stage, and completing the analysis by having analyzed all portions of the land At each stage, said plurality of electrodes distributed only in said portion of the terrain to be studied is placed, and upon completion of all the stages the entire terrain will have been studied. In this way a smaller amount of electrodes is required, and the density of the sounding points will be constant and independent of the total size of the terrain to be analyzed, since portions of a standardized size can be analyzed, thus being the measurements of different comparable terrain.
  • the measurement of the terrestrial electric potential field in the plurality of sounding points is carried out by means of metal electrodes (for example stainless steel) in contact with or introduced into the ground at a depth of between 0 and 50 cm, although it is also contemplated that the measurement is carried out by means of electrodes introduced into the ground at greater depths and even using other types of electrodes.
  • metal electrodes for example stainless steel
  • different measurements can be made at different depths at each of the probing points, either by successive readings with successively driven electrodes at different depths, or by electrodes capable of making readings at different points of their longitudinal development.
  • all electrodes are introduced at the same depth when measuring to obtain equivalent and comparable data referring to the entire plurality of sounding points.
  • the electrodes are preferably arranged with a distance of one meter equal to or less than one meter (although they may be separated at a greater distance), thus allowing detailed information on the terrain studied.
  • the data obtained by means of the electrodes refer to specific measurements, but they do not offer data of all the points of the terrain to be studied, only of some of them.
  • By means of said point readings it is possible to calculate the value of the field of terrestrial electric potential estimated in the rest of the land, allowing to create a field map of two-dimensional or three-dimensional terrestrial electric potential of the whole land, and even of the interior of the subsoil of said ground.
  • a statistical treatment is carried out, by means of an interpolation method, of all the data obtained from the measurement, providing a greater number of field potential values of terrestrial electric potential than those obtained by a direct measurement.
  • Said statistical treatment not only allows to obtain a map of the terrestrial electric fields on the surface of the land to be studied, but also allows to calculate the estimated terrestrial electric potential field at different depths of the land, thus allowing to detect underground water currents, underground structures such as pipes, caves, dolins or hollows in general, or rock formations, roots and even the presence of hydrocarbons due to the interference they cause in the natural electric field.
  • the sounding points where measurements are made by means of the electrodes, can be arranged along substantially straight and horizontal measurement lines, the sounding points being substantially equidistant along said measuring lines.
  • each polling point can be positioned by means of a geolocation device, which provides its coordinates, for example GPS equipment, theodolites, laser positioning equipment, etc.
  • the data of the terrestrial electric potential field and the coordinates of each point of acquisition of said data can be stored in a related way, allowing to know the exact position and reading of each of the electrodes.
  • the field of terrestrial electric potential of a zone can also be altered, putting said zone in electrical contact with another zone with a different electric potential field, by a pair of electrodes connected by a conductive element such as a cable.
  • This connection will allow, gradually, the electric charges move from one area to the other, altering the field of terrestrial electric potential around the two electrodes.
  • This allows moving favorable growth zones from non-plantation areas to plantation areas, maximizing the productivity of a plantation, and / or reducing unwanted growth of plant species in certain areas of the land, such as so-called weeds. All this has a lower use of fertilizers and herbicides, and greater productivity of the land.
  • the zones of favorable plant growth are those zones in which a field of terrestrial electric potential of negative value is detected (that is, of a magnitude smaller than the reference electrode) and the zones of less favorable plant growth are those areas in which a field of terrestrial electric potential of positive value is detected (that is, of a magnitude greater than the reference electrode).
  • the present invention provides an apparatus for determining favorable growth zones of plant species.
  • the proposed apparatus is configured to implement the method of the first aspect of the invention.
  • the apparatus for determining areas of favorable plant growth includes:
  • a plurality of electrodes configured to measure the field of natural terrestrial electrical potential and configured so that in a measurement position they are in contact with a land in which it is desired to determine areas of favorable plant growth (3) for plant species (for example, fescue, vineyard, willow, beans, peppers, tomatoes, onions, among many other plant species); • a geolocation device configured to detect the position of each individual electrode;
  • a measuring device with one or more processors and at least one memory for measuring the terrestrial electric potential, where the measuring device is operatively electrically connected to each electrode and is configured to acquire data related to a potential difference of the natural terrestrial electric field, existing between a reference point (P) and each of the electrodes of said plurality of electrodes; and to determine areas of favorable plant growth (3) and areas of less favorable plant growth (4) based on the potential difference data obtained for each of the measured points;
  • Y a measuring device with one or more processors and at least one memory for measuring the terrestrial electric potential
  • said memory for storing the data provided by the measuring device associated with the data provided by the geolocator.
  • the proposed apparatus allows measurements of the terrestrial electric potential field between each of said plurality of electrodes and the first reference electrode, and also allows storing the information obtained, relating said information to the position of each of the electrodes within the field to be analyzed, said position having been provided by a geolocator, such as a satellite location system, a theodolite, a laser meter, etc.
  • a geolocator such as a satellite location system, a theodolite, a laser meter, etc.
  • said apparatus is integrated into a mobile unit, allowing its movement through the terrain to be analyzed.
  • said plurality of electrodes are attached to a support, forming a matrix, said support being vertically movable between said measurement position, in which said plurality of electrodes is in contact with the ground, and a retracted position, in the that said plurality of electrodes is not in contact with the ground.
  • Said movable support can also optionally be integrated in said mobile unit. Both the mobile unit and the mentioned support can be motorized, being activated automatically.
  • the electrodes have an isolated non-sensitive proximal section intended to be close to the surface of the terrain and a non-isolated sensitive distal end intended to be within the terrain, further away from the surface, allowing measurements at a depth determined.
  • the mobile unit may also include environmental sensors selected from: air temperature sensor, soil temperature sensor, air humidity sensor, soil moisture sensor, soil acidity sensor, or a temperature sensor of the electrodes themselves . The data provided by said environmental sensors will preferably be stored in said memory.
  • the measurements of the terrestrial electric potential field are not only performed between contiguous electrodes arranged at contiguous sounding points, but measurements can also be made between non-contiguous electrodes, thereby increasing the number of measurements and their accuracy, without requiring a greater number of electrodes or sounding points.
  • Fig. 1 shows a plan view of a rectangular terrain to be analyzed in which a reference point, or first reference electrode, and a plurality of sounding points homogeneously distributed over said land have been defined forming a nine-row matrix (numbered) and nineteen columns (referenced from a, to s);
  • Fig. 2 shows graphs of the values of the terrestrial electric potential field obtained from contiguous electrodes located at the probe points of row 2, row 5 and row 8;
  • Fig. 3 shows a two-dimensional map of estimated terrestrial electric potential fields, obtained by means of the statistical treatment of the data obtained by means of the electrodes located at the probing points indicated in Fig. 1, superimposed on the plan view of the analyzed land, and the plot with the + symbol corresponding to positive values, and the plot with the symbol - to negative values of the estimated terrestrial electric potential field, and the density of said frames corresponding to the magnitude of the estimated value.
  • the present invention concerns a method and an apparatus for determining areas of favorable plant growth 3 (see Fig. 3) by measuring the field of terrestrial electric potential, naturally generated by the ground, between a first reference electrode P and a plurality of sounding points 2 arranged in a field 1 to be analyzed.
  • the proposed apparatus consists of a mobile unit equipped with motorized tractor wheels or tracks, said mobile unit being compact and small in size, allowing its movement between different areas of a plantation of the land 1 to be analyzed.
  • a support is provided, on its underside, with a plurality of electrodes in the form of metal bars attached to said support and protruding downwards, each electrode being separated and electrically isolated from the support and the rest of the electrodes, and individually connected to a measuring device or device also integrated in said mobile unit.
  • said electrodes are arranged equidistant from each other forming a matrix, their relative position being known, for example 30 centimeters (without being limiting since said electrodes can be separated at a greater distance, for example a meter, and even at a greater distance ).
  • the aforementioned support on which the electrodes are fixed can move vertically with respect to the rest of the mobile unit, by means of guide elements, and actuator means, such as an electric motor, a hydraulic piston, or other similar equipment, allow to move vertically said support between a measuring position, in which said plurality of electrodes is in contact with the ground, and a retracted or withdrawn position, in which said plurality of electrodes is not in contact with the ground.
  • actuator means such as an electric motor, a hydraulic piston, or other similar equipment
  • a plurality of electrodes can be driven into said region of the terrain to be analyzed, at points of sounding 2, then proceeding to read the field of terrestrial electric potential of that portion of the land by means of the measuring device or device.
  • electrode drilling and reading for successive different regions of the terrain 1, the total measurement of the terrain 1 can be completed.
  • All the data obtained from the different readings are stored in a memory, preferably of the measuring device, together with the precise position of each electrode at the time of taking each reading, thus allowing to elaborate an accurate map of the probing points 2 (such as the one shown in Fig. 1), to which the results obtained from said surveys can also be superimposed.
  • the precise position of each sounding point 2 can be obtained by the precise location of the mobile unit on the ground, for example by satellite positioning equipment, or by theodolite type equipment electronic, laser measuring equipment, or any other usual location and positioning system.
  • Other data relating, for example, to the temperature or humidity of the air or the ground can also be stored, after obtaining it by means of environmental sensors arranged in the mobile unit.
  • Said mobile unit can be programmed to move through the terrain and execute the successive surveys automatically, thus allowing it to obtain all the information of the land without requiring additional instructions from an operator and accelerating said operation.
  • a computer system After obtaining all the land data, a computer system proceeds to perform a statistical treatment, by means of an interpolation method, of the set of data of the terrestrial electric potential field obtained from the measurement, providing estimated terrestrial electric potential field values of all points of the terrain. The measured and estimated data are then used to create a two-dimensional or three-dimensional map of the values of the terrestrial electric potential field over the entire surface of the land, as shown by way of example in Fig. 3.
  • This map allows to identify the zones of favorable plant growth 3 and the zones of less favorable plant growth 4 based on the value of the field of terrestrial electric potential in these zones.
  • This information is useful for deciding which plant species to plant, or their distribution within the land, concentrating the specimens in areas of favorable plant growth.
  • the aforementioned computer system equipped with an appropriate program also allows interpolation to develop a map of terrestrial electrical potential for other applications such as:
  • Transfer electrodes can be, just like electrodes, simple metal bars. To operate, they must be driven into the ground and connected to each other by means of an electric cable. Since said transfer electrodes and said cable are very conductive and since there is a difference in electrical potential between the two transfer electrodes, the electric charges will flow naturally from one transfer electrode to the other, thus gradually reducing the existing potential difference between the land surrounding both transfer electrodes, and thus achieving that the plantation areas coinciding with the less favorable growth zones 4 are more favorable to the growth of plant species.
  • the electrical potential of the soil may be altered or modified in an artificial way, for example by injecting electric current, either by means of a battery or a battery connected to the ground, by placing a solar panel that produces electricity and transfer to the ground by means of a terminal electrode (positive and / or negative), etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

La determinación de las zonas de crecimiento vegetal favorable se realiza mediante la medición del campo de potencial eléctrico terrestre, generado de forma natural por el terreno, entre una pluralidad de puntos de sondeo y un punto de referencia dispuestos en un terreno a analizar, y la determinación del campo de potencial eléctrico terrestre en diferentes zonas de dicho terreno, detectando las zonas de crecimiento vegetal favorable y las zonas en las que el crecimiento vegetal es menos favorable, permitiendo determinar las zonas en las que es más favorable realizar la plantación o en las que es deseable modificar el campo de potencial eléctrico terrestre mediante su interconexión con otras zonas.

Description

MÉTODO Y APARATO PARA DETERMINAR ZONAS DE CRECIMIENTO VEGETAL
FAVORABLE
Campo de la técnica
La presente invención concierne a un método y un aparato para determinar unas zonas de crecimiento vegetal favorable en un terreno dado, a analizar, mediante la medición del campo de potencial eléctrico terrestre, generado de forma natural por el terreno, en una pluralidad de puntos de sondeo, detectando en dicho terreno las zonas de crecimiento vegetal favorable y las zonas en las que el crecimiento vegetal es menos favorable, permitiendo determinar las zonas en las que es más propicio realizar una plantación o en las que es deseable modificar el campo de potencial eléctrico terrestre.
Por campo de potencial eléctrico terrestre se entenderá en esta descripción la diferencia de potencial eléctrico, generado de forma natural, entre dos puntos distanciados de un terreno.
Estado de la técnica
Algunas técnicas de medición de los campos de potencial eléctrico terrestres son conocidas, y se emplean principalmente para detectar corrientes subterráneas de agua, y para realizar análisis geológicos de grandes extensiones de territorio mediante electrodos distanciados cientos o miles de metros.
Se conocen mediante algunas publicaciones que existe una interacción entre los campos de potencial eléctrico terrestre y las especies vegetales.
Por ejemplo el artículo "ELSEVIER. Dominique Gibert, Jean-Louis Le Mouél, Luc Lambs, Florence Nicollin, Frédéric Perrier. Sapflow and daily electric potential variations in a tree trunk. 1 h January 2006" divulga la aplicación de un sistema de medición del potencial eléctrico espontáneo entre dos puntos sobre una superficie o a poca profundidad junto a un árbol y en el propio árbol. Este documento no relaciona el campo de potencial eléctrico terrestre con el crecimiento del árbol, ni se propone alterarlo.
En la patente US 7956624 B2 se describe un método para detectar el crecimiento de raíces mediante electrodos insertados en la tierra y espaciados, aplicando corriente eléctrica en algunos de dichos electrodos, y midiendo el potencial eléctrico recibido en los otros electrodos, permitiendo construir una representación de impedancia eléctrica que localiza las raíces de las plantas. Este método no detecta el campo de potencial eléctrico terrestre generado de forma natural por el terreno, y por lo tanto no permite detectar zonas de crecimiento vegetal favorable, ni tampoco estimula el crecimiento de plantas en ciertas zonas. El documento US 20100250199 A1 divulga un método en donde se realiza una asociación entre el campo de potencial eléctrico terrestre medido en el terreno con una determinada distribución de especies vegetales existentes, pero no explica una relación directa entre potencial eléctrico terrestre y crecimiento de vegetación.
También existen publicaciones científicas en las que se ha señalado la influencia del campo de potencial eléctrico terrestre en el crecimiento de las plantas así como la variación que experimenta dicho potencial a lo largo del tallo de las plantas. Sin embargo estos estudios no proponen una determinación sistemática de zonas de crecimiento vegetal favorable ni la posible modificación de los valores de dicho campo de potencial eléctrico terrestre con fines de mejorar una producción agrícola.
Breve descripción de la invención
La presente invención concierne a un método y aparato para determinar zonas de crecimiento vegetal favorable, en base a la medición de los campos de potencial eléctrico terrestres que se generan de forma natural en distintas zonas de un terreno.
Mediante una pluralidad de electrodos puestos en contacto con puntos distanciados del terreno es posible detectar campos de potencial eléctrico terrestres en una pluralidad de puntos de sondeo del terreno. Las pruebas demuestran que la intensidad de dicho campo no es homogénea, siendo dichos campos de potencial eléctrico terrestre indicativos de diferentes fenómenos físicos o geológicos subterráneos.
Las principales causas conocidas generadoras o alteradoras de dichos campos de potencial eléctrico terrestre son los gradientes de presión, temperatura o concentraciones químicas en la tierra, así como los potenciales electroquímicos en un terreno de química heterogénea, los potenciales de flujo debidos a la circulación de agua subterránea, a la existencia de fronteras geológicas, o fenómenos de corrosión de metales enterrados.
Dicho campo de potencial eléctrico terrestre, detectado en un terreno, se ha relacionado por los presentes inventores con el crecimiento de especies vegetales demostrándose la existencia de una correlación entre dicho valor del campo de potencial eléctrico terrestre y la vigorosidad de las especies vegetales existentes en dicho terreno analizado.
Por ejemplo se ha detectado que las zonas donde el crecimiento vegetal es favorable son aquellas en las que se ha detectado un campo de potencial eléctrico terrestre de valor negativo, es decir de una menor magnitud respecto a un punto de referencia, mientras que las zonas de crecimiento vegetal menos favorables son aquellas zonas en las que se ha detectado un campo de potencial eléctrico terrestre de valor positivo, es decir de una mayor magnitud respecto a dicho punto de referencia.
Así pues la presente invención propone en un primer aspecto un método para determinar zonas de crecimiento favorable de especies vegetales que comprende las siguientes etapas:
· definir una superficie de un terreno en el que se desea determinar las zonas de crecimiento vegetal favorable para dichas especies vegetales (por ejemplo festuca, viña, sauce, habas, pimientos, tomates, cebollas, entre otras);
• disponer una pluralidad de electrodos sensibles a los campos de potencial eléctrico terrestre natural, conectados eléctricamente cada uno de ellos a un equipo o dispositivo de medición de potencial eléctrico terrestre, estando dichos electrodos en contacto con el terreno, definiendo una pluralidad de puntos de sondeo;
• adquirir, mediante dicho dispositivo de medición, datos relativos a una diferencia de potencial del campo eléctrico terrestre natural, existente entre un punto de referencia y cada uno de los electrodos de dicha pluralidad de electrodos; y
· determinar, mediante el dispositivo de medición, unas zonas de crecimiento vegetal favorable y unas zonas de crecimiento vegetal menos favorable en base a los datos de diferencia de potencial obtenidos para cada uno de los puntos medidos.
Por lo tanto, el método propuesto incluye delimitar un área de estudio, generalmente un terreno con interés agrícola, y seleccionar una pluralidad de puntos de sondeo distanciados y repartidos por dicho terreno en los que se disponen una pluralidad de electrodos, estando dichos electrodos repartidos preferiblemente de forma homogénea.
Cada electrodo se coloca en contacto eléctrico con el suelo, de forma preferida clavándolo en su interior consiguiendo así un mejor contacto entre el electrodo y el terreno, y se procede a realizar las mediciones de los campos de potencial eléctrico terrestre entre cada uno de dichos electrodos y dicho punto, o primer electrodo, de referencia mediante el dispositivo de medición conectado a dichos electrodos.
Los datos obtenidos hacen referencia a la diferencia de potencial eléctrico existente entre el citado punto de referencia y los electrodos de la pluralidad de electrodos empleados en cada medición, por lo tanto esos datos son indicativos de un gradiente, que también se dará entre puntos contiguos de electrodos.
Posteriormente se determinan qué zonas del terreno son más favorables y cuales menos favorables para el crecimiento vegetal, en base a los valores del campo de potencial eléctrico terrestre detectado en los diferentes puntos del terreno, al existir una relación entre el valor del campo de potencial eléctrico terrestre existente y la vigorosidad en el crecimiento de las especies vegetales existentes en ese lugar.
Por lo tanto los datos obtenidos permiten conocer en qué zonas del terreno es más favorable o más desfavorable realizar una plantación, y las diferencias de productividad agrícola entre las diferentes zonas del terreno estudiado.
El análisis del terreno puede realizarse de una sola vez, disponiendo dicha pluralidad de electrodos por toda la superficie del terreno, o de forma preferida puede realizarse por etapas, analizando una porción del terreno en cada etapa, y completándose el análisis al haber analizado todas las porciones del terreno. En cada etapa se sitúa dicha pluralidad de electrodos repartidos únicamente en dicha porción del terreno a estudiar, y al completarse todas las etapas se habrá estudiado todo el terreno. De este modo se requiere una menor cantidad de electrodos, y la densidad de los puntos de sondeo será constante e independiente del tamaño total del terreno a analizar, pues se pueden analizar porciones de un tamaño estandarizado, siendo así las mediciones de diferentes terrenos comparables.
Según una realización preferida la medición del campo de potencial eléctrico terrestre en la pluralidad de puntos de sondeo se realiza mediante unos electrodos metálicos (por ejemplo de acero inoxidable) en contacto con o introducidos en el terreno a una profundidad de entre 0 y 50 cm, aunque también se contempla que la medición se realice mediante electrodos introducidos en el terreno a profundidades mayores e incluso utilizar otro tipo de electrodos.
Opcionalmente, se pueden realizar diferentes mediciones a diferentes profundidades en cada uno de los puntos de sondeo, ya sea mediante lecturas sucesivas con electrodos hincados sucesivamente a diferentes profundidades, ya sea mediante electrodos capaces de realizar lecturas en diferentes puntos de su desarrollo longitudinal.
Para conseguir unas lecturas homogéneas es preferible que todos los electrodos estén introducidos a una misma profundidad al realizar la medición para obtener datos equivalentes y comparables referentes a toda la pluralidad de puntos de sondeo.
Según una realización, los electrodos están preferiblemente dispuestos con una separación entre sí igual o menor a un metro (aunque pueden estar separados a mayor distancia), permitiendo así obtener información detallada del terreno estudiado.
Los datos obtenidos mediante los electrodos se refieren a medidas puntuales, pero no ofrecen datos de todos los puntos del terreno a estudiar, solo de algunos de ellos. Mediante dichas lecturas puntuales es posible calcular el valor del campo de potencial eléctrico terrestre estimado en el resto de puntos del terreno, permitiendo crear un mapa de campo de potencial eléctrico terrestre bidimensional o tridimensional del conjunto del terreno, e incluso del interior del subsuelo de dicho terreno.
Para realizar dicho cálculo estimativo se realiza un tratamiento estadístico, mediante un método de interpolación, del conjunto de los datos obtenidos de la medición, proporcionando un mayor número de valores de potencial de campo de potencial eléctrico terrestre que los obtenidos por una medición directa.
Dicho tratamiento estadístico no solo permite obtener un mapa de los campos eléctricos terrestres en la superficie del terreno a estudiar, sino que también faculta calcular el campo de potencial eléctrico terrestre estimado a diferentes profundidades del terreno, permitiendo así detectar corrientes subterráneas de agua, estructuras subterráneas como tuberías, cuevas, dolinas o huecos en general, o formaciones rocosas, raíces e incluso la presencia de hidrocarburos debido a la interferencia que provocan en el campo eléctrico natural.
Los puntos de sondeo, donde se realizan las mediciones por medio de los electrodos, se pueden disponer a lo largo de líneas de medición sustancialmente rectas y horizontales, estando los puntos de sondeo sustancialmente equidistantes a lo largo de dichas líneas de medición.
Varias líneas de medición se pueden disponer paralelas y distanciadas, ajustando la distancia entre líneas paralelas hasta encontrar valores de variación de potencial de campo de potencial eléctrico terrestre significativos entre los electrodos dispuestos en dichas líneas paralelas, considerándose que una variación superior al 5% es una variación significativa.
Según una realización alternativa, cada punto de sondeo se puede posicionar por medio de un equipo de geolocalización, que proporciona sus coordenadas, por ejemplo equipos GPS, teodolitos, equipos de posicionamiento láser, etc. Opcionalmente se pueden almacenar de forma relacionada los datos del campo de potencial eléctrico terrestre y las coordenadas de cada punto de adquisición de dichos datos, permitiendo conocer la posición exacta y la lectura de cada uno de los electrodos.
Según una realización alternativa, tras la determinación de las zonas favorables y menos favorables para el crecimiento se puede proceder a:
• definir áreas de plantación y áreas de no plantación dentro del terreno analizado;
• detectar las áreas de plantación coincidentes con las zonas de crecimiento vegetal menos favorable; • detectar las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable;
• conectar eléctricamente las áreas de plantación coincidentes con las zonas de crecimiento menos favorables con las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable por medio de una pluralidad de electrodos de transferencia dispuestos en contacto eléctrico con el terreno y unidos entre sí por medio de un elemento conductor, permitiendo el paso de cargas eléctricas entre dichos electrodos de transferencia y la consiguiente alteración del potencial de campo eléctrico terrestre a su alrededor.
Mediante este método se puede también alterar el campo de potencial eléctrico terrestre de una zona, poniendo dicha zona en contacto eléctrico con otra zona con un campo de potencial eléctrico distinto, mediante un par de electrodos conectados por un elemento conductor como un cable. Esta conexión permitirá que, gradualmente, las cargas eléctricas se desplacen de una zona a la otra, alterando el campo de potencial eléctrico terrestre alrededor de los dos electrodos. Esto permite desplazar las zonas de crecimiento favorable desde áreas de no plantación hacia áreas de plantación, consiguiendo maximizar la productividad de una plantación, y/o reducir el crecimiento indeseado de especies vegetales en ciertas zonas del terreno, como por ejemplo las llamadas malas hierbas. Todo ello repercute en un menor uso de fertilizantes y herbicidas, y una mayor productividad del terreno.
Se considerará aquí que las zonas de crecimiento vegetal favorable son aquellas zonas en las que se detecte un campo de potencial eléctrico terrestre de valor negativo (es decir, de una magnitud menor que el electrodo de referencia) y las zonas de crecimiento vegetal menos favorable son aquellas zonas en las que se detecte un campo de potencial eléctrico terrestre de valor positivo (es decir, de una magnitud mayor al electrodo de referencia).
En un segundo aspecto, la presente invención proporciona un aparato para determinar zonas de crecimiento favorables de especies vegetales. El aparato propuesto está configurado para implementar el método del primer aspecto de la invención.
El aparato para determinar zonas de crecimiento vegetal favorable, incluye:
• una pluralidad de electrodos configurados para medir el campo de potencial eléctrico terrestre natural y configurados para que en una posición de medición estar en contacto con un terreno en el que se desea determinar unas zonas de crecimiento vegetal favorable (3) para unas especies vegetales (por ejemplo, festuca, viña, sauce, habas, pimientos, tomates, cebollas, entre muchas otras especies vegetales); • un dispositivo geolocalizador configurado para permitir detectar la posición de cada electrodo individual;
• un dispositivo de medición con uno o más procesadores y al menos una memoria para medición del potencial eléctrico terrestre, en donde el dispositivo de medición está operativamente conectado, eléctricamente, a cada electrodo y está configurado para adquirir datos relativos a una diferencia de potencial del campo eléctrico terrestre natural, existente entre un punto de referencia (P) y cada uno de los electrodos de dicha pluralidad de electrodos; y para determinar unas zonas de crecimiento vegetal favorable (3) y unas zonas de crecimiento vegetal menos favorable (4) con base en los datos de diferencia de potencial obtenidos para cada uno de los puntos medidos; y
• dicha memoria para almacenar los datos proporcionados por el dispositivo de medición asociados con los datos proporcionados por el geolocalizador.
Así pues, el aparato propuesto permite realizar las mediciones del campo de potencial eléctrico terrestre entre cada uno de la citada pluralidad de electrodos y el primer electrodo de referencia, y también permite almacenar la información obtenida, relacionando dicha información con la posición de cada uno de los electrodos dentro del terreno a analizar, habiendo sido dicha posición proporcionada por un geolocalizador, como puede ser un sistema de localización por satélite, un teodolito, un medidor láser, etc.
Según una realización alternativa dicho aparato se integra en una unidad móvil, permitiendo su desplazamiento por el terreno a analizar.
Alternativa o adicionalmente dicha pluralidad de electrodos están unidos a un soporte, formando una matriz, siendo dicho soporte desplazable verticalmente entre la citada posición de medición, en la que dicha pluralidad de electrodos está en contacto con el terreno, y una posición replegada, en la que dicha pluralidad de electrodos no está en contacto con el terreno. Dicho soporte desplazable también puede opcionalmente integrarse en dicha unidad móvil. Tanto la unidad móvil como el citado soporte pueden estar motorizados, siendo accionados de forma automática.
Según otra realización, los electrodos disponen de un tramo proximal no sensible aislado previsto para quedar próximo a la superficie del terreno y de un extremo distal sensible no aislado previsto para quedar dentro del terreno, más alejado de la superficie, permitiendo realizar mediciones a una profundidad determinada. La unidad móvil también puede incluir sensores ambientales seleccionados entre: sensor de temperatura del aire, sensor de temperatura del suelo, sensor de humedad del aire, sensor de humedad del suelo, sensor de acidez del suelo, o un sensor de temperatura de los propios electrodos. Los datos aportados por dichos sensores ambientales se almacenarán preferentemente en la citada memoria.
Según una realización alternativa, las mediciones del campo de potencial eléctrico terrestre no se realizan únicamente entre electrodos contiguos dispuestos en puntos de sondeo contiguos, sino que también se pueden realizar mediciones entre electrodos no contiguos, consiguiendo así aumentar el número de mediciones y su precisión, sin requerir un mayor número de electrodos o de puntos de sondeo.
Breve descripción de las figuras
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de un ejemplo de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
la Fig. 1 muestra una vista en planta de un terreno rectangular a analizar en el que se ha definido un punto de referencia, o primer electrodo de referencia, y una pluralidad de puntos de sondeo homogéneamente repartidos por dicho terreno formando una matriz de nueve filas (numeradas) y diecinueve columnas (referenciadas de la a, a la s);
la Fig. 2 muestra gráficas de los valores del campo de potencial eléctrico terrestre obtenidas de electrodos contiguos situados en los puntos de sondeo de la fila 2, de la fila 5 y de la fila 8; la Fig. 3 muestra un mapa bidimensional de campos de potencial eléctrico terrestre estimados, obtenido por medio del tratamiento estadístico de los datos obtenidos por medio de los electrodos situados en los puntos de sondeo indicados en la Fig. 1 , superpuesto a la vista en planta del terreno analizado, y correspondiendo el tramado con el símbolo + a valores positivos, y el tramado con el símbolo - a valores negativos del campo de potencial eléctrico terrestre estimado, y correspondiendo la densidad de dichas tramas a la magnitud del valor estimado.
Descripción detallada de un ejemplo de realización
La presente invención concierne a un método y un aparato para determinar zonas de crecimiento vegetal favorable 3 (ver Fig. 3) mediante la medición del campo de potencial eléctrico terrestre, generado de forma natural por el terreno, entre un primer electrodo de referencia P y una pluralidad de puntos de sondeo 2 dispuestos en un terreno 1 a analizar. Según una realización preferida, con carácter no limitativo, el aparato propuesto consta de una unidad móvil dotada de ruedas u orugas tractoras motorizadas, siendo dicha unidad móvil compacta y de reducido tamaño permitiendo su desplazamiento entre distintas zonas de una plantación del terreno 1 a analizar.
Entre dichas ruedas u orugas se dispone un soporte dotado, por su cara inferior, de una pluralidad de electrodos en forma de barras metálicas unidas a dicho soporte y protuberantes hacia abajo, quedando cada electrodo separado y eléctricamente aislado del soporte y del resto de electrodos, e individualmente conectados a un equipo o dispositivo de medición también integrado en dicha unidad móvil. Preferiblemente dichos electrodos se disponen equidistantes entre sí formando una matriz, siendo su posición relativa conocida, por ejemplo de 30 centímetros (sin ser limitativo puesto que dichos electrodos pueden estar separados a mayor distancia, por ejemplo a un metro, e incluso a una distancia mayor).
El citado soporte sobre el que se fijan los electrodos puede desplazarse verticalmente respecto al resto de unidad móvil, mediante unos elementos de guía, y unos medios accionadores, como por ejemplo un motor eléctrico, un pistón hidráulico, u otro equipo similar, permiten desplazar verticalmente dicho soporte entre una posición de medición, en la que dicha pluralidad de electrodos está en contacto con el terreno, y una posición replegada o retirada, en la que dicha pluralidad de electrodos no está en contacto con el terreno.
Así pues, desplazando la unidad móvil, estando el soporte en posición replegada, hasta una porción del terreno a analizar y moviendo luego el soporte hasta la posición de medición se consigue hincar una pluralidad de electrodos en dicha región del terreno a analizar, en los puntos de sondeo 2, procediendo entonces a realizar la lectura del campo de potencial eléctrico terrestre de esa porción del terreno mediante el equipo o dispositivo de medición. Moviendo el soporte hasta la posición replegada y repitiendo el ciclo de desplazamiento de la unidad móvil, hincado de los electrodos y lectura, para regiones diferentes sucesivas del terreno 1 , se puede completar la medición total del terreno 1.
Todos los datos obtenidos de las diferentes lecturas son almacenados en una memoria, preferiblemente del dispositivo de medición, junto con la posición precisa de cada electrodo en el momento de tomar cada lectura, permitiendo así elaborar un mapa preciso de los puntos de sondeo 2 (como el mostrado en la Fig. 1), al que también se pueden superponer los resultados obtenidos de dichos sondeos. La posición precisa de cada punto de sondeo 2 se puede obtener mediante la localización precisa de la unidad móvil sobre el terreno, por ejemplo mediante equipos de posicionamiento por satélite, o mediante equipos tipo teodolito electrónico, equipos de medición láser, o cualquier otro sistema habitual de localización y posicionamiento.
Otros datos relativos por ejemplo a la temperatura o humedad del aire o del terreno pueden también ser almacenados, tras su obtención mediante sensores ambientales dispuestos en la unidad móvil.
Dicha unidad móvil puede ser programada para que se desplace por el terreno y ejecute los sucesivos sondeos de forma automática, permitiendo así que obtenga toda la información del terreno sin requerir instrucciones adicionales de un operario y acelerando dicha operación.
Tras la obtención de todos los datos del terreno, un sistema informático procede a realizar un tratamiento estadístico, mediante un método de interpolación, del conjunto de datos del campo de potencial eléctrico terrestre obtenidos de la medición, proporcionando valores de campo de potencial eléctrico terrestre estimados de todos los puntos del terreno. Los datos medidos y estimados son entonces utilizados para crear un mapa bidimensional o tridimensional de los valores del campo de potencial eléctrico terrestre en toda la superficie del terreno, como el mostrado a título de ejemplo en la Fig. 3.
Este mapa permite identificar las zonas de crecimiento vegetal favorable 3 y las zonas de crecimiento vegetal menos favorable 4 en base al valor del campo de potencial eléctrico terrestre en dichas zonas.
Esta información resulta útil para decidir qué especies vegetales plantar, o su distribución dentro del terreno, concentrando los especímenes en las zonas de crecimiento vegetal favorable.
El citado sistema informático dotado de un programa adecuado permite además de realizar una interpolación para elaborar un mapa de potencial eléctrico terrestre para otras aplicaciones tales como:
- Designar, en base a unos criterios espaciales definidos por el usuario (disposición geométrica inicial de los puntos de siembra, distancia mínima entre ejemplares, ancho mínimo de los pasillos transitables, tipo de cultivo, etc.), la ubicación de los puntos más favorables para la siembra, a partir de la definición de unas celdas isométricas con el valor promedio de potencial eléctrico terrestre más bajo.
- Predecir, aumentando progresivamente el tamaño de esas celdas, las condiciones de potencial eléctrico terrestre en las que se irá desarrollando cada ejemplar con el paso del tiempo. En el caso de que la posición de los especímenes vegetales no pueda ser concentrada en las zonas de crecimiento vegetal favorable 3, ya sea porque son especímenes preexistentes, ya sea por otros motivos como el dejar unos pasos de circulación dentro del terreno, se pueden modificar los valores del campo de potencial eléctrico terrestre.
Para realizar dicha modificación primero se requiere definir unas áreas de plantación en las que deseamos disponer de especies vegetales vigorosas y unas áreas de no plantación en las que no deseamos especies vegetales, dentro del terreno 1 analizado. A continuación se procede a detectar las áreas de plantación coincidentes con las zonas de crecimiento vegetal menos favorable 4 y las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable 3, detectando así aquellas zonas en las que se requiere modificar el campo de potencial eléctrico terrestre. Finalmente se procede a conectar eléctricamente las áreas de plantación coincidentes con las zonas de crecimiento menos favorables 4 con las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable 3 por medio de unos electrodos de transferencia dispuestos en contacto eléctrico con el terreno 1 y unidos entre sí por medio de un cable eléctrico, permitiendo el trasvase de cargas eléctricas entre dichos electrodos de transferencia y la consiguiente alteración del potencial de campo eléctrico terrestre alrededor de cada uno de dicho par de electrodos de transferencia.
Los electrodos de transferencia pueden ser, al igual que los electrodos, simples barras de metal. Para su funcionamiento deben ser hincadas en el terreno y conectadas entre sí por medio de un cable eléctrico. Al ser dichos electrodos de transferencia y dicho cable muy conductor y al existir una diferencia de potencial eléctrico entre los dos electrodos de transferencia, las cargas eléctricas fluirán de forma natural desde un electrodo de transferencia hasta el otro, reduciéndose así paulatinamente la diferencia de potencial existente entre el terreno circundante a ambos electrodos de transferencia, y consiguiendo así que las áreas de plantación coincidentes con las zonas de crecimiento menos favorables 4 sean más favorables al crecimiento de especies vegetales.
Asimismo, el potencial eléctrico del suelo podrá ser alterado o modificado de una forma artificial, por ejemplo mediante la inyección de corriente eléctrica, ya sea mediante una pila o una batería conectada al suelo, mediante la colocación de una placa solar que produzca electricidad y la transfiera al suelo mediante un electrodo-borne (positivo y/o negativo), etc.

Claims

REIVINDICACIONES
1. Método para determinar zonas de crecimiento vegetal favorable, estando el método caracterizado porque comprende las siguientes etapas:
• definir una superficie de un terreno (1) en el que se desea determinar unas zonas de crecimiento vegetal favorable (3) para unas especies vegetales;
• disponer una pluralidad de electrodos sensibles a los campos de potencial eléctrico terrestre natural, conectados eléctricamente cada uno de ellos a un dispositivo de medición de potencial eléctrico terrestre, estando dichos electrodos en contacto con el terreno, definiendo una pluralidad de puntos de sondeo (2) que forman una matriz; · adquirir, mediante dicho dispositivo de medición, datos relativos a una diferencia de potencial del campo eléctrico terrestre natural, existente entre un punto de referencia (P) y cada uno de los electrodos de dicha pluralidad de electrodos; y
• determinar, mediante dicho dispositivo de medición, unas zonas de crecimiento vegetal favorable (3) y unas zonas de crecimiento vegetal menos favorable (4) con base en los datos de diferencia de potencial obtenidos para cada uno de los puntos medidos.
2. Método según la reivindicación 1 , en donde se realiza una medición del campo de potencial eléctrico terrestre en la pluralidad de puntos de sondeo (2) mediante electrodos en contacto con o introducidos en el terreno (1) a una profundidad de entre 0 y 50 cm.
3. Método según la reivindicación 1 , en donde en cada uno de la pluralidad de puntos de sondeo (2) se realiza una medición a diferentes profundidades, estando dichas profundidades comprendidas entre 0 y 50 cm.
4. Método según la reivindicación 1 , 2 o 3, en donde los electrodos están dispuestos con una separación entre sí igual o menor a un metro.
5. Método según la reivindicación 2, que comprende además realizar un tratamiento estadístico, mediante un método de interpolación, del conjunto de datos obtenidos de la medición, proporcionando un mayor número de valores de campo de potencial eléctrico terrestre que los obtenidos por una medición directa.
6. Método según una cualquiera de las reivindicaciones anteriores, en donde dicha pluralidad de puntos de sondeo (2) se disponen a lo largo de líneas rectas y horizontales, estando los puntos de sondeo (2) equidistantes a lo largo de dichas líneas.
7. Método según la reivindicación 6, en donde varias líneas de sondeo se disponen paralelas, distanciadas, ajusfando la distancia entre líneas paralelas hasta encontrar unos valores de variación de potencial de campo eléctrico terrestre mayores al 5% entre dichas líneas paralelas.
8. Método según la reivindicación 1 o 4, que comprende además obtener las coordenadas de cada punto de medición mediante un equipo de geolocalización, almacenándose relacionando dichas coordenadas con los datos de campo de potencial eléctrico terrestre obtenidos.
9. Método según una cualquiera de las reivindicaciones anteriores, en donde tras definir zonas de crecimiento vegetal favorable (3) y zonas de crecimiento vegetal menos favorable (4), se procede a:
· definir áreas de plantación y áreas de no plantación dentro del terreno (2) analizado;
• detectar las áreas de plantación coincidentes con las zonas de crecimiento vegetal menos favorable (4);
• detectar las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable (3); y
· conectar eléctricamente las áreas de plantación coincidentes con las zonas de crecimiento menos favorables (4) con las áreas de no plantación coincidentes con las zonas de crecimiento vegetal favorable (3) por medio de una pluralidad de electrodos de transferencia dispuestos en contacto eléctrico con el terreno y unidos entre sí por medio de un elemento conductor, permitiendo el paso de cargas eléctricas entre dicha pluralidad de electrodos de transferencia y la consiguiente alteración del potencial de campo eléctrico terrestre a su alrededor.
10. Método según una cualquiera de las reivindicaciones anteriores, en donde las zonas de crecimiento vegetal favorable (3) se determinan en aquellas zonas en las que se detecte un campo de potencial eléctrico terrestre de valor negativo y las zonas de crecimiento vegetal menos favorable (4) se determinan en aquellas zonas en las que se detecte un campo de potencial eléctrico terrestre de valor positivo.
11. Método según la reivindicación 1 , en donde las especies vegetales incluyen al menos festuca, viña, sauce, habas, pimientos, tomates o cebollas.
12. Aparato para determinar zonas de crecimiento favorables de especies vegetales, incluye:
· una pluralidad de electrodos configurados para medir un campo de potencial eléctrico terrestre natural y configurados para que en una posición de medición estar en contacto con un terreno en el que se desea determinar unas zonas de crecimiento vegetal favorable (3) para unas especies vegetales;
• un dispositivo geolocalizador configurado para detectar la posición de cada electrodo individual;
« un dispositivo de medición de potencial eléctrico terrestre conectado eléctricamente a cada electrodo, en donde el dispositivo de medición está configurado para adquirir datos relativos a una diferencia de potencial del campo eléctrico terrestre natural, existente entre un punto de referencia (P) y cada uno de los electrodos de dicha pluralidad de electrodos, y para determinar unas zonas de crecimiento vegetal favorable (3) y unas zonas de crecimiento vegetal menos favorable (4) con base en los datos de diferencia de potencial obtenidos para cada uno de los puntos medidos; y
• una memoria para almacenar los datos proporcionados por el dispositivo de medición asociados con los datos proporcionados por el geolocalizador.
13. Aparato según reivindicación 12, en donde una unidad móvil integra todos los elementos incluidos en el aparato, en donde dicha unidad móvil está configurada para desplazarse por el terreno (1) a analizar.
14. Aparato según reivindicación 12 o 13, en donde dicha pluralidad de electrodos están unidos a un soporte, formando una matriz, siendo dicho soporte desplazable verticalmente entre dicha posición de medición, en la que dicha pluralidad de electrodos está en contacto con el terreno, y una posición replegada, en la que dicha pluralidad de electrodos no está en contacto con el terreno.
15. Aparato según reivindicación 12, 13 o 14, en donde los electrodos disponen de un tramo proximal no sensible aislado previsto para quedar próximo a la superficie del terreno y de un extremo distal sensible no aislado previsto para quedar dentro del terreno, más alejado de la superficie.
16. Aparato según reivindicaciones 13 o 14, en donde el desplazamiento vertical del soporte y/o el desplazamiento de la unidad móvil están motorizados.
17. Aparato según una cualquiera de las reivindicaciones anteriores 12 a 16, que comprende además sensores ambientales seleccionados entre sensor de temperatura del aire, sensor de temperatura del suelo, sensor de humedad del aire, sensor de humedad del suelo, sensor de acidez del suelo, o un sensor de temperatura de los propios electrodos; y porque dicha memoria almacena también los datos obtenidos por dichos sensores ambientales.
PCT/ES2018/070117 2017-02-21 2018-02-20 Método y aparato para determinar zonas de crecimiento vegetal favorable WO2018154159A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730222 2017-02-21
ES201730222A ES2680197B1 (es) 2017-02-21 2017-02-21 Metodo y aparato para determinar zonas de crecimiento vegetal favorable

Publications (1)

Publication Number Publication Date
WO2018154159A1 true WO2018154159A1 (es) 2018-08-30

Family

ID=62063092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070117 WO2018154159A1 (es) 2017-02-21 2018-02-20 Método y aparato para determinar zonas de crecimiento vegetal favorable

Country Status (2)

Country Link
ES (1) ES2680197B1 (es)
WO (1) WO2018154159A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007969B1 (ja) * 1999-02-24 2000-02-14 農林水産省農業工学研究所長 土壌生物の密度探知法
US20080042653A1 (en) * 2006-06-22 2008-02-21 John Bryant Remotely reconfigurable system for mapping subsurface geological anomalies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841282A (en) * 1997-02-10 1998-11-24 Christy; Colin Device for measuring soil conductivity
US9285501B2 (en) * 2008-11-04 2016-03-15 Veris Technologies, Inc. Multiple sensor system and method for mapping soil in three dimensions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007969B1 (ja) * 1999-02-24 2000-02-14 農林水産省農業工学研究所長 土壌生物の密度探知法
US20080042653A1 (en) * 2006-06-22 2008-02-21 John Bryant Remotely reconfigurable system for mapping subsurface geological anomalies

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIEDLER SABINE ET AL: "Soil redox potential: Importance, field measurements, and observations", ADVANCES IN AGRONOMY, vol. 94, 14 May 2007 (2007-05-14), pages 1 - 54, XP055487354, ISSN: 0065-2113 *
LARISA GOLOVKO ET AL: "Applications of Self-Potential Method in Agriculture", 23RD EEGS SYMPOSIUM ON THE APPLICATION OF GEOPHYSICS TO ENGINEERING AND ENVIRONMENTAL PROBLEMS 2010, 11 April 2010 (2010-04-11), Keystone, CO, USA, pages 212 - 219, XP055486401, DOI: 10.4133/1.3445435 *
VAN BOCHOVE E ET AL: "Continuous multiple measurement of soil redox potential using platinum microelectrodes", SOIL SCIENCE SOCIETY OF AMERICA. JOURNAL, SOIL SCIENCE SOCIETY OF AMERICA, US, vol. 66, no. 6, November 2002 (2002-11-01), pages 1813 - 1820, XP009506368, ISSN: 0361-5995, DOI: 10.2136/SSSAJ2002.1813 *

Also Published As

Publication number Publication date
ES2680197A1 (es) 2018-09-04
ES2680197B1 (es) 2019-06-27

Similar Documents

Publication Publication Date Title
Beff et al. Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography
Cassiani et al. Monitoring and modelling of soil–plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone
Vanella et al. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation
Serrano et al. Mapping soil and pasture variability with an electromagnetic induction sensor
AU2009227997A1 (en) System, apparatus and method for measuring soil moisture content
WO2007128122A1 (en) Method and system for monitoring growth characteristics
Mares et al. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
Rezaei et al. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters
BR102014032637A2 (pt) caracterização de locais de pesquisa de campo para utilidade em ensaios de estresse agronômicos
Vanella et al. Electrical resistivity imaging for monitoring soil water motion patterns under different drip irrigation scenarios
Smekalova et al. Natural science methods in field archaeology, with the case study of Crimea
Furman et al. Electrical resistivity tomography of the root zone
Zarai et al. Integrating multiple electromagnetic data to map spatiotemporal variability of soil salinity in Kairouan region, Central Tunisia
Michot et al. Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: A case study
ES2680197B1 (es) Metodo y aparato para determinar zonas de crecimiento vegetal favorable
Chen et al. Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography
Terrón et al. Use of soil apparent electrical resistivity contact sensors for the extensive study of archaeological sites
Allred et al. Geophysical methods
Jakalia et al. Implications of soil resistivity measurements using the electrical resistivity method: a case study of A maize farm under different soil preparation modes at knust agricultural research station, kumasi
CN206601442U (zh) 一种土层电性和热物性参数联合测量装置
WO2018173016A2 (es) Dispositivo de caracterización de propiedades edafológicas de suelos en agricultura
Henine et al. Combining time-lapse electrical resistivity tomography and air injection to detect agricultural subsurface drains
Brevik et al. Differences in EM-38 readings taken above crop residues versus readings taken with instrument-ground contact
Yegül et al. Determination of some soil parameters with electromagnetic induction sensor
Eyinla et al. Improving quality agricultural practices in tropical environments through integrated geophysical methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18720307

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18720307

Country of ref document: EP

Kind code of ref document: A1