WO2018151404A1 - Method for measuring uncertainty of gnss-based position estimation - Google Patents

Method for measuring uncertainty of gnss-based position estimation Download PDF

Info

Publication number
WO2018151404A1
WO2018151404A1 PCT/KR2017/014982 KR2017014982W WO2018151404A1 WO 2018151404 A1 WO2018151404 A1 WO 2018151404A1 KR 2017014982 W KR2017014982 W KR 2017014982W WO 2018151404 A1 WO2018151404 A1 WO 2018151404A1
Authority
WO
WIPO (PCT)
Prior art keywords
uncertainty
factor
gnss
sensor
value
Prior art date
Application number
PCT/KR2017/014982
Other languages
French (fr)
Korean (ko)
Inventor
정우진
이우식
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018151404A1 publication Critical patent/WO2018151404A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a method for measuring the uncertainty of GNSS-based position estimation, and more particularly, to be used for autonomous driving of an autonomous vehicle or an outdoor mobile robot (hereinafter referred to as an 'autonomous vehicle') using a GNSS sensor.
  • the present invention relates to a method for measuring the uncertainty of GNSS-based position estimation, which can accurately measure the uncertainty generated in the position measurement of the GNSS sensor and reflect the accurate position estimation of the autonomous vehicle.
  • Location estimation requires sensor data that measures the environment or location, and often converges various sensor data to increase the accuracy of location estimation.
  • the measurement of each sensor and the uncertainty of the measurement are known. This is called the sensor model.
  • the more accurately the sensor model is designed the more accurate the position estimation algorithm using the sensor model is.
  • GNSS Global Navigation Satellite System
  • the most commonly used GNSS sensor model design method is to calculate the uncertainty of the measured value from the measured value of the GNSS sensor and the NMEA 0183 standard information provided by the GNSS sensor.
  • the actual uncertainty of the GNSS sensor measurement value and the uncertainty calculated from the information provided by the GNSS sensor may be inconsistent due to the multipath effect and the foliage attenuation.
  • the DOP is a factor of uncertainty caused by the geometry of the satellites, and the remaining factor of uncertainty (hereinafter, referred to as a range error) is an uncertainty caused by the satellite signal.
  • the DOP represents an error in the position measurement due to the geometric relationship due to the relative arrangement of the satellites, and is a dimensionless number.
  • the DOP is calculated by the GNSS sensor in the process of location estimation, and obtained in real time as NMEA 0183 regulation information in an environment using the GNSS sensor, and the present invention is also used for this.
  • Range errors correspond to error sources that affect the movement of a signal while the satellite signal transmitted from the satellite reaches the GNSS sensor.
  • the ionosphere influencing factor is caused by the phenomenon that the satellite signal does not proceed at the ideal light speed by the free electrons of the ionosphere when the satellite signal passes through the ionosphere of the atmosphere.
  • Atmospheric influencing factors are caused by satellite signals passing through the atmosphere and failing to propagate at the ideal speed of light by air molecules in the atmosphere.
  • the astronomical error error occurs when there is an error in the satellite arrangement information, and generally generates an error of 0.05m or less per axis.
  • the satellite time error factor occurs when there is an error in the time information of the satellite, and generally shows an error of 0.2m or less.
  • Multipath influencers occur when satellite signals are reflected from tall buildings, cliffs, etc. around the GNSS sensor and have longer paths than the line of sight. Although the error can be reduced by the filter and antenna design inside the receiver of the GNSS sensor, there may be an error of about 15m or more.
  • the signal obstruction factor is an uncertainty factor caused by an obstacle in the line of sight between the GNSS sensor and the satellite. In this case, as the strength of the satellite signal decreases, the position estimation uncertainty increases and an error of 50m or more may occur.
  • the hardware and software factors of the GNSS sensor are being reduced through the development of hardware and software, and the recent equipment has a precision of 1 s 0.3 m or less.
  • ⁇ g is the uncertainty value of GNSS-based position estimation
  • DOP is Delusion of Precision
  • Range error is the uncertainty factor that constitutes the range error.
  • Equation 1 the above-mentioned uncertainty factors constituting the range error can be applied to Equation 1 when each uncertainty factor is individually measured or calculated, but the above-mentioned uncertainty factors cannot be individually measured or calculated, and [Equation 1] In case of, it has only a theoretical meaning and cannot be applied to measuring the uncertainty of the actual GNSS sensor.
  • the present invention has been made to solve the above problems, to accurately estimate the uncertainty generated in the position measurement of the GNSS sensor used in the autonomous driving of the autonomous vehicle using the GNSS sensor to accurately estimate the position of the autonomous vehicle
  • the purpose is to provide a method for measuring the uncertainty of GNSS-based location estimation that can be reflected in the system.
  • the sensor factor uncertainty value of the sensor factor uncertainty group under the condition that the environmental factor uncertainty group and the model factor uncertainty group do not occur (B) measuring the environmental factor uncertainty value of the environmental factor uncertainty group under the condition that the model factor uncertainty group does not occur, wherein the sensor factor uncertainty value is applied and measured; and (c) the sensor Measuring an uncertainty value of the GNSS based location estimate based on a factor uncertainty value and the environmental factor uncertainty value;
  • the sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. This is achieved by measuring the uncertainty of the estimate.
  • the above object is, according to another embodiment of the present invention, in the method for measuring the uncertainty of the position estimation based on GNSS, (A) sensor factor uncertainty value of the sensor factor uncertainty group is environmental factor uncertainty group and model factor uncertainty group (B) the model factor uncertainty value of the model factor uncertainty group is measured under the condition that the environmental factor uncertainty group does not occur, but the sensor factor uncertainty value is applied and measured.
  • the sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. It is also achieved by a method of measuring the uncertainty of the estimate.
  • the sensor factor uncertainty group is grouped with uncertainty factors caused by a GNSS sensor itself
  • the environmental factor uncertainty group is grouped with uncertainty factors caused by an obstacle between a satellite and the GNSS sensor, and the model factor.
  • Uncertainty groups may be grouped with uncertainty factors whose uncertainty changes depending on the type of correction model applied to the GNSS-based position estimation.
  • the uncertainty factors grouped into the sensor factor uncertainty group include a hardware uncertainty factor and a software uncertainty factor of the GNSS sensor;
  • the uncertainty factors grouped into the environmental factor uncertainty group include a multipath effect factor and a foliage attenuation factor;
  • Uncertainty factors grouped into the model factor uncertainty group may include an Ephemeris error factor, a satellite clock error factor, an ionospheric effect factor, and a tropospheric effect factor.
  • the condition that the uncertainty of the model factor uncertainty group does not occur is that a correction model having the model factor uncertainty value of '0' is applied to the GNSS-based position estimation. Can be satisfied.
  • the condition in which the uncertainty of the model factor uncertainty group does not occur is satisfied by temporarily applying a correction model having the model factor uncertainty value '0' to the GNSS-based position estimation;
  • the model factor uncertainty value may be measured by applying a correction model actually applied to the GNSS based position estimation.
  • a condition in which the uncertainty of the environmental factor uncertainty group does not occur in steps (a) and (A) is satisfied by measuring at a position where no obstacle exists between the satellite and the GNSS sensor;
  • the environmental factor uncertainty value may be measured by a deviation between the measured position and the actual position of the GNSS-based position estimate measured at the position where the obstacle does not exist.
  • each driving position is determined by the deviation between the measured position and the actual position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road.
  • the environmental factor uncertainty value of can be measured.
  • the environmental factor uncertainty value may be mapped corresponding to a location on the map of the driving road and registered in the form of an environmental factor uncertainty map.
  • the uncertainty value of the GNSS-based position estimation is represented by an equation ( ⁇ G is the uncertainty value of the GNSS based position estimate, DOP is Delusion of Precision, AS is the model factor uncertainty value, RE is the sensor factor uncertainty value, and LC is the environmental factor uncertainty value) Can be expressed.
  • the present invention it is possible to accurately measure the uncertainty generated in the position measurement of the GNSS sensor used for the autonomous driving vehicle using the GNSS sensor or the autonomous driving of the outdoor mobile robot and accurately reflect the accurate position estimation of the autonomous driving vehicle.
  • a method of measuring the uncertainty of a GNSS based position estimation is provided.
  • FIG. 1 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the first embodiment of the present invention
  • FIG. 2 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the second embodiment of the present invention
  • 3 to 12 are views for explaining the effect of the method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the present invention.
  • the present invention relates to a method for measuring uncertainty of position estimation based on GNSS, comprising the steps of: (A) measuring the sensor factor uncertainty value of the sensor factor uncertainty group under conditions in which the environmental factor uncertainty group and the model factor uncertainty group do not occur; (B) the model factor uncertainty value of the model factor uncertainty group is measured under a condition in which the environmental factor uncertainty group does not occur, and the sensor factor uncertainty value is applied and measured, and (C) the environmental factor uncertainty group An environmental factor uncertainty value is measured by applying the sensor factor uncertainty value and the model factor uncertainty value, and (D) based on the GNSS based on the sensor factor uncertainty value, the model factor uncertainty value and the environmental factor uncertainty value A step of measuring an uncertainty value of a position estimate of ;
  • the sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group are characterized in that a plurality of uncertainty factors causing uncertainty in the GNSS-based location estimation are grouped according to the cause of the uncertainty.
  • 1 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the first embodiment of the present invention.
  • the uncertainty factors include a multipath effect factor, a foliage attenuation factor, an ephemeris error factor, a satellite clock error factor, an ionospheric effect factor, and an atmospheric layer.
  • the uncertainty factors include Tropospheric effect factors, hardware and software factors of the GNSS sensor, and the DOP (Delusion of Precision).
  • the DOP is calculated by the GNSS sensor in the process of position estimation, and is obtained in real time using NMEA 0183 regulation information in an environment using the GNSS sensor.
  • Uncertainty factors other than DOP are grouped according to the cause of the uncertainty. More specifically, the uncertainty factors caused by the GNSS sensor itself are grouped into sensor factor uncertainty groups. Uncertainty factors that make up the sensor factor uncertainty group may include hardware uncertainty factors and software uncertainty factors of the GNSS sensor.
  • Uncertainty factors caused by obstacles between GNSS sensors and satellites are grouped into environmental factor uncertainty groups.
  • the uncertainty factors forming the environmental factor uncertainty group may include a multipath effect factor and a foliage attenuation factor.
  • model factor uncertainty group The remaining uncertainty factors, except the uncertainty factors belonging to the sensor factor uncertainty group and the environmental factor uncertainty group, are grouped into the model factor uncertainty group. It may include an error factor (Satellite clock error), an ionospheric effect factor, and a tropospheric effect factor. Model factor uncertainty is grouped with uncertainty factors whose uncertainty values vary depending on the type of correction model applied to the GNSS-based position estimation.
  • a calibration model for calibration of the GNSS sensor is registered (S11).
  • a correction model having an uncertainty value of the model factor uncertainty group as '0' is registered, which will be described later.
  • the sensor factor uncertainty value for the sensor factor uncertainty group is measured (S12).
  • the sensor factor uncertainty value for the sensor factor uncertainty group is measured under the condition that the uncertainty of the remaining uncertainty group, that is, the environmental factor uncertainty group and the model factor uncertainty group, does not occur.
  • Uncertainty factors that make up the uncertainty group Ephemeris error factor, Satellite clock error factor, Ionospheric effect factor and Tropospheric effect factor, are model factors according to the calibration model. Uncertainty values may change.
  • an example in which a correction model having a model factor uncertainty value of '0' is applied to a GNSS sensor is satisfied under the condition that the uncertainty of the model factor uncertainty group does not occur, and the model factor uncertainty value is set to '0'.
  • a real time kinematic correction model is applied to the model.
  • the condition in which the uncertainty factors of the environmental factor uncertainty group are not generated is measured at the position where there is no obstacle between the satellite and the GNSS sensor, so that the environmental factor uncertainty value of the environmental factor uncertainty group can be set to '0'.
  • the uncertainty value of the position estimation based on GNSS may be expressed as shown in [Equation 2].
  • ⁇ G is an uncertainty value of the GNSS-based position estimation
  • DOP is a DOP (Delusion of Precision)
  • AS is a model factor uncertainty value
  • RE is a sensor factor uncertainty value
  • LC is an environmental factor Uncertainty value.
  • Equation 2 when measured on a rooftop of an open area or building without obstacles, Equation 2 may be expressed as Equation 3.
  • the sensor factor uncertainty value can be measured by the deviation between the measured position of the GNSS-based position estimation and the actual position using the data measured for a long time at the position where there is no obstacle.
  • the environmental factor uncertainty value of the environmental factor uncertainty group is measured using the sensor factor uncertainty value.
  • the environmental factor uncertainty value is measured under the condition that the uncertainty of the model factor uncertainty group does not occur.
  • the model factor uncertainty value of the model factor uncertainty group is determined by the real time kinematic correction model. It can be estimated as '0' through use.
  • the environmental factor uncertainty group depends on the driving position of the autonomous vehicle as the uncertainty that occurs when an obstacle, for example, a reflective object such as a building or glass, exists between the phase and the GNSS sensor.
  • the environmental factor uncertainty value is measured for each driving position (S14).
  • the environmental factor uncertainty value at each driving position is measured by the measurement position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road of the autonomous vehicle and the deviation between the actual position.
  • the sensor factor uncertainty value in [Equation 2] is measured through the above-described measurement process, and the model factor uncertainty value is estimated as '0' through the application of a real time kinematic correction model. do.
  • the environmental factor uncertainty value measured at each driving position is mapped corresponding to the position on the map of the driving road, and is generated and registered in the form of an environmental factor uncertainty map (S15).
  • the environmental factor uncertainty value, the sensor factor uncertainty value, and the DOP calculated in real time in the driving process of the autonomous vehicle are calculated.
  • the uncertainty value at the corresponding position is calculated using the value, and the calculated uncertainty value is applicable to the position estimation of the autonomous vehicle.
  • the uncertainty factor is a multipath effect factor, a foliage attenuation factor, an ephemeris error factor, a satellite clock error factor, an ionospheric effect.
  • the effects factors include effects factors, tropospheric effects factors, hardware and software factors of the GNSS sensor, and the inclusion of precision (DOP).
  • the DOP is calculated in the process of position estimation by the GNSS sensor, and obtained in real time with NMEA 0183 regulation information in an environment using the GNSS sensor.
  • the uncertainty factor group is grouped into a sensor factor uncertainty group, an environmental factor uncertainty group, and a model factor uncertainty group, and the uncertainty factors constituting each uncertainty group are the same as in the first embodiment.
  • a calibration model for calibration of the GNSS sensor is registered (S21).
  • the correction model according to the second embodiment of the present invention is classified into a correction model applied to the calculation of the sensor factor uncertainty value, and a correction model that is actually applied to the GNSS-based position estimation during driving of the actual autonomous vehicle. Will be described later.
  • the sensor factor uncertainty value for the sensor factor uncertainty group is measured (S22).
  • the sensor factor uncertainty value for the sensor factor uncertainty group is measured under the condition that the uncertainty of the remaining uncertainty group, that is, the environmental factor uncertainty group and the model factor uncertainty group, does not occur.
  • the model factor uncertainty value As an example, as in the first embodiment, an example in which a correction model having a model factor uncertainty value of '0' is applied to the GNSS sensor and is satisfied under the condition that the uncertainty of the model factor uncertainty group does not occur, the model factor uncertainty value
  • a real time kinematic correction model is applied as a correction model with '0'.
  • the condition that the uncertainty factors of the environmental factor uncertainty group did not occur is measured at the position where there is no obstacle between the satellite and the GNSS sensor, for example, at the open ground or on the roof of the building, thereby determining the environmental factor uncertainty value of the environmental factor uncertainty group.
  • Equation 3 the equation expressed as shown in [Equation 3] is used to determine the sensor factor uncertainty value by the deviation between the measured position of the GNSS-based position estimation and the actual position using the data measured for a long time at the position without obstacles. Measurement is possible.
  • the model factor uncertainty value of the model factor uncertainty group is measured (S23).
  • the model factor uncertainty value is measured under conditions where an environmental factor uncertainty group does not occur, for example, as described above, on a roof of a open area or a building, and is measured by applying a sensor factor uncertainty value measured in step S22.
  • the model factor uncertainty value is determined by using the deviation between the measured value and the actual position while the correction model applied to the autonomous vehicle is actually applied. Measurement is possible.
  • the environmental factor uncertainty value of the environmental factor uncertainty group is measured (S25).
  • the environmental factor uncertainty value is measured for each driving position (S25).
  • the environmental factor uncertainty value at each driving position is measured by the measurement position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road of the autonomous vehicle and the deviation between the actual position. .
  • the sensor factor uncertainty value and the model factor uncertainty value are measured in [Equation 2]
  • the environmental factor uncertainty value can be finally calculated.
  • the environmental factor uncertainty value measured at each driving position is mapped corresponding to the position on the map of the driving road, and is generated and registered in the form of an environmental factor uncertainty map (S15).
  • FIG. 3 is a satellite photograph of an actual driving road for experimenting a method of measuring uncertainty of GNSS-based location estimation according to the present invention, and a section marked in white is a path to which the experiment is applied.
  • the actual driving road has a characteristic of the urban environment in which the height of the surrounding buildings is high and interference of satellite signal reception is generated.
  • FIG. 4A illustrates an environmental factor uncertainty map by repeatedly measuring the environmental factor uncertainty value by repeatedly driving the driving road shown in FIG. 3 and mapping the measured environmental factor uncertainty value on a map.
  • the red color, ie, the higher the gradation score indicates that the uncertainty is greater.
  • FIG. 4B is a diagram showing measured values (GNSS data) and actual position (Ground truth) by the GNSS sensor. As shown in (b) of FIG. 4, it can be seen that the environmental factor uncertainty value is large as shown in FIG. 4 (a) in a region where the error of the measured value of the GNSS sensor is large.
  • 5 to 7 are diagrams comparing the uncertainty value measured by the method of measuring the uncertainty of the GNSS-based position estimation according to the present invention, the uncertainty value calculated by the existing GNSS sensor, and the actual position error.
  • a red line (2 ⁇ of the proposed method) is a two sigma value by the method of measuring the uncertainty of the GNSS sensor-based position estimation according to the present invention.
  • the green line (2 ⁇ receiver estimated) is the 2-sigma value output by the GNSS sensor, and the blue line (Position error) is the position error that actually occurred.
  • FIG. 5A is a graph of the entire section shown in FIG. 3, and FIG. 5B is an enlarged view of region A of FIG. 5A.
  • FIG. 5 (b) it can be seen that there is no significant difference between the method according to the present invention and the existing model in a section where the position error is less than 0.3 m, but the uncertainty value according to the output of the existing GNSS sensor It can be seen that a large measurement (see the circle in FIG. 5B) occurs regardless of the magnitude of the actual position error.
  • FIG. 6A and 6B are enlarged views of region B of FIG. 5. As described above with reference to FIG. 6A, where the position error is largely generated, it can be seen that the method according to the present invention wraps the position error and expresses the uncertainty well, and according to the output of the GNSS sensor. It can be seen that the uncertainty value is much larger than the actual position error in the multiple intervals.
  • FIG. 7 is an enlarged view of region C of FIG. 5. Referring to FIG. 7, it can be seen that the C region or the same aspect as the A and B regions described above are shown, and the actual position error is well reflected as the uncertainty value of the method according to the present invention.
  • FIGS. 8 to 12 are diagrams showing experimental results of position estimation in which an odometry value and a correction model are fused using an uncertainty value provided through a method of measuring uncertainty of a position estimation based on GNSS according to the present invention.
  • FIGS. 9, 10, 11, and 12 are enlarged views of regions A, B, C, and D of FIG. 8, respectively.
  • the line 'EKF (proposed)' is the result of the model obtained by applying the method according to the present invention
  • the line 'EKF (receiver)' is the result of the model obtained by applying the output of the GNSS sensor.
  • the line 'GNSS data' is the measured value of the GNSS sensor
  • the line 'Ground truth' is the actual position.
  • the GNSS sensor does not show a significant difference when it is precise. You can check it.
  • the width of the general driving lane is 3.2m, if the estimation error exceeds 1.6m, the position is estimated as being in a different lane. Therefore, it is considered as a critical point. All were 100%.
  • the conventional method calculates a low uncertainty compared to the GNSS position estimation error and shows a very large error, but the method according to the present invention shows a large uncertainty value. The precise position estimation result was shown.
  • the method according to the present invention exhibits better performance as in the region B with a large GNSS position measurement error.
  • FIG. 13 is a diagram illustrating an average square root error of a location estimation model obtained by applying an output of a conventional GNSS sensor and a method of measuring uncertainty of a location estimation based on GNSS according to the present invention.
  • 'EKF proposed' is the mean square root error of the method of measuring the uncertainty according to the present invention
  • 'EKF conventional' is the mean square root error of the position estimation model obtained by applying the output of the conventional GNSS sensor. As shown in FIG. 13, it can be seen that in all circumstances, the method according to the present invention reduces the mean square root error.
  • 14 to 21 show the numbers shown on the horizontal axis of FIG. 14 to 21 (a) is a path in which a section marked in white as a satellite image of an actual driving road is applied to an experiment, and the number indicated is the experiment number of FIG. 13.
  • 14 to 21 (c) show an environmental factor uncertainty map by mapping environmental factor uncertainty values measured by repeatedly driving the driving roads of FIGS. 14 to 21 (a) on a map. The closer to blue, i.e., the smaller the gradient value, the smaller the uncertainty, and the closer to yellow, that is, the larger the gradient value, the greater the uncertainty size.
  • 14 (B) is a diagram of a part of an actual driving environment.
  • the line 'EKF propoesed' is the result of the model obtained by applying the method according to the present invention
  • the line 'EKF conventional' is the result of the model to which the uncertainty value provided by the GNSS sensor is applied as it is.
  • the line 'GNSS' is the measured value of the GNSS sensor
  • the line 'Ground truth' is the actual position.
  • the position estimation model to which the method of measuring uncertainty according to the present invention is applied is closer to the ground truth, which is the actual position, than the method of using the uncertainty provided by the GNSS sensor, and the reliability of the GNSS is lowered, resulting in good position estimation. You can check.
  • the present invention can be used for autonomous driving of an autonomous vehicle or an outdoor mobile robot using a GNSS sensor as a method for measuring the uncertainty of GNSS-based position estimation.

Abstract

The present invention relates to a method for measuring the uncertainty of a GNSS-based position estimation, the method comprising the steps of: (A) measuring a sensor factor uncertainty value of a sensor factor uncertainty group under conditions where no environment factor uncertainty group and no model factor uncertainty group are generated; (B) measuring a model factor uncertainty value of the model factor uncertainty group under conditions where the environment factor uncertainty group is not generated while applying the sensor factor uncertainty value thereto; (C) measuring an environment factor uncertainty value of the environment factor uncertainty group while applying the sensor factor uncertainty value and the model factor uncertainty value thereto; and (D) measuring an uncertainty value of the GNSS-based position estimation on the basis of the sensor factor uncertainty value, the model factor uncertainty value, and the environment factor uncertainty value, wherein the sensor factor uncertainty group, the environment factor uncertainty group, and the model factor uncertainty group are obtained by grouping a plurality of uncertainty factors causing uncertainty of the GNSS-based position estimation according to causes that generate uncertainty. Accordingly, uncertainty generated during GNSS sensor-based position measurement, which is used for a self-driving vehicle that employs a GNSS sensor or for self-driving of an outdoor moving robot, for example, can be accurately measured and reflected for accurate position estimation of the self-driving vehicle.

Description

GNSS 기반의 위치 추정의 불확실성을 측정하는 방법How to Measure Uncertainty of GPS-Based Position Estimation
본 발명은 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 관한 것으로서, 보다 상세하게는 GNSS 센서를 이용하는 자율 주행 차량 또는 실외 이동 로봇(이하, '자율 주행 차량'이라 함)의 자율 주행 등에 이용되는 GNSS 센서의 위치 측정에서 발생하는 불확실성을 정확히 측정하여 자율 주행 차량의 정확한 위치 추정에 반영할 수 있는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring the uncertainty of GNSS-based position estimation, and more particularly, to be used for autonomous driving of an autonomous vehicle or an outdoor mobile robot (hereinafter referred to as an 'autonomous vehicle') using a GNSS sensor. The present invention relates to a method for measuring the uncertainty of GNSS-based position estimation, which can accurately measure the uncertainty generated in the position measurement of the GNSS sensor and reflect the accurate position estimation of the autonomous vehicle.
최근 자율 주행 차량의 정밀한 위치 추정을 위한 연구가 다양하게 진행되고 있다. 위치 추정을 위해서는 환경이나 위치를 측정한 센서 데이터가 필요하며, 위치 추정의 정밀도를 높이기 위해 다양한 센서 데이터를 융합하기도 한다.Recently, various studies for precise position estimation of autonomous vehicles have been conducted. Location estimation requires sensor data that measures the environment or location, and often converges various sensor data to increase the accuracy of location estimation.
센서 데이터를 융합하기 위해서는 각 센서의 측정값과 측정값의 불확실성을 알아야 하는데, 이를 센서 모델이라고 한다. 그리고, 센서 모델이 정확하게 설계될수록 해당 센서 모델을 사용하는 위치 추정 알고리즘도 보다 정확히 동작하게 된다.In order to fuse the sensor data, the measurement of each sensor and the uncertainty of the measurement are known. This is called the sensor model. In addition, the more accurately the sensor model is designed, the more accurate the position estimation algorithm using the sensor model is.
GNSS(Global Navigation Satellite System) 센서는 다른 센서들과 융합되는 형태로 오랫동안 자율 주행 차량의 위치 추정에 사용되어 왔으며, 따라서 자율 주행 차량의 정밀한 위치 추정을 위해서는 GNSS 센서 모델을 정확히 설계하는 것이 중요하다.GNSS (Global Navigation Satellite System) sensor has been used for the estimation of the position of autonomous vehicle for a long time in the form of fusion with other sensors. Therefore, it is important to accurately design GNSS sensor model for accurate position estimation of autonomous vehicle.
기존에 가장 많이 사용되어온 GNSS 센서 모델 설계 방법은 GNSS 센서의 측정값과 GNSS 센서가 제공하는 NMEA 0183 규격 정보로부터 측정값의 불확실성을 계산하는 방법이다.The most commonly used GNSS sensor model design method is to calculate the uncertainty of the measured value from the measured value of the GNSS sensor and the NMEA 0183 standard information provided by the GNSS sensor.
하지만 도시환경에서는 멀티패스 영향(Multipath effect)과 신호 가림(Foliage attenuation)에 의해 GNSS 센서 측정값의 실제 불확실성과 GNSS 센서가 제공한 정보로부터 계산한 불확실성이 일치하지 않는 경우가 발생한다.However, in an urban environment, the actual uncertainty of the GNSS sensor measurement value and the uncertainty calculated from the information provided by the GNSS sensor may be inconsistent due to the multipath effect and the foliage attenuation.
상기와 같은 불확실성 요인 외에도, 다양한 불확실성 요인이 GNSS 센서의 불확실성을 야기하는데, Parkinson 등의 논문 "Progress in Astronautics and Aeronautics(Global Positioning System: Theory and Applications. Vol. 2. Aiaa, 1996.)"에서는 GNSS 위치 추정의 오차를 야기하는 불확실성 요인으로 멀티패스 영향(Multipath effect) 요인, 신호 가림(Foliage attenuation) 요인, 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인, 대기층 영향(Tropospheric effect) 요인, GNSS 센서의 하드웨어적 요인과 소프트웨어적 요인, 그리고, DOP(Delusion of Precision)을 제시하고 있다.In addition to the above-mentioned uncertainty factors, various uncertainty factors cause the uncertainty of the GNSS sensor, which is described in Parkinson et al. In "Progress in Astronautics and Aeronautics (Global Positioning System: Theory and Applications. Vol. 2. Aiaa, 1996.)". Uncertainties that cause errors in position estimation include multipath effects, foliage attenuation, ephemeris error, satellite clock error, and ionospheric effect. ) Factors, Tropospheric effect factors, GNSS sensor hardware and software factors, and DOP (Delusion of Precision).
여기서, DOP는 위성의 기하학적 배치 구조에 의해 야기되는 불확실성 요인이고, 나머지 불확실성 요인(이하, 레인지 에러(Range error)라 함)은 위성 신호에서 야기되는 불확실성이다.Here, the DOP is a factor of uncertainty caused by the geometry of the satellites, and the remaining factor of uncertainty (hereinafter, referred to as a range error) is an uncertainty caused by the satellite signal.
보다 구체적으로 설명하면, DOP는 위성들의 상대적인 배치에 의한 기하학적 관계가 위치 측정에 미치는 오차를 나타내며, 무차원의 수이다. 여기서, DOP는 GNSS 센서가 위치 추정의 과정에서 계산되며, GNSS 센서를 사용하는 환경에서 NMEA 0183 규정 정보로 실시간으로 획득되는 바, 본 발명에서도 이를 사용하게 된다.More specifically, the DOP represents an error in the position measurement due to the geometric relationship due to the relative arrangement of the satellites, and is a dimensionless number. Here, the DOP is calculated by the GNSS sensor in the process of location estimation, and obtained in real time as NMEA 0183 regulation information in an environment using the GNSS sensor, and the present invention is also used for this.
레인지 에러는 위성으로부터 송출된 위성 신호가 GNSS 센서까지 도달하는 동안 신호의 이동에 영향을 미치는 오차 원인들에 해당한다.Range errors correspond to error sources that affect the movement of a signal while the satellite signal transmitted from the satellite reaches the GNSS sensor.
먼저, 전리층 영향 요인은 위성 신호가 대기의 전리층을 통과할 때, 전리층의 자유 전자에 의해 위성 신호가 이상적인 빛의 속도로 진행하지 못하는 현상에서 야기된다.First, the ionosphere influencing factor is caused by the phenomenon that the satellite signal does not proceed at the ideal light speed by the free electrons of the ionosphere when the satellite signal passes through the ionosphere of the atmosphere.
대기층 영향 요인은 위성 신호가 대기층을 통과할 때, 대기의 공기 분자에 의해 이상적인 빛의 속도로 진행하지 못하는 현상에서 야기된다.Atmospheric influencing factors are caused by satellite signals passing through the atmosphere and failing to propagate at the ideal speed of light by air molecules in the atmosphere.
천문력 오차 요인은 인공위성의 배치 정보에 오차가 있는 경우 발생하여, 일반적으로 축당 0.05m 이하의 오차를 발생한다.The astronomical error error occurs when there is an error in the satellite arrangement information, and generally generates an error of 0.05m or less per axis.
위성 시간 오차 요인은 위성이 가지고 있는 시간 정보에 오차가 있는 경우에 발생하며, 일반적으로 0.2m 이하의 오차를 보인다.The satellite time error factor occurs when there is an error in the time information of the satellite, and generally shows an error of 0.2m or less.
멀티패스 영향 요인은 위성 신호가 GNSS 센서 주변의 높은 건물, 절벽 등으로부터 반사되어 line of sight보다 긴 경로를 갖게 되는 경우 발생한다. GNSS 센서의 수신기 내부의 필터, 안테나 설계 등으로 오차를 줄일 수 있으나 약 15m 이상의 오차가 나는 경우도 있다.Multipath influencers occur when satellite signals are reflected from tall buildings, cliffs, etc. around the GNSS sensor and have longer paths than the line of sight. Although the error can be reduced by the filter and antenna design inside the receiver of the GNSS sensor, there may be an error of about 15m or more.
신호 가림 요인은 GNSS 센서와 위성 사이의 line of sight에 장애물이 있는 경우에 야기되는 불확실성 요인이다. 이 경우 위성 신호의 세기가 감소함에 따라 위치 추정 불확실성이 증가하며 50m 이상의 오차를 발생하는 경우도 있다.The signal obstruction factor is an uncertainty factor caused by an obstacle in the line of sight between the GNSS sensor and the satellite. In this case, as the strength of the satellite signal decreases, the position estimation uncertainty increases and an error of 50m or more may occur.
그리고, GNSS 센서의 하드웨어적 요인과 소프트웨어적 요인은 하드웨어 및 소프트웨어의 발달을 통해 감소되고 있으며, 근래의 장비는 1σ 0.3m 이하의 정밀도를 가지고 있다.In addition, the hardware and software factors of the GNSS sensor are being reduced through the development of hardware and software, and the recent equipment has a precision of 1 s 0.3 m or less.
상기와 같은 불확실성 요인에 대해, Parkinson 등의 논문에서는 GNSS 기반의 위치 추정의 불확실성 값을 [수학식 1]과 같이 정의하고 있다.For the above uncertainty factor, Parkinson et al. Define the uncertainty value of GNSS based position estimation as shown in [Equation 1].
[수학식 1][Equation 1]
Figure PCTKR2017014982-appb-I000001
Figure PCTKR2017014982-appb-I000001
σg는 GNSS 기반의 위치 추정의 불확실성 값이고, DOP는 Delusion of Precision이고, Range error는 레인지 에러를 구성하는 불확실성 요인들이다.σ g is the uncertainty value of GNSS-based position estimation, DOP is Delusion of Precision, and Range error is the uncertainty factor that constitutes the range error.
그런데, 레인지 에러를 구성하는 상술한 불확실성 요인들은 각 불확실성 요인들이 개별적으로 측정되거나 계산되어야 [수학식 1]에 적용될 수 있는데, 상술한 불확실성 요인들을 개별적으로 측정하거나 계산할 수 없어, [수학식 1]의 경우 이론적인 의미만 가질 뿐, 이를 실제 GNSS 센서의 불확실성을 측정하는데 적용하지 못하고 있다.However, the above-mentioned uncertainty factors constituting the range error can be applied to Equation 1 when each uncertainty factor is individually measured or calculated, but the above-mentioned uncertainty factors cannot be individually measured or calculated, and [Equation 1] In case of, it has only a theoretical meaning and cannot be applied to measuring the uncertainty of the actual GNSS sensor.
이를 보완하기 위해, 대표적으로 GNSS 측정값들 간의 마할나노비스(Mahalanobis) 거리를 이용해 측정값을 선별적으로 사용하는 방법이 Bouvet, Denis, 및 Gaetan Garcia의 논문 "Improving the accuracy of dynamic localization systems using RTK GPS by identifying the GPS latency(Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on. Vol. 3. IEEE, 2000.)" 등을 통해 제안되었지만, 불확실성을 고려해 측정값이 위치 추정에 미치는 영향을 줄인 것이 아니기 때문에 정확한 GNSS 센서 모델의 설계라고 보기 어렵다.To compensate for this, a method of selectively using measurements using the Mahalanobis distance between GNSS measurements is described in Bouvet, Denis, and Gaetan Garcia's article "Improving the accuracy of dynamic localization systems using RTK." GPS by identifying the GPS latency (Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on Vol. 3. IEEE, 2000.) ”. It is hard to say that the design of the accurate GNSS sensor model is not because the effect is not reduced.
이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로써, GNSS 센서를 이용하는 자율 주행 차량의 자율 주행 등에 이용되는 GNSS 센서의 위치 측정에서 발생하는 불확실성을 정확히 측정하여 자율 주행 차량의 정확한 위치 추정에 반영할 수 있는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, to accurately estimate the uncertainty generated in the position measurement of the GNSS sensor used in the autonomous driving of the autonomous vehicle using the GNSS sensor to accurately estimate the position of the autonomous vehicle The purpose is to provide a method for measuring the uncertainty of GNSS-based location estimation that can be reflected in the system.
상기 목적은 본 발명에 따라, GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 있어서, (a) 센서 요인 불확실성 그룹의 센서 요인 불확실성 값이 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되는 단계와, (b) 상기 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 상기 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되되 상기 센서 요인 불확실성 값이 적용되어 측정되는 단계와, (c) 상기 센서 요인 불확실성 값 및 상기 환경 요인 불확실성 값에 기초하여 상기 GNSS 기반의 위치 추정의 불확실성 값이 측정되는 단계를 포함하며; 상기 센서 요인 불확실성 그룹, 상기 환경 요인 불확실성 그룹 및 상기 모델 요인 불확실성 그룹은 상기 GNSS 기반의 위치 추정의 불확실성을 야기하는 복수의 불확실성 요인이 불확실성의 발생 원인에 따라 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 의해서 달성된다.According to the present invention, in the method of measuring the uncertainty of the position estimation based on GNSS, (a) the sensor factor uncertainty value of the sensor factor uncertainty group under the condition that the environmental factor uncertainty group and the model factor uncertainty group do not occur (B) measuring the environmental factor uncertainty value of the environmental factor uncertainty group under the condition that the model factor uncertainty group does not occur, wherein the sensor factor uncertainty value is applied and measured; and (c) the sensor Measuring an uncertainty value of the GNSS based location estimate based on a factor uncertainty value and the environmental factor uncertainty value; The sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. This is achieved by measuring the uncertainty of the estimate.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 있어서, (A) 센서 요인 불확실성 그룹의 센서 요인 불확실성 값이 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되는 단계와, (B) 상기 모델 요인 불확실성 그룹의 모델 요인 불확실성 값이 상기 환경 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되되 상기 센서 요인 불확실성 값이 적용되어 측정되는 단계와, (C) 상기 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 상기 센서 요인 불확실성 값 및 상기 모델 요인 불확실성 값이 적용되어 측정되는 단계와, (D) 상기 센서 요인 불확실성 값, 상기 모델 요인 불확실성 값 및 상기 환경 요인 불확실성 값에 기초하여 상기 GNSS 기반의 위치 추정의 불확실성 값이 측정되는 단계를 포함하며; 상기 센서 요인 불확실성 그룹, 상기 환경 요인 불확실성 그룹 및 상기 모델 요인 불확실성 그룹은 상기 GNSS 기반의 위치 추정의 불확실성을 야기하는 복수의 불확실성 요인이 불확실성의 발생 원인에 따라 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 의해서도 달성된다.On the other hand, the above object is, according to another embodiment of the present invention, in the method for measuring the uncertainty of the position estimation based on GNSS, (A) sensor factor uncertainty value of the sensor factor uncertainty group is environmental factor uncertainty group and model factor uncertainty group (B) the model factor uncertainty value of the model factor uncertainty group is measured under the condition that the environmental factor uncertainty group does not occur, but the sensor factor uncertainty value is applied and measured. (C) the environmental factor uncertainty value of the environmental factor uncertainty group is measured by applying the sensor factor uncertainty value and the model factor uncertainty value, and (D) the sensor factor uncertainty value, the model factor uncertainty value, and the Of GNSS-based Location Estimation Based on Environmental Factor Uncertainty Values A step which the authenticity and value measured; The sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. It is also achieved by a method of measuring the uncertainty of the estimate.
여기서, 상기 센서 요인 불확실성 그룹에는 GNSS 센서 자체에 의해 야기되는 불확실성 요인들로 그룹핑되고, 상기 환경 요인 불확실성 그룹에는 위성과 상기 GNSS 센서 사이의 장애물에 의해 야기되는 불확실성 요인들로 그룹핑되며, 상기 모델 요인 불확실성 그룹에는 상기 GNSS 기반의 위치 추정에 적용되는 보정 모델의 종류에 따라 불확실성이 변하는 불확실성 요인들이 그룹핑될 수 있다.Here, the sensor factor uncertainty group is grouped with uncertainty factors caused by a GNSS sensor itself, and the environmental factor uncertainty group is grouped with uncertainty factors caused by an obstacle between a satellite and the GNSS sensor, and the model factor. Uncertainty groups may be grouped with uncertainty factors whose uncertainty changes depending on the type of correction model applied to the GNSS-based position estimation.
그리고, 상기 센서 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 상기 GNSS 센서의 하드웨어적 불확실성 요인과 소프트웨어적 불확실성 요인을 포함하고; 상기 환경 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 멀티패스 영향(Multipath effect) 요인과, 신호 가림(Foliage attenuation) 요인을 포함하며; 상기 모델 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인 및 대기층 영향(Tropospheric effect) 요인을 포함할 수 있다.And the uncertainty factors grouped into the sensor factor uncertainty group include a hardware uncertainty factor and a software uncertainty factor of the GNSS sensor; The uncertainty factors grouped into the environmental factor uncertainty group include a multipath effect factor and a foliage attenuation factor; Uncertainty factors grouped into the model factor uncertainty group may include an Ephemeris error factor, a satellite clock error factor, an ionospheric effect factor, and a tropospheric effect factor.
여기서, 상기 (a) 단계 및 상기 (b) 단계에서 상기 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건은 상기 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 상기 GNSS 기반의 위치 추정에 적용되어 만족될 수 있다.Here, in the above steps (a) and (b), the condition that the uncertainty of the model factor uncertainty group does not occur is that a correction model having the model factor uncertainty value of '0' is applied to the GNSS-based position estimation. Can be satisfied.
또한, 상기 (A) 단계에서 상기 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건은 상기 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 상기 GNSS 기반의 위치 추정에 임시 적용되어 만족되며; 상기 (B) 단계에서 상기 모델 요인 불확실성 값은 상기 GNSS 기반의 위치 추정에 실제 적용된 보정 모델이 적용되어 측정될 수 있다.Also, in the step (A), the condition in which the uncertainty of the model factor uncertainty group does not occur is satisfied by temporarily applying a correction model having the model factor uncertainty value '0' to the GNSS-based position estimation; In the step (B), the model factor uncertainty value may be measured by applying a correction model actually applied to the GNSS based position estimation.
그리고, 상기 (a) 단계 및 상기 (A) 단계에서 상기 환경 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건은 상기 위성과 상기 GNSS 센서 사이에 장애물이 존재하지 않는 위치에서 측정하는 것에 의해 만족되며; 상기 장애물이 존재하지 않는 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 상기 환경 요인 불확실성 값이 측정될 수 있다.And a condition in which the uncertainty of the environmental factor uncertainty group does not occur in steps (a) and (A) is satisfied by measuring at a position where no obstacle exists between the satellite and the GNSS sensor; The environmental factor uncertainty value may be measured by a deviation between the measured position and the actual position of the GNSS-based position estimate measured at the position where the obstacle does not exist.
그리고, 상기 (b) 단계 및 상기 (C) 단계에서는 실제 주행 도로에서의 주행 과정을 통해 각각의 주행 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 각 주행 위치에서의 상기 환경 요인 불확실성 값이 측정될 수 있다.In the steps (b) and (C), each driving position is determined by the deviation between the measured position and the actual position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road. The environmental factor uncertainty value of can be measured.
또한, 상기 환경 요인 불확실성 값은 상기 주행 도로의 지도 상의 위치에 대응하여 맵핑되어 환경 요인 불확실성 지도 형태로 등록될 수 있다.In addition, the environmental factor uncertainty value may be mapped corresponding to a location on the map of the driving road and registered in the form of an environmental factor uncertainty map.
그리고, 상기 GNSS 기반의 위치 추정의 불확실성 값은 수학식
Figure PCTKR2017014982-appb-I000002
G는 상기 GNSS 기반의 위치 추정의 불확실성 값이고, DOP는 Delusion of Precision이고, AS는 상기 모델 요인 불확실성 값이고, RE는 상기 센서 요인 불확실성 값이고, LC는 상기 환경 요인 불확실성 값이다)로 표현될 수 있다.
In addition, the uncertainty value of the GNSS-based position estimation is represented by an equation
Figure PCTKR2017014982-appb-I000002
G is the uncertainty value of the GNSS based position estimate, DOP is Delusion of Precision, AS is the model factor uncertainty value, RE is the sensor factor uncertainty value, and LC is the environmental factor uncertainty value) Can be expressed.
상기 구성에 따라 본 발명에 따르면, GNSS 센서를 이용하는 자율 주행 차량 또는 실외 이동 로봇의 자율 주행 등에 이용되는 GNSS 센서의 위치 측정에서 발생하는 불확실성을 정확히 측정하여 자율 주행 차량의 정확한 위치 추정에 반영할 수 있는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법이 제공된다.According to the present invention, according to the present invention, it is possible to accurately measure the uncertainty generated in the position measurement of the GNSS sensor used for the autonomous driving vehicle using the GNSS sensor or the autonomous driving of the outdoor mobile robot and accurately reflect the accurate position estimation of the autonomous driving vehicle. A method of measuring the uncertainty of a GNSS based position estimation is provided.
도 1은 본 발명의 제1 실시예에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법을 설명하기 위한 도면이고,1 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the first embodiment of the present invention,
도 2는 본 발명의 제2 실시예에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법을 설명하기 위한 도면이고,2 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the second embodiment of the present invention;
도 3 내지 도 12는 본 발명에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법의 효과를 설명하기 위한 도면이다.3 to 12 are views for explaining the effect of the method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the present invention.
본 발명은 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 관한 것으로, (A) 센서 요인 불확실성 그룹의 센서 요인 불확실성 값이 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되는 단계와, (B) 상기 모델 요인 불확실성 그룹의 모델 요인 불확실성 값이 상기 환경 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되되 상기 센서 요인 불확실성 값이 적용되어 측정되는 단계와, (C) 상기 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 상기 센서 요인 불확실성 값 및 상기 모델 요인 불확실성 값이 적용되어 측정되는 단계와, (D) 상기 센서 요인 불확실성 값, 상기 모델 요인 불확실성 값 및 상기 환경 요인 불확실성 값에 기초하여 상기 GNSS 기반의 위치 추정의 불확실성 값이 측정되는 단계를 포함하며; 상기 센서 요인 불확실성 그룹, 상기 환경 요인 불확실성 그룹 및 상기 모델 요인 불확실성 그룹은 상기 GNSS 기반의 위치 추정의 불확실성을 야기하는 복수의 불확실성 요인이 불확실성의 발생 원인에 따라 그룹핑되는 것을 특징으로 한다.The present invention relates to a method for measuring uncertainty of position estimation based on GNSS, comprising the steps of: (A) measuring the sensor factor uncertainty value of the sensor factor uncertainty group under conditions in which the environmental factor uncertainty group and the model factor uncertainty group do not occur; (B) the model factor uncertainty value of the model factor uncertainty group is measured under a condition in which the environmental factor uncertainty group does not occur, and the sensor factor uncertainty value is applied and measured, and (C) the environmental factor uncertainty group An environmental factor uncertainty value is measured by applying the sensor factor uncertainty value and the model factor uncertainty value, and (D) based on the GNSS based on the sensor factor uncertainty value, the model factor uncertainty value and the environmental factor uncertainty value A step of measuring an uncertainty value of a position estimate of ; The sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group are characterized in that a plurality of uncertainty factors causing uncertainty in the GNSS-based location estimation are grouped according to the cause of the uncertainty.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment according to the present invention.
도 1은 본 발명의 제1 실시예에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법을 설명하기 위한 도면이다.1 is a view for explaining a method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the first embodiment of the present invention.
먼저, 본 발명에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법에서는 복수의 불확실성 요인이 복수의 불확실성 그룹으로 그룹핑된다(S10). 본 발명에서는 불확실성 요인이 멀티패스 영향(Multipath effect) 요인, 신호 가림(Foliage attenuation) 요인, 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인, 대기층 영향(Tropospheric effect) 요인, GNSS 센서의 하드웨어적 요인과 소프트웨어적 요인, 그리고, DOP(Delusion of Precision)을 포함하는 것을 예로 한다.First, in the method of measuring the uncertainty of the position estimation based on the GNSS sensor according to the present invention, a plurality of uncertainty factors are grouped into a plurality of uncertainty groups (S10). In the present invention, the uncertainty factors include a multipath effect factor, a foliage attenuation factor, an ephemeris error factor, a satellite clock error factor, an ionospheric effect factor, and an atmospheric layer. Examples include Tropospheric effect factors, hardware and software factors of the GNSS sensor, and the DOP (Delusion of Precision).
여기서, DOP는 상술한 바와 같이, GNSS 센서가 위치 추정의 과정에서 계산되며, GNSS 센서를 사용하는 환경에서 NMEA 0183 규정 정보로 실시간으로 획득되는 바, 본 발명에서도 이를 이용하게 된다.As described above, the DOP is calculated by the GNSS sensor in the process of position estimation, and is obtained in real time using NMEA 0183 regulation information in an environment using the GNSS sensor.
DOP를 제외한 나머지의 불확실성 요인은 불확실성의 발생 원인에 따라 그룹핑된다. 보다 구체적으로 설명하면, GNSS 센서 자체에 의해 야기되는 불확실성 요인들이 센서 요인 불확실성 그룹으로 그룹핑된다. 센서 요인 불확실성 그룹을 구성하는 불확실성 요인은 GNSS 센서의 하드웨어적 불확실성 요인과 소프트웨어적 불확실성 요인을 포함할 수 있다.Uncertainty factors other than DOP are grouped according to the cause of the uncertainty. More specifically, the uncertainty factors caused by the GNSS sensor itself are grouped into sensor factor uncertainty groups. Uncertainty factors that make up the sensor factor uncertainty group may include hardware uncertainty factors and software uncertainty factors of the GNSS sensor.
불확실성 요인 중 GNSS 센서와 위성 사이의 장애물에 의해 야기되는 불확실성 요인들은 환경 요인 불확실성 그룹으로 그룹핑된다. 여기서, 환경 요인 불확실성 그룹을 구성하는 불확실성 요인은 멀티패스 영향(Multipath effect) 요인과, 신호 가림(Foliage attenuation) 요인을 포함할 수 있다.Uncertainty factors caused by obstacles between GNSS sensors and satellites are grouped into environmental factor uncertainty groups. Here, the uncertainty factors forming the environmental factor uncertainty group may include a multipath effect factor and a foliage attenuation factor.
그리고, 불확실성 요인 중 센서 요인 불확실성 그룹과 환경 요인 불확실성 그룹에 속하는 불확실성 요인을 제외한 나머지는 모델 요인 불확실성 그룹으로 그룹핑되는데, 모델 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인 및 대기층 영향(Tropospheric effect) 요인을 포함할 수 있다. 모델 요인 불확실성은 GNSS 기반의 위치 추정에 적용되는 보정 모델의 종류에 따라 불확실성 값이 변하는 불확실성 요인들이 그룹핑된다.The remaining uncertainty factors, except the uncertainty factors belonging to the sensor factor uncertainty group and the environmental factor uncertainty group, are grouped into the model factor uncertainty group. It may include an error factor (Satellite clock error), an ionospheric effect factor, and a tropospheric effect factor. Model factor uncertainty is grouped with uncertainty factors whose uncertainty values vary depending on the type of correction model applied to the GNSS-based position estimation.
불확실성 요인들이 센서 요인 불확실성 그룹, 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹으로 그룹핑되면, GNSS 센서의 보정을 위한 보정 모델이 등록된다(S11). 여기서, 본 발명의 제1 실시예에 따른 보정 모델은 모델 요인 불확실성 그룹의 불확실성 값을 '0'으로 하는 보정 모델이 등록되는데, 이에 대한 상세한 설명은 후술한다.When the uncertainty factors are grouped into a sensor factor uncertainty group, an environmental factor uncertainty group, and a model factor uncertainty group, a calibration model for calibration of the GNSS sensor is registered (S11). Here, in the correction model according to the first embodiment of the present invention, a correction model having an uncertainty value of the model factor uncertainty group as '0' is registered, which will be described later.
불확실성 요인들의 그룹핑과 보정 모델이 등록된 상태에서, 센서 요인 불확실성 그룹에 대한 센서 요인 불확실성 값이 측정된다(S12). 여기서, 센서 요인 불확실성 그룹에 대한 센서 요인 불확실성 값은 나머지 불확실성 그룹, 즉 환경 요인 불확실성 그룹과 모델 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건 하에서 측정된다.With the grouping of the uncertainty factors and the correction model registered, the sensor factor uncertainty value for the sensor factor uncertainty group is measured (S12). Here, the sensor factor uncertainty value for the sensor factor uncertainty group is measured under the condition that the uncertainty of the remaining uncertainty group, that is, the environmental factor uncertainty group and the model factor uncertainty group, does not occur.
모델 요인 불확실성 그룹을 구성하는 불확실성 요인인 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인 및 대기층 영향(Tropospheric effect) 요인은 보정 모델에 따라 모델 요인 불확실성 값이 변할 수 있다. 본 발명에서는 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건으로 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 GNSS 센서에 적용되어 만족시키는 것을 예로 하는데, 모델 요인 불확실성 값을 '0'으로 하는 보정 모델로 리얼 타임 키네매틱(Real time kinematic) 보정 모델이 적용되는 것을 예로 한다.Model factors Uncertainty factors that make up the uncertainty group, Ephemeris error factor, Satellite clock error factor, Ionospheric effect factor and Tropospheric effect factor, are model factors according to the calibration model. Uncertainty values may change. In the present invention, an example in which a correction model having a model factor uncertainty value of '0' is applied to a GNSS sensor is satisfied under the condition that the uncertainty of the model factor uncertainty group does not occur, and the model factor uncertainty value is set to '0'. As an example, a real time kinematic correction model is applied to the model.
또한, 환경 요인 불확실성 그룹의 불확실성 요인들이 발생하지 않은 조건은 위성과 GNSS 센서 사이에 장애물이 존재하지 않은 위치에서 측정함으로써, 환경 요인 불확실성 그룹의 환경 요인 불확실성 값을 '0'으로 설정할 수 있게 된다.In addition, the condition in which the uncertainty factors of the environmental factor uncertainty group are not generated is measured at the position where there is no obstacle between the satellite and the GNSS sensor, so that the environmental factor uncertainty value of the environmental factor uncertainty group can be set to '0'.
본 발명에서는 GNSS 기반의 위치 추정의 불확실성 값을 [수학식 2]와 같이 표현할 수 있다.In the present invention, the uncertainty value of the position estimation based on GNSS may be expressed as shown in [Equation 2].
[수학식 2][Equation 2]
Figure PCTKR2017014982-appb-I000003
Figure PCTKR2017014982-appb-I000003
[수학식 2]에서 σG는 상기 GNSS 기반의 위치 추정의 불확실성 값이고, DOP는 DOP(Delusion of Precision)이고, AS는 모델 요인 불확실성 값이고, RE는 센서 요인 불확실성 값이고, LC는 환경 요인 불확실성 값이다.In Equation 2, σ G is an uncertainty value of the GNSS-based position estimation, DOP is a DOP (Delusion of Precision), AS is a model factor uncertainty value, RE is a sensor factor uncertainty value, and LC is an environmental factor Uncertainty value.
따라서, 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹에 속하는 불확실성이 발생하지 않은 조건 하에서, 즉 리얼 타임 키네매틱(Real time kinematic) 보정 모델을 사용하고, 위성과 GNSS 센서 사이에 장애물이 존재하지 않은 위치, 예를 들여, 장애물이 없는 개활지나 빌딩의 옥상에서 측정하게 되면, [수학식 2]는 [수학식 3]과 같이 표현될 수 있다.Therefore, under conditions where uncertainty belonging to the environmental factor uncertainty group and the model factor uncertainty group does not occur, i.e., using a real time kinematic calibration model, where no obstacles exist between the satellite and the GNSS sensor, For example, when measured on a rooftop of an open area or building without obstacles, Equation 2 may be expressed as Equation 3.
[수학식 3][Equation 3]
Figure PCTKR2017014982-appb-I000004
Figure PCTKR2017014982-appb-I000004
[수학식 3]을 이용하여 장애물이 없는 위치에서 장시간 측정한 데이터를 이용하여 GNSS 기반의 위치 추정의 측정 위치와, 실제 위치 간의 편차에 의해 센서 요인 불확실성 값의 측정이 가능하게 된다.Using Equation 3, the sensor factor uncertainty value can be measured by the deviation between the measured position of the GNSS-based position estimation and the actual position using the data measured for a long time at the position where there is no obstacle.
상기와 같이, 센서 요인 불확실성 값이 측정되면, 센서 요인 불확실성 값을 이용하여 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 측정된다. 환경 요인 불확실성 값의 측정시에는 모델 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건 하에서 측정되는데, 상술한 바와 같이, 모델 요인 불확실성 그룹의 모델 요인 불확실성 값은 리얼 타임 키네매틱(Real time kinematic) 보정 모델의 사용을 통해 '0'으로 추정할 수 있다.As described above, when the sensor factor uncertainty value is measured, the environmental factor uncertainty value of the environmental factor uncertainty group is measured using the sensor factor uncertainty value. The environmental factor uncertainty value is measured under the condition that the uncertainty of the model factor uncertainty group does not occur. As described above, the model factor uncertainty value of the model factor uncertainty group is determined by the real time kinematic correction model. It can be estimated as '0' through use.
환경 요인 불확실성 그룹은 상술한 바와 같이, 위상과 GNSS 센서 사이에 장애물, 예를 들어, 건물이나 유리와 같은 반사 물체 등이 존재할 때 발생하는 불확실성으로 자율 주행 차량의 주행 위치에 따라 달라진다.The environmental factor uncertainty group, as described above, depends on the driving position of the autonomous vehicle as the uncertainty that occurs when an obstacle, for example, a reflective object such as a building or glass, exists between the phase and the GNSS sensor.
따라서, 환경 요인 불확실성 그룹의 환경 요인 불확실성 값을 측정하는데 있어서는 자율 주행 차량이 주행 도로를 주행하는 동안(S13), 각 주행 위치에 대해 환경 요인 불확실성 값이 측정된다(S14).Therefore, in measuring the environmental factor uncertainty value of the environmental factor uncertainty group, while the autonomous vehicle travels on the driving road (S13), the environmental factor uncertainty value is measured for each driving position (S14).
즉, 자율 주행 차량의 실제 주행 도로에서의 주행 과정을 통해 각각의 주행 위치에서 측정되는 GNSS 기반의 위치 추정의 측정 위치와, 실제 위치 간의 편차에 의해 각 주행 위치에서의 환경 요인 불확실성 값이 측정된다. 이 때, [수학식 2]에서 센서 요인 불확실성 값은 상술한 측정 과정을 통해 측정된 상태이고, 모델 요인 불확실성 값은 리얼 타임 키네매틱(Real time kinematic) 보정 모델의 적용을 통해 '0'으로 추정된다.That is, the environmental factor uncertainty value at each driving position is measured by the measurement position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road of the autonomous vehicle and the deviation between the actual position. . At this time, the sensor factor uncertainty value in [Equation 2] is measured through the above-described measurement process, and the model factor uncertainty value is estimated as '0' through the application of a real time kinematic correction model. do.
상기와 같이, 각각의 주행 위치에서 측정된 환경 요인 불확실성 값은 주행 도로의 지도 상의 위치에 대응하여 맵핑되어 환경 요인 불확실성 지도 형태로 생성되어 등록된다(S15).As described above, the environmental factor uncertainty value measured at each driving position is mapped corresponding to the position on the map of the driving road, and is generated and registered in the form of an environmental factor uncertainty map (S15).
상기와 같은 과정을 통해, 센서 요인 불확실성 값 및 환경 요인 불확실성 값의 등록이 완료되면, 자율 주행 차량의 주행 과정에서 해당 위치에서의 환경 요인 불확실성 값, 센서 요인 불확실성 값, 그리고 리얼 타임으로 계산되는 DOP 값을 이용하여 해당 위치에서의 불확실성 값이 산출되고, 산출된 불확실성 값이 자율 주행 차량의 위치 추정에 적용 가능하게 된다.Through the above process, when the registration of the sensor factor uncertainty value and the environmental factor uncertainty value is completed, the environmental factor uncertainty value, the sensor factor uncertainty value, and the DOP calculated in real time in the driving process of the autonomous vehicle are calculated. The uncertainty value at the corresponding position is calculated using the value, and the calculated uncertainty value is applicable to the position estimation of the autonomous vehicle.
이하에서는, 도 2를 참조하여 본 발명의 제2 실시예에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 대해 상세히 설명한다.Hereinafter, a method of measuring the uncertainty of the GNSS based position estimation according to the second embodiment of the present invention will be described in detail with reference to FIG. 2.
먼저, 복수의 불확실성 요인이 복수의 불확실성 그룹으로 그룹핑된다(S20). 제1 실시예에서와 마찬가지로, 불확실성 요인이 멀티패스 영향(Multipath effect) 요인, 신호 가림(Foliage attenuation) 요인, 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인, 대기층 영향(Tropospheric effect) 요인, GNSS 센서의 하드웨어적 요인과 소프트웨어적 요인, 그리고, DOP(Delusion of Precision)을 포함하는 것을 예로 한다.First, a plurality of uncertainty factors are grouped into a plurality of uncertainty groups (S20). As in the first embodiment, the uncertainty factor is a multipath effect factor, a foliage attenuation factor, an ephemeris error factor, a satellite clock error factor, an ionospheric effect. Examples include effects factors, tropospheric effects factors, hardware and software factors of the GNSS sensor, and the inclusion of precision (DOP).
또한, DOP는 제1 실시예에서와 마찬가지로, GNSS 센서가 위치 추정의 과정에서 계산되며, GNSS 센서를 사용하는 환경에서 NMEA 0183 규정 정보로 실시간으로 획득된다.In addition, as in the first embodiment, the DOP is calculated in the process of position estimation by the GNSS sensor, and obtained in real time with NMEA 0183 regulation information in an environment using the GNSS sensor.
그리고, 불확실성 요인 그룹은 센서 요인 불확실성 그룹, 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹으로 그룹핑되고, 각 불확실성 그룹을 구성하는 불확실성 요인은 제1 실시예와 동일하다.The uncertainty factor group is grouped into a sensor factor uncertainty group, an environmental factor uncertainty group, and a model factor uncertainty group, and the uncertainty factors constituting each uncertainty group are the same as in the first embodiment.
이와 같이, 불확실성 요인들이 센서 요인 불확실성 그룹, 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹으로 그룹핑되면, GNSS 센서의 보정을 위한 보정 모델이 등록된다(S21). 본 발명의 제2 실시예에 따른 보정 모델은 센서 요인 불확실성 값의 산출에 적용되는 보정 모델과, 실제 자율 주행 차량의 주행시 GNSS 기반의 위치 추정에 실제 적용되는 보정 모델로 구분되는데, 이에 대한 상세한 설명은 후술한다.As such, when the uncertainty factors are grouped into a sensor factor uncertainty group, an environmental factor uncertainty group, and a model factor uncertainty group, a calibration model for calibration of the GNSS sensor is registered (S21). The correction model according to the second embodiment of the present invention is classified into a correction model applied to the calculation of the sensor factor uncertainty value, and a correction model that is actually applied to the GNSS-based position estimation during driving of the actual autonomous vehicle. Will be described later.
불확실성 요인들의 그룹핑과 보정 모델이 등록된 상태에서, 센서 요인 불확실성 그룹에 대한 센서 요인 불확실성 값이 측정된다(S22). 여기서, 센서 요인 불확실성 그룹에 대한 센서 요인 불확실성 값은 나머지 불확실성 그룹, 즉 환경 요인 불확실성 그룹과 모델 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건 하에서 측정된다.With the grouping of the uncertainty factors and the correction model registered, the sensor factor uncertainty value for the sensor factor uncertainty group is measured (S22). Here, the sensor factor uncertainty value for the sensor factor uncertainty group is measured under the condition that the uncertainty of the remaining uncertainty group, that is, the environmental factor uncertainty group and the model factor uncertainty group, does not occur.
여기서, 제1 실시예에서와 마찬가지로, 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건으로 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 GNSS 센서에 적용되어 만족시키는 것을 예로 하며, 모델 요인 불확실성 값을 '0'으로 하는 보정 모델로 리얼 타임 키네매틱(Real time kinematic) 보정 모델이 적용되는 것을 예로 한다.Here, as in the first embodiment, an example in which a correction model having a model factor uncertainty value of '0' is applied to the GNSS sensor and is satisfied under the condition that the uncertainty of the model factor uncertainty group does not occur, the model factor uncertainty value As an example, a real time kinematic correction model is applied as a correction model with '0'.
또한, 환경 요인 불확실성 그룹의 불확실성 요인들이 발생하지 않은 조건은 위성과 GNSS 센서 사이에 장애물이 존재하지 않은 위치, 예를 들어 개활지나 건물의 옥상에서 측정함으로써, 환경 요인 불확실성 그룹의 환경 요인 불확실성 값을 '0'으로 설정할 수 있게 된다.In addition, the condition that the uncertainty factors of the environmental factor uncertainty group did not occur is measured at the position where there is no obstacle between the satellite and the GNSS sensor, for example, at the open ground or on the roof of the building, thereby determining the environmental factor uncertainty value of the environmental factor uncertainty group. Can be set to '0'.
이를 통해, [수학식 3]과 같이 표현된 수학식을 통해, 장애물이 없는 위치에서 장시간 측정한 데이터를 이용하여 GNSS 기반의 위치 추정의 측정 위치와, 실제 위치 간의 편차에 의해 센서 요인 불확실성 값의 측정이 가능하게 된다.Through this, the equation expressed as shown in [Equation 3] is used to determine the sensor factor uncertainty value by the deviation between the measured position of the GNSS-based position estimation and the actual position using the data measured for a long time at the position without obstacles. Measurement is possible.
상기와 같이, 센서 요인 불확실성 값이 측정되면, 모델 요인 불확실성 그룹의 모델 요인 불확실성 값이 측정된다(S23). 여기서, 모델 요인 불확실성 값은 환경 요인 불확실성 그룹이 발생하지 않는 조건, 예컨대 상술한 바와 같이, 개활지나 건물의 옥상 등에서 측정되며, S22 단계에서 측정된 센서 요인 불확실성 값이 적용되어 측정된다.As described above, when the sensor factor uncertainty value is measured, the model factor uncertainty value of the model factor uncertainty group is measured (S23). Here, the model factor uncertainty value is measured under conditions where an environmental factor uncertainty group does not occur, for example, as described above, on a roof of a open area or a building, and is measured by applying a sensor factor uncertainty value measured in step S22.
보다 구체적으로 설명하면, 자율 주행 차량의 실제 주행시 GNSS 기반의 위치 추정에 적용될 보정 모델이 적용된 상태에서, 환경 요인 불확실성 값이 '0'인 조건 하에서 측정하게 되면, [수학식 2]는 [수학식 4]와 같이 표현될 수 있다.In more detail, when the autonomous vehicle is measured under the condition that the environmental factor uncertainty value is '0' with the correction model applied to the GNSS-based position estimation during actual driving, [Equation 2] is [Equation 2] 4].
[수학식 4][Equation 4]
Figure PCTKR2017014982-appb-I000005
Figure PCTKR2017014982-appb-I000005
즉, 모델 요인 불확실성 그룹에 속하는 불확실성 요인들은 보정 모델에 따라 그 값이 변하므로, 자율 주행 차량에 실제 적용되는 보정 모델이 적용된 상태에서 측정된 값과 실제 위치 간의 편차를 이용하여 모델 요인 불확실성 값의 측정이 가능하게 된다.That is, since the uncertainty factors belonging to the model factor uncertainty group vary according to the calibration model, the model factor uncertainty value is determined by using the deviation between the measured value and the actual position while the correction model applied to the autonomous vehicle is actually applied. Measurement is possible.
상기와 같이, 센서 요인 불확실성 값과 모델 요인 불확실성 값의 측정이 완료되면, 환경 요인 불확실성 그룹의 환경 요인 불확실성 값을 측정하게 된다(S25). 제1 실시예에서와 마찬가지로, 환경 요인 불확실성 그룹의 환경 요인 불확실성 값을 측정하는데 있어서는 자율 주행 차량이 주행 도로를 주행하는 동안(S24), 각 주행 위치에 대해 환경 요인 불확실성 값이 측정된다(S25).As described above, when the measurement of the sensor factor uncertainty value and the model factor uncertainty value is completed, the environmental factor uncertainty value of the environmental factor uncertainty group is measured (S25). As in the first embodiment, in measuring the environmental factor uncertainty value of the environmental factor uncertainty group, while the autonomous vehicle travels on the driving road (S24), the environmental factor uncertainty value is measured for each driving position (S25). .
즉, 자율 주행 차량의 실제 주행 도로에서의 주행 과정을 통해 각각의 주행 위치에서 측정되는 GNSS 기반의 위치 추정의 측정 위치와, 실제 위치 간의 편차에 의해 각 주행 위치에서의 환경 요인 불확실성 값이 측정된다. 이 때, [수학식 2]에서 센서 요인 불확실성 값과 모델 요인 불확실성 값은 측정된 상태이므로, 최종적으로 환경 요인 불확실성 값의 산출이 가능하게 된다.That is, the environmental factor uncertainty value at each driving position is measured by the measurement position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road of the autonomous vehicle and the deviation between the actual position. . At this time, since the sensor factor uncertainty value and the model factor uncertainty value are measured in [Equation 2], the environmental factor uncertainty value can be finally calculated.
상기와 같이, 각각의 주행 위치에서 측정된 환경 요인 불확실성 값은 주행 도로의 지도 상의 위치에 대응하여 맵핑되어 환경 요인 불확실성 지도 형태로 생성되어 등록된다(S15).As described above, the environmental factor uncertainty value measured at each driving position is mapped corresponding to the position on the map of the driving road, and is generated and registered in the form of an environmental factor uncertainty map (S15).
이하에서는 도 3 내지 도 12를 참조하여 본 발명에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법의 효과에 대해 설명한다. 도 3은 본 발명에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법을 실험하기 위한 실제 주행 도로의 위성 사진으로, 흰색으로 표시된 구간이 실험에 적용된 경로이다. 실제 주행 도로는 주변 건물의 높이가 높아 위성 신호 수신의 방해가 발생하는 도시 환경의 특징을 갖는다.Hereinafter, the effects of the method of measuring the uncertainty of the GNSS based position estimation according to the present invention will be described with reference to FIGS. 3 to 12. FIG. 3 is a satellite photograph of an actual driving road for experimenting a method of measuring uncertainty of GNSS-based location estimation according to the present invention, and a section marked in white is a path to which the experiment is applied. The actual driving road has a characteristic of the urban environment in which the height of the surrounding buildings is high and interference of satellite signal reception is generated.
도 4의 (a)는 도 3에 도시된 주행 도로를 10회 반복 주행하여 환경 요인 불확실성 값을 측정하고, 측정된 환경 요인 불확실성 값을 지도상에 맵핑하여 환경 요인 불확실성 지도를 작성한 것이다. 환경 요인 불확실성 지도에서 붉은색일수록, 즉 그라데이션 점수가 높을 수록 불확실성이 큰 것을 나타내고 있다.FIG. 4A illustrates an environmental factor uncertainty map by repeatedly measuring the environmental factor uncertainty value by repeatedly driving the driving road shown in FIG. 3 and mapping the measured environmental factor uncertainty value on a map. On the environmental factor uncertainty map, the red color, ie, the higher the gradation score, indicates that the uncertainty is greater.
도 4의 (b)는 GNSS 센서에 의한 측정값(GNSS data)과 실제 위치(Ground truth)를 나타낸 도면이다. 도 4의 (b)에 도시된 바와 같이, GNSS 센서의 측정값의 오차가 큰 지역에서 도 4의 (a)에 도시된 바와 같이 환경 요인 불확실성 값이 크게 나타남을 확인할 수 있다.FIG. 4B is a diagram showing measured values (GNSS data) and actual position (Ground truth) by the GNSS sensor. As shown in (b) of FIG. 4, it can be seen that the environmental factor uncertainty value is large as shown in FIG. 4 (a) in a region where the error of the measured value of the GNSS sensor is large.
도 5 내지 도 7은 본 발명에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 의해 측정된 불확실성 값, 기존의 GNSS 센서에서 산출되는 불확실성 값, 그리고 실제 위치 오차를 비교한 도면이다.5 to 7 are diagrams comparing the uncertainty value measured by the method of measuring the uncertainty of the GNSS-based position estimation according to the present invention, the uncertainty value calculated by the existing GNSS sensor, and the actual position error.
도 5 내지 도 7에서는 불확실성 모델의 2시그마를 비교한 것으로, 붉은색 선(2σ of the proposed method)이 본 발명에 따른 GNSS 센서 기반의 위치 추정의 불확실성을 측정하는 방법에 의한 2시그마 값이고, 초록색 선(2σ receiver estimated)이 GNSS 센서가 출력한 2시그마 값이고, 파란색 선(Position error)이 실제 발생한 위치 오차이다.In FIGS. 5 to 7, two sigma of the uncertainty model is compared, and a red line (2σ of the proposed method) is a two sigma value by the method of measuring the uncertainty of the GNSS sensor-based position estimation according to the present invention. The green line (2σ receiver estimated) is the 2-sigma value output by the GNSS sensor, and the blue line (Position error) is the position error that actually occurred.
도 5의 (a)는 도 3에 도시된 전체 구간의 그래프를 나타낸 것이고, 도 5의 (b)는 도 5의 (a)의 A 영역을 확대한 도면이다. 도 5의 (b)를 참조하여 설명하면, 위치 오차가 0.3m 이내로 작은 구간에서는 본 발명에 따른 방법과 기존 모델과 큰 차이가 없는 것을 확인할 수 있으며, 다만 기존의 GNSS 센서의 출력에 따른 불확실성 값이 실제 위치 오차의 크기와 무관하게 크게 측정되는 경우(도 5의 (b)의 원 참조)가 발생하는 것을 확인할 수 있다.FIG. 5A is a graph of the entire section shown in FIG. 3, and FIG. 5B is an enlarged view of region A of FIG. 5A. Referring to FIG. 5 (b), it can be seen that there is no significant difference between the method according to the present invention and the existing model in a section where the position error is less than 0.3 m, but the uncertainty value according to the output of the existing GNSS sensor It can be seen that a large measurement (see the circle in FIG. 5B) occurs regardless of the magnitude of the actual position error.
도 6의 (a) 및 (b)는 도 5의 B 영역을 확대한 도면이다. 위치 오차가 크게 발생한 영역으로, 도 6의 (a)를 참조하여 설명하면, 본 발명에 따른 방법이 위치 오차를 감싸는 형태로, 불확실성을 잘 표현하고 있음을 확인할 수 있으며, GNSS 센서의 출력에 따른 불확실성 값이 다수의 구간에서 실제 위치 오차보다 매우 크게 나타남을 확인할 수 있다.6A and 6B are enlarged views of region B of FIG. 5. As described above with reference to FIG. 6A, where the position error is largely generated, it can be seen that the method according to the present invention wraps the position error and expresses the uncertainty well, and according to the output of the GNSS sensor. It can be seen that the uncertainty value is much larger than the actual position error in the multiple intervals.
또한, 도 6의 (b)를 참조하여 설명하면, 위치 오차가 10m 이상인 경우에는 GNSS 센서의 출력에 따른 불확실성 값이 실제 오차보다 작은 값으로 제공되는 것을 확인할 수 있으며, 반면, 본 발명에 따른 방법의 불확실성 값은 실제 위치 오차를 약간 상회하는 크기로 제공되어 실제 위치 오차에 근접함을 확인할 수 있다.In addition, referring to Figure 6 (b), when the position error is 10m or more, it can be seen that the uncertainty value according to the output of the GNSS sensor is provided with a value smaller than the actual error, on the other hand, the method according to the present invention The uncertainty value of is given as a little more than the actual position error, so it can be confirmed that it is close to the actual position error.
도 7은 도 5의 C 영역을 확대한 도면이다. 도 7을 참조하여 설명하면, C 영역 또는 전술한 A 및 B 영역과 동일한 양상을 보이는 것을 확인할 수 있으며, 실제 위치 오차가 본 발명에 따른 방법의 불확실성 값으로 잘 반영되고 있음을 확인할 수 있다.FIG. 7 is an enlarged view of region C of FIG. 5. Referring to FIG. 7, it can be seen that the C region or the same aspect as the A and B regions described above are shown, and the actual position error is well reflected as the uncertainty value of the method according to the present invention.
도 8 내지 도 12는 본 발명에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법을 통해 제공되는 불확실성 값을 이용하여 오도메트리 값과 보정 모델을 융합한 위치 추정의 실험 결과를 나타낸 도면이다.8 to 12 are diagrams showing experimental results of position estimation in which an odometry value and a correction model are fused using an uncertainty value provided through a method of measuring uncertainty of a position estimation based on GNSS according to the present invention.
도 8은 전체 구간을 나타낸 도면이고, 도 9, 도 10, 도 11 및 도 12는 도 8의 A 영역, B 영역, C 영역 및 D 영역을 각각 확대하여 나타낸 도면이다. 도 8 내지 도 12에서 선 'EKF(proposed)'는 본 발명에 따른 방법이 적용되어 얻은 모델의 결과값이고, 선 'EKF(receiver)'는 GNSS 센서의 출력이 적용되어 얻은 모델의 결과값이고, 선 'GNSS data'는 GNSS 센서의 측정값이고, 선 'Ground truth'는 실제 위치이다.8 is a diagram illustrating an entire section, and FIGS. 9, 10, 11, and 12 are enlarged views of regions A, B, C, and D of FIG. 8, respectively. 8 through 12, the line 'EKF (proposed)' is the result of the model obtained by applying the method according to the present invention, and the line 'EKF (receiver)' is the result of the model obtained by applying the output of the GNSS sensor. , The line 'GNSS data' is the measured value of the GNSS sensor, and the line 'Ground truth' is the actual position.
도 9을 참조하여 설명하면, 도 8의 A 영역에서의 위치 추정 결과, 본 발명에 따른 방법과 기존의 GNSS 센서의 출력을 이용한 방법을 비교할 때, GNSS 센서가 정밀한 경우에는 큰 차이를 보이지 않음을 확인할 수 있다.Referring to FIG. 9, as a result of the position estimation in the region A of FIG. 8, when the method according to the present invention is compared with the method using the output of the existing GNSS sensor, the GNSS sensor does not show a significant difference when it is precise. You can check it.
일반적인 주행 차로의 폭이 3.2m이기 때문에 위치 추정 오차가 1.6m를 넘어가게 되면 다른 차로에 있다고 위치 추정을 하게 되는 것이므로, 이를 크리티컬 포인트라고 생각하여 1.6m 이내로 오차가 나타난 구간을 조사해 보면, 두 경우 모두 100%로 나타났다.Since the width of the general driving lane is 3.2m, if the estimation error exceeds 1.6m, the position is estimated as being in a different lane. Therefore, it is considered as a critical point. All were 100%.
도 10을 참조하여 설명하면, 위치 추정 오차가 큰 경우에는, 기존 방법이 GNSS 위치 추정 오차에 비해 낮은 불확실성을 계산하여 결과값이 매우 큰 오차를 나타냈지만, 본 발명에 따른 방법은 큰 불확실성 값을 부여해 정밀한 위치 추정 결과를 나타냈다.Referring to FIG. 10, when the position estimation error is large, the conventional method calculates a low uncertainty compared to the GNSS position estimation error and shows a very large error, but the method according to the present invention shows a large uncertainty value. The precise position estimation result was shown.
도 11을 참조하여 설명하면, 위치 추정 오차가 작은 구간으로, A 영역에서와 마찬가지로, 본 발명에 따른 방법과 기존 방법 큰 차이가 나타나지 않지만, 본 발명에 따른 방법이 보다 정밀함을 확인할 수 있다.Referring to FIG. 11, although the position estimation error is small, as in the area A, there is no significant difference between the method according to the present invention and the existing method, but it can be confirmed that the method according to the present invention is more precise.
도 12를 참조하여 설명하면, GNSS 위치 측정 오차가 큰 구간으로 B 영역과 마찬가지로, 본 발명에 따른 방법이 좀 더 좋은 성능을 나타내고 있음을 확인할 수 있다.Referring to FIG. 12, it can be seen that the method according to the present invention exhibits better performance as in the region B with a large GNSS position measurement error.
도 13은 본 발명에 따른 본 발명에 따른 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법과 기존의 GNSS 센서의 출력이 적용되어 얻은 위치추정 모델의 평균 제곱근 오차를 나타낸 도면으로, 추가적인 8번의 실험 데이터가 적용되었다. 'EKF proposed'가 본 발명에 따른 불확실성을 측정하는 방법의 평균 제곱근 오차이고, 'EKF conventional'이 기존의 GNSS 센서의 출력이 적용되어 얻은 위치추정 모델의 평균 제곱근 오차이다. 도 13에 도시된 바와 같이, 모든 환경에서 본 발명에 따른 방법이 평균 제곱근 오차가 줄어들었음을 확인할 수 있다.FIG. 13 is a diagram illustrating an average square root error of a location estimation model obtained by applying an output of a conventional GNSS sensor and a method of measuring uncertainty of a location estimation based on GNSS according to the present invention. Was applied. 'EKF proposed' is the mean square root error of the method of measuring the uncertainty according to the present invention, 'EKF conventional' is the mean square root error of the position estimation model obtained by applying the output of the conventional GNSS sensor. As shown in FIG. 13, it can be seen that in all circumstances, the method according to the present invention reduces the mean square root error.
도 14 내지 도 21은 도 13의 가로축에 나타난 숫자, 즉 1번부터 8번까지의 실험환경 및 실험 데이터를 나타내고 있다. 도 14 내지 도 21의 (a)는 실제 주행 도로의 위성사진으로 흰색으로 표시된 구간이 실험에 적용된 경로로, 표기된 숫자는 도 13의 실험 번호이다. 도 14 내지 도 21의 (c)는 도 14 내지 도 21의 (a)의 주행 도로를 10회 반복 주행하여 측정된 환경 요인 불확실성 값을 지도상에 맵핑하여 환경 요인 불확실성 지도를 작성한 것이다. 파란색에 가까울수록, 즉 그라데이션 값이 작을수록 불확실성이 크기가 작아지고, 노란색에 가까울수록, 즉 그라데이션 값이 클수록 불확실성 크기가 큰 것을 의미한다. 그리도, 도 14 내지 도 21의 (b)는 실제 주행 환경의 일부를 촬영한 도면이다.14 to 21 show the numbers shown on the horizontal axis of FIG. 14 to 21 (a) is a path in which a section marked in white as a satellite image of an actual driving road is applied to an experiment, and the number indicated is the experiment number of FIG. 13. 14 to 21 (c) show an environmental factor uncertainty map by mapping environmental factor uncertainty values measured by repeatedly driving the driving roads of FIGS. 14 to 21 (a) on a map. The closer to blue, i.e., the smaller the gradient value, the smaller the uncertainty, and the closer to yellow, that is, the larger the gradient value, the greater the uncertainty size. 14 (B) is a diagram of a part of an actual driving environment.
도 14 내지 도 21의 (d)에서 선 'EKF propoesed'가 본 발명에 따른 방법이 적용되어 얻은 모델의 결과값이고, 선 'EKF conventional'이 GNSS 센서에서 제공되는 불확실성 값이 그대로 적용된 모델의 결과값이고, 선 'GNSS'가 GNSS 센서의 측정값이고, 선 'Ground truth'가 실제 위치이다.In FIGS. 14 to 21 (d), the line 'EKF propoesed' is the result of the model obtained by applying the method according to the present invention, and the line 'EKF conventional' is the result of the model to which the uncertainty value provided by the GNSS sensor is applied as it is. Value, the line 'GNSS' is the measured value of the GNSS sensor, and the line 'Ground truth' is the actual position.
본 발명에 따른 불확실성을 측정하는 방법이 적용된 위치 추정 모델이 GNSS 센서에서 제공하는 불확실성을 그대로 사용하는 방법보다 실제 위치인 Ground truth와 근접하는 것을 확인할 수 있으며, GNSS에 대한 신뢰도를 낮추어 좋은 위치 추정 결과를 확인할 수 잇다.It can be seen that the position estimation model to which the method of measuring uncertainty according to the present invention is applied is closer to the ground truth, which is the actual position, than the method of using the uncertainty provided by the GNSS sensor, and the reliability of the GNSS is lowered, resulting in good position estimation. You can check.
도 18의 (b)를 참조하여 설명하면, 도 13의 5번 실험 환경에서 실험 환경 주변에 고가도로가 존재하는 환경이고, 도 20의 (b)를 참조하여 설명하면 도 16의 7번 실험 환경으로 육교가 존재하는 환겅이다. 두 환경 모두 GNSS 센서를 가리게 되어 GNSS 센서 수신에 영향을 주는 환경이다. 도 3에 도시된 바와 같이, 주위에 높은 건물이 존재하는 환경과 함께 실제 주행에서 GNSS 센서 정확도를 떨어뜨리는 대표적인 환경임을 확인할 수 있다.Referring to (b) of FIG. 18, in the experiment environment No. 5 of FIG. 13, an elevated road exists around the experiment environment. Referring to FIG. 20 (b), the experiment environment of FIG. A viaduct exists. Both environments cover the GNSS sensor and thus affect the reception of the GNSS sensor. As shown in FIG. 3, it can be seen that the representative environment deteriorates the accuracy of the GNSS sensor in actual driving together with an environment in which a high building exists around.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
본 발명은 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법으로 GNSS 센서를 이용하는 자율 주행 차량 또는 실외 이동 로봇의 자율 주행에 사용될 수 있다.The present invention can be used for autonomous driving of an autonomous vehicle or an outdoor mobile robot using a GNSS sensor as a method for measuring the uncertainty of GNSS-based position estimation.

Claims (16)

  1. GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 있어서,In the method of measuring the uncertainty of the position estimation based on GNSS,
    (a) 센서 요인 불확실성 그룹의 센서 요인 불확실성 값이 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되는 단계와,(a) the sensor factor uncertainty value of the sensor factor uncertainty group is measured under conditions in which no environmental factor uncertainty group and model factor uncertainty group occur;
    (b) 상기 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 상기 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되되 상기 센서 요인 불확실성 값이 적용되어 측정되는 단계와,(b) measuring the environmental factor uncertainty value of the environmental factor uncertainty group under the condition that the model factor uncertainty group does not occur, wherein the sensor factor uncertainty value is applied and measured;
    (c) 상기 센서 요인 불확실성 값 및 상기 환경 요인 불확실성 값에 기초하여 상기 GNSS 기반의 위치 추정의 불확실성 값이 측정되는 단계를 포함하며;(c) measuring an uncertainty value of the GNSS based position estimate based on the sensor factor uncertainty value and the environmental factor uncertainty value;
    상기 센서 요인 불확실성 그룹, 상기 환경 요인 불확실성 그룹 및 상기 모델 요인 불확실성 그룹은 상기 GNSS 기반의 위치 추정의 불확실성을 야기하는 복수의 불확실성 요인이 불확실성의 발생 원인에 따라 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. How to measure uncertainty in estimation.
  2. 제1항에 있어서,The method of claim 1,
    상기 센서 요인 불확실성 그룹에는 GNSS 센서 자체에 의해 야기되는 불확실성 요인들로 그룹핑되고,The sensor factor uncertainty group is grouped with the uncertainty factors caused by the GNSS sensor itself,
    상기 환경 요인 불확실성 그룹에는 위성과 상기 GNSS 센서 사이의 장애물에 의해 야기되는 불확실성 요인들로 그룹핑되며;The environmental factor uncertainty group is grouped with uncertainty factors caused by an obstacle between a satellite and the GNSS sensor;
    상기 모델 요인 불확실성 그룹에는 상기 GNSS 기반의 위치 추정에 적용되는 보정 모델의 종류에 따라 불확실성이 변하는 불확실성 요인들이 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The uncertainty of the GNSS-based position estimation is grouped into the model factor uncertainty group, the uncertainty factors that change the uncertainty according to the type of the correction model applied to the GNSS-based position estimation.
  3. 제2항에 있어서,The method of claim 2,
    상기 센서 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 상기 GNSS 센서의 하드웨어적 불확실성 요인과 소프트웨어적 불확실성 요인을 포함하고;The uncertainty factors grouped into the sensor factor uncertainty group include a hardware uncertainty factor and a software uncertainty factor of the GNSS sensor;
    상기 환경 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 멀티패스 영향(Multipath effect) 요인과, 신호 가림(Foliage attenuation) 요인을 포함하며;The uncertainty factors grouped into the environmental factor uncertainty group include a multipath effect factor and a foliage attenuation factor;
    상기 모델 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인 및 대기층 영향(Tropospheric effect) 요인을 포함하는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The uncertainty factors grouped into the model factor uncertainty group include an epoch error factor, a satellite clock error factor, an ionospheric effect factor, and a tropospheric effect factor. How to measure the uncertainty of GNSS-based location estimation.
  4. 제3항에 있어서,The method of claim 3,
    상기 (a) 단계 및 상기 (b) 단계에서 상기 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건은 상기 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 상기 GNSS 기반의 위치 추정에 적용되어 만족되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The condition in which the uncertainty of the model factor uncertainty group does not occur in steps (a) and (b) is satisfied when a correction model having the model factor uncertainty value of '0' is applied to the GNSS-based position estimation. Method for measuring the uncertainty of the position estimation based on GNSS characterized in that.
  5. 제3항에 있어서,The method of claim 3,
    상기 (a) 단계에서 상기 환경 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건은 상기 위성과 상기 GNSS 센서 사이에 장애물이 존재하지 않는 위치에서 측정하는 것에 의해 만족되며;The condition in which the uncertainty of the environmental factor uncertainty group does not occur in step (a) is satisfied by measuring at a position where no obstacle exists between the satellite and the GNSS sensor;
    상기 장애물이 존재하지 않는 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 상기 환경 요인 불확실성 값이 측정되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.And the uncertainty value of the GNSS-based position estimate is measured by the deviation between the measured position and the actual position of the GNSS-based position estimate measured at the position where the obstacle is not present.
  6. 제3항에 있어서,The method of claim 3,
    상기 (b) 단계에서는In step (b)
    실제 주행 도로에서의 주행 과정을 통해 각각의 주행 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 각 주행 위치에서의 상기 환경 요인 불확실성 값이 측정되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.GNSS characterized in that the environmental factor uncertainty value at each driving position is measured by the deviation between the measured position and the actual position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road. A method of measuring the uncertainty of based location estimation.
  7. 제6항에 있어서,The method of claim 6,
    상기 환경 요인 불확실성 값은 상기 주행 도로의 지도 상의 위치에 대응하여 맵핑되어 환경 요인 불확실성 지도 형태로 등록되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The environmental factor uncertainty value is mapped to a location on the map of the driving road and registered in the form of an environmental factor uncertainty map, the method of measuring the uncertainty of the location estimation based on GNSS.
  8. 제3항에 있어서,The method of claim 3,
    상기 GNSS 기반의 위치 추정의 불확실성 값은 수학식The uncertainty value of the GNSS based position estimation is represented by an equation
    Figure PCTKR2017014982-appb-I000006
    Figure PCTKR2017014982-appb-I000006
    G는 상기 GNSS 기반의 위치 추정의 불확실성 값이고, DOP는 Delusion of Precision이고, AS는 상기 모델 요인 불확실성 값이고, RE는 상기 센서 요인 불확실성 값이고, LC는 상기 환경 요인 불확실성 값이다)G is the uncertainty value of the GNSS based position estimate, DOP is Delusion of Precision, AS is the model factor uncertainty value, RE is the sensor factor uncertainty value, and LC is the environmental factor uncertainty value)
  9. GNSS 기반의 위치 추정의 불확실성을 측정하는 방법에 있어서,In the method of measuring the uncertainty of the position estimation based on GNSS,
    (A) 센서 요인 불확실성 그룹의 센서 요인 불확실성 값이 환경 요인 불확실성 그룹 및 모델 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되는 단계와,(A) the sensor factor uncertainty value of the sensor factor uncertainty group is measured under conditions where no environmental factor uncertainty group and model factor uncertainty group occur;
    (B) 상기 모델 요인 불확실성 그룹의 모델 요인 불확실성 값이 상기 환경 요인 불확실성 그룹이 발생하지 않는 조건 하에서 측정되되 상기 센서 요인 불확실성 값이 적용되어 측정되는 단계와,(B) measuring the model factor uncertainty value of the model factor uncertainty group under the condition that the environmental factor uncertainty group does not occur, wherein the sensor factor uncertainty value is applied and measured;
    (C) 상기 환경 요인 불확실성 그룹의 환경 요인 불확실성 값이 상기 센서 요인 불확실성 값 및 상기 모델 요인 불확실성 값이 적용되어 측정되는 단계와,(C) measuring the environmental factor uncertainty value of the environmental factor uncertainty group by applying the sensor factor uncertainty value and the model factor uncertainty value;
    (D) 상기 센서 요인 불확실성 값, 상기 모델 요인 불확실성 값 및 상기 환경 요인 불확실성 값에 기초하여 상기 GNSS 기반의 위치 추정의 불확실성 값이 측정되는 단계를 포함하며;(D) measuring an uncertainty value of the GNSS based position estimate based on the sensor factor uncertainty value, the model factor uncertainty value, and the environmental factor uncertainty value;
    상기 센서 요인 불확실성 그룹, 상기 환경 요인 불확실성 그룹 및 상기 모델 요인 불확실성 그룹은 상기 GNSS 기반의 위치 추정의 불확실성을 야기하는 복수의 불확실성 요인이 불확실성의 발생 원인에 따라 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The sensor factor uncertainty group, the environmental factor uncertainty group, and the model factor uncertainty group include a plurality of uncertainty factors that cause the uncertainty of the GNSS-based location estimation grouped according to the occurrence of the uncertainty. How to measure uncertainty in estimation.
  10. 제9항에 있어서,The method of claim 9,
    상기 센서 요인 불확실성 그룹에는 GNSS 센서 자체에 의해 야기되는 불확실성 요인들로 그룹핑되고,The sensor factor uncertainty group is grouped with the uncertainty factors caused by the GNSS sensor itself,
    상기 환경 요인 불확실성 그룹에는 위성과 상기 GNSS 센서 사이의 장애물에 의해 야기되는 불확실성 요인들로 그룹핑되며;The environmental factor uncertainty group is grouped with uncertainty factors caused by an obstacle between a satellite and the GNSS sensor;
    상기 모델 요인 불확실성 그룹에는 상기 GNSS 기반의 위치 추정에 적용되는 보정 모델의 종류에 따라 불확실성이 변하는 불확실성 요인들이 그룹핑되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The uncertainty of the GNSS-based position estimation is grouped into the model factor uncertainty group, the uncertainty factors that change the uncertainty according to the type of the correction model applied to the GNSS-based position estimation.
  11. 제10항에 있어서,The method of claim 10,
    상기 센서 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 상기 GNSS 센서의 하드웨어적 불확실성 요인과 소프트웨어적 불확실성 요인을 포함하고;The uncertainty factors grouped into the sensor factor uncertainty group include a hardware uncertainty factor and a software uncertainty factor of the GNSS sensor;
    상기 환경 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 멀티패스 영향(Multipath effect) 요인과, 신호 가림(Foliage attenuation) 요인을 포함하며;The uncertainty factors grouped into the environmental factor uncertainty group include a multipath effect factor and a foliage attenuation factor;
    상기 모델 요인 불확실성 그룹으로 그룹핑되는 불확실성 요인은 천문력 오차(Ephemeris error) 요인, 위성 시계 오차(Satellite clock error) 요인, 전리층 영향(Ionospheric effect) 요인 및 대기층 영향(Tropospheric effect) 요인을 포함하는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The uncertainty factors grouped into the model factor uncertainty group include an epoch error factor, a satellite clock error factor, an ionospheric effect factor, and a tropospheric effect factor. How to measure the uncertainty of GNSS-based location estimation.
  12. 제11항에 있어서,The method of claim 11,
    상기 (A) 단계에서 상기 모델 요인 불확실성 그룹의 불확실성이 발생하지 않은 조건은 상기 모델 요인 불확실성 값을 '0'으로 하는 보정 모델이 상기 GNSS 기반의 위치 추정에 임시 적용되어 만족되며;A condition in which the uncertainty of the model factor uncertainty group does not occur in step (A) is satisfied by temporarily applying a correction model having the model factor uncertainty value '0' to the GNSS-based position estimation;
    상기 (B) 단계에서 상기 모델 요인 불확실성 값은 상기 GNSS 기반의 위치 추정에 실제 적용된 보정 모델이 적용되어 측정되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.In the step (B), the uncertainty value of the model factor is measured by applying a correction model actually applied to the GNSS-based position estimation.
  13. 제11항에 있어서,The method of claim 11,
    상기 (A) 단계에서 상기 환경 요인 불확실성 그룹의 불확실성이 발생하지 않는 조건은 상기 위성과 상기 GNSS 센서 사이에 장애물이 존재하지 않는 위치에서 측정하는 것에 의해 만족되며;The condition in which the uncertainty of the environmental factor uncertainty group does not occur in step (A) is satisfied by measuring at a position where there is no obstacle between the satellite and the GNSS sensor;
    상기 장애물이 존재하지 않는 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 상기 환경 요인 불확실성 값이 측정되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.And the uncertainty value of the GNSS-based position estimate is measured by the deviation between the measured position and the actual position of the GNSS-based position estimate measured at the position where the obstacle is not present.
  14. 제11항에 있어서,The method of claim 11,
    상기 (C) 단계에서는In the step (C)
    실제 주행 도로에서의 주행 과정을 통해 각각의 주행 위치에서 측정된 상기 GNSS 기반의 위치 추정의 측정 위치와 실제 위치 간의 편차에 의해 각 주행 위치에서의 상기 환경 요인 불확실성 값이 측정되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.GNSS characterized in that the environmental factor uncertainty value at each driving position is measured by the deviation between the measured position and the actual position of the GNSS-based position estimation measured at each driving position through the driving process on the actual driving road. A method of measuring the uncertainty of based location estimation.
  15. 제14항에 있어서,The method of claim 14,
    상기 환경 요인 불확실성 값은 상기 주행 도로의 지도 상의 위치에 대응하여 맵핑되어 환경 요인 불확실성 지도 형태로 등록되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.The environmental factor uncertainty value is mapped to a location on the map of the driving road and registered in the form of an environmental factor uncertainty map, the method of measuring the uncertainty of the location estimation based on GNSS.
  16. 제11항에 있어서,The method of claim 11,
    상기 GNSS 기반의 위치 추정의 불확실성 값은 수학식The uncertainty value of the GNSS based position estimation is represented by an equation
    Figure PCTKR2017014982-appb-I000007
    Figure PCTKR2017014982-appb-I000007
    G는 상기 GNSS 기반의 위치 추정의 불확실성 값이고, DOP는 Delusion of Precision이고, AS는 상기 모델 요인 불확실성 값이고, RE는 상기 센서 요인 불확실성 값이고, LC는 상기 환경 요인 불확실성 값이다)G is the uncertainty value of the GNSS based position estimate, DOP is Delusion of Precision, AS is the model factor uncertainty value, RE is the sensor factor uncertainty value, and LC is the environmental factor uncertainty value)
    로 표현되는 것을 특징으로 하는 GNSS 기반의 위치 추정의 불확실성을 측정하는 방법.Method for measuring the uncertainty of the position estimation based on GNSS, characterized in that represented by.
PCT/KR2017/014982 2017-02-15 2017-12-19 Method for measuring uncertainty of gnss-based position estimation WO2018151404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0020479 2017-02-15
KR1020170020479A KR101921483B1 (en) 2017-02-15 2017-02-15 Method for measuring uncertainty of gnss based localization

Publications (1)

Publication Number Publication Date
WO2018151404A1 true WO2018151404A1 (en) 2018-08-23

Family

ID=63169468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014982 WO2018151404A1 (en) 2017-02-15 2017-12-19 Method for measuring uncertainty of gnss-based position estimation

Country Status (2)

Country Link
KR (1) KR101921483B1 (en)
WO (1) WO2018151404A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525727B2 (en) * 2009-12-29 2013-09-03 Texas Instruments Incorporated Position and velocity uncertainty metrics in GNSS receivers
US9223004B2 (en) * 2013-03-22 2015-12-29 Qualcomm Incorporated Controlling position uncertainty in a mobile device
KR20160003111A (en) * 2013-05-01 2016-01-08 퀄컴 인코포레이티드 Methods and apparatuses for characterizing and affecting mobile device location accuracy and/or uncertainty
US9467803B2 (en) * 2012-09-27 2016-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Detecting multipath and determining positioning measurement uncertainty
KR20170013257A (en) * 2014-06-04 2017-02-06 퀄컴 인코포레이티드 Mobile device position uncertainty based on a measure of potential hindrance of an estimated trajectory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595754B2 (en) * 2007-12-24 2009-09-29 Qualcomm Incorporated Methods, systems and apparatus for integrated wireless device location determination
US8289202B1 (en) * 2011-04-04 2012-10-16 Honeywell International Inc. Method and system for generating weather and ground reflectivity information
US9237417B2 (en) * 2013-02-07 2016-01-12 Qualcomm Incorporated Terrestrial positioning system calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525727B2 (en) * 2009-12-29 2013-09-03 Texas Instruments Incorporated Position and velocity uncertainty metrics in GNSS receivers
US9467803B2 (en) * 2012-09-27 2016-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Detecting multipath and determining positioning measurement uncertainty
US9223004B2 (en) * 2013-03-22 2015-12-29 Qualcomm Incorporated Controlling position uncertainty in a mobile device
KR20160003111A (en) * 2013-05-01 2016-01-08 퀄컴 인코포레이티드 Methods and apparatuses for characterizing and affecting mobile device location accuracy and/or uncertainty
KR20170013257A (en) * 2014-06-04 2017-02-06 퀄컴 인코포레이티드 Mobile device position uncertainty based on a measure of potential hindrance of an estimated trajectory

Also Published As

Publication number Publication date
KR101921483B1 (en) 2018-11-26
KR20180094529A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
CN104154928B (en) Installation error calibrating method applicable to built-in star sensor of inertial platform
CN109471146B (en) Self-adaptive fault-tolerant GPS/INS integrated navigation method based on LS-SVM
CN104729506A (en) Unmanned aerial vehicle autonomous navigation positioning method with assistance of visual information
WO2018066754A1 (en) Method for estimating attitude of vehicle by using lidar sensor
CN110702091A (en) High-precision positioning method for moving robot along subway rail
CN111637888B (en) Tunneling machine positioning method and system based on inertial navigation and laser radar single-point distance measurement
CN111157984B (en) Pedestrian autonomous navigation method based on millimeter wave radar and inertial measurement unit
CN103453903A (en) Pipeline flaw detection system navigation and location method based on IMU (Inertial Measurement Unit)
CN111796315A (en) Indoor and outdoor positioning method and device for unmanned aerial vehicle
WO2021015418A1 (en) Apparatus for determining position of driving test vehicle on basis of rtk gnss
CN107966145A (en) A kind of AUV underwater navigation methods based on sparse Long baselines tight integration
CN115950418A (en) Multi-sensor fusion positioning method
Das et al. An experimental study on relative and absolute pose graph fusion for vehicle localization
CN115435779A (en) Intelligent body pose estimation method based on GNSS/IMU/optical flow information fusion
Guo et al. GPS and DR integration for robot navigation in substation environments
WO2018151404A1 (en) Method for measuring uncertainty of gnss-based position estimation
CN112697154A (en) Self-adaptive multi-source fusion navigation method based on vector distribution
CN115855041A (en) Agricultural robot positioning method, system and device
TWI724686B (en) Positioning and orientation system and positioning and orientation method using high definition maps
CN114646993A (en) Data fusion algorithm for accurate positioning based on GNSS, vision and IMU
CN114894180A (en) Multi-source fusion navigation method and system based on relative navigation information
JP3172736B2 (en) Geostationary satellite orbit determination method
CN116929350B (en) Rapid temporary reconstruction collaborative navigation system and method based on data link ranging
CN116659493B (en) Vehicle-mounted autonomous positioning and orientation method
CN116796119B (en) Monocular distance measurement precision calculation method based on unmanned aerial vehicle motion platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897159

Country of ref document: EP

Kind code of ref document: A1