WO2018151216A1 - Plant body, food, culturing material, fertilizer, and manufacturing method - Google Patents

Plant body, food, culturing material, fertilizer, and manufacturing method Download PDF

Info

Publication number
WO2018151216A1
WO2018151216A1 PCT/JP2018/005273 JP2018005273W WO2018151216A1 WO 2018151216 A1 WO2018151216 A1 WO 2018151216A1 JP 2018005273 W JP2018005273 W JP 2018005273W WO 2018151216 A1 WO2018151216 A1 WO 2018151216A1
Authority
WO
WIPO (PCT)
Prior art keywords
ergothioneine
gene
protein
culture
microorganism
Prior art date
Application number
PCT/JP2018/005273
Other languages
French (fr)
Japanese (ja)
Inventor
厳生 大津
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Publication of WO2018151216A1 publication Critical patent/WO2018151216A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a plant, food, culture and fertilizer containing ergothioneine, and a method for producing the plant.
  • Sulfur is an essential component as an element constituting the human body.
  • Human sulfur sources are organic sulfur compounds that are ingested through meals, and microorganisms are responsible for assimilation of inorganic sulfur into organic sulfur compounds in the biological sulfur cycle on earth.
  • Ergothioneine is a kind of sulfur-containing amino acid and is known to be biosynthesized only by some microorganisms. Ergothioneine has an excellent antioxidant effect, which is said to be 6000 times that of vitamin E. Therefore, it is a highly useful compound in the fields of health and beauty.
  • Patent Document 1 describes a skin external preparation containing an extract containing at least one of mushroom-derived ergothioneine and derivatives thereof. This skin external preparation is used for preventing skin aging and the like. It is said that it is excellent.
  • the present invention has been made in view of the above circumstances, and provides a plant, a culture and a fertilizer containing ergothioneine, and a method for producing the plant.
  • the present invention includes the following aspects.
  • the plant according to the first aspect of the present invention contains 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight.
  • the plant according to the first aspect may contain 20 ⁇ g or more of ergothioneine per 100 g of fresh weight.
  • the content of the ergothionein may be in the leaves.
  • the plant according to the first aspect may belong to the Brassicaceae family.
  • the food according to the second aspect of the present invention contains 0.5 ⁇ g or more of ergothioneine per 100 g (however, a food containing a microorganism capable of biosynthesis of ergothioneine, a food containing a mushroom capable of biosynthesis of ergothioneine, and biosynthesis of ergothioneine. Except fermented foods fermented by various microorganisms and processed foods thereof).
  • the food according to the second aspect may contain 20 ⁇ g or more of ergothioneine per 100 g.
  • the culture according to the third embodiment of the present invention is a culture of a microorganism capable of biosynthesizing ergothioneine and contains 50 mg / L or more of ergothioneine.
  • the microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so as to increase cysteine-producing ability.
  • the fertilizer according to the fourth aspect of the present invention includes a culture of a microorganism capable of biosynthesis of ergothioneine.
  • the microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so as to increase cysteine-producing ability.
  • the water content may be 30% by mass or less.
  • the manufacturing method which concerns on the 5th aspect of this invention is a manufacturing method of the plant body which concerns on the said 1st aspect, Comprising: It is a method which has a cultivation process which grows a plant body with the cultivation medium containing ergothioneine, The said cultivation The medium contains ergothioneine 1 ⁇ g / L or more.
  • the culture medium may contain ergothioneine in an amount of 0.1 mg / L.
  • the culture medium may include a culture of a microorganism capable of biosynthesis of ergothioneine.
  • the manufacturing method according to the fifth aspect may further include a harvesting step for harvesting the plant body, and the cultivation step may be performed within 10 days before the harvesting step.
  • the plant body, food, culture and fertilizer of the above aspect contain ergothioneine. According to the manufacturing method of the said aspect, the plant containing ergothioneine is obtained.
  • FIG. 5 is an image obtained by photographing plants grown in Examples 5 to 8 and Comparative Examples 5 to 8.
  • FIG. It is a schematic diagram which shows the structure of the pDES plasmid used in the Example.
  • Plant body contains 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight. Originally, plants did not produce ergothioneine themselves, so the plant body did not contain a large amount of ergothioneine. As shown in the examples below, the inventors can grow ergothioneine in a culture medium containing ergothioneine, thereby allowing ergothioneine to accumulate in the plant body. It has been found that plants containing ergothioneine can be produced.
  • the plant body of the embodiment contains 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight, may contain 1 ⁇ g or more of ergothioneine, may contain 5 ⁇ g or more of ergothioneine, and contains 10 ⁇ g or more of ergothioneine. It may contain, may contain 20 ⁇ g or more ergothioneine, may contain 50 ⁇ g or more ergothioneine, may contain 100 ⁇ g or more ergothioneine, may contain 150 ⁇ g or more ergothioneine, 200 ⁇ g or more of ergothioneine may be contained, and 250 ⁇ g or more of ergothioneine may be contained.
  • the upper limit value of ergothioneine contained in the plant according to the embodiment is not particularly limited, but may be, for example, 10000 ⁇ g per 100 g fresh weight or 1000 ⁇ g.
  • “Fresh weight” refers to the weight of a plant that has not been artificially dried.
  • the state includes a state in which the plant is sold in the market as a fresh item or a fresh food.
  • Ergothioneine may be naturally occurring, or may be artificially or artificially produced.
  • Ergothioneine is a kind of sulfur-containing amino acid, and L-(+)-ergothioneine is known as a compound represented by the following formula (1).
  • the measuring method of ergothioneine can be carried out by the method described in the examples described later.
  • Ergothioneine has an antioxidant action and can take an oxidized form such as being oxidized to form a disulfide.
  • the target to be measured as ergothioneine contained in the plant body may be measured by including oxidized ergothioneine in addition to the above ergothioneine, and only ergothioneine not containing oxidized ergothioneine. May have been measured.
  • Ergothionein may be in the form of an ion or a salt, but in the present invention, the mass of ergothioneine is calculated as the molecular weight of 229.3.
  • the object to be measured as ergothioneine may be measured by including oxidized ergothioneine in addition to the above-mentioned ergothioneine.
  • the mass of ergothioneine is calculated based on the molecular weight of ergothioneine before oxidation. Shall be.
  • the oxidized ergothioneine forms a multimer, it is calculated based on the molecular weight 229.3 of the original monomer ergothioneine.
  • the ergothionein contained in the plant body of the embodiment may be only one type or two or more types.
  • the type of the plant body of the embodiment is not particularly limited, but an edible plant is preferable, for example, Brassicaceae, Asteraceae, Solanaceae, Legaceae, Uriaceae Examples include plants such as Cucurbitaceae, Poaceae, Rubiaceae, Theaceae, Amaryllidaceae, Apiaceae, Araceae, and the like.
  • the plant body of the embodiment is preferably a Brassicaceae, Asteraceae or Eggplant family, and more preferably a Brassicaceae plant.
  • the Brassicaceae plant is preferably a Brassica plant, more preferably Brassica rapa. It is preferable that the plant body of the embodiment is a cruciferous plant because ergothioneine is easily accumulated in the plant with high efficiency. This is probably because the plant has an ergothioneine transporter for taking in ergothioneine from the outside world, and functions effectively in the Brassicaceae family.
  • the plant body of the embodiment is preferably a plant body expressing an ergothioneine transporter.
  • cruciferous plants include, for example, Mizuna (Brassica rapa var. Laciniifolia), Nozawana (Brassica rapa var. Hakabura), Komatsuna (Brassica rapa var. Perviridis), Chinese cabbage (Brassica rapa var.sispekinensis), turnip (Brassica rapa var. Glabra, Brassica rapa var. Rapa), cabbage (Brassica oleracea var. sativus var. longipinnatus).
  • Examples of the Asteraceae plants include lettuce (Lactuca sativa var. ⁇ ⁇ ⁇ capiata), sengoku (Glebionis coronaria), and the like.
  • the solanaceous plant is preferably a plant of the genus Solanum.
  • solanaceous plants include tomato (Solanum lycopersicum), eggplant (Solanum melongena), potato (Solanum tuberosum), bell pepper (Capsicum annuum) and the like.
  • the mushrooms are not included in the plant body of the embodiment.
  • the plant body of the embodiment may be the whole plant individual or a part of the plant individual.
  • the part include organs or tissues such as leaves, roots, stems, flowers, fruits, seeds, pollen, and combinations thereof, and among these, leaves are preferable.
  • the content of the ergothioneine may be in the leaf of the plant body.
  • Ergothionein is excellent in antioxidant effect. Since the plant body of the embodiment contains 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight, it is a plant body having excellent antioxidant action and high utility value.
  • the food of the embodiment contains 0.5 ⁇ g or more of ergothioneine per 100 g (however, a food containing a microorganism that can biosynthesize ergothioneine, a food containing a mushroom that can biosynthesize ergothioneine, and a microorganism that can biosynthesize ergothioneine. Fermented foods and processed foods).
  • the food of the embodiment contains 0.5 ⁇ g or more of ergothioneine per 100 g, may contain 1 ⁇ g or more of ergothioneine, may contain 5 ⁇ g or more of ergothioneine, and contains 10 ⁇ g or more of ergothioneine. It may contain 20 ⁇ g or more of ergothioneine, may contain 50 ⁇ g or more of ergothioneine, may contain 100 ⁇ g or more of ergothioneine, may contain 150 ⁇ g or more of ergothioneine, and may contain 200 ⁇ g or more. Ergothioneine may be contained, and 250 ⁇ g or more of ergothioneine may be contained.
  • the upper limit of ergothioneine contained in the food according to the embodiment is not particularly limited, but may be, for example, 10000 ⁇ g per 100 g or 1000 ⁇ g.
  • the weight of the food is measured in the state of being sold in the market.
  • Examples of ergothioneine contained in the food of the embodiment include those exemplified in the above-mentioned “ ⁇ plant body >>”, and detailed description thereof is omitted.
  • the measuring method of ergothioneine can be carried out by the method described in the examples described later.
  • the object to be measured as ergothioneine contained in food may be one that is measured by including oxidized ergothioneine in addition to the above ergothioneine, and only ergothioneine that does not contain oxidized ergothioneine is included. It may be measured.
  • a food in which a microorganism that can originally produce ergothioneine is used as a raw material examples include, for example, laver containing bacteria such as cyanobacteria capable of biosynthesis of ergothioneine, and mushrooms formed by fungi capable of biosynthesis of ergothioneine. .
  • examples of mushrooms that can biosynthesize ergothioneine include shiitake mushroom, oyster mushroom, and eringi.
  • fermented food items fermented by microorganisms capable of biosynthesizing ergothioneine include pickles, miso, bread, yogurt, cheese, and the like.
  • the food of the embodiment is a concept that includes an edible plant among the plants of the embodiment of the present invention.
  • the processed product of the plant body of embodiment is also included in the foodstuff of embodiment.
  • processed products include extracts, crushed materials, pastes, cooked products, canned foods, canned foods, dried foods, frozen foods, beverages, alcoholic beverages, confectionery, seasonings, fats and oils, jams obtained from the plant body of the embodiment.
  • Spices, food additives, health foods, supplements and the like are examples of processed products.
  • meat, fishery products, eggs, milk, fats and processed products of animals bred by feeding the plant body of the embodiment of the present invention as feed are also included as foods of the embodiment.
  • meat include beef, pork and chicken.
  • Ergothionein is excellent in antioxidant effect. Since the food of the embodiment contains 0.5 ⁇ g or more of ergothioneine per 100 g, the food is excellent in antioxidant action and has high utility value.
  • the culture according to the embodiment is a culture of a microorganism capable of biosynthesis of ergothioneine, and contains 50 mg / L or more of ergothioneine.
  • the culture according to the embodiment contains ergothioneine at 50 mg / L or more, may contain ergothioneine at 100 mg / L or more, may contain ergothioneine at 200 mg / L or more, and ergothioneine at 300 mg / L or more. It may be contained, ergothioneine may be contained at 400 mg / L or more, ergothioneine may be contained at 500 mg / L or more, and ergothioneine may be contained at 600 mg / L or more.
  • the upper limit of ergothioneine contained in the culture according to the embodiment is not particularly limited, but may be 10000 mg / L as an example.
  • the microorganism that can biosynthesize ergothioneine may be a microorganism that originally has the ability to biosynthesize ergothioneine.
  • Examples of such microorganisms include specific bacteria that can biosynthesize ergothioneine such as cyanobacteria and mycobacteria.
  • the microorganism capable of biosynthesizing ergothioneine may be a microorganism that has been artificially modified so as to improve the production of ergothioneine. Originally, ergothioneine cannot be biosynthesized, but ergothioneine can be biosynthesized. It may be an artificially modified microorganism. Details of such microorganisms will be described in “ ⁇ Artificially modified microorganisms” below.
  • the culture of the embodiment is obtained by culturing a microorganism capable of biosynthesizing ergothioneine in a medium, and the culture contains 50 mg / L or more of ergothioneine.
  • the following “ ⁇ Method for producing ergothionein>” is also referred to.
  • the form of the culture is not particularly limited, and may be solid, liquid, or a mixture of both, for example, liquid, powder, granule, tablet, tablet, capsule It may be in the form of an agent or the like.
  • mushrooms shall be remove
  • the culture includes a processed product obtained by processing a culture medium after culturing.
  • the medium may be a liquid medium.
  • the processed product includes a product obtained by volatilizing a volatile component contained in a medium and concentrating ergothioneine, a product obtained by extracting ergothioneine and purifying ergothioneine, and the like.
  • the fertilizer of the embodiment includes a culture of a microorganism capable of biosynthesis of ergothioneine. That is, the culture can be used as a fertilizer containing ergothioneine, and a plant containing ergothioneine can be cultivated by applying it to a plant.
  • the form of the fertilizer is not particularly limited, and may be solid, liquid, or a mixture of both.
  • the water content of the fertilizer of the embodiment is preferably small from the viewpoint of transportability, for example, the water content may be 30% by mass or less, 25% by mass or less, and 20% by mass or less. It may be 15% by mass or less. If it is a fertilizer that contains a culture of microorganisms and the water content is in the above range, it usually has a form such as a granule or powder, is excellent in transportability as a fertilizer, and is also usable as a fertilizer. It is good.
  • the fertilizer of the embodiment may be a microorganism culture itself capable of biosynthesizing ergothioneine, or may be one obtained by adding a diluent such as water or an additive such as nutrients to the culture of the embodiment.
  • the fertilizer of the embodiment can be manufactured using the culture of the embodiment as a raw material. For example, after the culture of the embodiment is sterilized and crushed, and then extracted with a solvent such as methanol and the solvent is removed, a fertilizer containing ergothioneine at a high concentration and satisfying the above water content can be produced. .
  • the content of ergothioneine in the fertilizer is not particularly limited, but may be 0.01 mg / L or more and 250 g / L or less, 0.1 mg / L or more and 10000 mg / L or less, 0.5 mg / L or more and 1000 mg / L or less may be sufficient.
  • the production method of the embodiment is a production method of the plant body of the embodiment, and has a cultivation step of cultivating the plant body in a cultivation medium containing ergothioneine, and the cultivation medium contains 1 ⁇ g / L or more of ergothioneine. .
  • the inventors can grow ergothioneine in a culture medium containing ergothioneine, thereby allowing ergothioneine to accumulate in the plant body. It has been found that the plant body of the embodiment containing ergothioneine can be produced. That is, it discovered that the ergothioneine contained in a cultivation medium is recoverable using a plant body by growing a plant body in the cultivation medium containing an ergothioneine.
  • the cultivation medium according to the embodiment contains 1 ⁇ g / L or more of ergothioneine, may contain 0.01 mg / L or more of ergothioneine, may contain 1 mg / L or more of ergothioneine, and may contain 1 mg / L of ergothioneine. May contain more than 10 mg / L ergothioneine, more than 50 mg / L ergothioneine, more than 100 mg / L ergothioneine, more than 250 mg / L ergothioneine Alternatively, ergothioneine may be contained in an amount of 500 mg / L or more, and ergothioneine may be contained in an amount of 600 mg / L or more. By using a culture medium containing ergothioneine at the lower limit or higher, ergothioneine is likely to be efficiently accumulated in the plant body.
  • the culture medium according to the embodiment may contain ergothioneine 10000 mg / L or less, may contain ergothioneine 1000 mg / L or less, may contain ergothioneine 800 mg / L or less, and ergothioneine 300 mg / L or less. It may be contained, ergothioneine may be contained at 100 mg / L or less, ergothioneine may be contained at 10 mg / L or less, and ergothioneine may be contained at 1 mg / L or less.
  • the plant can accumulate ergothioneine, so that ergothioneine can be recovered or concentrated using a plant even from a culture medium containing a low concentration of ergothioneine. is there.
  • the culture medium according to the embodiment may contain ergothioneine 1 ⁇ g / L or more and 10000 mg / L or less, may contain 0.01 mg / L or more and 1000 mg / L or less, and contains 0.1 mg / L or more and 800 mg / L or less. It may be contained in an amount of 1 mg / L to 300 mg / L.
  • the measuring method of ergothioneine can be implemented by the method described in the examples described later.
  • the target to be measured as ergothioneine contained in the culture medium is that only ergothioneine not containing oxidized ergothioneine is measured.
  • “Grow plant with cultivation medium containing ergothioneine” means cultivating the plant in contact with the cultivation medium containing ergothioneine and the cultivation medium and plant containing ergothioneine It is preferable to cultivate the plant in a state where the roots of the body are in contact. The whole plant root may be in contact with the cultivation medium, or only a part may be in contact with the cultivation medium.
  • Examples of ergothioneine used in the production method of the embodiment include those exemplified in the above-mentioned “ ⁇ plant body >>”, and detailed description thereof is omitted.
  • the ergothioneine used in the production method of the embodiment may be in the form of ions or in the form of a salt as long as it can be taken up by plants.
  • Ergothionein used in the cultivation method of the embodiment may be naturally occurring, or may be artificially or artificially produced.
  • Examples of naturally occurring ergothioneine include those produced by microorganisms capable of biosynthesis of ergothioneine.
  • Examples of the microorganism include specific bacteria such as cyanobacteria and mycobacteria, and fungi including specific mushrooms such as shiitake mushroom, oyster mushroom, and eringi. Ergothionein recovered from a microorganism capable of biosynthesis of ergothioneine or purified ergothioneine may be used.
  • Examples of ergothioneine produced artificially or artificially include ergothioneine produced by artificially culturing and producing a microorganism capable of biosynthesis of ergothioneine.
  • ergothioneine produced by microorganisms that have been artificially modified to improve the production of ergothioneine, or originally ergothioneine is not biosynthesizeable, but has been artificially modified so that ergothioneine can be biosynthesized
  • Examples include ergothioneine produced by microorganisms, and details are as described above in “ ⁇ culture and fertilizers >>”.
  • ergothioneine may be used alone or in combination of two or more.
  • the cultivation method of the plant body is not particularly limited, and examples thereof include outdoor cultivation, hydroponics, greenhouse cultivation, house cultivation and the like, and among these, hydroponics is preferable.
  • “Cultivation medium” refers to a medium that can contain ergothioneine such as soil, soil, and nutrient solution for hydroponics among those that contact the plant body during plant cultivation and provide a plant cultivation environment.
  • carriers such as sponges used in hydroponics and the like, and equipment such as floats do not contain ergothioneine and therefore are not included in the culture medium.
  • the cultivation medium is preferably in contact with the roots of the plant body during plant cultivation.
  • the cultivation medium of embodiment refers to what contains 1 microgram / L or more of ergothioneine among the said cultivation medium.
  • the said culture medium may contain the culture of embodiment, or the fertilizer of embodiment.
  • the cultivation process in the production method of the embodiment may be a cultivation medium containing a culture of a microorganism capable of biosynthesis of ergothioneine and cultivating a plant body.
  • the cultivation process in the manufacturing method of embodiment may grow a plant body with the cultivation medium containing the fertilizer containing the culture of the microorganisms which can biosynthesize ergothioneine.
  • the culture medium containing the fertilizer of the embodiment can be obtained by applying the fertilizer of the embodiment to soil, culture medium, hydroponics nutrient solution, or the like, for example.
  • the culture medium containing the culture of the embodiment may be obtained, for example, by applying the culture of the embodiment to soil, culture medium, hydroponics nutrient solution, or the like. You may obtain by mixing a liquid etc. and the culture of embodiment.
  • the culture medium according to the embodiment for example, the culture itself of the embodiment may be used, or the culture of the embodiment added with a diluent such as water or an additive such as nutrients may be used. Also good.
  • a culture of a microorganism capable of biosynthesis of ergothioneine is added to a culture medium that does not contain ergothioneine or contains less than 1 ⁇ g / L of ergothioneine, and ergothioneine is added at 1 ⁇ g / L.
  • fertilizer containing a culture of microorganisms capable of biosynthesis of ergothioneine is added to a culture medium not containing ergothioneine or containing less than 1 ⁇ g / L of ergothioneine, and ergothioneine is added. You may have the addition process of obtaining the culture medium containing 1 microgram / L or more.
  • the cultivation process is carried out until the plant contains 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight.
  • Implementation time of the cultivation process that is, the time for cultivating the plant in the state where the cultivation medium containing ergothioneine is in contact with the plant is the time required for the plant to contain 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight May be determined as appropriate. As an example, it may be 1 hour or longer, 12 hours or longer, 24 hours or longer, or 3 days or longer.
  • a cultivation process may be performed continuously and may be performed in multiple times.
  • the manufacturing method of the embodiment may further include a harvesting step for harvesting the plant body after the cultivation step.
  • the cultivation process is preferably carried out until just before the harvesting process.
  • the cultivation process is preferably performed within at least 10 days before the harvesting process, and is preferably performed within at least 3 days.
  • the plant body of the embodiment containing 0.5 ⁇ g or more of ergothioneine per 100 g of fresh weight can be produced.
  • the ergothioneine contained in a culture medium can be collect
  • the cultivation process in the production method of the embodiment can be considered as a process of refining ergothioneine, and instead of refining and using ergothioneine, it is possible to use ergothioneine as a plant body in which ergothioneine is accumulated. As a result, ergothioneine can be supplied at low cost, and ergothioneine is expected to spread.
  • microorganisms that can biosynthesize ergothioneine, microorganisms that have been artificially modified to improve the production of ergothioneine, and microorganisms that have been artificially modified so that ergothioneine can be biosynthesized Will be described. These microorganisms can be suitably used as the microorganisms that may be used in the culture, fertilizer, and plant production methods of the embodiments.
  • the microorganism capable of biosynthesizing ergothioneine may originally have ergothioneine-producing ability or may be modified to have ergothioneine-producing ability.
  • a microorganism having an ergothioneine-producing ability may be obtained, for example, by imparting an ergothioneine-producing ability to a microorganism or by enhancing the ergothioneine-producing ability of a microorganism.
  • Examples of a method for modifying a microorganism so as to have the ability to produce ergothioneine include a method for modifying a microorganism so as to retain a gene involved in ergothioneine synthesis. Modification of a microorganism to retain a gene involved in ergothioneine synthesis can be achieved by introducing a gene involved in ergothioneine synthesis into the microorganism. Moreover, modifying a microorganism so as to retain a gene involved in ergothioneine synthesis can also be achieved by introducing a mutation into a gene possessed by the microorganism by natural mutation or mutagen treatment.
  • the genes involved in ergothioneine synthesis include the egtABCDE gene operon encoding the ergothioneine protein group, the egtABCDE gene operon derived from mycobacteria is preferred, and the egtABCDE gene operon derived from bacteria belonging to the genus Mycobacterium is more preferred.
  • the egtABCDE gene operon derived from Mycobacterium smegmatis is more preferable.
  • the egtABCDE gene may be a conservative variant of egtABCDE derived from various organisms such as Mycobacterium smegmatis (a variant in which the original function is maintained).
  • “Original function” for egtABCDE refers to ergothioneine synthetic activity.
  • conservative variants of genes and proteins the descriptions regarding RNA pyrophosphohydrolase gene and conservative variants of RNA pyrophosphohydrolase described later can be applied mutatis mutandis.
  • the microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so that the cysteine-producing ability is increased.
  • Cysteine is a precursor of ergothioneine, and the productivity of cysteine ergothioneine can be enhanced by increasing the ability to produce cysteine.
  • cyste means L-cysteine unless otherwise specified.
  • L-cysteine means free L-cysteine, a salt thereof, or a mixture thereof, unless otherwise specified.
  • the salt will be described later.
  • cysteine can be applied mutatis mutandis to related substances of L-cysteine. That is, for example, the term “O-acetylserine” means free O-acetyl-L-serine, a salt thereof, or a mixture thereof, unless otherwise specified.
  • the microorganism may originally have L-cysteine producing ability or may be modified so as to have L-cysteine producing ability.
  • a microorganism having L-cysteine-producing ability may be obtained, for example, by imparting L-cysteine-producing ability to a microorganism, or by enhancing L-cysteine-producing ability of a microorganism.
  • L-cysteine-producing ability can be imparted or enhanced by a method conventionally used for microbial breeding (for example, ⁇ Amino Acid Fermentation, Inc., Society Publishing Center, May 30, 1986, first edition issued, See pages 77-100).
  • a method conventionally used for microbial breeding for example, ⁇ Amino Acid Fermentation, Inc., Society Publishing Center, May 30, 1986, first edition issued, See pages 77-100.
  • methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes.
  • the creation of stocks In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those that show resistance or metabolic control mutations and have the ability to produce L-amino acids.
  • Common mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in International Publication No. 00/18935, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
  • L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
  • L-cysteine-producing microorganisms and methods for imparting or enhancing L-cysteine-producing ability will be specifically exemplified.
  • reformation for providing or enhancing the property and L-cysteine production ability which the L-cysteine production microorganisms which are illustrated below may have may be used independently, and may be used in combination as appropriate.
  • Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a microorganism so that the L-cysteine biosynthesis system is enhanced.
  • “Enhance L-cysteine biosynthesis system” means that the activity of one or more enzymes selected from enzymes involved in L-cysteine biosynthesis (also called L-cysteine biosynthesis enzymes) is enhanced. To do.
  • Examples of L-cysteine biosynthetic enzymes include enzymes of the L-cysteine biosynthetic pathway and enzymes involved in the production of compounds that are substrates of the pathway.
  • L-cysteine biosynthetic enzymes include serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrognase (PGD).
  • SAT serine acetyltransferase
  • PGD 3-phosphoglycerate dehydrognase
  • the genes encoding SAT and PGD are also referred to as SAT gene and PGD gene, respectively.
  • a gene encoding an L-cysteine biosynthetic enzyme for example, any of genes derived from Escherichia bacteria such as Escherichia coli and genes derived from various other organisms can be used.
  • the SAT gene the cysE gene has been recloned from a wild strain of Escherichia coli and an L-cysteine secreting mutant, and the nucleotide sequence has been clarified (for example, “Denk, D. and Boeck, A., General Microbiol, 133, 515-525 (1987) ”).
  • the serA gene of various organisms such as Escherichia coli is known.
  • SAT is subject to feedback inhibition by L-cysteine
  • SAT in which this feedback inhibition has been reduced or eliminated may be used.
  • “Feedback inhibition is reduced or eliminated” is also referred to as “resistance to feedback inhibition”.
  • SAT in which feedback inhibition by L-cysteine is reduced or eliminated is also referred to as “mutant SAT”.
  • a gene encoding mutant SAT is also referred to as “mutant SAT gene”. That is, examples of a method for imparting or enhancing L-cysteine producing ability include a method of modifying a microorganism so as to retain a mutant SAT gene. That is, the microorganism may be modified to retain the mutant SAT gene.
  • Mutant SAT includes SAT having a mutation that replaces the methionine residue at position 256 of wild-type SAT with an amino acid residue other than lysine residue and leucine residue, and C from methionine residue at position 256 of wild-type SAT.
  • Examples include SAT having a mutation that deletes the terminal region (see, for example, Japanese Patent Application Laid-Open No. 11-155571).
  • amino acid residues other than lysine residues and leucine residues examples include 17 types of amino acid residues other than methionine residues, lysine residues and leucine residues among amino acids constituting ordinary proteins. . Specific examples of the “amino acid residue other than lysine residue and leucine residue” include isoleucine residue and glutamic acid residue.
  • mutant SAT SAT having one or more mutations at amino acid residues 89 to 96 of wild-type SAT (see, for example, US Patent Application Publication No. 2005/0112731), wild-type SAT SAT (mutant gene name cysE5; for example, US Patent Application Publication No.
  • SAT having a mutation that replaces the valine residue at position 95 and the aspartic acid residue at position 96 with an arginine residue and a proline residue, respectively.
  • SAT having a mutation that substitutes the threonine residue at position 167 of wild-type SAT with an alanine residue
  • Wild-type SAT refers to a SAT that does not have the above-described mutation (mutation that is resistant to feedback inhibition by L-cysteine).
  • wild type as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation.
  • wild-type SAT include SAT derived from various organisms such as Escherichia coli.
  • examples of wild-type SAT include conservative variants of SAT derived from various organisms such as Escherichia coli (variants in which the original functions are maintained) that do not have the above-described mutation.
  • “Original function” for SAT refers to SAT activity.
  • Escherichia coli JM39-8 strain E.coli39JM39-8 (pCEM256E) carrying a plasmid pCEM256E containing a mutant cysE encoding a mutant SAT in which the methionine residue at position 256 is substituted with a glutamic acid residue, private number: AJ13391
  • pCEM256E carrying a plasmid pCEM256E containing a mutant cysE encoding a mutant SAT in which the methionine residue at position 256 is substituted with a glutamic acid residue, private number: AJ13391
  • pCEM256E carrying a plasmid p
  • mutant SAT may be modified so as to be resistant to feedback inhibition by L-cysteine as described above, but may be one that is not originally subjected to feedback inhibition.
  • SAT of Arabidopsis thaliana is known not to be subjected to feedback inhibition by L-cysteine and can be suitably used in the present invention.
  • pEAS-m As a plasmid containing the SAT gene derived from Arabidopsis thaliana, pEAS-m (see, for example, “FEMS Microbiol. Lett., 179 (1999) 453-459”) is known.
  • PGD in which this feedback inhibition is reduced or eliminated may be used.
  • PGD in which feedback inhibition by L-serine is reduced or eliminated is also referred to as “mutant PGD”.
  • a gene encoding a mutant PGD is also referred to as a “mutant PGD gene”. That is, as a method for imparting or enhancing L-cysteine production ability, for example, a method of altering bacteria so as to retain a mutant PGD gene can also be mentioned. That is, the microorganism may be modified so as to retain the mutant PGD gene. PGD activity can be enhanced by retaining a mutant PGD gene in a microorganism.
  • mutant PGD examples include PGD having a mutation that deletes the tyrosine residue at position 410 (N-terminal) of wild-type PGD (mutant gene name serA5; see, for example, US Pat. No. 6,180,373).
  • Wild-type PGD refers to a PGD that does not have the above-described mutation (mutation that is resistant to feedback inhibition by L-serine).
  • the “wild type” as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation.
  • Examples of the wild-type PGD include PGD derived from various organisms such as Escherichia coli.
  • wild-type PGD examples include conservative variants of PGD derived from various organisms such as Escherichia coli (variants in which the original functions are maintained) that do not have the above-described mutation.
  • “Original function” for PGD refers to PGD activity.
  • Examples of a method for imparting or enhancing L-cysteine production ability include a method of modifying a microorganism so that an L-cysteine excretion system is enhanced. “Strengthening the L-cysteine excretion system” means enhancing the activity of one or more proteins selected from proteins involved in L-cysteine excretion (also referred to as L-cysteine excretion factor). .
  • L-cysteine excretion factors include proteins encoded by the ydeD gene (eamA gene) (see, for example, Japanese Patent Application Laid-Open No. 2002-233384), proteins encoded by the yfiK gene (for example, Japanese Patent Application Laid-Open No. 2004-233).
  • emrAB emrAB
  • emrKY emrKY
  • yojIH acrEF
  • bcr bcr
  • each protein encoded by the cusA gene for example, refer to Japanese Unexamined Patent Publication No. 2005-2873334
  • protein encoded by the yeaS gene for example, Japan JP 2010-1875524 A
  • a YeaS protein having a mutation in at least one selected from the group consisting of a threonine residue at position 28, a phenylalanine residue at position 137, and a leucine residue at position 188 of the wild-type YeaS protein may be used.
  • the YeaS protein having the mutation described above is also referred to as “mutant YeaS protein”.
  • a gene encoding a mutant YeaS protein is also referred to as a “mutant yeaS gene”. That is, as a method for imparting or enhancing L-cysteine production ability, for example, a method of modifying a microorganism so as to retain a mutant yeaS gene can also be mentioned. That is, the microorganism may be modified to retain the mutant yeaS gene. By retaining the mutant yeaS gene in a microorganism, the L-cysteine excretion system can be enhanced (see, for example, European Patent Publication No. 2218729).
  • the mutant YeaS protein is a mutation that replaces the threonine residue at position 28 of the YeaS protein with asparagine, and the phenylalanine residue at position 137 is replaced with one of serine, glutamine, alanine, histidine, cysteine, and glycine. And at least one mutation selected from the group consisting of a mutation in which the leucine residue at position 188 is substituted with glutamine (see, for example, European Patent Application Publication No. 2218729). “Wild-type YeaS protein” refers to a YeaS protein that does not have the mutation described above.
  • wild type as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation.
  • wild-type YeaS protein examples include YeaS proteins derived from various organisms such as Escherichia coli.
  • Examples of the wild-type YeaS protein include conservative variants (variants in which the original functions are maintained) of YeaS proteins derived from various organisms such as Escherichia coli, which do not have the above-described mutation.
  • the “original function” for YeaS protein refers to the property of improving the ability of microorganisms to produce L-cysteine when expression is increased in microorganisms.
  • the “amino acid residue at the X position of wild-type SAT” means an amino acid residue corresponding to the amino acid residue of wild-type SAT unless otherwise specified.
  • the “amino acid residue at the X position of wild-type PGD” means an amino acid residue corresponding to the amino acid residue of wild-type PGD unless otherwise specified.
  • the “amino acid residue at the X-position of the wild-type YeaS protein” means an amino acid corresponding to the amino acid residue at the X-position in the wild-type YeaS protein of Escherichia coli K-12 MG1655 unless otherwise specified. Means residue.
  • the “X position” in the amino acid sequence means the X position from the N terminal of the amino acid sequence, and the amino acid residue at the N terminal is the amino acid residue at the first position.
  • the position of an amino acid residue shows a relative position
  • the absolute position may be moved back and forth by deletion, insertion, addition, etc. of an amino acid.
  • “the threonine residue at position 167 of wild-type SAT” means an amino acid residue corresponding to the threonine residue at position 167 in wild-type SAT, and one amino acid residue on the N-terminal side from position 167 Is deleted, it is assumed that the 166th amino acid residue from the N-terminal is “the threonine residue at position 167 of wild-type SAT”.
  • the 168th amino acid residue from the N-terminal is assumed to be “the threonine residue at position 167 of wild-type SAT”.
  • amino acid residue in the amino acid sequence of an arbitrary SAT is “the amino acid residue corresponding to the X-position amino acid residue in wild-type SAT” refers to the amino acid sequence of the SAT and the amino acid sequence of wild-type SAT. This can be determined by performing the alignment.
  • the PGD or YeaS protein may be aligned with the wild-type PGD amino acid sequence or the amino acid sequence of the wild-type YeaS protein of Escherichia coli K-121MG1655 strain.
  • the alignment can be performed using, for example, a known gene analysis software. Specific software includes DNA solutions manufactured by Hitachi Solutions, GENETYX manufactured by GENETICS, etc. (for example, “Elizabeth® C. Tyler® et al., Computers® and Biomedical Research, 24 (1), 72-96, 1991). ", BartonBarGJ et al., Journal of molecular biology, 198 (2), 327-37. 1987”).
  • Mutant genes are wild-type genes (i.e., wild-type SAT genes, wild-type PGD genes, or wild-type yeaS genes) are mutated proteins (i.e., Mutated SAT, mutated PGD, or mutated YeaS protein).
  • Modification of DNA can be performed by a known method. Specifically, for example, as a site-specific mutation method for introducing a target mutation into a target site of DNA, a method using PCR (for example, ⁇ Higuchi, R., 61, in, PCR technology, Erlich, H. A Eds., Stockton press (1989), CarCarter, P., Meth.
  • Mutant genes can also be obtained by chemical synthesis.
  • the codon after mutation is not particularly limited as long as it encodes the target amino acid, but it is preferable to use a codon frequently used in the microorganism of the present invention.
  • Modification of a microorganism so as to retain a mutant gene can be achieved by introducing the mutant gene into the microorganism.
  • modifying a microorganism so as to retain a mutant gene can also be achieved by introducing a mutation into the gene of the microorganism by natural mutation or mutagen treatment.
  • L-cysteine-producing ability can also be imparted or enhanced by enhancing the expression of a cysPTWAM cluster gene encoding a sulfate / thiosulfate transport system protein group (for example, Japanese Patent Application Laid-Open No. 2005-137369). No., European Patent No. 1528108).
  • sulfide is incorporated into O-acetyl-L-serine through a reaction catalyzed by O-acetylserine (thiol) -lyase-A and B recoded by the cysK and cysM genes, respectively.
  • -Cysteine is produced. Therefore, these enzymes are included in the enzymes of the L-cysteine biosynthetic pathway, and the ability to produce L-cysteine can also be imparted or enhanced by enhancing the expression of genes encoding these enzymes.
  • L-cysteine degradation system refers to enhancing the activity of one or more proteins selected from proteins involved in the degradation of L-cysteine (also referred to as L-cysteine degrading enzymes).
  • the L-cysteine-degrading enzyme is not particularly limited, but cystathionine- ⁇ -lyase encoded by the metC gene (for example, Japanese Patent Application Laid-Open No.
  • L-cysteine-producing bacteria or parent strains for deriving them include, specifically, E. coli JM15 (e.g., U.S. Pat.No. 6,218,168 transformed with various cysE alleles encoding mutant SAT).
  • E. coli W3110 U.S. Pat.No. 5,972,663
  • expression of a gene encoding a protein suitable for excretion of toxic substances into cells decreased cysteine desulfhydrase activity E.coli (see, for example, Japanese Patent Application Laid-Open No.
  • E.coli W3110 (for example, WO 01/155) having an increased activity of a positive transcriptional regulator of cysteine regulon recoded by the cySB gene. 27307), a plasmid pACYC DES containing a ydeD gene, a mutant cysE gene (cysEX gene), and a mutant serA gene (serA5 gene) (for example, Japanese Patent Application Laid-Open No. 2005-137369 (corresponding US patent application) Publication No. 2005/0124049, E.coli strain E.coli such as to hold the states Patent Publication No. 1528108 Pat)) can be mentioned.
  • PACYC DES is a plasmid obtained by inserting the above three genes into pACYC184, and each gene is controlled by an ompA promoter (PompA).
  • O-acetylserine is a precursor of L-cysteine
  • the biosynthetic pathway of O-acetylserine is common with the biosynthetic pathway of L-cysteine.
  • O-acetylserine is easily converted to N-acetylserine by a natural reaction in a neutral to alkaline pH range.
  • L-cysteine excretion factors as described above are known that can also excrete O-acetylserine. Therefore, the production capacity of these L-cysteine precursors is partially based on methods for imparting or enhancing L-cysteine production capacity, such as enhancement of L-cysteine biosynthesis system and enhancement of L-cysteine excretion system. By doing so, it can be imparted or enhanced.
  • the ability to produce compounds such as ⁇ -glutamylcysteine, glutathione, cystathionine, homocysteine, L-methionine, and S-adenosylmethionine that are biosynthesized using L-cysteine as a starting material is also an enzyme in the biosynthetic pathway of the target compound
  • the activity can be imparted or enhanced by decreasing the activity of an enzyme (including an enzyme that degrades the target compound) in a pathway branched from the biosynthetic pathway.
  • the ability to produce ⁇ -glutamylcysteine can be imparted or enhanced by at least one of enhancement of ⁇ -glutamylcysteine synthetase activity and reduction of glutathione synthetase activity.
  • the ability to produce glutathione can be imparted or enhanced by enhancing at least one of ⁇ -glutamylcysteine synthetase activity and glutathione synthetase activity.
  • the ability to produce ⁇ -glutamylcysteine or glutathione can also be imparted or enhanced by using a mutant ⁇ -glutamylcysteine synthetase resistant to feedback inhibition by glutathione.
  • the production of glutathione is described in detail in a review by Li et al. (Yin Li, Gongyuan Wei, Jian Chen.Appl Microbiol Biotechnol (2004) 66: 233-242).
  • L-methionine can be imparted or enhanced by imparting L-threonine requirement or norleucine resistance (for example, see Japanese Patent Application Laid-Open No. 2000-139471).
  • the gene for the enzyme involved in the biosynthesis of L-threonine exists as the threonine operon (thrABC) .
  • thrABC threonine operon
  • the biosynthesis ability after L-homoserine is reduced.
  • a lost L-threonine-requiring strain can be obtained.
  • S-adenosylmethionine synthetase activity is weakened, and L-methionine-producing ability is imparted or enhanced.
  • S-adenosylmethionine synthetase is encoded by the metK gene.
  • L-methionine-producing ability is also due to enhanced activity of enzymes involved in L-methionine biosynthesis such as deficiency of methionine repressor, homoserine transsuccinylase, cystathionine ⁇ -synthase and aspartokinase-homoserine dehydrogenase II. Can be imparted or enhanced (see, for example, Japanese Patent Application Laid-Open No. 2000-139471).
  • the methionine repressor is encoded by the metJ gene
  • the homoserine transsuccinylase is encoded by the metA gene
  • the cystathionine ⁇ -synthase is encoded by the metB gene
  • the aspartokinase homoserine dehydrogenase II is encoded by the metL gene.
  • L-methionine-producing ability can also be imparted or enhanced by using a mutant homoserine transsuccinylase resistant to feedback inhibition by L-methionine (for example, Japanese Patent Application Laid-Open No. 2000-139471, US (See Japanese Patent Application Publication No. 2009/0029424).
  • L-methionine is biosynthesized using L-cysteine as an intermediate
  • L-methionine production ability can be improved by improving L-cysteine production ability (for example, Japanese Patent Application Laid-Open No. 2000-139471). No., US Patent Application Publication No. 2008/0311632). Therefore, in order to impart or enhance L-methionine production ability, a method for imparting or enhancing L-cysteine production ability is also effective.
  • L-methionine-producing bacteria or parent strains for deriving them include, for example, E. coli AJl1539 (NRRL B-12399), AJ11540 (NRRL B-12400), AJl1541 (NRRL B-12401) AJ11542 (NRRL B-12402) (see, for example, British Patent No. 2075055), 218 strain (VKPM B-8125) having norleucine resistance, which is an analog of L-methionine (see, for example, Russian Patent No. 2209248) E. coli strains such as 73 strains (VKPM B-8126) (see, for example, the specification of Russian Patent No. 2215782).
  • L-methionine-producing bacteria or parent strains for inducing them specifically, for example, AJ13425 (FERM P-16808) derived from E. coli W3110 (for example, Japanese Patent Application Laid-Open No. 2000-139471) (See the publication).
  • AJ13425 lacks methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, intracellular homoserine transsuccinylase activity, cystathionine ⁇ -synthase activity and aspartokinase homoserine dehydrogenase II activity Is an enhanced L-threonine-requiring strain.
  • cystathionine and homocysteine are intermediates in the L-methionine biosynthetic pathway, in order to confer or enhance the production ability of these substances, a part of the method for imparting or enhancing the above-mentioned production ability of L-methionine is used. It is effective to do.
  • a method for imparting or enhancing cystathionine-producing ability specifically, a method using a methionine-requiring mutant (see, for example, Japanese Patent Application Laid-Open No.
  • cysteine or a biosynthetic raw material thereof in a fermentation medium
  • homoserine or a biosynthetic raw material thereof
  • a method of imparting or enhancing cystathionine production ability is also effective for imparting or enhancing homocysteine production ability.
  • the ability to produce compounds such as S-adenosylmethionine that is biosynthesized using L-methionine as a starting material also enhances the enzymatic activity of the biosynthetic pathway of the target compound or branches off from the biosynthetic pathway It can be imparted or enhanced by reducing the activity of pathway enzymes (including enzymes that degrade target compounds).
  • the ability to produce S-adenosylmethionine enhances methionine adenosyltransferase activity (see, for example, EP 0647712 and EP 1457569), an excretion factor encoded by the mdfA gene It can be imparted or enhanced by strengthening MdfA (see, eg, US Pat. No. 7,410,789).
  • the gene and protein used for breeding L-cysteine-producing bacteria may have known gene and protein base sequences and amino acid sequences such as the above-exemplified genes and proteins, respectively.
  • the genes and proteins used for breeding L-cysteine-producing bacteria may be conservative variants of known genes and proteins such as those exemplified above.
  • a gene used for breeding L-cysteine-producing bacteria may be one or several at one or several positions in the amino acid sequence of a known protein as long as the original function is maintained. It may be a gene encoding a protein having an amino acid sequence in which one amino acid is substituted, deleted, inserted or added.
  • the descriptions regarding RNA pyrophosphohydrolase gene and conservative variants of RNA pyrophosphohydrolase described later can be applied mutatis mutandis.
  • the microorganism may be modified so that the activity of RNA pyrophosphohydrolase is reduced.
  • the microorganism can be obtained by modifying a microorganism having L-cysteine producing ability so that the activity of RNA pyrophosphohydrolase is reduced.
  • the microorganism can be obtained by imparting or enhancing L-cysteine production ability after modifying the microorganism so that the activity of RNA pyrophosphohydrolase is reduced.
  • the microorganism may have acquired L-cysteine production ability by being modified so that the activity of RNA pyrophosphohydrolase is reduced.
  • the modification for constructing the microorganism can be performed in any order.
  • the L-cysteine production ability of the microorganism can be improved.
  • RNA pyrophosphohydrolase The RNA pyrophosphohydrolase and the gene encoding it will be described below.
  • RNA pyrophosphohydrolase refers to a protein having RNA pyrophosphohydrolase activity.
  • RNA pyrophosphohydrolase activity refers to an activity that catalyzes a reaction of hydrolyzing the triphosphorylated 5 ′ end of RNA to liberate diphosphate (pyrophosphate).
  • a gene encoding RNA pyrophosphohydrolase is also referred to as “RNA pyrophosphohydrolase gene”.
  • RNA pyrophosphohydrolase includes NudH protein encoded by nudH gene.
  • the nudH gene is also called rppH gene or ygdP gene.
  • NudH protein is also called RppH protein, YgdP protein, and the like.
  • the base sequence of the nudH gene possessed by the microorganism and the amino acid sequence of the NudH protein encoded by them can be obtained from a public database such as NCBI.
  • the nudH gene of Escherichia coli K-12MG1655 strain corresponds to a complementary sequence of sequences 2968447 to 2968777 in the genome sequence registered as GenBank accession NC_000913 (VERSI0N NC_000913.3 GI: 556503834) in the NCBI database.
  • the NudH protein of Escherichia coli K-12KMG1655 strain is registered as GenBank accession NP_417307 (version NP_417307.l GI: 16130734).
  • the nudH gene of Pantoea ananatis AJ13355 strain corresponds to a complementary sequence of positions 2891727 to 2892254 in the genome sequence registered as GenBankBIaccession NC_017531 (VERSI0N NC 017531.l GI: 386014600) in the NCBI database.
  • the NudH protein of Pantoea ananatis AJ13355 strain is registered as GenBank accession WP_013026988 (version WP_013026988.l GI: 502792012).
  • the expression “having an (amino acid or base) sequence” includes the case of “including the (amino acid or base) sequence” and the case of “consisting of the (amino acid or base) sequence”.
  • the RNA pyrophosphohydrolase gene may be a variant of the RNA pyrophosphohydrolase gene exemplified above, for example, the nudH gene exemplified above, as long as the original function is maintained.
  • the RNA pyrophosphohydrolase may be a variant of the RNA pyrophosphohydrolase exemplified above, for example, the NudH protein exemplified above, as long as the original function is maintained.
  • Such a variant in which the original function is maintained may be referred to as a “conservative variant”.
  • the term “nudH gene” is intended to encompass conservative variants thereof in addition to the nudH gene exemplified above.
  • NudH protein is intended to encompass those conservative variants in addition to the NudH proteins exemplified above.
  • conservative variants include the above-described RNA pyrophosphohydrolase gene, RNA pyrophosphohydrolase homologues, and artificially modified variants.
  • the original function is maintained means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein.
  • “The original function is maintained” for a gene means that the variant of the gene encodes a protein in which the original function is maintained.
  • “The original function is maintained” for an RNA pyrophosphohydrolase gene means that a variant of the gene encodes a protein having RNA pyrophosphohydrolase activity.
  • the original function is maintained” for RNA pyrophosphohydrolase means that the variant of the protein has RNA pyrophosphohydrolase activity.
  • RNA pyrophosphohydrolase activity of a protein is determined by incubating the protein with a substrate (e.g., triphosphorylated mono- or oligoribonucleotide) and measuring the production of the protein and substrate-dependent diphosphate (pyrophosphate).
  • a substrate e.g., triphosphorylated mono- or oligoribonucleotide
  • pyrophosphate substrate-dependent diphosphate
  • RNA pyrophosphohydrolase gene homologs or RNA pyrophosphohydrolase homologs include, for example, BLAST searches and FASTAs using the base sequence of the RNA pyrophosphohydrolase gene exemplified above or the amino acid sequence of the RNA pyrophosphohydrolase exemplified above as the query sequence. It can be easily obtained from public databases by searching.
  • RNA pyrophosphohydrolase gene homologs can be obtained, for example, by PCR using chromosomes of various organisms as templates and oligonucleotides prepared based on the base sequences of these known RNA pyrophosphohydrolase genes as primers. Can do.
  • an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the above amino acid sequence may be a gene encoding a protein having the same.
  • at least one of the N-terminal and C-terminal of the encoded protein may be extended or shortened.
  • the above “one or several” differs depending on the position and type of the protein in the three-dimensional structure of the amino acid residue, and specifically, for example, 1 to 50, 1 to 40 1 or more and 30 or less, preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, still more preferably 1 or more and 5 or less, and particularly preferably 1 or more and 3 or less.
  • substitution, deletion, insertion or addition of one or several amino acids is a conservative mutation in which the function of the protein is maintained normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxy group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, CyS to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • amino acid substitutions, deletions, insertions, additions, or inversions as described above are caused by naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. It also includes what happens.
  • RNA pyrophosphohydrolase gene is sealed in the entire amino acid sequence as long as the original function is maintained, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably May be a gene encoding a protein having a homology of 95% or more, more preferably 97% or more, particularly preferably 99% or more.
  • “homology” means “identity”.
  • RNA pyrophosphohydrolase gene hybridizes under stringent conditions with a probe that can be prepared from the above base sequence, for example, a complementary sequence to the whole or a part of the above base sequence, as long as the original function is maintained. It may be DNA. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%.
  • the conditions under which DNAs having a homology of at least% are hybridized and DNAs having lower homology are not hybridized with each other, or normal Southern hybridization washing conditions are “60 ° C., 1 ⁇ SSC, 0.1 % SDS ”, preferably“ 60 ° C., 0.1 ⁇ SSC, 0.1% SDS ”, more preferably“ 68 ° C., 0.1 ⁇ SSC, 0.1% SDS ”at a salt concentration and temperature corresponding to once, preferably twice.
  • the conditions for washing 3 times or less can be mentioned.
  • the probe used for the hybridization may be a part of a complementary sequence of a gene.
  • a probe can be prepared by PCR using an oligonucleotide prepared based on a known gene sequence as a primer and a DNA fragment containing the above gene as a template.
  • a DNA fragment having a length of about 300 bp can be used as the probe.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the RNA pyrophosphohydrolase gene may be one in which an arbitrary codon is replaced with an equivalent codon.
  • the RNA pyrophosphohydrolase gene may be modified to have optimal codons depending on the codon usage of the host to be used.
  • the percentage sequence identity between two sequences can be determined using, for example, a mathematical algorithm.
  • a mathematical algorithm include Myers and Miller (1988) CAB10S 4:11 17 algorithm, smith et al (1981) Adv.Appl, Math. 2: 482 local homology algorithm, Needleman and Wunsch. (1970) J. ⁇ ⁇ ⁇ ⁇ ⁇ Mol. Biol. 48: 443 453 homology alignment algorithm, Pearson and Lipman (1988) Proc, Natl. Acad. Sci. 85: 24442448 Similarity search method, Karlin and Altschul (1993) Proc A modified algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, as described in. Natl. Acad. Sci. USA 90: 5873-5877.
  • sequence comparison for determining sequence identity can be performed.
  • the program can be appropriately executed by a computer.
  • Such programs include, but are not limited to, PC / Gene program CLUSTAL (available from Intelligents, MountainMoView, Calif.), ALIGN program (Version 2.0), and Wisconsin Genetics Software Package, Version 8 (Genetics Computer GAP, BESTFIT, BLAST, FASTA and TFASTA from Group (GCG), 575 Science Drive, Madison, Wis., USA. Alignment using these programs can be performed using initial parameters, for example. For the CLUSTAL program, see ⁇ HigGlns et al.
  • Gapped BLAST (BLAST 2.0) can be used to obtain an alignment with a gap added for the purpose of comparison.
  • PSI-BLAST (BLAST 2.0) can also be used to perform an iterated search that detects distant relationships between sequences. See “Altschul et al. (1997) Nucleic Acids Res. 25: 3389” for Gapped BLAST and PSI-BLAST.
  • the initial parameters of each program eg, BLASTN for nucleotide sequences, BLASTX for amino acid sequences
  • the alignment may be performed manually.
  • ⁇ Sequence identity between two sequences is calculated as the percentage of residues that match between the two sequences when the two sequences are aligned for maximum matching.
  • Protein activity increases “means that the activity per cell of the protein is increased relative to the unmodified strain.
  • unmodified strain means a control strain that has not been modified to increase the activity of the target protein.
  • Non-modified strains include wild strains and parent strains.
  • increasing protein activity is also referred to as “enhancing protein activity”.
  • the protein activity increases means that the molecular teaching per cell of the protein is increased and the function per molecule of the protein is increased compared to the unmodified strain. This means at least one of the states.
  • “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be.
  • “the protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Furthermore, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and then the activity of a suitable target protein may be imparted.
  • the protein activity is not particularly limited as long as it is increased compared to the unmodified strain, but may be increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain, for example.
  • the non-modified strain does not have the activity of the target protein, it is sufficient that the protein is generated by introducing a gene encoding the protein.
  • the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
  • Modifications that increase the activity of the protein are achieved, for example, by increasing the expression of the gene encoding the protein.
  • Gene expression is increased means that the expression level of the gene per cell is increased as compared to a non-modified strain such as a wild strain or a parent strain.
  • ⁇ gene expression increases '' specifically means that the amount of gene transcription (mRNA amount) increases and the amount of gene translation (protein amount) increases. It may mean the state of Note that “increasing gene expression” is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • increasing gene expression means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (see, for example, “MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory) ''.
  • homologous recombination see, for example, “MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory) ''.
  • gene introduction methods utilizing homologous recombination include, for example, the Red-driven integration method (e.g., ⁇ Datsenko, KA, and Wanner, BL, Proc. Natl. Acad. Sci.
  • a method using a linear DNA a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, and a suspension vector that does not have a replication origin and functions in a host.
  • examples thereof include a method used and a transduction method using a phage. Only 1 copy of the gene may be introduced, or 2 copies or more may be introduced. For example, multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target.
  • sequences having many copies on a chromosome include repetitive DNA sequences and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (for example, Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, European Patent No. 805867) Refer to the book).
  • Confirmation of the introduction of the target gene on the chromosome can be achieved by using Southern hybridization using a probe having a sequence complementary to all or part of the gene, or using a primer prepared based on the sequence of the gene. It can be confirmed by PCR.
  • An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a gnome DNA of a microorganism having the target gene as a template.
  • the vector a vector capable of autonomous replication in a host cell can be used.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be equipped with a promoter or terminator for expressing the inserted gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid or a phagemid.
  • vectors that can autonomously replicate in bacteria such as Escherichia coli, specifically, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 ( Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), pACYC vector, wide host range Vector RSF1010 etc. are mentioned.
  • the gene When a gene is introduced, the gene only needs to be retained in the microorganism so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in a microorganism.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a circular promoter of the gene to be introduced, or may be a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
  • a transcription terminator can be placed downstream of the gene.
  • the terminator is not particularly limited as long as it functions in microorganisms.
  • the terminator may be a host-derived terminator or a heterologous terminator.
  • the terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene.
  • the vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8 Genetic Engineering, Kyoritsu Publishing, 1987”, and these can be used.
  • each gene when two or more genes are introduced, each gene may be retained in a microorganism so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template.
  • the introduced gene may be totally synthesized based on, for example, the base sequence of the gene (see, for example, “Gene, 60 (1), H5127 (1987)”).
  • the acquired gene can be used as it is or after being appropriately modified.
  • each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvement of gene transcription efficiency and translation efficiency can be achieved, for example, by altering an expression regulatory sequence.
  • “Expression regulatory sequence” is a general term for sites that affect gene expression. Examples of expression control sequences include promoters, Shine-Dalgarno (SD) sequences (also referred to as ribosome binding sites (RBS)), and spacer regions between RBS and the start codon.
  • SD Shine-Dalgarno
  • RBS ribosome binding sites
  • the expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression regulatory sequences can be modified by, for example, a method using a temperature-sensitive vector or a Red driven integration method (see, for example, International Publication No. 2005/010175).
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter.
  • More powerful promoters include, for example, known high expression promoters such as T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Is mentioned.
  • a highly active promoter of a conventional promoter may be obtained by using various reporter genes.
  • the activity of the promoter can be increased by bringing the ⁇ 35 and ⁇ 10 regions in the promoter region closer to the consensus sequence (see, for example, International Publication No. 00/18935).
  • highly active promoters include various tac-like promoters (see, for example, Russian Patent Application Publication No. 2418069 (inventor: Katashkina ZI et al.)) And pnlp8 promoter (see, eg, International Publication No. 2010/027045). It is done.
  • An evaluation method of promoter strength and examples of strong promoters are described in Goldstein et al.'S paper “Prokaryotic promoters in biotechnology.Biotechnol.Annu.Rev., 1, 105-128 (1995)”.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • the translation efficiency of a gene can be improved by replacing a rare codon present in the gene with a synonymous codon that is used more frequently. That is, the introduced gene may be modified to have an optimal codon according to, for example, the codon usage frequency of the host to be used. Codon substitution can be performed, for example, by a position-specific mutation method in which a target mutation is introduced into a target site of DNA.
  • site-directed mutagenesis a method using PCR (for example, ⁇ Higuchi, R., 61, in PCR technology, rlErlich, H. A.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein.
  • Specific activity enhancement also includes the reduction and elimination of feedback inhibition.
  • Proteins with enhanced specific activity can be obtained by searching for various organisms, for example.
  • a highly active protein may be obtained by introducing a mutation into a conventional protein.
  • the introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS). ) And the like.
  • DNA may be directly treated with hydroxylamine in vitro to induce random mutations.
  • the enhancement of specific activity may be used alone or in any combination with the above-described technique for enhancing gene expression.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • the transformation of the microorganism is, for example, a protoplast method (see, for example, ⁇ Gene, 39,281286 (1985) ''), an electroporation method (see, for example, ⁇ Bio / Techn01ogy, 7, 1067-1070 (1989) ''), It can be performed by an electric pulse method (for example, see Japanese Patent Application Laid-Open No. 2-207791).
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the transcription amount of the gene has been increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • an unmodified strain such as a wild strain or a parent strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (for example, ⁇ Sambrook, J., et al., Molecular Cloning A Laboratory Manua1 / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001 ").
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared with the unmodified strain.
  • Confirmation that the amount of protein has increased can be performed by Western blotting using an antibody (see, for example, “Molecular cloning (Cold Spring Spring Laboratory, Cold Spring Spring (USA), 2001”). May be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
  • the above-described method for increasing the activity of a protein can be used to enhance the activity of an arbitrary protein, such as an L-cysteine biosynthesis enzyme, and to enhance the expression of an arbitrary gene, such as a gene encoding the arbitrary protein.
  • an arbitrary protein such as an L-cysteine biosynthesis enzyme
  • the protein activity decreases means that the activity per cell of the protein is decreased as compared to the unmodified strain, and includes the case where the activity is completely lost.
  • unmodified strain refers to a control strain that has not been modified so that the activity of the target protein is reduced.
  • Non-modified strains include wild strains and parent strains.
  • the protein activity decreases means that the number of molecules per cell of the protein is decreased and the function per molecule of the protein decreases compared to the unmodified strain. This means at least one of the states.
  • “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) of the gene encoding the protein or the translation amount (protein amount). May be.
  • “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all.
  • “the function per molecule of the protein is reduced” includes the case where the function per molecule of the protein is completely lost.
  • the activity of the protein is not particularly limited as long as it is reduced compared to the non-modified strain, for example, 50% or less, 20% or less, 10% or less, 5% or less or 0% compared to the non-modified strain. It may decline.
  • the modification that decreases the activity of the protein can be achieved, for example, by decreasing the expression of a gene encoding the protein.
  • Gene expression decreases means that the expression level of the gene per cell decreases as compared to an unmodified strain such as a wild strain or a parent strain.
  • ⁇ gene expression decreases '' specifically means at least one of a decrease in gene transcription amount (mRNA amount) and a decrease in gene translation amount (protein amount). It may mean the state of “Gene expression decreases” includes the case where the gene is not expressed at all.
  • “the expression of the gene is reduced” is also referred to as “the expression of the gene is weakened”.
  • the expression of the gene may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • gene expression can be reduced by modifying expression control sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon, etc. Can be achieved.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, a part or all of the expression regulatory sequence may be deleted.
  • reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control.
  • Factors involved in expression control include small molecules (inducer, inhibitor, etc.), proteins (transcription factors, etc.), nucleic acids (siRNA, etc.), etc. involved in transcription and translation control.
  • reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene.
  • gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host.
  • gene expression itself may be reduced by gene disruption as described below.
  • the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein. “Gene is disrupted” means that the gene is modified so that it does not produce a normally functioning protein. “Does not produce a protein that functions normally” includes the case where no protein is produced from the same gene, or the case where a protein whose function (activity or property) per molecule is reduced or lost is produced from the same gene. It is.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome. Furthermore, the entire gene including the sequences before and after the gene on the chromosome may be deleted.
  • the region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as the reduction in protein activity can be achieved. Usually, the longer region to be deleted can surely inactivate the gene. Moreover, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
  • gene disruption can be achieved, for example, by introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases.
  • missense mutation amino acid substitution
  • nonsense mutation stop codon
  • gene disruption can be achieved, for example, by introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases.
  • gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the inserted sequence, the more inactive the gene can be.
  • the other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
  • a deletion type gene modified so as not to produce a normally functioning protein is prepared, and a host is transformed with a recombinant DNA containing the deletion type gene.
  • This can be accomplished by replacing the wild-type gene on the chromosome with the deletion-type gene by converting and causing homologous recombination between the deletion-type gene and the wild-type gene on the chromosome. In that case, it is easy to operate the recombinant DNA if a marker gene is included according to the traits such as auxotrophy of the host.
  • Deletion-type genes include genes in which all or part of the gene has been deleted, genes introduced with missense mutations, genes introduced with nonsense mutations, genes introduced with frameshift mutations, transposon and marker genes, etc. Examples include genes into which an insertion sequence has been introduced. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called ⁇ Red-driven integration '' (e.g., ⁇ Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A.
  • ⁇ Red-driven integration '' e.g., ⁇ Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A.
  • the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment.
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS). ) And the like.
  • all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed.
  • all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
  • the decrease in the activity of the protein can be confirmed by determining the activity of the protein.
  • the decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
  • the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (for example, see “Molecular cloning (Cold Spring Spring Laboratory, Cold Spring Harbor (USA), 2001)”).
  • the amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the gene has been destroyed by determining part or all of the base sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
  • the above-described method for reducing the activity of a protein catalyzes a reaction that generates a compound other than L-cysteine by branching from the biosynthetic pathway of any protein, such as L-cysteine. It can be used to reduce the activity of the enzyme, and to reduce the expression of any gene, for example, a gene encoding any of these proteins.
  • the present invention provides a method for producing ergothioneine, comprising culturing a microorganism capable of biosynthesis of ergothioneine in a medium, and collecting ergothioneine from the medium.
  • ergothioneine is also referred to as “target substance”.
  • the medium to be used is not particularly limited as long as the microorganism can grow and the target substance is produced.
  • a normal medium used for culturing microorganisms can be used.
  • a medium containing a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other components selected from various organic components and inorganic components as necessary can be used.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of microorganism used.
  • the carbon source include saccharides, organic acids, alcohols, and fatty acids.
  • the saccharide include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses, starch hydrolyzate, biomass hydrolyzate, and the like.
  • organic acids include acetic acid, fumaric acid, citric acid, succinic acid and the like.
  • alcohols include glycerol, crude glycerol, ethanol and the like.
  • a plant-derived raw material can be used suitably. Examples of plants include corn, rice, wheat, soybean, sugar cane, beet, and cotton.
  • plant-derived materials include organs such as roots, stems, trunks, branches, leaves, flowers, seeds, plants containing them, degradation products of these plant organs, and the like.
  • the form of use of the plant-derived raw material is not particularly limited, and for example, any form such as a raw product, juice, pulverized product, or product can be used.
  • pentoses such as xylose, hexoses such as glucose, or a mixture thereof can be obtained from, for example, plant biomass.
  • these saccharides can be obtained by subjecting plant biomass to treatment such as steam treatment, concentrated acid hydrolysis, dilute acid hydrolysis, hydrolysis with enzymes such as cellulase, and alkali treatment.
  • hemicellulose is generally more easily hydrolyzed than cellulose, hemicellulose in plant biomass is hydrolyzed in advance to release pentose, and then cellulose is hydrolyzed to produce hexose. Good.
  • xylose may be supplied by conversion from hexose, for example, by allowing the microorganism of the present invention to have a conversion pathway from hexose such as glucose to xylose.
  • the carbon source one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the nitrogen source include ammonium salts, organic nitrogen sources, ammonia, urea, and the like.
  • the ammonium salt include ammonium sulfate, ammonium chloride, and ammonium phosphate.
  • the organic nitrogen source include peptone, yeast extract, meat extract, soybean protein degradation product, and the like. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source.
  • the nitrogen source one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source include phosphates and phosphoric acid polymers.
  • the phosphate include potassium dihydrogen phosphate and dipotassium hydrogen phosphate.
  • the phosphoric acid polymer include pyrophosphoric acid.
  • the phosphate source one type of phosphate source may be used, or two or more types of phosphate sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts, trace metals, vitamins, amino acids, nucleic acids, and peptone, casamino acid, yeast extract, and soy proteolysis containing these.
  • Organic components such as products.
  • inorganic salts include sodium chloride and potassium chloride.
  • trace metals include iron, manganese, magnesium, calcium, and the like.
  • vitamins include vitamin Bl, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12.
  • one component may be used, or two or more components may be used in combination.
  • auxotrophic mutant strain that requires an amino acid or the like for growth
  • Culture conditions are not particularly limited as long as microorganisms can grow and target substances are produced.
  • the culture can be performed, for example, under normal conditions used for culturing microorganisms.
  • the culture conditions may be appropriately set according to various conditions such as the type of microorganism used.
  • Cultivation can be performed using a liquid medium.
  • a microorganism cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or a microorganism cultured with a seed in a liquid medium may be inoculated into a liquid medium for main culture.
  • the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same.
  • the amount of microorganisms contained in the medium at the start of culture is not particularly limited.
  • the main culture may be performed, for example, by inoculating the culture medium of the seed culture with 1 to 50% (v / v) of the seed culture solution.
  • Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture medium at the start of the culture is also referred to as “initial culture medium”.
  • a medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”.
  • feeding a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”.
  • cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • Culture can be performed, for example, under aerobic conditions.
  • the aerobic condition means that the dissolved oxygen concentration in the liquid medium is 0.33 ppm or more, which is the detection limit by the oxygen membrane electrode, and preferably 1.5 ppm or more.
  • the oxygen concentration may be controlled to be, for example, 5% to 50%, preferably about 10% of the saturated oxygen concentration.
  • the culture under aerobic conditions can be performed by aeration culture, shaking culture, agitation culture, or a combination thereof.
  • the pH of the medium may be, for example, pH 3 or more and 10 or less, preferably pH 5 or more and 8 or less. During the culture, the pH of the medium can be adjusted as necessary.
  • the pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do.
  • the culture temperature may be, for example, 20 ° C. or higher and 40 ° C. or lower, preferably 25 ° C. or higher and 37 ° C. or lower.
  • the culture period may be, for example, 10 hours to 120 hours.
  • the culture may be continued, for example, until the carbon source in the medium is consumed or until the microorganisms are no longer active. By culturing the microorganism under such conditions, the target substance accumulates in the medium.
  • the formation of the target substance can be confirmed by a known method used for detection or identification of a compound. Examples of such methods include HPLC, LC / MS, GC / MS, and NMR. These methods can be used alone or in appropriate combination.
  • Recovery of the target substance from the fermentation broth can be performed by a known method used for separation and purification of compounds.
  • techniques include ion exchange resin methods (see, for example, ⁇ Nagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710 ''), precipitation methods, membrane separation methods (e.g. , Japanese Laid-Open Patent Publication No. 9-164323, Japanese Laid-Open Patent Publication No. 9-173792) and crystallization methods (see, for example, International Publication No. 2008/078448 and International Publication No. 2008/078646). These methods can be used alone or in appropriate combination.
  • the target substance to be recovered may be a free form, a salt thereof, or a mixture thereof.
  • the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • the target substance to be recovered may contain components such as microorganisms, medium components, moisture, and microorganism metabolic byproducts in addition to the target substance.
  • the target substance may be purified to a desired degree.
  • the purity of the target substance to be recovered may be, for example, 50% (w / w) or more, preferably 85% (w / w) or more, particularly preferably 95% (w / w) or more (for example, Japan No. 1214636, U.S. Pat.No. 5,431,933, U.S. Pat.No. 4,956,471, U.S. Pat.No. 4,775,151, U.S. Pat.No. 4,494,654, U.S. Pat.No. 5,840,358, U.S. Pat. Description, see US Patent Application Publication No. 2005/0025878).
  • Example 1 (Cultivation of plants) Mizuna (Brassica rapa var. Laciniifolia) seeds were sown in a hydroponics pot and cultivated in a hydroponic culture solution with an ergothioneine content of 223 ⁇ g / 10 mL (100 ⁇ M).
  • Hydroponic broth is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Aguri Co., Ltd., diluted 133 times), ergothioneine (L-(+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30- 3) is added.
  • the seedlings cultivated above were harvested.
  • the amount of ergothioneine was measured according to the method described in the document “Journal of Bioscience and Bioengineering VOL. 119 No. 3, 310-313, 2015”.
  • 10 ⁇ L of the extract final concentration of 5 ⁇ M D-camphor-10-sodium sulfonate 0.1 ⁇ L diluted with ultrapure water, final concentration 99% (w / After adding 9.9 ⁇ L of methanol from w) and grinding with a mortar and pestle, this was centrifuged at 15000 rpm at 4 ° C. for 3 minutes.
  • Example 2 In Example 1 above, except that lettuce (Lactuca sativa) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine were determined. . The results are shown in Tables 1 and 2.
  • Example 3 In Example 1 above, except that Nozawana (Brassica rapa var. Hakabura) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine Asked. The results are shown in Tables 1 and 2.
  • Example 4 In Example 1 above, except that Komatsuna (Brassica rapa var. Perviridis) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine Asked. The results are shown in Tables 1 and 2.
  • Example 5 (Cultivation of plants) Mizuna (Brassica rapa var. Laciniifolia) seeds were sown in a hydroponics pot and cultivated in a hydroponic broth containing no ergothioneine.
  • liquid fertilizer liquid fertilizer UH-ZK020, manufactured by OAT Agri Corporation, diluted 133 times was used.
  • Hydroponic culture solution with ergothioneine content of 568 ⁇ g / 225mL (11 ⁇ M) is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Co., Ltd., diluted 133 times) to 568 ⁇ g / 225mL (11 ⁇ M) ergothioneine (L- (+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30-3).
  • Example 1 (Measurement of ergothioneine) In Example 1 described above, instead of 1 mg of the part obtained by removing the root from the seedling, 1 g of the leaf tip of the plant obtained above was used, and 1000 ⁇ L of the extract (D-- with a final concentration of 5 ⁇ M diluted with ultrapure water) was used. Ergothioneine was measured in the same manner as in Example 1 except that 10 ⁇ L of sodium camphor-10-sulfonate and 990 ⁇ L of methanol having a final concentration of 99% (w / w) were added.
  • Example 6 In Example 5 above, except that lettuce (Lactuca sativa) was used instead of Mizuna, the plant was grown and harvested in the same manner as in Example 5 above (FIG. 2), and the amount of ergothioneine contained in the leaves The accumulation rate of ergothioneine was determined. The results are shown in Tables 1 and 2.
  • Example 7 In Example 5 above, except that Nozawana (Brassica rapa var. Hakabura) was used instead of Mizuna, the plant was cultivated and harvested in the same manner as in Example 5 above (Fig. 2) and contained in the leaves. The amount of ergothioneine and the accumulation rate of ergothioneine were determined. The results are shown in Tables 1 and 2.
  • Example 8 In Example 5 above, except that Komatsuna (Brassica rapa var. Perviridis) was used instead of Mizuna, the plant body was cultivated and harvested in the same manner as in Example 5 above (FIG. 2) and contained in the leaves. The amount of ergothioneine and the accumulation rate of ergothioneine were determined. The results are shown in Tables 1 and 2.
  • Plants cultivated by a conventional hydroponics method did not contain ergothioneine, but plants cultivated with a hydroponics solution containing ergothioneine (Examples 1 to 8). ) Contained ergothioneine. Therefore, the plant used in the experiment does not synthesize ergothioneine, and the plant used in the experiment accumulates ergothioneine in the body and can recover even a small amount of ergothioneine contained in the hydroponics medium. It has been shown.
  • Example 9 to 10 (Cultivation of plants) Nozawana (Brassica rapa var. Hakabura) seeds were sown in a hydroponics pot and cultivated in a hydroponic broth containing no ergothioneine.
  • a hydroponic culture solution liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Corporation, diluted 133 times) was used.
  • the hydroponic culture solution containing no ergothioneine instead of the hydroponic culture solution containing no ergothioneine, cultivated for 5 days using the hydroponic culture solution containing ergothioneine at the values shown in Table 3 below, and then on the 32nd day after sowing. Plants were harvested.
  • Hydroponic culture liquid containing ergothioneine is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Aguri Co., Ltd., 133-fold diluted) with ergothioneine (L-(+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30-3).
  • Example 11 (Production of recombinant E. coli strain) An E. coli strain (pDES pQE88-Ms-egtABCDE) that was modified to produce ergothioneine and further modified to increase the ability to produce ergothioneine was prepared. More specifically, a pDES plasmid was retained by transformation in an Escherichia coli metJ gene disruption strain, and a pQE88-Ms-egtABCDE plasmid was retained by transformation. As shown in FIG. 3, the pDES plasmid (see, for example, International Publication No.
  • the excretion carrier has three genes linked to each other, and cysteine can be mass-produced extracellularly by forcibly expressing them.
  • the pQE88-Ms-egtABCDE plasmid encodes the egtABCDE gene operon from Mycobacterium smegmatis. These genes are a group of genes necessary for biosynthesis of ergothioneine from substrates such as histidine, S-adenosylmethionine, and cysteine.
  • This operon gene was linked to a promoter capable of inducing expression when IPGT was added. Since the egtABCDE gene does not have Escherichia coli, it is an essential gene group for ergothioneine synthesis in the Escherichia coli used this time.
  • the nucleotide sequence of the above-mentioned Mycobacterium smegmatis egtABCDE gene operon and the nucleotide sequence of pQE88-Ms-egtABCDE are shown in SEQ ID NOs: 1 and 2, respectively.
  • the suspension was resuspended, and the entire amount was put into an initial medium, and other components were sequentially added and cultured for 144 hours under the above conditions.
  • the following feed 1 liquid and feed 2 liquid were added to the culture solution intermittently at a constant pace from 24 hours to 72 hours after the start of culture. Tetracycline, Ampicillin, and antifoaming agent were all added at the start of the culture, and IPTG and Pyrydoxine ⁇ HCl were all added 24 hours after the start of the culture.
  • Table 4 shows the composition of the initial medium and other components.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fertilizers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided are a plant body, a food, a culturing substance, and a fertilizer that contain ergothioneine, and a method for producing the plant body. The plant body contains 0.5 µg or more of ergothioneine per 100 g of fresh weight. The food contains 0.5 µg or more of ergothioneine per 100 g (excepting foods containing microorganisms capable of biosynthesis of ergothioneine). The culturing substance is a culturing substance of a microorganism capable of biosynthesis of ergothioneine, and contains 50 mg/L or more of ergothioneine. The fertilizer includes the culturing substance of the microorganism capable of biosynthesis of ergothioneine. The production method is a method for producing the plant body, wherein the method has a cultivation step for cultivating the plant body in a culture medium that contains ergothioneine, the culture medium containing 1 µg/L or more of ergothioneine.

Description

植物体、食品、培養物、肥料及び製造方法Plant, food, culture, fertilizer and production method
 本発明は、エルゴチオネインを含有する植物体、食品、培養物及び肥料、並びに、該植物体の製造方法に関する。
 本願は、2017年2月17日に、日本に出願された特願2017-027866号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plant, food, culture and fertilizer containing ergothioneine, and a method for producing the plant.
This application claims priority based on Japanese Patent Application No. 2017-027866 filed in Japan on February 17, 2017, the contents of which are incorporated herein by reference.
 硫黄は、人体を構成する要素として必須の成分である。ヒトの硫黄源は、食事を通して摂取される有機性硫黄化合物であり、地球上での生物学的な硫黄循環において、微生物が無機硫黄から有機性硫黄化合物への同化を担っている。
 エルゴチオネインは、含硫アミノ酸の一種であり、一部の微生物でのみ生合成されることが知られる。エルゴチオネインは抗酸化作用に優れ、その作用はビタミンEの6000倍ともいわれる。そのため、健康及び美容の分野等において、非常に利用価値の高い化合物である。
 例えば、特許文献1には、キノコ由来のエルゴチオネイン及びその誘導体のうち少なくともいずれか一方を含有する抽出物を含有した皮膚外用剤が記載され、この皮膚外用剤は、皮膚の老化の予防の面等から優れているとされる。
Sulfur is an essential component as an element constituting the human body. Human sulfur sources are organic sulfur compounds that are ingested through meals, and microorganisms are responsible for assimilation of inorganic sulfur into organic sulfur compounds in the biological sulfur cycle on earth.
Ergothioneine is a kind of sulfur-containing amino acid and is known to be biosynthesized only by some microorganisms. Ergothioneine has an excellent antioxidant effect, which is said to be 6000 times that of vitamin E. Therefore, it is a highly useful compound in the fields of health and beauty.
For example, Patent Document 1 describes a skin external preparation containing an extract containing at least one of mushroom-derived ergothioneine and derivatives thereof. This skin external preparation is used for preventing skin aging and the like. It is said that it is excellent.
日本国特開2012-211120号公報Japanese Unexamined Patent Publication No. 2012-211120
 しかし、市販のエルゴチオネインは高価なものであり、エルゴチオネインを含有させた商品の普及の妨げとなっている。 However, commercially available ergothioneine is expensive and hinders the spread of products containing ergothioneine.
 本発明は、上記事情に鑑みてなされたものであって、エルゴチオネインを含有する植物体、培養物及び肥料、並びに、該植物体の製造方法を提供する。 The present invention has been made in view of the above circumstances, and provides a plant, a culture and a fertilizer containing ergothioneine, and a method for producing the plant.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ことを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the present invention has been completed.
 すなわち、本発明は、以下の態様を含む。
 本発明の第一態様に係る植物体は、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する。
 上記第一態様に係る植物体は、新鮮重量100gあたり20μg以上のエルゴチオネインを含有してもよい。
 上記第一態様に係る植物体において、前記エルゴチオネインの含有量が葉におけるものであってもよい。
 上記第一態様に係る植物体は、アブラナ科に属してもよい。
That is, the present invention includes the following aspects.
The plant according to the first aspect of the present invention contains 0.5 μg or more of ergothioneine per 100 g of fresh weight.
The plant according to the first aspect may contain 20 μg or more of ergothioneine per 100 g of fresh weight.
In the plant according to the first aspect, the content of the ergothionein may be in the leaves.
The plant according to the first aspect may belong to the Brassicaceae family.
 本発明の第二態様に係る食品は、100gあたり0.5μg以上のエルゴチオネイン含有する(ただし、エルゴチオネインを生合成可能な微生物を含む食品、エルゴチオネインを生合成可能なキノコを含む食品、エルゴチオネインを生合成可能な微生物により発酵された発酵食品、及びそれらの加工食品は除く)。
 上記第二態様に係る食品は、100gあたり20μg以上のエルゴチオネインを含有してもよい。
The food according to the second aspect of the present invention contains 0.5 μg or more of ergothioneine per 100 g (however, a food containing a microorganism capable of biosynthesis of ergothioneine, a food containing a mushroom capable of biosynthesis of ergothioneine, and biosynthesis of ergothioneine. Except fermented foods fermented by various microorganisms and processed foods thereof).
The food according to the second aspect may contain 20 μg or more of ergothioneine per 100 g.
 本発明の第三態様に係る培養物は、エルゴチオネインを生合成可能な微生物の培養物であり、エルゴチオネインを50mg/L以上含有する。
 上記第三態様に係る培養物において、前記エルゴチオネインを生合成可能な微生物が、システイン生産能が増大するよう改変された微生物であってもよい。
The culture according to the third embodiment of the present invention is a culture of a microorganism capable of biosynthesizing ergothioneine and contains 50 mg / L or more of ergothioneine.
In the culture according to the third aspect, the microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so as to increase cysteine-producing ability.
 本発明の第四態様に係る肥料は、エルゴチオネインを生合成可能な微生物の培養物を含む。
 上記第四態様に係る肥料において、前記エルゴチオネインを生合成可能な微生物が、システイン生産能が増大するよう改変された微生物であってもよい。
 上記第四態様に係る肥料において、水分含量が30質量%以下であってもよい。
The fertilizer according to the fourth aspect of the present invention includes a culture of a microorganism capable of biosynthesis of ergothioneine.
In the fertilizer according to the fourth aspect, the microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so as to increase cysteine-producing ability.
In the fertilizer according to the fourth aspect, the water content may be 30% by mass or less.
 本発明の第五態様に係る製造方法は、上記第1態様に係る植物体の製造方法であって、エルゴチオネインを含有する栽培培地で、植物体を栽培する栽培工程を有する方法であり、前記栽培培地はエルゴチオネインを1μg/L以上含有する。
 上記第五態様に係る製造方法において、前記栽培培地はエルゴチオネインを0.1mg/L委上含有してもよい。
 上記第五態様に係る製造方法において、前記栽培培地がエルゴチオネインを生合成可能な微生物の培養物を含んでもよい。
 上記第五態様に係る製造方法は、さらに、前記植物体を収穫する収穫工程を有し、前記栽培工程が、前記収穫工程の前の10日以内に行われてもよい。
The manufacturing method which concerns on the 5th aspect of this invention is a manufacturing method of the plant body which concerns on the said 1st aspect, Comprising: It is a method which has a cultivation process which grows a plant body with the cultivation medium containing ergothioneine, The said cultivation The medium contains ergothioneine 1 μg / L or more.
In the manufacturing method according to the fifth aspect, the culture medium may contain ergothioneine in an amount of 0.1 mg / L.
In the manufacturing method according to the fifth aspect, the culture medium may include a culture of a microorganism capable of biosynthesis of ergothioneine.
The manufacturing method according to the fifth aspect may further include a harvesting step for harvesting the plant body, and the cultivation step may be performed within 10 days before the harvesting step.
 上記態様の植物体、食品、培養物及び肥料は、エルゴチオネインを含有する。上記態様の製造方法によれば、エルゴチオネインを含有する植物体が得られる。 The plant body, food, culture and fertilizer of the above aspect contain ergothioneine. According to the manufacturing method of the said aspect, the plant containing ergothioneine is obtained.
実施例において、エルゴチオネイン量の算出に使用した検量線である。In an Example, it is a calibration curve used for calculation of the amount of ergothioneine. 実施例5~8及び比較例5~8で栽培した植物体を撮影した画像である。FIG. 5 is an image obtained by photographing plants grown in Examples 5 to 8 and Comparative Examples 5 to 8. FIG. 実施例で使用したpDESプラスミドの構成を示す模式図である。It is a schematic diagram which shows the structure of the pDES plasmid used in the Example.
 以下、本発明の植物体、食品、培養物、肥料及び製造方法について、実施形態を示して説明する。 Hereinafter, embodiments of the plant, food, culture, fertilizer and production method of the present invention will be described.
≪植物体≫
 実施形態の植物体は、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する。
 本来、植物は自らエルゴチオネインを生産することはないため、植物体がエルゴチオネインを多量に含むことはなかった。発明者らは、後述の実施例に示すように、エルゴチオネインを含有する栽培培地で植物体を栽培することにより、植物体にエルゴチオネインを蓄積させることが可能であり、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する植物体を製造可能であることを見出した。
≪Plant body≫
The plant body of the embodiment contains 0.5 μg or more of ergothioneine per 100 g of fresh weight.
Originally, plants did not produce ergothioneine themselves, so the plant body did not contain a large amount of ergothioneine. As shown in the examples below, the inventors can grow ergothioneine in a culture medium containing ergothioneine, thereby allowing ergothioneine to accumulate in the plant body. It has been found that plants containing ergothioneine can be produced.
 実施形態の植物体は、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有するものであり、1μg以上のエルゴチオネインを含有してもよく、5μg以上のエルゴチオネインを含有してもよく、10μg以上のエルゴチオネインを含有してもよく、20μg以上のエルゴチオネインを含有してもよく、50μg以上のエルゴチオネインを含有してもよく、100μg以上のエルゴチオネインを含有してもよく、150μg以上のエルゴチオネインを含有してもよく、200μg以上のエルゴチオネインを含有してもよく、250μg以上のエルゴチオネインを含有してもよい。 The plant body of the embodiment contains 0.5 μg or more of ergothioneine per 100 g of fresh weight, may contain 1 μg or more of ergothioneine, may contain 5 μg or more of ergothioneine, and contains 10 μg or more of ergothioneine. It may contain, may contain 20 μg or more ergothioneine, may contain 50 μg or more ergothioneine, may contain 100 μg or more ergothioneine, may contain 150 μg or more ergothioneine, 200 μg or more of ergothioneine may be contained, and 250 μg or more of ergothioneine may be contained.
 実施形態に係る植物体に含まれるエルゴチオネインの上限値は、特に制限されるものではないが、一例として新鮮重量100gあたり10000μgであってよく、1000μgであってよい。 The upper limit value of ergothioneine contained in the plant according to the embodiment is not particularly limited, but may be, for example, 10000 μg per 100 g fresh weight or 1000 μg.
 「新鮮重量」とは、植物体に人為的な乾燥処理が施されていない状態での重量を指す。
前記状態には、植物体が、生鮮品目又は生鮮食品として市場で販売されている形態の状態も含む。
“Fresh weight” refers to the weight of a plant that has not been artificially dried.
The state includes a state in which the plant is sold in the market as a fresh item or a fresh food.
 エルゴチオネインは、天然に存在するものであってもよく、人工的又は人為的に製造されたものであってもよい。 Ergothioneine may be naturally occurring, or may be artificially or artificially produced.
 エルゴチオネインは、含硫アミノ酸の一種であり、L-(+)-エルゴチオネインとしては、下記式(1)で表される化合物として知られる。 Ergothioneine is a kind of sulfur-containing amino acid, and L-(+)-ergothioneine is known as a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 エルゴチオネインの測定方法は、後述の実施例に記載の方法により実施することができる。 The measuring method of ergothioneine can be carried out by the method described in the examples described later.
 エルゴチオネインは、抗酸化作用を有しており、酸化されてジスルフィドを形成する等の酸化型の形態をとりうる。本明細書において、植物体が含有するエルゴチオネインとして測定される対象は、上記のエルゴチオネインの他に酸化型のエルゴチオネインを含んで測定されたものであってもよく、酸化型のエルゴチオネインを含まないエルゴチオネインのみが測定されたものであってもよい。 Ergothioneine has an antioxidant action and can take an oxidized form such as being oxidized to form a disulfide. In the present specification, the target to be measured as ergothioneine contained in the plant body may be measured by including oxidized ergothioneine in addition to the above ergothioneine, and only ergothioneine not containing oxidized ergothioneine. May have been measured.
エルゴチオネインは、イオンの形態であってもよく、塩の形態であってもよいが、本発明においてエルゴチオネインの質量は、エルゴチオネインの分子量229.3として算出したものとする。
エルゴチオネインとして測定される対象は、上記のエルゴチオネインの他に酸化型のエルゴチオネインを含んで測定されたものであってもよいが、本発明においてエルゴチオネインの質量は、酸化前のエルゴチオネインの分子量229.3に基づき算出したものとする。
酸化型のエルゴチオネインが多量体を形成している場合は、元の単量体のエルゴチオネインの分子量229.3に基づき算出したものとする。
Ergothionein may be in the form of an ion or a salt, but in the present invention, the mass of ergothioneine is calculated as the molecular weight of 229.3.
The object to be measured as ergothioneine may be measured by including oxidized ergothioneine in addition to the above-mentioned ergothioneine. In the present invention, the mass of ergothioneine is calculated based on the molecular weight of ergothioneine before oxidation. Shall be.
When the oxidized ergothioneine forms a multimer, it is calculated based on the molecular weight 229.3 of the original monomer ergothioneine.
 実施形態の植物体に含まれるエルゴチオネインは、1種のみであってもよく、2種類以上であってもよい。 The ergothionein contained in the plant body of the embodiment may be only one type or two or more types.
 実施形態の植物体の種類は特に限定されるものではないが、食用の植物が好ましく、例えば、アブラナ科(Brassicaceae)、キク科(Asteraceae)、ナス科(Solanaceae)、マメ科(Fabaceae)、ウリ科(Cucurbitaceae)、イネ科(Poaceae)、アカネ科(Rubiaceae)、ツバキ科(Theaceae)、ヒガンバナ科(Amaryllidaceae)、セリ科(Apiaceae)、サトイモ科(Araceae)等の植物が挙げられる。これらのなかでも、実施形態の植物体は、アブラナ科、キク科又はナス科の植物が好ましく、アブラナ科の植物がより好ましい。 The type of the plant body of the embodiment is not particularly limited, but an edible plant is preferable, for example, Brassicaceae, Asteraceae, Solanaceae, Legaceae, Uriaceae Examples include plants such as Cucurbitaceae, Poaceae, Rubiaceae, Theaceae, Amaryllidaceae, Apiaceae, Araceae, and the like. Among these, the plant body of the embodiment is preferably a Brassicaceae, Asteraceae or Eggplant family, and more preferably a Brassicaceae plant.
アブラナ科の植物は、アブラナ属(Brassica)の植物が好ましく、Brassica rapaがより好ましい。実施形態の植物体がアブラナ科の植物であると、植物に高効率にエルゴチオネインが蓄積されやすいため好ましい。このことは、植物が、外界からエルゴチオネインを取り込むための、エルゴチオネイントランスポーターを有しており、特にアブラナ科において有効に機能しているためと考えられる。 The Brassicaceae plant is preferably a Brassica plant, more preferably Brassica rapa. It is preferable that the plant body of the embodiment is a cruciferous plant because ergothioneine is easily accumulated in the plant with high efficiency. This is probably because the plant has an ergothioneine transporter for taking in ergothioneine from the outside world, and functions effectively in the Brassicaceae family.
 上記の観点により、実施形態の植物体は、エルゴチオネイントランスポーターを発現している植物体であることが好ましい。 From the above viewpoint, the plant body of the embodiment is preferably a plant body expressing an ergothioneine transporter.
 アブラナ科の植物としては、例えば、ミズナ(Brassica rapa var. laciniifolia)、ノザワナ(Brassica rapa var. hakabura)、コマツナ(Brassica rapa var. perviridis)、ハクサイ(Brassica rapa var. pekinensis)、カブ(Brassica rapa var. glabra、Brassica rapa var. rapa)、キャベツ(Brassica oleracea var. capitate)、メキャベツ(Brassica oleracea var. gemmifera)、カリフラワー(Brassica oleracea var. botrytis)、ブロッコリー(B. oleracea var. italic)、ダイコン(Raphanus sativus var. longipinnatus)等が挙げられる。 Examples of cruciferous plants include, for example, Mizuna (Brassica rapa var. Laciniifolia), Nozawana (Brassica rapa var. Hakabura), Komatsuna (Brassica rapa var. Perviridis), Chinese cabbage (Brassica rapa var.sispekinensis), turnip (Brassica rapa var. Glabra, Brassica rapa var. Rapa), cabbage (Brassica oleracea var. sativus var. longipinnatus).
 キク科の植物としては、例えば、レタス(Lactuca sativa)、サラダナ(Lactuca sativa var. capiata)、シュンギク(Glebionis coronaria)等が挙げられる。 Examples of the Asteraceae plants include lettuce (Lactuca sativa var. サ ラ ダ capiata), sengoku (Glebionis coronaria), and the like.
 ナス科の植物は、ナス属(Solanum)の植物が好ましい。
 ナス科の植物としては、例えば、トマト(Solanum lycopersicum)、ナス(Solanum melongena)、ジャガイモ(Solanum tuberosum)、ピーマン(Capsicum annuum)等が挙げられる。
The solanaceous plant is preferably a plant of the genus Solanum.
Examples of solanaceous plants include tomato (Solanum lycopersicum), eggplant (Solanum melongena), potato (Solanum tuberosum), bell pepper (Capsicum annuum) and the like.
 実施形態の植物体に、キノコ類は含まれないものとする。 Suppose that the mushrooms are not included in the plant body of the embodiment.
 実施形態の植物体とは、植物個体全体であってもよく、植物個体の一部分であってもよい。前記部分としては、葉、根、茎、花、果実、種子、花粉等の器官又は組織及びそれらの組み合わせを例示でき、これらのなかでは、葉が好ましい。 The plant body of the embodiment may be the whole plant individual or a part of the plant individual. Examples of the part include organs or tissues such as leaves, roots, stems, flowers, fruits, seeds, pollen, and combinations thereof, and among these, leaves are preferable.
 実施形態の植物体において、前記エルゴチオネインの含有量は植物体の葉におけるものであってもよい。 In the plant body of the embodiment, the content of the ergothioneine may be in the leaf of the plant body.
 エルゴチオネインは、抗酸化作用に優れている。実施形態の植物体は、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有しているので、酸化防止作用に優れ、利用価値の高い植物体である。 Ergothionein is excellent in antioxidant effect. Since the plant body of the embodiment contains 0.5 μg or more of ergothioneine per 100 g of fresh weight, it is a plant body having excellent antioxidant action and high utility value.
≪食品≫
 実施形態の食品は、100gあたり0.5μg以上のエルゴチオネイン含有する(ただし、エルゴチオネインを生合成可能な微生物を含む食品、エルゴチオネインを生合成可能なキノコを含む食品、エルゴチオネインを生合成可能な微生物により発酵された発酵食品及びそれらの加工食品は除く)。
≪Food≫
The food of the embodiment contains 0.5 μg or more of ergothioneine per 100 g (however, a food containing a microorganism that can biosynthesize ergothioneine, a food containing a mushroom that can biosynthesize ergothioneine, and a microorganism that can biosynthesize ergothioneine. Fermented foods and processed foods).
 実施形態の食品は、100gあたり0.5μg以上のエルゴチオネインを含有するものであり、1μg以上のエルゴチオネインを含有してもよく、5μg以上のエルゴチオネインを含有してもよく、10μg以上のエルゴチオネインを含有してもよく、20μg以上のエルゴチオネインを含有してもよく、50μg以上のエルゴチオネインを含有してもよく、100μg以上のエルゴチオネインを含有してもよく、150μg以上のエルゴチオネインを含有してもよく、200μg以上のエルゴチオネインを含有してもよく、250μg以上のエルゴチオネインを含有してもよい。 The food of the embodiment contains 0.5 μg or more of ergothioneine per 100 g, may contain 1 μg or more of ergothioneine, may contain 5 μg or more of ergothioneine, and contains 10 μg or more of ergothioneine. It may contain 20 μg or more of ergothioneine, may contain 50 μg or more of ergothioneine, may contain 100 μg or more of ergothioneine, may contain 150 μg or more of ergothioneine, and may contain 200 μg or more. Ergothioneine may be contained, and 250 μg or more of ergothioneine may be contained.
 実施形態に係る食品に含まれるエルゴチオネインの上限値は、特に制限されるものではないが、一例として100gあたり10000μgであってよく、1000μgであってよい。 The upper limit of ergothioneine contained in the food according to the embodiment is not particularly limited, but may be, for example, 10000 μg per 100 g or 1000 μg.
 上記食品の重量は、市場で販売されている形態の状態で測定されたものとする。 Suppose that the weight of the food is measured in the state of being sold in the market.
 実施形態の食品が含有するエルゴチオネインとしては、上述の「≪植物体≫」で例示したものが挙げられ、詳細な説明を省略する。 Examples of ergothioneine contained in the food of the embodiment include those exemplified in the above-mentioned “<< plant body >>”, and detailed description thereof is omitted.
 エルゴチオネインの測定方法は、後述の実施例に記載の方法により実施することができる。 The measuring method of ergothioneine can be carried out by the method described in the examples described later.
 本明細書において、食品が含有するエルゴチオネインとして測定される対象は、上記のエルゴチオネインの他に酸化型のエルゴチオネインを含んで測定されたものであってもよく、酸化型のエルゴチオネインを含まないエルゴチオネインのみが測定されたものであってもよい。 In the present specification, the object to be measured as ergothioneine contained in food may be one that is measured by including oxidized ergothioneine in addition to the above ergothioneine, and only ergothioneine that does not contain oxidized ergothioneine is included. It may be measured.
 実施形態の食品の定義において、これから除かれるものは、本来エルゴチオネインを生産可能な微生物が原料として用いられた食品である。
 エルゴチオネインを生合成可能な微生物を含む食品としては、例えば、エルゴチオネインを生合成可能なシアノバクテリア等の細菌類を含む海苔や、エルゴチオネインを生合成可能な菌類が形成するキノコ等を含むものが挙げられる。
 エルゴチオネインを生合成可能なキノコとしては、例えば、シイタケ、ヒラタケ、エリンギ等が挙げられる。
 エルゴチオネインを生合成可能な微生物により発酵された発酵食品の品目としては、例えば、漬物、みそ、パン、ヨーグルト、チーズ等が挙げられる。
In the definition of the food of the embodiment, what is excluded from this is a food in which a microorganism that can originally produce ergothioneine is used as a raw material.
Examples of foods containing microorganisms capable of biosynthesis of ergothioneine include, for example, laver containing bacteria such as cyanobacteria capable of biosynthesis of ergothioneine, and mushrooms formed by fungi capable of biosynthesis of ergothioneine. .
Examples of mushrooms that can biosynthesize ergothioneine include shiitake mushroom, oyster mushroom, and eringi.
Examples of fermented food items fermented by microorganisms capable of biosynthesizing ergothioneine include pickles, miso, bread, yogurt, cheese, and the like.
 実施形態の食品は、本発明の実施形態の植物体のうち、食用の植物体を包含する概念である。また、実施形態の植物体の、加工品も、実施形態の食品に包含される。加工品としては、例えば、実施形態の植物体から得られた抽出物、破砕物、ペースト、調理品、惣菜、缶詰、乾物、冷凍食品、飲料、アルコール飲料、菓子類、調味料、油脂、ジャム、香辛料、食品添加物、健康食品、サプリメント等が挙げられる。 The food of the embodiment is a concept that includes an edible plant among the plants of the embodiment of the present invention. Moreover, the processed product of the plant body of embodiment is also included in the foodstuff of embodiment. Examples of processed products include extracts, crushed materials, pastes, cooked products, canned foods, canned foods, dried foods, frozen foods, beverages, alcoholic beverages, confectionery, seasonings, fats and oils, jams obtained from the plant body of the embodiment. , Spices, food additives, health foods, supplements and the like.
 さらに、実施形態の食品として、本発明の実施形態の植物体を飼料として与えることで飼育された動物の肉類、魚介類、卵類、乳類、油脂類及びその加工品も包含される。肉類としては、牛肉、豚肉、鶏肉等が挙げられる。 Furthermore, meat, fishery products, eggs, milk, fats and processed products of animals bred by feeding the plant body of the embodiment of the present invention as feed are also included as foods of the embodiment. Examples of meat include beef, pork and chicken.
 エルゴチオネインは、抗酸化作用に優れている。実施形態の食品は、100gあたり0.5μg以上のエルゴチオネインを含有しているので、酸化防止作用に優れ、利用価値の高い食品である。 Ergothionein is excellent in antioxidant effect. Since the food of the embodiment contains 0.5 μg or more of ergothioneine per 100 g, the food is excellent in antioxidant action and has high utility value.
≪培養物及び肥料≫
 実施形態の培養物は、エルゴチオネインを生合成可能な微生物の培養物であり、エルゴチオネインを50mg/L以上含有する。
≪Culture and fertilizer≫
The culture according to the embodiment is a culture of a microorganism capable of biosynthesis of ergothioneine, and contains 50 mg / L or more of ergothioneine.
 実施形態に係る培養物は、エルゴチオネインを50mg/L以上含有するものであり、エルゴチオネインを100mg/L以上含有してもよく、エルゴチオネインを200mg/L以上含有してもよく、エルゴチオネインを300mg/L以上含有してもよく、エルゴチオネインを400mg/L以上含有してもよく、エルゴチオネインを500mg/L以上含有してもよく、エルゴチオネインを600mg/L以上含有してもよい。 The culture according to the embodiment contains ergothioneine at 50 mg / L or more, may contain ergothioneine at 100 mg / L or more, may contain ergothioneine at 200 mg / L or more, and ergothioneine at 300 mg / L or more. It may be contained, ergothioneine may be contained at 400 mg / L or more, ergothioneine may be contained at 500 mg / L or more, and ergothioneine may be contained at 600 mg / L or more.
 実施形態に係る培養物に含まれるエルゴチオネインの上限値は、特に制限されるものではないが、一例として10000mg/Lであってよい。 The upper limit of ergothioneine contained in the culture according to the embodiment is not particularly limited, but may be 10000 mg / L as an example.
エルゴチオネインを生合成可能な微生物は、本来エルゴチオネインを生合成する能力を備えた微生物であってもよい。このような微生物としては、シアノバクテリア、マイコバクテリア等のエルゴチオネインを生合成可能な特定の細菌類が挙げられる。 The microorganism that can biosynthesize ergothioneine may be a microorganism that originally has the ability to biosynthesize ergothioneine. Examples of such microorganisms include specific bacteria that can biosynthesize ergothioneine such as cyanobacteria and mycobacteria.
エルゴチオネインを生合成可能な微生物は、エルゴチオネインの生産を向上可能なように人為的に改変された微生物であってもよく、本来はエルゴチオネインを生合成可能ではないが、エルゴチオネインを生合成可能なように人為的に改変された微生物であってもよい。このような微生物についての詳細は、後述の「<人為的に改変された微生物>」において説明する。 The microorganism capable of biosynthesizing ergothioneine may be a microorganism that has been artificially modified so as to improve the production of ergothioneine. Originally, ergothioneine cannot be biosynthesized, but ergothioneine can be biosynthesized. It may be an artificially modified microorganism. Details of such microorganisms will be described in “<Artificially modified microorganisms” below.
実施形態の培養物は、エルゴチオネインを生合成可能な微生物を培地で培養することにより得られ、前記培養物には、エルゴチオネインが50mg/L以上含有されている。当該培養物を得る方法については、後述の「<エルゴチオネインの製造方法>」も参照するものとする。 The culture of the embodiment is obtained by culturing a microorganism capable of biosynthesizing ergothioneine in a medium, and the culture contains 50 mg / L or more of ergothioneine. For the method of obtaining the culture, the following “<Method for producing ergothionein>” is also referred to.
培養物の形態は、特に制限されず、固体であってもよく、液体であってもよく、両方の混合形態であってもよく、例えば、液剤、粉剤、粒剤、錠剤、タブレット剤、カプセル剤等の形態であってよい。
なお、実施形態の培養物からキノコ類は除かれるものとする。
前記培養物は、培養後の培地を加工した加工物を含む。培地は液体培地であってよい。
ここで加工物とは、培地に含まれる揮発成分を揮発させ、エルゴチオネインを濃縮させたものや、エルゴチオネインを抽出してエルゴチオネインを精製したもの等を含む。
The form of the culture is not particularly limited, and may be solid, liquid, or a mixture of both, for example, liquid, powder, granule, tablet, tablet, capsule It may be in the form of an agent or the like.
In addition, mushrooms shall be remove | excluded from the culture of embodiment.
The culture includes a processed product obtained by processing a culture medium after culturing. The medium may be a liquid medium.
Here, the processed product includes a product obtained by volatilizing a volatile component contained in a medium and concentrating ergothioneine, a product obtained by extracting ergothioneine and purifying ergothioneine, and the like.
実施形態の肥料は、エルゴチオネインを生合成可能な微生物の培養物を含む。すなわち、当該培養物は、エルゴチオネインを含む肥料として使用可能であり、植物に施用することで、エルゴチオネインを含有する植物体を栽培できる。 The fertilizer of the embodiment includes a culture of a microorganism capable of biosynthesis of ergothioneine. That is, the culture can be used as a fertilizer containing ergothioneine, and a plant containing ergothioneine can be cultivated by applying it to a plant.
肥料の形態は、特に制限されず、固体であってもよく、液体であってもよく、両方の混合形態であってもよく、例えば、液剤、粉剤、粒剤、錠剤、タブレット剤、カプセル剤等の形態であってよい。 The form of the fertilizer is not particularly limited, and may be solid, liquid, or a mixture of both. For example, liquid, powder, granule, tablet, tablet, capsule Or the like.
実施形態の肥料の水分含量は、輸送性等の点から少ないことが好ましく、例えば、水分含量が30質量%以下であってもよく、25質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。
微生物の培養物を含み、水分含量が上記範囲内の肥料であれば、通常、粒剤や粉剤等の形態を有しており、肥料としての輸送性に優れ、且つ、肥料としての使用性も良好である。
The water content of the fertilizer of the embodiment is preferably small from the viewpoint of transportability, for example, the water content may be 30% by mass or less, 25% by mass or less, and 20% by mass or less. It may be 15% by mass or less.
If it is a fertilizer that contains a culture of microorganisms and the water content is in the above range, it usually has a form such as a granule or powder, is excellent in transportability as a fertilizer, and is also usable as a fertilizer. It is good.
実施形態の肥料は、エルゴチオネインを生合成可能な微生物の培養物そのものであってもよく、実施形態の培養物に、水等の希釈剤や、養分等の添加剤が添加されたものでもよい。
実施形態の肥料は、実施形態の培養物を原材料として用いて、製造可能である。例えば、実施形態の培養物を、滅菌処理し、破砕処理した後に、メタノール等の溶媒で溶媒抽出し溶媒を除去すれば、エルゴチオネインを高濃度で含有し、上記の水分含量を満たす肥料を製造できる。
The fertilizer of the embodiment may be a microorganism culture itself capable of biosynthesizing ergothioneine, or may be one obtained by adding a diluent such as water or an additive such as nutrients to the culture of the embodiment.
The fertilizer of the embodiment can be manufactured using the culture of the embodiment as a raw material. For example, after the culture of the embodiment is sterilized and crushed, and then extracted with a solvent such as methanol and the solvent is removed, a fertilizer containing ergothioneine at a high concentration and satisfying the above water content can be produced. .
肥料中のエルゴチオネインの含有量は、特に制限されるものではないが、0.01mg/L以上250g/L以下であってもよく、0.1mg/L以上10000mg/L以下であってもよく、0.5mg/L以上1000mg/L以下であってもよい。 The content of ergothioneine in the fertilizer is not particularly limited, but may be 0.01 mg / L or more and 250 g / L or less, 0.1 mg / L or more and 10000 mg / L or less, 0.5 mg / L or more and 1000 mg / L or less may be sufficient.
≪植物体の製造方法≫
 実施形態の製造方法は、実施形態の植物体の製造方法であって、エルゴチオネインを含有する栽培培地で、植物体を栽培する栽培工程を有し、前記栽培培地はエルゴチオネインを1μg/L以上含有する。
≪Plant manufacturing method≫
The production method of the embodiment is a production method of the plant body of the embodiment, and has a cultivation step of cultivating the plant body in a cultivation medium containing ergothioneine, and the cultivation medium contains 1 μg / L or more of ergothioneine. .
発明者らは、後述の実施例に示すように、エルゴチオネインを含有する栽培培地で植物体を栽培することにより、植物体にエルゴチオネインを蓄積させることが可能であり、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する実施形態の植物体を製造可能であることを見出した。すなわち、エルゴチオネインを含有する栽培培地で植物体を栽培することにより、栽培培地に含まれるエルゴチオネインを、植物体を用いて回収可能であることを見出した。 As shown in the examples below, the inventors can grow ergothioneine in a culture medium containing ergothioneine, thereby allowing ergothioneine to accumulate in the plant body. It has been found that the plant body of the embodiment containing ergothioneine can be produced. That is, it discovered that the ergothioneine contained in a cultivation medium is recoverable using a plant body by growing a plant body in the cultivation medium containing an ergothioneine.
実施形態に係る栽培培地は、エルゴチオネインを1μg/L以上含有するものであり、エルゴチオネインを0.01mg/L以上含有してもよく、エルゴチオネインを1mg/L以上含有してもよく、エルゴチオネインを1mg/L以上含有してもよく、エルゴチオネインを10mg/L以上含有してもよく、エルゴチオネインを50mg/L以上含有してもよく、エルゴチオネインを100mg/L以上含有してもよく、エルゴチオネインを250mg/L以上含有してもよく、エルゴチオネインを500mg/L以上含有してもよく、エルゴチオネインを600mg/L以上含有してもよい。
上記下限値以上でエルゴチオネインを含有する栽培培地を用いることで、植物体にエルゴチオネインが効率的に蓄積されやすい。
The cultivation medium according to the embodiment contains 1 μg / L or more of ergothioneine, may contain 0.01 mg / L or more of ergothioneine, may contain 1 mg / L or more of ergothioneine, and may contain 1 mg / L of ergothioneine. May contain more than 10 mg / L ergothioneine, more than 50 mg / L ergothioneine, more than 100 mg / L ergothioneine, more than 250 mg / L ergothioneine Alternatively, ergothioneine may be contained in an amount of 500 mg / L or more, and ergothioneine may be contained in an amount of 600 mg / L or more.
By using a culture medium containing ergothioneine at the lower limit or higher, ergothioneine is likely to be efficiently accumulated in the plant body.
実施形態に係る栽培培地は、エルゴチオネインを10000mg/L以下含有してもよく、エルゴチオネインを1000mg/L以下含有してもよく、エルゴチオネインを800mg/L以下含有してもよく、エルゴチオネインを300mg/L以下含有してもよく、エルゴチオネインを100mg/L以下含有してもよく、エルゴチオネインを10mg/L以下含有してもよく、エルゴチオネインを1mg/L以下含有してもよい。
上記上限値以下でエルゴチオネインを含有する栽培培地であっても、植物体はエルゴチオネインを蓄積することができるので、低濃度のエルゴチオネインを含む栽培培地からでも植物体を用いてエルゴチオネインを回収又は濃縮可能である。
The culture medium according to the embodiment may contain ergothioneine 10000 mg / L or less, may contain ergothioneine 1000 mg / L or less, may contain ergothioneine 800 mg / L or less, and ergothioneine 300 mg / L or less. It may be contained, ergothioneine may be contained at 100 mg / L or less, ergothioneine may be contained at 10 mg / L or less, and ergothioneine may be contained at 1 mg / L or less.
Even in a culture medium containing ergothioneine below the above upper limit, the plant can accumulate ergothioneine, so that ergothioneine can be recovered or concentrated using a plant even from a culture medium containing a low concentration of ergothioneine. is there.
実施形態に係る栽培培地は、エルゴチオネインを1μg/L以上10000mg/L以下含有してもよく、0.01mg/L以上1000mg/L以下含有してもよく、0.1mg/L以上800mg/L以下含有してもよく、1mg/L以上300mg/L以下含有してもよい。 The culture medium according to the embodiment may contain ergothioneine 1 μg / L or more and 10000 mg / L or less, may contain 0.01 mg / L or more and 1000 mg / L or less, and contains 0.1 mg / L or more and 800 mg / L or less. It may be contained in an amount of 1 mg / L to 300 mg / L.
エルゴチオネインの測定方法は、後述の実施例に記載の方法により実施することができる。 The measuring method of ergothioneine can be implemented by the method described in the examples described later.
本明細書において、栽培培地が含有するエルゴチオネインとして測定される対象は、酸化型のエルゴチオネインを含まないエルゴチオネインのみが測定されたものとする。 In this specification, it is assumed that the target to be measured as ergothioneine contained in the culture medium is that only ergothioneine not containing oxidized ergothioneine is measured.
「エルゴチオネインを含有する栽培培地で、植物体を栽培する」とは、エルゴチオネインを含有する栽培培地と植物体が接した状態で植物体を栽培することを意味し、エルゴチオネインを含有する栽培培地と植物体の根が接した状態で植物体を栽培することが好ましい。植物体の根は、全部が前記栽培培地と接してもよく、一部のみが前記栽培培地と接してもよい。 “Grow plant with cultivation medium containing ergothioneine” means cultivating the plant in contact with the cultivation medium containing ergothioneine and the cultivation medium and plant containing ergothioneine It is preferable to cultivate the plant in a state where the roots of the body are in contact. The whole plant root may be in contact with the cultivation medium, or only a part may be in contact with the cultivation medium.
実施形態の製造方法に用いられるエルゴチオネインとしては、上述の「≪植物体≫」で例示したものが挙げられ、詳細な説明を省略する。 Examples of ergothioneine used in the production method of the embodiment include those exemplified in the above-mentioned “<< plant body >>”, and detailed description thereof is omitted.
実施形態の製造方法に用いられるエルゴチオネインは、植物が取り込める形態であれば、イオンの形態であってもよく、塩の形態であってもよい。 The ergothioneine used in the production method of the embodiment may be in the form of ions or in the form of a salt as long as it can be taken up by plants.
実施形態の栽培方法に用いられるエルゴチオネインは、天然に存在するものであってもよく、人工的又は人為的に製造されたものであってもよい。 Ergothionein used in the cultivation method of the embodiment may be naturally occurring, or may be artificially or artificially produced.
天然に存在するエルゴチオネインとしては、エルゴチオネインを生合成可能な微生物により産生されたものが挙げられる。前記微生物としては、シアノバクテリア、マイコバクテリア等の特定の細菌類や、シイタケ、ヒラタケ、エリンギ等の特定のキノコ等を含む菌類を例示できる。エルゴチオネインを生合成可能な微生物から回収されたエルゴチオネインや、精製されたエルゴチオネインを用いてもよい。 Examples of naturally occurring ergothioneine include those produced by microorganisms capable of biosynthesis of ergothioneine. Examples of the microorganism include specific bacteria such as cyanobacteria and mycobacteria, and fungi including specific mushrooms such as shiitake mushroom, oyster mushroom, and eringi. Ergothionein recovered from a microorganism capable of biosynthesis of ergothioneine or purified ergothioneine may be used.
人工的又は人為的に製造されたエルゴチオネインとしては、エルゴチオネインを生合成可能な微生物を人為的に培養して産生させた、エルゴチオネインが挙げられる。
また、エルゴチオネインの生産を向上可能なように人為的に改変された微生物によって産生されたエルゴチオネインや、本来はエルゴチオネインを生合成可能ではないが、エルゴチオネインを生合成可能なように人為的に改変された微生物によって産生されたエルゴチオネインが挙げられ、詳細は上記「≪培養物及び肥料≫」において説明したとおりである。
Examples of ergothioneine produced artificially or artificially include ergothioneine produced by artificially culturing and producing a microorganism capable of biosynthesis of ergothioneine.
In addition, ergothioneine produced by microorganisms that have been artificially modified to improve the production of ergothioneine, or originally ergothioneine is not biosynthesizeable, but has been artificially modified so that ergothioneine can be biosynthesized Examples include ergothioneine produced by microorganisms, and details are as described above in “<< culture and fertilizers >>”.
実施形態の製造方法において、エルゴチオネインは、1種を単独で用いてもよく、2種類以上を組合せて用いてもよい。 In the production method of the embodiment, ergothioneine may be used alone or in combination of two or more.
植物体の栽培方法は特に制限されず、例えば、露地栽培や、水耕栽培、温室栽培、ハウス栽培等の施設栽培が挙げられ、これらのなかでは、水耕栽培が好ましい。 The cultivation method of the plant body is not particularly limited, and examples thereof include outdoor cultivation, hydroponics, greenhouse cultivation, house cultivation and the like, and among these, hydroponics is preferable.
「栽培培地」とは、植物の栽培時に植物体と接して、植物の栽培環境を提供するもののうち、土壌、培土、水耕栽培用養液等のエルゴチオネインを含み得るものを指す。ここで、水耕栽培等で用いられるスポンジ等の担体やフロート等の機材は、エルゴチオネインを含有しないので、栽培培地には含めないものとする。栽培培地は、植物の栽培時に植物体の根と接するものであることが好ましい。
実施形態の栽培培地とは、上記栽培培地のうち、エルゴチオネインを1μg/L以上含有するものを指す。
“Cultivation medium” refers to a medium that can contain ergothioneine such as soil, soil, and nutrient solution for hydroponics among those that contact the plant body during plant cultivation and provide a plant cultivation environment. Here, carriers such as sponges used in hydroponics and the like, and equipment such as floats do not contain ergothioneine and therefore are not included in the culture medium. The cultivation medium is preferably in contact with the roots of the plant body during plant cultivation.
The cultivation medium of embodiment refers to what contains 1 microgram / L or more of ergothioneine among the said cultivation medium.
前記栽培培地は、実施形態の培養物又は実施形態の肥料を含むものであってよい。 The said culture medium may contain the culture of embodiment, or the fertilizer of embodiment.
実施形態の製造方法における栽培工程は、エルゴチオネインを生合成可能な微生物の培養物を含有する栽培培地で、植物体を栽培するものであってよい。
実施形態の製造方法における栽培工程は、エルゴチオネインを生合成可能な微生物の培養物を含む肥料を含有する栽培培地で、植物体を栽培するものであってよい。
The cultivation process in the production method of the embodiment may be a cultivation medium containing a culture of a microorganism capable of biosynthesis of ergothioneine and cultivating a plant body.
The cultivation process in the manufacturing method of embodiment may grow a plant body with the cultivation medium containing the fertilizer containing the culture of the microorganisms which can biosynthesize ergothioneine.
実施形態の肥料を含有する栽培培地は、例えば、土壌、培土、水耕栽培用養液等に実施形態の肥料を施用することで得ることができる。
実施形態の培養物を含有する栽培培地は、例えば、土壌、培土、水耕栽培用養液等に実施形態の培養物を施用することで得てもよく、土壌、培土、水耕栽培用養液等と、実施形態の培養物とを混合することで得てもよい。
実施形態に係る栽培培地として、例えば、実施形態の培養物そのものを使用してもよいし、実施形態の培養物に、水等の希釈剤や、養分等の添加剤を添加したもの使用してもよい。
The culture medium containing the fertilizer of the embodiment can be obtained by applying the fertilizer of the embodiment to soil, culture medium, hydroponics nutrient solution, or the like, for example.
The culture medium containing the culture of the embodiment may be obtained, for example, by applying the culture of the embodiment to soil, culture medium, hydroponics nutrient solution, or the like. You may obtain by mixing a liquid etc. and the culture of embodiment.
As the culture medium according to the embodiment, for example, the culture itself of the embodiment may be used, or the culture of the embodiment added with a diluent such as water or an additive such as nutrients may be used. Also good.
実施形態の製造方法は、前記栽培工程の前に、エルゴチオネインを含有しない又はエルゴチオネインを1μg/L未満含有する栽培培地に、エルゴチオネインを生合成可能な微生物の培養物を添加し、エルゴチオネインを1μg/L以上含有する栽培培地を得る添加工程を有してもよい。
実施形態の製造方法は、前記栽培工程の前に、エルゴチオネインを含有しない又はエルゴチオネインを1μg/L未満含有する栽培培地に、エルゴチオネインを生合成可能な微生物の培養物を含む肥料を添加し、エルゴチオネインを1μg/L以上含有する栽培培地を得る添加工程を有してもよい。
In the production method of the embodiment, before the cultivation step, a culture of a microorganism capable of biosynthesis of ergothioneine is added to a culture medium that does not contain ergothioneine or contains less than 1 μg / L of ergothioneine, and ergothioneine is added at 1 μg / L. You may have the addition process of obtaining the cultivation culture medium contained above.
In the production method of the embodiment, before the cultivation step, fertilizer containing a culture of microorganisms capable of biosynthesis of ergothioneine is added to a culture medium not containing ergothioneine or containing less than 1 μg / L of ergothioneine, and ergothioneine is added. You may have the addition process of obtaining the culture medium containing 1 microgram / L or more.
栽培工程は、植物体が新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有するまで行う。
栽培工程の実施時間、つまりエルゴチオネインを含有する栽培培地と植物体とが接した状態で植物体を栽培する時間は、植物体が、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有するのに要する時間を考慮して適宜定めればよい。一例として、1時間以上であってよく、12時間以上であってよく、24時間以上であってよく、3日以上であってよい。栽培工程は連続して行ってもよく、複数回に分けて行ってもよい。
The cultivation process is carried out until the plant contains 0.5 μg or more of ergothioneine per 100 g of fresh weight.
Implementation time of the cultivation process, that is, the time for cultivating the plant in the state where the cultivation medium containing ergothioneine is in contact with the plant is the time required for the plant to contain 0.5 μg or more of ergothioneine per 100 g of fresh weight May be determined as appropriate. As an example, it may be 1 hour or longer, 12 hours or longer, 24 hours or longer, or 3 days or longer. A cultivation process may be performed continuously and may be performed in multiple times.
実施形態の製造方法は、前記栽培工程の後に、さらに、前記植物体を収穫する収穫工程を有してもよい。
栽培工程は、収穫工程の直前まで実施されることが好ましい。これによりエルゴチオネインが植物体に蓄積された状態が維持されやすく、また収穫の目的物に効率よくエルゴチオネインを蓄積させることができる。
上記の観点から、前記栽培工程は、前記収穫工程の前の少なくとも10日以内に行われることが好ましく、少なくとも3日以内に行われることが好ましい。
The manufacturing method of the embodiment may further include a harvesting step for harvesting the plant body after the cultivation step.
The cultivation process is preferably carried out until just before the harvesting process. As a result, the state in which ergothioneine is accumulated in the plant body can be easily maintained, and ergothioneine can be efficiently accumulated in the harvest target.
From the above viewpoint, the cultivation process is preferably performed within at least 10 days before the harvesting process, and is preferably performed within at least 3 days.
実施形態の製造方法によれば、新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する実施形態の植物体を製造することができる。 According to the production method of the embodiment, the plant body of the embodiment containing 0.5 μg or more of ergothioneine per 100 g of fresh weight can be produced.
また、実施形態の製造方法によれば、栽培培地中に含まれるエルゴチオネインを植物体に回収又は濃縮することができる。実施形態の製造方法における栽培工程は、いわばエルゴチオネインの精製の工程としても見なすことができ、エルゴチオネインを精製して利用する代わりに、エルゴチオネインを蓄積した植物体としてエルゴチオネインを利用することが可能となる。これにより、エルゴチオネインを安価に供給でき、エルゴチオネインの普及が見込まれる。 Moreover, according to the manufacturing method of embodiment, the ergothioneine contained in a culture medium can be collect | recovered or concentrated to a plant body. The cultivation process in the production method of the embodiment can be considered as a process of refining ergothioneine, and instead of refining and using ergothioneine, it is possible to use ergothioneine as a plant body in which ergothioneine is accumulated. As a result, ergothioneine can be supplied at low cost, and ergothioneine is expected to spread.
<人為的に改変された微生物>
<1>微生物
 以下、エルゴチオネインを生合成可能な微生物に関し、エルゴチオネインの生産を向上可能なように人為的に改変された微生物について、及び、エルゴチオネインを生合成可能なように人為的に改変された微生物について説明する。
 これら微生物は、実施形態の培養物、肥料、植物体の製造方法で用いられてもよい前記微生物として、好適に使用可能である。
<An artificially modified microorganism>
<1> Microorganisms Hereinafter, regarding microorganisms that can biosynthesize ergothioneine, microorganisms that have been artificially modified to improve the production of ergothioneine, and microorganisms that have been artificially modified so that ergothioneine can be biosynthesized Will be described.
These microorganisms can be suitably used as the microorganisms that may be used in the culture, fertilizer, and plant production methods of the embodiments.
エルゴチオネインを生合成可能な微生物は、本来的にエルゴチオネイン生産能を有するものであってもよく、エルゴチオネイン生産能を有するように改変されたものであってもよい。エルゴチオネイン生産能を有する微生物は、例えば、微生物にエルゴチオネイン生産能を付与することにより、又は、微生物のエルゴチオネイン生産能を増強することにより、取得されてもよい。 The microorganism capable of biosynthesizing ergothioneine may originally have ergothioneine-producing ability or may be modified to have ergothioneine-producing ability. A microorganism having an ergothioneine-producing ability may be obtained, for example, by imparting an ergothioneine-producing ability to a microorganism or by enhancing the ergothioneine-producing ability of a microorganism.
エルゴチオネイン生産能を有するように微生物を改変する方法として、エルゴチオネイン合成に関与する遺伝子を保持するように微生物を改変する方法が挙げられる。エルゴチオネイン合成に関与する遺伝子を保持するように微生物を改変することは、エルゴチオネイン合成に関与する遺伝子を微生物に導入することにより達成できる。また、エルゴチオネイン合成に関与する遺伝子を保持するように微生物を改変することは、自然変異や変異原処理により微生物が有する遺伝子に変異を導入することによっても達成できる。 Examples of a method for modifying a microorganism so as to have the ability to produce ergothioneine include a method for modifying a microorganism so as to retain a gene involved in ergothioneine synthesis. Modification of a microorganism to retain a gene involved in ergothioneine synthesis can be achieved by introducing a gene involved in ergothioneine synthesis into the microorganism. Moreover, modifying a microorganism so as to retain a gene involved in ergothioneine synthesis can also be achieved by introducing a mutation into a gene possessed by the microorganism by natural mutation or mutagen treatment.
エルゴチオネイン合成に関与する遺伝子としては、エルゴチオネインタンパク質群をコードするegtABCDE遺伝子オペロンが挙げられ、マイコバクテリア由来のegtABCDE遺伝子オペロンが好ましく、マイコバクテリウム属(Mycobacterium)に属する細菌由来のegtABCDE遺伝子オペロンがより好ましく、マイコバクテリウムスメグマチス(Mycobacterium smegmatis)由来のegtABCDE遺伝子オペロンがさらに好ましい。
また、egtABCDE遺伝子としては、Mycobacterium smegmatis等の各種生物由来のegtABCDEの保存的バリアント(元の機能が維持されたバリアント)であってよい。egtABCDEについての「元の機能」とは、エルゴチオネイン合成活性をいう。遺伝子及びタンパク質の保存的バリアントについては、後述するRNAピロホスホヒドロラーゼ遺伝子及びRNAピロホスホヒドロラーゼの保存的バリアントに関する記載を準用できる。
The genes involved in ergothioneine synthesis include the egtABCDE gene operon encoding the ergothioneine protein group, the egtABCDE gene operon derived from mycobacteria is preferred, and the egtABCDE gene operon derived from bacteria belonging to the genus Mycobacterium is more preferred The egtABCDE gene operon derived from Mycobacterium smegmatis is more preferable.
The egtABCDE gene may be a conservative variant of egtABCDE derived from various organisms such as Mycobacterium smegmatis (a variant in which the original function is maintained). “Original function” for egtABCDE refers to ergothioneine synthetic activity. Regarding the conservative variants of genes and proteins, the descriptions regarding RNA pyrophosphohydrolase gene and conservative variants of RNA pyrophosphohydrolase described later can be applied mutatis mutandis.
エルゴチオネインを生合成可能な微生物は、システイン生産能が増大するよう改変された微生物であってもよい。システインは、エルゴチオネインの前駆物質であり、システインの生産能が増大することで、微生物のエルゴチオネインの生産力を強化できる。 The microorganism capable of biosynthesizing ergothioneine may be a microorganism modified so that the cysteine-producing ability is increased. Cysteine is a precursor of ergothioneine, and the productivity of cysteine ergothioneine can be enhanced by increasing the ability to produce cysteine.
<1-1>L-システイン生産能を有する微生物
 本発明において、「システイン」という用語は、特記しない限り、L-システインを意味する。また、本発明において、「L-システイン」という用語は、特記しない限り、フリー体のL-システイン、その塩又はそれらの混合物を意味する。塩については後述する。これらのシステインに関する説明は、L-システインの関連物質についても準用できる。すなわち、例えば、「O-アセチルセリン」という用語は、特記しない限り、フリー体のO-アセチル-L-セリン、その塩又はそれらの混合物を意味する。
<1-1> Microorganism having L-cysteine-producing ability In the present invention, the term “cysteine” means L-cysteine unless otherwise specified. In the present invention, the term “L-cysteine” means free L-cysteine, a salt thereof, or a mixture thereof, unless otherwise specified. The salt will be described later. These explanations concerning cysteine can be applied mutatis mutandis to related substances of L-cysteine. That is, for example, the term “O-acetylserine” means free O-acetyl-L-serine, a salt thereof, or a mixture thereof, unless otherwise specified.
 微生物は、本来的にL-システイン生産能を有するものであってもよく、L-システイン生産能を有するように改変されたものであってもよい。L-システイン生産能を有する微生物は、例えば、微生物にL-システイン生産能を付与することにより、又は、微生物のL-システイン生産能を増強することにより、取得されてもよい。 The microorganism may originally have L-cysteine producing ability or may be modified so as to have L-cysteine producing ability. A microorganism having L-cysteine-producing ability may be obtained, for example, by imparting L-cysteine-producing ability to a microorganism, or by enhancing L-cysteine-producing ability of a microorganism.
 L-システイン生産能の付与又は増強は、従来、微生物の育種に採用されてきた方法により行うことができる(例えば、「アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁」参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。 L-cysteine-producing ability can be imparted or enhanced by a method conventionally used for microbial breeding (for example, `` Amino Acid Fermentation, Inc., Society Publishing Center, May 30, 1986, first edition issued, See pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more. In addition, L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性又は代謝制御変異を示し、且つ、L-アミノ酸生産能を有するものを選択することによつて取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N'-ニトロ-N-ニトロングアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、国際公開第00/18935号、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。 An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those that show resistance or metabolic control mutations and have the ability to produce L-amino acids. Common mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included. Further, the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in International Publication No. 00/18935, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。 Furthermore, L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out. As used herein, “an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid” includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
 以下、L-システイン生産微生物、及び、L-システイン生産能を付与又は増強する方法について具体的に例示する。なお、以下に例示するようなL-システイン生産微生物が有する性質及びL-システイン生産能を付与又は増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。 Hereinafter, L-cysteine-producing microorganisms and methods for imparting or enhancing L-cysteine-producing ability will be specifically exemplified. In addition, the modification | reformation for providing or enhancing the property and L-cysteine production ability which the L-cysteine production microorganisms which are illustrated below may have may be used independently, and may be used in combination as appropriate.
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの生合成系が強化されるように微生物を改変する方法が挙げられる。「L-システインの生合成系を強化する」とは、L-システインの生合成に関与する酵素(L-システイン生合成系酵素ともいう)から選択される1又はそれ以上の酵素の活性を増強することをいう。
L-システイン生合成系酵素としては、L-システイン生合成経路の酵素、及び、同経路の基質となる化合物の生成に関与する酵素が挙げられる。L-システイン生合成系酵素として、具体的には、セリンアセチルトランスフェラーゼ(SAT)や3-ホスホグリセレートデヒドログナーゼ(PGD)が挙げられる。SAT及びPGDをコードする遺伝子を、それぞれSAT遺伝子及びPGD遺伝子ともいう。L-システイン生合成系酵素をコードする遺伝子としては、例えば、エシェリヒア・コリ等のエシェリヒア属細菌由来の遺伝子や、その他各種生物由来の遺伝子のいずれも使用することができる。例えば、SAT遺伝子として、cysE遺伝子がエシェリヒア・コリの野生株及びL-システイン分泌変異株よリクローニングされ、塩基配列が明らかになっている(例えば、「Denk,D.and Boeck,A., General Microbiol, 133, 515-525(1987)」参照)。また、例えば、PGD遺伝子として、エシェリヒア・コリ等の各種生物のserA遺伝子が知られている。
Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a microorganism so that the L-cysteine biosynthesis system is enhanced. “Enhance L-cysteine biosynthesis system” means that the activity of one or more enzymes selected from enzymes involved in L-cysteine biosynthesis (also called L-cysteine biosynthesis enzymes) is enhanced. To do.
Examples of L-cysteine biosynthetic enzymes include enzymes of the L-cysteine biosynthetic pathway and enzymes involved in the production of compounds that are substrates of the pathway. Specific examples of L-cysteine biosynthetic enzymes include serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrognase (PGD). The genes encoding SAT and PGD are also referred to as SAT gene and PGD gene, respectively. As a gene encoding an L-cysteine biosynthetic enzyme, for example, any of genes derived from Escherichia bacteria such as Escherichia coli and genes derived from various other organisms can be used. For example, as the SAT gene, the cysE gene has been recloned from a wild strain of Escherichia coli and an L-cysteine secreting mutant, and the nucleotide sequence has been clarified (for example, “Denk, D. and Boeck, A., General Microbiol, 133, 515-525 (1987) ”). For example, as a PGD gene, the serA gene of various organisms such as Escherichia coli is known.
 また、SATはL-システインによるフィードバック阻害を受けるため、このフィードバック阻害が低減又は解除されたSATを利用してもよい。「フィードバック阻害が低減又は解除されている」ことを「フィードバック阻害に耐性」ともいう。L-システインによるフィードバック阻害が低減又は解除されたSATを「変異型SAT」ともいう。また、変異型SATをコードする遺伝子を「変異型SAT遺伝子」ともいう。すなわち、L-システイン生産能を付与又は増強するための方法としては、例えば、変異型SAT遺伝子を保持するように微生物を改変する方法も挙げられる。すなわち、微生物は、変異型SAT遺伝子を保持するように改変されていてもよい。変異型SAT遺伝子を微生物に保持させることによって、SAT活性を増強することができ得る。変異型SATとしては、野生型SATの256位のメチオニン残基をリジン残基及びロイシン残基以外のアミノ酸残基に置換する変異を有するSATや、野生型SATの256位のメチオニン残基からC末端側の領域を欠失する変異を有するSATが挙げられる(例えば、日本国特開平11-155571号公報参照)。前記「リジン残基及びロイシン残基以外のアミノ酸残基」としては、通常のタンパク質を構成するアミノ酸のうち、メチオニン残基、リジン残基及びロイシン残基を除く17種類のアミノ酸残基が挙げられる。前記「リジン残基及びロイシン残基以外のアミノ酸残基」として、具体的には、イソロイシン残基及びグルタミン酸残基が挙げられる。また、変異型SATとしては、野生型SATの89~96位のアミノ酸残基に1又は複数の変異を有するSAT(例えば、米国特許出願公開第2005/0112731号明細書参照)、野生型SATの95位のバリン残基及び96位のアスパラギン酸残基を、各々アルギニン残基及びプロリン残基に置換する変異を有するSAT(変異型遺伝子名cysE5;例えば、米国特許出願公開第2005/0112731号明細書参照)、及び野生型SATの167位のスレオニン残基をアラニン残基に置換する変異を有するSAT(変異型遺伝子名cysEX;例えば、米国特許第6218168号明細書、米国特許出願公開第2005/0112731号明細書参照)も挙げられる。「野生型SAT」とは、上述の変異(L-システインによるフィードバック阻害に耐性となる変異)を有していないSATをいう。ここでいう「野生型」とは、「変異型」と区別するための便宜上の記載であり、上述の変異を有しない限り、天然に得られるものには限定されない。野生型SATとしては、エシェリヒア・コリ等の各種生物由来のSATが挙げられる。また、野生型SATとしては、エシェリヒア・コリ等の各種生物由来のSATの保存的バリアント(元の機能が維持されたバリアント)であって、上記の変異を有しないものも挙げられる。SATについての「元の機能」とは、SAT活性をいう。256位のメチオニン残基をグルタミン酸残基に置換した変異型SATをコードする変異型cysEを含むプラスミドpCEM256Eを保持するエシェリヒア・コリJM39-8株(E.coli JM39-8(pCEM256E)、プライベートナンバー:AJ13391)は、1997年11月20日に通産省工業技術院生命工学工業技術研究所(現、独立行政法人 製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県本更津市かずさ鎌足2-5-8 120号室)に、FERM P-16527の受託番号のもとで寄託され、2002年7月8日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-8112が付与されている。 Also, since SAT is subject to feedback inhibition by L-cysteine, SAT in which this feedback inhibition has been reduced or eliminated may be used. “Feedback inhibition is reduced or eliminated” is also referred to as “resistance to feedback inhibition”. SAT in which feedback inhibition by L-cysteine is reduced or eliminated is also referred to as “mutant SAT”. A gene encoding mutant SAT is also referred to as “mutant SAT gene”. That is, examples of a method for imparting or enhancing L-cysteine producing ability include a method of modifying a microorganism so as to retain a mutant SAT gene. That is, the microorganism may be modified to retain the mutant SAT gene. It is possible to enhance the SAT activity by retaining the mutant SAT gene in a microorganism. Mutant SAT includes SAT having a mutation that replaces the methionine residue at position 256 of wild-type SAT with an amino acid residue other than lysine residue and leucine residue, and C from methionine residue at position 256 of wild-type SAT. Examples include SAT having a mutation that deletes the terminal region (see, for example, Japanese Patent Application Laid-Open No. 11-155571). Examples of the above-mentioned “amino acid residues other than lysine residues and leucine residues” include 17 types of amino acid residues other than methionine residues, lysine residues and leucine residues among amino acids constituting ordinary proteins. . Specific examples of the “amino acid residue other than lysine residue and leucine residue” include isoleucine residue and glutamic acid residue. As the mutant SAT, SAT having one or more mutations at amino acid residues 89 to 96 of wild-type SAT (see, for example, US Patent Application Publication No. 2005/0112731), wild-type SAT SAT (mutant gene name cysE5; for example, US Patent Application Publication No. 2005/0112731) having a mutation that replaces the valine residue at position 95 and the aspartic acid residue at position 96 with an arginine residue and a proline residue, respectively. SAT) having a mutation that substitutes the threonine residue at position 167 of wild-type SAT with an alanine residue (mutant gene name cysEX; for example, US Pat. No. 6,218,168, US Patent Application Publication No. 2005 / 0112731). “Wild-type SAT” refers to a SAT that does not have the above-described mutation (mutation that is resistant to feedback inhibition by L-cysteine). The “wild type” as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation. Examples of wild-type SAT include SAT derived from various organisms such as Escherichia coli. In addition, examples of wild-type SAT include conservative variants of SAT derived from various organisms such as Escherichia coli (variants in which the original functions are maintained) that do not have the above-described mutation. “Original function” for SAT refers to SAT activity. Escherichia coli JM39-8 strain (E.coli39JM39-8 (pCEM256E) carrying a plasmid pCEM256E containing a mutant cysE encoding a mutant SAT in which the methionine residue at position 256 is substituted with a glutamic acid residue, private number: AJ13391) was established on November 20, 1997 by the Institute of Biotechnology, Ministry of International Trade and Industry, Ministry of International Trade and Industry (currently, National Institute for Product Evaluation and Technology, Patent Biological Deposit Center, Postal Code: 292-0818, Address: Chiba, Japan. 2-5-8, Kazusa-Kamashita, Motosarazu City), deposited under the accession number of FERM P-16527, transferred to an international deposit under the Budapest Treaty on July 8, 2002. FERM BP-8112 is granted.
 また、変異型SATは、上記のようにL-システインによるフィードバック阻害に耐性となるように改変されたものであってもよいが、元来フィードバック阻害を受けないものであってもよい。例えば、シロイヌナズナのSATは、L-システインによるフィードバック阻害を受けないことが知られており、本発明に好適に用いることができる。シロイヌナズナ由来のSAT遺伝子を含むプラスミドとして、pEAS-m(例えば、「FEMS Microbiol.Lett.,179(1999)453-459」参照)が知られている。 Further, the mutant SAT may be modified so as to be resistant to feedback inhibition by L-cysteine as described above, but may be one that is not originally subjected to feedback inhibition. For example, SAT of Arabidopsis thaliana is known not to be subjected to feedback inhibition by L-cysteine and can be suitably used in the present invention. As a plasmid containing the SAT gene derived from Arabidopsis thaliana, pEAS-m (see, for example, “FEMS Microbiol. Lett., 179 (1999) 453-459”) is known.
 また、PGDはL-セリンによるフィードバック阻害を受けるため、このフィードバック阻害が低減又は解除されたPGDを利用してもよい。本発明において、L-セリンによるフィードバック阻害が低減又は解除されたPGDを「変異型PGD」ともいう。また、変異型PGDをコードする遺伝子を「変異型PGD遺伝子」ともいう。すなわち、L-システイン生産能を付与又は増強するための方法としては、例えば、変異型PGD遺伝子を保持するように細菌を改変する方法も挙げられる。すなわち、微生物は、変異型PGD遺伝子を保持するように改変されていてもよい。変異型PGD遺伝子を微生物に保持させることによって、PGD活性を増強することができ得る。変異型PGDとしては、野生型PGDの410位(N末端)のチロシン残基を欠失する変異を有するPGD(変異型遺伝子名serA5;例えば、米国特許第6180373号明細書参照)が挙げられる。
「野生型PGD」とは、上述の変異(L-セリンによるフィードバック阻害に耐性となる変異)を有していないPGDをいう。ここでいう「野生型」とは、「変異型」と区別するための便宜上の記載であり、上述の変異を有しない限り、天然に得られるものには限定されない。
野生型PGDとしては、エシェリヒア・コリ等の各種生物由来のPGDが挙げられる。また、野生型PGDとしては、エシェリヒア・コリ等の各種生物由来のPGDの保存的バリアント(元の機能が維持されたバリアント)であって、上述の変異を有しないものも挙げられる。PGDについての「元の機能」とは、PGD活性をいう。
Moreover, since PGD is subject to feedback inhibition by L-serine, PGD in which this feedback inhibition is reduced or eliminated may be used. In the present invention, PGD in which feedback inhibition by L-serine is reduced or eliminated is also referred to as “mutant PGD”. A gene encoding a mutant PGD is also referred to as a “mutant PGD gene”. That is, as a method for imparting or enhancing L-cysteine production ability, for example, a method of altering bacteria so as to retain a mutant PGD gene can also be mentioned. That is, the microorganism may be modified so as to retain the mutant PGD gene. PGD activity can be enhanced by retaining a mutant PGD gene in a microorganism. Examples of mutant PGD include PGD having a mutation that deletes the tyrosine residue at position 410 (N-terminal) of wild-type PGD (mutant gene name serA5; see, for example, US Pat. No. 6,180,373).
“Wild-type PGD” refers to a PGD that does not have the above-described mutation (mutation that is resistant to feedback inhibition by L-serine). The “wild type” as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation.
Examples of the wild-type PGD include PGD derived from various organisms such as Escherichia coli. In addition, examples of wild-type PGD include conservative variants of PGD derived from various organisms such as Escherichia coli (variants in which the original functions are maintained) that do not have the above-described mutation. “Original function” for PGD refers to PGD activity.
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの排出系が強化されるように微生物を改変する方法も挙げられる。「L-システインの排出系を強化する」とは、L-システインの排出に関与するタンパク質(L-システイン排出因子ともいう)から選択される1又はそれ以上のタンパク質の活性を増強することをいう。L-システイン排出因子としては、ydeD遺伝子(eamA遺伝子)にコードされるタンパク質(例えば、日本国特開2002-233384号公報参照)、yfiK遺伝子にコードされるタンパク質(例えば、日本国特開2004-049237)、emrAB、emrKY、yojIH、acrEF、bcr、及び、cusA遺伝子にコードされる各タンパク質(例えば、日本国特開2005-2873334号公報参照)、yeaS遺伝子にコードされるタンパク質(例えば、日本国特開2010-1875524号公報参照)が知られている。また、野生型YeaSタンパク質の28位のスレオニン残基、137位のフェニルアラニン残基及び188位のロイシン残基からなる群より選ばれる少なくとも1種に変異を有するYeaSタンパク質を利用してもよい。上述の変異を有するYeaSタンパク質を「変異型YeaSタンパク質」ともいう。また、変異型YeaSタンパク質をコードする遺伝子を「変異型yeaS遺伝子」ともいう。すなわち、L-システイン生産能を付与又は増強するための方法としては、例えば、変異型yeaS遺伝子を保持するように微生物を改変する方法も挙げられる。すなわち、微生物は、変異型yeaS遺伝子を保持するように改変されていてもよい。変異型yeaS遺伝子を微生物に保持させることによって、L-システイン排出系を強化することができ得る(例えば、欧州特許出願公開第2218729号明細書参照)。
変異型YeaSタンパク質は、具体的には、YeaSタンパク質の28位のスレオニン残基をアスパラギンに置換する変異、137位のフェニルアラニン残基をセリン、グルタミン、アラニン、ヒスチジン、システイン及びグリシンのいずれかに置換する変異、並びに、188位のロイシン残基をグルタミンに置換する変異からなる群より選ばれる少なくとも1種の変異を有していてよい(例えば、欧州特許出願公開第2218729号明細書参照)。「野生型YeaSタンパク質」とは、上述の変異を有していないYeaSタンパク質をいう。ここでいう「野生型」とは、「変異型」と区別するための便宜上の記載であり、上述の変異を有しない限り、天然に得られるものには限定されない。野生型YeaSタンパク質としては、エシェリヒア・コリ等の各種生物由来のYeaSタンパク質が挙げられる。
また、野生型YeaSタンパク質としては、エシェリヒア・コリ等の各種生物由来のYeaSタンパク質の保存的バリアント(元の機能が維持されたバリアント)であって、上述の変異を有しないものも挙げられる。YeaSタンパク質についての「元の機能」とは、微生物において発現を上昇させた際に微生物のL-システイン生産能を向上させる性質をいう。
Examples of a method for imparting or enhancing L-cysteine production ability include a method of modifying a microorganism so that an L-cysteine excretion system is enhanced. “Strengthening the L-cysteine excretion system” means enhancing the activity of one or more proteins selected from proteins involved in L-cysteine excretion (also referred to as L-cysteine excretion factor). . Examples of L-cysteine excretion factors include proteins encoded by the ydeD gene (eamA gene) (see, for example, Japanese Patent Application Laid-Open No. 2002-233384), proteins encoded by the yfiK gene (for example, Japanese Patent Application Laid-Open No. 2004-233). 049237), emrAB, emrKY, yojIH, acrEF, bcr, and each protein encoded by the cusA gene (for example, refer to Japanese Unexamined Patent Publication No. 2005-2873334), protein encoded by the yeaS gene (for example, Japan) JP 2010-1875524 A) is known. Alternatively, a YeaS protein having a mutation in at least one selected from the group consisting of a threonine residue at position 28, a phenylalanine residue at position 137, and a leucine residue at position 188 of the wild-type YeaS protein may be used. The YeaS protein having the mutation described above is also referred to as “mutant YeaS protein”. A gene encoding a mutant YeaS protein is also referred to as a “mutant yeaS gene”. That is, as a method for imparting or enhancing L-cysteine production ability, for example, a method of modifying a microorganism so as to retain a mutant yeaS gene can also be mentioned. That is, the microorganism may be modified to retain the mutant yeaS gene. By retaining the mutant yeaS gene in a microorganism, the L-cysteine excretion system can be enhanced (see, for example, European Patent Publication No. 2218729).
Specifically, the mutant YeaS protein is a mutation that replaces the threonine residue at position 28 of the YeaS protein with asparagine, and the phenylalanine residue at position 137 is replaced with one of serine, glutamine, alanine, histidine, cysteine, and glycine. And at least one mutation selected from the group consisting of a mutation in which the leucine residue at position 188 is substituted with glutamine (see, for example, European Patent Application Publication No. 2218729). “Wild-type YeaS protein” refers to a YeaS protein that does not have the mutation described above. The “wild type” as used herein is a description for the convenience of distinguishing from the “mutant type”, and is not limited to those obtained in nature unless it has the above-mentioned mutation. Examples of the wild-type YeaS protein include YeaS proteins derived from various organisms such as Escherichia coli.
Examples of the wild-type YeaS protein include conservative variants (variants in which the original functions are maintained) of YeaS proteins derived from various organisms such as Escherichia coli, which do not have the above-described mutation. The “original function” for YeaS protein refers to the property of improving the ability of microorganisms to produce L-cysteine when expression is increased in microorganisms.
 本発明において、「野生型SATのX位のアミノ酸残基」とは、特記しない限り、野生型SATのアミノ酸残基に相当するアミノ酸残基を意味する。また、本発明において、「野生型PGDのX位のアミノ酸残基」とは、特記しない限り、野生型PGDのアミノ酸残基に相当するアミノ酸残基を意味する。また、本発明において、「野生型YeaSタンパク質のX位のアミノ酸残基」とは、特記しない限り、エシェリヒア・コリK-12 MG1655株の野生型YeaSタンパク質におけるX位のアミノ酸残基に相当するアミノ酸残基を意味する。アミノ酸配列における「X位」とは、同アミノ酸配列のN末端から数えてX番目の位置を意味し、N末端のアミノ酸残基が1位のアミノ酸残基である。なお、アミノ酸残基の位置は相対的な位置を示すものであって、アミノ酸の欠失、挿入、付加等によってその絶対的な位置は前後することがある。例えば、「野生型SATの167位のスレオニン残基」とは、野生型SATのにおける167位のスレオニン残基に相当するアミノ酸残基を意味し、167位よりもN末端側の1アミノ酸残基が欠失している場合は、N末端から166番目のアミノ酸残基が「野生型SATの167位のスレオニン残基」であるものとする。また、167位よりもN末端側に1アミノ酸残基挿入されている場合は、N末端から168番目のアミノ酸残基が「野生型SATの167位のスレオニン残基」であるものとする。 In the present invention, the “amino acid residue at the X position of wild-type SAT” means an amino acid residue corresponding to the amino acid residue of wild-type SAT unless otherwise specified. In the present invention, the “amino acid residue at the X position of wild-type PGD” means an amino acid residue corresponding to the amino acid residue of wild-type PGD unless otherwise specified. In the present invention, the “amino acid residue at the X-position of the wild-type YeaS protein” means an amino acid corresponding to the amino acid residue at the X-position in the wild-type YeaS protein of Escherichia coli K-12 MG1655 unless otherwise specified. Means residue. The “X position” in the amino acid sequence means the X position from the N terminal of the amino acid sequence, and the amino acid residue at the N terminal is the amino acid residue at the first position. In addition, the position of an amino acid residue shows a relative position, The absolute position may be moved back and forth by deletion, insertion, addition, etc. of an amino acid. For example, “the threonine residue at position 167 of wild-type SAT” means an amino acid residue corresponding to the threonine residue at position 167 in wild-type SAT, and one amino acid residue on the N-terminal side from position 167 Is deleted, it is assumed that the 166th amino acid residue from the N-terminal is “the threonine residue at position 167 of wild-type SAT”. In addition, when one amino acid residue is inserted on the N-terminal side from position 167, the 168th amino acid residue from the N-terminal is assumed to be “the threonine residue at position 167 of wild-type SAT”.
 任意のSATのアミノ酸配列において、どのアミノ酸残基が「野生型SATのにおけるX位のアミノ酸残基に相当するアミノ酸残基」であるかは、当該SATのアミノ酸配列と野生型SATのアミノ酸配列とのアライメントを行うことにより決定できる。同様に、PGD又はYeaSタンパク質についても、PGD又はYeaSタンパク質と、野生型PGDのアミノ酸配列又はエシェリヒア・コリK-12 MG1655株の野生型YeaSタンパク質のアミノ酸配列とのアライメントを行えばよい。アライメントは、例えば、公知の遺伝子解析ノフトウェアを利用して行うことができる。具体的なソフトウェアとしては、日立ノリューションズ製のDNASISや、ゼネティックス製のGENETYX等が挙げられる(例えば、「Elizabeth C.Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991」、「Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987」参照)。 Which amino acid residue in the amino acid sequence of an arbitrary SAT is “the amino acid residue corresponding to the X-position amino acid residue in wild-type SAT” refers to the amino acid sequence of the SAT and the amino acid sequence of wild-type SAT. This can be determined by performing the alignment. Similarly, for the PGD or YeaS protein, the PGD or YeaS protein may be aligned with the wild-type PGD amino acid sequence or the amino acid sequence of the wild-type YeaS protein of Escherichia coli K-121MG1655 strain. The alignment can be performed using, for example, a known gene analysis software. Specific software includes DNA solutions manufactured by Hitachi Solutions, GENETYX manufactured by GENETICS, etc. (for example, “Elizabeth® C. Tyler® et al., Computers® and Biomedical Research, 24 (1), 72-96, 1991). ", BartonBarGJ et al., Journal of molecular biology, 198 (2), 327-37. 1987").
 変異型遺伝子(すなわち、変異型SAT遺伝子、変異型PGD遺伝子又は変異型yeaS遺伝子)は、野生型遺伝子(すなわち、野生型SAT遺伝子、野生型PGD遺伝子又は野生型yeaS遺伝子)を変異型タンパク質(すなわち、変異型SAT、変異型PGD又は変異型YeaS夕ンパク質)をコードするよう改変することにより取得できる。DNAの改変は公知の手法により行うことができる。具体的には、例えば、DNAの目的部位に目的の変異を導入する部位特異的変異法としては、PCRを用いる方法(例えば、「Higuchi,R., 61,in PCR technology,Erlich, H. A. Eds., Stockton press (1989)」、「Carter, P., Meth. in Enzymol., 154,382(1987) 」参照)や、ファージを用いる方法(Kramer,W.and Frits,H.J.,Meth.in Enzymol., 154, 350 (1987)」、「Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987) 」参照)が挙げられる。また、変異型遺伝子は、化学合成によっても取得できる。変異後のコドンは、目的のアミノ酸をコードするものであれば特に制限されないが、本発明の微生物で使用頻度の高いコドンを使用することが好ましい。 Mutant genes (i.e., mutant SAT genes, mutant PGD genes, or mutant yeaS genes) are wild-type genes (i.e., wild-type SAT genes, wild-type PGD genes, or wild-type yeaS genes) are mutated proteins (i.e., Mutated SAT, mutated PGD, or mutated YeaS protein). Modification of DNA can be performed by a known method. Specifically, for example, as a site-specific mutation method for introducing a target mutation into a target site of DNA, a method using PCR (for example, `` Higuchi, R., 61, in, PCR technology, Erlich, H. A Eds., Stockton press (1989), CarCarter, P., Meth. In Enzymol., 154,382 (1987)) and methods using phage (Kramer, W. and Frits, HJ, Meth.in Enzymol ., 154, 350 (1987) ”and“ Kunkel, T. A. et al., Meth. In Enzymol., 154, 367 (1987) ”). Mutant genes can also be obtained by chemical synthesis. The codon after mutation is not particularly limited as long as it encodes the target amino acid, but it is preferable to use a codon frequently used in the microorganism of the present invention.
 変異型遺伝子を保持するように微生物を改変することは、変異型遺伝子を微生物に導入することにより達成できる。また、変異型遺伝子を保持するように微生物を改変することは、自然変異や変異原処理により微生物が有する遺伝子に変異を導入することによっても達成できる。 Modification of a microorganism so as to retain a mutant gene can be achieved by introducing the mutant gene into the microorganism. In addition, modifying a microorganism so as to retain a mutant gene can also be achieved by introducing a mutation into the gene of the microorganism by natural mutation or mutagen treatment.
 また、硫酸塩/チオ硫酸塩輸送系タンパク質群をコードするcysPTWAMクラスター遺伝子の発現を増強することによっても、L-システイン生産能を付与又は増強することができる(例えば、日本国特開2005-137369号公報、欧州特許第1528108号明細書参照)。 Further, L-cysteine-producing ability can also be imparted or enhanced by enhancing the expression of a cysPTWAM cluster gene encoding a sulfate / thiosulfate transport system protein group (for example, Japanese Patent Application Laid-Open No. 2005-137369). No., European Patent No. 1528108).
 また、硫化物は、cysK遺伝子及びcysM遺伝子それぞれによリコードされるO-アセチルセリン(チオール)-リアーゼ-A及びBにより触媒される反応を介してO-アセチル-L-セリンに取り込まれ、L-システインが産生する。したがって、これらの酵素はL-システイン生合成経路の酵素に含まれ、これらの酵素をコードする遺伝子の発現を増強することによっても、L-システイン生産能を付与又は増強することができる。 In addition, sulfide is incorporated into O-acetyl-L-serine through a reaction catalyzed by O-acetylserine (thiol) -lyase-A and B recoded by the cysK and cysM genes, respectively. -Cysteine is produced. Therefore, these enzymes are included in the enzymes of the L-cysteine biosynthetic pathway, and the ability to produce L-cysteine can also be imparted or enhanced by enhancing the expression of genes encoding these enzymes.
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの分解系が抑制されるように微生物を改変する方法も挙げられる。「L-システイン分解系を抑制する」とは、L-システインの分解に関与するタンパク質(L-システイン分解酵素ともいう)から選択される1又はそれ以上のタンパク質の活性を増強することをいう。L-システイン分解酵素としては、特に制限されないが、metC遺伝子にコードされるシスタチオニン-β-リアーゼ(例えば、日本国特開平11-155571号公報、「Chandra et.al,,Biochemistry,21(1982)3064-3069)」参照)、tnaA遺伝子にコードされるトリプトファナーゼ(例えば、日本国特開2003-169668号公報、「Austin Newton et, al., J. Biol. Chem. 240 (1965) 1211-1218」参照)、cysM遺伝子にコードされるO-アセチルセリンスルフヒドリラーゼB(例えば、日本国特開2005-245311号公報参照)、malY遺伝子にコードされるMalY(例えば、日本国特開2005-245311号公報参照)パントエア・アナナティスのd0191遺伝子にコードされるシステインデスルフヒドラーゼ(例えば、日本国特開2009-232844号公報参照)が挙げられる。 Further, as a method for imparting or enhancing L-cysteine production ability, for example, a method of modifying a microorganism so that the degradation system of L-cysteine is suppressed can also be mentioned. “Inhibiting the L-cysteine degradation system” refers to enhancing the activity of one or more proteins selected from proteins involved in the degradation of L-cysteine (also referred to as L-cysteine degrading enzymes). The L-cysteine-degrading enzyme is not particularly limited, but cystathionine-β-lyase encoded by the metC gene (for example, Japanese Patent Application Laid-Open No. 11-155571, “Chandra et.al ,, Biochemistry, 21 (1982) 3064-3069)), tryptophanase encoded by the tnaA gene (e.g., Japanese Patent Application Laid-Open No. 2003-169668, `` Austin Newton et al., J. Biol. Chem. 240 (1965) 1211- 1218 "), O-acetylserine sulfhydrylase B encoded by the cysM gene (see, for example, Japanese Patent Application Laid-Open No. 2005-245311), MalY encoded by the malY gene (for example, Japanese Patent Application Laid-Open No. 2005-2005). -245311) Cysteine desulfhydrase encoded by the d0191 gene of Pantoea ananatis (for example, see Japanese Patent Application Laid-Open No. 2009-232844).
 L-システイン生産菌又はそれを誘導するための親株の例として、具体的には、例えば、変異型SATをコードする種々のcysEアレルで形質転換されたE.coli JM15(例えば、米国特許第6218168号明細書参照)、細胞に毒性の物質を排出するのに適したタンパク質をコードする遺伝子の発現が増強されたE.coli W3110(米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli(例えば、日本国特開平11-155571号公報参照)、cySB遺伝子によリコードされるシステインレギュロンの正の転写制御因子の活性が上昇したE.coli W3110(例えば、国際公開第01/27307号参照)、ydeD遺伝子、変異型cysE遺伝子(cysEX遺伝子)、及び、変異型serA遺伝子(serA5遺伝子)を含むプラスミドpACYC DES(例えば、日本国特開2005-137369号公報(対応する米国特許出願公開第2005/0124049号明細書、欧州特許出願公開第1528108号明細書))を保持するE.coli等のE.coli株が挙げられる。なお、pACYC DESは、上記3遺伝子をpACYC184に挿入することによつて得られたプラスミドであり、各遺伝子はompAプロモーター(PompA)により制御される。 Examples of L-cysteine-producing bacteria or parent strains for deriving them include, specifically, E. coli JM15 (e.g., U.S. Pat.No. 6,218,168 transformed with various cysE alleles encoding mutant SAT). E. coli W3110 (U.S. Pat.No. 5,972,663), expression of a gene encoding a protein suitable for excretion of toxic substances into cells, decreased cysteine desulfhydrase activity E.coli (see, for example, Japanese Patent Application Laid-Open No. 11-155571), E.coli W3110 (for example, WO 01/155) having an increased activity of a positive transcriptional regulator of cysteine regulon recoded by the cySB gene. 27307), a plasmid pACYC DES containing a ydeD gene, a mutant cysE gene (cysEX gene), and a mutant serA gene (serA5 gene) (for example, Japanese Patent Application Laid-Open No. 2005-137369 (corresponding US patent application) Publication No. 2005/0124049, E.coli strain E.coli such as to hold the states Patent Publication No. 1528108 Pat)) can be mentioned. PACYC DES is a plasmid obtained by inserting the above three genes into pACYC184, and each gene is controlled by an ompA promoter (PompA).
 O-アセチルセリンはL-システインの前駆体であるため、O-アセチルセリンの生合成経路はL-システインの生合成経路と共通する。また、O-アセチルセリンは、中性~アルカリ性のpH領域において自然反応によって容易にN-アセチルセリンに変換される。また、上述したようなL-システイン排出因子には、O-アセチルセリンも排出することができるものが知られている。よって、これらL-システイン前駆体の生産能は、L-システインの生合成系の強化やL-システインの排出系の強化等の、L-システインの生産能を付与又は増強する方法を一部利用することにより、付与又は増強することができる。 Since O-acetylserine is a precursor of L-cysteine, the biosynthetic pathway of O-acetylserine is common with the biosynthetic pathway of L-cysteine. O-acetylserine is easily converted to N-acetylserine by a natural reaction in a neutral to alkaline pH range. In addition, L-cysteine excretion factors as described above are known that can also excrete O-acetylserine. Therefore, the production capacity of these L-cysteine precursors is partially based on methods for imparting or enhancing L-cysteine production capacity, such as enhancement of L-cysteine biosynthesis system and enhancement of L-cysteine excretion system. By doing so, it can be imparted or enhanced.
 L-システインを出発物質として生合成されるγ-グルタミルシステイン、グルタチオン、シスタチオニン、ホモシステイン、L-メチオニン及びS-アデノシルメチオニン等の化合物の生産能も、目的の化合物の生合成系路の酵素活性を増強するか、その生合成系路から分岐する経路の酵素(目的化合物を分解する酵素も含む)の活性を低下させることによって、付与又は増強することができる。 The ability to produce compounds such as γ-glutamylcysteine, glutathione, cystathionine, homocysteine, L-methionine, and S-adenosylmethionine that are biosynthesized using L-cysteine as a starting material is also an enzyme in the biosynthetic pathway of the target compound The activity can be imparted or enhanced by decreasing the activity of an enzyme (including an enzyme that degrades the target compound) in a pathway branched from the biosynthetic pathway.
 例えば、γ-グルタミルシステイン生産能は、γ-グルタミルシステイン合成酵素活性の増強及びグルタチオン合成酵素活性の低下のうち少なくともいずれかによって、付与又は増強することができる。また、グルタチオン生産能はγ-グルタミルシステイン合成酵素活性及びグルタチオン合成酵素活性のうち少なくともいずれか活性の増強によって、付与又は増強することができる。また、グルタチオンによるフィードバック阻害に耐性の変異型γ-グルタミルシステイン合成酵素を用いることでもγ-グルタミルシステインやグルタチオンの生産能を付与又は増強することができる。グルタチオンの生産についてはLiらの総説(Yin Li,Gongyuan Wei, Jian Chen.Appl Microbiol Biotechnol(2004)66:233-242)に詳しく記載されている。 For example, the ability to produce γ-glutamylcysteine can be imparted or enhanced by at least one of enhancement of γ-glutamylcysteine synthetase activity and reduction of glutathione synthetase activity. The ability to produce glutathione can be imparted or enhanced by enhancing at least one of γ-glutamylcysteine synthetase activity and glutathione synthetase activity. The ability to produce γ-glutamylcysteine or glutathione can also be imparted or enhanced by using a mutant γ-glutamylcysteine synthetase resistant to feedback inhibition by glutathione. The production of glutathione is described in detail in a review by Li et al. (Yin Li, Gongyuan Wei, Jian Chen.Appl Microbiol Biotechnol (2004) 66: 233-242).
 L-メチオニン生産能は、L-スレオニン要求性又はノルロイシン耐性を付与することによって、付与又は増強することができる(例えば、日本国特開2000-139471号公報参照)。E.coliにおいては、L-スレオニンの生合成に関与する酵素の遺伝子は、スレオニンオペロン(thrABC)として存在し、例えば、thrBC部分を欠失させることによつてL-ホモセリン以降の生合成能を失つたL-スレオニン要求株を取得することができる。ノルロイシン耐性株では、S-アデノシルメチオニンシンセターゼ活性が弱化され、L-メチオニン生産能が付与又は増強される。E. coliにおいては、S-アデノシルメチオニンシンセターゼはmetK遺伝子にコードされている。また、L-メチオニン生産能は、メチオニンリプレッサーの欠損、ホモセリントランスサクシニラーゼ、シスタチォニンγ-シンテース及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII等のL-メチオニン生合成に関与する酵素の活性の増強によっても、付与又は増強することができる(例えば、日本国特開2000-139471号公報参照)。E. coliにおいては、メチオニンリプレッサーはmetJ遺伝子に、ホモセリントランスサクシニラーゼはmetA遺伝子に、シスタチオニンγ-シンテースはmetB遺伝子に、アスパルトキナーゼーホモセリンデヒドログナーゼIIはmetL遺伝子にそれぞれコードされている。また、L-メチオニンによるフィードバック阻害に耐性の変異型ホモセリントランスサクシニラーゼを用いることでもL-メチオニンの生産能を付与又は増強することができる(例えば、日本国特開2000-139471号公報、米国特許出願公開第2009/0029424号明細書参照)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(例えば、日本国特開2000-139471号公報、米国特許出願公開第2008/0311632号明細書参照)。よって、L-メチオニン生産能を付与又は増強するためには、L-システイン生産能を付与又は増強する方法も有効である。 The ability to produce L-methionine can be imparted or enhanced by imparting L-threonine requirement or norleucine resistance (for example, see Japanese Patent Application Laid-Open No. 2000-139471). In E. coli, the gene for the enzyme involved in the biosynthesis of L-threonine exists as the threonine operon (thrABC) .For example, by deleting the thrBC part, the biosynthesis ability after L-homoserine is reduced. A lost L-threonine-requiring strain can be obtained. In a norleucine resistant strain, S-adenosylmethionine synthetase activity is weakened, and L-methionine-producing ability is imparted or enhanced. In E.coli, S-adenosylmethionine synthetase is encoded by the metK gene. In addition, L-methionine-producing ability is also due to enhanced activity of enzymes involved in L-methionine biosynthesis such as deficiency of methionine repressor, homoserine transsuccinylase, cystathionine γ-synthase and aspartokinase-homoserine dehydrogenase II. Can be imparted or enhanced (see, for example, Japanese Patent Application Laid-Open No. 2000-139471). In E.coli, the methionine repressor is encoded by the metJ gene, the homoserine transsuccinylase is encoded by the metA gene, the cystathionine γ-synthase is encoded by the metB gene, and the aspartokinase homoserine dehydrogenase II is encoded by the metL gene. . In addition, L-methionine-producing ability can also be imparted or enhanced by using a mutant homoserine transsuccinylase resistant to feedback inhibition by L-methionine (for example, Japanese Patent Application Laid-Open No. 2000-139471, US (See Japanese Patent Application Publication No. 2009/0029424). Since L-methionine is biosynthesized using L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (for example, Japanese Patent Application Laid-Open No. 2000-139471). No., US Patent Application Publication No. 2008/0311632). Therefore, in order to impart or enhance L-methionine production ability, a method for imparting or enhancing L-cysteine production ability is also effective.
 L-メチオニン生産菌又はそれを誘導するための親株の例として、具体的には、例えば、 E. coli AJl1539(NRRL B-12399)、 AJ11540(NRRL B-12400)、 AJl1541(NRRL B-12401)、AJ11542(NRRL B-12402)(例えば、英国特許第2075055号明細書参照)、L-メチオニンのアナログであるノルロイシン耐性を有する218株(VKPM B-8125)(例えば、露国特許第2209248号明細書参照)や73株(VKPM B-8126)(例えば、露国特許第2215782号明細書参照)等のE. coli株が挙げられる。 Specific examples of L-methionine-producing bacteria or parent strains for deriving them include, for example, E. coli AJl1539 (NRRL B-12399), AJ11540 (NRRL B-12400), AJl1541 (NRRL B-12401) AJ11542 (NRRL B-12402) (see, for example, British Patent No. 2075055), 218 strain (VKPM B-8125) having norleucine resistance, which is an analog of L-methionine (see, for example, Russian Patent No. 2209248) E. coli strains such as 73 strains (VKPM B-8126) (see, for example, the specification of Russian Patent No. 2215782).
 また、L-メチオニン生産菌又はそれを誘導するための親株の例として、具体的には、例えば、E.coli W3110由来のAJ13425(FERM P-16808)(例えば、日本国特開2000-139471号公報参照)も挙げられる。
AJ13425は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性及びアスパルトキナーゼーホモセリンデヒドログナーゼII活性が増強されたL-スレオニン要求株である。AJ13425は、平成10年5月14日より、通商産業省工業技術院生命工学工業技術研究所(現名称、産業技術総合研究所特許生物寄託センター、住所郵便番号305-8566 茨城県つくば市東1丁目1番地1中央第6)に寄託され、受託番号FERM P-16808が付与されている。
Further, as examples of L-methionine-producing bacteria or parent strains for inducing them, specifically, for example, AJ13425 (FERM P-16808) derived from E. coli W3110 (for example, Japanese Patent Application Laid-Open No. 2000-139471) (See the publication).
AJ13425 lacks methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, intracellular homoserine transsuccinylase activity, cystathionine γ-synthase activity and aspartokinase homoserine dehydrogenase II activity Is an enhanced L-threonine-requiring strain. AJ13425 was launched on May 14, 1998 from the Ministry of International Trade and Industry, Institute of Industrial Science, Biotechnology Institute of Technology (current name: National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center, Address Postal Code 305-8566 Tsukuba City, Ibaraki Prefecture, 1-chome East Deposited at address 1 center 6) and given the deposit number FERM P-16808.
 シスタチオニン、ホモシステインはL-メチオニン生合成経路の中間体であるため、これら物質の生産能を付与又は増強するためには、上記のL-メチオニンの生産能を付与又は増強する方法を一部利用することが有効である。シスタチオニン生産能を付与又は増強する方法として、具体的には、メチオニン要求性変異株を用いる方法(例えば、日本国特開2004-22518号公報参照)や、発酵培地にシステイン(又はその生合成原料)及びホモセリン(又はその生合成原料)のうち少なくともいずれか一方を添加する方法(例えば、日本国特開2005-168422号公報参照)が挙げられる。ホモシステインはシスタチオニンを前駆体とするため、ホモシステイン生産能を付与又は増強するためには、シスタチオニン生産能を付与又は増強する方法も有効である。 Since cystathionine and homocysteine are intermediates in the L-methionine biosynthetic pathway, in order to confer or enhance the production ability of these substances, a part of the method for imparting or enhancing the above-mentioned production ability of L-methionine is used. It is effective to do. As a method for imparting or enhancing cystathionine-producing ability, specifically, a method using a methionine-requiring mutant (see, for example, Japanese Patent Application Laid-Open No. 2004-22518), cysteine (or a biosynthetic raw material thereof) in a fermentation medium ) And homoserine (or a biosynthetic raw material thereof) are added (for example, see Japanese Patent Application Laid-Open No. 2005-168422). Since homocysteine uses cystathionine as a precursor, a method of imparting or enhancing cystathionine production ability is also effective for imparting or enhancing homocysteine production ability.
 また、L-メチオニンを出発物質として生合成されるS-アデノシルメチオニン等の化合物の生産能も、目的の化合物の生合成系路の酵素活性を増強するか、その生合成系路から分岐する経路の酵素(目的化合物を分解する酵素も含む)の活性を低下させることによって、付与又は増強することができる。例えば、S-アデノシルメチオニン生産能は、メチオニンアデノシルトランスフェラーゼ活性を強化することや(例えば、欧州特許第0647712号明細書、欧州特許第1457569号明細書参照)、mdfA遺伝子にコードされる排出因子MdfAを強化すること(例えば、米国特許第7410789号明細書参照)で付与又は増強することができる。 In addition, the ability to produce compounds such as S-adenosylmethionine that is biosynthesized using L-methionine as a starting material also enhances the enzymatic activity of the biosynthetic pathway of the target compound or branches off from the biosynthetic pathway It can be imparted or enhanced by reducing the activity of pathway enzymes (including enzymes that degrade target compounds). For example, the ability to produce S-adenosylmethionine enhances methionine adenosyltransferase activity (see, for example, EP 0647712 and EP 1457569), an excretion factor encoded by the mdfA gene It can be imparted or enhanced by strengthening MdfA (see, eg, US Pat. No. 7,410,789).
 L-システイン生産菌の育種に使用される遺伝子及びタンパク質は、それぞれ、例えば、上記例示した遺伝子及びタンパク質等の公知の遺伝子及びタンパク質の塩基配列及びアミノ酸配列を有していてよい。また、L-システイン生産菌の育種に使用される遺伝子及びタンパク質は、それぞれ、上記例示した遺伝子及びタンパク質等の公知の遺伝子及びタンパク質の保存的バリアントであってもよい。具体的には、例えば、L-システイン生産菌の育種に使用される遺伝子は、元の機能が維持されている限り、公知のタンパク質のアミノ酸配列において、 1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子及びタンパク質の保存的バリアントについては、後述するRNAピロホスホヒドロラーゼ遺伝子及びRNAピロホスホヒドロラーゼの保存的バリアントに関する記載を準用できる。 The gene and protein used for breeding L-cysteine-producing bacteria may have known gene and protein base sequences and amino acid sequences such as the above-exemplified genes and proteins, respectively. In addition, the genes and proteins used for breeding L-cysteine-producing bacteria may be conservative variants of known genes and proteins such as those exemplified above. Specifically, for example, a gene used for breeding L-cysteine-producing bacteria may be one or several at one or several positions in the amino acid sequence of a known protein as long as the original function is maintained. It may be a gene encoding a protein having an amino acid sequence in which one amino acid is substituted, deleted, inserted or added. Regarding the conservative variants of genes and proteins, the descriptions regarding RNA pyrophosphohydrolase gene and conservative variants of RNA pyrophosphohydrolase described later can be applied mutatis mutandis.
<1-2>RNAピロホスホヒドロラーゼの活性の低下
 微生物は、RNAピロホスホヒドロラーゼの活性が低下するように改変されていてもよい。当該微生物は、L-システイン生産能を有する微生物を、RNAピロホスホヒドロラーゼの活性が低下するように改変することにより取得できる。また、当該微生物は、RNAピロホスホヒドロラーゼの活性が低下するように微生物を改変した後に、L-システイン生産能を付与又は増強することによっても得ることができる。なお、微生物は、RNAピロホスホヒドロラーゼの活性が低下するように改変されたことにより、L-システイン生産能を獲得したものであってもよい。微生物を構築するための改変は、任意の順番で行うことができる。
<1-2> Decrease in activity of RNA pyrophosphohydrolase The microorganism may be modified so that the activity of RNA pyrophosphohydrolase is reduced. The microorganism can be obtained by modifying a microorganism having L-cysteine producing ability so that the activity of RNA pyrophosphohydrolase is reduced. In addition, the microorganism can be obtained by imparting or enhancing L-cysteine production ability after modifying the microorganism so that the activity of RNA pyrophosphohydrolase is reduced. In addition, the microorganism may have acquired L-cysteine production ability by being modified so that the activity of RNA pyrophosphohydrolase is reduced. The modification for constructing the microorganism can be performed in any order.
 RNAピロホスホヒドロラーゼの活性が低下するように微生物を改変することによつて、微生物のL-システイン生産能を向上させることができる。 By modifying the microorganism so that the activity of RNA pyrophosphohydrolase is reduced, the L-cysteine production ability of the microorganism can be improved.
 以下に、RNAピロホスホヒドロラーゼ及びそれをコードする遺伝子について説明する。 The RNA pyrophosphohydrolase and the gene encoding it will be described below.
 「RNAピロホスホヒドロラーゼ」とは、RNAピロホスホヒドロラーゼ活性を有するタンパク質をいう。「RNAピロホスホヒドロラーゼ活性」とは、RNAの三リン酸化された5'末端を加水分解しニリン酸(ピロリン酸)を遊離させる反応を触媒する活性をいう。また、RNAピロホスホヒドロラーゼをコードする遺伝子を「RNAピロホスホヒドロラーゼ遺伝子」ともいう。 “RNA pyrophosphohydrolase” refers to a protein having RNA pyrophosphohydrolase activity. “RNA pyrophosphohydrolase activity” refers to an activity that catalyzes a reaction of hydrolyzing the triphosphorylated 5 ′ end of RNA to liberate diphosphate (pyrophosphate). A gene encoding RNA pyrophosphohydrolase is also referred to as “RNA pyrophosphohydrolase gene”.
 RNAピロホスホヒドロラーゼとしては、nudH遺伝子にコードされるNudHタンパク質が挙げられる。nudH遺伝子は、rppH遺伝子やygdP遺伝子等とも呼ばれる。同様に、NudHタンパク質は、RppHタンパク質やYgdPタンパク質等とも呼ばれる。微生物が有するnudH遺伝子の塩基配列及びそれらにコードされるNudHタンパク質のアミノ酸配列は、例えば、NCBI等の公開データベースから取得できる。エシェリヒア・コリK-12MG1655株のnudH遺伝子は、NCBIデータベースに、GenBank accession NC_000913(VERSI0N NC_000913.3 GI:556503834)として登録されているゲノム配列中、2968447~2968977位の配列の相補配列に相当する。また、エシェリヒア・コリK-12 MG1655株のNudHタンパク質は、GenBank accession NP_417307(version NP_417307.l GI:16130734)として登録されている。パントエア・アナナティスAJ13355株のnudH遺伝子は、NCBIデータベースに、GenBank accession NC_017531(VERSI0N NC 017531.l GI:386014600)として登録されているゲノム配列中、2891727~2892254位の配列の相補配列に相当する。また、パントエア・アナナティスAJ13355株のNudHタンパク質は、GenBank accession WP_013026988 (version WP_013026988.l GI:502792012)として登録されている。なお、「(アミノ酸又は塩基)配列を有する」という表現は、当該「(アミノ酸又は塩基)配列を含む」場合及び当該「(アミノ酸又は塩基)配列からなる」場合を包含する。 RNA pyrophosphohydrolase includes NudH protein encoded by nudH gene. The nudH gene is also called rppH gene or ygdP gene. Similarly, NudH protein is also called RppH protein, YgdP protein, and the like. The base sequence of the nudH gene possessed by the microorganism and the amino acid sequence of the NudH protein encoded by them can be obtained from a public database such as NCBI. The nudH gene of Escherichia coli K-12MG1655 strain corresponds to a complementary sequence of sequences 2968447 to 2968777 in the genome sequence registered as GenBank accession NC_000913 (VERSI0N NC_000913.3 GI: 556503834) in the NCBI database. The NudH protein of Escherichia coli K-12KMG1655 strain is registered as GenBank accession NP_417307 (version NP_417307.l GI: 16130734). The nudH gene of Pantoea ananatis AJ13355 strain corresponds to a complementary sequence of positions 2891727 to 2892254 in the genome sequence registered as GenBankBIaccession NC_017531 (VERSI0N NC 017531.l GI: 386014600) in the NCBI database. The NudH protein of Pantoea ananatis AJ13355 strain is registered as GenBank accession WP_013026988 (version WP_013026988.l GI: 502792012). In addition, the expression “having an (amino acid or base) sequence” includes the case of “including the (amino acid or base) sequence” and the case of “consisting of the (amino acid or base) sequence”.
 RNAピロホスホヒドロラーゼ遺伝子は、元の機能が維持されている限り、上記例示したRNAピロホスホヒドロラーゼ遺伝子、例えば上記例示したnudH遺伝子、のバリアントであってもよい。同様に、RNAピロホスホヒドロラーゼは、元の機能が維持されている限り、上記例示したRNAピロホスホヒドロラーゼ、例えば上記例示したNudHタンパク質、のバリアントであってもよい。なお、そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。「nudH遺伝子」という用語は、上記例示したnudH遺伝子に加えて、それらの保存的バリアントを包含するものとする。同様に、「NudHタンパク質」という用語は、上記例示したNudHタンパク質に加えて、それらの保存的バリアントを包含するものとする。保存的バリアントとしては、例えば、上記例示したRNAピロホスホヒドロラーゼ遺伝子やRNAピロホスホヒドロラーゼのホモログや人為的な改変体が挙げられる。 The RNA pyrophosphohydrolase gene may be a variant of the RNA pyrophosphohydrolase gene exemplified above, for example, the nudH gene exemplified above, as long as the original function is maintained. Similarly, the RNA pyrophosphohydrolase may be a variant of the RNA pyrophosphohydrolase exemplified above, for example, the NudH protein exemplified above, as long as the original function is maintained. Such a variant in which the original function is maintained may be referred to as a “conservative variant”. The term “nudH gene” is intended to encompass conservative variants thereof in addition to the nudH gene exemplified above. Similarly, the term “NudH protein” is intended to encompass those conservative variants in addition to the NudH proteins exemplified above. Examples of conservative variants include the above-described RNA pyrophosphohydrolase gene, RNA pyrophosphohydrolase homologues, and artificially modified variants.
 「元の機能が維持されている」とは、遺伝子又はタンパク質のバリアントが、元の遺伝子又はタンパク質の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントが、元の機能が維持されたタンパク質をコードすることをいう。RNAピロホスホヒドロラーゼ遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントがRNAピロホスホヒドロラーゼ活性を有するタンパク質をコードすることをいう。また、RNAピロホスホヒドロラーゼについての「元の機能が維持されている」とは、タンパク質のバリアントがRNAピロホスホヒドロラーゼ活性を有することをいう。 “The original function is maintained” means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein. “The original function is maintained” for a gene means that the variant of the gene encodes a protein in which the original function is maintained. “The original function is maintained” for an RNA pyrophosphohydrolase gene means that a variant of the gene encodes a protein having RNA pyrophosphohydrolase activity. In addition, “the original function is maintained” for RNA pyrophosphohydrolase means that the variant of the protein has RNA pyrophosphohydrolase activity.
 タンパク質のRNAピロホスホヒドロラーゼ活性は、同タンパク質を基質(例えば三リン酸化されたモノ又はオリゴリボヌクレオチド)とインキュベートし、同タンパク質及び基質依存的なニリン酸(ピロリン酸)の生成を測定することにより、測定できる(例えば、「VasilyevN, Serganov A. Structures of RNA complexes with the Escherichia coli RNApyrophosphohydrolase RppH unveil the basis for specific 5'-end-dependent mRNA decay. Biol Chem. 2015 Apr 10;290(15):9487-99.」参照)。 The RNA pyrophosphohydrolase activity of a protein is determined by incubating the protein with a substrate (e.g., triphosphorylated mono- or oligoribonucleotide) and measuring the production of the protein and substrate-dependent diphosphate (pyrophosphate). (E.g., `` VasilyevN, Serganov A. Structures of RNA complexes with the Escherichia coli RNApyrophosphohydrolase RppH unveil the basis for specific 5'-end-dependent mRNA decay. Biol Chem. 99.)).
 以下、保存的バリアントについて例示する。 The following are examples of conservative variants.
 RNAピロホスホヒドロラーゼ遺伝子のホモログ又はRNAピロホスホヒドロラーゼのホモログは、例えば、上記例示したRNAピロホスホヒドロラーゼ遺伝子の塩基配列又は上記例示したRNAピロホスホヒドロラーゼのアミノ酸配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、RNAピロホスホヒドロラーゼ遺伝子のホモログは、例えば、各種生物の染色体を鋳型にして、これら公知のRNAピロホスホヒドロラーゼ遺伝子の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。 RNA pyrophosphohydrolase gene homologs or RNA pyrophosphohydrolase homologs include, for example, BLAST searches and FASTAs using the base sequence of the RNA pyrophosphohydrolase gene exemplified above or the amino acid sequence of the RNA pyrophosphohydrolase exemplified above as the query sequence. It can be easily obtained from public databases by searching. In addition, RNA pyrophosphohydrolase gene homologs can be obtained, for example, by PCR using chromosomes of various organisms as templates and oligonucleotides prepared based on the base sequences of these known RNA pyrophosphohydrolase genes as primers. Can do.
 RNAピロホスホヒドロラーゼ遺伝子は、元の機能が維持されている限り、上記アミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。例えば、コードされるタンパク質は、そのN末端及びC末端のうち少なくともいずれかが、延長又は短縮されていてもよい。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によつても異なるが、具体的には、例えば、1個以上50個以下、1個以上40個以下、1個以上30個以下、好ましくは1個以上20個以下、より好ましくは1個以上10個以下、さらに好ましくは1個以上5個以下、特に好ましくは1個以上3個以下を意味する。 As long as the original function of the RNA pyrophosphohydrolase is maintained, an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the above amino acid sequence. It may be a gene encoding a protein having the same. For example, at least one of the N-terminal and C-terminal of the encoded protein may be extended or shortened. The above “one or several” differs depending on the position and type of the protein in the three-dimensional structure of the amino acid residue, and specifically, for example, 1 to 50, 1 to 40 1 or more and 30 or less, preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, still more preferably 1 or more and 5 or less, and particularly preferably 1 or more and 3 or less.
 上記の1又は数個のアミノ酸の置換、欠失、挿入又は付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシ基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CySからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加又は逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合等の天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。 The above substitution, deletion, insertion or addition of one or several amino acids is a conservative mutation in which the function of the protein is maintained normally. A typical conservative mutation is a conservative substitution. Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxy group Is a mutation that substitutes between Ser and Thr. Specifically, substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, CyS to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Thr to Ser or Ala, substitution from Trp to Phe or Tyr, substitution from Tyr to His, Phe or Trp, and substitution from Val to Met, Ile or Leu. In addition, amino acid substitutions, deletions, insertions, additions, or inversions as described above are caused by naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. It also includes what happens.
 また、RNAピロホスホヒドロラーゼ遺伝子は、元の機能が維持されている限り、上記アミノ酸配列全体に封して、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。 In addition, the RNA pyrophosphohydrolase gene is sealed in the entire amino acid sequence as long as the original function is maintained, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably May be a gene encoding a protein having a homology of 95% or more, more preferably 97% or more, particularly preferably 99% or more. In the present specification, “homology” means “identity”.
 また、RNAピロホスホヒドロラーゼ遺伝子は、元の機能が維持されている限り、上記塩基配列から調製され得るプローブ、例えば上記塩基配列の全体又は一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリンドが形成され、非特異的なハイブジッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、又は、通常のサザンハイブリダイゼーションの洗いの条件である「60℃、1×SSC、0.1%SDS」、好ましくは「60℃ 、0.1× SSC、0.1%SDS」、 より好ましくは「68℃、0.1× SSC、0.1%SDS」に相当する塩濃度及び温度で、1回、好ましくは2回以上3回以下洗浄する条件を挙げることができる。 The RNA pyrophosphohydrolase gene hybridizes under stringent conditions with a probe that can be prepared from the above base sequence, for example, a complementary sequence to the whole or a part of the above base sequence, as long as the original function is maintained. It may be DNA. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%. The conditions under which DNAs having a homology of at least% are hybridized and DNAs having lower homology are not hybridized with each other, or normal Southern hybridization washing conditions are “60 ° C., 1 × SSC, 0.1 % SDS ”, preferably“ 60 ° C., 0.1 × SSC, 0.1% SDS ”, more preferably“ 68 ° C., 0.1 × SSC, 0.1% SDS ”at a salt concentration and temperature corresponding to once, preferably twice. The conditions for washing 3 times or less can be mentioned.
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、上述の遺伝子を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2× SSC、0.1%SDSが挙げられる。 As described above, the probe used for the hybridization may be a part of a complementary sequence of a gene. Such a probe can be prepared by PCR using an oligonucleotide prepared based on a known gene sequence as a primer and a DNA fragment containing the above gene as a template. For example, as the probe, a DNA fragment having a length of about 300 bp can be used. When a DNA fragment having a length of about 300 bp is used as a probe, hybridization washing conditions include 50 ° C., 2 × SSC, and 0.1% SDS.
 また、宿主によってコドンの縮重性が異なるので、RNAピロホスホヒドロラーゼ遺伝子は、任意のコドンをそれと等価のコドンに置換したものであってもよい。例えば、RNAピロホスホヒドロラーゼ遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。 Also, since the codon degeneracy varies depending on the host, the RNA pyrophosphohydrolase gene may be one in which an arbitrary codon is replaced with an equivalent codon. For example, the RNA pyrophosphohydrolase gene may be modified to have optimal codons depending on the codon usage of the host to be used.
 2つの配列間の配列同一性のパーセンテージは、例えば、数学的アルゴリズムを用いて決定できる。このような数学的アルゴリズムの限定されない例としては、Myers及びMiller(1988)CAB10S 4:11 17のアルゴリズム、smith et al(1981)Adv.Appl,Math.2:482の局所ホモロジーアルゴリズム、Needleman及びWunsch(1970)J. Mol.Biol.48:443 453のホモロジーアライメントアルゴリズム、Pearson及びLipman(1988)Proc,Natl.Acad.Sci.85:24442448の類似性を検索する方法、Karlin及びAltschul(1993)Proc.Natl.Acad.Sci.USA 90:5873 5877に記載されているような、改良された、Karlin及びAltschul(1990)Proc.Natl.Acad.Sci.USA 872264のアルゴリズムが挙げられる。 The percentage sequence identity between two sequences can be determined using, for example, a mathematical algorithm. Non-limiting examples of such mathematical algorithms include Myers and Miller (1988) CAB10S 4:11 17 algorithm, smith et al (1981) Adv.Appl, Math. 2: 482 local homology algorithm, Needleman and Wunsch. (1970) J. ア ラ イ メ ン ト Mol. Biol. 48: 443 453 homology alignment algorithm, Pearson and Lipman (1988) Proc, Natl. Acad. Sci. 85: 24442448 Similarity search method, Karlin and Altschul (1993) Proc A modified algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, as described in. Natl. Acad. Sci. USA 90: 5873-5877.
 これらの数学的アルゴリズムに基づくプログラムを利用して、配列同一性を決定するための配列比較(アラインメント)を行うことができる。プログラムは、適宜、コンピュータにより実行することができる。このようなプログラムとしては、特に限定されないが、PC/GeneプログラムのCLUSTAL(Intelligenetics,Mountain View,Calif.から入手可能)、ALIGNプログラム(Version 2.0)、並びに、Wisconsin Genetics Software Package,Version 8(Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USAから入手可能)のGAP、BESTFIT、BLAST、FASTA及びTFASTAが挙げられる。これらのプログラムを用いたアライメントは、例えば、初期パラメーターを用いて行うことができる。CLUSTALプログラムについては、「HigGlns et al.(1988)Gene 73:237-244(1988)」、「HigGlns et al. (1989)CABIOS 5:151-153」、 「Corpet et al. (1988)Nucleic Acids Res. 16:10881-10890」、 「Huang etal. (1992) CABIOS 8:155-165」、 及び、「Pearson et al. (1994) Metho Mol. Biol.24:307-331」によく記載されている。 Using a program based on these mathematical algorithms, sequence comparison (alignment) for determining sequence identity can be performed. The program can be appropriately executed by a computer. Such programs include, but are not limited to, PC / Gene program CLUSTAL (available from Intelligents, MountainMoView, Calif.), ALIGN program (Version 2.0), and Wisconsin Genetics Software Package, Version 8 (Genetics Computer GAP, BESTFIT, BLAST, FASTA and TFASTA from Group (GCG), 575 Science Drive, Madison, Wis., USA. Alignment using these programs can be performed using initial parameters, for example. For the CLUSTAL program, see `` HigGlns et al. (1988) Gene 73: 237-244 (1988) '', `` HigGlns et al. (1989) CABIOS 5: 151-153 '', `` Corpet et al. (1988) Nucleic Acids Res. 16: 10881-10890 ”,“ Huang etal. (1992) CABIOS 8: 155-165 ”and“ Pearson et al. (1994) Metho Mol. Biol.24: 307-331 ” Yes.
 対象のタンパク質をコードするヌクレオチド配列と相同性があるヌクレオチド配列を得るために、具体的には、例えば、BLASTヌクレオチド検索を、BLASTNプログラム、スコア=100、ワード長=12にて行うことができる。対象のタンパク質と相同性があるアミノ酸配列を得るために、具体的には、例えば、BLASTタンパク質検索を、BLASTXプログラム、スコア=50、ワード長=3にて行うことができる。BLASTヌクレオチド検索やBLASTタンパク質検索については、http://www.ncbi.nlm.nih.govを参照されたい。また、比較を目的としてギャップを加えたアライメントを得るために、Gapped BLAST(BLAST 2.0)を利用できる。
また、PSI-BLAST(BLAST 2.0)を、配列間の離間した関係を検出する反復検索を行うのに利用できる。Gapped BLAST及びPSI-BLASTについては、「Altschul et al.(1997)Nucleic Acids Res.25:3389」を参照されたい。BLAST、Gapped BLAST又はPSI-BLASTを利用する場合、例えば、各プログラム(例えば、ヌクレオチド配列に対してBLASTN、アミノ酸配列に対してBLASTX)の初期パラメーターが用いられ得る。アライメントは、手動にて行われてもよい。
In order to obtain a nucleotide sequence having homology with the nucleotide sequence encoding the protein of interest, specifically, for example, a BLAST nucleotide search can be performed with the BLASTN program, score = 100, word length = 12. In order to obtain an amino acid sequence having homology with the protein of interest, specifically, for example, a BLAST protein search can be performed with the BLASTX program, score = 50, word length = 3. Please refer to http://www.ncbi.nlm.nih.gov for BLAST nucleotide search and BLAST protein search. In addition, Gapped BLAST (BLAST 2.0) can be used to obtain an alignment with a gap added for the purpose of comparison.
PSI-BLAST (BLAST 2.0) can also be used to perform an iterated search that detects distant relationships between sequences. See “Altschul et al. (1997) Nucleic Acids Res. 25: 3389” for Gapped BLAST and PSI-BLAST. When using BLAST, Gapped BLAST, or PSI-BLAST, for example, the initial parameters of each program (eg, BLASTN for nucleotide sequences, BLASTX for amino acid sequences) can be used. The alignment may be performed manually.
 2つの配列間の配列同一性は、2つの配列を最大一致となるように整列したときに2つの配列間で一致する残基の比率として算出される。 ¡Sequence identity between two sequences is calculated as the percentage of residues that match between the two sequences when the two sequences are aligned for maximum matching.
 なお、上記の遺伝子やタンパク質の保存的バリアントに関する記載は、L-システイン生合成系酵素等の任意のタンパク質及びそれらをコードする遺伝子にも準用できる。 In addition, the description regarding the said gene and protein conservative variant can be applied mutatis mutandis to arbitrary proteins, such as L-cysteine biosynthesis system enzyme, and the gene which codes them.
<1-3>タンパク質の活性を増大させる手法
以下に、SATやPGD等のタンパク質の活性を増大させる手法について説明する。
<1-3> Technique for Increasing Protein Activity A technique for increasing the activity of proteins such as SAT and PGD will be described below.
 「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が非改変株に対して増大していることを意味する。ここでいう「非改変株」とは、標的のタンパク質の活性が増大するように改変されていない対照株を意味する。非改変株としては、野生株や親株が挙げられる。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子教が増加していること、及び、同タンパク質の分子当たりの機能が増大していること、のうち少なくともいずれかの状態をいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)又は翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下又は消失させた上で、好適な標的のタンパク質の活性を付与してもよい。 "" Protein activity increases "means that the activity per cell of the protein is increased relative to the unmodified strain. As used herein, “unmodified strain” means a control strain that has not been modified to increase the activity of the target protein. Non-modified strains include wild strains and parent strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. Specifically, “the protein activity increases” means that the molecular teaching per cell of the protein is increased and the function per molecule of the protein is increased compared to the unmodified strain. This means at least one of the states. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. In addition, “the protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Furthermore, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and then the activity of a suitable target protein may be imparted.
 タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上又は3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその酵素活性が測定できる程度に生産されていてよい。 The protein activity is not particularly limited as long as it is increased compared to the unmodified strain, but may be increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain, for example. In addition, when the non-modified strain does not have the activity of the target protein, it is sufficient that the protein is generated by introducing a gene encoding the protein. For example, the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。「遺伝子の発現が上昇する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して増大することを意味する。「遺伝子の発現が上昇する」とは、具体的には、遺伝子の転写量(mRNA量)が増大すること、及び、遺伝子の翻訳量(タンパク質の量)が増大すること、のうち少なくともいずれかの状態を意味してよい。
なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上又は3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
Modifications that increase the activity of the protein are achieved, for example, by increasing the expression of the gene encoding the protein. “Gene expression is increased” means that the expression level of the gene per cell is increased as compared to a non-modified strain such as a wild strain or a parent strain. Specifically, `` gene expression increases '' specifically means that the amount of gene transcription (mRNA amount) increases and the amount of gene translation (protein amount) increases. It may mean the state of
Note that “increasing gene expression” is also referred to as “enhanced gene expression”. The expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain. In addition, “increasing gene expression” means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。 An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(例えば、「MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory」参照)。相同組み換えを利用する遺伝子導入法としては、例えば、Redドリブンインテグレーション(Red-driven integration)法(例えば、「Datsenko,K.A,and Wanner,B.L,Proc.Natl.Acad.Sci.USA ,97:6640-6645(2000) 」参照)等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、ファージを用いたtransduction法が挙げられる。遺伝子は、 1コピーのみ導入されてもよく、2コピー又はそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(例えば、日本国特開平2-109985号公報、米国特許第5882888号明細書、欧州特許第805867号明細書参照)。 Increase in gene copy number can be achieved by introducing the gene into the host chromosome. Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (see, for example, “MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory) ''. Examples of gene introduction methods utilizing homologous recombination include, for example, the Red-driven integration method (e.g., `` Datsenko, KA, and Wanner, BL, Proc. Natl. Acad. Sci. USA, 97: 6640- 6645 (2000))), a method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, and a suspension vector that does not have a replication origin and functions in a host. Examples thereof include a method used and a transduction method using a phage. Only 1 copy of the gene may be introduced, or 2 copies or more may be introduced. For example, multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences and inverted repeats present at both ends of a transposon. Alternatively, homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance. The gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (for example, Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, European Patent No. 805867) Refer to the book).
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は、同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。 Confirmation of the introduction of the target gene on the chromosome can be achieved by using Southern hybridization using a probe having a sequence complementary to all or part of the gene, or using a primer prepared based on the sequence of the gene. It can be confirmed by PCR.
 また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のグノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子等のマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド又はファージミド等であってよい。エシェリヒア・コリ等の細菌において自律複製可能なベクターとして、 具体的には、列えば、 pUC19、 pUC18、 pHSG299、 pHSG399、pHSG398、 pBR322、 pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233-2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、pACYC系ベクター、広宿主域ベクターRSF1010等が挙げられる。 An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host. For example, a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can. A DNA fragment containing a target gene can be obtained, for example, by PCR using a gnome DNA of a microorganism having the target gene as a template. As the vector, a vector capable of autonomous replication in a host cell can be used. The vector is preferably a multicopy vector. In order to select a transformant, the vector preferably has a marker such as an antibiotic resistance gene. Moreover, the vector may be equipped with a promoter or terminator for expressing the inserted gene. The vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid or a phagemid. As vectors that can autonomously replicate in bacteria such as Escherichia coli, specifically, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 ( Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), pACYC vector, wide host range Vector RSF1010 etc. are mentioned.
 遺伝子を導入する場合、遺伝子は、発現可能に微生物に保持されていればよい。具体的には、遺伝子は、微生物で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の回有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。 When a gene is introduced, the gene only needs to be retained in the microorganism so that it can be expressed. Specifically, the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in a microorganism. The promoter may be a host-derived promoter or a heterologous promoter. The promoter may be a circular promoter of the gene to be introduced, or may be a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used.
 遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、微生物において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。 A transcription terminator can be placed downstream of the gene. The terminator is not particularly limited as long as it functions in microorganisms. The terminator may be a host-derived terminator or a heterologous terminator. The terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene.
 各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。 The vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8 Genetic Engineering, Kyoritsu Publishing, 1987”, and these can be used.
 また、2又はそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に微生物に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一又は複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2又はそれ以上の遺伝子でオペロンを構成して導入してもよい。「2又はそれ以上の遺伝子を導入する場合」としては、例えば、2又はそれ以上のタンパク質をそれぞれコードする遺伝子を導入する場合、単一のタンパク質複合体を構成する2又はそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、及び、それらの組み合わせが挙げられる。 In addition, when two or more genes are introduced, each gene may be retained in a microorganism so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold | maintained on several expression vector, and may be separately hold | maintained on the single or several expression vector and chromosome. Further, an operon may be constituted by two or more genes and introduced. In the case of introducing two or more genes, for example, when genes encoding two or more proteins are introduced, two or more subunits constituting a single protein complex are selected. When introducing the gene which codes each, and those combinations are mentioned.
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(例えば、「Gene,60(1),H5127(1987)」参照)。取得した遺伝子は、そのまま、又は、適宜改変して、利用することができる。 The gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host. The introduced gene may be a host-derived gene or a heterologous gene. The gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template. In addition, the introduced gene may be totally synthesized based on, for example, the base sequence of the gene (see, for example, “Gene, 60 (1), H5127 (1987)”). The acquired gene can be used as it is or after being appropriately modified.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が目的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種又はそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein increases as a result. . That is, for example, when the activity of a protein is increased by increasing the expression of a gene, the expression of a plurality of genes encoding those subunits may be enhanced, or only a part of the expression may be enhanced. Also good. Usually, it is preferable to enhance the expression of all of a plurality of genes encoding these subunits. In addition, each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。
また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の転写効率や翻訳効率の向上は、例えば、発現調節配列の改変により達成できる。「発現調節配列」とは、遺伝子の発現に影響する部位の総称である。発現調節配列としては、例えば、プロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、及び、RBSと開始コドンとの間のスペーサー領域が挙げられる。発現調節配列は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。
これら発現調節配列の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(例えば、国際公開第2005/010175号参照)により行うことができる。
Moreover, the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
Moreover, the increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvement of gene transcription efficiency and translation efficiency can be achieved, for example, by altering an expression regulatory sequence. “Expression regulatory sequence” is a general term for sites that affect gene expression. Examples of expression control sequences include promoters, Shine-Dalgarno (SD) sequences (also referred to as ribosome binding sites (RBS)), and spacer regions between RBS and the start codon. The expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX.
These expression regulatory sequences can be modified by, for example, a method using a temperature-sensitive vector or a Red driven integration method (see, for example, International Publication No. 2005/010175).
 遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、及び、PLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(例えば、国際公開第00/18935号参照)。高活性型プロモーターとしては、各種tac様プロモーター(例えば、露国特許出願公開2418069号明細書(発明者:Katashkina ZIら)参照)やpnlp8プロモーター(例えば、国際公開第2010/027045号参照)が挙げられる。プロモーターの強度の評価法及び強力なプロモーターの例は、Goldsteinらの論文 「Prokaryotic promoters in biotechnology.Biotechnol.Annu.Rev., 1, 105-128(1995)」等に記載されている。 Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter. By “stronger promoter” is meant a promoter that improves transcription of the gene over the native wild-type promoter. More powerful promoters include, for example, known high expression promoters such as T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Is mentioned. As a more powerful promoter, a highly active promoter of a conventional promoter may be obtained by using various reporter genes. For example, the activity of the promoter can be increased by bringing the −35 and −10 regions in the promoter region closer to the consensus sequence (see, for example, International Publication No. 00/18935). Examples of highly active promoters include various tac-like promoters (see, for example, Russian Patent Application Publication No. 2418069 (inventor: Katashkina ZI et al.)) And pnlp8 promoter (see, eg, International Publication No. 2010/027045). It is done. An evaluation method of promoter strength and examples of strong promoters are described in Goldstein et al.'S paper “Prokaryotic promoters in biotechnology.Biotechnol.Annu.Rev., 1, 105-128 (1995)”.
 遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(例えば、「Olins P.0.et al,Gene,1988,73,227-235」参照)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、挿入又は欠失がmRNAの安定性及び翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによつても遺伝子の翻訳効率を向上させることができる。 Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence. By “a stronger SD sequence” is meant an SD sequence that improves the translation of mRNA over the native wild-type SD sequence. Examples of a stronger SD sequence include RBS of gene 10 derived from phage T7 (see, for example, “Olins P.0.et al, Gene, 1988, 73, 227-235”). Furthermore, several nucleotide substitutions, insertions or deletions in the spacer region between the RBS and the start codon, especially in the sequence immediately upstream of the start codon (5'-UTR), greatly contribute to mRNA stability and translation efficiency. It is known to have an effect, and the translation efficiency of a gene can also be improved by modifying these.
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。例えば、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。すなわち、導入される遺伝子は、例えば、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する都位特異的変異法により行うことができる。部位特異的変異法としては、PCRを用いる方法(例えば、「Higuchi,R.,61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989)」、「Carter, P., Meth.in Enzymol.,154,382(1987)」参照)や、ファージを用いる方法(例えば、「Kramer,W.and Frits, H., Meth, in Enzymol., 154, 350 (1987) 」、「Kunkel, T. A. et al., Meth. in Enzymol., 154,367(1987) 」参照)が挙げられる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://wwv.kazusa.or.jp/codon; 「Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000) 」参照)に開示されている。 Improvement of gene translation efficiency can also be achieved, for example, by codon modification. For example, the translation efficiency of a gene can be improved by replacing a rare codon present in the gene with a synonymous codon that is used more frequently. That is, the introduced gene may be modified to have an optimal codon according to, for example, the codon usage frequency of the host to be used. Codon substitution can be performed, for example, by a position-specific mutation method in which a target mutation is introduced into a target site of DNA. As site-directed mutagenesis, a method using PCR (for example, `` Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989) '', `` Carter, P., Meth in Enzymol., 154, 382 (1987)) and methods using phages (for example, `` Kramer, W. and Frits, H., Meth, in Enzymol., 154, 350 (1987) '', `` Kunkel, T . A. et al., Meth. In Enzymol., 154,367 (1987) "). Alternatively, gene fragments in which codons have been replaced may be fully synthesized. The frequency of codon usage in various organisms can be found in the `` Codon Usage Database '' (http://wwv.kazusa.or.jp/codon; `` Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000) For example).
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、又は、遺伝子の発現を低下させるようなレギュレーターを欠失又は弱化させることによっても達成できる。 Also, the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。 The techniques for increasing gene expression as described above may be used alone or in any combination.
 また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の低減及び解除も含まれる。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、並びに、N-メチル-N'-ニトロ-N-ニトロングアニジン(MNNG)、エチルメタンスルフォネート(EMS)及びメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強する手法と任意に組み合わせて用いてもよい。 Further, the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein. Specific activity enhancement also includes the reduction and elimination of feedback inhibition. Proteins with enhanced specific activity can be obtained by searching for various organisms, for example. Alternatively, a highly active protein may be obtained by introducing a mutation into a conventional protein. The introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce | transduce a variation | mutation by a mutation process, for example. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS). ) And the like. Alternatively, DNA may be directly treated with hydroxylamine in vitro to induce random mutations. The enhancement of specific activity may be used alone or in any combination with the above-described technique for enhancing gene expression.
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。微生物の形質転換は、例えば、プロトプラスト法(例えば、「Gene,39,281286(1985)」参照)、エレクトロポレーション法(例えば、「Bio/Techn01ogy, 7, 1067-1070(1989) 」参照)、電気パルス法(例えば、日本国特開平2-207791号公報参照)により行うことができる。 The method of transformation is not particularly limited, and a conventionally known method can be used. The transformation of the microorganism is, for example, a protoplast method (see, for example, `` Gene, 39,281286 (1985) ''), an electroporation method (see, for example, `` Bio / Techn01ogy, 7, 1067-1070 (1989) ''), It can be performed by an electric pulse method (for example, see Japanese Patent Application Laid-Open No. 2-207791).
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。 The increase in protein activity can be confirmed by measuring the activity of the protein.
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。 The increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased. An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株又は親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(例えば、「Sambrook,J.,et al., Molecular Cloning A Laboratory Manua1/Third Edition, Cold Spring Harbor Laboratory Press,Cold Spring Harbor(USA),2001」参照)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上又は3倍以上に上昇してよい。 It can be confirmed that the transcription amount of the gene has been increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (for example, `` Sambrook, J., et al., Molecular Cloning A Laboratory Manua1 / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001 "). The amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared with the unmodified strain.
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(例えば、「Molecular cloning(Cold Spring Harbor Laboratory Press,Cold Spring Harbor(USA),2001」参照)。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上又は3倍以上に上昇してよい。 Confirmation that the amount of protein has increased can be performed by Western blotting using an antibody (see, for example, “Molecular cloning (Cold Spring Spring Laboratory, Cold Spring Spring (USA), 2001”). May be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more as compared to the unmodified strain.
 上記したタンパク質の活性を増大させる手法は、任意のタンパク質、例えばL-システイン生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。 The above-described method for increasing the activity of a protein can be used to enhance the activity of an arbitrary protein, such as an L-cysteine biosynthesis enzyme, and to enhance the expression of an arbitrary gene, such as a gene encoding the arbitrary protein.
<1-4>タンパク質の活性を低下させる手法
以下に、RNAピロホスホヒドロラーゼ等のタンパク質の活性を低下させる手法について説明する。
<1-4> Technique for reducing protein activity Hereinafter, a technique for reducing the activity of a protein such as RNA pyrophosphohydrolase will be described.
 「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。ここでいう「非改変株」とは、標的のタンパク質の活性が低下するように改変されていない対照株を意味する。非改変株としては、野生株や親株が挙げられる。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、及び、同タンパク質の分子当たりの機能が低下していること、のうち少なくともいずれかの状態をいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量) 又は翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下又は0%に低下してよい。 “The protein activity decreases” means that the activity per cell of the protein is decreased as compared to the unmodified strain, and includes the case where the activity is completely lost. As used herein, “unmodified strain” refers to a control strain that has not been modified so that the activity of the target protein is reduced. Non-modified strains include wild strains and parent strains. Specifically, “the protein activity decreases” means that the number of molecules per cell of the protein is decreased and the function per molecule of the protein decreases compared to the unmodified strain. This means at least one of the states. That is, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) of the gene encoding the protein or the translation amount (protein amount). May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all. Moreover, “the function per molecule of the protein is reduced” includes the case where the function per molecule of the protein is completely lost. The activity of the protein is not particularly limited as long as it is reduced compared to the non-modified strain, for example, 50% or less, 20% or less, 10% or less, 5% or less or 0% compared to the non-modified strain. It may decline.
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成できる。「遺伝子の発現が低下する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して減少することを意味する。
「遺伝子の発現が低下する」とは、具体的には、遺伝子の転写量(mRNA量)が低下すること、及び、遺伝子の翻訳量(タンパク質の量)が低下すること、のうち少なくともいずれかの状態を意味してよい。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下又は0%に低下してよい。
The modification that decreases the activity of the protein can be achieved, for example, by decreasing the expression of a gene encoding the protein. “Gene expression decreases” means that the expression level of the gene per cell decreases as compared to an unmodified strain such as a wild strain or a parent strain.
Specifically, `` gene expression decreases '' specifically means at least one of a decrease in gene transcription amount (mRNA amount) and a decrease in gene translation amount (protein amount). It may mean the state of “Gene expression decreases” includes the case where the gene is not expressed at all. In addition, “the expression of the gene is reduced” is also referred to as “the expression of the gene is weakened”. The expression of the gene may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部又は全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質等)、タンパク質(転写因子等)、核酸(siRNA等)等が挙げられる。また、遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。 The decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof. For example, gene expression can be reduced by modifying expression control sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon, etc. Can be achieved. When modifying the expression control sequence, the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, a part or all of the expression regulatory sequence may be deleted. In addition, reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (inducer, inhibitor, etc.), proteins (transcription factors, etc.), nucleic acids (siRNA, etc.), etc. involved in transcription and translation control. In addition, reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene. For example, gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host. In addition, for example, gene expression itself may be reduced by gene disruption as described below.
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。「遺伝子が破壊される」とは、正常に機能するタンパク質を産生しないように同遺伝子が改変されることを意味する。「正常に機能するタンパク質を産生しない」ことには、同遺伝子からタンパク質が全く産生されない場合や、同遺伝子から分子当たりの機能(活性や性質)が低下又は消失したタンパク質が産生される場合が含まれる。 Further, the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein. “Gene is disrupted” means that the gene is modified so that it does not produce a normally functioning protein. “Does not produce a protein that functions normally” includes the case where no protein is produced from the same gene, or the case where a protein whose function (activity or property) per molecule is reduced or lost is produced from the same gene. It is.
 遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。 Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome. Furthermore, the entire gene including the sequences before and after the gene on the chromosome may be deleted. The region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as the reduction in protein activity can be achieved. Usually, the longer region to be deleted can surely inactivate the gene. Moreover, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、又は、1~2塩基を付加若しくは欠失するフレームシフト変異を導入すること等によっても達成できる(例えば、「Journa1 of Biological Chemistry 272:8611-8617(1997)」、「Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998) 」、「Journa1 of Biological Chemistry 26 116, 20833-20839(1991) 」参照)。 In addition, gene disruption can be achieved, for example, by introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. (E.g., `` Journa1 of Biological Chemistry 272: 8611-8617 (1997) '', `` Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998)), (See "Journa 1 of Biological Chemistry 26 116, 20833-20839 (1991)").
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確笑に遺伝子を不活化することができる。また、挿入都位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。 Also, gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome. The insertion site may be any region of the gene, but the longer the inserted sequence, the more inactive the gene can be. Moreover, it is preferable that the reading frames of the sequences before and after the insertion position do not match. The other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
 染色体上の遺伝子を上記のように改変することは、例えば、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子としては、遺伝子の全領域又は一部の領域を欠失した遺伝子、ミスセンス変異を導入した遺伝子、ナンセンス変異を導入した遺伝子、フレームシフト変異を導入した遺伝子、 トランスポゾンやマーカー遺伝子等の挿入配列を導入した遺伝子が挙げられる。欠失型遺伝子によつてコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(例えば、「Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000)」参照)、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(例えば、「Cho,E.H., Gumport, R. I., Gardner, J. F.J. Bacteriol. 184: 5200-5203(2002) 」参照)とを組み合わせた方法(例えば、国際公開第2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法等がある(例えば、米国特許第6303383号明細書、日本国特開平05007491号公報参照)。 To modify a gene on a chromosome as described above, for example, a deletion type gene modified so as not to produce a normally functioning protein is prepared, and a host is transformed with a recombinant DNA containing the deletion type gene. This can be accomplished by replacing the wild-type gene on the chromosome with the deletion-type gene by converting and causing homologous recombination between the deletion-type gene and the wild-type gene on the chromosome. In that case, it is easy to operate the recombinant DNA if a marker gene is included according to the traits such as auxotrophy of the host. Deletion-type genes include genes in which all or part of the gene has been deleted, genes introduced with missense mutations, genes introduced with nonsense mutations, genes introduced with frameshift mutations, transposon and marker genes, etc. Examples include genes into which an insertion sequence has been introduced. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called `` Red-driven integration '' (e.g., `` Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), Red-driven integration method and λ phage-derived excision system (e.g., `` Cho, EH, Gumport, R. I ., Gardner, J. FJ Bacteriol. 184: 5200-5203 (2002))) (see, for example, International Publication No. 2005/010175) There are a method using a plasmid containing an origin of replication, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have an origin of replication functioning in a host (for example, U.S. Pat. (See Kaihei 05007491).
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、並びに、N-メチル-N'-ニトロ-N-ニトロングアニジン(MNNG)、エチルメタンスルフォネート(EMS)及びメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 Further, the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N'-nitro-N-nitroguanidine (MNNG), ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS). ) And the like.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed. In addition, when a plurality of isozymes are present in a protein, as long as the activity of the protein is reduced as a result, all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
 タンパク質の活性が低下したことは、同タンパク質の活性を決定することで確認できる。 The decrease in the activity of the protein can be confirmed by determining the activity of the protein.
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。 The decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased. The decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(例えば、「Molecular cloning(Cold Spring Harbor Laboratory Press,Cold Spring Harbor(USA),2001)」参照)。mRNAの量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下又は0%に低下してよい。 It can be confirmed that the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (for example, see “Molecular cloning (Cold Spring Spring Laboratory, Cold Spring Harbor (USA), 2001)”). The amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(例えば、「Molecular cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor(USA),2001) 」参照)。タンパク質の量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下又は0%に低下してよい。 Confirmation that the amount of protein has decreased can be performed by Western blotting using an antibody (see, for example, “Molecular cloning (Cold Spring Spring Laboratory, Cold Spring Harbor (USA), 2001)”). The amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部又は全部の塩基配列、制限酵素地図又は全長等を決定することで確認できる。 It can be confirmed that the gene has been destroyed by determining part or all of the base sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
 上記したタンパク質の活性を低下させる手法は、RNAピロホスホヒドロラーゼの活性低下に加えて、任意のタンパク質、例えばL-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。 In addition to reducing the activity of RNA pyrophosphohydrolase, the above-described method for reducing the activity of a protein catalyzes a reaction that generates a compound other than L-cysteine by branching from the biosynthetic pathway of any protein, such as L-cysteine. It can be used to reduce the activity of the enzyme, and to reduce the expression of any gene, for example, a gene encoding any of these proteins.
 なお、以上に記載のとおりシステイン生産能が増大するよう改変された微生物について説明したが、当該微生物の使用は必須ではなく、当該微生物の使用に代えてシステインの添加を実施してもよい。 In addition, although the microorganism modified so that cysteine production ability may increase as described above was demonstrated, use of the said microorganism is not essential and it may replace with the use of the said microorganism and may add cysteine.
<エルゴチオネインの製造方法>
 一実施形態として本発明は、エルゴチオネインを生合成可能な微生物を培地で培養すること、及び、該培地よりエルゴチオネインを採取すること、を含むエルゴチオネインの製造方法を提供する。同方法において、「エルゴチオネイン」を「目的物質」ともいう。
<Method for producing ergothioneine>
As one embodiment, the present invention provides a method for producing ergothioneine, comprising culturing a microorganism capable of biosynthesis of ergothioneine in a medium, and collecting ergothioneine from the medium. In this method, “ergothioneine” is also referred to as “target substance”.
 使用する培地は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。
培地としては、例えば、微生物の培養に用いられる通常の培地を用いることができる。培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有する培地を用いることができる。培地成分の種類や濃度は、使用する微生物の種類等の諸条件に応じて適宜設定してよい。
The medium to be used is not particularly limited as long as the microorganism can grow and the target substance is produced.
As the medium, for example, a normal medium used for culturing microorganisms can be used. As the medium, for example, a medium containing a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other components selected from various organic components and inorganic components as necessary can be used. The type and concentration of the medium component may be appropriately set according to various conditions such as the type of microorganism used.
 炭素源として、具体的には、例えば、糖類、有機酸類、アルコール類、脂肪酸類が挙げられる。糖類としては、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等が挙げられる。有機酸類としては、例えば、酢酸、フマル酸、クエン酸、コハク酸等が挙げられる。アルコール類としては、例えば、グリセロール、粗グリセロール、エタノール等が挙げられる。
なお、炭素源としては、植物由来原料を好適に用いることができる。植物としては、例えば、トウモロコシ、米、小麦、大豆、サトウキビ、ビート、綿が挙げられる。植物由来原料としては、例えば、根、茎、幹、枝、葉、花、種子等の器官、それらを含む植物体、それら植物器官の分解産物等が挙げられる。植物由来原料の利用形態は特に制限されず、例えば、未加工品、絞り汁、粉砕物、生成物等のいずれの形態でも利用できる。また、キシロース等の5炭糖、グルコース等の6炭糖又はそれらの混合物は、例えば、植物バイオマスから取得して利用できる。具体的には、これらの糖類は、植物バイオマスを、水蒸気処理、濃酸加水分解、希酸加水分解、セルラーゼ等の酵素による加水分解、アルカリ処理等の処理に供することにより取得できる。なお、ヘミセルロースは一般的にセルロースよりも加水分解されやすいため、植物バイオマス中のヘミセルロースを予め加水分解して5炭糖を遊離させ、次いで、セルロースを加水分解して6炭糖を生成させてもよい。また、キシロースは、例えば、本発明の微生物にグルコース等の6炭糖からキシロースヘの変換経路を保有させて、6炭糖からの変換により供給してもよい。炭素源としては、1種の炭素源を用いてもよく、2種又はそれ以上の炭素源を組み合わせて用いてもよい。
Specific examples of the carbon source include saccharides, organic acids, alcohols, and fatty acids. Examples of the saccharide include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses, starch hydrolyzate, biomass hydrolyzate, and the like. Examples of organic acids include acetic acid, fumaric acid, citric acid, succinic acid and the like. Examples of alcohols include glycerol, crude glycerol, ethanol and the like.
In addition, as a carbon source, a plant-derived raw material can be used suitably. Examples of plants include corn, rice, wheat, soybean, sugar cane, beet, and cotton. Examples of plant-derived materials include organs such as roots, stems, trunks, branches, leaves, flowers, seeds, plants containing them, degradation products of these plant organs, and the like. The form of use of the plant-derived raw material is not particularly limited, and for example, any form such as a raw product, juice, pulverized product, or product can be used. Moreover, pentoses such as xylose, hexoses such as glucose, or a mixture thereof can be obtained from, for example, plant biomass. Specifically, these saccharides can be obtained by subjecting plant biomass to treatment such as steam treatment, concentrated acid hydrolysis, dilute acid hydrolysis, hydrolysis with enzymes such as cellulase, and alkali treatment. Since hemicellulose is generally more easily hydrolyzed than cellulose, hemicellulose in plant biomass is hydrolyzed in advance to release pentose, and then cellulose is hydrolyzed to produce hexose. Good. In addition, xylose may be supplied by conversion from hexose, for example, by allowing the microorganism of the present invention to have a conversion pathway from hexose such as glucose to xylose. As the carbon source, one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
 窒素源として、具体的には、例えば、アンモニウム塩、有機窒素源、アンモニア、ウレア等が挙げられる。アンモニウム塩としては、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等が挙げられる。有機窒素源としては、例えば、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等が挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種又はそれ以上の窒素源を組み合わせて用いてもよい。 Specific examples of the nitrogen source include ammonium salts, organic nitrogen sources, ammonia, urea, and the like. Examples of the ammonium salt include ammonium sulfate, ammonium chloride, and ammonium phosphate. Examples of the organic nitrogen source include peptone, yeast extract, meat extract, soybean protein degradation product, and the like. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
 リン酸源として、具体的には、例えば、リン酸塩、リン酸ポリマー等が挙げられる。リン酸塩としては、例えば、リン酸2水素カリウム、リン酸水素2カリウム等が挙げられる。リン酸ポリマーとしては、例えば、ピロリン酸等が挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種又はそれ以上のリン酸源を組み合わせて用いてもよい。 Specific examples of the phosphoric acid source include phosphates and phosphoric acid polymers. Examples of the phosphate include potassium dihydrogen phosphate and dipotassium hydrogen phosphate. Examples of the phosphoric acid polymer include pyrophosphoric acid. As the phosphate source, one type of phosphate source may be used, or two or more types of phosphate sources may be used in combination.
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種又はそれ以上の硫黄源を組み合わせて用いてもよい。 Specific examples of the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite. As the sulfur source, one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
 その他の各種有機成分や無機成分として、具体的には、例えば、無機塩類、微量金属類、ビタミン類、アミノ酸類、核酸類、及び、これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。無機塩類としては、例えば、塩化ナトリウム、塩化カリウム等が挙げられる。微量金属類としては、例えば、鉄、マンガン、マグネシウム、カルシウム等が挙げられる。ビタミン類としては、例えば、ビタミンBl、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種又はそれ以上の成分を組み合わせて用いてもよい。 Specific examples of other various organic and inorganic components include, for example, inorganic salts, trace metals, vitamins, amino acids, nucleic acids, and peptone, casamino acid, yeast extract, and soy proteolysis containing these. Organic components such as products. Examples of inorganic salts include sodium chloride and potassium chloride. Examples of trace metals include iron, manganese, magnesium, calcium, and the like. Examples of vitamins include vitamin Bl, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12. As other various organic components and inorganic components, one component may be used, or two or more components may be used in combination.
 また、生育にアミノ酸等を要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。 Moreover, when using an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium.
 培養条件は、微生物が増殖でき、目的物質が生産される限り、特に制限されない。培養は、例えば、微生物の培養に用いられる通常の条件で行うことができる。培養条件は、使用する微生物の種類等の諸条件に応じて適宜設定してよい。 Culture conditions are not particularly limited as long as microorganisms can grow and target substances are produced. The culture can be performed, for example, under normal conditions used for culturing microorganisms. The culture conditions may be appropriately set according to various conditions such as the type of microorganism used.
 培養は、液体培地を用いて行うことができる。培養の際には、微生物を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、微生物を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。培養開始時に培地に含有される微生物の量は特に制限されない。本培養は、例えば、本培養の培地に、種培養液を1~ 50%(v/v)植菌することにより行つてよい。 Cultivation can be performed using a liquid medium. In culturing, a microorganism cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or a microorganism cultured with a seed in a liquid medium may be inoculated into a liquid medium for main culture. Good. That is, the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same. The amount of microorganisms contained in the medium at the start of culture is not particularly limited. The main culture may be performed, for example, by inoculating the culture medium of the seed culture with 1 to 50% (v / v) of the seed culture solution.
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)又はそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養又は連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養又は連続培養において培養系に流加培地を供給することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養又は連続培養で行ってもよい。 Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof. The culture medium at the start of the culture is also referred to as “initial culture medium”. A medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”. In addition, feeding a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”. In addition, when culture | cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
 培養は、例えば、好気条件で行うことができる。好気条件とは、液体培地中の溶存酸素濃度が、酸素膜電極による検出限界である0.33ppm以上であることをいい、好ましくは1.5ppm以上であることであつてよい。酸素濃度は、例えば、飽和酸素濃度の5%以上50%以下、好ましくは10%程度に制御されてもよい。好気条件での培養は、具体的には、通気培養、振盪培養、撹拌培養又はそれらの組み合わせで行うことができる。培地のpHは、例えば、pH3以上10以下、好ましくはpH5以上8以下であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性又は酸性物質を用いて調整することができる。培養温度は、例えば、20℃以上40℃以下、好ましくは25℃以上37℃以下であってよい。培養期間は、例えば、10時間以上120時間以下であってよい。培養は、例えば、培地中の炭素源が消費されるまで、又は、微生物の活性がなくなるまで、継続してもよい。このような条件下で微生物を培養することにより、培地中に目的物質が蓄積する。 Culture can be performed, for example, under aerobic conditions. The aerobic condition means that the dissolved oxygen concentration in the liquid medium is 0.33 ppm or more, which is the detection limit by the oxygen membrane electrode, and preferably 1.5 ppm or more. The oxygen concentration may be controlled to be, for example, 5% to 50%, preferably about 10% of the saturated oxygen concentration. Specifically, the culture under aerobic conditions can be performed by aeration culture, shaking culture, agitation culture, or a combination thereof. The pH of the medium may be, for example, pH 3 or more and 10 or less, preferably pH 5 or more and 8 or less. During the culture, the pH of the medium can be adjusted as necessary. The pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do. The culture temperature may be, for example, 20 ° C. or higher and 40 ° C. or lower, preferably 25 ° C. or higher and 37 ° C. or lower. The culture period may be, for example, 10 hours to 120 hours. The culture may be continued, for example, until the carbon source in the medium is consumed or until the microorganisms are no longer active. By culturing the microorganism under such conditions, the target substance accumulates in the medium.
 目的物質が生成したことは、化合物の検出又は同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は、単独で、又は、適宜組み合わせて用いることができる。 The formation of the target substance can be confirmed by a known method used for detection or identification of a compound. Examples of such methods include HPLC, LC / MS, GC / MS, and NMR. These methods can be used alone or in appropriate combination.
 発酵液からの目的物質の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法(例えば、「Nagai,H.et al.,Separation Science and Technology,39(16),3691-3710」参照)、沈殿法、膜分離法(例えば、日本国特開平9-164323号公報、日本国特開平9-173792号公報参照)、晶析法(例えば、国際公開第2008/078448号、国際公開第2008/078646号参照)が挙げられる。これらの手法は、単独で、又は、適宜組み合わせて用いることができる。なお、菌体内に目的物質が蓄積する場合には、例えば、菌体を超音波等により破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法等によつて目的物質を回収することができる。回収される目的物質は、フリー体、その塩又はそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。 Recovery of the target substance from the fermentation broth can be performed by a known method used for separation and purification of compounds. Examples of such techniques include ion exchange resin methods (see, for example, `` Nagai, H. et al., Separation Science and Technology, 39 (16), 3691-3710 ''), precipitation methods, membrane separation methods (e.g. , Japanese Laid-Open Patent Publication No. 9-164323, Japanese Laid-Open Patent Publication No. 9-173792) and crystallization methods (see, for example, International Publication No. 2008/078448 and International Publication No. 2008/078646). These methods can be used alone or in appropriate combination. When the target substance accumulates in the microbial cells, for example, the microbial cells are crushed by ultrasonic waves, etc., and the microbial cells are removed by centrifugation. The material can be recovered. The target substance to be recovered may be a free form, a salt thereof, or a mixture thereof. Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
 尚、回収される目的物質は、目的物質以外に、微生物体、培地成分、水分、及び微生物の代謝副産物等の成分を含んでいてもよい。目的物質は、所望の程度に精製されていてもよい。回収される目的物質の純度は、例えば50%(w/w)以上、好ましくは85%(w/w)以上、特に好ましくは95%(w/w)以上であってよい(例えば、日本国第1214636号公報、米国特許第5431933号明細書、米国特許第4956471号明細書、 米国特許第4777051号明細書、米国特許第4946654号明細書、米国特許第5840358号明細書、米国特許第6238714号明細書、米国特許出願公開第2005/0025878号明細書参照)。 In addition, the target substance to be recovered may contain components such as microorganisms, medium components, moisture, and microorganism metabolic byproducts in addition to the target substance. The target substance may be purified to a desired degree. The purity of the target substance to be recovered may be, for example, 50% (w / w) or more, preferably 85% (w / w) or more, particularly preferably 95% (w / w) or more (for example, Japan No. 1214636, U.S. Pat.No. 5,431,933, U.S. Pat.No. 4,956,471, U.S. Pat.No. 4,775,151, U.S. Pat.No. 4,494,654, U.S. Pat.No. 5,840,358, U.S. Pat. Description, see US Patent Application Publication No. 2005/0025878).
 以下に実施例を示し、本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
(植物体の栽培)
 ミズナ(Brassica rapa var. laciniifolia)の種子を、水耕栽培用ポットに播種し、エルゴチオネイン含量223μg/10mL(100μM)の水耕培養液で栽培した。水耕培養液とは、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)に、エルゴチオネイン(L-(+)-ergothioneine、Item No.14905、Cayman Chemical、CAS 497-30-3)を加えたものである。播種後8日間目に、上記で栽培した芽生えを収穫した。
[Example 1]
(Cultivation of plants)
Mizuna (Brassica rapa var. Laciniifolia) seeds were sown in a hydroponics pot and cultivated in a hydroponic culture solution with an ergothioneine content of 223 μg / 10 mL (100 μM). Hydroponic broth is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Aguri Co., Ltd., diluted 133 times), ergothioneine (L-(+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30- 3) is added. On the 8th day after sowing, the seedlings cultivated above were harvested.
(エルゴチオネインの測定)
 エルゴチオネイン量の測定は、文献「Journal of Bioscience and Bioengineering VOL. 119 No. 3, 310-313, 2015」に記載の方法に沿って実施した。上記で得られた芽生えから根部を除いた部分1mgに、抽出液10μL(超純水で希釈した終濃度5μMのD-しょうのう-10-スルホン酸ナトリウム0.1μL、終濃度99%(w/w)のメタノール9.9μL)を加えて、乳鉢及び乳棒を用いてすり潰した後、これを15000rpm、4℃、3分の条件で遠心分離した。回収した上清100μLに、2Mトリス-塩酸緩衝液(pH8.8)を10μL加え、さらに20mM Monobromobimane(mBBr)を10μL加えて、10分間の撹拌操作を行い、15000rpm、4℃、3分の条件で遠心分離した。上清80μLを回収し、遠心型エバポレーターで2時間程度乾燥処理し、上清を乾固させた。乾固した上清に超純水60μLを加えて再懸濁させた後、15000rpm、4℃、3分の条件で遠心分離し、得られた上清50μLをサンプルカップへ移し、そのうちの5μLを用いてLC-MS/MS解析を行い、エルゴチオネイン(酸化型ではない)の量を測定した。
(Measurement of ergothioneine)
The amount of ergothioneine was measured according to the method described in the document “Journal of Bioscience and Bioengineering VOL. 119 No. 3, 310-313, 2015”. To 1 mg of the seedlings obtained above, excluding the root, 10 μL of the extract (final concentration of 5 μM D-camphor-10-sodium sulfonate 0.1 μL diluted with ultrapure water, final concentration 99% (w / After adding 9.9 μL of methanol from w) and grinding with a mortar and pestle, this was centrifuged at 15000 rpm at 4 ° C. for 3 minutes. 10 μL of 2M Tris-HCl buffer (pH 8.8) is added to 100 μL of the collected supernatant, and 10 μL of 20 mM Monobromobimane (mBBr) is further added, and the mixture is stirred for 10 minutes, under conditions of 15000 rpm, 4 ° C., 3 minutes And centrifuged. 80 μL of the supernatant was recovered and dried with a centrifugal evaporator for about 2 hours to dry the supernatant. After adding 60 μL of ultrapure water to the dried supernatant and resuspending it, the mixture was centrifuged at 15000 rpm, 4 ° C. for 3 minutes, and 50 μL of the resulting supernatant was transferred to a sample cup, of which 5 μL was transferred. LC-MS / MS analysis was performed, and the amount of ergothioneine (not oxidized) was measured.
(エルゴチオネイン量の算出)
 超純水を溶媒とするエルゴチオネインサンプルを用いて、上記と同様のLC-MS/MS解析によりエルゴチオネインの測定を行い、相対ピークエリア値を求め、独立した3回の測定による平均値をプロットした近似直線の検量線を作成した(図1)。得られた相対ピークエリア値から、エルゴチオネイン含量(μg)を推定した。結果を表1に示す。
 また、エルゴチオネインの蓄積率=(新鮮重量100gあたりエルゴチオネイン蓄積量/水耕培養液へのエルゴチオネイン総添加量)×100を推定した。結果を表2に示す。
(Calculation of ergothioneine amount)
Using an ergothioneine sample with ultrapure water as the solvent, measure the ergothioneine by LC-MS / MS analysis similar to the above, obtain the relative peak area value, and plot the average value of three independent measurements A straight calibration curve was created (FIG. 1). The ergothioneine content (μg) was estimated from the obtained relative peak area value. The results are shown in Table 1.
Further, the accumulation rate of ergothioneine = (ergothioneine accumulation amount per 100 g of fresh weight / total addition amount of ergothioneine to hydroponic culture medium) × 100 was estimated. The results are shown in Table 2.
[実施例2]
 上記の実施例1において、ミズナに代えてレタス(Lactuca sativa)を使用した以外は、上記の実施例1と同様に植物体を栽培し、芽生えに含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 2]
In Example 1 above, except that lettuce (Lactuca sativa) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine were determined. . The results are shown in Tables 1 and 2.
[実施例3]
 上記の実施例1において、ミズナに代えてノザワナ(Brassica rapa var. hakabura)を使用した以外は、上記の実施例1と同様に植物体を栽培し、芽生えに含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 3]
In Example 1 above, except that Nozawana (Brassica rapa var. Hakabura) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine Asked. The results are shown in Tables 1 and 2.
[実施例4]
 上記の実施例1において、ミズナに代えてコマツナ(Brassica rapa var. perviridis)を使用した以外は、上記の実施例1と同様に植物体を栽培し、芽生えに含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 4]
In Example 1 above, except that Komatsuna (Brassica rapa var. Perviridis) was used instead of Mizuna, the plant body was cultivated in the same manner as in Example 1 above, and the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine Asked. The results are shown in Tables 1 and 2.
[比較例1~4]
 上記の実施例1~4において、上記のエルゴチオネインを含む水耕培養液の代わりに、エルゴチオネインを含まない水耕培養液を使用した以外は、上記の実施例1~4と同様に植物体を栽培し、芽生えに含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。エルゴチオネインを含まない水耕培養液とは、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)である。結果を表1に示す。
[Comparative Examples 1 to 4]
In the above Examples 1 to 4, the plant body was cultivated in the same manner as in Examples 1 to 4 except that a hydroponic culture solution containing no ergothioneine was used instead of the hydroponic culture solution containing ergothioneine. Then, the amount of ergothioneine contained in the seedling and the accumulation rate of ergothioneine were determined. Hydroponic culture solution that does not contain ergothioneine is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Corporation, diluted 133 times). The results are shown in Table 1.
[実施例5]
(植物体の栽培)
 ミズナ(Brassica rapa var. laciniifolia)の種子を、水耕栽培用ポットに播種し、エルゴチオネインを含まない水耕培養液で栽培した。
 水耕培養液は、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)を使用した。
 播種後20日間目に、上記のエルゴチオネインを含まない水耕培養液の代わりに、エルゴチオネイン含量568μg/225mL(11μM)の水耕栽培液を用いて24時間栽培した後、播種後21日目に植物体を収穫した(図2)。エルゴチオネイン含量568μg/225mL(11μM)の水耕栽培液とは、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)に、568μg/225mL(11μM)となるようにエルゴチオネイン(L-(+)-ergothioneine、Item No.14905、Cayman Chemical、CAS 497-30-3)を加えたものである。
[Example 5]
(Cultivation of plants)
Mizuna (Brassica rapa var. Laciniifolia) seeds were sown in a hydroponics pot and cultivated in a hydroponic broth containing no ergothioneine.
As a hydroponic culture solution, liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Corporation, diluted 133 times) was used.
On the 20th day after sowing, instead of the above-described hydroponic culture solution not containing ergothioneine, the plant was cultivated for 24 hours using a hydroponic culture solution having an ergothioneine content of 568 μg / 225 mL (11 μM), and then planted on the 21st day after sowing. The body was harvested (Figure 2). Hydroponic culture solution with ergothioneine content of 568μg / 225mL (11μM) is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Co., Ltd., diluted 133 times) to 568μg / 225mL (11μM) ergothioneine (L- (+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30-3).
(エルゴチオネインの測定)
 上記の実施例1において、芽生えから根部を除いた部分1mgの代わりに、上記で得た植物体の葉先1gを用い、これに抽出液1000μL(超純水で希釈した終濃度5μMのD-しょうのう-10-スルホン酸ナトリウム10μL、終濃度99%(w/w)のメタノール990μL)を加えたこと以外は、上記の実施例1と同様にして、エルゴチオネインの測定を行った。
(Measurement of ergothioneine)
In Example 1 described above, instead of 1 mg of the part obtained by removing the root from the seedling, 1 g of the leaf tip of the plant obtained above was used, and 1000 μL of the extract (D-- with a final concentration of 5 μM diluted with ultrapure water) was used. Ergothioneine was measured in the same manner as in Example 1 except that 10 μL of sodium camphor-10-sulfonate and 990 μL of methanol having a final concentration of 99% (w / w) were added.
(エルゴチオネイン量の算出)
 上記の実施例1と同様にして、植物体の葉に含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
(Calculation of ergothioneine amount)
In the same manner as in Example 1 above, the amount of ergothioneine contained in the leaves of the plant body and the accumulation rate of ergothioneine were determined. The results are shown in Tables 1 and 2.
[実施例6]
 上記の実施例5において、ミズナに代えてレタス(Lactuca sativa)を使用した以外は、上記の実施例5と同様に植物体を栽培して収穫し(図2)、葉に含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 6]
In Example 5 above, except that lettuce (Lactuca sativa) was used instead of Mizuna, the plant was grown and harvested in the same manner as in Example 5 above (FIG. 2), and the amount of ergothioneine contained in the leaves The accumulation rate of ergothioneine was determined. The results are shown in Tables 1 and 2.
[実施例7]
 上記の実施例5において、ミズナに代えてノザワナ(Brassica rapa var. hakabura)を使用した以外は、上記の実施例5と同様に植物体を栽培して収穫し(図2)、葉に含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 7]
In Example 5 above, except that Nozawana (Brassica rapa var. Hakabura) was used instead of Mizuna, the plant was cultivated and harvested in the same manner as in Example 5 above (Fig. 2) and contained in the leaves. The amount of ergothioneine and the accumulation rate of ergothioneine were determined. The results are shown in Tables 1 and 2.
[実施例8]
 上記の実施例5において、ミズナに代えてコマツナ(Brassica rapa var. perviridis)を使用した以外は、上記の実施例5と同様に植物体を栽培して収穫し(図2)、葉に含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。結果を表1及び表2に示す。
[Example 8]
In Example 5 above, except that Komatsuna (Brassica rapa var. Perviridis) was used instead of Mizuna, the plant body was cultivated and harvested in the same manner as in Example 5 above (FIG. 2) and contained in the leaves. The amount of ergothioneine and the accumulation rate of ergothioneine were determined. The results are shown in Tables 1 and 2.
[比較例5~8]
 上記の実施例5~8において、上記のエルゴチオネインを含む水耕培養液の代わりに、エルゴチオネインを含まない水耕培養液を使用した以外は、上記の実施例5~8と同様に植物体を栽培して収穫し(図2)、葉に含まれるエルゴチオネイン量とエルゴチオネインの蓄積率を求めた。エルゴチオネインを含まない水耕培養液とは、液肥(液体肥料 UH-ZK020)、OATアグリ株式会社製、133倍希釈)である。結果を表1に示す。
[Comparative Examples 5 to 8]
In the above Examples 5 to 8, a plant body was cultivated in the same manner as in Examples 5 to 8 except that a hydroponic culture solution not containing ergothioneine was used instead of the hydroponic culture solution containing ergothioneine. Then, the amount of ergothioneine contained in the leaves and the accumulation rate of ergothioneine were determined. Hydroponic broth without ergothioneine is liquid fertilizer (liquid fertilizer UH-ZK020), manufactured by OAT Aguri Co., Ltd., diluted 133 times. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 通常の水耕栽培法で栽培された植物体(比較例1~8)には、エルゴチオネインは含有されていなかったが、エルゴチオネインを含む水耕栽培液で栽培された植物体(実施例1~8)には、エルゴチオネインが含有されていた。このことから、実験に用いた植物は、エルゴチオネインを合成しないこと、実験に用いた植物は、エルゴチオネインを体内に蓄積し、水耕栽培液に含まれる微量のエルゴチオネインであっても回収可能であることが示された。 Plants cultivated by a conventional hydroponics method (Comparative Examples 1 to 8) did not contain ergothioneine, but plants cultivated with a hydroponics solution containing ergothioneine (Examples 1 to 8). ) Contained ergothioneine. Therefore, the plant used in the experiment does not synthesize ergothioneine, and the plant used in the experiment accumulates ergothioneine in the body and can recover even a small amount of ergothioneine contained in the hydroponics medium. It has been shown.
 また、アブラナ科の植物である、ミズナ(実施例1,5)、ノザワナ(実施例3,7)、コマツナ(実施例4,8)では、高い値のエルゴチオネインの蓄積を観察した一方で、非アブラナ科のレタス(実施例2,6)では、低い値のエルゴチオネインの蓄積に留まった。 Moreover, in the cruciferous plants, Mizuna (Examples 1 and 5), Nozawana (Examples 3 and 7), and Komatsuna (Examples 4 and 8), while high accumulation of ergothioneine was observed, In the cruciferous lettuce (Examples 2 and 6), only low levels of ergothioneine accumulated.
[実施例9~10]
(植物体の栽培)
 ノザワナ(Brassica rapa var. hakabura)の種子を、水耕栽培用ポットに播種し、エルゴチオネインを含まない水耕培養液で栽培した。
 水耕培養液は、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)を使用した。
 播種後27日間目に、上記のエルゴチオネインを含まない水耕培養液の代わりに、下記表3に示す値でエルゴチオネインを含む水耕栽培液を用いて5日間栽培した後、播種後32日目に植物体を収穫した。エルゴチオネインを含む水耕栽培液とは、液肥(液体肥料 UH-ZK020、OATアグリ株式会社製、133倍希釈)に、下記表3に示す値となるようにエルゴチオネイン(L-(+)-ergothioneine、Item No.14905、Cayman Chemical、CAS 497-30-3)を加えたものである。
[Examples 9 to 10]
(Cultivation of plants)
Nozawana (Brassica rapa var. Hakabura) seeds were sown in a hydroponics pot and cultivated in a hydroponic broth containing no ergothioneine.
As a hydroponic culture solution, liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Agri Corporation, diluted 133 times) was used.
On the 27th day after sowing, instead of the hydroponic culture solution containing no ergothioneine, cultivated for 5 days using the hydroponic culture solution containing ergothioneine at the values shown in Table 3 below, and then on the 32nd day after sowing. Plants were harvested. Hydroponic culture liquid containing ergothioneine is liquid fertilizer (liquid fertilizer UH-ZK020, manufactured by OAT Aguri Co., Ltd., 133-fold diluted) with ergothioneine (L-(+)-ergothioneine, Item No. 14905, Cayman Chemical, CAS 497-30-3).
(エルゴチオネインの測定)
 上記の実施例5と同様にして、エルゴチオネインの測定を行った。
(Measurement of ergothioneine)
Ergothioneine was measured in the same manner as in Example 5 above.
(エルゴチオネイン量の算出)
 上記の実施例1と同様にして、植物体の葉に含まれるエルゴチオネイン量を求めた。結果を表3に示す。
(Calculation of ergothioneine amount)
In the same manner as in Example 1 above, the amount of ergothioneine contained in the leaves of the plant body was determined. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 エルゴチオネインを含む水耕栽培液で栽培された植物体(実施例9~10)では、エルゴチオネインが含有されていた。 In plants (Examples 9 to 10) cultivated with a hydroponic liquid containing ergothioneine, ergothioneine was contained.
[実施例11]
(組換え大腸菌株の作製)
 エルゴチオネインを生産するよう改変され、さらにエルゴチオネインの生産能が増大するよう改変された大腸菌株(pDES pQE88-Ms-egtABCDE)を作製した。
 より具体的には、大腸菌のmetJ遺伝子破壊株に、pDESプラスミドを形質転換により保持させ、さらにpQE88-Ms-egtABCDEプラスミドを形質転換により保持させ、作製した。
 pDESプラスミド(例えば、国際公開第2012/137689号参照)は、図3に示すとおり、強発現プロモーター(ompA)に、フィードバック阻害感受性変異型SerA、フィードバック阻害感受性変異型CysE、野生型のYdeD(システイン排出担体)がそれぞれ連結された3つの遺伝子を有しており、これらを強制発現させることで、システインを細胞外に大量生産させることができる。
 pQE88-Ms-egtABCDEプラスミドは、マイコバクテリウムスメグマチス(Mycobacterium smegmatis)由来のegtABCDE遺伝子オペロンをコードしている。これらの遺伝子は、ヒスチジン・S-アデノシルメチオニン・システイン等の基質からエルゴチオネインを生合成するのに必要な遺伝子群である。このオペロン遺伝子は、IPGT添加で発現誘導が可能なプロモーターに連結させた。egtABCDE遺伝子は、大腸菌は持たないため、今回使用した大腸菌でのエルゴチオネイン合成には必須の遺伝子群である。
 上記のMycobacterium smegmatisのegtABCDE遺伝子オペロンの塩基配列と、pQE88-Ms-egtABCDEの塩基配列を、それぞれ配列番号1及び2に示す。
[Example 11]
(Production of recombinant E. coli strain)
An E. coli strain (pDES pQE88-Ms-egtABCDE) that was modified to produce ergothioneine and further modified to increase the ability to produce ergothioneine was prepared.
More specifically, a pDES plasmid was retained by transformation in an Escherichia coli metJ gene disruption strain, and a pQE88-Ms-egtABCDE plasmid was retained by transformation.
As shown in FIG. 3, the pDES plasmid (see, for example, International Publication No. 2012/137689) has a strong expression promoter (ompA), a feedback inhibition sensitive mutant SerA, a feedback inhibition sensitive mutant CysE, and a wild type YdeD (cysteine). The excretion carrier) has three genes linked to each other, and cysteine can be mass-produced extracellularly by forcibly expressing them.
The pQE88-Ms-egtABCDE plasmid encodes the egtABCDE gene operon from Mycobacterium smegmatis. These genes are a group of genes necessary for biosynthesis of ergothioneine from substrates such as histidine, S-adenosylmethionine, and cysteine. This operon gene was linked to a promoter capable of inducing expression when IPGT was added. Since the egtABCDE gene does not have Escherichia coli, it is an essential gene group for ergothioneine synthesis in the Escherichia coli used this time.
The nucleotide sequence of the above-mentioned Mycobacterium smegmatis egtABCDE gene operon and the nucleotide sequence of pQE88-Ms-egtABCDE are shown in SEQ ID NOs: 1 and 2, respectively.
(培養)
 上記で作製した大腸菌株(pDES pQE88-Ms-egtABCDE)を以下に示す培養条件にてジャーファーメンター培養した。
 温度:30℃
 攪拌:攪拌翼490rpm
 pH:6.9以上7以下にコントロール
(pH6.9以下の場合にアンモニア水を、pH7以上の場合に硫酸を添加)
 通気:1L/min
 植菌:前培養は、抗生物質を含むLB培地で、バッフル付き三角フラスコ内で、30℃で旋回攪拌しながら一晩(16時間)培養を行った。この前培養液のうち、「OD660=1として400mL分に相当する菌体量」を含む量の培養液を遠心し、上清を捨て、得られた菌体ペレットを新たな20mLのLB培地で再懸濁し、その全量を初期培地に投入し、その他成分を順次加え上記条件にて144時間培養した。
 なお、フィード液は、培養開始後24時間以上72時間以下にかけて、断続的に一定のペースで、以下のそれぞれのフィード1液及びフィード2液をを培養液に添加した。
 TetracyclineとAmpicillinと消泡剤とは、培養開始時に全量投入し、IPTGとPyrydoxine・HClは、培養開始後24時間で全量投入した。
(culture)
The E. coli strain (pDES pQE88-Ms-egtABCDE) prepared above was cultured in jar fermenter under the following culture conditions.
Temperature: 30 ° C
Stirring: Stirring blade 490rpm
pH: Control between 6.9 and 7 (add ammonia water when pH is 6.9 or less, add sulfuric acid when pH is 7 or more)
Ventilation: 1L / min
Inoculation: Preculture was LB medium containing antibiotics, and cultured overnight (16 hours) in an Erlenmeyer flask with baffle while swirling at 30 ° C. Of this pre-culture solution, the culture solution containing “the amount of cells corresponding to 400 mL for OD660 = 1” is centrifuged, the supernatant is discarded, and the resulting cell pellet is reconstituted with a new 20 mL LB medium. The suspension was resuspended, and the entire amount was put into an initial medium, and other components were sequentially added and cultured for 144 hours under the above conditions.
In addition, the following feed 1 liquid and feed 2 liquid were added to the culture solution intermittently at a constant pace from 24 hours to 72 hours after the start of culture.
Tetracycline, Ampicillin, and antifoaming agent were all added at the start of the culture, and IPTG and Pyrydoxine · HCl were all added 24 hours after the start of the culture.
・初期培地
(1)基本培地: 基本成分(1L)
(2)別添加炭素源:40%(w/v)グルコース(100mL)
(3)フィード液(0.9L)
(3-1)フィード1液(計600mL)
 40%(w/v)グルコース(400mL)+1M Na2S2O3or 2M Na2SO4(100mL)+H2O(100mL)
 (3-2)フィード2液(300mL)
  15.2g/L ヒスチジン・HCl・H2O、11.5g/L セリン・その他成分(発現誘導、抗生、酵素活性化、生育阻害緩和、代謝制御用物質等)
・ Initial medium (1) Basic medium: Basic ingredients (1L)
(2) Additional added carbon source: 40% (w / v) glucose (100 mL)
(3) Feed liquid (0.9L)
(3-1) Feed 1 liquid (total 600mL)
40% (w / v) glucose (400 mL) + 1 M Na 2 S 2 O 3 or 2 M Na 2 SO 4 (100 mL) + H 2 O (100 mL)
(3-2) Feed 2 liquid (300mL)
15.2 g / L histidine / HCl / H 2 O, 11.5 g / L serine / other ingredients (expression induction, antibiotics, enzyme activation, growth inhibition relaxation, metabolic control substances, etc.)
 上記初期培地とその他成分との配合を表4に示す。 Table 4 shows the composition of the initial medium and other components.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(エルゴチオネインの定量)
 培養後の培養上清液を希釈したサンプルを、LC-MS/MS解析に供し、エルゴチオネインに相当するm/z、且つ、溶出時間におけるマスクロマトグラフィーのピークのエリアを測定した。
 なお、サンプルに一定濃度のエルゴチオネイン標品を投入したサンプルも同様に解析し、得られた検量線の数式を用いて、エルゴチオネイン含量を表すピークエリア値をエルゴチオネイン濃度へと換算した。
 測定の結果、培地上清への523mg/L及び700mg/Lのエルゴチオネイン発酵生産が確認された。
(Quantitative determination of ergothioneine)
A sample obtained by diluting the culture supernatant after the culture was subjected to LC-MS / MS analysis, and m / z corresponding to ergothioneine and the area of the mass chromatography peak at the elution time were measured.
In addition, the sample in which the ergothioneine sample at a constant concentration was added to the sample was similarly analyzed, and the peak area value representing the ergothioneine content was converted into the ergothioneine concentration using the obtained calibration curve.
As a result of the measurement, 523 mg / L and 700 mg / L ergothioneine fermentation production in the culture supernatant was confirmed.

Claims (16)

  1.  新鮮重量100gあたり0.5μg以上のエルゴチオネインを含有する植物体。 A plant containing 0.5 μg or more of ergothioneine per 100 g of fresh weight.
  2.  新鮮重量100gあたり20μg以上のエルゴチオネインを含有する請求項1に記載の植物体。 2. The plant according to claim 1, which contains 20 μg or more of ergothioneine per 100 g of fresh weight.
  3.  前記エルゴチオネインの含有量が葉におけるものである請求項1又は2記載の植物体。 The plant according to claim 1 or 2, wherein the content of the ergothioneine is in leaves.
  4.  アブラナ科に属する請求項1~3のいずれか一項に記載の植物体。 The plant according to any one of claims 1 to 3, which belongs to the Brassicaceae family.
  5.  100gあたり0.5μg以上のエルゴチオネイン含有する食品(ただし、エルゴチオネインを生合成可能な微生物を含む食品、エルゴチオネインを生合成可能なキノコを含む食品、エルゴチオネインを生合成可能な微生物により発酵された発酵食品及びそれらの加工食品は除く)。 Food containing 0.5 μg or more of ergothioneine per 100 g (however, food containing microorganisms capable of biosynthesis of ergothioneine, food containing mushrooms capable of biosynthesis of ergothioneine, fermented food fermented by microorganisms capable of biosynthesis of ergothioneine, and the like Except processed foods).
  6.  100gあたり20μg以上のエルゴチオネインを含有する請求項5に記載の食品。 6. The food according to claim 5, comprising 20 μg or more of ergothioneine per 100 g.
  7.  エルゴチオネインを生合成可能な微生物の培養物であり、エルゴチオネインを50mg/L以上含有する培養物。 A culture of a microorganism capable of biosynthesizing ergothioneine and containing 50 mg / L or more of ergothioneine.
  8.  前記エルゴチオネインを生合成可能な微生物が、システイン生産能が増大するよう改変された微生物である請求項7に記載の培養物。 The culture according to claim 7, wherein the microorganism capable of biosynthesizing ergothioneine is a microorganism modified so as to increase cysteine-producing ability.
  9.  エルゴチオネインを生合成可能な微生物の培養物を含む肥料。 Fertilizer containing a culture of microorganisms capable of biosynthesis of ergothioneine.
  10.  前記エルゴチオネインを生合成可能な微生物が、システイン生産能が増大するよう改変された微生物である請求項9に記載の肥料。 The fertilizer according to claim 9, wherein the microorganism capable of biosynthesizing ergothioneine is a microorganism modified so as to increase cysteine production ability.
  11.  水分含量が30質量%以下である請求項9又は10に記載の肥料。 The fertilizer according to claim 9 or 10, wherein the water content is 30% by mass or less.
  12.  請求項1~4のいずれか一項に記載の植物体の製造方法であって、
     エルゴチオネインを含有する栽培培地で、植物体を栽培する栽培工程を有し、
     前記栽培培地はエルゴチオネインを1μg/L以上含有する製造方法。
    A method for producing a plant according to any one of claims 1 to 4,
    In the cultivation medium containing ergothioneine, it has a cultivation process to cultivate the plant body,
    The said culture medium is a manufacturing method which contains 1 microgram / L or more of ergothioneine.
  13.  前記栽培培地はエルゴチオネインを0.1mg/L以上含有する請求項12に記載の製造方法。 The production method according to claim 12, wherein the cultivation medium contains ergothioneine in an amount of 0.1 mg / L or more.
  14.  前記栽培培地がエルゴチオネインを生合成可能な微生物の培養物を含む請求項12又は13に記載の製造方法。 The production method according to claim 12 or 13, wherein the cultivation medium contains a culture of a microorganism capable of biosynthesis of ergothioneine.
  15.  前記エルゴチオネインを生合成可能な微生物が、システイン生産能が増大するよう改変された微生物である請求項12~14のいずれか一項に記載の製造方法。 The production method according to any one of claims 12 to 14, wherein the microorganism capable of biosynthesis of ergothioneine is a microorganism modified so as to increase cysteine-producing ability.
  16.  さらに、前記植物体を収穫する収穫工程を有し、
     前記栽培工程が、前記収穫工程の前の10日以内に行われる請求項12~15のいずれか一項に記載の製造方法。
    Furthermore, it has a harvesting process for harvesting the plant body,
    The production method according to any one of claims 12 to 15, wherein the cultivation step is performed within 10 days before the harvesting step.
PCT/JP2018/005273 2017-02-17 2018-02-15 Plant body, food, culturing material, fertilizer, and manufacturing method WO2018151216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017027866A JP2018130091A (en) 2017-02-17 2017-02-17 Plant, food, cultured product, fertilizer, and production method
JP2017-027866 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018151216A1 true WO2018151216A1 (en) 2018-08-23

Family

ID=63170321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005273 WO2018151216A1 (en) 2017-02-17 2018-02-15 Plant body, food, culturing material, fertilizer, and manufacturing method

Country Status (2)

Country Link
JP (1) JP2018130091A (en)
WO (1) WO2018151216A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220281822A1 (en) * 2019-07-10 2022-09-08 Kureha Corporation Plant growth regulator and method for promoting plant growth
WO2021140693A1 (en) * 2020-01-09 2021-07-15 株式会社クレハ Method for producing novel microorganisms and ergothioneine
WO2022149593A1 (en) 2021-01-08 2022-07-14 株式会社クレハ Plant growth regulator and method for promoting plant growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121285A1 (en) * 2015-01-30 2016-08-04 キッコーマン株式会社 Transformed fungus having enhanced ergothioneine productivity and method for producing ergothioneine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121285A1 (en) * 2015-01-30 2016-08-04 キッコーマン株式会社 Transformed fungus having enhanced ergothioneine productivity and method for producing ergothioneine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJII, MAKOTO ET AL.: "Regarding ergothioneine (thiol histidine betaine) contained in various kinds of vegetables, mung beans, soybeans, and processed products thereof", BULLETIN OF NISHIKYUSHU UNIVERSITY JUNIOR COLLEGE, vol. 20, 1990, pages 9 - 11 *

Also Published As

Publication number Publication date
JP2018130091A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5805202B2 (en) Microorganism producing O-phosphoserine and method for producing L-cysteine or a derivative thereof from O-phosphoserine using the same
KR101944150B1 (en) Recombinant microorganism for the fermentative production of methionine
KR101660060B1 (en) Producing methionine without n-acyl-methionine
Li et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level
US20040038352A1 (en) Method for fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family
ES2330257T3 (en) METHOD FOR PRODUCING L-TREONINE.
BR122020023808B1 (en) BACTERIAL CELL THAT IS CAPABLE OF FORMING AT LEAST ONE GENERAL FORMULA (I) RAMNOLIPIDS, PROCESS FOR THE PRODUCTION OF GENERAL FORMULA (I) RAMNOLIPIDS, USE OF RAMNOLIPIDS AND VECTOR
JP7359248B2 (en) Production method of target substance
WO2018151216A1 (en) Plant body, food, culturing material, fertilizer, and manufacturing method
RU2280687C2 (en) Microorganism cell, plasmid vector, method for creature of microorganism cell and method for preparing l-methionine
JP2019149972A (en) Ergothioneine synthetic microorganisms, and method for producing ergothioneine
KR20160044037A (en) Microorganism for methionine production with improved methionine synthase activity and methionine efflux
RU2723714C2 (en) Method and microorganism for enzymatic production of methionine with improved output of methionine
WO2017213142A1 (en) Method for producing hypotaurine or taurine
JP2023171870A (en) Method for producing sulfated polysaccharide and method for producing PAPS
EP2808394A1 (en) Microorganism and method for overproduction of gamma-glutamylcysteine and derivatives of this dipeptide by fermentation
CN103119154B (en) The manufacture method of bacterium and sulfur-containing amino acid produced by sulfur-containing amino acid
US20210015107A1 (en) AGRICULTURAL OR HORTICULTURAL COMPOSITION CONTAINING CULTURE BROTH OF Bacillus BACTERIUM
JP6476891B2 (en) Cellulase production method
Mai et al. Enhanced enzyme-catalyzed synthesis of L-methionine with ionic liquid additives
JP2017143756A (en) Method for producing l-cysteine
KR101770150B1 (en) Fermentative production of methionine hydroxy analog (mha)
EP2679680A1 (en) L-cysteine-producing bacterium and method for producing l-cysteine
JP7444164B2 (en) Method for producing L-methionine using bacteria
JP6400587B2 (en) Method for producing L-cysteine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753924

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753924

Country of ref document: EP

Kind code of ref document: A1