WO2018152742A1 - Multiple surfaces for physical-to-image/image-to-physical registration and image verification - Google Patents

Multiple surfaces for physical-to-image/image-to-physical registration and image verification Download PDF

Info

Publication number
WO2018152742A1
WO2018152742A1 PCT/CN2017/074580 CN2017074580W WO2018152742A1 WO 2018152742 A1 WO2018152742 A1 WO 2018152742A1 CN 2017074580 W CN2017074580 W CN 2017074580W WO 2018152742 A1 WO2018152742 A1 WO 2018152742A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
image
cubic
virtual
cubic corner
Prior art date
Application number
PCT/CN2017/074580
Other languages
French (fr)
Inventor
Yu Hang Walter LAM
Tai Chiu Richard HSUNG
Wai Kuen Henry LUK
Ho Nang Edmond POW
Yuk Tung Henry NGAN
Original Assignee
Versitech Limited
The Hong Kong Baptist University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versitech Limited, The Hong Kong Baptist University filed Critical Versitech Limited
Priority to PCT/CN2017/074580 priority Critical patent/WO2018152742A1/en
Priority to CN201780087268.5A priority patent/CN110462681B/en
Publication of WO2018152742A1 publication Critical patent/WO2018152742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • This invention relates to image registration based on multiple surfaces arranged in a three-dimensional (3D) relationship as fiducial markers.
  • 3D virtual images of a physical object can be produced by multiple imaging techniques.
  • Non-contact optical scanners are commonly employed to scan objects’surface topography. Multiple 2D images were taken and reconstructed into 3D images (physical-to-image registration, PI) .
  • PI physical-to-image registration
  • the accuracy of surface scanning is dependent on the detector of the scanner and the surface properties of the object, such as its optical reflection. Before scanning a particular object, calibration of the optical scanner with objects of similar surface properties and known surface coordinate is recommended.
  • non-reflective powders may be sprayed onto the objects’surface to standardize their surface properties. Its thickness however is difficult to control.
  • surgeons can acquire 3D computed tomography (CT) images of their patients to investigate the inner parts of human body and plan for any required surgical treatment.
  • a 3D grey-scale image and orthogonal cross-sectional (sagittal, coronal and horizontal) views of the patient’s jaw bone in the selected field of view (FOV) will be generated from a serial of 2D images.
  • Surgeons can plan and place virtual dental implants at a position which will facilitate biological and esthetic tooth replacement in CT images using surgical planning software.
  • Real time computer-assisted navigation (dynamic) or template-based (static) surgical guidance has been developed to facilitate accurate implant placement by transferring this pre-operative virtual planning to the operating table (image-to-physical registration, IP) .
  • CT provides 3D images of internal structures of the skull
  • optical surface scanning provides high resolution 3D teeth surface model as a medium for IP. 3D images may therefore be superimposed to supplement each other (image-to-image registration, II) .
  • the best-fit superimposition intensity-based
  • point-based and surface-based registration algorithm The best-fit algorithm is used for the II registration by matching the intensity of image elements between 2 images of an imaging technique.
  • the best-fit algorithm has a mean error of 0.16 mm (linear) and 1.07 mm (3D) Lagravère, Manuel O., et al. "Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. " American Journal of Orthodontics and Dentofacial Orthopedics 134.1 (2008) : 112-116.
  • Point-based registration involves a placement of some markers physically on the object. More points will reduce the registration error. See Fitzpatrick et al., “Predicting error in rigid-body point-based registration, ” IEEE Transactions on Medical Imaging 17.5 (1998) : 694-702, which is incorporated herein by reference in its entirety, hereinafter “Fitzpatrick et al. 1998. ” However this will increase the computational power/time needed for registration and may make it practically very difficult to place adequate points in limited space such as the oral cavity. This method has errors of 0.3 mm to detect the central point in a physical domain and 0.4 mm in a CT scan See, Maurer, Calvin R., et al.
  • the image registration error should be the minimum and most of the safety margin should be reserved for the surgical treatment itself, such as the vibration of surgical instruments.
  • the usual clinical safety margin would be 2 mm and any registration error in the computer-assisted surgery may already account for half of this safety margin.
  • all of these image registrations should be verified physically, yet the arrangement of current point-based/surface-based fiducial markers do not allow easy physical coordinate measurements.
  • the present inventors achieved promising preliminary results with manual and semi-automatic registration using multiple surfaces with 3D relationships (one cubic corner/corner cube ( “CC” ) of 1 cm ⁇ 1 cm ⁇ 1 cm) See, Lam, Walter YH, et al. "Validation of a Novel Geometric Coordination Registration using Manual and Semi-automatic Registration in Cone-beam Computed Tomogram. " IS&T Electronic Imaging 2016.14 (2016) : 1-6, which is incorporated herein by reference in its entirety. The disclosed manual and semi-automatic registrations were used to detect the cubic corner.
  • the Manual registration was achieved with SimPlant Pro software, i.e., manual registration was used to register the (x, y, z) -axes to three orthogonal windows in SimPlant Pro.
  • Semi-automatic registration was used in MeshLab and 3D slicer (both free and open-source software) to define each surface by using MeshLab first and then fitting these surfaces to the (x, y, z) -axes in 3D slicer.
  • Registration errors were found to be 0.56 mm and 0.39 mm for the manual and semi-automatic registrations, respectively. This work anticipated that the registration error could be further reduced if this registration could be performed automatically. Moreover, this registration allows easy physical measuring of the coordinates of specific points. This facilitates comparison with the virtual domains and the error of this registration process can be calculated. This registration process also allows selection of better image modalities (e.g. different types of optical scanners) by comparing their PI registration errors. It was assumed that this technique has the potential to be converted into an ISO standard for measuring the accuracy of image modalities/systems. This may also be potentially useful in measuring the printing (IP) quality of 3D printers in the future. Clinically, by comparing pre-and post-operative serial images, clinicians can assess the accuracy of various surgical navigation or guidance methods.
  • IP printing
  • the present invention concerns the use of multiple surfaces (e.g. three orthogonal surfaces forming a corner of a cube) for serial image registration and calibration. These surfaces have an intrinsic relationship which defines the origin and the x-y-and z-axes of a Cartesian coordinate system. Physically, these surfaces are fitted onto an object such as a patient wearing a surgical appliance/template. This allows physical coordinate measurement of a particular point of an object by a coordinate measuring machine (CMM) . In a computer environment, the 3D image of the scanned surfaces is registered to Cartesian coordinate using these surfaces. Therefore the object position in the physical and virtual computer environments can be matched to the same coordinate system. By comparing coordinates of selected points, the registration error (target registration error TRE) of this method can be identified. With the present invention an automatic means uses the cubic corner (CC) to define the Cartesian coordinates with a corner tip as the origin O and the three line angles as (x, y, z) -axes. This automatic registration reduces human errors.
  • CMM
  • this method can be extended to measure the accuracy of imaging techniques (i.e. PI) such as computed tomography and optical scanners. Therefore, this method allows for a direct comparison of the virtual domain to the physical domain and allows for calibration of imaging equipment. Moreover, this method defines the reference coordinate of an object and allows for comparison of changes in serial images. Thus, it may be used to compare the progress of a disease and evaluate the treatment outcome such as the surgical navigation or guidance.
  • imaging techniques i.e. PI
  • this method defines the reference coordinate of an object and allows for comparison of changes in serial images. Thus, it may be used to compare the progress of a disease and evaluate the treatment outcome such as the surgical navigation or guidance.
  • This structure can be achieved by modifying bricks ( “flat tiles” or “wall corners” ) to act as fiducial markers.
  • the CC helps to define the Cartesian coordinates both in the physical domain (real patient/object) as well as in the multiple imaging domains, such as CT and optical surface scanner. This process is referred to as “registration. ” Therefore, both physical and image will share the same coordinates in a perfect registration.
  • the current invention proposed a new algorithm to register fiducial markers (surfaces) on appliances, including templates and in serial images automatically and to reduce error in IP, II and PI registrations.
  • a dental surgical appliance may be a tooth-supported device that fits over teeth and guides the oral surgeon in correct placement of implants in patients’mouth. They are usually made with acrylic, polypropylene or similar materials.
  • the proposed surfaces on the appliance/stent define the Cartesian coordinate in the physical and virtual domains and allow the verification of IP, II and PI registration (TRE) . Individual imaging and/or printing technique can be validated and compared to other techniques.
  • ⁇ 1 cm Multiple principal surfaces (1 cm ⁇ 1 cm) are arranged in a 3D orthogonal relationship physically or virtually. Physically, this can be a machine-milled cubic corner or commercially available cubic blocks such as brick’s “flat tile” . Alternatively, a cubic corner space (an inverse cubic corner) may be milled or again using commercially available brick’s “wall corner” . The inverse cubic corner may be useful for locating the tip of a surgical instruments and useful in IP. Virtually, this can be easily designed by computer aided design (CAD) software.
  • CAD computer aided design
  • Two supplementary geometric structures such as flat surfaces, may be formed with a circular/oval shape (centroid) with a diameter of 0.5 cm. Physically, they are custom-made by milling a flat plate, e.g., one made of acrylic or commercially available brick’s “flat tile” . Alternatively, two “wall corners” may be used. Virtually, this can again be easily designed by software.
  • Golden ratio/triangular/geometric algorithm may be included between i) the origin of the principal surfaces (corner tip) and two supplement centroids or ii) three surfaces forming the principal fiducial marker. Physically, there are hand instruments (e.g. a golden ratio caliper) to facilitate their positioning. Virtually, this can also be easily designed by software.
  • these physical surfaces can be smoothened (for optical scanner and computed tomography) , color-painted (for optical scanner) or painted with a thin film of radiopaque material (for computed tomography) .
  • Algorithm for detecting the surfaces may be based on surface smoothness, color (e.g. RGB color) , and radiopacity (grey scale) .
  • this registration process provides more accurate registration.
  • a smaller fiducial marker is needed for the same level of registration accuracy.
  • this fiducial marker enables measuring coordinates in the physical domain; therefore the registration error (TRE) can be measured by comparing coordinates of specific points in both physical and virtual domains.
  • This has a potential application in comparing the imaging (PI) /printing (IP) modalities. For example, to compare the accuracy of 3D images created by computed tomography and by optical scanners.
  • the best-fit superimposition intensity-based
  • point-based and surface-based registration algorithm are several algorithms commonly used for image registration.
  • the best-fit algorithm is used for the II registration by matching the intensity of image elements between 2 images. However, it does not allow any PI or IP registration conversion.
  • the best-fit algorithm has a mean error of 0.16 mm (linear) and 1.07 mm (3D) See Lagravere et al. 2008. Point-based registration involves a placement of some markers physically on the object. More points will reduce the registration error. See Fitzpatrick et al., 1998. However, this will increase the computational power/time needed for registration and may practically difficult to place adequate points in limited space such as the oral cavity.
  • This method has errors of 0.3 mm to detect the central point in a physical domain and 0.4 mm in a CT scan. See, Maurer 1997.
  • For surface based registration it was not commonly used in the PI and IP conversion and it requires a large surface for acceptable registration accuracy and the problem of using resilience soft tissues in the registration.
  • the use of optical surface scanner in capturing the surface of an object may encounter problems due to the surface reflective properties of an object and errors may be result in capturing the true surface of an object which is difficult to be verified by existing registration methods. See, Ireland 2008.
  • the image registration error should be the minimum and most of safety margin should be reserved to the surgical treatment itself, such as the vibration of surgical instruments.
  • the usual clinical safety margin would be 2 mm and any registration error may already account for half of the safety margin.
  • all these image registrations should be verified physically, yet the arrangement of current point-based/surface-based fiducial markers do not allow easy physical coordinate measurements.
  • FIG. 1 shows a cubic corner fiducial marker according to the present invention with three surfaces arranged in orthogonal relationships matched to the x-y-z-axes of Cartesian coordinates;
  • FIG 2A shows automatic surface detection by surface roughness and FIG. 2B shows automatic surface detection by color
  • FIG. 3A shows a CT image of milled multiple surface fiducial markers (one cubic corner and two flat surfaces) on an oral appliance/stent sitting on the maxillary (upper) arch of a patient and
  • FIG. 3B shows an automatic software determined image of the fiducial marker surfaces bytheir smoothness for image registration;
  • FIG. 4A shows commercially available brick “flat tiles” used as fiducial markers on the oral appliance
  • FIG. 4B is a CT image of a top plan view of the and “wall corners” markers and appliance
  • FIG. 4C is a computer generated schematic diagram of the markers and their positioning
  • FIG. 5A is a software generated image of a milled principal cubic corner and two centroid supplement surfaces arranged in a triangular algorithm for image registration according to the present invention
  • FIG. 5B is an example of triangular/golden triangle ratio algorithm
  • FIG. 5C is an example of principal fiducial marker in which three centroid surfaces arranged with both orthogonal and triangular algorithm relationship;
  • FIG. 6 shows the positioning of milled flat surfaces, i.e., “flat tiles, ” on an oral appliance/stent using a surface plate.
  • the present invention is an automatic rigid image registration process using multiple geometric surfaces arranged in certain 3D relationships as fiducial markers.
  • the principal arrangement uses three surfaces arranged in an orthogonal relationship, e.g. a cubic corner.
  • the proposed registration process is a modification of surface-based registration and the 3D relationships between these surfaces allow more accurate registration than the surfaces alone. Therefore, a smaller fiducial marker can be used with the same level of registration error as the current ones.
  • This rigid registration process is suitable for image-to-physical (IP) , image-to-image (II) and physical-to-image (PI) registration.
  • a multiple (principal) surfaces fiducial marker can be attach to an object either physically or virtually, and will define the Cartesian (x, y, z) -coordinates for that object in both physical and virtual domains.
  • the (x, y, z) -coordinates of a point in the object can be measured by both a coordinate measuring machine (CMM) physically and software virtually.
  • CMS coordinate measuring machine
  • the algorithm detects the surface roughness, color or radiopacity of selected surfaces and automatically fits them to (x, y, z) -axes in the Cartesian coordinate system.
  • a computer program will automatically detect these surfaces and minimize manual error in the registration process.
  • Registration in physical domain can be compared with that in virtual domain.
  • a shift operation H of a matrix produces m ⁇ n new markers such that is defined as
  • e A , e B , e C are from the markers M A , M B , M C , respectively.
  • e A , e B , e C are from the markers M A , M B , M C , respectively.
  • Theorem 6 (Eligible registration errors): Given three proposed markers M A , M B , M C in the RD, three markers in the VD such that where respectively for translational and angular errors, e A (x, y) , e B (x, y) , e C (x, y) .
  • the use of a fiducial marker of larger surface area will increase the registration accuracy.
  • two smaller (supplement) geometric structures such as circular/ovoid surfaces (centroids) /wall corners (corner tips) may be added and they should be placed at the same plane/level or at least in parallel to one principal surface.
  • the use of a golden ratio/triangular/geometric algorithm in the positioning of these two centroid/corner tip surfaces and the principal surface is recommended to further enhance the registration accuracy.
  • the principal fiducial marker may be modified by arranging three centroid surfaces in an orthogonal relationship and using the golden ratio/triangular algorithm to determine the space between their centroid positions FIG. 5C.
  • the golden ratio/triangular algorithm is shown in FIG. 5B.
  • Multiple principal fiducial markers i.e. a cubic corner
  • a cubic corner can be used in a rigid registration.
  • only one marker is selected to define the Cartesian coordinates.
  • the multiple cubic corners may be useful for a surgical navigation in which the virtual surgical planning is transferred to a real physical patient that requires a precise calibration of the position of the surgical equipment (e.g., a drilling bur) between the virtual and physical domains.
  • the inverse corner/wall corner provides one solid point in this calibrating process.
  • the third surface can be extrapolated from the two surfaces, substituted by a Cartesian point (for example to define the origin) , or by other means.
  • a cubic corner can be used in i) Image registration and ii) Linking the virtual and physical domains together. While image registration is based on multiple surfaces that are arranged in a 3D relationship (such as a geometric structure like a sphere) , linking the virtual and physical domains is the unique function of a cubic corner which defines the Cartesian coordinates for both the physical and virtual domains.
  • the present invention can be used in a surgical navigation or guided surgery procedure.
  • the conventional optical scanners/computed tomography typically involved in such a procedure are used.
  • these scanners are connected or the image files are transferred to a computer which runs programs that allow for preoperative surgical planning.
  • the computer runs an additional software module that handles the automatic registration based on the scanner’s images captured by the computer. The process involves the following steps:
  • fiducial markers may be custom made by milling or commercially available bricks may be used. In the virtual domain, these markers can be easily designed using proper software.
  • One of the markers is a cubic corner 10 as shown in FIG. 1 and FIG. 2B.
  • markers are attached to an oral appliance/stent 12 which sits reproducibly on the patient’s teeth 14. Positioning of markers on the appliance/stent is critical for image registration and linking of the virtual and physical domains together.
  • the cubic corner and two flat surfaces are positioned in one plane by a machine milled surface plate as shown in FIG. 6. Furthermore they may be arranged in a relationship, such as the golden ratio, triangular and other geometric algorithms as shown in FIGS. 5A and 5B, by using a golden ratio caliper or a rectangular Lego block etc.
  • the marker surfaces are polished as shown in FIG. 2A or painted as shown in FIGS. 1 and 2B to aid in automatic identification by the MATLAB software.
  • the paint is of different radiopacity than the markers, while for the optical surface scanning, colors such as red, green and blue may be painted on the marker surfaces.
  • CT Computed Tomography
  • the automatic alignment can be done in a standalone computer using the acquired data from adopted scanning device (s) .
  • the markers and the oral appliance/stent can be designed virtually and then printing out (stereolithography) . These markers can be easily positioned virtually by the software.
  • the oral appliance with fiducial markers is digitalized and automatically identified by the registration software.
  • the accuracy of registration is increased by adding two flat surfaces or tiles 16 at distances from the cubic corner. This is shown in both a CT scan and optical surface scan images in FIGS. 3A and 3B.
  • a prototype in the form of flat tile 16 is shown in FIG. 4A, and optical surface scans of wall corners 15 is shown in FIG. 4B.
  • the position of these “wall corners” 15 can be guided by a rectangular Lego brick (an example of a geometric algorithm) is shown in FIG 4C.
  • the cubic corner helps to define the Cartesian coordinates both in the physical domain (real patient) as well as in the multiple imaging domains, such as CT and optical surface scanner.
  • the coordination process is termed “registration. ” Therefore, both physical structure and the image will share the same coordinates when there is perfect registration.
  • FIG. 5A shows a CT image of the modified stent of the present invention, i.e., a model image with two centroid supplement discs and one milled principal cube corner whose arrangement is modified by a triangular algorithm of the present invention to solve the serial images registration (detect and reconstruct) problem automatically and to reduce error in the 3D virtual images.
  • FIG. 5B is an example of the triangular/golden triangle ratio algorithm.
  • the corner tip of the cubic corner may function as a centroid and the distances between the corner tip/centroids A, B and C in this invention incorporate the triangular algorithm, e.g., by having AB equal to AC and the ratio of AB (or AC) : BC is 1.6181 to 1.
  • the lengths of AB, AC, BC are all flexible and may be in the golden triangular ratio in both the physical and virtual domains.
  • FIG. 5C is an example of multiple surfaces arranged in orthogonal relationship and their centroids arranged in triangular ratio.
  • the virtually designed oral appliance can be 3D printed.
  • the physical surgical instruments can be calibrated to link both physical and virtual domains by the fiducial markers, such as the cubic corner or wall corners.
  • the wall corners in FIG 4B and 4C allow the calibration of a surgical instruments to the virtual planning domain.
  • the tip of the surgical instruments can be placed in the corner and its position captured by the tracing system and this can relate the physical instruments to the virtual imaging. Therefore, the virtual surgical planning can be executed (image-to-physical registration) in the real physical world.
  • the patient can wear the oral appliance/stent. Then they can be digitalized again.
  • the image registration allows an image-to-image (II) comparison to demonstrate the surgical result. Since the physical and virtual domains are linked together, patients may avoid any post-operative CT, using only optical surface scanning to determine the surgical result (e.g. position of implant) and to compare the preoperative planning in the CT with reference to the CC.
  • the proposed fiducial markers can be attached to a testing object. Verification of the registration (PI, II and IP) accuracy and instrument calibration can be performed by comparing the Cartesian coordinates of specific points obtained by a physical CMM and by a virtual software.
  • the imaging/printing instruments can be calibrated with this process and potentially act as an ISO standard for both the imaging and printing modalities. Selection of more accurate imaging/printing instruments is possible by a comparison of their physical-virtual errors (target registration error TRE) .
  • target registration error TRE target registration error

Abstract

This invention is about a novel image registration. This rigid registration is based on multiple surfaces arranged in a 3D relationship in the Cartesian coordinate system through a fiducial marker. In comparison to surface-based registration, this registration process provides more accurate registration or requires a smaller fiducial marker for the same level of registration accuracy. Moreover, this fiducial marker enables measuring coordinates in the physical domain; therefore the registration error can be measured by comparing coordinates of specific points in both physical and virtual domains. This has a potential application in comparing the imaging physical-to-image (PI) or printing image-to-physical (IP) modalities, for example, to compare the accuracies of the 3D model created by computed tomography and optical scanners. Other potential application also includes assisting a surgical navigation in a dental implant placement. The proposed fiducial marker therefore has potential development in the application of virtual reality.

Description

MULTIPLE SURFACES FOR PHYSICAL-TO-IMAGE/IMAGE-TO-PHYSICAL REGISTRATION AND IMAGE VERIFICATION Field of the invention
This invention relates to image registration based on multiple surfaces arranged in a three-dimensional (3D) relationship as fiducial markers.
Background of the Invention
Virtual images are extensions of the real physical world and the accurate connection between the physical and virtual domains has many potential applications. 3D virtual images of a physical object can be produced by multiple imaging techniques. Non-contact optical scanners are commonly employed to scan objects’surface topography. Multiple 2D images were taken and reconstructed into 3D images (physical-to-image registration, PI) . The accuracy of surface scanning is dependent on the detector of the scanner and the surface properties of the object, such as its optical reflection. Before scanning a particular object, calibration of the optical scanner with objects of similar surface properties and known surface coordinate is recommended. On the other hands, non-reflective powders may be sprayed onto the objects’surface to standardize their surface properties. Its thickness however is difficult to control.
In the medical field, surgeons can acquire 3D computed tomography (CT) images of their patients to investigate the inner parts of human body and plan for any required surgical treatment. A 3D grey-scale image and orthogonal cross-sectional (sagittal, coronal and horizontal) views of the patient’s jaw bone in the selected field of view (FOV) will be generated from a serial of 2D images. Surgeons can plan and place virtual dental implants at a position which will facilitate biological and esthetic tooth replacement in CT images using surgical planning software. Real time computer-assisted navigation (dynamic) or template-based (static) surgical guidance has been developed to facilitate accurate implant placement by transferring this pre-operative virtual planning to the operating table (image-to-physical registration, IP) .
Multiple imaging techniques may be combined together for clinical use. While CT provides 3D images of internal structures of the skull, optical surface scanning provides high resolution 3D teeth surface model as a medium for IP. 3D images may therefore be superimposed to supplement each other (image-to-image registration, II) .
Currently, there are several algorithms commonly used for image registration. For example, the best-fit superimposition (intensity-based) , point-based and surface-based registration algorithm. The best-fit algorithm is used for the II registration by matching the intensity of image elements between 2 images of an imaging technique. However, it does not allow any PI/IP registration conversion, nor II registration among multiple imaging techniques. The best-fit algorithm has a mean error of 0.16 mm (linear) and 1.07 mm (3D) Lagravère, Manuel O., et al. "Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. " American Journal of Orthodontics and Dentofacial Orthopedics 134.1 (2008) : 112-116. Point-based registration involves a placement of some markers physically on the object. More points will reduce the registration error. See Fitzpatrick et al., “Predicting error in rigid-body point-based registration, ” IEEE Transactions on Medical Imaging 17.5 (1998) : 694-702, which is incorporated herein by reference in its entirety, hereinafter “Fitzpatrick et al. 1998. ” However this will increase the computational power/time needed for registration and may make it practically very difficult to place adequate points in limited space such as the oral cavity. This method has errors of 0.3 mm to detect the central point in a physical domain and 0.4 mm in a CT scan See, Maurer, Calvin R., et al. “Registration of head volume images using implantable fiducial markers, ” IEEE Transactions on Medical Imaging 16.4 (1997) , pp 447-462, which is incorporated herein by reference in its entirety, herein after “Maurer 1997. ” For surface based registration, it was not commonly used in the PI and IP conversion since it requires a large surface for acceptable registration accuracy and the problem of using resilience soft tissues in the registration. The use of optical surface scanner in capturing the surface of an object may encounter problems due to the surface reflective properties of an object and errors may be result in capturing the true surface of an object which is difficult to verify by existing registration methods. See, Ireland, A.J., et al. “3D surface imaging in dentistry–what we are looking at, ” British Dental Journal 205.7 (2008) , pp 387-392, which is incorporated herein by reference in its entirety, hereinafter “Ireland et al. 2008. ”
Ideally, the image registration error should be the minimum and most of the safety margin should be reserved for the surgical treatment itself, such as the vibration of surgical instruments. In placing any dental implant, the usual clinical safety margin would be 2 mm and any registration error in the computer-assisted surgery may already account for half of this safety margin. Moreover, all of these image registrations should be verified physically, yet the arrangement of current point-based/surface-based fiducial markers do not allow easy physical coordinate measurements.
The present inventors achieved promising preliminary results with manual and semi-automatic registration using multiple surfaces with 3D relationships (one cubic corner/corner cube ( “CC” ) of 1 cm ×1 cm ×1 cm) See, Lam, Walter YH, et al. "Validation of a Novel Geometric Coordination Registration using Manual and Semi-automatic Registration in Cone-beam Computed Tomogram. " IS&T Electronic Imaging 2016.14 (2016) : 1-6, which is incorporated herein by reference in its entirety. The disclosed manual and semi-automatic registrations were used to detect the cubic corner.
The Manual registration (MR) was achieved with SimPlant Pro software, i.e., manual registration was used to register the (x, y, z) -axes to three orthogonal windows in SimPlant Pro. Semi-automatic registration (SR) was used in MeshLab and 3D slicer (both free and open-source software) to define each surface by using MeshLab first and then fitting these surfaces to the (x, y, z) -axes in 3D slicer.
Registration errors were found to be 0.56 mm and 0.39 mm for the manual and semi-automatic registrations, respectively. This work anticipated that the registration error could be further reduced if this registration could be performed automatically. Moreover, this registration allows easy physical measuring of the coordinates of specific points. This facilitates comparison with the virtual domains and the error of this registration process can be calculated. This registration process also allows selection of better image modalities (e.g. different types of optical scanners) by comparing their PI registration errors. It was assumed that this technique has the potential to be converted into an ISO standard for measuring the accuracy of image modalities/systems. This may also be potentially useful in measuring the printing (IP) quality of 3D printers in the future. Clinically, by comparing pre-and post-operative serial images, clinicians can assess the accuracy of various surgical navigation or guidance methods.
Summary of the Invention
The present invention concerns the use of multiple surfaces (e.g. three orthogonal surfaces forming a corner of a cube) for serial image registration and calibration. These surfaces have an intrinsic relationship which defines the origin and the x-y-and z-axes of a Cartesian coordinate system. Physically, these surfaces are fitted onto an object such as a patient wearing a surgical appliance/template. This allows physical coordinate measurement of a particular point of an object by a coordinate measuring machine (CMM) . In a computer environment, the 3D image of the scanned surfaces is registered to Cartesian coordinate using these surfaces. Therefore the object position in the physical and virtual computer environments can be matched to the same coordinate system. By comparing coordinates of selected points, the registration error (target registration error TRE) of this method can be identified. With the present invention an automatic means uses the cubic corner (CC) to define the Cartesian coordinates with a corner tip as the origin O and the three line angles as (x, y, z) -axes. This automatic registration reduces human errors.
With the present invention automatic registration is achieved with stereotactic/fiducial markers that are identifiable in both CT and optical surface scanning by its surface smoothness+/-color Red-Green-Blue (RGB) +/-radiopacity. The recognition can be done in a computer incorporated with MATLAB software. The accuracy of registration is increased by adding two flat surfaces distant to CC, which in effective increase the area for registration while allow smaller sized fiducial markers to be used.
With knowledge of the registration error of the multiple surfaces, this method can be extended to measure the accuracy of imaging techniques (i.e. PI) such as computed tomography and optical scanners. Therefore, this method allows for a direct comparison of the virtual domain to the physical domain and allows for calibration of imaging equipment. Moreover, this method defines the reference coordinate of an object and allows for comparison of changes in serial images. Thus, it may be used to compare the progress of a disease and evaluate the treatment outcome such as the surgical navigation or guidance.
This structure can be achieved by modifying 
Figure PCTCN2017074580-appb-000001
 bricks ( “flat tiles” or “wall corners” ) to act as fiducial markers. The CC helps to define the Cartesian coordinates both in the physical domain (real patient/object) as well as in the multiple imaging domains, such as  CT and optical surface scanner. This process is referred to as “registration. ” Therefore, both physical and image will share the same coordinates in a perfect registration.
The current invention proposed a new algorithm to register fiducial markers (surfaces) on appliances, including templates and in serial images automatically and to reduce error in IP, II and PI registrations. A dental surgical appliance may be a tooth-supported device that fits over teeth and guides the oral surgeon in correct placement of implants in patients’mouth. They are usually made with acrylic, polypropylene or similar materials. The proposed surfaces on the appliance/stent define the Cartesian coordinate in the physical and virtual domains and allow the verification of IP, II and PI registration (TRE) . Individual imaging and/or printing technique can be validated and compared to other techniques.
Multiple principal surfaces (1 cm ×1 cm) are arranged in a 3D orthogonal relationship physically or virtually. Physically, this can be a machine-milled cubic corner or commercially available cubic blocks such as 
Figure PCTCN2017074580-appb-000002
 brick’s “flat tile” . Alternatively, a cubic corner space (an inverse cubic corner) may be milled or again using commercially available 
Figure PCTCN2017074580-appb-000003
 brick’s “wall corner” . The inverse cubic corner may be useful for locating the tip of a surgical instruments and useful in IP. Virtually, this can be easily designed by computer aided design (CAD) software.
Two supplementary geometric structures, such as flat surfaces, may be formed with a circular/oval shape (centroid) with a diameter of 0.5 cm. Physically, they are custom-made by milling a flat plate, e.g., one made of acrylic or commercially available 
Figure PCTCN2017074580-appb-000004
 brick’s “flat tile” . Alternatively, two “wall corners” may be used. Virtually, this can again be easily designed by software.
Golden ratio/triangular/geometric algorithm may be included between i) the origin of the principal surfaces (corner tip) and two supplement centroids or ii) three surfaces forming the principal fiducial marker. Physically, there are hand instruments (e.g. a golden ratio caliper) to facilitate their positioning. Virtually, this can also be easily designed by software.
For a PI registration, depending on the nature of the imaging modalities, these physical surfaces can be smoothened (for optical scanner and computed tomography) , color-painted (for optical scanner) or painted with a thin film of radiopaque material (for computed  tomography) . Algorithm for detecting the surfaces may be based on surface smoothness, color (e.g. RGB color) , and radiopacity (grey scale) .
In comparison to a surface-based registration of similar area, this registration process provides more accurate registration. In other words, a smaller fiducial marker is needed for the same level of registration accuracy. Moreover, this fiducial marker enables measuring coordinates in the physical domain; therefore the registration error (TRE) can be measured by comparing coordinates of specific points in both physical and virtual domains. This has a potential application in comparing the imaging (PI) /printing (IP) modalities. For example, to compare the accuracy of 3D images created by computed tomography and by optical scanners.
Currently, there are several algorithms commonly used for image registration. For example, the best-fit superimposition (intensity-based) , point-based and surface-based registration algorithm. The best-fit algorithm is used for the II registration by matching the intensity of image elements between 2 images. However, it does not allow any PI or IP registration conversion. The best-fit algorithm has a mean error of 0.16 mm (linear) and 1.07 mm (3D) See Lagravere et al. 2008. Point-based registration involves a placement of some markers physically on the object. More points will reduce the registration error. See Fitzpatrick et al., 1998. However, this will increase the computational power/time needed for registration and may practically difficult to place adequate points in limited space such as the oral cavity. This method has errors of 0.3 mm to detect the central point in a physical domain and 0.4 mm in a CT scan. See, Maurer 1997. For surface based registration, it was not commonly used in the PI and IP conversion and it requires a large surface for acceptable registration accuracy and the problem of using resilience soft tissues in the registration. The use of optical surface scanner in capturing the surface of an object may encounter problems due to the surface reflective properties of an object and errors may be result in capturing the true surface of an object which is difficult to be verified by existing registration methods. See, Ireland 2008.
Ideally, the image registration error should be the minimum and most of safety margin should be reserved to the surgical treatment itself, such as the vibration of surgical instruments. In placing any dental implant, the usual clinical safety margin would be 2 mm and any registration error may already account for half of the safety margin. Moreover, all  these image registrations should be verified physically, yet the arrangement of current point-based/surface-based fiducial markers do not allow easy physical coordinate measurements.
Brief description of the drawings
The foregoing and other objects and advantages of the present invention will become more apparent when considered in connection with the following detailed description and appended drawings in which like designations denote like elements in the various views, and wherein:
FIG. 1 shows a cubic corner fiducial marker according to the present invention with three surfaces arranged in orthogonal relationships matched to the x-y-z-axes of Cartesian coordinates;
FIG 2A shows automatic surface detection by surface roughness and FIG. 2B shows automatic surface detection by color;
FIG. 3A shows a CT image of milled multiple surface fiducial markers (one cubic corner and two flat surfaces) on an oral appliance/stent sitting on the maxillary (upper) arch of a patient and FIG. 3B shows an automatic software determined image of the fiducial marker surfaces bytheir smoothness for image registration;
FIG. 4A shows commercially available 
Figure PCTCN2017074580-appb-000005
 brick “flat tiles” used as fiducial markers on the oral appliance, FIG. 4B is a CT image of a top plan view of the and “wall corners” markers and appliance, and FIG. 4C is a computer generated schematic diagram of the markers and their positioning;
FIG. 5A is a software generated image of a milled principal cubic corner and two centroid supplement surfaces arranged in a triangular algorithm for image registration according to the present invention, FIG. 5B is an example of triangular/golden triangle ratio algorithm, FIG. 5C is an example of principal fiducial marker in which three centroid surfaces arranged with both orthogonal and triangular algorithm relationship; and
FIG. 6 shows the positioning of milled flat surfaces, i.e., “flat tiles, ” on an oral appliance/stent using a surface plate.
Detailed Description of Exemplary Embodiments
The present invention is an automatic rigid image registration process using multiple geometric surfaces arranged in certain 3D relationships as fiducial markers. The principal arrangement uses three surfaces arranged in an orthogonal relationship, e.g. a cubic corner. The proposed registration process is a modification of surface-based registration and the 3D relationships between these surfaces allow more accurate registration than the surfaces alone. Therefore, a smaller fiducial marker can be used with the same level of registration error as the current ones. This rigid registration process is suitable for image-to-physical (IP) , image-to-image (II) and physical-to-image (PI) registration.
A multiple (principal) surfaces fiducial marker can be attach to an object either physically or virtually, and will define the Cartesian (x, y, z) -coordinates for that object in both physical and virtual domains. The (x, y, z) -coordinates of a point in the object can be measured by both a coordinate measuring machine (CMM) physically and software virtually. The proposed registration process bridging the virtual and physical domains since they can verify each other by a comparison of coordinates measured virtually and/or physically.
The algorithm detects the surface roughness, color or radiopacity of selected surfaces and automatically fits them to (x, y, z) -axes in the Cartesian coordinate system. In particular, a computer program will automatically detect these surfaces and minimize manual error in the registration process.
In deriving the algorithm the following assumptions are made:
A1. Registration in physical domain can be compared with that in virtual domain.
A2. Registration at markers A, B, C induces registration error.
A3. Registration error≤Clinical error
Definition 1: A rectangular marker in the real domain (RD) is defined as M= [f (x, y) ] and a rectangular marker in virtual domain (VD) , 
Figure PCTCN2017074580-appb-000006
 is defined as 
Figure PCTCN2017074580-appb-000007
Figure PCTCN2017074580-appb-000008
 where 
Figure PCTCN2017074580-appb-000009
 and P= [e (x, y) ] is a m×n matrix that represents additive clinical errors, and e (x, y) ∈R, 
Figure PCTCN2017074580-appb-000010
 1≤x≤m, 1≤y≤n.
Definition 2: Given any two m×n markers, Mv= [fv (x, y) ] and Mr= [fr (x, y) ] , a k-norm metric between two markers is defined as
Figure PCTCN2017074580-appb-000011
where N=m·n.
Remark: For a circular marker in the RD with a radius r and a centroid c=f (xc, yc) , it can be defined as Q= [f (x, y) ] , where f (x, y) =0 if | f (x, y) -c| >2r for a diameter 2r. A circular marker in the VD, 
Figure PCTCN2017074580-appb-000012
 is defined as 
Figure PCTCN2017074580-appb-000013
 where 
Figure PCTCN2017074580-appb-000014
 and P= [e (x, y) ] . This can be regarded as a circular disc embedded in a square that any pixel outside the disc is equal to zero.
Definition 3: Given any m x n marker
Figure PCTCN2017074580-appb-000015
 An ordered sequence of all elements of M is 
Figure PCTCN2017074580-appb-000016
A shift operation H of a matrix produces m×n new markers such that 
Figure PCTCN2017074580-appb-000017
 is defined as
Figure PCTCN2017074580-appb-000018
Given Mr, and 
Figure PCTCN2017074580-appb-000019
 where 
Figure PCTCN2017074580-appb-000020
 is one of the shift matrices, the 1-norm metric between them is defined as 
Figure PCTCN2017074580-appb-000021
 
Figure PCTCN2017074580-appb-000022
 for any two markers Mv
Figure PCTCN2017074580-appb-000023
 where 
Figure PCTCN2017074580-appb-000024
Figure PCTCN2017074580-appb-000025
Definition 4: Given any two m×n markers Mv= [fv (x, y) ] and Mr= [fr(x, y) ] , there exists a set of shift markers, 
Figure PCTCN2017074580-appb-000026
 and m·n 1-norm metrics 
Figure PCTCN2017074580-appb-000027
 for Mv, Mr, and an Energy of Shift Difference between Mv and 
Figure PCTCN2017074580-appb-000028
 is defined as 
Figure PCTCN2017074580-appb-000029
 where 0≤Kv, r≤1.
Definition 5: Given three markers MA, MB, MC in the RD and three markers 
Figure PCTCN2017074580-appb-000030
 in the VD, there are several types of errors in registration from the RD to the VD:
(a) Translational error in x, y, z-axes:
Et=eA+eB+eC
where eA, eB, eC are from the markers MA, MB, MC, respectively.
(b) Angular error in x, y, z-axes:
Figure PCTCN2017074580-appb-000031
where eA, eB, eC are from the markers MA, MB, MC, respectively.
Theorem 6 (Eligible registration errors) : Given three proposed markers MA, MB, MC in the RD, three markers 
Figure PCTCN2017074580-appb-000032
 in the VD such that
Figure PCTCN2017074580-appb-000033
where 
Figure PCTCN2017074580-appb-000034
Figure PCTCN2017074580-appb-000035
 respectively for translational and angular errors, eA (x, y) , eB (x, y) , eC (x, y) .
Meanwhile, an 1-norm metric between the two markers as follows: 
Figure PCTCN2017074580-appb-000036
 
Figure PCTCN2017074580-appb-000037
where MR and 
Figure PCTCN2017074580-appb-000038
 are markers in the RD and VD, respectively. It can be define that
(1) The range of 1-norm metric 
Figure PCTCN2017074580-appb-000039
 between RD and VD markers is 
Figure PCTCN2017074580-appb-000040
where 
Figure PCTCN2017074580-appb-000041
 is 1-norm metric between two markers.
(2) For e≠0, there exists a tolerance of registration errors, σij, for the 1-norm metric. For σij≥0, the difference in the 1-norm metric between markers in the RD and RD is in a range of 
Figure PCTCN2017074580-appb-000042
 where |e| = |ev| , ev∈R.
Remark: In the present case, the eligible registration error σij=0.02mm and the eligible clinical error e=2mm. Therefore, σij=0.02mm≤measurement≤e=2mm.
Proof: For (i) , there is one case considering the range of difference in 1-norm metric between markers of MR and 
Figure PCTCN2017074580-appb-000043
 where 
Figure PCTCN2017074580-appb-000044
 is shifted.
Figure PCTCN2017074580-appb-000045
Case 1: For ev (x, y) >0, (a0) becomes
Figure PCTCN2017074580-appb-000046
By the triangle rule, |a+b| ≤ |a| + |b| , we have 
Figure PCTCN2017074580-appb-000047
Case 2: For ev (x, y) <0, (a0) becomes
Figure PCTCN2017074580-appb-000048
Since |x-y| ≥ | |x| - |y| | for all real x, y, we have
Figure PCTCN2017074580-appb-000049
Case 3: For ev (x, y) =0, it is trivial that 
Figure PCTCN2017074580-appb-000050
Combining the results from all these cases,
Figure PCTCN2017074580-appb-000051
where 
Figure PCTCN2017074580-appb-000052
 1≤x, i≤m and 1≤y, j≤n.
Tolerance of Registration
Since 
Figure PCTCN2017074580-appb-000053
 is equivalent to 
Figure PCTCN2017074580-appb-000054
 for every e≠0, there exists a tolerance of registration errors for the 1-norm metric, σij≥0 such that the difference in 1-norm metric between MR and 
Figure PCTCN2017074580-appb-000055
 are markers in the RD and VD, respectively, is in a range 
Figure PCTCN2017074580-appb-000056
An automatic registration algorithm to these orthogonal surfaces reduces any manual errors in image registration. In cone-beam computed tomography (CBCT) , the PI  registration error was found to be less than 1 mm and this accuracy is comparable to current point based registration.
Definition 7 (An error restriction by the golden triangular ratio) :
Given three markers MA, MB, MC in the RD, three markers 
Figure PCTCN2017074580-appb-000057
 in the VD, there are three corresponding centroid points fA (xc, yc) , fB (xc, yc) , fC (xc, yc) in markers MA, MB, MC in the RD and centroid points 
Figure PCTCN2017074580-appb-000058
 in markers 
Figure PCTCN2017074580-appb-000059
Figure PCTCN2017074580-appb-000060
 in the VD. Then, there are three corresponding sets of energies, 
Figure PCTCN2017074580-appb-000061
 
Figure PCTCN2017074580-appb-000062
 In the RD, if the Euclidean distances between each pairwise centroids are DA, DB, DC and the corresponding angles at α, β, γ, then two golden triangular ratios are derived by the Law of Sines as
Figure PCTCN2017074580-appb-000063
and the Law of Cosines as
DA 2=DB 2+DC 2- (2DBDC) (cos α)
DB 2=DA 2+DC 2- (2DADC) (cos β)
DC 2=DA 2+DB 2- (2DADB) (cos γ)
The Laws of Sines and Law of Cosines are valid in the VD as well. These two triangular golden ratios are patient-oriented so that they can be used to measure the registration errors.
Modifications of the principal arrangement
For a surface-based registration, the use of a fiducial marker of larger surface area will increase the registration accuracy. Where there is limited space for positioning of the principal fiducial marker, such as in the oral cavity, two smaller (supplement) geometric structures such as circular/ovoid surfaces (centroids) /wall corners (corner tips) may be added  and they should be placed at the same plane/level or at least in parallel to one principal surface. The use of a golden ratio/triangular/geometric algorithm in the positioning of these two centroid/corner tip surfaces and the principal surface is recommended to further enhance the registration accuracy. Alternatively, the principal fiducial marker may be modified by arranging three centroid surfaces in an orthogonal relationship and using the golden ratio/triangular algorithm to determine the space between their centroid positions FIG. 5C. The golden ratio/triangular algorithm is shown in FIG. 5B.
Multiple principal fiducial markers (i.e. a cubic corner) can be used in a rigid registration. However according to the present invention only one marker is selected to define the Cartesian coordinates. The multiple cubic corners may be useful for a surgical navigation in which the virtual surgical planning is transferred to a real physical patient that requires a precise calibration of the position of the surgical equipment (e.g., a drilling bur) between the virtual and physical domains. The inverse corner/wall corner provides one solid point in this calibrating process.
Two perpendicular surfaces are sufficient for the proposed registration process. The third surface can be extrapolated from the two surfaces, substituted by a Cartesian point (for example to define the origin) , or by other means.
A cubic corner can be used in i) Image registration and ii) Linking the virtual and physical domains together. While image registration is based on multiple surfaces that are arranged in a 3D relationship (such as a geometric structure like a sphere) , linking the virtual and physical domains is the unique function of a cubic corner which defines the Cartesian coordinates for both the physical and virtual domains.
The present invention can be used in a surgical navigation or guided surgery procedure. In order to do so the conventional optical scanners/computed tomography typically involved in such a procedure are used. Also, these scanners are connected or the image files are transferred to a computer which runs programs that allow for preoperative surgical planning. In order to make use of the present invention, the computer runs an additional software module that handles the automatic registration based on the scanner’s images captured by the computer. The process involves the following steps:
(1) In the physical domain, fiducial markers may be custom made by milling or commercially available 
Figure PCTCN2017074580-appb-000064
 bricks may be used. In the virtual domain, these markers can be easily designed using proper software. One of the markers is a cubic corner 10 as shown in FIG. 1 and FIG. 2B.
(2) These markers are attached to an oral appliance/stent 12 which sits reproducibly on the patient’s teeth 14. Positioning of markers on the appliance/stent is critical for image registration and linking of the virtual and physical domains together. The cubic corner and two flat surfaces are positioned in one plane by a machine milled surface plate as shown in FIG. 6. Furthermore they may be arranged in a relationship, such as the golden ratio, triangular and other geometric algorithms as shown in FIGS. 5A and 5B, by using a golden ratio caliper or a rectangular Lego block etc. The marker surfaces are polished as shown in FIG. 2A or painted as shown in FIGS. 1 and 2B to aid in automatic identification by the MATLAB software. For detection in Computed Tomography (CT) , the paint is of different radiopacity than the markers, while for the optical surface scanning, colors such as red, green and blue may be painted on the marker surfaces. The automatic alignment can be done in a standalone computer using the acquired data from adopted scanning device (s) . Alternatively, the markers and the oral appliance/stent can be designed virtually and then printing out (stereolithography) . These markers can be easily positioned virtually by the software.
(3) For an imaging approach, the oral appliance with fiducial markers is digitalized and automatically identified by the registration software. The accuracy of registration is increased by adding two flat surfaces or tiles 16 at distances from the cubic corner. This is shown in both a CT scan and optical surface scan images in FIGS. 3A and 3B. A prototype in the form of 
Figure PCTCN2017074580-appb-000065
 flat tile 16 is shown in FIG. 4A, and optical surface scans of 
Figure PCTCN2017074580-appb-000066
 wall corners 15 is shown in FIG. 4B. The position of these “wall corners” 15 can be guided by a rectangular Lego brick (an example of a geometric algorithm) is shown in FIG 4C. The cubic corner helps to define the Cartesian coordinates both in the physical domain (real patient) as well as in the multiple imaging domains, such as CT and optical surface scanner. The coordination process is termed “registration. ” Therefore, both physical structure and the image will share the same coordinates when there is perfect registration.
FIG. 5A shows a CT image of the modified stent of the present invention, i.e., a model image with two centroid supplement discs and one milled principal cube corner  whose arrangement is modified by a triangular algorithm of the present invention to solve the serial images registration (detect and reconstruct) problem automatically and to reduce error in the 3D virtual images. FIG. 5B is an example of the triangular/golden triangle ratio algorithm. The corner tip of the cubic corner may function as a centroid and the distances between the corner tip/centroids A, B and C in this invention incorporate the triangular algorithm, e.g., by having AB equal to AC and the ratio of AB (or AC) : BC is 1.6181 to 1. By adopting this relationship between centroids, the size of the fiducial marker can be reduced to a minimum while maintaining a similar degree of registration accuracy. The lengths of AB, AC, BC are all flexible and may be in the golden triangular ratio in both the physical and virtual domains. FIG. 5C is an example of multiple surfaces arranged in orthogonal relationship and their centroids arranged in triangular ratio.
(4) Clinicians then design the plan for the surgical procedure virtually.
(5) For a printing approach, the virtually designed oral appliance can be 3D printed.
(6) During the surgical operation, the physical surgical instruments can be calibrated to link both physical and virtual domains by the fiducial markers, such as the cubic corner or wall corners. The wall corners in FIG 4B and 4C allow the calibration of a surgical instruments to the virtual planning domain. During the calibration, the tip of the surgical instruments can be placed in the corner and its position captured by the tracing system and this can relate the physical instruments to the virtual imaging. Therefore, the virtual surgical planning can be executed (image-to-physical registration) in the real physical world.
(7) Post-operatively, the patient can wear the oral appliance/stent. Then they can be digitalized again. The image registration allows an image-to-image (II) comparison to demonstrate the surgical result. Since the physical and virtual domains are linked together, patients may avoid any post-operative CT, using only optical surface scanning to determine the surgical result (e.g. position of implant) and to compare the preoperative planning in the CT with reference to the CC.
Verification of the registration accuracy and instrument calibration
The proposed fiducial markers can be attached to a testing object. Verification of the registration (PI, II and IP) accuracy and instrument calibration can be performed by  comparing the Cartesian coordinates of specific points obtained by a physical CMM and by a virtual software.
The imaging/printing instruments can be calibrated with this process and potentially act as an ISO standard for both the imaging and printing modalities. Selection of more accurate imaging/printing instruments is possible by a comparison of their physical-virtual errors (target registration error TRE) .
While the present invention has been particularly shown and described with reference to preferred embodiments thereof; it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (24)

  1. A method of registering or aligning a physical object in a Cartesian coordinate system with a virtual three dimensional image, comprising the steps of:
    locating a cubic corner on the physical object as a fiducial marker, said cubic corner having one of smooth surfaces and surfaces painted with different colors/radiopacities, at least two of the surfaces of the cubic corner being orthogonal to each other;
    scanning the physical object to capture an image of the physical object and the surfaces of the cubic corner;
    automatically recognizing the surfaces of the cubic corner in the image based on one of their smoothness and color/radiopacity; and
    aligning virtual Cartesian coordinates with the captured surfaces of the cubic corner in the image.
  2. A method of image to image registration or alignment, wherein the image is selected from serial images of an object at different points in time in a Cartesian coordinate system, said method comprising the steps of:
    locating a virtual cubic corner in each image as a fiducial marker, said cubic corner having one of smooth surfaces and surfaces painted with different colors/radiopacities, at least two of the surfaces of the cubic corner being orthogonal to each other;
    automatically recognizing the surfaces of the cubic corner in each image based on one of their smoothness and color/radiopacity; and
    aligning the serial images according to the cubic corners in each image.
  3. A method of forming a three-dimensional object based on a three-dimensional image in a Cartesian coordinate system, comprising the steps of:
    locating a virtual cubic corner in the image as a fiducial marker, said virtual cubic corner having one of smooth surfaces and, if the image is original from a physical object, surfaces painted with different colors/radiopacities, at least two of the surfaces of the virtual cubic corner being orthogonal to each other;
    automatically recognizing the surfaces of the virtual cubic corner in the image based on one of their smoothness and color/radiopacity; and
    one of milling or 3D printing the physical object based on the image so that a cubic corner in the physical object is aligned with virtual Cartesian coordinates in the image,
    whereby the cubic corner in the physical object can align with physical Cartesian coordinates in the Coordinate Measuring Machine (CMM) .
  4. The method of claim 1 wherein one of the surfaces being orthogonal to each other is a principal surface and further including the steps of
    adding two flat surfaces or tiles to the physical object at distances from the cubic corner prior to the step of scanning, said tiles being located in the same plane as a principal surface of the cubic corner,
    positioning of the two flat surfaces or tiles and the principal surface by using the golden ratio/triangular/geometric algorithm;
    automatically recognizing the flat surface of the tiles and cubic corner; and
    using the location of the tiles and cubic corner to aid in the aligning of the virtual Cartesian coordinates.
  5. The method of claim 4 wherein the flat surfaces or tiles have surfaces with a centroid, such as circular/ovoid-shaped, or the surface of another wall corner/cubic corner.
  6. The method of claim 1 wherein the cubic corner has smooth surfaces and the step of scanning is carried out with a computed tomography (CT) scanner or an optical surface scanner.
  7. The method of claim 2 wherein the virtual cubic corner has smooth surfaces and the computer software that detects surface roughness.
  8. The method of claim 1 wherein the cubic corner has colored/radiopacity surfaces and the step of scanning is carried out with an optical surface scanner that detects Red-Green-Blue colors/computed tomography that detects radiopacity.
  9. The method of claim 2 wherein the virtual cubic corner has colored/radiopacity surfaces and the step of scanning is carried out with computer software that detects color or radiopacity in the image.
  10. The method of any one of claims 1 to 3 wherein the step of aligning is performed using the golden ratio/triangular/geometric algorithm between the centroid/corner tip position.
  11. The method of any one of claims 1 to 3 wherein the tip of cubic corner may function as a centroid in the registration process. Centroid may also come from one principal surface.
  12. The method of claim 1 wherein the cubic corner is located on the physical object.
  13. The method of claim 1 wherein the physical object is an oral appliance or stent.
  14. The method of claim 1 wherein the cubic corner has only two orthogonal surfaces and a third orthogonal surface is extrapolated from the two surfaces.
  15. The method of clam 1 wherein the cubic corner is made by machine milling a flat acrylic resin and polypropylene plate.
  16. The method of claim 2 wherein the surfaces of the cubic corner and flat surface tile are
    Figure PCTCN2017074580-appb-100001
    brick flat tiles.
  17. The method of claim 1 wherein the surfaces of the cubic corner include
    Figure PCTCN2017074580-appb-100002
    brick wall corners.
  18. The method of claim 3 wherein the printing is an additive manufacturing method.
  19. The method of claim 3 wherein the milling is subtractive from a block.
  20. A method for planning a guided navigation surgical procedure comprising the steps of:
    scanning the body part to form a virtual model of a body part by computed tomography;
    designing a plan for the surgical procedure virtually on the image,
    locating one or more wall corner fiducial markers on the virtual model, said wall corner having an origin which provide a positive stop for the physical surgical instruments;
    milling or printing the fiducial marker if it is original from virtual model; and
    during the surgical guidance operation, the physical surgical instruments are calibrated to both physical and virtual domains by the fiducial markers.
  21. The method of claim 19 further including the step of adding two accessory wall corners to the model at distances from the principal wall corner, said accessory wall corners being located in the same plane as a surface of the principal wall corner,
    positioning of the two accessory wall corners cube and the principal wall corner by using the golden ratio/triangular/geometric algorithm;
    automatically recognizing the flat surfaces of the cubic corners; and
    using the location of principal cubic corner to aid in the aligning of the virtual Cartesian coordinates.
  22. The method of claim 19 wherein the surgical procedure is a dental procedure and the model is an oral appliance sitting on the patient’s teeth.
  23. A method for evaluating the result of a surgical procedure comprising the steps of:
    forming a virtual model of a body part and the fiducial marker (s) by computed tomography or surface scanning after the surgery, said cubic corner/wall corner having one of smooth surfaces, at least two of the surfaces of the cubic corner/wall corner being orthogonal to each other;
    automatically recognizing the surfaces of the cubic corner/wall corner in the image based on one of their smoothness and color/radiopacity;
    aligning virtual Cartesian coordinates with the captured surfaces of the cubic corner/wall corner in the image; and
    comparing the interested surgical results with the planning in pre-operative computed tomography.
  24. A method for evaluating the accuracy of the imaging/printing modalities comprising the steps of:
    locating a cubic corner/wall corner fiducial marker on the reference model;
    forming a test model by scanning/printing of the physical/virtual reference model and the fiducial marker, said cubic corner/wall corner having one of smooth surfaces, at least two of the surfaces of the cubic corner/wall corner being orthogonal to each other, if scanning a physical object, surfaces painted with different colors/radiopacities;
    automatically recognizing the surfaces of the cubic corner/wall corner in the image based on one of their smoothness and color/radiopacity;
    aligning physical/virtual Cartesian coordinates with the surfaces of the cubic corner/wall corner; and
    comparing the coordinate of selected points of the physical/virtual domains.
PCT/CN2017/074580 2017-02-23 2017-02-23 Multiple surfaces for physical-to-image/image-to-physical registration and image verification WO2018152742A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/074580 WO2018152742A1 (en) 2017-02-23 2017-02-23 Multiple surfaces for physical-to-image/image-to-physical registration and image verification
CN201780087268.5A CN110462681B (en) 2017-02-23 2017-02-23 Multiple surfaces for physical-to-image/image-to-physical registration and image verification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074580 WO2018152742A1 (en) 2017-02-23 2017-02-23 Multiple surfaces for physical-to-image/image-to-physical registration and image verification

Publications (1)

Publication Number Publication Date
WO2018152742A1 true WO2018152742A1 (en) 2018-08-30

Family

ID=63253511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074580 WO2018152742A1 (en) 2017-02-23 2017-02-23 Multiple surfaces for physical-to-image/image-to-physical registration and image verification

Country Status (2)

Country Link
CN (1) CN110462681B (en)
WO (1) WO2018152742A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076826A1 (en) * 2018-10-08 2020-04-16 30 60 90 Corporation System and methods for providing time and space altered view in augmented reality and virtual reality environments
WO2021019516A1 (en) * 2019-07-31 2021-02-04 Jessi Lew Pty Ltd. Intraoral coordinate system of dentition for the design and placement of dental implants
WO2021215843A1 (en) * 2020-04-24 2021-10-28 주식회사 디오 Oral image marker detection method, and oral image matching device and method using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112330723B (en) * 2020-09-22 2023-08-01 广东工业大学 Physical-to-image/image-to-physical automatic registration method
CN112656509B (en) * 2020-12-18 2023-09-22 华科精准(北京)医疗科技有限公司 Registration auxiliary device
CN113689477A (en) * 2021-09-09 2021-11-23 上海联影医疗科技股份有限公司 Multi-modality medical image registration method, system, readable storage medium and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290685A1 (en) * 2009-05-12 2010-11-18 Siemens Corporation Fusion of 3d volumes with ct reconstruction
US20150123769A1 (en) * 2012-05-09 2015-05-07 Koninklijke Philips N.V. Interventional information brokering medical tracking interface

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068825B2 (en) * 1999-03-08 2006-06-27 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
ATE488313T1 (en) * 2000-04-19 2010-12-15 Orametrix Inc BENDING MACHINE FOR A MEDICAL DEVICE
EP1301140B2 (en) * 2000-04-19 2017-07-05 OraMetrix, Inc. Bending machine for a medical device
US7027642B2 (en) * 2000-04-28 2006-04-11 Orametrix, Inc. Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290685A1 (en) * 2009-05-12 2010-11-18 Siemens Corporation Fusion of 3d volumes with ct reconstruction
US20150123769A1 (en) * 2012-05-09 2015-05-07 Koninklijke Philips N.V. Interventional information brokering medical tracking interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERTO VACCARELLA ET AL.: "Modular multiple sensors information management for computer- integrated surgery", INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, vol. 8, no. 3, 8 March 2012 (2012-03-08), XP002715218 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020076826A1 (en) * 2018-10-08 2020-04-16 30 60 90 Corporation System and methods for providing time and space altered view in augmented reality and virtual reality environments
WO2021019516A1 (en) * 2019-07-31 2021-02-04 Jessi Lew Pty Ltd. Intraoral coordinate system of dentition for the design and placement of dental implants
AU2020319738B2 (en) * 2019-07-31 2022-04-21 Jessi Lew Pty Ltd. Intraoral coordinate system of dentition for the design and placement of dental implants
US11717236B2 (en) 2019-07-31 2023-08-08 Jessi Lew Pty Ltd Intraoral coordinate system of dentition for the design and placement of dental implants
WO2021215843A1 (en) * 2020-04-24 2021-10-28 주식회사 디오 Oral image marker detection method, and oral image matching device and method using same

Also Published As

Publication number Publication date
CN110462681A (en) 2019-11-15
CN110462681B (en) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2018152742A1 (en) Multiple surfaces for physical-to-image/image-to-physical registration and image verification
US11020208B2 (en) System, device, and method for intraoral scanning accuracy
US7245753B2 (en) Method for determining dental alignment using radiographs
US9144472B2 (en) System and method for evaluating orthodontic treatment
US11633264B2 (en) Determining and tracking movement
US9222768B2 (en) Supplemental scene reference surface devices for three-dimensional mapping
WO2020151119A1 (en) Augmented reality method and apparatus for dental operation
Chang et al. Intraoperative navigation for single-splint two-jaw orthognathic surgery: From model to actual surgery
US20170312065A1 (en) Determining jaw movement
US20230320823A1 (en) Determining and tracking movement
US20230355367A1 (en) Method for dynamically guiding a dental oral and maxillofacial prosthesis using a 3d dataset
Lin et al. A novel approach of surface texture mapping for cone-beam computed tomography in image-guided surgical navigation
Cheung et al. The accuracy of conformation of a generic surface mesh for the analysis of facial soft tissue changes
Malian et al. Medphos: A new photogrammetric system for medical measurement
Schutyser et al. Robust visualization of the dental occlusion by a double scan procedure
Kim et al. 3D assessment of mandibular growth based on image registration: a feasibility study in a rabbit model
Ohanesian Reliability and accuracy of a novel photogrammetric orthodontic monitoring system
US20210322138A1 (en) Hybrid method of acquiring 3d data using intraoral scanner
Wu et al. Multiple Geometric surfaces detection in Geometric Coordination Registration for implant surgery virtual planning and assessment
US20230263498A1 (en) System and methods for calibration of x-ray images
Lei et al. Comparison of angular cephalometric measurements between CBCT mid-sagittal plane projections and conventional lateral cephalometric radiographs
Gubler Precision of cephalometric landmark identification 3D vs 2D
Talwar Intraoral scanners in Dentistry
Dang 3D superimpositions in orthodontics: a review of current techniques and applications
Dalili Kajan et al. Agreement of Dental Students in the Detection of Normal Landmarks When Comparing Digital Lateral Cephalograms and Three-Dimensional Cone Beam Computed Tomography Images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898136

Country of ref document: EP

Kind code of ref document: A1