WO2018151499A1 - Method for driving pixels and cmos image sensor using same - Google Patents

Method for driving pixels and cmos image sensor using same Download PDF

Info

Publication number
WO2018151499A1
WO2018151499A1 PCT/KR2018/001868 KR2018001868W WO2018151499A1 WO 2018151499 A1 WO2018151499 A1 WO 2018151499A1 KR 2018001868 W KR2018001868 W KR 2018001868W WO 2018151499 A1 WO2018151499 A1 WO 2018151499A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
photoelectric conversion
unit
period
pixel
Prior art date
Application number
PCT/KR2018/001868
Other languages
French (fr)
Korean (ko)
Inventor
한상만
하승재
문보현
Original Assignee
(주)픽셀플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)픽셀플러스 filed Critical (주)픽셀플러스
Publication of WO2018151499A1 publication Critical patent/WO2018151499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present invention relates to an image sensor, and to a complementary metal-oxide-semiconductor (CMOS) image sensor for converting an external optical signal into an electrical image signal and a method of driving pixels included in the CMOS image sensor.
  • CMOS complementary metal-oxide-semiconductor
  • an image sensor is a device that converts an external optical image signal into an electrical image signal.
  • CMOS complementary metal-oxide-semiconductor
  • the pixel unit converts the light signal radiated from the corresponding part of the object into electrons using a photodiode, stores the converted light signal, and converts the amount of charge appearing in proportion to the accumulated number of electrons into a voltage signal.
  • CMOS image sensor generally includes a photoelectric conversion element that generates charges according to the amount of incident light and accumulates therein, a transfer transistor that transfers charges accumulated in the photoelectric conversion element, a floating diffusion region (FD) that converts the transferred charges into a voltage, A plurality of pixels including a reset transistor for resetting charge transferred to the floating diffusion region FD, an amplifying transistor for reading a voltage-converted signal in the floating diffusion region, and a selection transistor for selecting a line for reading a signal among XY pixel addresses Consists of
  • CMOS image sensors require wide dynamic range performance for automotive or surveillance imaging devices.
  • digital cameras and digital video cameras are also required to have a wide dynamic range.
  • An object of the present invention is to use a pixel having a separate charge holding means in addition to the floating diffusion region, and by changing the driving timing for exposure control of the pixel, while maintaining the performance of a wide dynamic range by the flicker of light sources such as LEDs and fluorescent lamps.
  • the present invention provides a pixel driving method capable of alleviating image distortion and a CMOS image sensor using the same.
  • a CMOS image sensor includes: a pixel unit in which a plurality of unit pixels generating charges corresponding to an incident light amount are arranged in a matrix form; And a pixel driver configured to sequentially perform exposure control with a predetermined time difference on a row-by-row basis, and to divide the first exposure period, which is a part of the entire exposure period for the unit pixel, into a plurality of divided exposure periods.
  • the repetition period and the number of repetitions of the divided exposure period may be set by the flicker frequency of the light source.
  • the repetition period of the divided exposure period may be set to a time shorter than "1 / n" times less than the flicker period of the light source, where "n" may be a value of 2 or more.
  • the unit pixel may include a photoelectric conversion element that generates charges and accumulates therein corresponding to an incident light amount, a charge holding unit holding charges transferred from the photoelectric conversion elements, and a floating storing electric charges transferred from the charge holding units. And a diffusion region, wherein the pixel driver sequentially transfers the charges accumulated in the photoelectric conversion element to the charge holding part during the divided exposure periods after the initialization of the unit pixel.
  • the first transfer operation may include an operation of transferring the charge accumulated in the photoelectric conversion element to the charge holding unit and resetting the charge accumulated in the photoelectric conversion element for a period after a predetermined period elapses.
  • the ratio of the first exposure period and the second exposure period may be determined by a reduction ratio of the light sensitivity of the present CMOS image sensor itself.
  • the unit pixel further includes a first transfer switch for transferring the charge accumulated in the photoelectric conversion element to the charge holding unit, and an emission transistor for discharging the charge accumulated in the photoelectric conversion element to the outside, and the division exposure
  • the period may be set by a period from the turn-off time of the discharge transistor to the turn-off time of the first transmission transistor.
  • Another aspect of the present invention for achieving the above object is a photoelectric conversion element for generating a charge to accumulate therein corresponding to the amount of incident light, a charge holding unit for holding a charge transferred from the photoelectric conversion element, and the charge
  • a pixel driving method in which a plurality of unit pixels including a floating diffusion region storing charges transferred from a holding unit is arranged in a matrix form and sequentially performs exposure control with a predetermined time difference for each row.
  • the pixel driving method may further include: dividing a first exposure period, which is a part of an entire exposure period of the unit pixel, into a plurality of divided exposure periods; A first transfer step of sequentially transferring charges accumulated in the photoelectric conversion element to the charge holding unit for the divided exposure periods during the respective divided exposure periods after initialization of the unit pixel; A second transfer step of transferring, by the first transfer operation, a charge stored in the charge holding unit as first signal charge to the floating diffusion region after a predetermined period of time after completion of the first transfer step; A third transfer step of transferring the charge accumulated in the photoelectric conversion element during the second exposure period to the charge holding part as a second signal charge after the completion of the second exposure period after completion of the first transfer step; And a fourth transfer step of transferring the second signal charges transferred by the third transfer step and stored in the charge holding unit to the floating diffusion region.
  • the present invention can alleviate the distortion of the image caused by the flicker of the light source by dividing a part of the entire exposure period into a plurality of divided exposure periods in consideration of the flicker frequencies of the light sources such as the LED and the fluorescent lamp.
  • the present invention sets the ratio between the first exposure period for alleviating distortion of the image by the flicker of the light source and the second exposure period for sensing light without considering the flicker of the light source in consideration of the reduction rate of the light sensitivity of the image sensor.
  • FIG. 1 is a block diagram of a CMOS image sensor according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a pixel driver according to an exemplary embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating a configuration of a unit pixel according to an exemplary embodiment of the present invention.
  • FIG. 4 is a timing diagram illustrating a pixel driving method according to an embodiment of the present invention.
  • 5 to 9 are potential diagrams for explaining the potential corresponding to the timing diagram of FIG. 4.
  • CMOS image sensor according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 9.
  • the CMOS image sensor 1 includes a pixel unit 100, a pixel driver 200, and a signal processor 300 formed on a semiconductor substrate (not shown).
  • a plurality of unit pixels having photoelectric conversion elements that generate charges and accumulate therein corresponding to the amount of incident light are arranged in a matrix in two dimensions.
  • the unit pixel 110 includes the photoelectric conversion element 111, the first transfer transistor 112, the charge holding unit 113, the second transfer transistor 114, and the floating diffusion region FD. Diffusion) 115, a reset transistor 116, an amplifying transistor 117, a selection transistor 118, and an exhaust transistor 119.
  • the photoelectric conversion element 111 may be generally provided as a photodiode PD.
  • the photodiode PD generates a charge corresponding to the incident light amount and accumulates therein.
  • the photodiode PD may be formed by forming a P-type layer on the substrate surface side and embedding the N-type buried layer with respect to the P-type well layer formed on the N-type substrate.
  • the first transfer transistor 112 is connected between the photoelectric conversion element 111 and the charge holding unit 113 and receives the first transfer control signal TX1 through the gate terminal.
  • the high potential level of the first transmission control signal TX1 applied to turn on the first transmission transistor 112 may be set to the power supply voltage VDD.
  • the first transfer transistor 112 may be implemented as an NMOS transistor.
  • the charge holding unit 113 is disposed between the photoelectric conversion element 111 and the floating diffusion region 115 and stores charges transferred from the photoelectric conversion element 111 when the first transfer transistor 112 is turned on. The charge stored in the charge holding unit 113 is transferred to the floating diffusion region 115 by the turn-on of the second transfer transistor 114.
  • the second transfer transistor 114 is connected between the charge holding unit 113 and the floating diffusion region 115, and the second transfer control signal TX2 is applied through the gate terminal.
  • the second transfer transistor 114 is turned on by the high potential of the second transfer control signal TX2, the charge accumulated in the charge holding unit 113 is transferred to the floating diffusion region 115.
  • the high potential level of the second transmission control signal TX2 supplied for turning on the second transmission transistor 114 may be set to the power supply voltage VDD.
  • the second transfer transistor 114 may be implemented as an NMOS transistor.
  • the floating diffusion region 115 stores the charges transferred from the charge holding part 113 when the second transfer transistor 114 is turned on.
  • the floating diffusion region 115 serves as a charge amount sensing node for sensing the signal charge amount of a unit pixel.
  • the reset transistor 116 is connected between the VDD of the power supply voltage terminal and the floating diffusion region 115, and the reset control signal RX is applied through the gate terminal.
  • the reset transistor 116 When the reset transistor 116 is turned on by the high potential of the reset control signal RX, the charge stored in the floating diffusion region 115 is discharged through the VDD of the power supply voltage terminal. In this regard, the reset transistor 116 may reset the charge stored in the floating diffusion region 115.
  • the amplifying transistor 117 is connected between the power supply voltage terminal VDD and the selection transistor 118 and a gate terminal is connected to the floating diffusion region 115.
  • the amplifying transistor 117 serves as a source follower for amplifying a current corresponding to the charge stored in the floating diffusion region 115.
  • the amplifying transistor 117 converts the charge stored in the floating diffusion region 115 into an electrical signal and outputs the electric charge to the outside of the unit pixel 110 through the selection transistor 118.
  • the selection transistor 118 is connected between the amplifying transistor 117 and the vertical signal line, and the selection control signal LS is applied through the gate terminal.
  • the selection transistor 118 is turned on by the selection control signal LS, the signal amplified by the amplifying transistor 117 is transmitted to the outside of the unit pixel 110 through the vertical signal line.
  • the discharge transistor 119 is disposed adjacent to the photoelectric conversion element 111 and serves to discharge the accumulated charge of the photoelectric conversion element 111.
  • the discharge transistor 119 discharges the charge of the photoelectric conversion element 111 when the high potential of the discharge control signal TXD is applied to the gate electrode at the start of exposure.
  • the discharge transistor 119 can prevent the photoelectric conversion element 111 from saturating during the readout period after the end of the exposure so that the charge overflows.
  • the pixel structure including the emission transistor 119 is adopted, but as another embodiment, the first transmission control signal TX1 and the second transmission control signal TX2 are not introduced into the configuration of the emission transistor 119. And the reset control signal RX are all applied at the high potential level to turn on the first transmission transistor 112, the second transmission transistor 114, and the reset transistor 116 to perform the same function as the emission transistor 119. Can be.
  • the pixel driver 200 performs various functions of controlling the operation of the pixel unit 100 and processing and transmitting an electrical signal output from the pixel unit 100 to the signal processor 300.
  • One of the main features of the present embodiment of the pixel driver 200 relates to exposure control of the pixel unit 100.
  • the pixel driver 200 sequentially performs exposure control with a predetermined time difference for the pixel unit 100 row by row. Perform. A detailed operation relating to the exposure control of the pixel driver 200 will be described later.
  • the pixel driver 200 includes a vertical driving module 210, a column processing module 230, a horizontal driving module 250, and a control module 260.
  • the vertical driving module 210 is configured by a shift register or an address decoder, and drives the unit pixel 110 of the pixel unit 100.
  • the vertical driving module 210 sequentially drives the unit pixels 110 of the pixel unit 100 in order to read signals from the unit pixels 110.
  • the vertical driving module 210 performs an electronic shutter operation of resetting unnecessary charges from the photoelectric conversion element 111 of the unit pixel 110 of the row to be read.
  • the vertical driving module 210 supplies a signal output from each unit pixel 110 to the column processing module 230.
  • the column processing module 230 performs a correlated double sampling (CDS) process, an analog-to-digital conversion, and a digitally converted signal on a signal input from each unit pixel 110 of the selected row. do.
  • CDS correlated double sampling
  • the column processing module 230 outputs the converted digital signal to the signal processor 300.
  • the column processing module 230 may classify and read an electrical signal output to the outside of the unit pixel 110 by turning on the amplifying transistor 117 into a reset level or a signal level. For this read operation, the selection transistor 118 should be turned on by the selection control signal LS.
  • the horizontal driving module 250 is configured by a shift register, an address decoder, or the like, and sequentially selects the unit pixels 110 corresponding to the pixel columns of the column processing module 230. By the selection and scanning by the horizontal driving module 250, the pixel signals processed by the column processing module 230 are sequentially output.
  • the control module 260 is configured by a timing generator for generating various timing signals, and includes a vertical drive module 210, a column processing module 230, and a horizontal drive module based on various timing signals generated by the timing generator. 250) and the like.
  • the control module 260 performs exposure control on the pixel unit 100 through the vertical driving module 210.
  • the pixel driver 200 sequentially performs the exposure control with the pixel unit 100 having a predetermined time difference for each row.
  • the pixel driver 200 divides the entire exposure period of the unit pixel into a first exposure period T1 and a second exposure period T2.
  • the first exposure period T1 is a period set to prevent image distortion by the LED flicker and includes the divided exposure periods Td which are divided into a plurality of parts in consideration of the flicker frequency of the light source such as the LED and the fluorescent lamp.
  • the second exposure period T2 is a period for sensing light without considering flicker of the light source, and the ratio of the first exposure period T1 and the second exposure period T2 is the CMOS image sensor according to the present embodiment. 1) can be set by the reduction rate of its own light sensitivity.
  • the reduction ratio of the light sensitivity may be expressed by a formula such as "second exposure period T2 / total exposure period".
  • the second exposure period T2 is set by a predetermined reduction ratio of light sensitivity.
  • the light sensitivity of the image sensor is reduced.
  • the CMOS image sensor 1 performs the operation of the flicker reduction mode during the first exposure period T1 and the operation of the normal mode during the second exposure period T2.
  • FIG. 4 for convenience, a timing diagram is illustrated for only two of the plurality of rows.
  • the pixel driver 200 may be configured to have the reset control signal RX maintained at the high potential level and thus the reset transistor 116 is turned on. 2
  • the second transmission transistor 114 and the discharge transistor 119 are turned on by applying the transmission control signal TX2 and the emission control signal TXD to the high potential level.
  • the electric charge remaining in the photoelectric conversion element 111, the charge holding part 113, and the floating diffusion region 115 may be reset, and thus the unit pixel 110 may be initialized before the start of row-by-row exposure.
  • the pixel driver 200 performs an emission control signal TXD and a first transmission control signal TX1 after initialization of the unit pixel 110.
  • FIG. The emission transistor 119, the first transmission transistor 112, and the second transmission transistor 114 are turned off by applying the second transmission control signal TX2 at a low potential level.
  • the pixel driver 200 applies the first transmission control signal TX1 at a high potential level to apply the first transmission transistor 112.
  • the charge accumulated in the photoelectric conversion element 111 is transferred to the charge holding unit 113 from the turn-off time of the discharge transistor 119.
  • the divided exposure period Td is set by the period from the turn-off time of the discharge transistor 119 to the turn-off time of the first transmission transistor 112.
  • the divided exposure periods Td are assumed to be two for convenience, but in practice, two or more divided exposure periods Td are included.
  • the repetition period and number of the plurality of divided exposure periods Td included in the first exposure period T1 are set in consideration of the flicker frequency of the light source in order to prevent distortion of the image by the flicker of the light source.
  • the repetition period of the divided exposure period Td may be determined to be shorter by "1 / n" times or less than the flicker period (1 / frequency) of the light source. "n” can be set to a value of two or more.
  • the flicker period of the LED light source among the light sources is not usually set to "1/80" to "1/480” second, and may be shortened to "1/2000" second for a special LED. Therefore, the repetition period of the divided exposure period Td can be set up to several ms when the minimum is shortened.
  • Both the first exposure period T1 and the second exposure period T2 may be set longer than the maximum flicker period "1/80" second of the LED light source.
  • the pixel driver 200 turns off the first transfer transistor 112.
  • Charge is accumulated in the photoelectric conversion element 111 from the turn-off time of the first transfer transistor 112, and the accumulation of the charge may be performed for an exposure period longer than the first transfer split exposure period Td.
  • charges may accumulate in the photoelectric conversion element 111 for several to several tens of times of the divided exposure period Td from the turn-off of the first transfer transistor 112.
  • the pixel driver 200 turns on the emission transistor 119 to the photoelectric conversion element 111 in the "(4)" state. Discharge the accumulated charge.
  • the wide dynamic range ratio can be determined by the formula "T2 / (N x Td)".
  • the pixel driver 200 sequentially stores the charges accumulated in the photoelectric conversion element 111 during the plurality of divided exposure periods Td by the number of divided exposure periods Td, such as "(3)" and "(7)".
  • the first transfer operation for transferring to the charge holding unit 113 is performed.
  • the first transfer operation may include an operation of resetting charges accumulated in the photoelectric conversion element 111 during the "(4)" and "(8)” periods, such as "(5)” and “(9)". .
  • the timing diagram shown in FIG. 4 is based on the premise that such a reset operation is included in the first transmission operation.
  • the pixel driver 200 turns off the discharge transistor 119.
  • FIG. Charge is accumulated in the photoelectric conversion element 111 from the turn-off time of the discharge transistor 119.
  • Charges stored in the charge holding unit 113 in the "(10)” and “(11)" states are first signal charges which are later transferred to the floating diffusion region for reading.
  • the charge stored in the charge holding unit 113 in the "(10)" and “(11)” states of FIG. 7 is shown to have a large amount of charge unlike the charge stored in the charge holding unit 113 in the "(9)" state described above.
  • One is to indicate that the charge actually used as the first signal charge is the charge accumulated by two or more divided exposure periods (Td).
  • the pixel driver 200 resets the floating diffusion region 115 while the reset control signal RX maintains the high potential level.
  • the read mode is started by turning on the selection transistor 118 by applying the selection control signal LS to the high potential level.
  • the pixel driver 200 applies the selection control signal LS at a high potential level and immediately resets the reset control signal RX. Switching to the potential level, the charge value of the floating diffusion region 115 reset at “ (12) " is read at the reset level of the flicker reduction mode.
  • the reading of the reset level is performed when the reset level sampling control signal R_SH is at the high potential level.
  • the amplifying transistor 117 converts the electric charge stored in the reset floating diffusion region 115 into an electrical signal.
  • the electrical signal converted by the amplifying transistor 117 is read by the column processing module 230 of the pixel driver 200 via the selection transistor 118.
  • the pixel driver 200 maintains the reset control signal RX at a high potential level until just before the reset level is read, thereby overflowing while the charges are accumulated in the photoelectric conversion element 111, so that the floating diffusion region 115 is formed.
  • the dark signal generated from the charge transmitted to the second transmission transistor 114 and the floating diffusion region 115 may be removed.
  • the pixel driver 200 turns on the second transfer transistor 114 after reading the reset level by "(13)."
  • a second transmission operation for transmitting the first signal charge stored in the unit 113 to the floating diffusion region 115 is performed.
  • the turn-on of the second transmission transistor 114 is performed when the second transmission control signal TX2 is at the high potential level.
  • the pixel driver 200 turns off the second transfer transistor 114 after the second transfer operation by “14”.
  • the first signal charge stored in the floating diffusion region 115 is read at the signal level of the flicker reduction mode.
  • the reading of the signal level is performed when the signal level sampling control signal S_SH is at the high potential level.
  • the amplifying transistor 117 converts the first signal charge stored in the floating diffusion region 115 into an electrical signal.
  • the electrical signal converted by the amplifying transistor 117 is read by the column processing module 230 of the pixel driver 200 via the selection transistor 118.
  • the column processing module 230 reads an electrical signal input from each unit pixel 110 at a reset level and a signal level to perform correlation double sampling processing and analog-digital conversion.
  • the pixel driver 200 turns on the reset transistor 116 to open the floating diffusion region 115.
  • the first transfer transistor 112 is turned on and the second signal charge accumulated in the photoelectric conversion element 111 after the elapse of the second exposure period T2 after the completion of the above-described first transfer operation is maintained.
  • the second signal charge is the charge accumulated in the photoelectric conversion element 111 during the second exposure period T2 after the above-described first transfer operation is completed.
  • the second signal charge is from the time when the discharge transistor 119 is turned off by " (9) “ of FIG. 7, from the time when the first transmission transistor 112 is turned off by " (17) " 2 is charge accumulated in the photoelectric conversion element 111 during the exposure period T2.
  • the pixel driver 200 applies the reset level sampling control signal R_SH to the high potential level to change the charge value stored in the floating diffusion region 115 reset by "16" in FIG. 8 to the reset level in the normal mode. Read it.
  • the pixel driver 200 turns off the first transfer transistor 112 and the second transfer transistor 114. ) Is turned on to transmit the second signal charge transmitted by " (17) " to the floating diffusion region 115.
  • the pixel driver 200 turns off the second transfer transistor 114 and sets the signal level sampling control signal S_SH to a high potential level.
  • the second signal charges stored in the floating diffusion region 115 are read at the signal level in the normal mode by applying to.
  • the CMOS image sensor 1 according to the present exemplary embodiment may operate by selecting only one of the first exposure period T1 and the second exposure period T2. That is, the CMOS image sensor 1 according to the present embodiment may operate not only in two modes but also in only one of the flicker reduction mode and the normal mode.
  • the CMOS image sensor 1 divides a part of the entire exposure period into a plurality of divided exposure periods in consideration of the flicker frequency of the light source such as the LED and the fluorescent lamp to alleviate the distortion of the image due to the flicker of the light source. You can.
  • the CMOS image sensor 1 images the ratio of the first exposure period for alleviating the distortion of the image by the flicker of the light source and the second exposure period for sensing the light without considering the flicker of the light source.
  • CMOS image sensors It can be widely used in various kinds of CMOS image sensors.

Abstract

The present invention relates to a CMOS image sensor, and the present invention comprises: a pixel unit in which a plurality of unit pixels generating electric charge in accordance with the quantity of incident light are disposed in the form of a matrix; and a pixel driving unit which consecutively performs light exposure control on the pixel unit with a predetermined time lag by rows, and which divides a first light exposure period, which is part of the entire light exposure period for the unit pixels, into a plurality of divided light exposure periods. Accordingly, the present invention can mitigate image distortion by a flicker of a light source, such as an LED and a fluorescent light, by dividing part of the entire light exposure period into a plurality of divided light exposure periods by factoring in a flicker frequency of the light source.

Description

픽셀의 구동방법 및 이를 이용하는 CMOS 이미지센서Pixel Driving Method and CMOS Image Sensor Using the Same
본 발명은 이미지센서에 관한 것으로, 외부의 광학 신호를 전기적 영상신호로 변환하는 CMOS(complementary metal-oxide-semiconductor) 이미지 센서와 CMOS 이미지센서에 포함된 픽셀의 구동방법에 관한 것이다.The present invention relates to an image sensor, and to a complementary metal-oxide-semiconductor (CMOS) image sensor for converting an external optical signal into an electrical image signal and a method of driving pixels included in the CMOS image sensor.
일반적으로 이미지센서는 외부의 광학 영상신호를 전기 영상신호로 변환하는 장치이다.In general, an image sensor is a device that converts an external optical image signal into an electrical image signal.
특히, CMOS(complementary metal-oxide-semiconductor) 이미지센서는 CMOS 제조 기술을 이용하여 제작된 이미지센서이다. CMOS 이미지센서에서 픽셀부는 피사체의 대응 부분에서 복사되는 빛 신호를 포토 다이오드를 이용하여 전자로 바꾼 후에 저장하고, 축적된 전자의 수에 비례하여 나타나는 전하량을 전압 신호로 바꾸어서 출력하는 방식을 사용한다.In particular, a complementary metal-oxide-semiconductor (CMOS) image sensor is an image sensor manufactured using CMOS fabrication technology. In the CMOS image sensor, the pixel unit converts the light signal radiated from the corresponding part of the object into electrons using a photodiode, stores the converted light signal, and converts the amount of charge appearing in proportion to the accumulated number of electrons into a voltage signal.
CMOS 이미지센서는 일반적으로 입사광량에 따라 전하를 발생하여 내부에 축적하는 광전변환소자, 광전변환소자에 축적된 전하를 전송하는 전송 트랜지스터, 전송되는 전하를 전압으로 변환하는 부유확산영역(FD), 부유확산영역(FD)에 전송된 전하를 리셋하는 리셋트랜지스터, 부유확산영역에서 전압 변환된 신호를 읽어 내는 증폭트랜지스터와 X-Y화소 어드레스 중 신호를 읽어내는 라인을 선택하는 선택트랜지스터를 포함하는 복수의 화소로 구성되어 있다.CMOS image sensor generally includes a photoelectric conversion element that generates charges according to the amount of incident light and accumulates therein, a transfer transistor that transfers charges accumulated in the photoelectric conversion element, a floating diffusion region (FD) that converts the transferred charges into a voltage, A plurality of pixels including a reset transistor for resetting charge transferred to the floating diffusion region FD, an amplifying transistor for reading a voltage-converted signal in the floating diffusion region, and a selection transistor for selecting a line for reading a signal among XY pixel addresses Consists of
일반적인 CMOS 이미지센서는 차량용이나 감시용 촬상 장치에 적용하기 위해 넓은 다이내믹 레인지 성능이 요구된다. 또한 디지털 카메라나 디지털 비디오 카메라에 있어서도 넓은 다이내믹 레인지의 성능이 요구되는 추세이다.Typical CMOS image sensors require wide dynamic range performance for automotive or surveillance imaging devices. In addition, digital cameras and digital video cameras are also required to have a wide dynamic range.
일반적인 다이내믹 레인지의 성능을 향상시키는 방법으로서 짧은 노광 시간의 화상과 긴 노광 시간의 화상을 합성해 다이내믹 레인지의 넓은 화상을 생성하는 방법이 알려져 있다.As a method of improving the performance of a general dynamic range, the method of combining the image of a short exposure time and the image of a long exposure time, and producing a wide image of a dynamic range is known.
그러나 다이내믹 레인지를 증대하기 위해, 상용전원에 동기화되어 점멸되는 LED나 형광등과 같은 광원에서 짧은 노광 시간으로 촬상하는 경우 사람의 눈에는 점등하고 있는 것처럼 보이는 광원이 정지화상에 있어서 점등하고 있지 않는 형태로 이미지가 나타나거나, 동영상에 있어서 심하게 점멸하는 형태로 이미지의 왜곡이 나타나는 문제가 있다.However, in order to increase the dynamic range, when a short exposure time is taken from a light source such as an LED or a fluorescent lamp flashing in synchronization with a commercial power source, a light source that appears to be lit in the human eye is not lit in a still image. There is a problem that the image appears, or the distortion of the image appears in the form of a severe flicker in the video.
본 발명의 목적은 부유확산영역 외 별도의 전하유지 수단을 가지는 픽셀을 이용하고 이 픽셀의 노광제어를 위한 구동 타이밍을 변경함으로써 넓은 다이내믹 레인지의 성능을 유지하면서도 LED 및 형광등과 같은 광원의 플리커에 의한 이미지 왜곡을 완화시킬 수 있는 픽셀의 구동방법 및 이를 이용하는 CMOS 이미지센서를 제공하는 것이다.An object of the present invention is to use a pixel having a separate charge holding means in addition to the floating diffusion region, and by changing the driving timing for exposure control of the pixel, while maintaining the performance of a wide dynamic range by the flicker of light sources such as LEDs and fluorescent lamps. The present invention provides a pixel driving method capable of alleviating image distortion and a CMOS image sensor using the same.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따른 CMOS 이미지센서는, 입사광량에 대응하여 전하를 발생하는 복수의 단위픽셀이 매트릭스 형태로 배치된 픽셀부; 및 상기 픽셀부를 행별로 일정 시차를 두고 순차적으로 노광제어를 수행하고, 상기 단위픽셀에 대한 전체 노광기간 중 일부인 제1 노광기간을 복수개의 분할노광기간으로 분할하는 픽셀구동부를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, a CMOS image sensor includes: a pixel unit in which a plurality of unit pixels generating charges corresponding to an incident light amount are arranged in a matrix form; And a pixel driver configured to sequentially perform exposure control with a predetermined time difference on a row-by-row basis, and to divide the first exposure period, which is a part of the entire exposure period for the unit pixel, into a plurality of divided exposure periods. .
상기 분할노광기간의 반복 주기 및 반복 회수는 광원의 플리커 주파수에 의하여 설정될 수 있다. 또한 상기 분할노광기간의 반복 주기는 상기 광원의 플리커 주기보다 "1/n"배 이하의 짧은 시간으로 설정될 수 있고, 여기서 "n"은 2 이상의 값일 수 있다.The repetition period and the number of repetitions of the divided exposure period may be set by the flicker frequency of the light source. In addition, the repetition period of the divided exposure period may be set to a time shorter than "1 / n" times less than the flicker period of the light source, where "n" may be a value of 2 or more.
상기 단위픽셀은 입사광량에 대응하여 전하를 발생하여 내부에 축적하는 광전변환소자와, 상기 광전변환소자로부터 전송되는 전하를 유지하는 전하유지부와, 상기 전하유지부로부터 전송되는 전하를 저장하는 부유확산영역을 구비하고, 상기 픽셀구동부는 상기 단위픽셀의 초기화 후 상기 각각의 분할노광기간들 동안 상기 광전변환소자에 축적된 전하들을 상기 분할노광기간의 개수만큼 상기 전하유지부로 순차적으로 전송하는 제1 전송동작과, 상기 제1 전송동작의 완료 후 사전에 정해진 기간 경과 후 상기 제1 전송동작에 의해 전송되어 상기 전하유지부에 저장된 전하를 제1 신호전하로서 상기 부유확산영역으로 전송하는 제2 전송동작과, 상기 제1 전송동작 완료 후 제2 노광기간의 경과 후 상기 제2 노광기간 동안 상기 광전변환소자에 축적된 전하를 제2 신호전하로서 상기 전하유지부로 전송하는 제3 전송동작과, 상기 제3 전송동작에 의해 전송되어 상기 전하유지부에 저장된 상기 제2 신호전하를 상기 부유확산영역으로 전송하는 제4 전송동작을 수행하는 것을 특징으로 한다.The unit pixel may include a photoelectric conversion element that generates charges and accumulates therein corresponding to an incident light amount, a charge holding unit holding charges transferred from the photoelectric conversion elements, and a floating storing electric charges transferred from the charge holding units. And a diffusion region, wherein the pixel driver sequentially transfers the charges accumulated in the photoelectric conversion element to the charge holding part during the divided exposure periods after the initialization of the unit pixel. A second transfer for transferring the charge stored in the charge holding unit as first signal charge to the floating diffusion region after a transfer operation and a predetermined period of time after completion of the first transfer operation. An operation and all the accumulation in the photoelectric conversion element during the second exposure period after the completion of the second exposure period after the completion of the first transfer operation. A third transfer operation for transferring charge to the charge holding portion as a second signal charge, and a fourth transfer for transferring the second signal charges transferred by the third transfer operation to the floating diffusion region. Characterized in performing the operation.
상기 제1 전송동작은 상기 광전변환소자에 축적된 전하를 상기 전하유지부로 전송하고 사전에 정한 기간 경과 후 그 기간 동안 상기 광전변환소자에 축적된 전하를 리셋하는 동작을 포함할 수 있다.The first transfer operation may include an operation of transferring the charge accumulated in the photoelectric conversion element to the charge holding unit and resetting the charge accumulated in the photoelectric conversion element for a period after a predetermined period elapses.
상기 제1 노광기간 및 상기 제2 노광기간의 비율은 사전에 정해진 본 CMOS 이미지센서 자체의 광감도의 감소율에 의해 정해질 수 있다.The ratio of the first exposure period and the second exposure period may be determined by a reduction ratio of the light sensitivity of the present CMOS image sensor itself.
상기 단위픽셀은 상기 광전변환소자에 축적된 전하를 상기 전하유지부로 전송하기 위한 제1 전송스위치와, 상기 광전변환소자에 축적된 전하를 외부로 배출하기 위한 배출트랜지스터를 더 구비하고, 상기 분할노광기간은 상기 배출트랜지스터의 턴오프시점으로부터 상기 제1 전송트랜지스터의 턴오프시점까지의 기간에 의해 설정될 수 있다.The unit pixel further includes a first transfer switch for transferring the charge accumulated in the photoelectric conversion element to the charge holding unit, and an emission transistor for discharging the charge accumulated in the photoelectric conversion element to the outside, and the division exposure The period may be set by a period from the turn-off time of the discharge transistor to the turn-off time of the first transmission transistor.
상기 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 입사광량에 대응하여 전하를 발생하여 내부에 축적하는 광전변환소자와, 상기 광전변환소자로부터 전송되는 전하를 유지하는 전하유지부와, 상기 전하유지부로부터 전송되는 전하를 저장하는 부유확산영역을 구비하는 복수의 단위픽셀이 매트릭스 형태로 배치된 픽셀부를 행별로 일정 시차를 두고 순차적으로 노광 제어를 수행하는 픽셀의 구동방법에 관한 것이다.Another aspect of the present invention for achieving the above object is a photoelectric conversion element for generating a charge to accumulate therein corresponding to the amount of incident light, a charge holding unit for holding a charge transferred from the photoelectric conversion element, and the charge A pixel driving method in which a plurality of unit pixels including a floating diffusion region storing charges transferred from a holding unit is arranged in a matrix form and sequentially performs exposure control with a predetermined time difference for each row.
상기 픽셀의 구동방법은 상기 단위픽셀에 대한 전체 노광기간 중 일부인 제1 노광기간을 복수개의 분할노광기간으로 분할하는 단계; 상기 단위픽셀의 초기화 후 상기 각각의 분할노광기간들 동안 상기 광전변환소자에 축적된 전하들을 상기 분할노광기간의 개수만큼 상기 전하유지부로 순차적으로 전송하는 제1 전송단계; 상기 제1 전송단계의 완료 후 사전에 정해진 기간 경과 후 상기 제1 전송동작에 의해 전송되어 상기 전하유지부에 저장된 전하를 제1 신호전하로서 상기 부유확산영역으로 전송하는 제2 전송단계; 상기 제1 전송단계의 완료 후 제2 노광기간의 경과 후 상기 제2 노광기간 동안 상기 광전변환소자에 축적된 전하를 제2 신호전하로서 상기 전하유지부로 전송하는 제3 전송단계; 및 상기 제3 전송단계에 의해 전송되어 상기 전하유지부에 저장된 상기 제2 신호전하를 상기 부유확산영역으로 전송하는 제4 전송단계를 포함하는 것을 특징으로 한다.The pixel driving method may further include: dividing a first exposure period, which is a part of an entire exposure period of the unit pixel, into a plurality of divided exposure periods; A first transfer step of sequentially transferring charges accumulated in the photoelectric conversion element to the charge holding unit for the divided exposure periods during the respective divided exposure periods after initialization of the unit pixel; A second transfer step of transferring, by the first transfer operation, a charge stored in the charge holding unit as first signal charge to the floating diffusion region after a predetermined period of time after completion of the first transfer step; A third transfer step of transferring the charge accumulated in the photoelectric conversion element during the second exposure period to the charge holding part as a second signal charge after the completion of the second exposure period after completion of the first transfer step; And a fourth transfer step of transferring the second signal charges transferred by the third transfer step and stored in the charge holding unit to the floating diffusion region.
이와 같이 본 발명은 LED 및 형광등과 같은 광원의 플리커 주파수를 고려하여 전체 노광기간의 일부를 복수개의 분할노광기간으로 분할함으로써 광원의 플리커에 의한 이미지의 왜곡을 완화시킬 수 있다.As described above, the present invention can alleviate the distortion of the image caused by the flicker of the light source by dividing a part of the entire exposure period into a plurality of divided exposure periods in consideration of the flicker frequencies of the light sources such as the LED and the fluorescent lamp.
또한 본 발명은 광원의 플리커에 의한 이미지의 왜곡을 완화시키기 위한 제1 노광기간과 광원의 플리커를 고려하지 않고 광을 감지하기 위한 제2 노광기간의 비율을 이미지센서의 광감도의 감소율을 고려하여 설정함으로써 광원의 플리커에 의한 이미지의 왜곡을 완화하면서 동시에 광감도의 손실을 최소화할 수 있다.In addition, the present invention sets the ratio between the first exposure period for alleviating distortion of the image by the flicker of the light source and the second exposure period for sensing light without considering the flicker of the light source in consideration of the reduction rate of the light sensitivity of the image sensor. As a result, the distortion of the image due to the flicker of the light source can be alleviated and the loss of light sensitivity can be minimized.
도 1은 본 발명의 일 실시예에 따른 CMOS 이미지센서의 블록도이다.1 is a block diagram of a CMOS image sensor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 픽셀구동부의 블록도이다.2 is a block diagram of a pixel driver according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 단위 픽셀의 구성을 나타내는 회로도이다.3 is a circuit diagram illustrating a configuration of a unit pixel according to an exemplary embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 픽셀 구동방법을 설명하기 위한 타이밍도이다.4 is a timing diagram illustrating a pixel driving method according to an embodiment of the present invention.
도 5 내지 도 9는 도 4의 타이밍도에 대응하는 포텐셜을 설명하기 위한 포텐셜도이다.5 to 9 are potential diagrams for explaining the potential corresponding to the timing diagram of FIG. 4.
이하 도 1 내지 도 9를 참조하여 본 발명의 일 실시예에 따른 CMOS 이미지센서에 대해 설명한다.Hereinafter, a CMOS image sensor according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 9.
도 1에 도시된 바와 같이, 본 실시예에 따른 CMOS 이미지센서(1)는 도시되지 않은 반도체기판상에 형성된 픽셀부(100), 픽셀구동부(200), 신호처리부(300)를 포함한다.As shown in FIG. 1, the CMOS image sensor 1 according to the present exemplary embodiment includes a pixel unit 100, a pixel driver 200, and a signal processor 300 formed on a semiconductor substrate (not shown).
픽셀부(100)는 입사광량에 대응하여 전하를 발생하여 내부에 축적하는 광전변환소자를 갖는 복수의 단위픽셀들이 행렬 형태로 2차원으로 배치되어 있다.In the pixel unit 100, a plurality of unit pixels having photoelectric conversion elements that generate charges and accumulate therein corresponding to the amount of incident light are arranged in a matrix in two dimensions.
이하 도 2를 참조하여 단위픽셀(110)에 대해서 설명한다. 도 2에 도시된 바와 같이 단위픽셀(110)은 광전변환소자(111), 제1 전송트랜지스터(112), 전하유지부(113), 제2 전송트랜지스터(114), 부유확산영역(FD, Floating Diffusion)(115), 리셋트랜지스터(116), 증폭트랜지스터(117), 선택트랜지스터(118), 배출트랜지스터(119)를 포함한다.Hereinafter, the unit pixel 110 will be described with reference to FIG. 2. As shown in FIG. 2, the unit pixel 110 includes the photoelectric conversion element 111, the first transfer transistor 112, the charge holding unit 113, the second transfer transistor 114, and the floating diffusion region FD. Diffusion) 115, a reset transistor 116, an amplifying transistor 117, a selection transistor 118, and an exhaust transistor 119.
광전변환소자(111)는 일반적으로 포토다이오드(PD)로 마련될 수 있다. 포토다이오드(PD)는 입사광량에 대응하여 전하를 발생하여 내부에 축적한다. 예를 들면 포토다이오드(PD)는 N형 기판 상에 형성된 P형 웰층에 대하여, P형층을 기판 표면 측에 형성하고 N형 매립층을 매립함으로써 형성될 수 있다.The photoelectric conversion element 111 may be generally provided as a photodiode PD. The photodiode PD generates a charge corresponding to the incident light amount and accumulates therein. For example, the photodiode PD may be formed by forming a P-type layer on the substrate surface side and embedding the N-type buried layer with respect to the P-type well layer formed on the N-type substrate.
제1 전송트랜지스터(112)는 광전변환소자(111)와 전하유지부(113) 사이에 연결되고 게이트 단자를 통해 제1 전송제어신호(TX1)가 인가된다. 제1 전송트랜지스터(112)가 제1 전송제어신호(TX1)의 고전위에 의해 턴온되면 광전변환소자(111)에 축적된 전하가 전하유지부(113)로 전송된다. 제1 전송트랜지스터(112)의 턴온을 위해 인가되는 제1 전송제어신호(TX1)의 고전위 레벨은 전원전압 VDD로 설정될 수 있다. 일예로서 제1 전송트랜지스터(112)는 NMOS 트랜지스터로 구현될 수 있다.The first transfer transistor 112 is connected between the photoelectric conversion element 111 and the charge holding unit 113 and receives the first transfer control signal TX1 through the gate terminal. When the first transfer transistor 112 is turned on by the high potential of the first transfer control signal TX1, the charge accumulated in the photoelectric conversion element 111 is transferred to the charge holding unit 113. The high potential level of the first transmission control signal TX1 applied to turn on the first transmission transistor 112 may be set to the power supply voltage VDD. As an example, the first transfer transistor 112 may be implemented as an NMOS transistor.
전하유지부(113)는 광전변환소자(111)와 부유확산영역(115) 사이에 배치되고, 제1 전송트랜지스터(112)의 턴온시 광전변환소자(111)로부터 전송된 전하를 저장한다. 전하유지부(113)에 저장된 전하는 제2 전송트랜지스터(114)의 턴온에 의해 부유확산영역(115)으로 전송된다.The charge holding unit 113 is disposed between the photoelectric conversion element 111 and the floating diffusion region 115 and stores charges transferred from the photoelectric conversion element 111 when the first transfer transistor 112 is turned on. The charge stored in the charge holding unit 113 is transferred to the floating diffusion region 115 by the turn-on of the second transfer transistor 114.
제2 전송트랜지스터(114)는 전하유지부(113)와 부유확산영역(115) 사이에 연결되고 게이트 단자를 통해 제2 전송제어신호(TX2)가 인가된다. 제2 전송트랜지스터(114)가 제2 전송제어신호(TX2)의 고전위에 의해 턴온되면 전하유지부(113)에 축적된 전하가 부유확산영역(115)으로 전송된다. 제2 전송트랜지스터(114)의 턴온을 위해 공급되는 제2 전송제어신호(TX2)의 고전위 레벨은 전원전압 VDD로 설정될 수 있다. 일예로서 제2 전송트랜지스터(114)는 NMOS 트랜지스터로 구현될 수 있다.The second transfer transistor 114 is connected between the charge holding unit 113 and the floating diffusion region 115, and the second transfer control signal TX2 is applied through the gate terminal. When the second transfer transistor 114 is turned on by the high potential of the second transfer control signal TX2, the charge accumulated in the charge holding unit 113 is transferred to the floating diffusion region 115. The high potential level of the second transmission control signal TX2 supplied for turning on the second transmission transistor 114 may be set to the power supply voltage VDD. As an example, the second transfer transistor 114 may be implemented as an NMOS transistor.
부유확산영역(115)은 제2 전송트랜지스터(114)의 턴온시 전하유지부(113)로부터 전송된 전하를 저장한다. 부유확산영역(115)은 단위픽셀의 신호 전하량을 감지하기 위한 전하량 감지노드의 역할을 수행한다.The floating diffusion region 115 stores the charges transferred from the charge holding part 113 when the second transfer transistor 114 is turned on. The floating diffusion region 115 serves as a charge amount sensing node for sensing the signal charge amount of a unit pixel.
리셋트랜지스터(116)는 전원전압단의 VDD와 부유확산영역(115) 사이에 연결되고 게이트 단자를 통해 리셋제어신호(RX)가 인가된다. 리셋트랜지스터(116)가 리셋제어신호(RX)의 고전위에 의해 턴온되면 부유확산영역(115)에 저장된 전하가 전원전압단의 VDD를 통해 방출된다. 이에 이해 리셋트랜지스터(116)는 부유확산영역(115)에 저장된 전하를 리셋할 수 있다.The reset transistor 116 is connected between the VDD of the power supply voltage terminal and the floating diffusion region 115, and the reset control signal RX is applied through the gate terminal. When the reset transistor 116 is turned on by the high potential of the reset control signal RX, the charge stored in the floating diffusion region 115 is discharged through the VDD of the power supply voltage terminal. In this regard, the reset transistor 116 may reset the charge stored in the floating diffusion region 115.
증폭트랜지스터(117)는 전원전압단 VDD와 선택트랜지스터(118) 사이에 연결되고 게이트 단자가 부유확산영역(115)에 연결된다. 이에 의해 증폭트랜지스터(117)는 부유확산영역(115)에 저장된 전하에 대응하는 전류를 증폭하는 소스팔로우(source follower)의 역할을 수행한다. 증폭트랜지스터(117)는 부유확산영역(115)에 저장된 전하를 전기적 신호로 변환하여 선택트랜지스터(118)를 통해 단위픽셀(110)의 외부로 출력시키는 기능을 수행한다.The amplifying transistor 117 is connected between the power supply voltage terminal VDD and the selection transistor 118 and a gate terminal is connected to the floating diffusion region 115. As a result, the amplifying transistor 117 serves as a source follower for amplifying a current corresponding to the charge stored in the floating diffusion region 115. The amplifying transistor 117 converts the charge stored in the floating diffusion region 115 into an electrical signal and outputs the electric charge to the outside of the unit pixel 110 through the selection transistor 118.
선택트랜지스터(118)는 증폭트랜지스터(117)와 수직 신호선의 사이에 연결되고 게이트 단자를 통해 선택제어신호(LS)가 인가된다. 선택트랜지스터(118)가 선택제어신호(LS)에 의해 턴온되면 증폭트랜지스터(117)에 증폭된 신호가 수직 신호선을 통해 단위픽셀(110)의 외부로 전송된다.The selection transistor 118 is connected between the amplifying transistor 117 and the vertical signal line, and the selection control signal LS is applied through the gate terminal. When the selection transistor 118 is turned on by the selection control signal LS, the signal amplified by the amplifying transistor 117 is transmitted to the outside of the unit pixel 110 through the vertical signal line.
배출트랜지스터(119)는 광전변환소자(111)에 인접하여 배치되고 광전변환소자(111)의 축적 전하를 배출하는 역할을 수행한다. 배출트랜지스터(119)는 노광 개시 시에 게이트 전극에 배출제어신호(TXD)의 고전위가 인가되면 광전변환소자(111)의 전하를 배출한다. 배출트랜지스터(119)는 노광 종료 후의 판독 기간 중에 광전변환소자(111)가 포화되어 전하가 오버플로우되는 것을 방지할 수 있다.The discharge transistor 119 is disposed adjacent to the photoelectric conversion element 111 and serves to discharge the accumulated charge of the photoelectric conversion element 111. The discharge transistor 119 discharges the charge of the photoelectric conversion element 111 when the high potential of the discharge control signal TXD is applied to the gate electrode at the start of exposure. The discharge transistor 119 can prevent the photoelectric conversion element 111 from saturating during the readout period after the end of the exposure so that the charge overflows.
본 실시예에서는 배출트랜지스터(119)가 구비된 화소 구조를 채택하였지만, 다른 실시예로서 배출트랜지스터(119)의 구성을 도입하지 않고 제1 전송제어신호(TX1), 제2 전송제어신호(TX2) 및 리셋제어신호(RX)를 모두 고전위 레벨로 인가하여 제1 전송트랜지스터(112), 제2 전송트랜지스터(114) 및 리셋트랜지스터(116)를 턴온함으로써 배출트랜지스터(119)와 동일한 기능을 수행할 수 있다.In the present embodiment, the pixel structure including the emission transistor 119 is adopted, but as another embodiment, the first transmission control signal TX1 and the second transmission control signal TX2 are not introduced into the configuration of the emission transistor 119. And the reset control signal RX are all applied at the high potential level to turn on the first transmission transistor 112, the second transmission transistor 114, and the reset transistor 116 to perform the same function as the emission transistor 119. Can be.
픽셀구동부(200)는 픽셀부(100)의 동작을 제어함과 더불어 픽셀부(100)로부터 출력된 전기적 신호를 처리하여 신호처리부(300)로 전달하는 다양한 기능을 수행한다.The pixel driver 200 performs various functions of controlling the operation of the pixel unit 100 and processing and transmitting an electrical signal output from the pixel unit 100 to the signal processor 300.
픽셀구동부(200)에 대한 본 실시예의 주요 특징 중 하나는 픽셀부(100)의 노광제어에 관한 것으로, 픽셀구동부(200)는 픽셀부(100)를 행별로 일정 시차를 두고 순차적으로 노광제어를 수행한다. 픽셀구동부(200)의 노광제어에 관한 구체적 동작에 대해서는 후술한다.One of the main features of the present embodiment of the pixel driver 200 relates to exposure control of the pixel unit 100. The pixel driver 200 sequentially performs exposure control with a predetermined time difference for the pixel unit 100 row by row. Perform. A detailed operation relating to the exposure control of the pixel driver 200 will be described later.
이하 도 3을 참조하여 픽셀구동부(200)에 대해 설명한다. 도 3에 도시된 바와 같이 픽셀구동부(200)는 수직구동모듈(210), 컬럼처리모듈(230), 수평구동모듈(250), 제어모듈(260)을 포함한다.Hereinafter, the pixel driver 200 will be described with reference to FIG. 3. As shown in FIG. 3, the pixel driver 200 includes a vertical driving module 210, a column processing module 230, a horizontal driving module 250, and a control module 260.
수직구동모듈(210)은 시프트 레지스터 또는 어드레스 디코더 등에 의해 구성되며, 픽셀부(100)의 단위픽셀(110)을 구동한다. 수직구동모듈(210)은 단위픽셀(110)로부터 신호를 판독하기 위해, 픽셀부(100)의 단위픽셀(110)을 행 단위로 차례로 구동시킨다. The vertical driving module 210 is configured by a shift register or an address decoder, and drives the unit pixel 110 of the pixel unit 100. The vertical driving module 210 sequentially drives the unit pixels 110 of the pixel unit 100 in order to read signals from the unit pixels 110.
또한 수직구동모듈(210)은 판독되는 행의 단위픽셀(110)의 광전변환소자(111)로부터 불필요한 전하를 리셋시키는 전자셔터동작을 수행한다. 수직구동모듈(210)은 각각의 단위픽셀(110)로부터 출력되는 신호를 컬럼처리모듈(230)로 공급한다.In addition, the vertical driving module 210 performs an electronic shutter operation of resetting unnecessary charges from the photoelectric conversion element 111 of the unit pixel 110 of the row to be read. The vertical driving module 210 supplies a signal output from each unit pixel 110 to the column processing module 230.
컬럼처리모듈(230)은 선택된 행의 각각의 단위픽셀(110)로부터 입력되는 신호에 대하여 상관이중샘플링(CDS, Correlated Double Sampling) 처리와, 아날로그-디지털 변환, 디지털 변환된 신호의 저장 등을 수행한다. 컬럼처리모듈(230)은 변환된 디지털 신호를 신호처리부(300)로 출력한다.The column processing module 230 performs a correlated double sampling (CDS) process, an analog-to-digital conversion, and a digitally converted signal on a signal input from each unit pixel 110 of the selected row. do. The column processing module 230 outputs the converted digital signal to the signal processor 300.
컬럼처리모듈(230)은 증폭트랜지스터(117)의 턴온에 의해 단위픽셀(110)의 외부로 출력되는 전기적 신호를 리셋레벨 또는 신호레벨로 구분하여 판독할 수 있다. 이러한 판독동작을 위해서는 선택제어신호(LS)에 의해 선택트랜지스터(118)가 턴온된 상태여야 한다.The column processing module 230 may classify and read an electrical signal output to the outside of the unit pixel 110 by turning on the amplifying transistor 117 into a reset level or a signal level. For this read operation, the selection transistor 118 should be turned on by the selection control signal LS.
수평구동모듈(250)은 시프트 레지스터 또는 어드레스 디코더 등에 의해 구성되며, 컬럼처리모듈(230)의 화소열에 대응하는 단위픽셀(110)을 차례대로 선택한다. 이 수평구동모듈(250)에 의한 선택 및 주사에 의해, 컬럼처리모듈(230)에서 신호 처리된 화소 신호가 차례대로 출력된다.The horizontal driving module 250 is configured by a shift register, an address decoder, or the like, and sequentially selects the unit pixels 110 corresponding to the pixel columns of the column processing module 230. By the selection and scanning by the horizontal driving module 250, the pixel signals processed by the column processing module 230 are sequentially output.
제어모듈(260)은 각종의 타이밍 신호를 생성하는 타이밍 발생기 등에 의해 구성되며, 타이밍 발생기에서 생성된 각종의 타이밍 신호를 기초로 수직구동모듈(210), 컬럼처리모듈(230) 및 수평구동모듈(250) 등의 제어를 수행한다. 제어모듈(260)은 수직구동모듈(210)을 통해 픽셀부(100)에 대한 노광제어를 수행한다.The control module 260 is configured by a timing generator for generating various timing signals, and includes a vertical drive module 210, a column processing module 230, and a horizontal drive module based on various timing signals generated by the timing generator. 250) and the like. The control module 260 performs exposure control on the pixel unit 100 through the vertical driving module 210.
이하에서는 도 4 내지 도 12를 참조하여 본 발명의 일 실시예에 따른 픽셀의 구동방법에 대해 설명한다.Hereinafter, a driving method of a pixel according to an exemplary embodiment of the present invention will be described with reference to FIGS. 4 through 12.
픽셀구동부(200)는 픽셀부(100)를 행별로 일정 시차를 두고 순차적으로 노광제어를 수행한다. 또한 픽셀구동부(200)는 상기 단위픽셀에 대한 전체 노광기간을 제1 노광기간(T1)과 제2 노광기간(T2)으로 구분한다. 제1 노광기간(T1)은 LED 플리커에 의한 이미지 왜곡을 방지하기 위해 설정된 기간으로 LED 및 형광등과 같은 광원의 플리커 주파수를 고려하여 복수개로 분할된 분할노광기간(Td)들을 포함한다.The pixel driver 200 sequentially performs the exposure control with the pixel unit 100 having a predetermined time difference for each row. In addition, the pixel driver 200 divides the entire exposure period of the unit pixel into a first exposure period T1 and a second exposure period T2. The first exposure period T1 is a period set to prevent image distortion by the LED flicker and includes the divided exposure periods Td which are divided into a plurality of parts in consideration of the flicker frequency of the light source such as the LED and the fluorescent lamp.
제2 노광기간(T2)은 광원의 플리커를 고려하지 않고 광을 감지하기 위한 기간으로, 제1 노광기간(T1)과 제2 노광기간(T2)의 비율은 본 실시예에 따른 CMOS 이미지센서(1) 자체의 광감도의 감소율에 의해 설정될 수 있다.The second exposure period T2 is a period for sensing light without considering flicker of the light source, and the ratio of the first exposure period T1 and the second exposure period T2 is the CMOS image sensor according to the present embodiment. 1) can be set by the reduction rate of its own light sensitivity.
광감도의 감소율은 "제2 노광기간(T2)/전체 노광기간"과 같은 수식으로 표현할 수 있다. 전체 노광기간이 설정된 경우 제2 노광기간(T2)은 사전에 정해진 광감도의 감소율에 의해 설정된다. The reduction ratio of the light sensitivity may be expressed by a formula such as "second exposure period T2 / total exposure period". When the entire exposure period is set, the second exposure period T2 is set by a predetermined reduction ratio of light sensitivity.
예를 들면 제2 노광기간(T2)이 작을수록 광감도는 감소한다. LED 플리커의 완화를 위해 제1 노광기간(T1)을 지나치게 증가시키면 이미지센서의 광감도는 감소하게 된다.For example, as the second exposure period T2 is smaller, the light sensitivity is decreased. When the first exposure period T1 is excessively increased to alleviate the LED flicker, the light sensitivity of the image sensor is reduced.
본 실시예에 따른 CMOS 이미지센서(1)는 제1 노광기간(T1) 동안 플리커 감소 모드의 동작을 수행하고 제2 노광기간(T2) 동안 일반 모드의 동작을 수행한다.The CMOS image sensor 1 according to the present exemplary embodiment performs the operation of the flicker reduction mode during the first exposure period T1 and the operation of the normal mode during the second exposure period T2.
도 4에서는 편의상 다수의 행들 중 2개의 행에 대해서만 타이밍도를 예시적으로 도시하였다.In FIG. 4, for convenience, a timing diagram is illustrated for only two of the plurality of rows.
도 4의 타이밍도 및 도 5의 포텐셜도 "(1)"에 나타난 바와 같이 픽셀구동부(200)는 리셋제어신호(RX)가 고전위 레벨을 유지하여 리셋트랜지스터(116)가 턴온된 상태에서 제2 전송제어신호(TX2) 및 배출제어신호(TXD)를 고전위 레벨로 인가함으로써 제2 전송트랜지스터(114) 및 배출트랜지스터(119)를 턴온시킨다. 이에 의해 광전변환소자(111), 전하유지부(113), 부유확산영역(115)에 남아있는 전하가 리셋됨으로써 행별 노광의 시작 전 단위픽셀(110)이 초기화될 수 있다.As shown in the timing diagram of FIG. 4 and the potential diagram "(1)" of FIG. 5, the pixel driver 200 may be configured to have the reset control signal RX maintained at the high potential level and thus the reset transistor 116 is turned on. 2 The second transmission transistor 114 and the discharge transistor 119 are turned on by applying the transmission control signal TX2 and the emission control signal TXD to the high potential level. As a result, the electric charge remaining in the photoelectric conversion element 111, the charge holding part 113, and the floating diffusion region 115 may be reset, and thus the unit pixel 110 may be initialized before the start of row-by-row exposure.
도 4의 타이밍도 및 도 5의 포텐셜도의 "(2)"에 나타난 바와 같이 픽셀구동부(200)는 단위픽셀(110)의 초기화 후 배출제어신호(TXD), 제1 전송제어신호(TX1), 제2 전송제어신호(TX2)를 저전위 레벨로 인가함으로써 배출트랜지스터(119), 제1 전송트랜지스터(112), 제2 전송트랜지스터(114)를 턴오프시킨다.As shown in "(2)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 5, the pixel driver 200 performs an emission control signal TXD and a first transmission control signal TX1 after initialization of the unit pixel 110. FIG. The emission transistor 119, the first transmission transistor 112, and the second transmission transistor 114 are turned off by applying the second transmission control signal TX2 at a low potential level.
도 4의 타이밍도 및 도 5의 포텐셜도의 "(3)"에 나타난 바와 같이 픽셀구동부(200)는 제1 전송제어신호(TX1)를 고전위 레벨로 인가하여 제1 전송트랜지스터(112)를 턴온함으로써 배출트랜지스터(119)의 턴오프 시점부터 광전변환소자(111)에 축적된 전하를 전하유지부(113)로 전송한다.As shown in "(3)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 5, the pixel driver 200 applies the first transmission control signal TX1 at a high potential level to apply the first transmission transistor 112. By turning on, the charge accumulated in the photoelectric conversion element 111 is transferred to the charge holding unit 113 from the turn-off time of the discharge transistor 119.
엄밀하게 광전변환소자(111)에 의한 전하의 축적은 제1 전송트랜지스터(112)의 턴온 상태에서도 계속 진행되고 있다. 따라서 제1 전송트랜지스터(112)의 턴온에 의해 전하유지부(113)로 전송되는 전하는 도 4에 나타난 바와 같이 분할노광기간(Td) 동안 광전변환소자(111)에 축적된 전하에 해당한다.Accurately, charge accumulation by the photoelectric conversion element 111 continues even in the turn-on state of the first transfer transistor 112. Therefore, the charge transferred to the charge holding part 113 by the turn-on of the first transfer transistor 112 corresponds to the charge accumulated in the photoelectric conversion element 111 during the divided exposure period Td as shown in FIG. 4.
즉 분할노광기간(Td)은 배출트랜지스터(119)의 턴오프시점으로부터 제1 전송트랜지스터(112)의 턴오프시점까지의 기간에 의해 설정된다. 도 4에서는 분할노광기간(Td)을 편의상 2개로 가정하여 설명하였으나, 실제적으로는 2개 이상 복수개의 분할노광기간(Td)이 포함되어 있다.In other words, the divided exposure period Td is set by the period from the turn-off time of the discharge transistor 119 to the turn-off time of the first transmission transistor 112. In FIG. 4, the divided exposure periods Td are assumed to be two for convenience, but in practice, two or more divided exposure periods Td are included.
제1 노광기간(T1) 내에 포함된 복수개의 분할노광기간(Td)의 반복 주기 및 개수는 광원의 플리커에 의한 이미지의 왜곡을 방지하기 위해 광원의 플리커 주파수를 고려하여 설정된다.The repetition period and number of the plurality of divided exposure periods Td included in the first exposure period T1 are set in consideration of the flicker frequency of the light source in order to prevent distortion of the image by the flicker of the light source.
분할노광기간(Td)의 반복 주기는 광원의 플리커 주기(1/주파수) 보다 "1/n"배 이하의 짧은 시간으로 정해질 수 있다. "n"은 2 이상의 값으로 정해질수 있다.The repetition period of the divided exposure period Td may be determined to be shorter by "1 / n" times or less than the flicker period (1 / frequency) of the light source. "n" can be set to a value of two or more.
예를 들면, 광원 중 LED 광원의 플리커 주기는 보통 "1/80"~"1/480"초로 정해지 있지 않으며 특수한 LED의 경우 "1/2000"초 까지도 짧아질 수 있다. 따라서 분할노광기간(Td)의 반복 주기는 최소로 짧아질 경우 수 ㎲까지도 설정될 수 있다.For example, the flicker period of the LED light source among the light sources is not usually set to "1/80" to "1/480" second, and may be shortened to "1/2000" second for a special LED. Therefore, the repetition period of the divided exposure period Td can be set up to several ms when the minimum is shortened.
제1 노광기간(T1) 및 제2 노광기간(T2) 모두는 LED 광원의 최대 플리커 주기 "1/80"초보다는 길게 설정될 수 있다.Both the first exposure period T1 and the second exposure period T2 may be set longer than the maximum flicker period "1/80" second of the LED light source.
도 4의 타이밍도 및 도 5의 포텐셜도의 "(4)"에 나타난 바와 같이 픽셀구동부(200)는 제1 전송트랜지스터(112)를 턴오프한다. 제1 전송트랜지스터(112)의 턴오프시점으로부터 광전변환소자(111)에 전하가 축적되고, 이러한 전하의 축적은 제1 전송분할노광기간(Td)보다 긴 노광기간 동안 수행될 수 있다. 예를 들면 제1 전송트랜지스터(112)의 턴오프로부터 분할노광기간(Td)의 수 내지 수십배의 시간 동안 광전변환소자(111)에 전하가 축적될 수 있다.As shown in the timing diagram of FIG. 4 and the potential diagram of FIG. 5, the pixel driver 200 turns off the first transfer transistor 112. Charge is accumulated in the photoelectric conversion element 111 from the turn-off time of the first transfer transistor 112, and the accumulation of the charge may be performed for an exposure period longer than the first transfer split exposure period Td. For example, charges may accumulate in the photoelectric conversion element 111 for several to several tens of times of the divided exposure period Td from the turn-off of the first transfer transistor 112.
도 4의 타이밍도 및 도 6의 포텐셜도의 "(5)"에 나타난 바와 같이 픽셀구동부(200)는 배출트랜지스터(119)를 턴온함으로써 "(4)"상태에 의해 광전변환소자(111)에 축적된 전하를 배출한다.As shown in "(5)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 6, the pixel driver 200 turns on the emission transistor 119 to the photoelectric conversion element 111 in the "(4)" state. Discharge the accumulated charge.
도 4의 타이밍도 및 도 6 및 도 7의 "(6)" ~ "(9)"나타난 동작은 전술한 "(2)" ~ "(5)"에 나타난 동작과 동일하다. 이러한 반복 동작은 분할노광기간(Td)의 개수만큼 반복 수행된다.The timing diagram of FIG. 4 and the operations shown by "(6)" to "(9)" in FIGS. 6 and 7 are the same as the operations shown in "(2)" to "(5)" described above. This repetitive operation is repeatedly performed as many as the divided exposure period Td.
분할노광기간(Td)의 개수를 "N"으로 하면, 넓은 다이내믹 레인지의 비율(WDR ratio)은 수식 "T2/(N×Td)"로 정해질 수 있다If the number of divided exposure periods Td is "N", the wide dynamic range ratio (WDR ratio) can be determined by the formula "T2 / (N x Td)".
픽셀구동부(200)는 복수의 분할노광기간(Td) 동안 광전변환소자(111)에 각각 축적된 전하를 "(3)"및 "(7)"과 같이 분할노광기간(Td)의 개수만큼 순차적으로 전하유지부(113)로 전송하는 제1 전송동작을 수행한다.The pixel driver 200 sequentially stores the charges accumulated in the photoelectric conversion element 111 during the plurality of divided exposure periods Td by the number of divided exposure periods Td, such as "(3)" and "(7)". The first transfer operation for transferring to the charge holding unit 113 is performed.
제1 전송동작은 "(5)" 및 "(9)"와 같이 "(4)" 및 "(8)" 기간 동안 광전변환소자(111)에 축적된 전하를 리셋하는 동작을 포함할 수 있다. 도 4에 도시된 타이밍도는 제1 전송동작에 이러한 리셋동작이 포함된 것을 전제로 도시한 것이다.The first transfer operation may include an operation of resetting charges accumulated in the photoelectric conversion element 111 during the "(4)" and "(8)" periods, such as "(5)" and "(9)". . The timing diagram shown in FIG. 4 is based on the premise that such a reset operation is included in the first transmission operation.
도 4의 타이밍도 및 도7의 포텐셜도의 "(10)","(11)"에 나타난 바와 같이 픽셀구동부(200)는 배출트랜지스터(119)를 턴오프한다. 배출트랜지스터(119)의 턴오프 시점으로부터 광전변환소자(111)에 전하가 축적된다. "(10)" 및 "(11)" 상태에서 전하유지부(113)에 저장된 전하는 제1 신호전하로서 추후 부유확산영역으로 전송되어 판독된다.As shown in "(10)" and "(11)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 7, the pixel driver 200 turns off the discharge transistor 119. FIG. Charge is accumulated in the photoelectric conversion element 111 from the turn-off time of the discharge transistor 119. Charges stored in the charge holding unit 113 in the "(10)" and "(11)" states are first signal charges which are later transferred to the floating diffusion region for reading.
도 7의 "(10)" 및 "(11)" 상태에서 전하유지부(113)에 저장된 전하를 전술한 "(9)" 상태에서 전하유지부(113)에 저장된 전하와 다르게 전하량이 많게 도시한 것은 실제로 제1 신호전하로서 사용되는 전하가 2개 이상의 분할노광기간(Td)에 의해 축적되는 전하임을 나타내기 위함이다.The charge stored in the charge holding unit 113 in the "(10)" and "(11)" states of FIG. 7 is shown to have a large amount of charge unlike the charge stored in the charge holding unit 113 in the "(9)" state described above. One is to indicate that the charge actually used as the first signal charge is the charge accumulated by two or more divided exposure periods (Td).
도 4의 타이밍도 및 도7의 포텐셜도의 "(12)"에 나타난 바와 같이 픽셀구동부(200)는 리셋제어신호(RX)가 고전위 레벨을 유지하여 부유확산영역(115)을 리셋하고, 선택제어신호(LS)를 고전위 레벨로 인가하여 선택트랜지스터(118)를 턴온함으로써 판독모드를 시작한다.As shown in the timing diagram of FIG. 4 and the potential diagram of FIG. 7, the pixel driver 200 resets the floating diffusion region 115 while the reset control signal RX maintains the high potential level. The read mode is started by turning on the selection transistor 118 by applying the selection control signal LS to the high potential level.
도 4의 타이밍도 및 도 8의 포텐셜도의 "(13)"에 나타난 바와 같이 픽셀구동부(200)는 선택제어신호(LS)를 고전위 레벨로 인가한 후 바로 리셋제어신호(RX)를 저전위 레벨로 전환하고, 위의 "(12)"에서 리셋된 부유확산영역(115)의 전하값을 플리커 감소 모드의 리셋레벨로 판독한다.As shown in "(13)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 8, the pixel driver 200 applies the selection control signal LS at a high potential level and immediately resets the reset control signal RX. Switching to the potential level, the charge value of the floating diffusion region 115 reset at " (12) " is read at the reset level of the flicker reduction mode.
리셋레벨의 판독은 리셋레벨 샘플링 제어신호(R_SH)가 고전위 레벨인 경우 수행된다. 증폭트랜지스터(117)는 리셋된 부유확산영역(115)에 저장된 전하를 전기적 신호로 변환한다. 증폭트랜지스터(117)에 의해 변환된 전기적 신호는 선택트랜지스터(118)를 거쳐 픽셀구동부(200)의 컬럼처리모듈(230)에 의해 판독된다.The reading of the reset level is performed when the reset level sampling control signal R_SH is at the high potential level. The amplifying transistor 117 converts the electric charge stored in the reset floating diffusion region 115 into an electrical signal. The electrical signal converted by the amplifying transistor 117 is read by the column processing module 230 of the pixel driver 200 via the selection transistor 118.
픽셀구동부(200)는 리셋제어신호(RX)를 리셋레벨의 판독이 이루어지기 직전까지 고전위 레벨로 유지함으로써, 광전변환소자(111)에 전하가 축적되는 동안 오버플로우되어 부유확산영역(115)으로 전송되는 전하나 제2 전송트랜지스터(114) 및 부유확산영역(115)에서 발생되는 dark 신호를 제거할 수 있다.The pixel driver 200 maintains the reset control signal RX at a high potential level until just before the reset level is read, thereby overflowing while the charges are accumulated in the photoelectric conversion element 111, so that the floating diffusion region 115 is formed. The dark signal generated from the charge transmitted to the second transmission transistor 114 and the floating diffusion region 115 may be removed.
도 4의 타이밍도 및 도 8의 포텐셜도의 "(14)"에 나타난 바와 같이 픽셀구동부(200)는 "(13)"에 의한 리셋레벨 판독 후 제2 전송트랜지스터(114)를 턴온하여 전하유지부(113)에 저장된 제1 신호전하를 부유확산영역(115)으로 전송하는 제2 전송동작을 수행한다. 이러한 제2 전송트랜지스터(114)의 턴온은 제2 전송제어신호(TX2)가 고전위 레벨일 때 수행된다.As shown in "(14)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 8, the pixel driver 200 turns on the second transfer transistor 114 after reading the reset level by "(13)." A second transmission operation for transmitting the first signal charge stored in the unit 113 to the floating diffusion region 115 is performed. The turn-on of the second transmission transistor 114 is performed when the second transmission control signal TX2 is at the high potential level.
도 4의 타이밍도 및 도 8의 포텐셜도의 "(15)"에 나타난 바와 같이 픽셀구동부(200)는 "(14)"에 의한 제2 전송동작 후 제2 전송트랜지스터(114)를 턴오프하고, 부유확산영역(115)에 저장된 제1 신호전하를 플리커 감소 모드의 신호레벨로 판독한다.As shown in the timing diagram of FIG. 4 and the potential diagram of FIG. 8, the pixel driver 200 turns off the second transfer transistor 114 after the second transfer operation by “14”. The first signal charge stored in the floating diffusion region 115 is read at the signal level of the flicker reduction mode.
신호레벨의 판독은 신호레벨 샘플링 제어신호(S_SH)가 고전위 레벨인 경우 수행된다. 증폭트랜지스터(117)는 부유확산영역(115)에 저장된 제1 신호전하를 전기적 신호로 변환한다. 증폭트랜지스터(117)에 의해 변환된 전기적 신호는 선택트랜지스터(118)를 거쳐 픽셀구동부(200)의 컬럼처리모듈(230)에 의해 판독된다.The reading of the signal level is performed when the signal level sampling control signal S_SH is at the high potential level. The amplifying transistor 117 converts the first signal charge stored in the floating diffusion region 115 into an electrical signal. The electrical signal converted by the amplifying transistor 117 is read by the column processing module 230 of the pixel driver 200 via the selection transistor 118.
즉 컬럼처리모듈(230)은 각각의 단위픽셀(110)들로 부터 입력된 전기적 신호를 리셋레벨 및 신호레벨로 판독하여 상관이중샘플링 처리와 아날로그-디지털 변환 등을 수행한다.That is, the column processing module 230 reads an electrical signal input from each unit pixel 110 at a reset level and a signal level to perform correlation double sampling processing and analog-digital conversion.
도 4의 타이밍도 및 도 8 및 도 9 포텐셜도의 "(16)", "(17)"에 나타난 바와 같이 픽셀구동부(200)는 리셋트랜지스터(116)를 턴온하여 부유확산영역(115)을 리셋하고, 제1 전송트랜지스터(112)를 턴온하여 전술한 제1 전송동작 완료 후 제2 노광기간(T2)의 경과 후 광전변환소자(111)에 축적된 제2 신호전하를 전하유지부(113)로 전송하는 제3 전송동작을 수행한다.As shown in the timing diagram of FIG. 4 and the potentials 16 and 17 of the 8 and 9 potential diagrams, the pixel driver 200 turns on the reset transistor 116 to open the floating diffusion region 115. After reset, the first transfer transistor 112 is turned on and the second signal charge accumulated in the photoelectric conversion element 111 after the elapse of the second exposure period T2 after the completion of the above-described first transfer operation is maintained. To perform a third transmission operation.
제2 신호전하는 전술한 제1 전송동작 완료 후 제2 노광기간(T2) 동안 광전변환소자(111)에 축적된 전하이다. 제2 신호전하는 도 7의 "(9)"에 의해 배출트랜지스터(119)가 턴오프된 시점으로부터 도 9의 "(17)"에 의해 제1 전송트랜지스터(112)가 턴오프된 시점까지인 제2 노광기간(T2) 동안 광전변환소자(111)에 축적된 전하이다.The second signal charge is the charge accumulated in the photoelectric conversion element 111 during the second exposure period T2 after the above-described first transfer operation is completed. The second signal charge is from the time when the discharge transistor 119 is turned off by " (9) " of FIG. 7, from the time when the first transmission transistor 112 is turned off by " (17) " 2 is charge accumulated in the photoelectric conversion element 111 during the exposure period T2.
픽셀구동부(200)는 리셋레벨 샘플링 제어신호(R_SH)를 고전위 레벨로 인가함으로써 도 8의"(16)"에 의해 리셋된 부유확산영역(115)에 저장된 전하값을 일반 모드의 리셋레벨로 판독한다.The pixel driver 200 applies the reset level sampling control signal R_SH to the high potential level to change the charge value stored in the floating diffusion region 115 reset by "16" in FIG. 8 to the reset level in the normal mode. Read it.
도 4의 타이밍도 및 도 9의 포텐셜도의 "(18)", "(19)"에 나타난 바와 같이 픽셀구동부(200)는 제1 전송트랜지스터(112)를 턴오프하고 제2 전송트랜지스터(114)를 턴온하여 "(17)"에 의해 전송된 제2 신호전하를 부유확산영역(115)으로 전송한다.As shown in "(18)" and "(19)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 9, the pixel driver 200 turns off the first transfer transistor 112 and the second transfer transistor 114. ) Is turned on to transmit the second signal charge transmitted by " (17) " to the floating diffusion region 115.
도 4의 타이밍도 및 도 9의 포텐셜도의 "(20)"에 나타난 바와 같이 픽셀구동부(200)는 제2 전송트랜지스터(114)를 턴오프하고 신호레벨 샘플링 제어신호(S_SH)를 고전위 레벨로 인가함으로써 부유확산영역(115)에 저장된 제2 신호전하를 일반 모드의 신호레벨로 판독한다.As shown in "(20)" of the timing diagram of FIG. 4 and the potential diagram of FIG. 9, the pixel driver 200 turns off the second transfer transistor 114 and sets the signal level sampling control signal S_SH to a high potential level. The second signal charges stored in the floating diffusion region 115 are read at the signal level in the normal mode by applying to.
한편 본 실시예에 따른 CMOS 이미지센서(1)는 제1 노광기간(T1) 및 제2 노광기간(T2) 중 하나 만을 선택하여 동작할 수도 있다. 즉 본 실시예에 따른 CMOS 이미지센서(1)는 2가지 모드로 동작할 뿐 아니라, 플리커 감소 모드 및 일반 모드 중 하나만으로도 동작할 수 있다. Meanwhile, the CMOS image sensor 1 according to the present exemplary embodiment may operate by selecting only one of the first exposure period T1 and the second exposure period T2. That is, the CMOS image sensor 1 according to the present embodiment may operate not only in two modes but also in only one of the flicker reduction mode and the normal mode.
이와 같이 본 실시예에 따른 CMOS 이미지센서(1)는 LED 및 형광등과 같은 광원의 플리커 주파수를 고려하여 전체 노광기간의 일부를 복수개의 분할노광기간으로 분할함으로써 광원의 플리커에 의한 이미지의 왜곡을 완화시킬 수 있다.As described above, the CMOS image sensor 1 according to the present exemplary embodiment divides a part of the entire exposure period into a plurality of divided exposure periods in consideration of the flicker frequency of the light source such as the LED and the fluorescent lamp to alleviate the distortion of the image due to the flicker of the light source. You can.
또한 본 실시예에 따른 CMOS 이미지센서(1)는 광원의 플리커에 의한 이미지의 왜곡을 완화시키기 위한 제1 노광기간과 광원의 플리커를 고려하지 않고 광을 감지하기 위한 제2 노광기간의 비율을 이미지센서의 광감도의 감소율을 고려하여 설정함으로써 광원의 플리커에 의한 이미지의 왜곡을 완화하면서 동시에 광감도의 손실을 최소화할 수 있다. In addition, the CMOS image sensor 1 according to the present embodiment images the ratio of the first exposure period for alleviating the distortion of the image by the flicker of the light source and the second exposure period for sensing the light without considering the flicker of the light source. By setting in consideration of the reduction rate of the photosensitivity of the sensor, it is possible to mitigate the distortion of the image due to the flicker of the light source while minimizing the loss of photosensitivity.
다양한 종류의 CMOS이미지센서에 광범위하게 사용될 수 있다.It can be widely used in various kinds of CMOS image sensors.

Claims (8)

  1. 입사광량에 대응하여 전하를 발생하는 복수의 단위픽셀이 매트릭스 형태로 배치된 픽셀부; 및A pixel unit in which a plurality of unit pixels generating charges in correspondence with incident light amount are arranged in a matrix form; And
    상기 픽셀부를 행별로 일정 시차를 두고 순차적으로 노광제어를 수행하고, 상기 단위픽셀에 대한 전체 노광기간 중 일부인 제1 노광기간을 복수개의 분할노광기간으로 분할하는 픽셀구동부를 포함하는 것을 특징으로 하는 CMOS 이미지센서.And a pixel driver configured to sequentially perform exposure control with a predetermined time difference for each pixel unit, and divide the first exposure period, which is a part of the entire exposure period for the unit pixel, into a plurality of divided exposure periods. Image sensor.
  2. 제1항에 있어서,The method of claim 1,
    상기 분할노광기간의 반복 주기 및 반복 회수는 광원의 플리커 주파수에 의하여 설정되는 것을 특징으로 하는 CMOS 이미지센서.The repetition period and the number of repetitions of the divided exposure period are set by the flicker frequency of the light source.
  3. 제2항에 있어서,The method of claim 2,
    상기 분할노광기간의 반복 주기는 상기 광원의 플리커 주기보다 "1/n"배 이하의 짧은 시간으로 설정되고, "n"은 2 이상의 값으로 정해지는 것을 특징으로 하는 CMOS 이미지센서.The repetition period of the divided exposure period is set to a time shorter than " 1 / n " times less than the flicker period of the light source, and " n "
  4. 제1항에 있어서,The method of claim 1,
    상기 단위픽셀은 입사광량에 대응하여 전하를 발생하여 내부에 축적하는 광전변환소자와, 상기 광전변환소자로부터 전송되는 전하를 유지하는 전하유지부와, 상기 전하유지부로부터 전송되는 전하를 저장하는 부유확산영역을 구비하고,The unit pixel may include a photoelectric conversion element that generates charges and accumulates therein corresponding to an incident light amount, a charge holding unit holding charges transferred from the photoelectric conversion elements, and a floating storing electric charges transferred from the charge holding units. Having a diffusion region,
    상기 픽셀구동부는 상기 단위픽셀의 초기화 후 상기 각각의 분할노광기간들 동안 상기 광전변환소자에 축적된 전하들을 상기 분할노광기간의 개수만큼 상기 전하유지부로 순차적으로 전송하는 제1 전송동작과, 상기 제1 전송동작의 완료 후 사전에 정해진 기간 경과 후 상기 제1 전송동작에 의해 전송되어 상기 전하유지부에 저장된 전하를 제1 신호전하로서 상기 부유확산영역으로 전송하는 제2 전송동작과, 상기 제1 전송동작 완료 후 제2 노광기간의 경과 후 상기 제2 노광기간 동안 상기 광전변환소자에 축적된 전하를 제2 신호전하로서 상기 전하유지부로 전송하는 제3 전송동작과, 상기 제3 전송동작에 의해 전송되어 상기 전하유지부에 저장된 상기 제2 신호전하를 상기 부유확산영역으로 전송하는 제4 전송동작을 수행하는 것을 특징으로 하는 CMOS 이미지센서.A first transfer operation of sequentially transferring charges accumulated in the photoelectric conversion element to the charge holding unit for the divided exposure periods during the respective divided exposure periods after initialization of the unit pixel; A second transfer operation transferred by the first transfer operation after a predetermined period of time after completion of the first transfer operation to transfer charges stored in the charge holding unit to the floating diffusion region as first signal charges; A third transfer operation for transferring charge accumulated in the photoelectric conversion element to the charge holding unit as a second signal charge after the second exposure period has elapsed after completion of the transfer operation; and by the third transfer operation. And a fourth transfer operation for transferring the second signal charge stored in the charge holding unit to the floating diffusion region. Image sensor.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 전송동작은 상기 광전변환소자에 축적된 전하를 상기 전하유지부로 전송하고 사전에 정한 기간 경과 후 그 기간 동안 상기 광전변환소자에 축적된 전하를 리셋하는 동작을 포함하는 것을 특징으로 하는 CMOS 이미지센서.The first transfer operation includes transferring the charge accumulated in the photoelectric conversion element to the charge holding unit and resetting the charge accumulated in the photoelectric conversion element for a period after a predetermined period elapses. Image sensor.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1 노광기간 및 상기 제2 노광기간의 비율은 사전에 정해진 본 CMOS 이미지센서 자체의 광감도의 감소율에 의해 정해지는 것을 특징으로 하는 CMOS 이미지센서.And the ratio of the first exposure period and the second exposure period is determined by a predetermined reduction rate of light sensitivity of the present CMOS image sensor itself.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 단위픽셀은 상기 광전변환소자에 축적된 전하를 상기 전하유지부로 전송하기 위한 제1 전송스위치와, 상기 광전변환소자에 축적된 전하를 외부로 배출하기 위한 배출트랜지스터를 더 구비하고,The unit pixel further includes a first transfer switch for transferring the charge accumulated in the photoelectric conversion element to the charge holding unit, and an emission transistor for discharging the charge accumulated in the photoelectric conversion element to the outside,
    상기 분할노광기간은 상기 배출트랜지스터의 턴오프시점으로부터 상기 제1 전송트랜지스터의 턴오프시점까지의 기간에 의해 설정되는 것을 특징으로 하는 CMOS 이미지센서.And wherein the divided exposure period is set by a period from the turn-off time of the emission transistor to the turn-off time of the first transfer transistor.
  8. 입사광량에 대응하여 전하를 발생하여 내부에 축적하는 광전변환소자와, 상기 광전변환소자로부터 전송되는 전하를 유지하는 전하유지부와, 상기 전하유지부로부터 전송되는 전하를 저장하는 부유확산영역을 구비하는 복수의 단위픽셀이 매트릭스 형태로 배치된 픽셀부를 행별로 일정 시차를 두고 순차적으로 노광 제어를 수행하는 픽셀의 구동방법에 있어서,A photoelectric conversion element that generates charge and accumulates therein in response to an incident light amount, a charge holding portion holding charges transferred from the photoelectric conversion elements, and a floating diffusion region storing charges transferred from the charge holding portions In the driving method of the pixel to sequentially perform the exposure control with a predetermined time difference for each pixel unit arranged a plurality of unit pixels in a matrix form,
    상기 단위픽셀에 대한 전체 노광기간 중 일부인 제1 노광기간을 복수개의 분할노광기간으로 분할하는 단계;Dividing a first exposure period that is a part of an entire exposure period for the unit pixel into a plurality of divided exposure periods;
    상기 단위픽셀의 초기화 후 상기 각각의 분할노광기간들 동안 상기 광전변환소자에 축적된 전하들을 상기 분할노광기간의 개수만큼 상기 전하유지부로 순차적으로 전송하는 제1 전송단계;A first transfer step of sequentially transferring charges accumulated in the photoelectric conversion element to the charge holding unit for the divided exposure periods during the respective divided exposure periods after initialization of the unit pixel;
    상기 제1 전송단계의 완료 후 사전에 정해진 기간 경과 후 상기 제1 전송동작에 의해 전송되어 상기 전하유지부에 저장된 전하를 제1 신호전하로서 상기 부유확산영역으로 전송하는 제2 전송단계;A second transfer step of transferring, by the first transfer operation, a charge stored in the charge holding unit as first signal charge to the floating diffusion region after a predetermined period of time after completion of the first transfer step;
    상기 제1 전송단계의 완료 후 제2 노광기간의 경과 후 상기 제2 노광기간 동안 상기 광전변환소자에 축적된 전하를 제2 신호전하로서 상기 전하유지부로 전송하는 제3 전송단계; 및A third transfer step of transferring the charge accumulated in the photoelectric conversion element during the second exposure period to the charge holding part as a second signal charge after the completion of the second exposure period after completion of the first transfer step; And
    상기 제3 전송단계에 의해 전송되어 상기 전하유지부에 저장된 상기 제2 신호전하를 상기 부유확산영역으로 전송하는 제4 전송단계를 포함하는 것을 특징으로 하는 픽셀의 구동방법.And a fourth transfer step of transferring the second signal charges transferred by the third transfer step and stored in the charge holding unit to the floating diffusion region.
PCT/KR2018/001868 2017-02-20 2018-02-13 Method for driving pixels and cmos image sensor using same WO2018151499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0022082 2017-02-20
KR1020170022082A KR101895982B1 (en) 2017-02-20 2017-02-20 Driving method of pixel and CMOS image sensor using the same

Publications (1)

Publication Number Publication Date
WO2018151499A1 true WO2018151499A1 (en) 2018-08-23

Family

ID=63169539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001868 WO2018151499A1 (en) 2017-02-20 2018-02-13 Method for driving pixels and cmos image sensor using same

Country Status (2)

Country Link
KR (1) KR101895982B1 (en)
WO (1) WO2018151499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347375A (en) * 2021-06-01 2021-09-03 天津大学 Pixel flicker suppression method of pulse image sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032551A (en) * 2001-07-11 2003-01-31 Sony Corp Solid-state imaging device and its drive method, and camera system
JP2005027137A (en) * 2003-07-04 2005-01-27 Sony Corp Imaging apparatus
JP2008167178A (en) * 2006-12-28 2008-07-17 Denso Corp Image data generator, and photoreceptor device
KR20110078974A (en) * 2009-12-31 2011-07-07 주식회사 동부하이텍 A method of operating a image sensor device
KR20120080658A (en) * 2009-12-14 2012-07-17 캐논 가부시끼가이샤 Image pickup apparatus and image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032551A (en) * 2001-07-11 2003-01-31 Sony Corp Solid-state imaging device and its drive method, and camera system
JP2005027137A (en) * 2003-07-04 2005-01-27 Sony Corp Imaging apparatus
JP2008167178A (en) * 2006-12-28 2008-07-17 Denso Corp Image data generator, and photoreceptor device
KR20120080658A (en) * 2009-12-14 2012-07-17 캐논 가부시끼가이샤 Image pickup apparatus and image sensor
KR20110078974A (en) * 2009-12-31 2011-07-07 주식회사 동부하이텍 A method of operating a image sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347375A (en) * 2021-06-01 2021-09-03 天津大学 Pixel flicker suppression method of pulse image sensor

Also Published As

Publication number Publication date
KR20180096839A (en) 2018-08-30
KR101895982B1 (en) 2018-10-05

Similar Documents

Publication Publication Date Title
US8605169B2 (en) Solid-state imaging device with delayed reflection of gain setting and camera system with same
US9083903B2 (en) Solid-state imaging device and camera system
WO2012141369A1 (en) Wdr pixel array, wdr imaging apparatus including the same and method for operating the same
JP3868648B2 (en) Image sensor device and semiconductor image sensing device
CN102547166B (en) Image sensor having supplemental capacitive coupling node
JP4251811B2 (en) Correlated double sampling circuit and CMOS image sensor having the correlated double sampling circuit
US7456886B2 (en) Image pickup apparatus
US20150256774A1 (en) Imaging device and camera system including sense circuits to make binary decision
US9686488B2 (en) Imaging systems with flicker mitigation and high dynamic range
KR20040069183A (en) Image pick-up device and camera system comprising an image pick-up device
WO2018151498A1 (en) Method for driving pixels and cmos image sensor using same
KR20170104824A (en) An image sensor having led flicker mitigation, and an image processing system including the image sensor
US20090046187A1 (en) Solid-state imaging device
KR20110025376A (en) A unit pixel for having multi-floating diffusion and image sensor for using the pixel
KR20000041364A (en) Cmos image sensor and method for driving the same
WO2012047057A2 (en) Cmos image sensor having wide dynamic range and image sensing method
KR20160063856A (en) An image sensor, and an image processing system including the image sensor
KR20180094837A (en) Image sensor, control method and electronic device
KR101246141B1 (en) Pixel circuit of image sensor with wide dynamic range and operating method thereof
WO2012141372A1 (en) Pixel arrary, image sensor including the same, and method of driving the same
KR101248436B1 (en) Pixel circuit of image sensor with wide dynamic range and operating method thereof
WO2018151499A1 (en) Method for driving pixels and cmos image sensor using same
WO2012074287A2 (en) Adc for removing column fixed pattern noise and cmos image sensor including same
WO2012141370A1 (en) Wdr pixel array, wdr imaging apparatus including the same and method for operating the same
WO2018151497A1 (en) Method for driving pixels and cmos image sensor using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753951

Country of ref document: EP

Kind code of ref document: A1