WO2018151196A1 - 作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体 - Google Patents

作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体 Download PDF

Info

Publication number
WO2018151196A1
WO2018151196A1 PCT/JP2018/005205 JP2018005205W WO2018151196A1 WO 2018151196 A1 WO2018151196 A1 WO 2018151196A1 JP 2018005205 W JP2018005205 W JP 2018005205W WO 2018151196 A1 WO2018151196 A1 WO 2018151196A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
estimation
crop
sub
narrow area
Prior art date
Application number
PCT/JP2018/005205
Other languages
English (en)
French (fr)
Inventor
英志 山下
大 久寿居
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2018568593A priority Critical patent/JP7007018B2/ja
Publication of WO2018151196A1 publication Critical patent/WO2018151196A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a crop growth estimation device, a crop growth estimation method, a program, and a recording medium.
  • the present invention provides a crop growth estimation system that can estimate the current crop growth status and future growth status, for example, without being at the site where the crop is grown. And More specifically, for example, an object is to provide a system for estimating crop growth worldwide.
  • an apparatus for estimating crop growth comprises: Data acquisition means; Sub-model generation means; Storage means; An estimation means,
  • the data acquisition means includes A means to acquire wide area data and narrow area data,
  • the wide area data includes at least one of satellite image data and weather data in a wide area,
  • the narrow area data includes environmental data, field data, and crop growth status data in a narrow area;
  • the submodel generation means includes: Means for generating at least two or more submodels of the following (1) to (6);
  • the storage means Means for storing each of the generated submodels;
  • the estimation means includes A means for generating an estimation result of crop growth in an arbitrary region based on at least two or more submodels among the stored submodels from any data acquired by the data acquisition means.
  • the crop growth status is generated as a first sub model.
  • the crop growth status is generated as a second sub model.
  • the crop growth status is generated as a third sub model.
  • the narrow area data is generated from the wide area data as the fourth sub model.
  • the future wide area data is generated from the wide area data as the fifth sub model.
  • the method for estimating crop growth comprises: Data acquisition process; Sub-model generation process; Memory process; An estimation process,
  • the data acquisition step includes It is a process to acquire wide area data and narrow area data,
  • the wide area data includes satellite image data and weather data in a wide area,
  • the narrow area data includes environmental data, field data, and crop growth status data in a narrow area;
  • the submodel generation step includes: A step of generating at least two or more submodels of the following (1) to (6);
  • the storing step includes Storing each of the generated submodels;
  • the estimation step includes From any data acquired in the data acquisition step, based on at least two or more submodels of the stored submodels, the step of generating an estimation result of crop growth in an arbitrary region Features.
  • the crop growth status is generated as a first sub model.
  • the crop growth status is generated as a second sub model.
  • the crop growth status is generated as a third sub model.
  • the narrow area data is generated from the wide area data as the fourth sub model.
  • the future wide area data is generated from the wide area data as the fifth sub model.
  • the program of the present invention causes a computer to execute the crop growth estimation method of the present invention.
  • the recording medium of the present invention can be read by a computer in which the program of the present invention is recorded.
  • the present invention for example, it is possible to estimate the current growth situation of the crop and the future growth situation without being at the site where the crop is grown. It becomes possible.
  • FIG. 1 is a block diagram illustrating an example of an estimation apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating another example of the estimation apparatus according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of the estimation method according to the first embodiment.
  • FIG. 4 is a block diagram illustrating another example of the estimation apparatus according to the second embodiment.
  • FIG. 5 is a flowchart illustrating an example of the estimation method according to the second embodiment.
  • FIG. 6 is a block diagram illustrating another example of the estimation apparatus according to the third embodiment.
  • FIG. 7 is a flowchart illustrating an example of the estimation method according to the third embodiment.
  • FIG. 8 is a block diagram illustrating an example of a hardware configuration of the estimation apparatus according to the first embodiment.
  • the wide area is the whole globe and the narrow area is the farm field.
  • the estimation apparatus of the present invention includes, for example, at least one selected from the group consisting of sunshine hours, air temperature, soil moisture, and precipitation in the wide area, and the weather data in the wide area data
  • the environmental data includes at least one selected from the group consisting of temperature, humidity, sunshine duration, amount of ultraviolet light, rainfall, and the image of the narrow area in the narrow area
  • the field data in the narrow area data is Including at least one selected from the group consisting of crop growth work information, disease and pest occurrence information, and crop growth failure occurrence information in the field within the narrow region, Including at least one of crop quantity and crop quality.
  • the estimation apparatus of the present invention further includes output means for outputting an estimation result, for example.
  • the wide area is the whole globe and the narrow area is the field.
  • the estimation method of the present invention includes, for example, the weather data in the wide area data includes at least one selected from the group consisting of sunshine hours, temperature, soil moisture, and precipitation in the wide area,
  • the environmental data includes at least one selected from the group consisting of temperature, humidity, sunshine duration, amount of ultraviolet light, rainfall, and the image of the narrow area in the narrow area
  • the field data in the narrow area data is Including at least one selected from the group consisting of crop growth work information, disease and pest occurrence information, and crop growth failure occurrence information in the field within the narrow region, Including at least one of crop quantity and crop quality.
  • the estimation method of the present invention further includes output means for outputting the estimation result, for example.
  • FIG. 1 is a block diagram illustrating a configuration of an example of a crop growth estimation apparatus 1 according to the present embodiment.
  • the estimation device 1 includes data acquisition means 10, submodel generation means 11, storage means 12, and estimation means 13 as essential constituent requirements.
  • the estimation apparatus 1 may include, for example, an input unit 14 that inputs arbitrary area information that is a target of an estimation result, and an output unit 15 that outputs an estimation result obtained by the estimation unit 13.
  • the estimation apparatus 1 is, for example, an integrated apparatus provided with each means.
  • the estimation device 1 can also be referred to as an estimation system, for example.
  • the submodel generation unit 11 and the estimation unit 13 are, for example, processing units.
  • the estimation apparatus 1 is not limited to an integrated apparatus as shown in FIG. 1, for example, and may include a terminal and a server, and the two can be connected via a communication network (also referred to as an estimation system).
  • the communication line network is not particularly limited, and a known communication line network can be used.
  • the communication line network may be wired or wireless. Specific examples include an Internet line, a telephone line, and a LAN (Local Area Network).
  • the data acquisition means 10 is means for acquiring the wide area data 101 and the narrow area data 102 as described above.
  • the wide area data 101 includes satellite image data and weather data in a wide area
  • the narrow area data 102 includes environmental data, field data, and crop growth status data in a narrow area.
  • the wide area is, for example, a unit at the global level. Specific examples include, for example, continental units such as Eurasia (Asia continent, Europe continent), North America continent, South America continent, Africa continent, Austria continent, etc., Japan, China. Examples of countries such as the United States and Brazil.
  • the wide area data is, for example, comprehensive data in the wide area.
  • examples of the narrow area include a unit of a state in a country, a unit of a prefecture, a unit of a municipality, or a unit of a specific field.
  • the narrow area data is, for example, precise data in a narrow area that is a limited section.
  • the data acquisition means 10 is not particularly limited, and may be, for example, data reception means from a database.
  • the estimation apparatus 1 can be connected to the database via a communication network.
  • an existing database can be used as the database of the wide area data.
  • the database include a data integration and analysis system DIAS (Data Integration and Analysis System) which is a global environment platform.
  • DIAS Data Integration and Analysis System
  • the narrow area data database may be, for example, a database in which environmental data, field data, and crop growth status data in a narrow area are accumulated.
  • the database may be included in, for example, the estimation apparatus itself of the present invention, but may be a database outside the estimation apparatus, and the estimation apparatus can obtain information from, for example, an external database.
  • Fig. 2 shows an example of an estimation device that can be connected to an external database via a communication network.
  • the estimation apparatus 1 can be connected to an external database 21A for wide area data and an external database 21B for narrow area data via a communication network 20.
  • the sub-model generation unit 11 is a unit that generates at least two or more sub-models among the above (1) to (4). In the present embodiment, description will be given by taking as an example means for generating the first sub model, the second sub model, and the third sub model. From the wide area data 101, the growth state of the crop is generated as a first sub model (111), and from the narrow area data 102, the growth state of the crop is generated as a second sub model (112). From this, a future growth situation is generated as a third sub model (113).
  • An example of the submodel generation unit 11 is a CPU (central processing unit).
  • the sub model generation means 11 generates a first sub model, a second sub model, and a third sub model by machine learning from the wide area data 101, the narrow area data 102, and the crop growth data in the narrow area data 102, respectively. it can.
  • the first sub model, the second sub model, and the third sub model are generated by machine learning each time new wide area data and narrow area data are acquired, for example, and the accuracy of each sub model is improved. It is preferable.
  • the storage unit 12 stores the first sub model 121, the second sub model 122, and the third sub model 123 generated by the sub model generation unit 11, respectively. As described above, when each submodel is newly generated, for example, it is preferable to update and store each submodel each time.
  • the storage unit 12 is not particularly limited, and for example, as will be described later, a random access memory (RAM), a read only memory (ROM), a flash memory, a hard disk (HD), an optical disk, a floppy (registered trademark) disk (FD). Etc.
  • the storage unit 12 may be a built-in type or an external type.
  • the input unit 14 inputs an arbitrary area that is the target of the estimation result in the estimation unit 13.
  • the input unit 14 is not particularly limited, and examples thereof include a keyboard and a touch panel as will be described later.
  • the estimation unit 13 is configured to input the input arbitrary one based on at least two or more submodels of the stored first submodel, second submodel, and third submodel from the data acquired by the data acquisition unit 10. Generates estimates of crop growth in the area.
  • An example of the estimation means 13 is a CPU (Central Processing Unit).
  • the output unit 15 outputs the estimation result obtained by the estimation unit 13.
  • the output means 15 is not particularly limited, and examples thereof include output to a monitor such as a display and output to paper.
  • FIG. 8 illustrates a block diagram of the hardware configuration of the estimation device 1.
  • the estimation device 1 includes, for example, a CPU 31, a memory 32, an interface (I / F) 33, a display 34, a communication device 35, an input device 36, a storage device 37, and the like.
  • the memory 32, the I / F 33, and the storage device 37 are connected to the CPU 31 by, for example, a communication bus.
  • a display 34, a communication device 35, an input device 36, and the like are connected to the I / F 33.
  • communication between circuits inside is connected by a bus.
  • the CPU 31 is responsible for overall control of the estimation device 1.
  • the CPU 31 executes, for example, the program of the present invention and other programs, and reads and writes various information.
  • the CPU 31 functions as the data acquisition unit 40 and the submodel generation unit 41.
  • the memory 32 includes, for example, a main memory, and the main memory is also referred to as a main storage device.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the memory 32 further includes, for example, a ROM (read only memory).
  • the I / F 33 connects the functional units such as the CPU 31 and the memory 32, for example.
  • the I / F 33 can also be connected to an external device, for example.
  • the estimation apparatus 1 can be connected to a communication line network by the communication device 35 connected to the I / F 33, and can also be connected to the external device via the communication line network.
  • the I / F 33, or the I / F 33 and the communication device 35 function as the output unit 16.
  • the storage device 37 is also called a so-called auxiliary storage device for the main memory (main storage device), for example.
  • the storage device 37 includes, for example, a storage medium and a drive that reads from and writes to the storage medium.
  • the storage medium is not particularly limited, and may be, for example, a built-in type or an external type, such as HD (hard disk), FD (floppy (registered trademark) disk), CD-ROM, CD-R, CD-RW, MO,
  • Examples of the drive include a DVD, a flash memory, and a memory card, and the drive is not particularly limited.
  • Examples of the storage device 37 include a hard disk drive (HDD) in which a storage medium and a drive are integrated.
  • HDD hard disk drive
  • the storage device 37 stores, for example, an operation program such as the program of the present invention. As described above, when the CPU 31 is executed, the memory 32 reads the operation program from the storage device 37. In addition to the program, for example, the storage device 37 stores, for example, the wide area data 101, the narrow area data 102, the first sub model 121, the second sub model 122, the third sub model 123, the estimation result 131, and the like. The In addition, for example, information acquired by the data acquisition unit 40, information acquired from the estimation unit 42, and the like can be stored in the storage device 37.
  • Examples of the display 34 include an LED display and a liquid crystal display.
  • the communication device 35 only needs to be able to communicate between the estimation apparatus 1 and an external device.
  • the communication device 35 is a device that can be connected to the communication network as described above.
  • the input device 36 is, for example, a keyboard, a mouse, a touch panel, or the like.
  • the estimation method of the present embodiment is performed as follows using, for example, the estimation apparatus 1 of the present embodiment shown in FIG.
  • the estimation method of this embodiment is not limited to use of the estimation apparatus 1 of FIG.
  • the wide area is a global level unit
  • the wide area data is satellite image data and weather data (sunshine hours, temperature, soil moisture, and precipitation) acquired from DIAS
  • the area is a specific field
  • the narrow area data includes environmental data (temperature, humidity, sunshine duration, amount of ultraviolet light, rainfall, and image of the narrow area), field data (work information on crop growth, occurrence of pests) Information, and information on the occurrence of crop growth disorders) and crop data (amount of crop and quality of crop).
  • the amount of the crop is, for example, a crop yield, a shipping rate with respect to the number of crops harvested, and the like.
  • step (A1) Data Acquisition Step
  • a wide area data acquisition step (A1-1) for acquiring wide area data and a narrow area data acquisition process (A1-2) for acquiring narrow area data are performed.
  • the step (A1-1) and the step (A1-2) may be performed, for example, in parallel or separately.
  • the data acquired in the step (A1) is, for example, estimation start data in an estimation step (A4) described later.
  • the (A2) step includes a generation step (A2-1) for generating the growth status of a crop as a first submodel from the wide area data, and the growth of the crop from the narrow area data.
  • a generation step (A2-2) for generating a situation as a second submodel and a generation step (A2-3) for generating a future growth status as a third submodel from the crop growth status data are performed.
  • the step (A2-1), the step (A2-2), and the step (A2-3) may be performed in parallel or separately, for example.
  • Sub model generation can be performed by machine learning as described above, for example.
  • Each sub model may be generated once, for example, but it is preferable to repeatedly perform and update each time wide area data or narrow area data is acquired.
  • the first submodel is, for example, a model of crop growth conditions derived from the wide area data based on the conditions.
  • the second sub-model is, for example, a model of crop growth status derived from the narrow area data based on the conditions.
  • the third submodel is, for example, a model of the future growth status of the crop derived from the crop growth status data based on the conditions.
  • the growth status data of the crop may be, for example, data included in the narrow area data or fictitious data that can be assumed.
  • the growth status of the crop includes the amount of the crop and the quality of the crop.
  • the amount of the crop includes, for example, a crop yield, a shipping rate with respect to the number of crops harvested, and the like.
  • the quality of the crop includes, for example, quality and good / bad growth.
  • the good or bad growth includes, for example, whether or not a crop can be grown and the growth rate of the crop.
  • the quality includes, for example, sugar content and appearance.
  • the (A3) step includes a storage step (A3-1) for storing the first submodel generated in the (A2-1) step, and a storage step for storing the generated second submodel.
  • a storage step (A3-3) for storing the generated third submodel is performed.
  • the step (A3-1), the step (A3-2), and the step (A3-3) may be performed in parallel or separately, for example.
  • the step (A4) includes at least two sub-models of the stored first sub model, second sub model, and third sub model from the data acquired in the data acquisition step (A1). Based on the model, an estimation result of the growth of the crop in the arbitrary area is generated.
  • Arbitrary area information is information for specifying an area where crop growth is to be estimated.
  • the “estimation result of crop growth” can be arbitrarily set, for example, and may be the amount of the crop or the quality of the crop.
  • the “estimation result of crop growth” may be, for example, an estimation of a current result or an estimation of a future result.
  • the estimation result can be obtained by selecting the submodel according to the purpose.
  • the second submodel generated from the narrow area data of the limited section (field A) in Mie Prefecture, and the growth status data of citrus fruits in the field A A case where the future growth estimation of citrus fruits in Israel is performed using the generated third submodel will be described as an example.
  • the first submodel is a submodel that is machine-learned based on comprehensive data over a wide area, there is a possibility that the estimation accuracy is not sufficient by itself.
  • (A5) Output step
  • the (A5) step outputs the estimation result obtained by the (A4) step.
  • the growth status of crops can be estimated worldwide, based on these estimation results, for example, the growth risk is notified to the farmers, the estimation of the field conditions worldwide, the farmers, It is possible to notify domestic and foreign traders or import / export traders about the estimated yield and quality of harvested crops in a specific area. Furthermore, based on the estimation result, for example, it is possible to present a more efficient growing method, to present the distribution of crops from an area where crops are surplus to an area where crops are estimated to be short, and the like.
  • the first sub model, the second sub model, and the third sub model have been described.
  • at least two sub models of the first to sixth sub models are generated. What is necessary is just to determine the combination suitably according to the objective.
  • the estimation unit can appropriately determine the combination of submodels to be used according to the target estimation.
  • the submodel generation unit further generates a fourth submodel.
  • the submodel generation method further includes: An example which is a process of generating the fourth submodel will be described.
  • FIG. 4 shows a block diagram of the estimation apparatus 2 of the present embodiment
  • FIG. 5 shows a flowchart of an estimation method using the estimation apparatus 2.
  • the submodel generation unit 11 further generates narrow area data from the wide area data as a fourth submodel (114), and the storage unit 12 further includes the fourth submodel. Is the same as that of the second embodiment except for storing (124).
  • the estimation method further includes the generation step (A2-4) for generating the fourth submodel and the storage step (A3-4) for storing the generated fourth submodel. The same as in the first embodiment.
  • the narrow area data is environmental data, farm field data, etc. in a narrow area obtained from the wide area data by, for example, machine learning.
  • the environmental data and the field data are as described above, for example.
  • the sub model generation means may generate a new sub model based on information of each sub model, for example, and accordingly, the storage means is newly generated.
  • the sub-model is stored, and the estimation means can use a new sub-model, for example.
  • the sub-model generation unit further generates a fifth sub-model and a sixth sub-model.
  • the sub-model generation unit An example in which the method is further a step of generating a fifth submodel and a sixth submodel will be described.
  • FIG. 6 shows a block diagram of the estimation apparatus 3 of the present embodiment
  • FIG. 7 shows a flowchart of an estimation method using the same.
  • the sub-model generating unit 11 further generates future wide-area data from the wide-area data as a fifth sub-model (115), and from the narrow-area data, the future narrow-area data is generated.
  • Data is generated as a sixth submodel (116), and the storage means 12 further stores the fifth submodel (125) and stores the sixth submodel (126), and the second embodiment. It is the same.
  • the estimation method further includes a generation step (A2-5) for generating a fifth submodel, a generation step (A2-6) for generating a sixth submodel, and the generated fifth submodel. Except for having a storing step (A3-5) for storing and a storing step (A3-6) for storing the generated sixth submodel, this is the same as in the second embodiment.
  • the estimation apparatus and the estimation method of the present invention can select each of the submodels according to a target estimation result, for example, thereby obtaining an estimation result.
  • combinations of submodels that can be selected according to the target estimation result are exemplified.
  • the combination of the submodels is not limited to these examples.
  • Table 1 below shows the types of each sub-model.
  • Each sub model is generated as an item of a generation model by machine learning from an item of generation source data, for example.
  • Table 2 illustrates the combinations of submodels according to the target type of estimation.
  • the target estimation can be performed by performing information processing by the submodel in the order of the arrows.
  • the combination A will be described.
  • “the amount of future crops in the narrow area X” as shown in Table 2, for example, it is possible to estimate by combining the first sub model and the third sub model in this order. That is, when using wide-area data as the start data for estimation, based on the start data, the “amount as the crop growth status” is estimated from the first submodel, and further, based on the estimation result, the first From the three submodels, “the amount of future crops as the future crop growth status in the narrow area X” is estimated, and this is used as the estimation result.
  • the amount may be, for example, a harvest amount or an amount or a ratio (shipment rate) of a crop that can be shipped.
  • the combination B will be described.
  • the estimation is performed. Is possible. That is, when using wide area data as start data for estimation, based on the start data, "narrow area data in narrow area X (for example, environmental data of narrow area X)" is estimated from the fourth submodel, Next, based on the estimation result, the “amount as the crop growth status” is estimated from the second submodel, and further, based on the estimation result, the “future in the narrow area X” is estimated from the third submodel. The future crop amount "is estimated as the crop growth status, and this is used as the estimation result.
  • the combination C will be described.
  • the estimation is performed. Is possible. That is, when using wide area data as start data for estimation, based on the start data, "narrow area data in narrow area X (for example, environmental data of narrow area X)" is estimated from the fourth submodel, Next, based on the estimation result, “future narrow area data in the narrow area X (for example, environmental data of the narrow area X, field data and crop growth status” is estimated from the sixth sub-model, Based on the estimation result, “the amount of future crops as the future growth status in the narrow area X” is estimated from the second submodel, and this is used as the estimation result.
  • the combination D will be described.
  • estimating “the amount of future crops in the narrow area X” as shown in Table 2, it is possible to estimate by combining, for example, the fifth submodel and the first submodel in this order. That is, when using wide-area data as estimation start data, “future wide-area data (for example, wide-area weather data)” is estimated from the fifth submodel based on the start data, and the estimation is further performed. Based on the result, “the amount of future crops as the future growth situation in the narrow area X” is estimated from the first submodel, and this is used as the estimation result.
  • wide-area data for example, wide-area weather data
  • the program of the present embodiment is a program that can execute the estimation method of the first embodiment on a computer.
  • the program of this embodiment may be recorded on a computer-readable recording medium, for example.
  • the recording medium is not particularly limited, and examples thereof include a read only memory (ROM), a hard disk (HD), an optical disk, a floppy (registered trademark) disk (FD), and the like.
  • the present invention for example, it is possible to estimate the current growth situation of the crop and the future growth situation without being at the site where the crop is grown. It becomes possible.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本発明は、例えば、作物を生育している現場にいなくても、現時点での作物の生育状況や、将来の生育状況を推定することができる、作物生育の推定装置の提供を目的とする。 本発明の推定装置は、データ取得手段とサブモデル生成手段と記憶手段と推定手段とを有する。前記データ取得手段は、広域データ、および、狭域データを取得する手段であり、前記広域データは、広域における、衛星画像データおよび気象データの少なくとも一方を含み、前記狭域データは、狭域における、環境データ、圃場データおよび作物の生育状況データを含み;前記サブモデル生成手段は、下記(1)から(6)のうち少なくとも2つ以上のサブモデルを生成する手段であり;前記記憶手段は、前記生成した各サブモデルを、それぞれ記憶する手段であり;前記推定手段は、前記データ取得手段で取得したいずれかのデータから、前記記憶した各サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、任意の地域における作物の生育の推定結果を生成する手段である。 (1)前記広域データから、作物の生育状況を、第1サブモデルとして生成 (2)前記狭域データから、作物の生育状況を、第2サブモデルとして生成 (3)作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成 (4)前記広域データから、狭域データを、第4サブモデルとして生成 (5)前記広域データから、未来の広域データを、第5サブモデルとして生成 (6)前記狭域データから、未来の狭域データを、第6サブモデルとして生成

Description

作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体
 本発明は、作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体に関する。
 従来、圃場において育種中の作物の画像データから、収穫量を予測する方法が提案されている(特開2003-6612号公報)。しかしながら、この予測方法によって予測できるのは、画像を取得した特定の圃場における収穫量の予測に留まる。
特開2003-6612号公報
 近年、地球全体における温暖化および異常気象等による農業への影響、人口増加による食糧不足等の問題から、農作物を効率良く生育させ、また、収穫された農作物の余剰による破棄を抑制することが、重要視されている。しかし、ワールドワイドな視点に基づくと、大陸単位や国単位等で、気象条件や環境条件が異なるため、例えば、日本にいて、全く条件が異なる国における、農作物の生育状況等を把握することは、現地からの直接の情報がなければ、実際には困難である。
 そこで、本発明は、例えば、作物を生育している現場にいなくても、現時点での作物の生育状況や、将来の生育状況を推定することができる、作物生育の推定システムの提供を目的とする。より具体的には、例えば、ワールドワイドでの作物生育の推定システムの提供を目的とする。
 前記目的を達成するために、本発明の作物生育の推定装置は、
データ取得手段と、
サブモデル生成手段と、
記憶手段と、
推定手段とを有し、
前記データ取得手段は、
 広域データ、および、狭域データを取得する手段であり、
 前記広域データは、広域における、衛星画像データおよび気象データの少なくとも一方を含み、
 前記狭域データは、狭域における、環境データ、圃場データおよび作物の生育状況データを含み;
前記サブモデル生成手段は、
 下記(1)から(6)のうち少なくとも2つ以上のサブモデルを生成する手段であり;
前記記憶手段は、
  前記生成した各サブモデルを、それぞれ記憶する手段であり;
前記推定手段は、
 前記データ取得手段で取得したいずれかのデータから、前記記憶した各サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、任意の地域における作物の生育の推定結果を生成する手段であることを特徴とする。
(1)前記広域データから、作物の生育状況を、第1サブモデルとして生成
(2)前記狭域データから、作物の生育状況を、第2サブモデルとして生成
(3)作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成
(4)前記広域データから、狭域データを、第4サブモデルとして生成
(5)前記広域データから、未来の広域データを、第5サブモデルとして生成
(6)前記狭域データから、未来の狭域データを、第6サブモデルとして生成
 本発明の作物生育の推定方法は、
データ取得工程と、
サブモデル生成工程と、
記憶工程と、
推定工程とを有し、
前記データ取得工程は、
 広域データ、および、狭域データを取得する工程であり、
 前記広域データは、広域における、衛星画像データおよび気象データを含み、
 前記狭域データは、狭域における、環境データ、圃場データおよび作物の生育状況データを含み;
前記サブモデル生成工程は、
 下記(1)から(6)のうち少なくとも2つ以上のサブモデルを生成する工程であり;
前記記憶工程は、
  前記生成した各サブモデルを、それぞれ記憶する工程であり;
前記推定工程は、
 前記データ取得工程で取得したいずれかのデータから、前記記憶した各サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、任意の地域における作物の生育の推定結果を生成する工程であることを特徴とする。
(1)前記広域データから、作物の生育状況を、第1サブモデルとして生成
(2)前記狭域データから、作物の生育状況を、第2サブモデルとして生成
(3)作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成
(4)前記広域データから、狭域データを、第4サブモデルとして生成
(5)前記広域データから、未来の広域データを、第5サブモデルとして生成
(6)前記狭域データから、未来の狭域データを、第6サブモデルとして生成
 本発明のプログラムは、前記本発明の作物生育の推定方法をコンピュータに実行させることを特徴とする。
 本発明の記録媒体は、前記本発明のプログラムを記録したコンピュータ読み取り可能である。
 本発明によれば、例えば、作物を生育している現場にいなくても、現時点での作物の生育状況や、将来の生育状況を推定することができ、ワールドワイドでの作物生育の推定も可能となる。
図1は、実施形態1の推定装置の一例を示すブロック図である。 図2は、実施形態1の推定装置のその他の例を示すブロック図である。 図3は、実施形態1の推定方法の一例を示すフローチャートである。 図4は、実施形態2の推定装置のその他の例を示すブロック図である。 図5は、実施形態2の推定方法の一例を示すフローチャートである。 図6は、実施形態3の推定装置のその他の例を示すブロック図である。 図7は、実施形態3の推定方法の一例を示すフローチャートである。 図8は、実施形態1の推定装置のハードウェア構成の一例を示すブロック図である。
 本発明の推定装置は、例えば、前記広域が全球であり、前記狭域が圃場である。
 本発明の推定装置は、例えば、前記広域データにおける気象データが、前記広域における、日照時間、気温、土壌水分、および降水量からなる群から選択された少なくとも一つを含み、前記狭域データにおける環境データが、前記狭域における、気温、湿度、日照時間、日紫外線量、雨量、および前記狭域の画像からなる群から選択された少なくとも一つを含み、前記狭域データにおける圃場データが、前記狭域内の圃場における、作物生育の作業情報、病害虫の発生情報、および作物の生育障害の発生情報からなる群から選択された少なくとも一つを含み、前記狭域データにおける作物の生育状況データが、作物の量および作物の質の少なくとも一方を含む。
 本発明の推定装置は、例えば、さらに、推定結果を出力する出力手段を含む。
 本発明の推定方法は、例えば、前記広域が全球であり、前記狭域が圃場である。
 本発明の推定方法は、例えば、前記広域データにおける気象データが、前記広域における、日照時間、気温、土壌水分、および降水量からなる群から選択された少なくとも一つを含み、前記狭域データにおける環境データが、前記狭域における、気温、湿度、日照時間、日紫外線量、雨量、および前記狭域の画像からなる群から選択された少なくとも一つを含み、前記狭域データにおける圃場データが、前記狭域内の圃場における、作物生育の作業情報、病害虫の発生情報、および作物の生育障害の発生情報からなる群から選択された少なくとも一つを含み、前記狭域データにおける作物の生育状況データが、作物の量および作物の質の少なくとも一方を含む。
 本発明の推定方法は、例えば、さらに、推定結果を出力する出力手段を含む。
 つぎに、本発明の実施形態について説明する。なお、本発明は、以下の実施形態には限定されない。なお、以下の各図において、同一部分には、同一符号を付している。また、各実施形態の説明は、特に言及がない限り、互いの説明を援用できる。さらに、各実施形態の構成は、特に言及がない限り、組合せ可能である。
[実施形態1]
 図1は、本実施形態の作物生育の推定装置1の一例の構成を示すブロック図である。推定装置1は、データ取得手段10、サブモデル生成手段11、記憶手段12および推定手段13を、必須の構成要件として含む。推定装置1は、例えば、推定結果の対象となる任意の地域情報を入力する入力手段14、および、推定手段13により得られる推定結果を出力する出力手段15を備えてもよい。推定装置1は、例えば、各手段を備える一体の装置があげられる。推定装置1は、例えば、推定システムということもできる。推定装置1において、サブモデル生成手段11および推定手段13は、例えば、処理部である。
 推定装置1は、例えば、図1に示すような一体の装置には限られず、例えば、端末とサーバとを含み、前記両者が通信回線網で接続可能な形態でもよい(推定システムともいう)。前記通信回線網は、特に制限されず、公知の通信回線網を使用でき、例えば、有線でも無線でもよく、具体例として、インターネット回線、電話回線、LAN(Local Area Network)等があげられる。
 データ取得手段10は、前述のように、広域データ101および狭域データ102を取得する手段である。広域データ101は、広域における、衛星画像データおよび気象データを含み、狭域データ102は、狭域における、環境データ、圃場データおよび作物の生育状況データを含む。
 前記広域とは、例えば、全球レベルの単位であり、具体例としては、例えば、ユーラシア大陸(アジア大陸、ヨーロッパ大陸)、北米大陸、南米大陸、アフリカ大陸、オーストリア大陸等の大陸単位、日本、中国、アメリカ、ブラジル等の国単位等が例示できる。前記広域データとは、例えば、前記広域における網羅的なデータといえる。他方、前記狭域とは、例えば、国における州の単位、都道府県の単位、市町村の単位、または特定の圃場の単位等が例示できる。前記狭域データとは、例えば、限定的な区画である狭域における精密的なデータといえる。
 データ取得手段10は、特に制限されず、例えば、データベースからのデータの受信手段であってもよい。この場合、推定装置1は、例えば、前記データベースと通信回線網で接続可能な形態があげられる。
 前記広域データのデータベースは、例えば、既存のデータベースが利用できる。前記データベースは、例えば、地球環境プラットフォームであるデータ統合・解析システムDIAS(Data Integration and Analysis System)のデータベースがあげられる。また、前記狭域データのデータベースは、例えば、狭域における、環境データ、圃場データおよび作物の生育状況データを蓄積したデータベースがあげられる。前記データベースは、例えば、本発明の推定装置自体が有してもよいが、前記推定装置外のデータベースでもよく、前記推定装置は、例えば、外部データベースから情報を取得できる。
 図2に、外部データベースと通信回線網を介して接続可能な推定装置の例を示す。推定装置1は、通信回線網20を介して、広域データの外部データベース21Aおよび狭域データの外部データベース21Bと接続可能である。
 サブモデル生成手段11は、前記(1)から(4)のうち少なくとも2つ以上のサブモデルを生成する手段である。本実施形態においては、第1サブモデル、第2サブモデル、第3サブモデル、を生成する手段を例にあげて、説明する。広域データ101から、作物の生育状況を、第1サブモデルとして生成し(111)、狭域データ102から、作物の生育状況を、第2サブモデルとして生成し(112)、作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成する(113)。サブモデル生成手段11は、例えば、CPU(中央処理手段)があげられる。
 サブモデル生成手段11は、広域データ101、狭域データ102、および狭域データ102における作物の生育状況データから、それぞれ、第1サブモデル、第2サブモデルおよび第3サブモデルを機械学習により生成できる。第1サブモデル、第2サブモデルおよび第3サブモデルは、例えば、新たな広域データおよび狭域データを取得するたびに、機械学習により新たに生成させ、各サブモデルの精度を向上させていくことが好ましい。
 記憶手段12は、サブモデル生成手段11で生成した第1サブモデル121、第2サブモデル122および第3サブモデル123を、それぞれ記憶する。前述のように、各サブモデルを新たに生成した場合は、例えば、その度、各サブモデルを更新記憶することが好ましい。記憶手段12は、特に制限されず、例えば、後述するように、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、フラッシュメモリー、ハードディスク(HD)、光ディスク、フロッピー(登録商標)ディスク(FD)等があげられる。記憶手段12は、内蔵型でもよいし、外付け型でもよい。
 入力手段14は、推定手段13において推定結果の対象となる任意の地域を入力する。入力手段14は、特に制限されず、後述するように、キーボード、タッチパネル等があげられる。
 推定手段13は、データ取得手段10で取得したデータから、前記記憶した第1サブモデル、第2サブモデルおよび第3サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、前記入力した任意の地域における作物の生育の推定結果を生成する。推定手段13は、例えば、CPU(中央処理装置)があげられる。
 出力手段15は、推定手段13により得られて推定結果を出力する。出力手段15は、特に制限されず、例えば、ディスプレイ等のモニターへの出力、紙への出力等があげられる。
 図8に、推定装置1のハードウェア構成のブロック図を例示する。推定装置1は、例えば、CPU31、メモリ32、インターフェイス(I/F)33、ディスプレイ34、通信デバイス35、入力装置36、記憶装置37等を有する。メモリ32、I/F33および記憶装置37は、例えば、通信バスによって、CPU31に接続されている。I/F33には、例えば、ディスプレイ34、通信デバイス35、入力装置36等が接続されている。前記ハードウエア構成において、内部での回路間の通信は、バスによって接続される。
 CPU31は、推定装置1の全体の制御を担う。推定装置1において、CPU31により、例えば、本発明のプログラムやその他のプログラムが実行され、また、各種情報の読み込みや書き込みが行われる。具体的に、推定装置1は、例えば、CPU31が、データ取得部40、サブモデル生成部41として機能する。
 メモリ32は、例えば、メインメモリを含み、前記メインメモリは、主記憶装置ともいう。CPU31が処理を行う際には、例えば、後述する補助記憶装置に記憶されている、本発明のプログラム等の種々のプログラムを、メモリ32が読み込み、CPU31は、メモリ32からデータを受け取って、前記プログラムを実行する。前記メインメモリは、例えば、RAM(ランダムアクセスメモリ)である。メモリ32は、例えば、さらに、ROM(読み出し専用メモリ)を含む。
 I/F33は、例えば、CPU31、メモリ32等のそれぞれの機能部間を接続する。また、I/F33は、例えば、外部機器とも接続できる。推定装置1は、I/F33に接続された通信デバイス35により、通信回線網に接続でき、前記通信回線網を介して、前記外部機器と接続することもできる。推定装置1は、例えば、I/F33、または、I/F33と通信デバイス35とが、出力部16として機能する。
 記憶装置37は、例えば、前記メインメモリ(主記憶装置)に対して、いわゆる補助記憶装置ともいう。記憶装置37は、例えば、記憶媒体と、前記記憶媒体に読み書きするドライブとを含む。前記記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、FD(フロッピー(登録商標)ディスク)、CD-ROM、CD-R、CD-RW、MO、DVD、フラッシュメモリー、メモリーカード等があげられ、前記ドライブは、特に制限されない。記憶装置37は、例えば、記憶媒体とドライブとが一体化されたハードディスクドライブ(HDD)も例示できる。記憶装置37は、例えば、本発明のプログラム等の動作プログラムが格納され、前述のように、CPU31を実行させる際、メモリ32が、記憶装置37から前記動作プログラムを読み込む。記憶装置37には、例えば、前記プログラムの他に、例えば、広域データ101、狭域データ102、第1サブモデル121、第2サブモデル122、第3サブモデル123、推定結果131等が格納される。また、記憶装置37には、その他に、例えば、データ取得部40により取得した情報、推定部42より取得した情報等も格納できる。
 ディスプレイ34は、例えば、LEDディスプレイ、液晶ディスプレイ等が例示できる。通信デバイス35は、推定装置1と外部機器とを通信できればよく、例えば、前述のような通信回線網に接続可能なデバイスである。入力装置36は、例えば、キーボード、マウス、タッチパネル等である。
 つぎに、本実施形態の推定方法について、図3のフローチャートを用いて説明する。
 本実施形態の推定方法は、例えば、図1に示す本実施形態の推定装置1を用いて、次のように実施する。なお、本実施形態の推定方法は、図1の推定装置1の使用には限定されない。下記実施形態においては、前記広域が全球レベルの単位であり、前記広域データが、DIASから取得される衛星画像データおよび気象データ(日照時間、気温、土壌水分、および降水量)であり、前記狭域が特定の圃場であり、前記狭域データが、環境データ(気温、湿度、日照時間、日紫外線量、雨量、および前記狭域の画像)、圃場データ(作物生育の作業情報、病害虫の発生情報、および作物の生育障害の発生情報)および作物データ(作物の量、および作物の品質)である。前記作物の量とは、例えば、作物の収穫量、作物の収穫数に対する出荷率等である。
(A1)データ取得工程
 前記(A1)工程は、広域データを取得する広域データ取得工程(A1-1)と、狭域データを取得する狭域データ取得工程(A1-2)とを行う。前記(A1-1)工程と前記(A1-2)工程は、例えば、並行して行ってもよいし、別々に行ってもよい。前記(A1)工程で取得されるデータは、例えば、後述する推定工程(A4)における推定の開始データにもなる。
(A2)サブモデル生成工程
 前記(A2)工程は、前記広域データから、作物の生育状況を、第1サブモデルとして生成する生成工程(A2-1)と、前記狭域データから、作物の生育状況を、第2サブモデルとして生成する生成工程(A2-2)と、作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成する生成工程(A2-3)とを行う。前記(A2-1)工程、前記(A2-2)工程、および前記(A2-3)工程は、例えば、並行して行ってもよいし、別々に行ってもよい。
 サブモデル生成は、例えば、前述のように、機械学習により行うことができる。各サブモデルは、例えば、1回の生成でもよいが、広域データまたは狭域データの取得の度に繰り返し行い、更新することが好ましい。
 前記第1サブモデルは、例えば、前記広域データから、その条件に基づいて導き出された、作物の生育状況のモデルである。前記第2サブモデルは、例えば、前記狭域データから、その条件に基づいて導き出された、作物の生育状況のモデルである。前記第3サブモデルは、例えば、作物の生育状況データから、その条件に基づいて導き出された、作物の未来の生育状況のモデルである。前記第3サブモデルにおいて、前記作物の生育状況データとは、例えば、前記狭域データに含まれるデータでもよいし、想定しうる架空のデータでもよい。前記作物の生育状況は、前述のように、作物の量および作物の質があげられる。前記作物の量とは、例えば、作物の収穫量、作物の収穫数に対する出荷率等があげられる。前記作物の質とは、例えば、品質、生育の良し悪し等が含まれる。生育の良し悪しとは、例えば、作物の生育の可否、作物の生育速度等を含む。前記品質は、例えば、糖度、外観等を含む。
(A3)記憶工程
 前記(A3)工程は、前記(A2-1)工程で生成された第1サブモデルを記憶する記憶工程(A3-1)、生成された第2サブモデルを記憶する記憶工程(A3-2)、生成された第3サブモデルを記憶する記憶工程(A3-3)を行う。前記(A3-1)工程、前記(A3-2)工程、および前記(A3-3)工程は、例えば、並行して行ってもよいし、別々に行ってもよい。
(A4)推定工程
 前記(A4)工程は、前記データ取得工程(A1)で取得したデータから、前記記憶した第1サブモデル、第2サブモデルおよび第3サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、前記任意の地域における作物の生育の推定結果を生成する。任意の地域情報とは、作物の生育の推定を行いたい地域を特定するための情報である。「作物の生育の推定結果」は、例えば、任意に設定でき、例えば、作物の量でもよいし、作物の質でもよい。また、「作物の生育の推定結果」は、例えば、現在の結果の推定でもよいし、未来の結果の推定でもよい。これの推定結果は、目的に応じて、前記サブモデルを選択することで得ることができる。
 ここで、ワールドワイドの広域データから生成された第1サブモデルと、三重県の限定区画(圃場A)の狭域データから生成された第2サブモデルと、圃場Aにおける柑橘類の生育状況データから生成された第3サブモデルとを用いて、イスラエルにおける柑橘類の未来の生育推定を行う場合を例にあげて説明する。この場合、任意の地域情報をイスラエルに設定すると、例えば、まず、第1サブモデルから、イスラエルにおける柑橘類の生育情報を推定できる。しかし、第1サブモデルは、広域の網羅的なデータに基づき機械学習されたサブモデルであるため、これだけでは推定の精度が充分ではない可能性がある。しかしながら、さらに、圃場Aという限定区画の精密データに基づき機械学習された第2サブモデルを組み合わせることで、精密データがないイスラエルについても、柑橘類の生育について、より精度の高い推定が可能になる。また、イスラエルにおける将来の生育状況を推定する場合は、これらに、さらに、圃場Aという限定区画における精密な柑橘類データに基づき機械学習された第3サブモデルを組合せることで、柑橘類の将来の生育状況についても、精度の高い推定が可能になる。
 このように、実際には、作物の生育に関する精密なデータがないような地域に関しても、ワールドワイドの網羅的データに基づくサブモデルと限定区画の精密データに基づくサブモデルと限定区画の作物に関する精密データに基づくサブモデルとを組み合わせることで、精度良く容易に、作物の生育状況の推定を行うことができる。
(A5)出力工程
 前記(A5)工程は、前記(A4)工程により得られた推定結果を出力する。
 本発明によれば、このようにワールドワイドに作物の生育状況を推定できることから、これらの推定結果に基づいて、例えば、農家に対する生育リスクを通知したり、ワールドワイドな圃場状態の推定、農家、内外業者または輸出入業者に対する、特定地域における収穫推定量、収穫作物の品質等の通知を行うことが可能になる。さらに、推定結果に基づいて、例えば、より効率のよい生育方法の提示、作物が余剰すると推定された地域から作物が不足すると推定された地域への作物の流通の提示等も可能になる。
 本実施形態においては、第1サブモデル、第2サブモデルおよび第3サブモデルについて記載したが、本発明は、例えば、第1から第6のサブモデルの少なくとも2つ以上のサブモデルを生成すればよく、その組合せも、目的に応じて適宜決定できる。また、本発明においては、例えば、第1から第6のサブモデルの全てを生成しても、前記推定手段においては、目的の推定に応じて、使用するサブモデルの組合せを適宜決定できる。
[実施形態2]
 本実施形態は、実施形態1の推定装置において、前記サブモデル生成手段が、さらに、第4サブモデルを生成する手段であり、実施形態1の推定方法において、前記サブモデル生成方法が、さらに、第4サブモデルを生成する工程である例をあげて説明する。
 本実施形態の推定装置2のブロック図を図4に示し、それを用いた推定方法のフローチャートを図5に示す。図4において、推定装置2は、サブモデル生成手段11が、さらに、前記広域データから、狭域データを、第4サブモデルとして生成し(114)、記憶手段12が、さらに、第4サブモデルを記憶する(124)以外は、前記実施形態2と同様である。また、図5において、推定方法は、さらに、第4サブモデルを生成する生成工程(A2-4)と、生成した第4サブモデルを記憶する記憶工程(A3-4)を有する以外は、前記実施形態1と同様である。
 前記狭域データとは、前記広域データから、例えば、機械学習等により得られる、狭域における環境データ、圃場データ等である。前記環境データおよび前記圃場データ等は、例えば、前述の通りである。
 本発明において、前記サブモデル生成手段は、例えば、各サブモデルの情報に基づいて、さらなる、新たなサブモデルを生成してもよく、それに応じて、前記記憶手段は、さらに、新たに生成されたサブモデルを記憶し、前記推定手段は、例えば、新たなサブモデルを利用することもできる。
[実施形態3]
 本実施形態は、実施形態2の推定装置において、前記サブモデル生成手段が、さらに、第5サブモデルおよび第6サブモデルを生成する手段であり、実施形態2の推定方法において、前記サブモデル生成方法が、さらに、第5サブモデルおよび第6サブモデルを生成する工程である例をあげて説明する。
 本実施形態の推定装置3のブロック図を図6に示し、それを用いた推定方法のフローチャートを図7に示す。図6において、推定装置3は、サブモデル生成手段11が、さらに、前記広域データから、未来の広域データを、第5サブモデルとして生成し(115)、前記狭域データから、未来の狭域データを、第6サブモデルとして生成し(116)、記憶手段12が、さらに、第5サブモデルを記憶し(125)、第6サブモデルを記憶する(126)以外は、前記実施形態2と同様である。また、図7において、推定方法は、さらに、第5サブモデルを生成する生成工程(A2-5)および第6サブモデルを生成する生成工程(A2-6)と、生成した第5サブモデルを記憶する記憶工程(A3-5)および生成した第6サブモデルを記憶する記憶工程(A3-6)を有する以外は、前記実施形態2と同様である。
[実施形態4]
 本発明の推定装置および推定方法は、例えば、目的とする推定結果に応じて、前記各サブモデルを選択でき、それによって、推定結果を得ることができる。本実施形態においては、目的の推定結果に応じて選択し得るサブモデルの組合せを例示する。なお、本発明において、前記サブモデルの組合せは、これらの例示には制限されない。
 下記表1に、各サブモデルの種類を示す。各サブモデルは、例えば、生成元データの項目から、機械学習により、生成モデルの項目として生成される。
Figure JPOXMLDOC01-appb-T000001
 下記表2に、目的とする推定の種類に応じたサブモデルの組合せを例示する。下記表において、例えば、矢印の順でサブモデルによる情報処理を行うことで、目的とする推定が可能になる。
Figure JPOXMLDOC01-appb-T000002
 組合せAについて説明する。「狭域Xにおける未来の作物の量」を推定する場合、前記表2に示すように、例えば、第1サブモデルおよび第3サブモデルをこの順で組み合わせることにより、推定が可能である。すなわち、推定の開始データとして広域データを使用する場合、前記開始データを元に、前記第1サブモデルから「作物の生育状況として量」を推定し、さらに、その推定結果を元に、前記第3サブモデルから「狭域Xにおける未来の作物の生育状況として、未来の作物の量」を推定し、これを推定結果とする。前記量は、例えば、収穫量でもよいし、出荷できる作物の量または割合(出荷率)でもよい。
 組合せBについて説明する。「狭域Xにおける未来の作物の量」を推定する場合、前記表2に示すように、例えば、第4サブモデル、第2サブモデルおよび第3サブモデルをこの順で組み合わせることにより、推定が可能である。すなわち、推定の開始データとして広域データを使用する場合、前記開始データを元に、前記第4サブモデルから「狭域Xにおける狭域データ(例えば、狭域Xの環境データ)」を推定し、つぎに、その推定結果を元に、前記第2サブモデルから「作物の生育状況として量」を推定し、さらに、その推定結果を元に、前記第3サブモデルから「狭域Xにおける未来の作物の生育状況として、未来の作物の量」を推定し、これを推定結果とする。
 組合せCについて説明する。「狭域Xにおける未来の作物の量」を推定する場合、前記表2に示すように、例えば、第4サブモデル、第6サブモデルおよび第2サブモデルをこの順で組み合わせることにより、推定が可能である。すなわち、推定の開始データとして広域データを使用する場合、前記開始データを元に、前記第4サブモデルから「狭域Xにおける狭域データ(例えば、狭域Xの環境データ)」を推定し、つぎに、その推定結果を元に、前記第6サブモデルから「狭域Xにおける未来の狭域データ(例えば、狭域Xの環境データ、圃場データおよび作物の生育状況」を推定し、さらに、その推定結果を元に、前記第2サブモデルから「狭域Xにおける未来の生育状況として、未来の作物の量」を推定し、これを推定結果とする。
 組合せDについて説明する。「狭域Xにおける未来の作物の量」を推定する場合、前記表2に示すように、例えば、第5サブモデル、および第1サブモデルをこの順で組み合わせることにより、推定が可能である。すなわち、推定の開始データとして広域データを使用する場合、前記開始データを元に、前記第5サブモデルから「未来の広域データ(例えば、広域の気象データ等)」を推定し、さらに、その推定結果を元に、前記第1サブモデルから「狭域Xにおける未来の生育状況として、未来の作物の量」を推定し、これを推定結果とする。
[実施形態5]
 本実施形態のプログラムは、実施形態1の推定方法を、コンピュータ上で実行可能なプログラムである。または、本実施形態のプログラムは、例えば、コンピュータ読み取り可能な記録媒体に記録されてもよい。前記記録媒体としては、特に限定されず、例えば、読み出し専用メモリ(ROM)、ハードディスク(HD)、光ディスク、フロッピー(登録商標)ディスク(FD)等があげられる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2017年2月16日に出願された日本国特願2017-026604を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、例えば、作物を生育している現場にいなくても、現時点での作物の生育状況や、将来の生育状況を推定することができ、ワールドワイドでの作物生育の推定も可能となる。
1、2、3  推定装置
10  データ取得手段
11  サブモデル生成手段
12  記憶手段
13  推定手段
14  入力手段
15  出力手段
31  CPU
32  メモリ
33  インターフェイス(I/F)
34  ディスプレイ
35  通信デバイス
36  入力装置
37  記憶装置
38  プログラム
101 広域データ
102 狭域データ
121 第1サブモデル
122 第2サブモデル
123 第3サブモデル
131 推定結果

 

Claims (10)

  1. データ取得手段と、
    サブモデル生成手段と、
    記憶手段と、
    推定手段とを有し、
    前記データ取得手段は、
     広域データ、および、狭域データを取得する手段であり、
     前記広域データは、広域における、衛星画像データおよび気象データの少なくとも一方を含み、
     前記狭域データは、狭域における、環境データ、圃場データおよび作物の生育状況データを含み;
    前記サブモデル生成手段は、
     下記(1)から(6)のうち少なくとも2つ以上のサブモデルを生成する手段であり;
    前記記憶手段は、
      前記生成した各サブモデルを、それぞれ記憶する手段であり;
    前記推定手段は、
     前記データ取得手段で取得したいずれかのデータから、前記記憶した各サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、任意の地域における作物の生育の推定結果を生成する手段であることを特徴とする作物生育の推定装置。
    (1)前記広域データから、作物の生育状況を、第1サブモデルとして生成
    (2)前記狭域データから、作物の生育状況を、第2サブモデルとして生成
    (3)作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成
    (4)前記広域データから、狭域データを、第4サブモデルとして生成
    (5)前記広域データから、未来の広域データを、第5サブモデルとして生成
    (6)前記狭域データから、未来の狭域データを、第6サブモデルとして生成
  2. 前記広域が全球であり、前記狭域が圃場である、請求項1記載の推定装置。
  3. 前記広域データにおける気象データが、前記広域における、日照時間、気温、土壌水分、および降水量からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける環境データが、前記狭域における、気温、湿度、日照時間、日紫外線量、雨量、および前記狭域の画像からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける圃場データが、前記狭域内の圃場における、作物生育の作業情報、病害虫の発生情報、および作物の生育障害の発生情報からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける作物の生育状況データが、前記狭域における、作物の量および作物の質の少なくとも一方を含む、請求項1または2記載の推定装置。
  4. さらに、推定結果を出力する出力手段を含む、請求項1から3のいずれか一項に記載の推定装置。
  5. データ取得工程と、
    サブモデル生成工程と、
    記憶工程と、
    推定工程とを有し、
    前記データ取得工程は、
     広域データ、および、狭域データを取得する工程であり、
     前記広域データは、広域における、衛星画像データおよび気象データを含み、
     前記狭域データは、狭域における、環境データ、圃場データおよび作物データを含み;
    前記サブモデル生成工程は、
     下記(1)から(6)のうち少なくとも2つ以上のサブモデルを生成する工程であり;
    前記記憶工程は、
      前記生成した各サブモデルを、それぞれ記憶する工程であり;
    前記推定工程は、
     前記データ取得工程で取得したいずれかのデータから、前記記憶した各サブモデルのうち少なくとも2つ以上のサブモデルに基づいて、任意の地域における作物の生育の推定結果を生成する工程であることを特徴とする作物生育の推定方法。
    (1)前記広域データから、作物の生育状況を、第1サブモデルとして生成
    (2)前記狭域データから、作物の生育状況を、第2サブモデルとして生成
    (3)作物の生育状況データから、未来の生育状況を、第3サブモデルとして生成
    (4)前記広域データから、狭域データを、第4サブモデルとして生成
    (5)前記広域データから、未来の広域データを、第5サブモデルとして生成
    (6)前記狭域データから、未来の狭域データを、第6サブモデルとして生成
  6. 前記広域が全球であり、前記狭域が圃場である、請求項5記載の推定方法。
  7. 前記広域データにおける気象データが、前記広域における、日照時間、気温、土壌水分、および降水量からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける環境データが、前記狭域における、気温、湿度、日照時間、日紫外線量、雨量、および前記狭域の画像からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける圃場データが、前記狭域内の圃場における、作物生育の作業情報、病害虫の発生情報、および作物の生育障害の発生情報からなる群から選択された少なくとも一つを含み、
    前記狭域データにおける作物の生育状況データが、前記狭域における、作物の量および作物の質の少なくとも一方を含む、請求項5または6記載の推定方法。
  8. さらに、推定結果を出力する出力手段を含む、請求項5から7のいずれか一項に記載の推定方法。
  9. 請求項5から8のいずれか一項に記載の推定方法をコンピュータに実行させることを特徴とするプログラム。
  10. 請求項9記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。

     
PCT/JP2018/005205 2017-02-16 2018-02-15 作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体 WO2018151196A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568593A JP7007018B2 (ja) 2017-02-16 2018-02-15 作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026604 2017-02-16
JP2017-026604 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018151196A1 true WO2018151196A1 (ja) 2018-08-23

Family

ID=63170656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005205 WO2018151196A1 (ja) 2017-02-16 2018-02-15 作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体

Country Status (2)

Country Link
JP (1) JP7007018B2 (ja)
WO (1) WO2018151196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106046A1 (ja) * 2019-11-25 2021-06-03 公立大学法人横浜市立大学 成熟予測システム
CN117235322A (zh) * 2023-11-14 2023-12-15 中国农业大学 作物耐盐高产品种筛选方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203664A1 (ja) * 2013-06-18 2014-12-24 株式会社日立製作所 収量予測システムおよび収量予測装置
JP2015188333A (ja) * 2014-03-27 2015-11-02 株式会社日立製作所 植生生長分析システム及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737463B2 (ja) * 2002-08-06 2006-01-18 財団法人日本気象協会 落雷予想方法
JP2008107941A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp 監視装置
FR2935579B1 (fr) * 2008-08-28 2010-11-05 Centre Nat Etd Spatiales Procede d'acquisition, de reduction et de transmission d'images satellitaires
JP5433913B2 (ja) * 2008-08-29 2014-03-05 国立大学法人京都大学 波浪予測システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203664A1 (ja) * 2013-06-18 2014-12-24 株式会社日立製作所 収量予測システムおよび収量予測装置
JP2015188333A (ja) * 2014-03-27 2015-11-02 株式会社日立製作所 植生生長分析システム及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106046A1 (ja) * 2019-11-25 2021-06-03 公立大学法人横浜市立大学 成熟予測システム
CN117235322A (zh) * 2023-11-14 2023-12-15 中国农业大学 作物耐盐高产品种筛选方法、装置、电子设备及存储介质
CN117235322B (zh) * 2023-11-14 2024-02-02 中国农业大学 作物耐盐高产品种筛选方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP7007018B2 (ja) 2022-01-24
JPWO2018151196A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
Putjaika et al. A control system in an intelligent farming by using arduino technology
Heinemann et al. Drought impact on rainfed common bean production areas in Brazil
Pérez-Méndez et al. Downsized mutualisms: consequences of seed dispersers’ body-size reduction for early plant recruitment
Espe et al. Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems
Gustavsson A developmental scale for perennial forage grasses based on the decimal code framework
CN113229123A (zh) 农作物智能灌溉方法、装置、设备及存储介质
Wang et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming
Garcia-Mozo et al. Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change
WO2018151196A1 (ja) 作物生育の推定装置、作物生育の推定方法、プログラム、および記録媒体
Trentacoste et al. Effects of the source: sink ratio on the phenotypic plasticity of stem water potential in olive (Olea europaea L.)
Rakocevic et al. Time series in analysis of yerba-mate biennial growth modified by environment
JP2018005467A (ja) 農作業計画支援装置及び農作業計画支援方法
EP3032473A1 (en) Method and system for classifying plant disease through crowdsourcing using a mobile communication device
Resop et al. Climate, water management, and land use: Estimating potential potato and corn production in the US northeastern seaboard region
EP4133348A1 (en) Methods for artificial pollination and apparatus for doing the same
Verma et al. Use of ARIMA modeling in forecasting coriander prices for Rajasthan
Ellis Using Bayesian growth models to predict grape yield
WO2016121432A1 (ja) 技能承継支援装置、技能承継支援方法、及びコンピュータ読み取り可能な記録媒体
Alake et al. Selection criteria for grain yield and stability in bambara groundnut (Vigna subterranean (L) Verdc) landraces
Fernandez et al. Unusually warm winter seasons may compromise the performance of current phenology models–Predicting bloom dates in young apple trees with PhenoFlex
JP2022136058A (ja) 農作物の生産成績を予測する予測モデルの生成方法、生成装置、及び生成プログラム
Kalli et al. How large is the farm income loss due to climate change? Evidence from India
Lakso et al. Decision support for apple thinning based on carbon balance modeling
CA2761682C (en) Real-time process for targeting trait phenotyping of plant breeding experiments
Xing et al. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754721

Country of ref document: EP

Kind code of ref document: A1