WO2018153071A1 - 一种按需调整带宽的方法及装置、计算机存储介质 - Google Patents

一种按需调整带宽的方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018153071A1
WO2018153071A1 PCT/CN2017/102116 CN2017102116W WO2018153071A1 WO 2018153071 A1 WO2018153071 A1 WO 2018153071A1 CN 2017102116 W CN2017102116 W CN 2017102116W WO 2018153071 A1 WO2018153071 A1 WO 2018153071A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
vte
uni
label switching
devices
Prior art date
Application number
PCT/CN2017/102116
Other languages
English (en)
French (fr)
Inventor
蒋志强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to RU2019130314A priority Critical patent/RU2722501C1/ru
Priority to EP17897895.3A priority patent/EP3588874A4/en
Publication of WO2018153071A1 publication Critical patent/WO2018153071A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/52Queue scheduling by attributing bandwidth to queues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/827Aggregation of resource allocation or reservation requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/828Allocation of resources per group of connections, e.g. per group of users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a method and device for adjusting bandwidth as needed, and a computer storage medium.
  • the transport network needs to have the ability to support multiple services, provide multiple switching technologies and multiple switching granularities, and provide end-to-end operational management and maintenance (OAM, Operation Administration and Maintenance) and the ability to protect and recover.
  • OAM operational management and maintenance
  • the ITU-T organization describes and defines the framework of a multi-layer network, and positions the relationship between adjacent layers in a multi-layer network as the relationship between the client layer and the service layer.
  • a multi-layer network (MLN) is defined as a single generalized multiprotocol label switching (GMPLS).
  • GMPLS Global System for Mobile Communications
  • TE Traffic Engineering
  • the traffic engineering (TE, Traffic Engineering) domain which is controlled by the control plane instance, has the same switching capability or different switching capabilities.
  • the multi-layer network mentioned below mainly refers to a multi-layer network composed of different exchange capability data planes.
  • the service layer network will be in the service layer network according to the requirements of the client layer network.
  • a path is established between the edge nodes. After the path is established, the service layer network is advertised as a TE link to the client layer network as part of the client layer network topology for the calculation of the client layer path.
  • the service layer When the client layer has additional bandwidth requirements for the service layer, the service layer will expand the bandwidth in the original path. When the remaining bandwidth of the original path cannot meet the new bandwidth requirement, the service layer will create a new path to meet the new bandwidth requirements of the customer layer. This situation will lead to changes in the client layer topology and affect the services of the client layer.
  • an embodiment of the present invention provides a method and apparatus for adjusting bandwidth as needed.
  • the application provides a method for adjusting bandwidth as needed, including:
  • bandwidth expansion is performed on the universal label switching path or a general label switching path that satisfies the bandwidth requirement is added under the VTE link .
  • the method further includes: linking all the universal label switching paths of the VTE link
  • the traffic engineering TE information is aggregated and advertised to the IP layer such that the IP layer performs path calculation based on the summarized TE information.
  • the method further includes one of the following:
  • VTE link All common label switching paths under the VTE link correspond to the same TE link between the UNI-C device and the user network interface client side UNI-N device;
  • VTE link All common label switching paths under the VTE link correspond to the UNI-C device and Different TE links between UNI-N devices;
  • the common label switching path under the different VTE links corresponds to the same TE link between the UNI-C device and the UNI-N device.
  • the method further includes: verifying whether the UNI-C devices exist between the UNI-C devices. Describe the VTE link and determine whether the VTE link can provide a service; when the VTE link does not exist or cannot provide a service, a VTE link is established between the UNI-C devices.
  • the method further includes:
  • the two ends of the VTE link are set as the LSP bundling interface of the UNI-C device, and the virtual connection between the UNI-C device LSP bundling interfaces is set to correspond to the VTE link.
  • the method further includes: binding the newly added universal label switching path to the VTE link.
  • the method further includes: updating TE information of all common label switching paths under the VTE link and advertising to the IP layer.
  • the present application provides an apparatus for adjusting bandwidth as needed, including:
  • An LSP bundling module configured to bind different common label switching paths gLSP between user network interface client-side UNI-C devices to the same VTE link between the UNI-C devices;
  • a Stateful PCE module configured to perform bandwidth expansion on the universal label switching path or to add a new one under the VTE link when there is additional bandwidth requirement for the universal label switching path in the VTE link
  • the method further includes: a virtual network topology management VNTM module configured to aggregate and advertise the traffic engineering TE information of all the universal label switching paths of the VTE link to the IP layer, so that The IP layer performs path calculation based on the summarized TE information.
  • VNTM virtual network topology management
  • the VNTM module is configured to perform one of the following:
  • VTE link All common label switching paths under the VTE link correspond to the same TE link between the UNI-C device and the user network interface client side UNI-N device;
  • the common label switching path under the different VTE links corresponds to the same TE link between the UNI-C device and the UNI-N device.
  • the stateful PCE module is further configured to: verify whether the VTE link exists between the UNI-C devices, and determine whether the VTE link can provide a service; the VTE link does not exist or cannot provide At the time of service, a VTE link is established between the UNI-C devices.
  • the stateful PCE module is further configured to set the two ends of the VTE link as the LSP binding interface of the UNI-C device, and set the virtual connection between the LSP binding interfaces of the UNI-C device to correspond to The VTE link.
  • the stateful PCE module is further configured to notify the LSP bundling module after adding a general label switching path that meets the bandwidth requirement, and the LSP bundling module is further configured to be The new universal label switching path is bound to the VTE link.
  • the LSP bundling module is further configured to notify the VNTM module after binding the newly added universal label switching path to the VTE link, and the VNTM module is configured to update all the universal labels under the VTE link.
  • the TE information of the path is exchanged and advertised to the IP layer.
  • the present application also provides an apparatus for adjusting bandwidth as needed, comprising: a processor and a memory, the memory storing computer executable instructions, when the computer executable instructions are executed by the processor, Method:
  • bandwidth expansion is performed on the universal label switching path or a general label switching path that satisfies the bandwidth requirement is added under the VTE link .
  • an embodiment of the present application further provides a computer storage medium storing computer executable instructions, the method for implementing the bandwidth adjustment on demand when the computer executable instructions are executed.
  • the bandwidth can be of various granularities according to the needs of users, and is not limited by the bandwidth of a single physical link between UNI-C and UNI-N.
  • FIG. 1 is a schematic flowchart of a method for adjusting bandwidth according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a hierarchical relationship of a device VTE link according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a device for adjusting bandwidth according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of module components of a controller to which a device for adjusting bandwidth is required according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an example of a multi-layer network architecture
  • FIG. 6 is a schematic diagram of completing on-demand adjustment of bandwidth in the multi-layer network example of FIG. 5 according to an embodiment of the present invention.
  • the present application provides a method for adjusting bandwidth on demand, including:
  • Step 101 Binding a common label switched path (gLSP) between the UNI-C devices of the user network interface client side to the same VTE link between the UNI-C devices;
  • gLSP common label switched path
  • Step 102 When there is an additional bandwidth requirement for the universal label switching path in the VTE link, perform bandwidth expansion on the universal label switching path or add a new one under the VTE link that satisfies the bandwidth requirement. Label exchange path.
  • This application can be applied to a multi-layer network of the SDN architecture to achieve its on-demand bandwidth adjustment (BoD).
  • This application is based on the technology of VTE Link (Virtual TE Links) mentioned in RFC5212, and is extended on the basis of this, and can be free from UNI-C and UNI without changing the topology of the client layer.
  • VTE Link Virtual TE Links
  • RFC5212 Real TE Link
  • a single physical link bandwidth limitation between -N flexible adjustment of the bandwidth provided by the service layer, thereby overcoming the defect that the bandwidth provided by the service layer existing in the related technology may cause a change in the topology of the client layer.
  • the VTE may also be The traffic engineering TE information of all common label switching paths under the link is summarized and advertised to the IP layer, so that the IP layer performs path calculation based on the summarized TE information.
  • the following includes one of the following:
  • the UNI-C devices may also be verified first. Whether the VTE link already exists and whether the VTE link can provide a service; when the VTE link does not exist or cannot provide a service, a VTE link is established between the UNI-C devices.
  • the two ends of the VTE link are set. Binding the interface to the LSP of the UNI-C device, and setting a virtual connection between the LSP binding interfaces of the UNI-C device corresponding to the VTE link.
  • the new universal label switching path after adding a general label switching path that satisfies the bandwidth requirement under the VTE link, the new universal label switching path is also bound to the VTE link. After that, the TE information of all the universal label switching paths under the VTE link can also be updated and advertised to the IP layer.
  • VTE Link is no longer just a single service layer LSP, and may have multiple service layer LSP bundles.
  • both ends of the VTE link are on the user network interface client (UNI-C, User Network Interface Client), corresponding to the gLSP binding logical interface on the UNI-C device, and the UNI-C device gLSP on both ends.
  • the virtual connection between the bundled interfaces corresponds to a VTE Link.
  • a VTE link can contain one gLSP or multiple gLSPs.
  • a plurality of gLSPs in a VTE link can correspond to different TE links (gLSP bundle1) between the UNI-C and the user network interface (UNI-N, User Network Interface Network), or different TE links.
  • the gLSPs of different VTE links can pass the same TE link between UNI-C and UNI-N.
  • the TE information advertised to the IP layer must take into account all gLSPs under the VTE link.
  • the method for adjusting bandwidth on demand in a multi-layer network may include the following steps:
  • the user needs to plan the VTE link through the APP, and specify which two UNI-C devices, the desired bandwidth, and delay, are connected by using the VTE link.
  • the user uses the APP to perform service deployment, which triggers the PCE to perform path calculation on the IP layer.
  • the path calculation is completed, if the path contains a VTE Link, you need to determine whether the VTE Link can provide services. If the forwarding path of the optical network corresponding to the VTE link is not established, the gLSP bundling module uses the PCE to calculate the path of the service layer according to the predetermined constraint, and controls the UNI-C device to complete the establishment of the VTE Link forwarding channel.
  • the demand may come from user planning or from network traffic monitoring analysis or bandwidth calendar.
  • the gLSP bundling module analyzes the newly added bandwidth, and may directly expand the bandwidth on the original gLSP path. You may also add a gLSP directly to the VTE link to meet the bandwidth expansion requirement.
  • the network topology of the client layer does not change and does not affect the services that the client layer is running.
  • the application further provides an apparatus for adjusting bandwidth as needed, including:
  • the LSP bundling module 31 is configured to bind different common label switching path LSPs between user network interface client-side UNI-C devices to the same VTE link between the UNI-C devices;
  • a Stateful PCE module 32 configurable to perform bandwidth expansion on the universal label switching path or to add a new one under the VTE link when there is additional bandwidth requirement for the universal label switching path in the VTE link
  • the method further includes: a VNTM module 33 configured to summarize and advertise the traffic engineering TE information of all the universal label switching paths under the VTE link to the IP layer, so that the IP layer is based on the summarized TE Information is used for path calculation.
  • a VNTM module 33 configured to summarize and advertise the traffic engineering TE information of all the universal label switching paths under the VTE link to the IP layer, so that the IP layer is based on the summarized TE Information is used for path calculation.
  • the VNTM module 33 may be further configured to perform one of the following: 1) corresponding all the universal label switching paths under the VTE link to the UNI-C device and the user network interface client side UNI-N The same TE link between devices; 2) all common label switching paths under the VTE link correspond to different TE links between the UNI-C device and the UNI-N device; 3) different VTEs to be different The universal label switching path under the link corresponds to the same TE link between the UNI-C device and the UNI-N device.
  • the Stateful PCE module 32 can be further configured to: verify whether the VTE link exists between the UNI-C devices, and determine whether the VTE link can provide a service; A VTE link is established between the UNI-C devices when the link does not exist or the service cannot be provided.
  • the Stateful PCE module 32 may be configured to set both ends of the VTE link as the LSP bundling interface of the UNI-C device, and set the Between the UNI-C device LSP bundling interface.
  • a virtual connection corresponds to the VTE link.
  • the Stateful PCE module 32 may be further configured to notify the LSP bundling module 31 after adding a general label switching path that meets the bandwidth requirement under the VTE link; Module 31 may be further configured to bind the new universal label switching path to the VTE link.
  • the LSP bundling module can also After being configured to bind the newly added universal label switching path to the VTE link, notify the VNTM module 33; the VNTM module 33 may also be configured to update the TE of all the universal label switching paths under the VTE link. Information and advertised to the IP layer.
  • the present application also provides another apparatus for adjusting bandwidth as needed, comprising: a processor and a memory, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method :
  • bandwidth expansion is performed on the universal label switching path or a general label switching path that satisfies the bandwidth requirement is added under the VTE link .
  • the above two devices for adjusting bandwidth on demand are all set in the controller of the SDN architecture to adjust the bandwidth on demand for the multi-layer network under the SDN structure.
  • the controller of the SDN architecture may include:
  • PCE Stateful Path Compute Element
  • IP Traffic Engineering Database (IP TED) module is responsible for saving and managing traffic engineering (TE) information of the IP network;
  • the Optical TED module is responsible for maintaining and managing the TE information of the optical network.
  • the VNTM module manages and controls the service layer's Label Swiched Path (LSP), which is advertised to the client layer for client layer path calculation.
  • LSP Label Swiched Path
  • the notification contains the TE information required for the client layer path calculation.
  • the PCE Pulth Compute Element Communication Protocol
  • PCC Path Compute Client
  • the Netconf module is used to send configuration information, query status information, and alarm information to the network device.
  • the OpenFlow module belongs to the controller's southbound interface and is used to send flow tables and control information to network devices.
  • the BGP-LS module belongs to the southbound interface of the controller and collects topology information of the Internet Protocol (IP) network and the optical network, and related TE information.
  • IP Internet Protocol
  • the gLSP bundle module is used to manage the relationship between the VTE link and the gLSP.
  • the TE information of the gLSP is aggregated to the corresponding VTE link, and the status of the gLSP and the VTE link are managed and controlled.
  • the gLSP bundling module is used to manage the relationship between the VTE link and the gLSP, and collect the TE information of the gLSP to the corresponding VTE link, and manage and control the status of the gLSP and the VTE link.
  • the TE information of the TE link through the optical network used by the IP layer is the TE information summarized by the gLSP bundling module, instead of the TE information directly using the service layer gLSP.
  • an example of a multi-layer network architecture used in the present application includes two routing devices R1, R2 and four optical network devices O1, O2, O3, and O4.
  • R1 is connected to O1 and O2 through two physical links L1 and L2 respectively.
  • R2 is connected to O3 and O4 through two physical links L3 and L4 respectively.
  • the four physical links of L1, L2, L3 and L4 have 10G bandwidth.
  • O1 and O3 are connected by physical link L5, and O2 and O4 are connected by physical link L6.
  • O1 and O2 are connected by physical link L7, and O3 and O4 are connected by L8.
  • the four physical link bandwidths of L5, L6, L7, and L8 are not specifically agreed, but they can meet the bandwidth requirements of IP layer service transmission.
  • a controller is also included for managing and controlling IP network devices and optical network devices.
  • the controller can collect the topology of the IP network and the optical network and the information of the TE link at the same time, and use the PCE to calculate the path of the IP network and the optical network.
  • the main modules included in the controller are shown in FIG. 4 .
  • VTE Link1 VTE link
  • gLSP bundle1 interface on the R1 and R2 devices.
  • the bandwidth of the specified VTE link is 8G.
  • the stateful PCE module calculates the R1->L1->O1->L5->O3->L3->R2 path glsp1 to meet the requirements, and advertises glsp1 to the gLSP bundle module. Bind glsp1 to VTE Link1 and notify the VNTM module to control the forwarding channel of glsp1 between UNI-C devices.
  • the optical network can provide 8G service transmission services to the IP network.
  • R1 and R2 are directly connected through VTE Link1, and the specific devices of the optical network are not visible.
  • the IP network With the uninterrupted service of the multi-layer network, the IP network will impose additional service bandwidth requirements on the optical network.
  • the extra bandwidth requirement is less than 2G, the remaining bandwidth on the path of glsp1 can
  • the controller can directly expand the bandwidth of glsp1 by using MBB (Make Before Break).
  • the Stateful PCE module needs to recalculate a path.
  • the path is glsp2 (R1->L2->O2->L6->O4->L4).
  • the stateful PCE module notifies the newly calculated path glsp2 to the gLSP bundle module.
  • the gLSP bundle module binds glsp2 to VTE Link1 and notifies the VNTM module to establish a glsp2 forwarding channel between the UNI-C devices.
  • VTE Link1 can provide 13G transmission capacity to the IP network through glsp1 and glsp2. If the subsequent network services are reduced, the optical network needs to provide bandwidth services to be reduced to 8G.
  • the bandwidth requirement is reduced, if the glsp band under the VTE Link meets the bandwidth required to be reduced, the glsp may be directly removed from the VTE Link, or the glsp bandwidth may be adjusted. Ways to meet the need to reduce the VTE Link bandwidth. That is to say, after the glsp binding in this application, there are two ways to deal with it: one is to unbind and delete glsp2 and VTE Link1, and the other is to reduce the bandwidth of glsp1 to 3G.
  • an embodiment of the present application further provides a computer readable storage medium storing computer executable instructions, the method for implementing the bandwidth adjustment on demand when the computer executable instructions are executed.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • the technical solution of the embodiment of the present invention is based on the SDN architecture in a multi-layer network.
  • the service layer is required to provide additional bandwidth services
  • the network topology of the client layer does not change and does not affect the services that the client layer is running.
  • the adjusted bandwidth can be various granularities according to the needs of the user, and is not limited by the bandwidth of a single physical link between the UNI-C and the UNI-N.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本文公布了一种按需调整带宽的方法及装置、计算机存储介质,所述方法包括:将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接;当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。

Description

一种按需调整带宽的方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710107843.5、申请日为2017年02月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及网络通信技术领域,具体涉及一种按需调整带宽的方法及装置、计算机存储介质。
背景技术
为了能满足不断发展和丰富的数据业务的传输要求,传输网需要具有支持多种业务的能力,提供多种交换技术和多种交换粒度,并提供端到端的操作管理维护(OAM,Operation Administration and Maintenance)和保护、恢复的能力。
ITU-T组织对多层网络的框架进行了描述和定义,将多层网络中相邻层之间的关系定位成客户层和服务层的关系。IETF发布的RFC5212(Requirems for GMPLS-Based Multi-Region and Multi-Layer Networks)中,将多层网络(MLN,multi-layer network)定义为有单个通用多协议标签交换(GMPLS,Generalized Multiprotocol Label Switching)控制面实例控制的,包含多个数据交换平面的流量工程(TE,Traffic Engineering)域,这些数据平面具有相同的交换能力或者不同的交换能力。下文中提到的多层网络主要指不同交换能力数据平面构成的多层网络。
在多层网络中,服务层网络会根据客户层网络的要求,在服务层网络 边缘节点之间建立路径,该路径建立完成后会被服务层网络当做一条TE链路通告给客户层网络,作为客户层网络拓扑的一部分,用于客户层路径的计算。
当客户层对服务层有额外的带宽要求时,服务层会在原有路径扩大带宽。当原来的路径剩余带宽无法满足新增的带宽需求时,服务层会新建一条路径来满足客户层的新增带宽需求,这种情况会导致客户层拓扑的变化,对客户层的业务造成影响。
发明内容
为了解决上述技术问题,本发明实施例提供了一种按需调整带宽的方法及装置。
一方面,本申请提供了一种按需调整带宽的方法,包括:
将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径gLSP绑定至所述UNI-C设备之间的同一VTE链接;
当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
其中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还包括:将所述VTE链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使得所述IP层基于所述汇总的TE信息进行路径计算。
其中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还包括如下之一:
所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;
所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与 UNI-N设备之间的不同TE链接;
不同的所述VTE链接下的通用标签交换路径对应所述UNI-C设备与UNI-N设备之间的相同TE链接。
其中,在将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之前,还包括:验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述VTE链接是否能够提供服务;所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
其中,所述将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之前,还包括:
将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
其中,在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,还包括:将所述新增的通用标签交换路径绑定至所述VTE链接。
其中,在将所述新增的通用标签交换路径绑定至所述VTE链接之后,还包括:更新所述VTE链接下所有通用标签交换路径的TE信息并通告至IP层。
另一方面,本申请提供了一种按需调整带宽的装置,包括:
LSP捆绑模块,配置为将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径gLSP绑定至所述UNI-C设备之间的同一VTE链接;
Stateful PCE模块,配置为当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
其中,还包括:虚拟网络拓扑管理VNTM模块,配置为将所述VTE链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使 得所述IP层基于所述汇总的TE信息进行路径计算。
其中,所述VNTM模块,配置为执行如下之一:
将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;
将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的不同TE链接;
将不同的所述VTE链接下的通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的相同TE链接。
其中,所述Stateful PCE模块,还配置为:验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述VTE链接是否能够提供服务;在所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
其中,所述Stateful PCE模块,还配置为将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
其中,所述Stateful PCE模块,还配置为在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,通知所述LSP捆绑模块;所述LSP捆绑模块,还配置为将所述新增的通用标签交换路径绑定至所述VTE链接。
其中,所述LSP捆绑模块,还配置为将所述新增的通用标签交换路径绑定至所述VTE链接之后,通知VNTM模块;所述VNTM模块,配置为更新所述VTE链接下所有通用标签交换路径的TE信息并通告至IP层。
再一方面,本申请还提供了一种按需调整带宽的装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接;
当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
又一方面,本申请实施例还提供一种计算机存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述按需调整带宽的方法。
本发明实施例在多层网络中基于SDN架构中,当需要服务层提供额外的带宽服务时,客户层的网络拓扑不会发生变化,不会对客户层正在运行的业务造成影响,并且调整的带宽根据用户的需求可以是各种粒度,不受UNI-C和UNI-N之间单条物理链路带宽的限制。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例中按需调整带宽的方法的流程示意图;
图2为本发明实施例中设备VTE Link层次关系示意图;
图3为本发明实施例中按需调整带宽的装置的组成结构示意图;
图4为本发明实施例中按需调整带宽的装置所属控制器的模块组件示意图;
图5为多层网络架构示例的示意图;
图6为本发明实施例在图5的多层网络示例中完成按需调整带宽的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,本申请提供一种按需调整带宽的方法,包括:
步骤101,将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径(gLSP,Generalized Label Switched Path)绑定至所述UNI-C设备之间的同一VTE链接;
步骤102,当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
本申请可适用于SDN架构的多层网络中,以实现其按需调整带宽(BoD)。本申请基于RFC5212中提到的虚拟流量工程链接(VTE Link,Virtual TE Links)的技术,并在此基础上进行了扩充,能够在不改变客户层拓扑的条件下,不受UNI-C和UNI-N之间单条物理链路带宽限制,灵活调整服务层提供的带宽,从而克服相关技术中存在的调整服务层提供的带宽会导致客户层拓扑变化的缺陷。
在一些实现方式中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还可以将所述VTE 链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使得所述IP层基于所述汇总的TE信息进行路径计算。
实际应用中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还包括如下之一:
1)所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;
2)所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与UNI-N设备之间的不同TE链接;
3)不同的所述VTE链接下的通用标签交换路径对应所述UNI-C设备与UNI-N设备之间的相同TE链接。
在一些实现方式中,在将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之前,还可以先验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述VTE链接是否能够提供服务;所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
本申请中,所述将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径绑定至所述UNI-C设备之间的同一VTE链接之前,将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
在一些实现方式中,在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,还将所述新增的通用标签交换路径绑定至所述VTE链接。之后,还可以更新所述VTE链接下所有通用标签交换路径的TE信息并通告至IP层。
本申请对RFC5212中定义的VTE Link的概念进行了扩展,VTE Link不再只是单条的服务层的LSP,可能有多条服务层LSP的捆绑。
如图2所示,VTE Link的两端都在用户网络接口客户侧(UNI-C,User Network Interface Client)设备上,对应UNI-C设备上的gLSP捆绑逻辑接口,两端UNI-C设备gLSP捆绑接口间的虚拟连接对应一条VTE Link。一条VTE Link可以包含一条gLSP或多条gLSP。一条VTE Link下的多条gLSP可以对应UNI-C和用户网络接口客户侧(UNI-N,User Network Interface Network)之间不同的TE Link(gLSP bundle1),也可以对应不同的TE Link。不同VTE Link下的gLSP可以经过UNI-C和UNI-N之间相同的TE Link。当VTE Link下有多条gLSP时,通告给IP层的TE信息要综合考虑VTE Link下所有gLSP。
本申请中,在多层网络中按需调整带宽的方法可以包括以下步骤:
第一步,用户需要先通过APP对VTE Link进行规划,指定使用VTE Link连接哪两个UNI-C设备、期望的带宽、时延等属性。
第二步,用户使用APP进行业务部署,触发PCE进行IP层的路径计算。完成路径计算后,如果路径中包含VTE Link,则需要判断VTE Link是否能提供服务。如果VTE Link对应的光网络的转发路径还未建立,则gLSP捆绑模块会根据预定的约束条件使用PCE计算服务层的路径,并控制UNI-C设备完成VTE Link转发通道的建立。
第三步,当对VTE Link有额外的带宽需求时,该需求可能来自用户规划,也可能来自对网络流量监控分析或者带宽日历。gLSP捆绑模块对新增的带宽进行分析,可能直接在原gLSP路径上进行带宽扩充,也可能直接在VTE Link下新增一条gLSP来满足带宽扩充的需求。
在多层网络的架构中,本申请与相关技术相比,当需要服务层提供额外的带宽服务时,客户层的网络拓扑不会发生变化,不会对客户层正在运行的业务造成影响。
如图3所示,本申请还提供一种按需调整带宽的装置,包括:
LSP捆绑模块31,可配置为将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接;
Stateful PCE模块32,可配置为当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
在一些实现方式中,还可以包括:VNTM模块33,配置为将所述VTE链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使得所述IP层基于所述汇总的TE信息进行路径计算。
实际应用中,所述VNTM模块33,还可以配置为执行如下之一:1)将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;2)将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的不同TE链接;3)将不同的所述VTE链接下的通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的相同TE链接。
在一些实现方式中,所述Stateful PCE模块32,还可配置为:验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述VTE链接是否能够提供服务;在所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
本申请中,所述Stateful PCE模块32,还可以配置为将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
在一些实现方式中,所述Stateful PCE模块32,还可以配置为在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,通知所述LSP捆绑模块31;所述LSP捆绑模块31,还可以配置为将所述新增的通用标签交换路径绑定至所述VTE链接。其中,所述LSP捆绑模块,还可 以配置为将所述新增的通用标签交换路径绑定至所述VTE链接之后,通知VNTM模块33;所述VNTM模块33,还可以配置为更新所述VTE链接下所有通用标签交换路径的TE信息并通告至IP层。
相应的,本申请还提供另一种按需调整带宽的装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接;
当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
需要说明的是,上述两种按需调整带宽的装置均可实现上述方案的所有细节以及下述具体实施例的所有细节。
实际应用中,上述两种按需调整带宽的装置均设置于SDN架构的控制器中,以针对SDN结构下多层网络进行按需调整带宽。
如图4所示,SDN架构的控制器可以包括:
带状态的(Stateful)路径计算单元(PCE,Path Compute Element)模块,负责IP(客户层)和光层(Optical)(服务层)网络LSP(gLSP)通用标签交换路径)的计算,以及对LSPs的监控和管理;
IP流量工程数据库(IP TED)模块,负责保存和管理IP网络的流量工程(TE)信息;
Optical TED模块,负责保持和管理光网络的TE信息。
VNTM模块,虚拟网络拓扑管理(VNTM,virtual Network Topology Management)模块,负责管理和控制服务层的通用标签交换路径(LSP,Label Swiched Path),这些LSPs会通告到客户层,供客户层路径计算使用, 通告中包含客户层路径计算需要的TE信息。
PCE通信协议(PCEP,Path Compute Element Communication Protocol)模块,属于控制器南向接口,用来与路径计算请求客户端(PCC,Path Compute Client)交互IP层和光层LSPs的控制和状态信息。
Netconf模块,属于控制器南向接口,用来向网络设备下发配置信息、查询状态信息和告警信息。
OpenFlow模块,属于控制器南向接口,用来向网络设备下发流表和控制信息。
BGP-LS模块,属于控制器南向接口,用来收集互联网协议(IP,Internet Protocol)网络和光网络的拓扑信息、以及相关的TE信息。
gLSP捆绑(bundle)模块:gLSP捆绑模块用来管理VTE Link和gLSP之间的关系,将gLSP的TE信息汇总到对应的VTE Link上,并管理和控制gLSP和VTE Link的状态。
gLSP捆绑模块用来管理VTE Link和gLSP之间的关系,将gLSP的TE信息汇总到对应的VTE Link上,并管理和控制gLSP和VTE Link的状态。
IP层在使用PCE进行路径计算时,使用的通过光网络的TE Link的TE信息,是gLSP捆绑模块汇总后的TE信息,而不是直接使用服务层gLSP的TE信息。
下面以具体实施例来详细说明本申请中按需调整带宽的实现过程。
如图5所示,为本申请中使用的多层网络架构的一个示例,包含两台路由设备R1、R2,四台光网络设备O1、O2、O3、O4。
R1通过两条物理链路L1、L2分别连接到O1、O2,R2通过两条物理链路L3、L4分别连接O3、O4,L1、L2、L3、L4四条物理链路都有10G的带宽。
O1和O3之间通过物理链路L5连接,O2和O4之间通过物理链路L6 连接。O1和O2之间通过物理链路L7连接,O3和O4之间通过L8连接。L5、L6、L7、L8四条物理链路带宽不做具体约定,但都能满足IP层业务传输的带宽需求。
图5中只包含了4台光网络设备和2台IP网络设备,光网络的O1和O3、O2和O4之间使用物理链路直连。在实际的应用中,本申请中对IP网络设备和光网络设备的数目没有限制,对光网络设备之间的连接方式没有限制,即O1、O3之间可以通过物理链路直连的,也可以经过多台光网络设备连接。O1和O2之间可以有物理链路,也可以没有物理链路,都不会影响本申请的实现。
在图5的多层网络架构中,还包含一台控制器(Controller),用来管理和控制IP网络设备和光网络设备。控制器能同时收集到IP网络和光网络的拓扑和TE链路的信息,并使用PCE来计算IP网络和光网络的路径,控制器包含的主要模块如图4所示。
在进行按需调整带宽的操作之前,需要有一些前置操作,如图6所示,需要现在R1和R2之间规划一条VTE Link1(VTE链接),对应到R1和R2设备上的gLSP bundle1接口。
指定VTE Link的带宽为8G,Stateful PCE模块通过PCE计算得到R1->L1->O1->L5->O3->L3->R2路径glsp1满足要求,将glsp1通告给gLSP捆绑模块,gLSP捆绑模块将glsp1绑定到VTE Link1下,并通知VNTM模块控制UNI-C设备之间建立glsp1的转发通道。
在完成前置配置后,光网络就能向IP网络提供8G的业务传输服务。在IP网络拓扑中,R1和R2是通过VTE Link1直连,看不到光网络的具体设备。
随着多层网络中业务的不断开通,IP网络会对光网络提出额外的服务带宽要求。当额外的带宽要求小于2G时,在glsp1的路径上的剩余带宽能 满足新增带宽的需求,控制器可以使用先通后断(MBB,Make Before Break)的方式直接扩大glsp1的带宽。
但如果IP网络对光网络提出的新增带宽需求为5G,在glsp1原有路径上的剩余带宽已不能满足新增的带宽。此时Stateful PCE模块需要重新计算一条路径,在图4中该路径为glsp2(R1->L2->O2->L6->O4->L4)。Stateful PCE模块将新计算出来的路径glsp2通知给gLSP捆绑模块,gLSP捆绑模块将glsp2与VTE Link1绑定,并通知VNTM模块在UNI-C设备之间建立glsp2的转发通道。
操作完成后,VTE Link1通过glsp1和glsp2总共能向IP网络提供13G的传输能力。如果后续网络业务减少,需要光网络提供带宽服务减少到8G。
需要说明的是,本申请中,如果带宽需求减少,在VTE Link下有glsp的带块正好满足需要减少的带宽时,可以直接将该glsp从VTE Link下移除,也可以通过调整glsp带宽的方式来满足减少VTE Link带宽的需求。也就是说,本申请中glsp捆绑之后还可以有两种处理方式:一种是将glsp2与VTE Link1解除绑定并删除,还有一种是将glsp1的带宽减少到3G。
上文描述的不管是对VTE Link增加带宽还是减少带宽的操作都不会改变IP网络的拓扑,在IP网络看来R1和R2间还是只有一条VTE Link1连接,只是VTE Link1的带宽发生了变化。R1和R2间没有新增连接,路由不需要收敛,对已存在的IP业务没有影响。
此外,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述按需调整带宽的方法。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介 质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本发明实施例的技术方案,在多层网络中基于SDN架构中,当需要服务层提供额外的带宽服务时,客户层的网络拓扑不会发生变化,不会对客户层正在运行的业务造成影响,并且调整的带宽根据用户的需求可以是各种粒度,不受UNI-C和UNI-N之间单条物理链路带宽的限制。

Claims (16)

  1. 一种按需调整带宽的方法,包括:
    将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径gLSP绑定至所述UNI-C设备之间的同一VTE链接;
    当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
  2. 根据权利要求1所述的方法,其中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还包括:
    将所述VTE链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使得所述IP层基于所述汇总的TE信息进行路径计算。
  3. 根据权利要求1所述的方法,其中,所述将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之后,还包括如下之一:
    所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;
    所述VTE链接下的所有通用标签交换路径对应所述UNI-C设备与UNI-N设备之间的不同TE链接;
    不同的所述VTE链接下的通用标签交换路径对应所述UNI-C设备与UNI-N设备之间的相同TE链接。
  4. 根据权利要求1所述的方法,其中,在将UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之前,还包括:
    验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述 VTE链接是否能够提供服务;所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
  5. 根据权利要求1或4所述的方法,其中,所述将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接之前,还包括:
    将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
  6. 根据权利要求1所述的方法,其中,在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,还包括:
    将所述新增的通用标签交换路径绑定至所述VTE链接。
  7. 根据权利要求6所述的方法,其中,在将所述新增的通用标签交换路径绑定至所述VTE链接之后,还包括:
    更新所述VTE链接下所有通用标签交换路径的TE信息并通告至IP层。
  8. 一种按需调整带宽的装置,包括:
    LSP捆绑模块,配置为将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径gLSP绑定至所述UNI-C设备之间的同一VTE链接;
    Stateful PCE模块,配置为当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
  9. 根据权利要求8所述的装置,其中,还包括:虚拟网络拓扑管理VNTM模块,配置为将所述VTE链接下所有通用标签交换路径的流量工程TE信息汇总并通告至IP层,使得所述IP层基于所述汇总的TE信息进行路径计算。
  10. 根据权利要求9所述的装置,其中,所述VNTM模块,配置为执行如下之一:
    将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与用户网络接口客户侧UNI-N设备之间的同一TE链接;
    将所述VTE链接下的所有通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的不同TE链接;
    将不同的所述VTE链接下的通用标签交换路径对应于所述UNI-C设备与UNI-N设备之间的相同TE链接。
  11. 根据权利要求8所述的装置,其中,所述Stateful PCE模块,还配置为:验证所述UNI-C设备之间是否已存在所述VTE链接,并判断所述VTE链接是否能够提供服务;在所述VTE链接不存在或不能提供服务时,在所述UNI-C设备之间建立VTE链接。
  12. 根据权利要求8或11所述的装置,其中,所述Stateful PCE模块,还配置为将所述VTE链接的两端设置为所述UNI-C设备的LSP捆绑接口,并设置所述UNI-C设备LSP捆绑接口之间的虚拟连接对应于所述VTE链接。
  13. 根据权利要求8或9所述的装置,其中,
    所述Stateful PCE模块,还配置为在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径之后,通知所述LSP捆绑模块;
    所述LSP捆绑模块,还配置为将所述新增的通用标签交换路径绑定至所述VTE链接。
  14. 根据权利要求13所述的装置,其中,
    所述LSP捆绑模块,还配置为将所述新增的通用标签交换路径绑定至所述VTE链接之后,通知VNTM模块;
    所述VNTM模块,配置为更新所述VTE链接下所有通用标签交换路 径的TE信息并通告至IP层。
  15. 一种按需调整带宽的装置,包括:处理器和存储器,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    将用户网络接口客户侧UNI-C设备之间的不同通用标签交换路径LSP绑定至所述UNI-C设备之间的同一VTE链接;
    当对所述VTE链接中的通用标签交换路径有额外的带宽需求时,在所述通用标签交换路径上进行带宽扩充或在所述VTE链接下新增一条满足所述带宽需求的通用标签交换路径。
  16. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-7任一项所述的按需调整带宽的方法。
PCT/CN2017/102116 2017-02-27 2017-09-18 一种按需调整带宽的方法及装置、计算机存储介质 WO2018153071A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019130314A RU2722501C1 (ru) 2017-02-27 2017-09-18 Способ и устройство для регулировки полосы пропускания по запросу и компьютерный носитель данных
EP17897895.3A EP3588874A4 (en) 2017-02-27 2017-09-18 METHOD AND DEVICE FOR ADJUSTING THE BANDWIDTH ACCORDING TO REQUIREMENTS AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710107843.5 2017-02-27
CN201710107843.5A CN108512757B (zh) 2017-02-27 2017-02-27 一种按需带宽调整的方法及装置

Publications (1)

Publication Number Publication Date
WO2018153071A1 true WO2018153071A1 (zh) 2018-08-30

Family

ID=63253091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102116 WO2018153071A1 (zh) 2017-02-27 2017-09-18 一种按需调整带宽的方法及装置、计算机存储介质

Country Status (4)

Country Link
EP (1) EP3588874A4 (zh)
CN (1) CN108512757B (zh)
RU (1) RU2722501C1 (zh)
WO (1) WO2018153071A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804739C2 (ru) * 2022-03-21 2023-10-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Способ обнаружения ложного средства коммутации и управления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968205A (zh) * 2006-11-10 2007-05-23 上海龙林通信技术有限公司 一种半网状网的路由方法及其系统
US20080107027A1 (en) * 2006-11-02 2008-05-08 Nortel Networks Limited Engineered paths in a link state protocol controlled Ethernet network
CN101309229A (zh) * 2008-07-16 2008-11-19 中兴通讯股份有限公司 一种多协议标签交换架构网络资源接纳控制的方法
CN101420383A (zh) * 2008-12-12 2009-04-29 北京邮电大学 一种mpls-tp分组传送网络中的ecmp路径软恢复方法
CN101515938A (zh) * 2009-03-24 2009-08-26 华为技术有限公司 通过传输网络传输ip报文的方法及装置
CN103166872A (zh) * 2013-03-07 2013-06-19 北京华为数字技术有限公司 网络中流量转发的方法和网络设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795445B1 (en) * 2000-10-27 2004-09-21 Nortel Networks Limited Hierarchical bandwidth management in multiservice networks
US7872976B2 (en) * 2003-05-02 2011-01-18 Alcatel-Lucent Usa Inc. System and method for multi-protocol label switching network tuning
US7835267B2 (en) * 2005-05-09 2010-11-16 Cisco Technology, Inc. Dynamic path protection in an optical network
US7903584B2 (en) * 2006-01-06 2011-03-08 Cisco Technology, Inc. Technique for dynamically splitting MPLS TE-LSPs
CN101013995A (zh) * 2007-02-12 2007-08-08 华为技术有限公司 网络节点设备、网络系统及隧道建立方法
US8000240B2 (en) * 2008-07-07 2011-08-16 Verizon Patent And Licensing Inc. Method and system for providing auto-bandwidth adjustment
US7969886B1 (en) * 2008-12-15 2011-06-28 Tejas Israel Ltd Bandwidth allocation for hierarchical telecommunications networks
US8345700B2 (en) * 2009-12-17 2013-01-01 Verizon Patent And Licensing, Inc. Embedding of MPLS labels in IP address fields
IT1400169B1 (it) * 2010-05-24 2013-05-17 Selex Communications Spa Procedimento e sistema di controllo di banda per il rispetto di una predeterminata qualità di servizio presso un punto di accesso ad una rete di comunicazioni operante una aggregazione di flussi di traffico eterogenei.
US9444712B2 (en) * 2012-11-21 2016-09-13 Cisco Technology, Inc. Bandwidth on-demand services in multiple layer networks
US9577925B1 (en) * 2013-07-11 2017-02-21 Juniper Networks, Inc. Automated path re-optimization
CN104967571B (zh) * 2015-06-08 2018-08-24 新华三技术有限公司 一种带宽调整方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080107027A1 (en) * 2006-11-02 2008-05-08 Nortel Networks Limited Engineered paths in a link state protocol controlled Ethernet network
CN1968205A (zh) * 2006-11-10 2007-05-23 上海龙林通信技术有限公司 一种半网状网的路由方法及其系统
CN101309229A (zh) * 2008-07-16 2008-11-19 中兴通讯股份有限公司 一种多协议标签交换架构网络资源接纳控制的方法
CN101420383A (zh) * 2008-12-12 2009-04-29 北京邮电大学 一种mpls-tp分组传送网络中的ecmp路径软恢复方法
CN101515938A (zh) * 2009-03-24 2009-08-26 华为技术有限公司 通过传输网络传输ip报文的方法及装置
CN103166872A (zh) * 2013-03-07 2013-06-19 北京华为数字技术有限公司 网络中流量转发的方法和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588874A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804739C2 (ru) * 2022-03-21 2023-10-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Способ обнаружения ложного средства коммутации и управления

Also Published As

Publication number Publication date
EP3588874A4 (en) 2020-11-18
CN108512757A (zh) 2018-09-07
EP3588874A1 (en) 2020-01-01
RU2722501C1 (ru) 2020-06-01
CN108512757B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
EP2843888B1 (en) Dynamic end-to-end network path setup across multiple network layers
US9819540B1 (en) Software defined network controller
CN105743795B (zh) 用于广域网优化的点到多点路径计算
US9413634B2 (en) Dynamic end-to-end network path setup across multiple network layers with network service chaining
US10547537B1 (en) Batched path computation in resource-constrained networks
US9838268B1 (en) Distributed, adaptive controller for multi-domain networks
US7995569B2 (en) Virtual routers for GMPLS networks
US11528190B2 (en) Configuration data migration for distributed micro service-based network applications
US10225173B2 (en) Method to provide elasticity in transport network virtualisation
WO2014081766A1 (en) Bandwidth on-demand services in multiple layer networks
US11677659B2 (en) Optimization of segment routing-enabled multipath network
JP2015530768A (ja) 制御装置、その制御方法及びプログラム
JP2008252439A (ja) 通信ネットワークシステム
Bryskin et al. Policy-enabled path computation framework
CN100502528C (zh) 实现自动交换光网络中光连接间的关联的方法
WO2018153071A1 (zh) 一种按需调整带宽的方法及装置、计算机存储介质
WO2011003260A1 (zh) 一种自动交换光网络中业务迁移的方法和装置
WO2017063166A1 (zh) 一种过中断链路建立标签交换路径的方法及装置
Martınez et al. GMPLS/PCE-controlled Multi-Flow Optical Transponders in Elastic Optical Networks
KR100441891B1 (ko) 이종의 다중 프로토콜 라벨 스위칭 네트워크 장비를 원격제어하기 위한 구성 정보 자료구조 및 관리장치, 관리방법
WO2017066923A1 (zh) 一种业务路径建立的方法、网络控制器和系统
KR102015110B1 (ko) 다계층 또는 다중 도메인에서 효율적 자원 활용을 위한 보호절체 관리 장치 및 방법
Simmons et al. Dynamic optical networking
WO2020118505A1 (zh) 一种业务路径建立的方法、网络设备和系统
KR20110080272A (ko) 동적인 회로 기반의 네트워크 에서 가상화 기반의 도메인 간 효율적인 경로 계산을 제공하는 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897895

Country of ref document: EP

Effective date: 20190927