WO2018151422A1 - Superconducting magnet rotating-type direct current induction heating device - Google Patents

Superconducting magnet rotating-type direct current induction heating device Download PDF

Info

Publication number
WO2018151422A1
WO2018151422A1 PCT/KR2018/000636 KR2018000636W WO2018151422A1 WO 2018151422 A1 WO2018151422 A1 WO 2018151422A1 KR 2018000636 W KR2018000636 W KR 2018000636W WO 2018151422 A1 WO2018151422 A1 WO 2018151422A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting magnet
induction heating
direct current
rotating
current induction
Prior art date
Application number
PCT/KR2018/000636
Other languages
French (fr)
Korean (ko)
Inventor
조상호
박민원
최종호
Original Assignee
수퍼코일 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수퍼코일 (주) filed Critical 수퍼코일 (주)
Publication of WO2018151422A1 publication Critical patent/WO2018151422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils

Definitions

  • the present invention relates to a superconducting magnet rotating direct current induction heating apparatus, and more particularly, to a superconducting magnet rotating direct current induction heating apparatus for heating a product to be heated by rotating a superconducting magnet regardless of the shape of a metal.
  • Superconductors are devices whose electrical resistance is zero at cryogenic temperatures. It is already used in a variety of applications because it offers the advantages of high magnetic field, low loss and miniaturization compared to conventional copper (cu) conductors.
  • Superconducting magnets are magnets made from such superconductors. Superconducting magnets are used in MRI, NMR, particle accelerators and magnetic separators to improve efficiency and performance. In addition, its application technology is continuously being researched throughout the industry such as power cables, superconducting transformers, and superconducting motors. One of the applications is in the steel industry. In the steel industry, research and development on large-capacity induction heating apparatus is active.
  • Heating methods for induction heating apparatus can be divided into alternating current (AC) induction heating and direct current (DC) induction heating.
  • Alternating current induction heating is a method of applying an alternating current to a copper magnet to create a time varying magnetic field.
  • AC induction heating uses a copper magnet
  • the total energy efficiency of the system is only about 50 to 60% due to the heat generated by the resistance of the copper magnet. Therefore, superconducting magnets are sometimes used instead of copper magnets. This is to improve the energy conversion efficiency.
  • the superconducting wire which is a material of a totally superconducting magnet, has a disadvantage in that magnetization loss occurs under the application of an alternating current. This means that cooling is necessary to maintain the superconducting state in the cryogenic operating environment, and thus there is a problem in that the operating cost increases with the installation cost of the cooling device.
  • direct current induction heating is a method of applying a direct current to the superconducting magnet to generate a uniform magnetic field and forcibly rotating the product by a motor in the magnetic field to heat it.
  • Such direct current induction heating has the advantage of using a direct current to improve the overall system efficiency of the induction heating apparatus by more than 90% without generating heat loss of the superconducting magnet.
  • energy is transferred in proportion to the square of the magnetic field generated from the superconducting magnet, the heating time for the product to be heated can be shortened, thereby improving productivity.
  • the induction heating apparatus has been applied a lot of direct current induction heating method, and as the superconducting magnet for the direct current induction heating method, a race track type superconducting magnet is used a lot.
  • the superconducting wire used as the material of this superconducting magnet is very expensive. As such, there is an increasing demand for induction heating devices that can provide the desired capacity even if fewer superconducting wires are used under the same conditions.
  • the present invention is to solve the problems as described above, to provide a superconducting magnet rotary DC induction heating apparatus that can provide a desired capacity even if less superconducting wire is used.
  • the present invention is to provide a superconducting magnet rotary direct current induction heating apparatus that can heat the heating target product irrespective of the appearance and size of the heating target product.
  • the present invention is to provide a superconducting magnet rotary direct current induction heating apparatus that can be utilized in a variety of industries such as extrusion, forging by heating the heating target product irrespective of the appearance and size of the heating target product.
  • the superconducting magnet rotational direct current induction heating apparatus comprises a pair of superconducting magnets that are positioned symmetrically with respect to a heating target product and rotate to generate a magnetic field to heat the heating target product; A pair of rotating iron cores positioned symmetrically with respect to the heating target product positioned between the superconducting magnets and having a portion penetrating through the cutout of the superconducting magnet; A fixing part which fixes the product to be heated; And a rotation driver for rotating the superconducting magnet.
  • the heating target product can be heated regardless of the appearance and size of the heating target product.
  • the present invention can be utilized in various industrial fields such as extrusion, forging by heating the heating target product irrespective of the appearance and size of the heating target product.
  • FIG. 1 is a plan view showing a conventional direct current induction heating apparatus
  • FIG. 2 schematically shows a cross section of a direct current induction heating apparatus according to the present invention
  • Figure 3a is a view showing a configuration as viewed from the front direct current induction heating apparatus according to the present invention
  • Figure 3b is a view showing a configuration seen from the side of the direct current induction heating apparatus according to an embodiment of the present invention
  • FIG. 4 is a view showing a first embodiment to which a direct current induction heating device according to the present invention is applied;
  • FIG. 5 is a view showing a second embodiment to which a direct current induction heating device according to the present invention is applied.
  • the DC induction heating apparatus 100 rotates the heating target product 120 which is a metal product to be heated in a uniform magnetic field and heats it to a desired temperature.
  • the conventional direct current induction heating apparatus 100 includes a pair of superconducting magnets 110 and 110 ', a pair of movable iron cores 130 and 130', and a pair of cryogenic cooling units 140 and 140 '.
  • the heating target product 120 is configured to be positioned at a distance d between the pair of superconducting magnets 110 and 110 ′.
  • the first superconducting magnet 110, the first movable iron core 130 and the first cryogenic cooling unit 140 is provided on one side with the heating target product 120 as the center, and the second superconducting magnet 110 on the other side. '), The second movable iron core 130' and the second cryogenic cooling unit 140 'are provided.
  • the heating target product 120 is one side is connected to the motor shaft of the motor 150, the heating target product 120 is rotated at a constant speed by the drive of the motor 150 in a uniform magnetic field desired Allow to heat to temperature.
  • the direct current induction heating apparatus is a superconducting magnet rotary direct current induction heating apparatus, and the superconducting magnet is rotated while the heating target product is fixed to heat the heating target product, regardless of the appearance and size of the heating target product.
  • the superconducting magnet rotary DC induction heating apparatus will be referred to as a DC induction heating apparatus.
  • FIG. 2 is a view schematically showing a cross section of a direct current induction heating apparatus according to the present invention.
  • the DC induction heating apparatus 200 includes a pair of superconducting magnets 210 and 210 ', a heating target product 220, a pair of rotating iron cores 230 and 230', and a cryogenic cooling unit ( 240).
  • the pair of superconducting magnets 210 and 210 ' rotate and generate a magnetic field to heat the heating target product.
  • the first superconducting magnet 210 and the second superconducting magnet 210 ' are positioned to have a predetermined distance.
  • the shape of the superconducting magnet 210 is only an example of a race track shape, but is not limited thereto.
  • the product to be heated 220 is positioned between the first superconducting magnet 210 and the second superconducting magnet 210 '.
  • the object to be heated 220 may be aluminum, copper, or the like as a nonmagnetic material.
  • the shape of the product to be heated 220 is merely illustrated as an example of a cylindrical shape, but is not limited thereto.
  • the pair of rotatable iron cores 230 and 230 ′ are positioned to be symmetrical with respect to the heating target product 220.
  • the first rotating iron core 230 may be positioned on the first superconducting magnet 210
  • the second rotating iron core 230 ′ may be positioned on the second superconducting magnet 210 ′.
  • a portion of the first rotary iron core 230 and the second rotary iron core 230 ′ may penetrate the cutouts (not shown) of the first superconducting magnet 210 and the second superconducting magnet 210 ′, respectively. Is located.
  • the cryogenic cooling unit 240 has a pair of superconducting magnets 210 and 210 'located therein, and uses a cryogenic freezer or a refrigerant to maintain the superconducting properties of the pair of superconducting magnets 210 and 210'. Maintain a cryogenic environment. At this time, the inside of the vacuum is maintained to prevent the external thermal intrusion.
  • the cryogenic cooling unit 240 is designed to be rotatable and rotates together with the pair of superconducting magnets 210 and 210 '.
  • Figure 3a is a view showing the configuration of the direct current induction heating apparatus according to the present invention
  • Figure 3b is a view showing the configuration of the direct current induction heating apparatus according to the present invention viewed from the side.
  • the first superconducting magnet 310 and the second superconducting magnet 310 ' are positioned inside the cryogenic cooling unit 350, and the heating target product is located at the center of the first superconducting magnet 310 and the second superconducting magnet 310'. 320 may be located.
  • the first superconducting magnet 310, the second superconducting magnet 310 ′, the first inner rotating iron core 330, the second inner rotating iron core 330 ′ and the outer rotating iron core 340 rotate simultaneously.
  • the induced magnetic flux is generated in the heating target product 320 by the rotating magnetic flux, the heating target product 320 is heated.
  • the cryogenic cooling unit 350 maintains the cryogenic environment even when rotating using a cryogenic freezer or a refrigerant, and maintains the inside thereof in a vacuum to prevent external heat invasion.
  • the product to be heated 320 is fixed by a fixing part (not shown).
  • FIG. 4 is a view showing a first embodiment to which a direct current induction heating apparatus according to the present invention is applied, and shows a case where the direct current induction heating apparatus is rotated by a motor.
  • the DC induction heating apparatus and the motor 420 are coupled by the coupling 410, and constitute a first superconducting magnet 310, a second superconducting magnet 310 ′, and a first internal rotating iron core constituting the DC induction heating apparatus.
  • 330, the second inner rotary iron core 330 ′ and the outer rotary iron core 340 are rotated by the motor 420.
  • the rotational speed is determined by the driving speed of the motor, and the strength of the magnetic field is controlled to obtain the target rotational torque.
  • FIG. 5 is a view showing a second embodiment to which a direct current induction heating device according to the present invention is applied, and shows a case where the direct current induction heating device rotates by an armature coil that generates a rotating magnetic field without a motor.
  • the armature enclosure 510 is configured to surround the outside of the direct current induction heating apparatus, and a plurality of armature cores 520 are provided on the inner circumferential surface of the armature enclosure 510 at regular intervals.
  • the armature coils 530 are wound around the plurality of armature cores 520, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

The present invention relates to a superconducting magnet rotating-type direct current induction heating device. More specifically, the present invention comprises: a pair of superconducting magnets disposed symmetrically to each other with respect to a product to be heated, so as to heat the product by generating a magnetic field while being rotated; a pair of rotating iron cores arranged to partially pass through cutout portions of the superconducting magnets while being disposed symmetrically to each other with respect to the product to be heated, placed between the superconducting magnets; a fixing part for fixing the product to be heated; and a rotary drive unit for rotating the superconducting magnets.

Description

초전도 자석 회전형 직류 유도 가열 장치Superconducting Magnetic Rotary DC Induction Heating Equipment
본 발명은 초전도 자석 회전형 직류 유도 가열 장치에 관한 것으로서, 구체적으로 금속의 형상에 관계없이 초전도 자석을 회전시켜 가열 대상 제품을 가열하도록 하는 초전도 자석 회전형 직류 유도 가열 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet rotating direct current induction heating apparatus, and more particularly, to a superconducting magnet rotating direct current induction heating apparatus for heating a product to be heated by rotating a superconducting magnet regardless of the shape of a metal.
초전도체는 극저온에서 전기적 저항이 '0'(zero)이 되는 소자이다. 이는 기존의 구리(cu) 도체와 비교했을 때 고자장, 저손실, 그리고 소형화라는 이점을 제공하기 때문에, 이미 다양한 응용 분야에 활용되고 있다.Superconductors are devices whose electrical resistance is zero at cryogenic temperatures. It is already used in a variety of applications because it offers the advantages of high magnetic field, low loss and miniaturization compared to conventional copper (cu) conductors.
초전도 자석은 이러한 초전도체를 이용하여 만든 자석이다. 초전도 자석은 MRI, NMR, 입자가속기, 자기분리장치 등에 사용되어 효율과 성능을 향상시킨다. 또한 전력 케이블과 초전도 변압기, 초전도 모터 등과 같이 산업 전반에 걸쳐 그 응용기술이 지속적으로 연구되고 있다. 응용분야 중의 하나로서 철강 산업분야에 적용되기도 한다. 철강 산업분야에서는 대용량 유도가열장치에 대한 연구 개발이 활발하다.Superconducting magnets are magnets made from such superconductors. Superconducting magnets are used in MRI, NMR, particle accelerators and magnetic separators to improve efficiency and performance. In addition, its application technology is continuously being researched throughout the industry such as power cables, superconducting transformers, and superconducting motors. One of the applications is in the steel industry. In the steel industry, research and development on large-capacity induction heating apparatus is active.
유도가열장치를 위한 가열방식은 교류(Alternating Current, AC) 유도 가열과 직류(Direct Current, DC) 유도 가열로 구분할 수 있다. Heating methods for induction heating apparatus can be divided into alternating current (AC) induction heating and direct current (DC) induction heating.
교류 유도 가열은 시변 자기장을 생성하기 위해 구리 자석에 교류 전류를 인가하는 방식이다. 하지만, 교류 유도 가열은 구리 자석을 사용하기 때문에 그 구리 자석의 저항에 의한 발열로 시스템 전체 에너지 효율이 50~60% 정도밖에 되지 않는다. 따라서 구리 자석 대신 초전도 자석을 사용하기도 한다. 이는 에너지 변환 효율을 향상시키기 위함이다. Alternating current induction heating is a method of applying an alternating current to a copper magnet to create a time varying magnetic field. However, since AC induction heating uses a copper magnet, the total energy efficiency of the system is only about 50 to 60% due to the heat generated by the resistance of the copper magnet. Therefore, superconducting magnets are sometimes used instead of copper magnets. This is to improve the energy conversion efficiency.
그렇지만 통산 초전도 자석의 재료가 되는 초전도 선재는 교류 전류의 통전 하에서 자화 손실이 발생하는 단점이 있다. 이는 극저온 운전환경에서 초전도 상태를 유지하기 위한 냉각이 반드시 필요함을 의미하고, 그렇기 때문에 냉각장치의 설비 비용과 함께 운전비용이 증대되는 문제점을 안고 있다. However, the superconducting wire, which is a material of a totally superconducting magnet, has a disadvantage in that magnetization loss occurs under the application of an alternating current. This means that cooling is necessary to maintain the superconducting state in the cryogenic operating environment, and thus there is a problem in that the operating cost increases with the installation cost of the cooling device.
반면 직류 유도 가열은 초전도 자석에 직류 전류를 인가하여 균일한 자기장을 발생시키고 상기 자기장 내에서 제품을 모터로 강제 회전시켜 가열하는 방식이다. 이러한 직류 유도 가열은 직류 전류를 사용하여 초전도 자석의 열 손실을 발생시키지 않으면서도 유도 가열 장치의 전체 시스템 효율을 90% 이상 향상시킬 수 있다는 이점을 가진다. 또한 초전도 자석에서 발생하는 자기장의 제곱에 비례하여 에너지가 전달되기 때문에 가열 대상 제품에 대한 가열 시간을 단축할 수 있어 생산성이 더욱 향상되는 이점이 있다.On the other hand, direct current induction heating is a method of applying a direct current to the superconducting magnet to generate a uniform magnetic field and forcibly rotating the product by a motor in the magnetic field to heat it. Such direct current induction heating has the advantage of using a direct current to improve the overall system efficiency of the induction heating apparatus by more than 90% without generating heat loss of the superconducting magnet. In addition, since energy is transferred in proportion to the square of the magnetic field generated from the superconducting magnet, the heating time for the product to be heated can be shortened, thereby improving productivity.
이에 유도 가열 장치는 직류 유도 가열 방식이 많이 적용되고 있으며, 아울러 직류 유도 가열 방식을 위한 초전도 자석으로서 레이스 트랙 타입의 초전도 자석이 많이 사용되고 있다.The induction heating apparatus has been applied a lot of direct current induction heating method, and as the superconducting magnet for the direct current induction heating method, a race track type superconducting magnet is used a lot.
이 초전도 자석의 재료로 사용되는 초전도 선재는 그 가격이 매우 비싸다. 그렇기 때문에 동일한 조건에서 초전도 선재를 더 적게 사용하더라도 원하는 용량을 제공할 수 있는 유도 가열 장치에 대한 수요가 증가하고 있다.The superconducting wire used as the material of this superconducting magnet is very expensive. As such, there is an increasing demand for induction heating devices that can provide the desired capacity even if fewer superconducting wires are used under the same conditions.
따라서, 가열 대상 제품의 외형 및 사이즈에 상관없이 그 가열 대상 제품을 가열할 수 있는 직류 유도 가열 장치를 제안하고자 한다.Therefore, it is intended to propose a direct current induction heating apparatus capable of heating the product to be heated regardless of the appearance and size of the product to be heated.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 초전도 선재를 더 적게 사용하더라도 원하는 용량을 제공할 수 있는 초전도 자석 회전형 직류 유도 가열 장치를 제공함에 있다.The present invention is to solve the problems as described above, to provide a superconducting magnet rotary DC induction heating apparatus that can provide a desired capacity even if less superconducting wire is used.
또한, 본 발명은 가열 대상 제품의 외형 및 사이즈에 상관없이 그 가열 대상 제품을 가열할 수 있도록 하는 초전도 자석 회전형 직류 유도 가열 장치를 제공함에 있다.In addition, the present invention is to provide a superconducting magnet rotary direct current induction heating apparatus that can heat the heating target product irrespective of the appearance and size of the heating target product.
또한, 본 발명은 가열 대상 제품의 외형 및 사이즈에 상관없이 그 가열 대상 제품을 가열함으로써 압출, 단조 등의 다양한 산업 분야에 활용 가능한 초전도 자석 회전형 직류 유도 가열 장치를 제공함에 있다.In addition, the present invention is to provide a superconducting magnet rotary direct current induction heating apparatus that can be utilized in a variety of industries such as extrusion, forging by heating the heating target product irrespective of the appearance and size of the heating target product.
본 발명에 따른 초전도 자석 회전형 직류 유도 가열 장치는 가열 대상 제품을 중심으로 서로 대칭되게 위치하여 회전하며 자기장을 발생시켜 상기 가열 대상 제품을 가열하는 한 쌍의 초전도 자석; 상기 초전도 자석 사이에 위치한 상기 가열 대상 제품을 중심으로 서로 대칭되게 위치하면서 일부분이 상기 초전도 자석의 절개부 내를 관통하도록 구비되는 한 쌍의 회전형 철심; 상기 가열 대상 제품을 고정시키는 고정부; 및 상기 초전도 자석을 회전시키는 회전 구동부를 포함한다.The superconducting magnet rotational direct current induction heating apparatus according to the present invention comprises a pair of superconducting magnets that are positioned symmetrically with respect to a heating target product and rotate to generate a magnetic field to heat the heating target product; A pair of rotating iron cores positioned symmetrically with respect to the heating target product positioned between the superconducting magnets and having a portion penetrating through the cutout of the superconducting magnet; A fixing part which fixes the product to be heated; And a rotation driver for rotating the superconducting magnet.
본 발명에 의하면, 초전도 선재를 더 적게 사용하더라도 원하는 용량을 제공하도록 할 수 있다.According to the present invention, even if less superconducting wire is used, it is possible to provide a desired capacity.
또한, 본 발명에 의하면, 가열 대상 제품의 외형 및 사이즈에 상관없이 그 가열 대상 제품을 가열하도록 할 수 있다.In addition, according to the present invention, the heating target product can be heated regardless of the appearance and size of the heating target product.
또한, 본 발명은 가열 대상 제품의 외형 및 사이즈에 상관없이 그 가열 대상 제품을 가열함으로써 압출, 단조 등의 다양한 산업 분야에 활용 가능하도록 할 수 있다.In addition, the present invention can be utilized in various industrial fields such as extrusion, forging by heating the heating target product irrespective of the appearance and size of the heating target product.
도 1은 종래의 직류 유도 가열 장치를 나타내는 평면도,1 is a plan view showing a conventional direct current induction heating apparatus,
도 2는 본 발명에 따른 직류 유도 가열 장치의 단면을 개략적으로 나타내는 도면,2 schematically shows a cross section of a direct current induction heating apparatus according to the present invention;
도 3a는 본 발명에 따른 직류 유도 가열 장치를 정면에서 바라본 구성을 나타내는 도면,Figure 3a is a view showing a configuration as viewed from the front direct current induction heating apparatus according to the present invention,
도 3b는 본 발명의 실시 예에 따른 직류 유도 가열 장치의 측면에서 바라본 구성을 나타내는 도면,Figure 3b is a view showing a configuration seen from the side of the direct current induction heating apparatus according to an embodiment of the present invention,
도 4는 본 발명에 따른 직류 유도 가열 장치가 적용된 제1 실시예를 나타내는 도면,4 is a view showing a first embodiment to which a direct current induction heating device according to the present invention is applied;
도 5는 본 발명에 따른 직류 유도 가열 장치가 적용된 제2 실시예를 나타내는 도면.5 is a view showing a second embodiment to which a direct current induction heating device according to the present invention is applied.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.Technical terms used in the present invention are merely used to describe specific embodiments, it should be noted that it is not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those skilled in the art unless the present invention has a special meaning defined in the present invention, and is excessively comprehensive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when a technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be properly understood by those skilled in the art. In addition, the general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced sense.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used in the present invention include plural forms unless the context clearly indicates otherwise. In the present invention, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various components or steps described in the invention, and some of the components or some of the steps are included. It should be construed that it may not be, or may further include additional components or steps.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복된 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or similar components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 종래의 직류 유도 가열 장치를 나타내는 평면도이다. 여기서 직류 유도 가열 장치(100)는 균일한 자장 내에서 가열하고자 하는 금속 제품인 가열 대상 제품(120)을 회전시켜 원하는 온도까지 가열한다.1 is a plan view showing a conventional direct current induction heating apparatus. Here, the DC induction heating apparatus 100 rotates the heating target product 120 which is a metal product to be heated in a uniform magnetic field and heats it to a desired temperature.
종래의 직류 유도 가열 장치(100)는 한 쌍의 초전도 자석(110, 110'), 한 쌍의 이동형 철심(130, 130') 및 한 쌍의 극저온 냉각부(140, 140')를 포함하여 구성되며, 가열 대상 제품(120)이 한 쌍의 초전도 자석(110, 110') 사이에서 이격 거리(d)를 갖고 위치될 수 있도록 구성된다. The conventional direct current induction heating apparatus 100 includes a pair of superconducting magnets 110 and 110 ', a pair of movable iron cores 130 and 130', and a pair of cryogenic cooling units 140 and 140 '. The heating target product 120 is configured to be positioned at a distance d between the pair of superconducting magnets 110 and 110 ′.
즉, 가열 대상 제품(120)을 중심에 두고 일측에는 제1 초전도 자석(110), 제1 이동형 철심(130) 및 제1 극저온 냉각부(140)이 구비되고, 타측에는 제2 초전도 자석(110'), 제2 이동형 철심(130') 및 제2 극저온 냉각부(140')가 구비된다.That is, the first superconducting magnet 110, the first movable iron core 130 and the first cryogenic cooling unit 140 is provided on one side with the heating target product 120 as the center, and the second superconducting magnet 110 on the other side. '), The second movable iron core 130' and the second cryogenic cooling unit 140 'are provided.
여기서, 가열 대상 제품(120)은 일 측이 모터(150)의 모터 축과 연결되고, 균일한 자장 내에서 이 가열 대상 제품(120)이 모터(150)의 구동에 의해 일정 속도로 회전하면서 원하는 온도까지 가열되도록 한다. Here, the heating target product 120 is one side is connected to the motor shaft of the motor 150, the heating target product 120 is rotated at a constant speed by the drive of the motor 150 in a uniform magnetic field desired Allow to heat to temperature.
본 발명에 따른 직류 유도 가열 장치는 초전도 자석 회전형 직류 유도 가열 장치이며, 가열 대상 제품을 고정시킨 상태에서 초전도 자석을 회전시켜 가열 대상 제품을 가열시킴으로써 가열 대상 제품의 외형 및 사이즈에 상관없이 가열할 수 있도록 한다. 이하에서 실시 예 및 도면을 통해 본 발명에 대해 구체적으로 설명하도록 한다. 다만, 설명의 편의를 위하여 초전도 자석 회전형 직류 유도 가열 장치를 직류 유도 가열 장치로 지칭하도록 한다.The direct current induction heating apparatus according to the present invention is a superconducting magnet rotary direct current induction heating apparatus, and the superconducting magnet is rotated while the heating target product is fixed to heat the heating target product, regardless of the appearance and size of the heating target product. To help. Hereinafter, the present invention will be described in detail through embodiments and drawings. However, for convenience of description, the superconducting magnet rotary DC induction heating apparatus will be referred to as a DC induction heating apparatus.
도 2는 본 발명에 따른 직류 유도 가열 장치의 단면을 개략적으로 나타내는 도면이다.2 is a view schematically showing a cross section of a direct current induction heating apparatus according to the present invention.
도 2를 참조하면, 직류 유도 가열 장치(200)는 한 쌍의 초전도 자석(210, 210'), 가열 대상 제품(220), 한 쌍의 회전형 철심(230, 230') 및 극저온 냉각부(240)를 포함한다.Referring to FIG. 2, the DC induction heating apparatus 200 includes a pair of superconducting magnets 210 and 210 ', a heating target product 220, a pair of rotating iron cores 230 and 230', and a cryogenic cooling unit ( 240).
먼저, 한 쌍의 초전도 자석(210, 210')는 회전하며 자기장을 발생시켜 가열 대상 제품을 가열한다. 제1 초전도 자석(210) 및 제2 초전도 자석(210')은 일정 이격 거리를 갖도록 위치된다. 이때, 초전도 자석(210)의 형상은 레이스 트랙 형상인 경우를 일 예로 도시한 것일 뿐, 이에 한정되지 않는다.First, the pair of superconducting magnets 210 and 210 'rotate and generate a magnetic field to heat the heating target product. The first superconducting magnet 210 and the second superconducting magnet 210 'are positioned to have a predetermined distance. In this case, the shape of the superconducting magnet 210 is only an example of a race track shape, but is not limited thereto.
가열 대상 제품(220)은 제1 초전도 자석(210) 및 제2 초전도 자석(210') 사이에 위치한다. 가열 대상 제품(220)은 비 자성체로서 알루미늄, 구리 등이 될 수 있다. 이때, 가열 대상 제품(220)의 형상은 원통 형상인 경우를 일 예로 도시한 것일 뿐, 이에 한정되지 않는다.The product to be heated 220 is positioned between the first superconducting magnet 210 and the second superconducting magnet 210 '. The object to be heated 220 may be aluminum, copper, or the like as a nonmagnetic material. In this case, the shape of the product to be heated 220 is merely illustrated as an example of a cylindrical shape, but is not limited thereto.
한 쌍의 회전형 철심(230, 230')은 가열 대상 제품(220)을 중심으로 서로 대칭되도록 위치한다. 예를 들어, 제1 초전도 자석(210) 측에 제1 회전형 철심(230)이 위치하고, 제2 초전도 자석(210') 측에 제2 회전형 철심(230')이 위치할 수 있다. 이때, 제1 회전형 철심(230) 및 제2 회전형 철심(230')의 일부는 각각 제1 초전도 자석(210) 및 제2 초전도 자석(210')의 절개부(미도시)를 관통하여 위치된다.The pair of rotatable iron cores 230 and 230 ′ are positioned to be symmetrical with respect to the heating target product 220. For example, the first rotating iron core 230 may be positioned on the first superconducting magnet 210, and the second rotating iron core 230 ′ may be positioned on the second superconducting magnet 210 ′. In this case, a portion of the first rotary iron core 230 and the second rotary iron core 230 ′ may penetrate the cutouts (not shown) of the first superconducting magnet 210 and the second superconducting magnet 210 ′, respectively. Is located.
극저온 냉각부(240)는 내부에는 한 쌍의 초전도 자석(210, 210')이 위치되며, 한 쌍의 초전도 자석(210, 210')의 초전도 성질을 유지하도록 하기 위해 극저온 냉동기 또는 냉매를 이용하여 극저온 환경을 유지시킨다. 이때, 외부의 열침입을 방지하기 위해 그 내부를 진공으로 유지한다. 또한, 극저온 냉각부(240)는 회전 가능하도록 설계되어 한 쌍의 초전도 자석(210, 210')과 함께 회전된다.The cryogenic cooling unit 240 has a pair of superconducting magnets 210 and 210 'located therein, and uses a cryogenic freezer or a refrigerant to maintain the superconducting properties of the pair of superconducting magnets 210 and 210'. Maintain a cryogenic environment. At this time, the inside of the vacuum is maintained to prevent the external thermal intrusion. In addition, the cryogenic cooling unit 240 is designed to be rotatable and rotates together with the pair of superconducting magnets 210 and 210 '.
도 3a는 본 발명에 따른 직류 유도 가열 장치를 정면에서 바라본 구성을 나타내는 도면이고, 도 3b는 본 발명에 따른 직류 유도 가열 장치를 측면에서 바라본 구성을 나타내는 도면이다.Figure 3a is a view showing the configuration of the direct current induction heating apparatus according to the present invention, Figure 3b is a view showing the configuration of the direct current induction heating apparatus according to the present invention viewed from the side.
극저온 냉각부(350) 내부에 제1 초전도 자석(310) 및 제2 초전도 자석(310')가 위치하며, 제1 초전도 자석(310) 및 제2 초전도 자석(310')의 중심에는 가열 대상 제품(320)이 위치 될 수 있다.The first superconducting magnet 310 and the second superconducting magnet 310 'are positioned inside the cryogenic cooling unit 350, and the heating target product is located at the center of the first superconducting magnet 310 and the second superconducting magnet 310'. 320 may be located.
제1 내부 회전형 철심(330) 및 제2 내부 회전형 철심(330')의 일부는 각각 제1 초전도 자석(310) 및 제2 초전도 자석(310')의 절개부(미도시)를 관통하여 위치된다. 이때, 제1 내부 회전형 철심(330) 및 제2 내부 회전형 철심(330')은 외부 회전형 철심(340) 내주면에 서로 대칭되도록 구비된다.A portion of the first inner rotary iron core 330 and the second inner rotary iron core 330 'passes through the cutouts (not shown) of the first superconducting magnet 310 and the second superconducting magnet 310', respectively. Is located. At this time, the first inner rotary iron core 330 and the second inner rotary iron core 330 ′ are provided to be symmetrical with each other on the inner circumferential surface of the outer rotary iron core 340.
제1 초전도 자석(310), 제2 초전도 자석(310'), 제1 내부 회전형 철심(330), 제2 내부 회전형 철심(330') 및 외부 회전형 철심(340)이 동시에 회전하게 되고, 그 회전하는 자속에 의해 가열 대상 제품(320)의 내부에 유도 전류가 발생하게 됨에 따라 가열 대상 제품(320)이 가열된다.The first superconducting magnet 310, the second superconducting magnet 310 ′, the first inner rotating iron core 330, the second inner rotating iron core 330 ′ and the outer rotating iron core 340 rotate simultaneously. As the induced magnetic flux is generated in the heating target product 320 by the rotating magnetic flux, the heating target product 320 is heated.
여기서, 극저온 냉각부(350)는 극저온 냉동기 또는 냉매를 사용하여 회전 시에도 극저온 환경을 유지하도록 하며, 외부의 열 침입을 방지하기 위해 그 내부는 진공으로 유지한다.Here, the cryogenic cooling unit 350 maintains the cryogenic environment even when rotating using a cryogenic freezer or a refrigerant, and maintains the inside thereof in a vacuum to prevent external heat invasion.
한편, 가열 대상 제품(320)은 고정부(미도시)에 의해 고정된다.On the other hand, the product to be heated 320 is fixed by a fixing part (not shown).
이하에서는 도 4 및 도 5를 참조하여 본 발명에 따른 직류 유도 가열 장치가 적용된 두 가지 실시예를 설명한다. 이때, 앞서 설명한 도면과 중복되는 구성요소에 대해서는 그 설명을 생략한다.Hereinafter, two embodiments to which the direct current induction heating apparatus according to the present invention is applied will be described with reference to FIGS. 4 and 5. At this time, the description of the components overlapping with the above-described drawings will be omitted.
도 4는 본 발명에 따른 직류 유도 가열 장치가 적용된 제1 실시예를 나타내는 도면으로, 직류 유도 가열 장치가 모터에 의해 회전하는 경우를 도시한 것이다.4 is a view showing a first embodiment to which a direct current induction heating apparatus according to the present invention is applied, and shows a case where the direct current induction heating apparatus is rotated by a motor.
직류 유도 가열 장치와 모터(420)는 커플링(410)에 의해 결합되며, 직류 유도 가열 장치를 구성하는 제1 초전도 자석(310), 제2 초전도 자석(310'), 제1 내부 회전형 철심(330), 제2 내부 회전형 철심(330') 및 외부 회전형 철심(340)은 모터(420)에 의해 회전한다. 그 회전 속도는 모터의 구동 속도에 의해 결정되며, 목표하는 회전 토크를 얻기 위해서 자기장의 세기가 제어된다.The DC induction heating apparatus and the motor 420 are coupled by the coupling 410, and constitute a first superconducting magnet 310, a second superconducting magnet 310 ′, and a first internal rotating iron core constituting the DC induction heating apparatus. 330, the second inner rotary iron core 330 ′ and the outer rotary iron core 340 are rotated by the motor 420. The rotational speed is determined by the driving speed of the motor, and the strength of the magnetic field is controlled to obtain the target rotational torque.
도 5는 본 발명에 따른 직류 유도 가열 장치가 적용된 제2 실시예를 나타내는 도면으로, 직류 유도 가열 장치가 모터 없이 외부에 회전 자계를 발생시키는 전기자 코일에 의해 회전하는 경우를 도시한 것이다.FIG. 5 is a view showing a second embodiment to which a direct current induction heating device according to the present invention is applied, and shows a case where the direct current induction heating device rotates by an armature coil that generates a rotating magnetic field without a motor.
구체적으로, 직류 유도 가열 장치의 외부를 둘러싸도록 전기자 외함(510)이 구성되고, 그 전기자 외함(510)의 내주면에는 복수 개의 전기자 철심(520)이 일정 간격으로 구비된다. 이때, 복수 개의 전기자 철심(520)에는 전기자 코일(530)이 각각 권선된다.Specifically, the armature enclosure 510 is configured to surround the outside of the direct current induction heating apparatus, and a plurality of armature cores 520 are provided on the inner circumferential surface of the armature enclosure 510 at regular intervals. In this case, the armature coils 530 are wound around the plurality of armature cores 520, respectively.
전기자 코일(530)의 각 마주보는 상에 동일한 방향의 전류를 흘려주면, 권선 방향이 반대인 마주보는 두 상은 반대 방향의 극을 띄게 된다. 그러면 N극과 S극이 형성된 초전도 자석(210, 210')은 회전하여 두 극과 마주하게 된다. 이때, 전기자 코일(530)의 다른 마주보는 극에 순차적으로 전류를 흘려주면 초전도 자석이 회전하면서 중심에 고정되어 있는 가열 대상 제품(220)이 가열된다. When the current in the same direction is flowed to each opposite phase of the armature coil 530, two opposite phases having opposite winding directions have poles in opposite directions. Then, the superconducting magnets 210 and 210 'having the N pole and the S pole are rotated to face the two poles. At this time, when current is sequentially applied to the other opposite poles of the armature coil 530, the superheated magnet is rotated and the heating target product 220 fixed at the center is heated.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다.Features, structures, effects, and the like described in the above embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. In addition, the features, structures, effects, and the like illustrated in the embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong.
따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. 또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention. In addition, the above description has been made with reference to the embodiments, which are merely examples and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains may be illustrated as above without departing from the essential characteristics of the present embodiments. It will be appreciated that various modifications and applications are possible. For example, each component specifically shown in the embodiments may be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.

Claims (10)

  1. 가열 대상 제품을 중심으로 서로 대칭되게 위치하여 회전하며 자기장을 발생시켜 상기 가열 대상 제품을 가열하는 한 쌍의 초전도 자석;A pair of superconducting magnets positioned symmetrically with respect to the heating target product and rotating to generate a magnetic field to heat the heating target product;
    상기 초전도 자석 사이에 위치한 상기 가열 대상 제품을 중심으로 서로 대칭되게 위치하면서 일부분이 상기 초전도 자석의 절개부 내를 관통하도록 구비되는 한 쌍의 회전형 철심;A pair of rotating iron cores positioned symmetrically with respect to the heating target product positioned between the superconducting magnets and having a portion penetrating through the cutout of the superconducting magnet;
    상기 가열 대상 제품을 고정시키는 고정부; 및A fixing part which fixes the product to be heated; And
    상기 초전도 자석을 회전시키는 회전 구동부를 포함하는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotary direct current induction heating apparatus comprising a rotation drive unit for rotating the superconducting magnet.
  2. 제1항에 있어서,The method of claim 1,
    상기 초전도 자석은,The superconducting magnet,
    원형 형상 또는 레이스 트랙 형상인 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotary direct current induction heating device, characterized in that it is circular or race track shape.
  3. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 회전형 철심은,The pair of rotary iron cores,
    원형 형상의 외부 회전형 철심의 내주면에 상호 대칭되도록 구비되는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotating direct current induction heating apparatus, characterized in that provided on the inner circumferential surface of the circular external rotating iron core.
  4. 제1항에 있어서,The method of claim 1,
    상기 초전도 자석은,The superconducting magnet,
    극저온 냉동기 또는 냉매를 사용하여 극저온 환경을 유지하도록 하는 극저온 냉각부의 내부에 위치되는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치. A superconducting magnet rotary direct current induction heating device, characterized in that located inside the cryogenic cooling unit to maintain a cryogenic environment using a cryogenic freezer or a refrigerant.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 극저온 냉각부는,The cryogenic cooling unit,
    내부가 진공으로 유지되는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotary direct current induction heating device, characterized in that the interior is maintained in a vacuum.
  6. 제5항에 있어서,The method of claim 5,
    상기 극저온 냉각부는,The cryogenic cooling unit,
    상기 초전도 자석과 함께 상기 회전 구동부에 의해 회전되는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.And a superconducting magnet rotating direct current induction heating device, characterized in that rotated together with the superconducting magnet.
  7. 제1항에 있어서,The method of claim 1,
    상기 회전 구동부는,The rotation drive unit,
    모터에 의해 상기 초전도 자석을 회전시키는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotating direct current induction heating device, characterized in that for rotating the superconducting magnet by a motor.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 회전 구동부는,The rotation drive unit,
    상기 모터의 구동 속도를 조절하여 상기 초전도 자석의 회전 속도를 제어하는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.The superconducting magnet rotational direct current induction heating apparatus, characterized in that for controlling the rotational speed of the superconducting magnet by adjusting the drive speed of the motor.
  9. 제1항에 있어서,The method of claim 1,
    상기 회전 구동부는,The rotation drive unit,
    전기자 코일에 의해 발생되는 회전 자계를 이용하여 상기 초전도 자석을 회전시키는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.A superconducting magnet rotating direct current induction heating device, characterized in that for rotating the superconducting magnet using a rotating magnetic field generated by an armature coil.
  10. 제9항에 있어서,The method of claim 9,
    상기 회전 구동부는,The rotation drive unit,
    전기자 외함;Armature enclosure;
    상기 전기자 외함의 내주면에 일정 간격으로 구비되는 복수 개의 전기자 철심; 및A plurality of armature cores provided at predetermined intervals on an inner circumferential surface of the armature enclosure; And
    상기 복수 개의 전기자 철심에 각각 권선되는 전기자 코일을 포함하는 것을 특징으로 하는 초전도 자석 회전형 직류 유도 가열 장치.And an armature coil wound around each of the plurality of armature iron cores.
PCT/KR2018/000636 2017-02-20 2018-01-12 Superconducting magnet rotating-type direct current induction heating device WO2018151422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170022517A KR101922688B1 (en) 2017-02-20 2017-02-20 Dc induction heating apparatus capable of rotating the supercondcting magnet
KR10-2017-0022517 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151422A1 true WO2018151422A1 (en) 2018-08-23

Family

ID=63170720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000636 WO2018151422A1 (en) 2017-02-20 2018-01-12 Superconducting magnet rotating-type direct current induction heating device

Country Status (2)

Country Link
KR (1) KR101922688B1 (en)
WO (1) WO2018151422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212490A (en) * 2020-02-17 2020-05-29 中国科学院电工研究所 Superconducting induction heating device capable of simultaneously heating multiple workpieces
CN115216598A (en) * 2022-07-04 2022-10-21 燕山大学 Induction heating device based on cam and heating method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102277956B1 (en) * 2019-11-28 2021-07-15 정병규 Inductive heating apparatus and rolling system having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237175A (en) * 2004-02-23 2005-09-02 Sumitomo Electric Ind Ltd Motor and electric movable body with motor
KR20100039355A (en) * 2007-07-26 2010-04-15 제너지 파워 게엠베하 Induction heating method
JP2010537376A (en) * 2007-08-23 2010-12-02 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method and apparatus for metal billet
KR20120111505A (en) * 2011-04-01 2012-10-10 한국과학기술원 Rotating superconductiong flux pump for hts generator
KR101658727B1 (en) * 2015-03-11 2016-09-21 창원대학교 산학협력단 Superconducting magnet apparatus using movement and Induction heating apparatus thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468312B1 (en) 2013-06-19 2014-12-02 창원대학교 산학협력단 Superconductor coil and Induction heating machine thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237175A (en) * 2004-02-23 2005-09-02 Sumitomo Electric Ind Ltd Motor and electric movable body with motor
KR20100039355A (en) * 2007-07-26 2010-04-15 제너지 파워 게엠베하 Induction heating method
JP2010537376A (en) * 2007-08-23 2010-12-02 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method and apparatus for metal billet
KR20120111505A (en) * 2011-04-01 2012-10-10 한국과학기술원 Rotating superconductiong flux pump for hts generator
KR101658727B1 (en) * 2015-03-11 2016-09-21 창원대학교 산학협력단 Superconducting magnet apparatus using movement and Induction heating apparatus thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212490A (en) * 2020-02-17 2020-05-29 中国科学院电工研究所 Superconducting induction heating device capable of simultaneously heating multiple workpieces
CN111212490B (en) * 2020-02-17 2022-02-01 中国科学院电工研究所 Superconducting induction heating device capable of simultaneously heating multiple workpieces
CN115216598A (en) * 2022-07-04 2022-10-21 燕山大学 Induction heating device based on cam and heating method thereof

Also Published As

Publication number Publication date
KR20180096175A (en) 2018-08-29
KR101922688B1 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2016143975A1 (en) Superconducting magnet apparatus using movable iron core, and induction heating apparatus thereof
US8110961B2 (en) Permanent-magnet-less machine having an enclosed air gap
WO2018151422A1 (en) Superconducting magnet rotating-type direct current induction heating device
US8390168B2 (en) Permanent-magnet-less machine having an enclosed air gap
US9461511B2 (en) Electric machine with permanently excited armature and associated permanently excited armature
WO2010137766A1 (en) Hybrid pole bearingless srm
CN108141090A (en) Electric rotating machine
WO2016086515A1 (en) Permanent magnet speed governor having fixed magnetic gap
WO2016024777A1 (en) Washing machine
EP3823137A1 (en) Mute self-generating power generator
CN107289003B (en) Homopolarity formula permanent magnet offset radial magnetic bearing
US12003139B2 (en) Rotating electric machine
US20220181930A1 (en) Rotating electric machine and manufacturing method thereof
CN111566904A (en) Rotating electrical machine
CN108050156A (en) A kind of sextupole hybrid magnetic bearing
RU2591842C2 (en) Low-speed electromagnetic turbine
US12009716B2 (en) Armature and manufacturing method thereof
CN106655673A (en) Linear rotating two-freedom-degree permanent magnet actuator of stator separation type
CN109038991A (en) A kind of 36/4 structure high-speed magneto
WO2017217621A1 (en) Superconducting direct current induction heating device using magnetic field displacement
US20180294686A1 (en) Stator for Rotating Electric Machine
US20030030339A1 (en) Rotating back iron for synchronous motors/generators
WO2013172546A1 (en) Superconducting synchronous motor
CN112930641A (en) Motor and hybrid electric vehicle
RU2747885C1 (en) Rotor magnetic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754624

Country of ref document: EP

Kind code of ref document: A1