WO2018151045A1 - Medical tube twisting device and medical tube twisting method - Google Patents

Medical tube twisting device and medical tube twisting method Download PDF

Info

Publication number
WO2018151045A1
WO2018151045A1 PCT/JP2018/004615 JP2018004615W WO2018151045A1 WO 2018151045 A1 WO2018151045 A1 WO 2018151045A1 JP 2018004615 W JP2018004615 W JP 2018004615W WO 2018151045 A1 WO2018151045 A1 WO 2018151045A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
twist
medical tube
region
heating
Prior art date
Application number
PCT/JP2018/004615
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 渡邊
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018151045A1 publication Critical patent/WO2018151045A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/14Twisting

Definitions

  • the present invention relates to a medical tube twisting apparatus and a medical tube twisting method.
  • This application claims priority based on Japanese Patent Application No. 2017-025982 filed in Japan on February 15, 2017, the contents of which are incorporated herein by reference.
  • an independent lumen (lumen) formed inside is formed in a spiral shape.
  • a tube body is described in which a small-diameter tube (independent lumen) is spirally provided inside a large-diameter tube.
  • this tube body is manufactured by pulling out a tube tube that is being cooled after being extruded and rotating it with a puller.
  • the tube tube When the displacement of the tube tube is large, the tube tube may be derailed and the production may be interrupted. Furthermore, in the technique described in Patent Document 1, since the rotating body also serves as a roller for taking up the tube tube, it is difficult to form only a part of a small-diameter tube in the tube tube in a spiral shape.
  • the present invention has been made in view of the above problems, and can improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction.
  • An object of the present invention is to provide a tube twisting device and a medical tube twisting method.
  • a medical tube twisting device includes a heater for partially heating a medical tube in a heating region, and an axis extending in the longitudinal direction of the medical tube.
  • a twist mechanism that forms a twist portion in the medical tube heated by the heater by rotating the medical tube around the tube, and a tube transport mechanism that moves the twist portion to the outside of the heating region And comprising.
  • the medical tube twisting device further includes a cooling unit that cools the twisted part in a cooling region outside the heating region, and the tube transport mechanism moves the twisting unit from the heating region to the cooling region. You may move to the work area.
  • the tube transport mechanism switches the transport direction of the medical tube to one of a first direction along the axis and a second direction opposite to the first direction.
  • the heating area and the cooling area may include the movement path of the medical tube and be formed adjacent to each other in a direction along the movement path.
  • the medical tube twisting device further includes a control unit that controls operations of the heater, the twisting mechanism, the tube transporting mechanism, and the cooling unit, and the control unit moves the medical tube by the tube transporting mechanism.
  • a sixth operation that moves the region to the heating region, a seventh operation that repeats the second operation to the sixth operation one or more times in this order after the first operation, After the first operation or after the seventh operation, the eighth operation that performs the second operation to the fifth operation in this order may be controlled.
  • the twisting mechanism includes a first grip portion that grips the medical tube and the heating mechanism in the second direction outside the heating region in the first direction.
  • a second gripping part for gripping the medical tube outside the region; and a rotation driving part for relatively rotating the first gripping part and the second gripping part around the axis. Also good.
  • the cooling unit may discharge a refrigerant composed of at least one of a liquid and a gas toward the medical tube in the cooling region.
  • the medical tube twisting method includes a first operation for arranging a part of the medical tube in the heating region and a second operation for heating the portion arranged in the heating region.
  • the medical tube In the state where the part is heated, the medical tube is gripped at two places sandwiching the part between the two, and the axis extending in the longitudinal direction of the medical tube at the two gripping positions.
  • a third operation of forming a twist portion in the part by adding a twist around a fourth operation of moving the twist portion to the outside of the heating region, and the outside of the heating region,
  • a fifth operation for curing the twisted portion is a third operation for forming a twist portion in the part by adding a twist around.
  • the medical tube twisting method further includes a sixth operation of moving a region adjacent to the twisted portion to the heating region after the twisted portion is cured, and after the sixth operation, The sixth operation may be repeated once or more in this order, or the second operation to the fifth operation may be performed in this order.
  • the medical tube twisting apparatus and the medical tube twisting method of the present invention it is possible to improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 6 is a DD sectional view (EE sectional view) in FIG. 4.
  • FIG. 5 is a sectional view taken along line FF in FIG. 4. It is a flowchart which shows an example of the medical tube twist method of embodiment of this invention.
  • FIG. 1 is a schematic front view showing an example of a medical tube manufactured by the medical tube twisting device according to the embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line AA in FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • the tube 30 (medical tube) is a long resin tube that extends from the first end E1 to the second end E2 along the central axis O.
  • the tube 30 is used as a sheath of cables such as a medical catheter tube and an endoscope imaging cable, for example.
  • the outer peripheral surface 30a of the tube 30 is constituted by a cylindrical surface having a constant outer diameter.
  • the outer diameter of the outer peripheral surface 30a may have some variation in the longitudinal direction for manufacturing reasons described later.
  • the outer diameter of the outer peripheral surface 30a may have a deviation of about ⁇ 2% in the longitudinal direction.
  • thermoplastic resin or a thermoplastic elastomer may be used as the material of the tube 30, for example.
  • thermoplastic resin examples include polyethylene (PE) resin, polypropylene (PP) resin, and polyamide (PA) resin.
  • thermoplastic elastomer examples include amide TPE (TPA) and urethane TPE (TPU).
  • At least one spiral lumen is formed inside the tube 30.
  • the spiral lumen may be formed in a spiral shape over the entire length of the tube 30, or only a part of the tube 30 in the longitudinal direction may be a spiral shape.
  • the tube 30 may be a single lumen tube or a multi-lumen tube. Below, the example in the case of a multi-lumen tube is demonstrated as an example.
  • FIG. 2 shows a cross-sectional shape of the tube 30.
  • the outer peripheral surface 30a of the tube 30 is circular with the central axis O as the center.
  • a guide wire lumen 30b, a first lumen 30c, and a second lumen 20d penetrate in the longitudinal direction.
  • the guide wire lumen 30b extends straight along the central axis O regardless of the position of the tube 30 in the longitudinal direction.
  • the guide wire lumen 30b has an inner diameter through which a guide wire or the like can be passed, for example.
  • the path of the first lumen 30c and the second lumen 30d changes in the longitudinal direction of the tube 30.
  • the first lumen 30c and the second lumen 30d include a non-twisted portion 30A, a twisted portion 30B, and a non-twisted portion 30A in the longitudinal direction of the tube 30.
  • Non twisting unit 30A in the longitudinal direction of the tube 30 is formed in a range of a length L A from the first end E1.
  • the first lumen 30c and the second lumen 30d both extend straight along the central axis O between the guide wire lumen 30b and the outer peripheral surface 30a.
  • the positions in the circumferential direction around the central axis O of the first lumen 30c and the second lumen 30d are not particularly limited.
  • the first lumen 30c and the second lumen 30d are arranged adjacent to each other in the circumferential direction with a central angle with respect to the central axis O being an acute angle.
  • the first lumen 30c and the second lumen 30d may be disposed at a position where the central angle with respect to the central axis O is 180 °.
  • the twisted portion 30 ⁇ / b > B has a length LB in the longitudinal direction of the tube 30 from the end opposite to the first end E ⁇ b> 1 in the non-twisted portion 30 ⁇ / b > A toward the second end E ⁇ b > 2. Is formed.
  • the first lumen 30c and the second lumen 30d are both spirally turned in the same direction around the central axis O. The distance between the first lumen 30c and the second lumen 30d in a cross section perpendicular to the extending direction of the first lumen 30c and the second lumen 30d is constant along the turning path.
  • the first lumen 30c (second lumen 30d) at the boundary between the non-twisted portion 30A and the twisted portion 30B smoothly changes from a straight shape to a spiral shape. For this reason, the inner peripheral surface of the first lumen 30c (second lumen 30d) at the boundary between the non-twisted portion 30A and the twisted portion 30B is smoothly continuous without a step or a bent portion.
  • the non-twisted portion 30C is formed in a range of a length L C from the end portion of the twisted portion 30B opposite to the non-twisted portion 30A to the second end portion E2 in the longitudinal direction of the tube 30.
  • the first lumen 30c and the second lumen 30d both extend straight along the central axis O between the guide wire lumen 30b and the outer peripheral surface 30a.
  • the first lumen 30c (second lumen 30d) at the boundary between the twisted portion 30B and the non-twisted portion 30C smoothly changes from a spiral shape to a linear shape. For this reason, the inner peripheral surface of the first lumen 30c (second lumen 30d) at the boundary between the twisted portion 30B and the non-twisted portion 30C is smoothly continuous without a step or a bent portion.
  • FIG. 4 is a schematic front view showing a configuration example of the medical tube twisting device according to the embodiment of the present invention.
  • FIG. 5 is a block diagram of a configuration related to control of the medical tube twisting device according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line DD (cross-sectional view taken along line EE) in FIG. 7 is a cross-sectional view taken along line FF in FIG.
  • the tube twisting device 1 (medical tube twisting device) of this embodiment includes a tube transport mechanism 6, a twisting mechanism 3, a heater 2, and a cooling unit 7. As shown in FIG. 5, the tube twisting device 1 further includes an operation unit 9 and a control unit 8.
  • the tube twisting apparatus 1 can manufacture the tube 30 by partially twisting a part in the longitudinal direction of the processing tube 20 (medical tube) shown in FIG. Further, the tube twisting device 1 can further twist the medical tube that has already been twisted. For this reason, the tube twisting apparatus 1 can perform twisting processing at a plurality of locations in the processing tube 20.
  • the processing tube 20 has a shape similar to the shape in which the tube 30 in the non-twisted portion 30A is extended along the central axis O.
  • the central axis of the processing tube 20 is also represented by the central axis O, like the tube 30.
  • the material of the processing tube 20 is the same as the material of the tube 30.
  • the processing tube 20 can be used as a medical tube even when it is not twisted.
  • the outer peripheral surface 20a in the processing tube 20 is configured by a cylindrical surface having the same diameter as the outer peripheral surface 30a of the tube 30 in the non-twisted portion 30A.
  • the processing tube 20 has a guide wire lumen 20b, a first lumen 20c, and a second lumen 20d corresponding to the guide wire lumen 30b, the first lumen 30c, and the second lumen 30d of the tube 30 in the non-twisted portion 30A. (See FIG. 6).
  • the guide wire lumen 20b extends along the central axis O of the processing tube 20 like the guide wire lumen 30b.
  • the inner diameter of the guide wire lumen 20b is equal to the inner diameter of the guide wire lumen 30b in the non-twisted portion 30A.
  • the first lumen 20c (second lumen 20d) extends straight along an axis parallel to the central axis O, like the first lumen 30c (second lumen 30d) of the tube 30 in the non-twisted portion 30A.
  • the inner diameter of the first lumen 20c (second lumen 20d) is equal to the inner diameter of the first lumen 30c (second lumen 30d) in the non-twisted portion 30A.
  • the relative positional relationship between the guide wire lumen 20b, the first lumen 20c, and the second lumen 20d in a cross section orthogonal to the central axis O is such that the guide wire lumen 30b, the first lumen 30c, and the second lumen of the tube 30 in the non-twisted portion 30A. This is the same as the relative positional relationship of the lumen 30d.
  • Such a processing tube 20 is manufactured in advance, for example, by extruding a resin material for forming the tube 30.
  • the tube 20 for processing is already hardened at the time of twisting by the tube twisting device 1.
  • the extrusion molding machine for manufacturing the processing tube 20 a known extrusion molding machine for manufacturing a multi-lumen tube may be used. If the length from the first end e1 to the second end e2 in the processing tube 20 is the length from the first end E1 to the second end E2 of the tube 30 after the twist processing, the tube It may be different from 30 lengths. In this embodiment, as will be described later, as an example, the length of the processing tube 20 is longer than the length of the tube 30.
  • the tube twisting apparatus 1 twists the processing tube 20 arranged along the axis C in the apparatus.
  • the tube twisting device 1 can perform twisting processing by changing the position by moving the processing tube 20 along the movement path along the axis C.
  • the tube twisting device 1 twists a necessary region of the processing tube 20 from the first end e1 of the processing tube 20 toward the second end e2.
  • the processing tube 20 is arranged in the tube twisting device 1 so that the central axis O is coaxial with the axis C in the tube twisting device 1.
  • the tube 20 for processing is supported in the tube twist apparatus 1 in the state which can be rotated centering on the axis C.
  • the left end portion in FIG. 4 is referred to as a first end portion Ea
  • the right end portion is referred to as a second end portion Eb
  • a direction from the second end Eb to the first end Ea along the axis C is referred to as a first direction f
  • a direction opposite to the first direction f is referred to as a second direction b.
  • the twist mechanism 3 includes a first device part disposed near the first end Ea and a second device part disposed near the second end Eb with the heater 2 interposed therebetween. , Is divided into.
  • the first device portion of the twist mechanism 3 is disposed between the cooling unit 7 and the heater 2.
  • the tube transport mechanism 6 is a device portion that moves the processing tube 20 forward and backward along the axis C.
  • the tube transport mechanism 6 includes clampers 6A and 6B and a clamper driving unit 6C.
  • the clampers 6A and 6B are disposed to face each other with the axis C therebetween.
  • the clampers 6A and 6B are supported by a clamper driving unit 6C, which will be described later, in a state where the clampers 6A and 6B can advance and retreat in the facing direction.
  • the clampers 6 ⁇ / b> A and 6 ⁇ / b> B can grip the processing tube 20 on the outer peripheral surface 20 a by advancing toward the axis C.
  • the clampers 6A and 6B can grip the vicinity of the first end e1 of the processing tube 20.
  • the shape of the clampers 6 ⁇ / b> A and 6 ⁇ / b> B is not limited as long as the shape can grip the processing tube 20.
  • the clampers 6 ⁇ / b> A and 6 ⁇ / b> B have gripping grooves 6 a that circumscribe each of the outer peripheral surfaces 20 a at three locations. In the gripping groove 6a, at least a portion in contact with the outer peripheral surface 20a is made of a material that generates a frictional force that does not cause a slip with the processing tube 20 while the processing tube 20 is moved.
  • the clampers 6A and 6B can release the grip of the processing tube 20 by retreating in a direction away from the axis C. Furthermore, the clampers 6A and 6B are supported in a state in which the clampers 6A and 6B can move in a direction along the axis C by a clamper driving unit 6C described later. The clampers 6A and 6B can move in both the first direction f and the second direction b.
  • the clampers 6 ⁇ / b> A and 6 ⁇ / b> B transport the processing tube 20 by moving in the transporting direction along the axis C while holding the processing tube 20.
  • the clamper driving unit 6C is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the clampers 6A and 6B back and forth with respect to the axis C. Furthermore, the clamper driving unit 6C moves the clampers 6A and 6B along the axis C regardless of whether the clampers 6A and 6B are gripping the processing tube 20 or the clampers 6A and 6B are not gripping the processing tube 20. Can be made. As shown in FIG. 5, the clamper driving unit 6C is connected in a communicable state with a control unit 8 to be described later. The clamper driving unit 6C drives the clampers 6A and 6B according to a control signal from the control unit 8 described later.
  • the clamper driving unit 6C includes a first actuator that moves the clampers 6A and 6B back and forth with respect to the axis C, and a second actuator such as a moving stage that translates the clampers 6A and 6B along the axis C. .
  • the twist mechanism 3 shown in FIG. 4 is a device portion that rotates the processing tube 20 about the axis C in a state where a part of the processing tube 20 is fixed. As will be described later, the twist mechanism 3 forms a twist portion by rotating the processing tube 20 about the axis C in a state where a part of the processing tube 20 heated by the heater 2 is fixed.
  • the twist mechanism 3 includes clampers 5A and 5B (first gripping units), a clamper driving unit 5C, gripping rollers 4A, 4B and 4C (second gripping units), and a roller driving unit 4D (rotation driving unit).
  • the clampers 5A and 5B and the clamper driving unit 5C are the above-described device portions (first device portions).
  • the gripping rollers 4A, 4B, 4C, and the roller driving unit 4D are the above-described device parts (second device parts).
  • the clampers 5A and 5B are the same as the clampers 6A and 6B except that the arrangement positions in the direction along the axis C are different from the clampers 6A and 6B and the arrangement positions in the direction along the axis C are fixed. It has a configuration. The following description will focus on the differences between the clampers 5A and 5B and the clampers 6A and 6B.
  • the clampers 5 ⁇ / b> A and 5 ⁇ / b> B are disposed between the cooling unit 7 and the heater 2 described later in the direction along the axis C.
  • the clampers 5A and 5B are configured to be able to grip and release the processing tube 20 arranged coaxially with the axis C.
  • the shape of the clampers 5A and 5B is not particularly limited as long as the processing tube 20 can be gripped.
  • the clampers 5A and 5B have substantially the same configuration as the clampers 6A and 6B.
  • the clampers 5A and 5B are arranged to face each other with the axis C interposed therebetween.
  • the clampers 5A and 5B are supported in a state in which they can be advanced and retracted in the facing direction by a clamper driving unit 5C described later.
  • the clampers 5A and 5B have gripping grooves 5a circumscribing at three locations on the outer peripheral surface 20a.
  • the clampers 5A and 5B can prevent rotation around the axis C of the processing tube 20 at the gripping position in a state where the processing tube 20 is gripped.
  • the clampers 5A and 5B can release the grip of the processing tube 20 by retracting in a direction away from the axis C.
  • the clamper driving unit 5C is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the clampers 5A and 5B forward and backward with respect to the axis C. As shown in FIG. 5, the clamper driving unit 5C is connected in a communicable state with a control unit 8 to be described later. The clamper driving unit 5C drives the clampers 5A and 5B according to a control signal from the control unit 8 described later.
  • the clamper driving unit 5C includes a first actuator similar to the clamper driving unit 6C.
  • the gripping rollers 4 ⁇ / b> A, 4 ⁇ / b> B, and 4 ⁇ / b> C are disposed in parallel to the axis C, respectively.
  • the gripping rollers 4A, 4B, and 4C are supported in a state in which they can advance and retreat in a direction orthogonal to the axis C, respectively.
  • the gripping rollers 4A, 4B, and 4C are arranged along the axis at positions that divide the circumference into three equal parts in the circumferential direction around the axis C, and can move forward and backward with respect to the axis C.
  • each gripping roller 4A, 4B, 4C advances toward the axis C
  • the processing tube 20 is gripped on the axis C by each gripping roller 4A, 4B, 4C.
  • FIG. 7 when the gripping rollers 4A, 4B, and 4C are viewed from the second end portion Eb toward the first end portion Ea, the gripping rollers 4A, 4B, and 4C each have a roller center axis C A , C B, around the C C, is supported in a state that can be rotated clockwise in FIG.
  • the roller central axes C A , C B , and C C are parallel to the axis C.
  • At least one of the gripping rollers 4A, 4B, and 4C is rotationally driven around the roller central axis by the roller driving unit 4D.
  • the roller driving unit 4D When a plurality of rollers are rotationally driven among the gripping rollers 4A, 4B, and 4C, the respective rotations are synchronized with each other.
  • the roller driving unit 4D As an example, an example in which all of the gripping rollers 4A, 4B, and 4C are rotationally driven by the roller driving unit 4D will be described.
  • each gripping roller 4A, 4B, 4C has a friction that does not cause slippage with the outer peripheral surface 20a of the processing tube 20 when the processing tube 20 is gripped by each gripping roller 4A, 4B, 4C. It is configured to generate force. For this reason, when each gripping roller 4A, 4B, 4C rotates clockwise in the figure, the processing tube 20 gripped by each gripping roller 4A, 4B, 4C rotates counterclockwise in the figure.
  • the roller driving unit 4D is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the gripping rollers 4A, 4B, and 4C forward and backward with respect to the axis C. Furthermore, the roller drive unit 4D is transferred gripping rollers 4A, 4B, 4C each roller central axis C A, C B, to rotate around the C C, the gripping rollers 4A, 4B, the rotational driving force to 4C To do. As shown in FIG. 5, the roller driving unit 4D is connected to a control unit 8 described later in a state where communication is possible. The roller driving unit 4D drives the gripping rollers 4A, 4B, and 4C according to a control signal from the control unit 8 described later.
  • the roller driving unit 4D includes a third actuator that moves the gripping rollers 4A, 4B, and 4C back and forth with respect to the axis C, and the gripping rollers 4A, 4B, and 4C with the respective roller central axes C A , C B , and C C. And a rotation transmission mechanism.
  • the heater 2 partially heats the processing tube 20 in a part in the longitudinal direction of the processing tube 20.
  • the heater 2 is a heating source configured to supply heat energy to a heating region RH that surrounds the axis C between the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C.
  • the size in the radial direction of the heating region RH with respect to the axis C is a size that allows at least the processing tube 20 to pass through.
  • the length L T of the heating region R H along the axis C is less than or equal to the minimum value of the length of the twist portion 30B to be formed in the tube 30.
  • the temperature of the processing tube 20 in the heating region RH is set to a temperature at which twisting can be performed.
  • the temperature at which the twisting process can be performed means that the processing tube 20 can be twisted by applying an external force that twists the processing tube 20 to the processing tube 20, and even if the heating is stopped. This is the temperature at which the 20 deformed state is substantially maintained.
  • the temperature of the processing tube 20 in the heating region RH may be equal to or higher than the glass transition point of the material of the processing tube 20 and lower than the melting point.
  • the configuration of the heater 2 is not particularly limited as long as the above-described heating region RH can be formed.
  • the heater 2 may be configured by one or more heat generating portions formed in a cylindrical shape or a spiral shape surrounding the axis C.
  • the heater 2 may be configured by a plurality of heat generating portions that are arranged away from each other in the radial direction or the axial direction with respect to the axis C.
  • Specific examples of the heater 2 include, for example, a halogen heater, a near infrared heater, an electromagnetic heating heater, a resistance heating heater, a warm air heater, and the like.
  • the electromagnetic heater a configuration including an electromagnetic induction heating coil that heats metal by electromagnetic induction can be given.
  • the heater 2 may be composed of a heater of one kind of heating method, or a combination of heaters of a plurality of kinds of heating methods. Of the above, the heater 2 is particularly preferably a near infrared heater.
  • the near-infrared heater can form a heating spot including the processing tube 20 inside by irradiating the processing tube 20 with near-infrared rays from a plurality of directions, for example. For this reason, the processing tube 20 can be efficiently heated.
  • the near-infrared heater can heat the outer surface and the inside of the processing tube 20.
  • the near-infrared heater can heat the processing tube 20 with high uniformity and efficiency as compared with the case of heating by heat conduction on the outer surface or the inner surface of the processing tube 20.
  • the heater 2 is connected in a state where it can communicate with a control unit 8 described later.
  • the heater 2 is controlled to start and stop heating and a heating temperature in accordance with a control signal from the control unit 8 described later.
  • the cooling unit 7 is a device part that cools the processing tube 20 heated by the heater 2.
  • the configuration of the cooling unit 7 is not particularly limited as long as the processing tube 20 can be cooled to a temperature lower than the glass transition point of the material of the processing tube 20.
  • the cooling unit 7 may be configured such that the processing tube 20 is brought into contact with a coolant having a temperature lower than the glass transition point of the material of the processing tube 20.
  • the refrigerant used for such a cooling unit 7 may include at least one of a liquid and a gas.
  • the cooling unit 7 illustrated in FIG. 4 includes a liquid discharge nozzle 7A, a gas discharge nozzle 7B, and a liquid discharge unit 7C.
  • the liquid discharge nozzle 7A injects the liquid refrigerant onto the processing tube 20 disposed on the axis C.
  • the liquid refrigerant is supplied from a liquid refrigerant supply unit (not shown) to the liquid discharge nozzle 7A through a pipe.
  • a liquid refrigerant supply unit not shown
  • water may be used as the liquid refrigerant.
  • the liquid refrigerant may be discharged as a liquid, or may be discharged in the form of droplets. When the liquid refrigerant is formed into droplets, the liquid refrigerant is atomized, so that an injection gas may be mixed with the liquid refrigerant.
  • liquid discharge nozzle 7A a spray nozzle that discharges the liquid refrigerant in a mist form together with a gas such as air may be used.
  • the gas mixed with the liquid refrigerant also has a function as a refrigerant.
  • the liquid refrigerant since the liquid refrigerant is discharged in the form of a mist, vaporization easily occurs due to contact with the processing tube 20. Since the liquid refrigerant droplets are vaporized in contact with the processing tube 20, the heat of vaporization is removed from the processing tube 20, so that the cooling efficiency of the processing tube 20 is improved.
  • the gas discharge nozzle 7B injects the gas refrigerant onto the processing tube 20 arranged on the axis C.
  • the gas refrigerant is supplied from a gas refrigerant supply unit (not shown) to the gas discharge nozzle 7B through a pipe.
  • a gas refrigerant supply unit not shown
  • air may be used as the gas refrigerant.
  • the gas refrigerant is more preferably a dry gas in order to promote drying of the liquid refrigerant adhering to the surface of the processing tube 20 in contact with the processing tube 20.
  • 4 is a schematic diagram, the liquid discharge nozzle 7A and the gas discharge nozzle 7B are drawn only on the upper side of the processing tube 20.
  • liquid discharge nozzle 7 ⁇ / b> A and the gas discharge nozzle 7 ⁇ / b> B may be arranged in an appropriate number at appropriate positions so that the cooling in the circumferential direction of the processing tube 20 is not biased.
  • a plurality of liquid discharge nozzles 7A and gas discharge nozzles 7B may be provided and surround the axis C.
  • the liquid discharge part 7C is an apparatus part that collects the liquid refrigerant discharged from the liquid discharge nozzle 7A.
  • the liquid discharge unit 7C includes a storage container that stores the liquid refrigerant, and a drain that discharges the liquid refrigerant from the storage container.
  • the liquid refrigerant discharged from the drain may be reused after recovery or may be subjected to wastewater treatment.
  • the liquid discharge part 7C is disposed at a position where the liquid refrigerant discharged from the liquid discharge nozzle 7A can be recovered.
  • the liquid discharge part 7C is disposed at a position facing at least the liquid discharge nozzle 7A disposed above the axis C.
  • the liquid discharge portion 7C is provided so as to face the liquid discharge nozzle 7A and the gas discharge nozzle 7B with the axis C interposed therebetween. For this reason, after the liquid discharge part 7C adheres to the processing tube 20, the liquid refrigerant separated from the processing tube 20 can be recovered by blowing the gas refrigerant from the gas discharge nozzle 7B.
  • a region where the liquid refrigerant discharged from the liquid discharge nozzle 7A and the gas refrigerant discharged from the gas discharge nozzle 7B are distributed constitutes a cooling region RC .
  • the diameter direction of the cooling area R C with respect to the axis C is large enough to be passed through the inside of at least the working tube 20.
  • the length of the cooling region RC is set to an appropriate value according to the passing speed of the processing tube 20 and the cooling performance in the cooling unit 7.
  • An operation unit 9 illustrated in FIG. 5 is a device part that transmits an operation input from the operator to the control unit 8.
  • the operation unit 9 includes appropriate operation input means such as an operation lever, an operation button, a switch, a keyboard, a mouse, and an operation panel.
  • the operation unit 9 is connected to a control unit 8 to be described later in a communicable state.
  • the control unit 8 is a device part that controls the operation of the tube twisting device 1 based on an operation input from the operation unit 9.
  • the control unit 8 is connected to the operation unit 9, the heater 2, the cooling unit 7, the roller driving unit 4D, and the clamper driving units 5C and 6C in a communicable state.
  • the control unit 8 has an automatic mode and a manual mode as control modes.
  • the automatic mode is a control mode in which the controller 8 automatically controls the operation of the tube twisting device 1 when an operation input for starting machining is performed after the operator inputs information necessary for control.
  • the manual mode is a control mode in which part or all of the below-described operations executed in the automatic mode are executed based on the operator's operation input.
  • control unit 8 includes a computer including a CPU, a memory, an input / output interface, an external storage device, and the like.
  • the control unit 8 performs later-described control by executing a control program stored in the memory.
  • FIG. 8 is a flowchart showing an example of the medical tube twisting method according to the embodiment of the present invention.
  • steps S1 to S11 shown in FIG. 8 may be performed along the flow shown in FIG.
  • a core metal is inserted into the processing tube 20.
  • a processing tube 20 cut to an appropriate length and a cored bar 10 (see FIG. 4) to be inserted into the processing tube 20 are prepared.
  • the cored bar 10 is a linear member that reinforces the processing tube 20 so that the processing tube 20 is not bent to an extent that hinders twisting processing or buckles during conveyance.
  • the cored bar 10 is longer than the processing tube 20.
  • the cored bar 10 also extends straight in order to keep the processing tube 20 straight during the twisting process.
  • the cored bar 10 is configured in a shape that can be fitted in a state in which the guidewire lumen 30b of the processing tube 20 can slide in the axial direction and the circumferential direction.
  • a wire having an outer diameter slightly smaller than the inner diameter of the guide wire lumen 30b is used.
  • a metal or resin material having heat resistance against the heating temperature of the processing tube 20 is used.
  • stainless steel, PEEK (polyetheretherketone), or the like may be used as the material of the cored bar 10.
  • Step S1 is completed. Step S1 can be omitted if, for example, the processing tube 20 in which the core 10 is passed through the guide wire lumen 20b is prepared in advance.
  • Step S2 is performed after step S1.
  • step S ⁇ b> 2 the processing tube 20 is set in the tube twisting device 1.
  • the processing tube 20 into which the core metal 10 is inserted in step S1 is set in the tube twisting device 1 together with the core metal 10 as shown in FIG.
  • the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B, and 4C are in a gripping release state.
  • the clampers 6A and 6B are located closest to the second end Eb in the movement range in the direction along the axis C.
  • the operator inserts the processing tube 20 through which the core bar 10 is passed into the tube twisting device 1 along the axis C from the first end e1.
  • the operator moves the processing tube 20 so that the vicinity of the first end e1 of the processing tube 20 enters between the clampers 6A and 6B.
  • the processing tube 20 is reinforced by the cored bar 10, it is substantially straight except for deflection due to its own weight.
  • the operator performs an operation input for bringing the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B, and 4C into the gripping state through the operation unit 9, respectively.
  • the control unit 8 drives the clamper so that the processing tube 20 is gripped by the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B and 4C.
  • the units 6C and 5C and the roller driving unit 4D are controlled.
  • the processing tube 20 is gripped by the clampers 6A and 6B in the vicinity of the first end e1.
  • the processing tube 20 is gripped between the cooling unit 7 and the heater 2 by the clampers 5A and 5B.
  • the processing tube 20 is gripped by the gripping rollers 4A, 4B, 4C.
  • the processing tube 20 is set in the tube twisting apparatus 1 with the central axis O being coaxial with the axis C. This is the end of step S2.
  • Step S3 is performed after step S2.
  • the number of times N of processing of the twisted portion 30B is set.
  • the processing tube 20 is twisted at a portion disposed in the heating region RH . Therefore, the twisting portion 30B length L B is longer than the length L T along the axis C of the heating region R H is, multiple twist processing is performed.
  • the kth twist portion forming region and the k + 1 th twist portion forming region (where k 1,..., N ⁇ 1) adjacent to each other overlap each other with a width L O (where 0 ⁇ L O ⁇ L T ).
  • a width L O (where 0 ⁇ L O ⁇ L T ).
  • the width L O may be 50% or more of the length L T along the axis C of the heating region R H.
  • the twist portion region TB is a region corresponding to the twist portion 30 ⁇ / b > B in the tube 30.
  • Between the twisting area T B and the first end e1 is a region corresponding to the non-twist portion 30A of the tube 30.
  • the lengths along the central axis O of the non-twisted portions 30 ⁇ / b > A and 30 ⁇ / b > C in the processing tube 20 are L A and LB as in the tube 30.
  • the length L B 'is along the central axis O of the torsion region T B, after twisting process, is the length that matches the length L B of the twisting portion 30B.
  • Such a length L B ′ is determined in advance according to, for example, the length L B , the material of the processing tube 20, the twist amount of twist processing, the outer diameter of the twist portion, and the like.
  • the processing number N may be set in the control unit 8 by, for example, an operator input through the operation unit 9.
  • the number of times of processing N is, for example, information such as the length L B ′ of the processing tube 20 input to the operation unit 9 by the operator, and information on the lengths L T and L O stored in advance in the control unit 8. Based on the above, it may be calculated by the control unit 8. When the number of times of machining N is set, step S3 is finished.
  • Step S4 is performed after step S3.
  • Step S4 is started when the operator performs an operation input for operating the operation unit 9 to start twist processing.
  • the control unit 8 starts an initialization operation for starting the twisting process.
  • the control unit 8 sets a counter n for controlling the number of times of twist processing to 0.
  • step S4 ends.
  • Step S5 is performed after step S4.
  • the tube twisting device 1 performs the operations of steps S6 to S10 under the control of the control unit 8.
  • step S6 the n-th twist portion forming region T n in the processing tube 20 is arranged in the heating region RH .
  • the control unit 8 controls to change the gripping state to the gripping release state.
  • a control signal is sent to the clamper driving unit 5C, the roller driving unit 4D, and the clampers 5A, 5B and the gripping roller 4A 4B and 4C are controlled so as to change to the grip release state.
  • the clamper driving unit 5C and the roller driving unit 4D bring the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C into the grip release state, respectively.
  • the control unit 8 sends a control signal to the damper driving unit 6C, move the working tube 20 to a position where twist portion formation region T n of the n is included in the heating region R H Control to do.
  • the clamper driving unit 6C a position twist portion formation region T n of the n is included in the heating region R H, the processing tube 20 is moved (see FIG. 4). Movement direction and the movement amount of the processing tube 20 based on the position information of the twist portion formation region T n of the n in step S5, determined by the control unit 8.
  • control unit 8 sends control signals to the clamper driving unit 5C and the roller driving unit 4D to control the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C to be in the gripping state.
  • the clamper driving unit 5C and the roller driving unit 4D hold the clampers 5A and 5B and the holding rollers 4A, 4B, and 4C, respectively.
  • Step S6 is complete
  • Step S6 includes a first operation in which the processing tube 20 is moved by the tube transport mechanism 6 and a part of the processing tube 20 (the nth twist portion formation region T n ) is disposed in the heating region RH. It is.
  • Step S7 is performed after step S6.
  • the processing tube 20 in the nth twist portion forming region Tn is heated.
  • the control unit 8 controls the heating of the heater 2 by sending a control signal for starting heating to the heater 2.
  • the heater 2 keeps the temperature of the processing tube 20 in the heating region RH at a temperature at which twisting can be performed.
  • the temperature of the processing tube 20 in the heating region RH may be measured by an appropriate temperature sensor.
  • the measurement of the temperature of the processing tube 20 may be omitted. .
  • step S7 heating by the heater 2 is stopped at a timing at which no trouble is caused in the twisting process in step S8 described later. Thereby, step S7 is completed.
  • Step S7 may be ended before the start of step S8 if there is no problem with the twisting process in step S8 described later.
  • step S7 is a step. It may be ended before the start of S8. Step S7 may be continued until the twist processing is finished in step S8 described later.
  • the temperature of the processing tube 20 may not be set to a temperature that allows for a margin of temperature decrease after the heating is stopped. For this reason, you may set the temperature of the tube 20 for a process in step S7 to a lower temperature among the temperature ranges which can perform a twist process.
  • Step S7 includes a second operation in which a portion of the processing tube 20 disposed in the heating region RH is heated by the heater 2.
  • step S7 when the processing tube 20 reaches a temperature at which twisting can be performed, step S8 is performed.
  • step S8 twisting portion t n of the n is formed in the twist portion formation region T n of the n.
  • the control unit 8 sends a control signal to the roller driving unit 4D to control the gripping rollers 4A, 4B, and 4C to rotate by a predetermined amount.
  • the roller driving unit 4D is gripped rollers 4A, 4B, 4C each roller central axis C A, C B, by a predetermined amount of rotation in the same direction around the C C.
  • the processing tube 20 gripped by the gripping rollers 4A, 4B, and 4C rotates in the direction opposite to the rotation direction of the gripping rollers 4A, 4B, and 4C.
  • the processing tube 20 rotates about the axis C that is the gripping center of the gripping rollers 4A, 4B, and 4C.
  • the cored bar 10 is passed through a guide wire lumen 20 b coaxial with the axis C in a state in which the cored bar 10 can slide in the circumferential direction. For this reason, the processing tube 20 slides on the surface of the cored bar 10 and rotates in the circumferential direction.
  • the gripping rollers 4A, 4B, and 4C continue to grip the processing tube 20 in a state where the rotation is stopped.
  • a twist about the axis C is added to the portion of the processing tube 20 between the first gripping position by the clampers 5A, 5B and the second gripping position by the gripping rollers 4A, 4B, 4C. It is done.
  • the inner first lumen 20c and the second lumen 20d are deformed so as to draw a spiral.
  • the twist portion formation region T n of the n, twisting portion t n of the n is formed.
  • the processing tube 20 located in the heating region RH is heated to a temperature higher than the glass transition point, the processing tube 20 is deformed inelastically, and the state before deformation is released even when the external force of the twist is released. Do not return to.
  • the deformation of the processing tube 20 is elastic between the heating region RH and the first gripping position and between the heating region RH and the second gripping position. In this case, when the external force of the twist is released, the processing tube 20 returns to the state before the deformation.
  • the opposite ends of the heating region R H undergoes a temperature drop in the end portions, the heat radiation and proceeding by heat conduction to the working tube 20 located outside the heating region R H, the effect of.
  • the temperature of the processing tube 20 at the both end portions of the heating region R H is lower than the temperature of the central portion of the heating region R H. For this reason, the shape of the processing tube 20 at both ends of the heating region RH tends to return to the state before the deformation to some extent when the external force of the twist processing is released. Therefore, the first lumen 20c of the twisting unit t n of the n, helical shape of the second lumen 20d, except for both end portions of the twist portion formation region T n of the n, constant helix shape in accordance with the twist amount It has become. However, the change in helical shape at the second end e2 side of the end portion in the twist portion formation region T n of the n is modified during twisting processing of the (n + 1) of the twist portion formation region T n as described later.
  • step S8 the twisting process is substantially terminated with the rotation of the gripping rollers 4A, 4B, and 4C stopped.
  • the gripping state by the gripping rollers 4 ⁇ / b> A, 4 ⁇ / b> B, 4 ⁇ / b> C may be maintained until a certain time has elapsed after the rotation of the gripping rollers 4 ⁇ / b> A, 4 ⁇ / b> B, 4 ⁇ / b> C is stopped.
  • the twisting process includes gripping the processing tube 20 by the gripping rollers 4A, 4B, and 4C for a predetermined time.
  • step S8 is complete
  • Step S8 includes a third operation in which the twist mechanism 3 forms the nth twist portion tn (twist portion).
  • step S7 is performed after the stop of rotation of the gripping rollers 4A, 4B, and 4C in step S8, so that the temperature of the processing tube 20 can be quickly reduced to a temperature at which twisting can be performed. It is preferable to end so as to decrease. In this case, since the processing tube 20 is cured by natural heat dissipation, the deformed state due to the twisting process can be quickly fixed.
  • step S8 when the gripping state is maintained for a certain time after the rotation of the gripping rollers 4A, 4B, and 4C is stopped, the temperature of the processing tube 20 is lowered to a temperature that can be twisted during the certain time. It is more preferable.
  • Steps S9 and S10 are performed after step S8.
  • step S9 twisting portion t n of the n moves to the outside of the heating region R H.
  • the external heating region R H which means the low temperature of the external than the heating area R H.
  • the n-th twist part t n moves so as to pass through the cooling region RC in the cooling part 7.
  • the movement operation in step S9 is divided into a first movement operation and a second movement operation. In the first movement operation, the end portion near the first end portion Ea in the n- th twist portion t n moves from the heating region RH to the position of the end portion near the second end portion Eb in the cooling region RC .
  • step S9 twisting portion t n of the n which has been heated by the heater 2, the heating region R H, to move to the low temperature of the external than the heating area R H, the cooling of the twisting portion t n of the n
  • the n-th twist part t n is cured. Therefore, in step S9, so that the step S10 of twisting unit t n of the n-th cured are performed in parallel.
  • step S10 the first curing and the second curing are performed corresponding to the first moving operation and the second moving operation in step S9.
  • the first curing since the heat radiation proceeds from the n-th twist portion t n while the first movement operation is performed, the curing of the n-th twist portion t n proceeds.
  • the second curing while the second moving operation is performed, the n-th twisted portion t n is cured by cooling by the cooling unit 7 described later.
  • step S9 includes an operation of moving the n-th twist portion t n to the outside of the heating region RH (a fourth operation in the medical tube twisting method of the present embodiment).
  • Step S10 includes an operation of curing the n-th twist portion t n outside the heating region RH (a fifth operation in the medical tube twisting method of the present embodiment).
  • the tube twisting device 1 in the tube twisting device 1, an operation of moving the n-th twisted portion t n in the first direction f by the tube transport mechanism 6 and arranging it in the cooling region RC (fourth operation in the tube twisting device). ) Is performed.
  • the tube twisting device 1 includes an operation (fifth operation in the tube twisting device) for curing the nth twisted portion t n arranged in the cooling region RC by the cooling unit 7.
  • the movement of the nth twist portion t n is controlled based on the positional information of the nth twist portion formation region T n .
  • the control unit 8 sends a control signal to the clamper driving unit 6C of the tube transport mechanism 6 so as to perform the first moving operation and the second moving operation.
  • the control unit 8 sends a control signal to the cooling unit 7 until the first moving operation is completed so that the liquid refrigerant 7a is discharged from the liquid discharge nozzle 7A and the gas refrigerant 7b is discharged from the gas discharge nozzle 7B. Control. Thereby, the liquid refrigerant 7a and the gas refrigerant 7b are discharged toward the axis C by the cooling unit 7 (see FIG. 11).
  • a cooling region RC in which the liquid refrigerant 7a and the gas refrigerant 7b are present is formed, respectively.
  • FIG. 11 shows a state in which the entire nth twist portion formation region Tn is disposed inside the cooling region RC .
  • the processing tube 20 in the twist portion formation region T n of the n sequentially contacting the liquid refrigerant 7a, the gaseous refrigerant 7b.
  • the processing tube 20 in the twist portion formation region T n of the n-th, by liquid refrigerant 7a initially, then by the gas refrigerant 7b, are respectively cooled.
  • the gas refrigerant 7b has a cooling effect due to the temperature of the gas refrigerant 7b itself and a cooling effect that vaporizes the liquid refrigerant 7a adhering to the surface of the processing tube 20 to take away the heat of vaporization. Furthermore, the gas refrigerant 7b also has an action of drying the surface of the processing tube 20 by promoting vaporization of the liquid refrigerant 7a attached to the surface of the processing tube 20. In this manner, the cooling of the processing tube 20 proceeds in the cooling region RC , and thus the nth twist portion t n formed in the nth twist portion formation region Tn is cured. As a result, the shape of the twisting portion t n of the n-th stabilized.
  • Control unit 8 after the twisting portion formation region T n of the n passes through the cooling area R C, performs control so as to stop the second moving operation. Thus, in a state where the twist portion formation region T n of the n is moved in the first end Ea nearer cooling area R C, the processing tube 20 is stopped. Thus, steps S9 and S10 are completed.
  • Step S11 is performed after step S9 and S10.
  • step S11 it is determined whether or not the value of the counter n is equal to or greater than the number of machining times N. Specifically, the determination is performed by the control unit 8 comparing the value of the counter n with the number of times of machining N. If the counter n is less than the processing number N, the process proceeds to step S5. Accordingly, steps S5 to S11 are repeated in the same manner as described above. If the counter n is equal to or greater than the number of times of processing N, the control unit 8 ends the processing of the processing tube 20 by the tube twisting device 1. Thereby, the tube 30 is manufactured.
  • n + 1 is used as it is for easy comparison with the state before the transition.
  • step S6 since the twist mechanism 3 has already been released from the gripping state in step S10, the processing tube 20 moves immediately. Specifically, the control unit 8 sends a control signal to the clamper driving unit 6C to control the processing tube 20 to move to a position where the (n + 1) th twist portion forming region Tn + 1 is included in the heating region RH. To do.
  • the processing tube 20 is moved in the second direction b by the clamper driving unit 6C, and the (n + 1) th twist portion forming region Tn + 1 is moved to a position included in the heating region RH (see FIG. 12). ).
  • the end near the second end Eb of the n-th twist portion formation region Tn enters the heating region RH having the same length as the width L O.
  • the amount of movement of the processing tube 20 is obtained by the control unit 8 based on the position information in step S11 of the ( n + 1) th twist portion forming region Tn + 1 .
  • the control unit 8 controls the twist mechanism 3 to be in the gripping state as described above.
  • the clampers 5A and 5B are gripped by the clamper driving unit 5C, and the gripping rollers 4A, 4B and 4C are gripped by the roller driving unit 4D.
  • step S6 after the second time, the tube transport mechanism 6 moves the processing tube 20 in the second direction b, so that the nth twist portion arranged in the cooling region RC in the third operation is performed. And a sixth operation of moving the (n + 1) th twist portion forming region adjacent in the second direction b to the heating region RH .
  • step S7 the processing tube 20 in the (n + 1) th twist portion forming region Tn + 1 is heated and stopped as described above.
  • step S8 when the processing tube 20 reaches a temperature at which twisting can be performed, step S8 is performed.
  • step S8 the control unit 8 sends a control signal to the roller driving unit 4D to control the gripping rollers 4A, 4B, and 4C to rotate by a predetermined amount.
  • the axis C is placed at a portion of the processing tube 20 between the first holding position by the clampers 5A, 5B and the second holding position by the holding rollers 4A, 4B, 4C. A central twist is added.
  • the (n + 1) th twist portion t n + 1 is formed in the (n + 1) th twist portion formation region T n + 1 .
  • the n-th twist portion forming region T n is also deformed by being twisted at a portion closer to the second end portion Eb than the first gripping position.
  • the deformation due to the twist processing remains only in the range of the ( n + 1) th twist portion formation region T n + 1 .
  • the n-th twist portion is formed by undergoing another twist processing. Similar helical shape and the central portion of the region T n are formed.
  • steps S9 and S10 operations similar to those described above are performed except that the ( n + 1) -th twist portion formation region T n + 1 is to be moved and cured. As described above, steps S5 to S10 are repeated as many times as necessary, so that the range of the length L B ′ of the processing tube 20 is sequentially twisted.
  • steps S5 to S11 includes a seventh operation in which the second operation to the sixth operation are repeated one or more times in this order after the first operation.
  • the eighth operation of performing the operations in this order is controlled. In the case of the manual mode, the above-described eighth operation is performed by an operation input from the operator.
  • the processing tube 20 is removed from the tube twisting apparatus 1 and the cored bar 10 is removed. Thereby, the tube 30 which has the twist part 30B as shown in FIG. 1 is manufactured.
  • the twist part 30B was demonstrated in the example in the case of forming in one area
  • a medical tube having twisted portions at a plurality of locations is manufactured in substantially the same manner as described above.
  • position information of all twisted portion forming regions is input to the control unit 8 in advance.
  • the number of times of machining N is set for each twisted part according to the length of the twisted part.
  • the control unit 8 controls one twist unit to form the twist unit based on the above-described flow. When one twist part is formed, the control part 8 repeats the flow after step S3 for every other twist part.
  • the tube 30 bends according to the shape of the insertion path.
  • a flexible tube such as the tube 30 is bent
  • the tube is compressed on the bending inner side (hereinafter referred to as an inner region) with respect to the neutral axis of the bending, so that the path of the internal conduit is shortened.
  • the outer region since the tube is extended outside the bending neutral axis (hereinafter referred to as the outer region), the path of the internal conduit is extended. For this reason, when a pipe line parallel to the axis C is formed inside the tube 30, the path length when the tube 30 is bent changes depending on whether the tube 30 passes through the inner region or the outer region.
  • Such a twisted portion 30B of the tube 30 is formed by the medical tube twisting method of the present embodiment using the tube twisting device 1, whereby the shape accuracy and the dimensional accuracy are improved.
  • the processing tube 20 being twisted is gripped at a first gripping position, a second gripping position, and the like outside the heating region RH . For this reason, the processing tube 20 is not plastically deformed at the first gripping position and the second gripping position during the twist processing. Further, since the rotational driving force for twisting is applied by the second gripping position, the external force due to the rotational driving does not cause plastic deformation of the processing tube 20 at the second gripping position. Thus, in this embodiment, there is no member that contacts the twisted portion forming region during the twisting process.
  • the twisted portion forming region in the softened state is maintained in a non-contact state, so that the shape accuracy and dimensional accuracy of the outer shape by twisting are improved.
  • processing is performed in a state where the twisted portion forming region of the processing tube 20 is supported coaxially with the axis C between the first gripping position and the second gripping position. For this reason, even if a twisting force is applied by the gripping rollers 4A, 4B, 4C, the processing tube 20 does not deviate from the axis C, so that derailment during processing can be prevented.
  • the cored bar 10 since the cored bar 10 is passed through the processing tube 20, a substantially straight state is maintained by the cored bar 10 during both heating and non-heating. For this reason, manufacturing errors caused by the bending of the processing tube 20 are suppressed.
  • the Example of the tube 30 manufactured by the medical tube twisting method of this embodiment is demonstrated as contrasted with a comparative example.
  • the tube 30 of the example was manufactured using the processing tube 20 having an outer diameter of 3.34 mm and a length of 2200 mm.
  • a nylon elastomer glass transition point: 353K
  • the inner diameters of the guide wire lumen 30b, the first lumen 30c, and the second lumen 30d were 1.00 mm, 0.70 mm, and 0.70 mm, respectively.
  • the target value of the twist pitch in the twist portion 30B was set to 283 mm / round.
  • the number of times of processing N was set to 40 times.
  • the temperature of the processing tube 20 in the heating region RH was set to 373K.
  • 10 ° C. water was used as the liquid refrigerant
  • 20 ° C. air was used as the gas refrigerant.
  • the tube of the comparative example was manufactured by a conventional twisting device as disclosed in Patent Document 1. That is, a processing tube having the same shape as the processing tube 20 was extruded and twisted by an oblique roller before the processing tube was cured. The tube with the twist was cooled and cured.
  • the tube of the comparative example was manufactured with the same material as the processing tube 20 of the example.
  • the outer diameter of the non-twisted tube, the position of the twisted portion, and the target value of the length of the tube of the comparative example were the same as those in the above example. However, the target value of the twist pitch is slightly different as will be described later.
  • the average value of the twist pitch of the tube 30 of the example was 282.7 mm / round with respect to the target value of 283 mm / round.
  • the error relative to the target value was -0.1%.
  • the standard deviation of the measured value of the twist pitch of the tube 30 of the example was 0.58 mm / round, and the coefficient of variation was 0.0020.
  • the coefficient of variation was calculated so that it could be compared with measured values of comparative examples having different target values.
  • the twist pitch of the tube of the comparative example was 303.3 mm / round with respect to the target value of 300 mm / round.
  • the error relative to the target value was + 1.1%.
  • the error of the average value with respect to the target value was larger in the comparative example than in the example.
  • the standard deviation of the measured value of the twist pitch of the tube of the comparative example was 2.89 mm / round, and the coefficient of variation was 0.0095.
  • the variation in the measured values of the examples was much smaller than that of the comparative example, both in terms of standard deviation and in terms of coefficient of variation.
  • the outer diameter of the twist portion of the tube 30 of the example was 3.343 mm with respect to the target value of 3.35 mm, and was close to the target value.
  • the standard deviation of the measured value of the outer diameter of the twist portion of the tube 30 of the example was 0.006 mm, and the coefficient of variation was 0.0017.
  • the standard deviation of the measured value of the outer diameter of the twist portion of the tube of the comparative example was 0.015 mm, and the coefficient of variation was 0.0045.
  • the variation in the measured values of the examples was much smaller than that of the comparative example, both in terms of standard deviation and in terms of coefficient of variation.
  • this embodiment may be different from the comparative example in that the twisting process is performed without the roller coming into contact with the softened tube.
  • the configuration of the main part of the tube twisting device 1 has been described.
  • an appropriate device portion may be added as necessary.
  • members such as a support roller and a conveyance guide that support the processing tube 20 being processed may be added.
  • the tube transport mechanism 6 may be configured to grip a plurality of locations other than the vicinity of the first end e1 of the processing tube 20 or hold the transport.
  • the cooling unit 7 of the tube twisting device 1 includes the liquid discharge nozzle 7A and the gas discharge nozzle 7B
  • the cooling unit 7 of the tube twisting device 1 may include only one of the liquid discharge nozzle 7A and the gas discharge nozzle 7B.
  • one type of discharge nozzle that discharges a mixed refrigerant in which a liquid refrigerant and a gas refrigerant are mixed may be used.
  • the cooling unit 7 may be omitted when the twisted part is rapidly cured by only natural heat radiation outside the heating region RH .
  • clampers 5A, 5B, 6A, and 6B are used for a part of the twist mechanism 3 and the tube transport mechanism 6 .
  • these clampers are not limited to a configuration composed of a pair of members opposed in one direction.
  • these clampers may be configured with a three-claw chuck or the like.
  • the twisting mechanism includes the first gripping unit, the second gripping unit, and the rotation driving unit, and the rotation driving unit is described as an example in the case of rotationally driving the second gripping unit.
  • the rotation drive unit only needs to be able to relatively rotate the first gripping unit and the second gripping unit so that the medical tube between the first gripping unit and the second gripping unit is twisted.
  • the relative rotation necessary for the twisting process may be performed by putting the clampers 6A and 6B in the gripping release state and rotating the first gripping part during the twisting process.
  • the present invention can be widely applied to a medical tube twisting apparatus and a medical tube twisting method, and can improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction. .
  • Tube twist device (medical tube twist device) 2 Heater 3 Twist mechanism 4A, 4B, 4C Gripping roller (second gripping part) 4D roller drive (rotary drive) 5a Gripping grooves 5A, 5B Clamper (first gripping part) 5C, 6C Clamper drive unit 6 Tube transport mechanism 6A, 6B Clamper 7 Cooling unit 7a Liquid refrigerant 7b Gas refrigerant 8 Control unit 10 Core 20 Processing tube (medical tube) 20b, 30b Guide wire lumens 20c, 30c First lumen 20d, 30d Second lumen 30 Tube (medical tube) 30A, 30C Non-twisted portion 30B Twisted portion C Axis e1, E1, Ea First end e2, E2, Eb Second end f First direction b Second direction O Central axis R C Cooling region RH Heating use region T B twisting region t n twist portion formation region of the twisting section T n the n-th of the n

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

This tube twisting device (1) is provided with: a heater (2) for partially heating a tube (20) to be processed in a heating region (RH); a twisting mechanism (3) for rotating the tube (20) to be processed about a center axis line (O) extending in the longitudinal direction of the tube (20) to be processed to form a twisted portion in the tube (20) to be processed having been heated by the heater (2); and a tube conveyance mechanism (6) for conveying the twisted portion to the outside of the heating region (RH).

Description

医療用チューブひねり装置および医療用チューブひねり方法Medical tube twisting device and medical tube twisting method
 本発明は、医療用チューブひねり装置および医療用チューブひねり方法に関する。
 本願は、2017年2月15日に、日本に出願された特願2017-025982号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a medical tube twisting apparatus and a medical tube twisting method.
This application claims priority based on Japanese Patent Application No. 2017-025982 filed in Japan on February 15, 2017, the contents of which are incorporated herein by reference.
 カテーテルなどの医療用チューブにおいて、内部に形成された独立管腔(ルーメン)を螺旋状に形成することが知られている。例えば、特許文献1には、鉗子などの処置具が通される医療用チューブにおいて、処置具を内視鏡の視軸に対して一定の偏位角を保って外側に開く角度で術野に突出させる目的で、大径のチューブの内部に螺旋状に小径のチューブ(独立管腔)を設けたチューブ体が記載されている。
 特許文献1においては、このチューブ体は、押出成形後、冷却途中のチューブ管を引取機によって回転させながら引き取ることによって製造される。
In a medical tube such as a catheter, it is known that an independent lumen (lumen) formed inside is formed in a spiral shape. For example, in Patent Document 1, in a medical tube through which a treatment tool such as forceps is passed, the treatment tool is opened to the operation field at an angle that opens outward while maintaining a certain deflection angle with respect to the visual axis of the endoscope. For the purpose of projecting, a tube body is described in which a small-diameter tube (independent lumen) is spirally provided inside a large-diameter tube.
In Patent Document 1, this tube body is manufactured by pulling out a tube tube that is being cooled after being extruded and rotating it with a puller.
特許第5917819号公報Japanese Patent No. 5917819
 しかしながら、上記のような従来技術には、以下のような問題がある。
 特許文献1に記載の技術によれば、押出成形後の軟弱なチューブ管が、引き取り方向に斜交した回転軸を有する回転体で回転トルクを与えながら引き取られる。このため、硬化していない軟弱なチューブ管に、回転体と接触した状態で、ひねりが加えられる。
 このため、特許文献1に記載の技術では、押出成形後の軟弱なチューブ管が回転体によって周方向に外力を受け続けるため、外形の形状および外形の寸法精度がばらつきやすい。さらに、このような外力を受けることによって、チューブ管が引き取り方向からずれやすくなり、形状の安定性が低下する。チューブ管のずれが大きい場合には、チューブ管が脱線して、製造が中断されてしまう場合もある。
 さらに、特許文献1に記載の技術では、回転体はチューブ管を引き取るローラーも兼ねているため、チューブ管における小径のチューブの一部のみを螺旋状に形成することは困難である。
However, the conventional techniques as described above have the following problems.
According to the technique described in Patent Document 1, a soft tube tube after extrusion molding is taken up while applying a rotational torque by a rotating body having a rotating shaft that is oblique in the take-up direction. For this reason, a twist is applied to the soft tube that has not been cured, in contact with the rotating body.
For this reason, in the technique described in Patent Document 1, since the soft tube tube after extrusion continues to receive external force in the circumferential direction by the rotating body, the shape of the outer shape and the dimensional accuracy of the outer shape tend to vary. Furthermore, by receiving such an external force, the tube tube is easily displaced from the take-up direction, and the stability of the shape is lowered. When the displacement of the tube tube is large, the tube tube may be derailed and the production may be interrupted.
Furthermore, in the technique described in Patent Document 1, since the rotating body also serves as a roller for taking up the tube tube, it is difficult to form only a part of a small-diameter tube in the tube tube in a spiral shape.
 本発明は、上記のような問題に鑑みてなされたものであり、長手方向の少なくとも一部において螺旋状のルーメンが形成された医療用チューブの形状精度および寸法精度を向上することができる医療用チューブひねり装置および医療用チューブひねり方法を提供することを目的とする。 The present invention has been made in view of the above problems, and can improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction. An object of the present invention is to provide a tube twisting device and a medical tube twisting method.
 上記の課題を解決するために、本発明の第1の態様の医療用チューブひねり装置は、加熱用領域において医療用チューブを部分的に加熱するヒーターと、前記医療用チューブの長手方向に延びる軸線の回りに前記医療用チューブを回転することによって、前記ヒーターによって加熱された前記医療用チューブにひねり部を形成するひねり機構と、前記ひねり部を、前記加熱用領域の外部に移動するチューブ搬送機構と、を備える。 In order to solve the above problems, a medical tube twisting device according to a first aspect of the present invention includes a heater for partially heating a medical tube in a heating region, and an axis extending in the longitudinal direction of the medical tube. A twist mechanism that forms a twist portion in the medical tube heated by the heater by rotating the medical tube around the tube, and a tube transport mechanism that moves the twist portion to the outside of the heating region And comprising.
 上記医療用チューブひねり装置は、前記加熱用領域の外部にある冷却用領域において前記ひねり部を冷却する冷却部をさらに備え、前記チューブ搬送機構は、前記ひねり部を、前記加熱用領域から前記冷却用領域に移動してもよい。 The medical tube twisting device further includes a cooling unit that cools the twisted part in a cooling region outside the heating region, and the tube transport mechanism moves the twisting unit from the heating region to the cooling region. You may move to the work area.
 上記医療用チューブひねり装置において、前記チューブ搬送機構は、前記医療用チューブの搬送方向を、前記軸線に沿う第1の方向および前記第1の方向と反対の第2の方向のいずれかに切り替えることができ、前記加熱用領域および前記冷却用領域は、前記医療用チューブの移動経路を含み、前記移動経路に沿う方向において隣り合って形成されていてもよい。 In the medical tube twisting device, the tube transport mechanism switches the transport direction of the medical tube to one of a first direction along the axis and a second direction opposite to the first direction. The heating area and the cooling area may include the movement path of the medical tube and be formed adjacent to each other in a direction along the movement path.
 上記医療用チューブひねり装置は、前記ヒーター、前記ひねり機構、前記チューブ搬送機構、および前記冷却部の動作を制御する制御部をさらに備え、前記制御部は、前記チューブ搬送機構によって前記医療用チューブを前記加熱用領域に前記医療用チューブの一部分を配置する第1の動作と、前記加熱用領域に配置された前記医療用チューブの前記一部分を、前記ヒーターによって加熱する第2の動作と、前記ひねり機構によって前記ひねり部を形成する第3の動作と、前記第3の動作において形成された前記ひねり部を、前記チューブ搬送機構によって前記第1の方向に移動して前記冷却用領域に配置する第4の動作と、前記冷却部によって前記冷却用領域に配置された前記ひねり部を硬化する第5の動作と、前記チューブ搬送機構によって前記医療用チューブを前記第2の方向に移動することによって、前記第3の動作において前記冷却用領域に配置された前記ひねり部に対して前記第2の方向において隣り合う前記医療用チューブの領域を、前記加熱用領域に移動する第6の動作と、前記第1の動作の後、前記第2の動作から前記第6の動作をこの順に1回以上繰り返す第7の動作と、前記第1の動作の後または前記第7の動作の後、前記第2の動作から前記第5の動作をこの順に行う第8の動作と、を制御してもよい。 The medical tube twisting device further includes a control unit that controls operations of the heater, the twisting mechanism, the tube transporting mechanism, and the cooling unit, and the control unit moves the medical tube by the tube transporting mechanism. A first operation of disposing a portion of the medical tube in the heating region; a second operation of heating the portion of the medical tube disposed in the heating region by the heater; and the twisting. A third operation for forming the twisted portion by a mechanism, and a second portion in which the twisted portion formed in the third operation is moved in the first direction by the tube transport mechanism and arranged in the cooling region. 4 operation, a fifth operation for curing the twisted portion disposed in the cooling region by the cooling unit, and the tube transport mechanism. Thus, by moving the medical tube in the second direction, the medical tube adjacent in the second direction to the twist portion disposed in the cooling region in the third operation. A sixth operation that moves the region to the heating region, a seventh operation that repeats the second operation to the sixth operation one or more times in this order after the first operation, After the first operation or after the seventh operation, the eighth operation that performs the second operation to the fifth operation in this order may be controlled.
 上記医療用チューブひねり装置において、前記ひねり機構は、前記第1の方向における前記加熱用領域の外部において、前記医療用チューブを把持する第1の把持部と、前記第2の方向における前記加熱用領域の外部において、前記医療用チューブを把持する第2の把持部と、前記第1の把持部および前記第2の把持部を、前記軸線の回りに相対回転する回転駆動部と、を備えてもよい。 In the medical tube twisting device, the twisting mechanism includes a first grip portion that grips the medical tube and the heating mechanism in the second direction outside the heating region in the first direction. A second gripping part for gripping the medical tube outside the region; and a rotation driving part for relatively rotating the first gripping part and the second gripping part around the axis. Also good.
 上記医療用チューブひねり装置において、前記冷却部は、前記冷却用領域における前記医療用チューブに向かって、液体および気体の少なくとも一方からなる冷媒を吐出してもよい。 In the medical tube twisting device, the cooling unit may discharge a refrigerant composed of at least one of a liquid and a gas toward the medical tube in the cooling region.
 本発明の第2の態様の医療用チューブひねり方法は、医療用チューブの一部分を加熱用領域に配置する第1の動作と、前記加熱用領域に配置された前記一部分を加熱する第2の動作と、前記一部分が加熱された状態で、前記一部分を間に挟む2箇所で、前記医療用チューブを把持した状態で、前記2箇所の把持位置において、前記医療用チューブの長手方向に延びる軸線の回りにひねりを加えることによって、前記一部分にひねり部を形成する第3の動作と、前記ひねり部を前記加熱用領域の外部に移動する第4の動作と、前記加熱用領域の前記外部において、前記ひねり部を硬化する第5の動作と、を含む。 The medical tube twisting method according to the second aspect of the present invention includes a first operation for arranging a part of the medical tube in the heating region and a second operation for heating the portion arranged in the heating region. In the state where the part is heated, the medical tube is gripped at two places sandwiching the part between the two, and the axis extending in the longitudinal direction of the medical tube at the two gripping positions. A third operation of forming a twist portion in the part by adding a twist around, a fourth operation of moving the twist portion to the outside of the heating region, and the outside of the heating region, A fifth operation for curing the twisted portion.
 上記医療用チューブひねり方法は、前記ひねり部が硬化した後、前記ひねり部に隣り合う領域を前記加熱用領域に移動する第6の動作をさらに含み、前記第6の動作の後、前記第2の動作から前記第6の動作をこの順に1回以上繰り返すか、または、前記第2の動作から前記第5の動作をこの順に行ってもよい。 The medical tube twisting method further includes a sixth operation of moving a region adjacent to the twisted portion to the heating region after the twisted portion is cured, and after the sixth operation, The sixth operation may be repeated once or more in this order, or the second operation to the fifth operation may be performed in this order.
 本発明の医療用チューブひねり装置および医療用チューブひねり方法によれば、長手方向の少なくとも一部において螺旋状のルーメンが形成された医療用チューブの形状精度および寸法精度を向上することができる。 According to the medical tube twisting apparatus and the medical tube twisting method of the present invention, it is possible to improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction.
本発明の実施形態の医療用チューブひねり装置によって製造された医療用チューブの一例を示す模式的な正面図である。It is a typical front view showing an example of the medical tube manufactured by the medical tube twist device of the embodiment of the present invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1におけるB-B断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 本発明の実施形態の医療用チューブひねり装置の構成例を示す模式的な正面図である。It is a typical front view showing an example of composition of a medical tube twist device of an embodiment of the present invention. 本発明の実施形態の医療用チューブひねり装置の制御に関連する構成のブロック図である。It is a block diagram of the structure relevant to control of the medical tube twist apparatus of embodiment of this invention. 図4におけるD-D断面図(E-E断面図)である。FIG. 6 is a DD sectional view (EE sectional view) in FIG. 4. 図4におけるF-F断面図である。FIG. 5 is a sectional view taken along line FF in FIG. 4. 本発明の実施形態の医療用チューブひねり方法の一例を示すフローチャートである。It is a flowchart which shows an example of the medical tube twist method of embodiment of this invention. ひねり部形成領域の一例を示す模式図である。It is a schematic diagram which shows an example of a twist part formation area. 本発明の実施形態の医療用チューブひねり装置の動作説明図である。It is operation | movement explanatory drawing of the medical tube twist apparatus of embodiment of this invention. 本発明の実施形態の医療用チューブひねり装置の動作説明図である。It is operation | movement explanatory drawing of the medical tube twist apparatus of embodiment of this invention. 本発明の実施形態の医療用チューブひねり装置の動作説明図である。It is operation | movement explanatory drawing of the medical tube twist apparatus of embodiment of this invention. 本発明の実施形態の医療用チューブひねり装置の動作説明図である。It is operation | movement explanatory drawing of the medical tube twist apparatus of embodiment of this invention.
 以下では、本発明の実施形態の医療用チューブひねり装置について説明する。
 まず、本実施形態の医療用チューブひねり装置を用いて製造される医療用チューブの一例について説明する。
 図1は、本発明の実施形態の医療用チューブひねり装置によって製造された医療用チューブの一例を示す模式的な正面図である。図2は、図1におけるA-A断面図である。図3は、図1におけるB-B断面図である。
Below, the medical tube twist apparatus of embodiment of this invention is demonstrated.
First, an example of a medical tube manufactured using the medical tube twisting device of the present embodiment will be described.
FIG. 1 is a schematic front view showing an example of a medical tube manufactured by the medical tube twisting device according to the embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. 3 is a cross-sectional view taken along the line BB in FIG.
 図1に示すように、チューブ30(医療用チューブ)は、中心軸線Oに沿って第1端部E1から第2端部E2まで延びる長尺の樹脂チューブである。チューブ30は、例えば、医療用のカテーテルチューブ、内視鏡撮像ケーブル等のケーブル類のシースなどとして用いられる。
 チューブ30の外周面30aは、外径が一定の円筒面によって構成される。ただし、外周面30aの外径は、後述する製造上の理由で、長手方向においてある程度バラツキを有していてもよい。例えば、外周面30aの外径は、長手方向において±2%程度の偏差が生じていてもよい。
As shown in FIG. 1, the tube 30 (medical tube) is a long resin tube that extends from the first end E1 to the second end E2 along the central axis O. The tube 30 is used as a sheath of cables such as a medical catheter tube and an endoscope imaging cable, for example.
The outer peripheral surface 30a of the tube 30 is constituted by a cylindrical surface having a constant outer diameter. However, the outer diameter of the outer peripheral surface 30a may have some variation in the longitudinal direction for manufacturing reasons described later. For example, the outer diameter of the outer peripheral surface 30a may have a deviation of about ± 2% in the longitudinal direction.
 チューブ30の材質としては、例えば、熱可塑性樹脂あるいは熱可塑性エラストマー(TPE、Thermoplastic Elastomer)が用いられてもよい。チューブ30に使用できる熱可塑性樹脂としては、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリアミド(PA)樹脂などが挙げられる。チューブ30に使用できる熱可塑性エラストマーとしては、アミド系TPE(TPA)、ウレタン系TPE(TPU)などが挙げられる。 As the material of the tube 30, for example, a thermoplastic resin or a thermoplastic elastomer (TPE, Thermoplastic Elastomer) may be used. Examples of the thermoplastic resin that can be used for the tube 30 include polyethylene (PE) resin, polypropylene (PP) resin, and polyamide (PA) resin. Examples of the thermoplastic elastomer that can be used for the tube 30 include amide TPE (TPA) and urethane TPE (TPU).
 チューブ30の内部には、少なくとも1つの螺旋状のルーメンが形成されている。螺旋状のルーメンは、チューブ30の全長にわたって螺旋状に形成されていてもよいし、チューブ30の長手方向の一部のみが螺旋状であってもよい。
 チューブ30は、シングルルーメンチューブでもよいし、マルチルーメンチューブでもよい。以下では、一例として、マルチルーメンチューブの場合の例で説明する。
At least one spiral lumen is formed inside the tube 30. The spiral lumen may be formed in a spiral shape over the entire length of the tube 30, or only a part of the tube 30 in the longitudinal direction may be a spiral shape.
The tube 30 may be a single lumen tube or a multi-lumen tube. Below, the example in the case of a multi-lumen tube is demonstrated as an example.
 図2は、チューブ30の断面形状を示す。チューブ30の外周面30aは、中心軸線Oを中心とする円形である。チューブ30の内部には、ガイドワイヤールーメン30b、第1ルーメン30c、および第2ルーメン20dが長手方向において貫通している。 FIG. 2 shows a cross-sectional shape of the tube 30. The outer peripheral surface 30a of the tube 30 is circular with the central axis O as the center. Inside the tube 30, a guide wire lumen 30b, a first lumen 30c, and a second lumen 20d penetrate in the longitudinal direction.
 ガイドワイヤールーメン30bは、チューブ30における長手方向の位置によらず中心軸線Oに沿って真直に延びている。ガイドワイヤールーメン30bは、例えば、ガイドワイヤーなどを通すことができる内径を有する。 The guide wire lumen 30b extends straight along the central axis O regardless of the position of the tube 30 in the longitudinal direction. The guide wire lumen 30b has an inner diameter through which a guide wire or the like can be passed, for example.
 図1に示すように、第1ルーメン30cおよび第2ルーメン30dは、チューブ30の長手方向において経路が変化している。第1ルーメン30cおよび第2ルーメン30dは、チューブ30の長手方向において、非ひねり部30A、ひねり部30B、および非ひねり部30Aを備える。 As shown in FIG. 1, the path of the first lumen 30c and the second lumen 30d changes in the longitudinal direction of the tube 30. The first lumen 30c and the second lumen 30d include a non-twisted portion 30A, a twisted portion 30B, and a non-twisted portion 30A in the longitudinal direction of the tube 30.
 非ひねり部30Aは、チューブ30の長手方向において、第1端部E1から長さLの範囲に形成されている。
 図2に示すように、非ひねり部30Aにおいては、第1ルーメン30cおよび第2ルーメン30dは、いずれもガイドワイヤールーメン30bと外周面30aとの間で、中心軸線Oに沿って真直に延びている。
 第1ルーメン30cおよび第2ルーメン30dの、中心軸線Oを中心とする周方向の位置は、特に限定されない。図2に示す例では、第1ルーメン30cおよび第2ルーメン30dは、中心軸線Oに対する中心角が鋭角となり周方向に隣り合って配置されている。第1ルーメン30cおよび第2ルーメン30dは、中心軸線Oに対する中心角が180°である位置に配置されていてもよい。
Non twisting unit 30A, in the longitudinal direction of the tube 30 is formed in a range of a length L A from the first end E1.
As shown in FIG. 2, in the non-twisted portion 30A, the first lumen 30c and the second lumen 30d both extend straight along the central axis O between the guide wire lumen 30b and the outer peripheral surface 30a. Yes.
The positions in the circumferential direction around the central axis O of the first lumen 30c and the second lumen 30d are not particularly limited. In the example shown in FIG. 2, the first lumen 30c and the second lumen 30d are arranged adjacent to each other in the circumferential direction with a central angle with respect to the central axis O being an acute angle. The first lumen 30c and the second lumen 30d may be disposed at a position where the central angle with respect to the central axis O is 180 °.
 図1に示すように、ひねり部30Bは、チューブ30の長手方向において、非ひねり部30Aにおける第1端部E1と反対側の端部から第2端部E2に向かう長さLの範囲に形成されている。
 ひねり部30Bにおいては、第1ルーメン30cおよび第2ルーメン30dは、中心軸線Oを中心としていずれも螺旋状に同方向に旋回している。第1ルーメン30cおよび第2ルーメン30dの延在方向に直交する断面における第1ルーメン30cおよび第2ルーメン30dの間隔は、旋回経路に沿って一定である。
 特に図示しないが、非ひねり部30Aおよびひねり部30Bの境界における第1ルーメン30c(第2ルーメン30d)は、直線状から螺旋状に滑らかに変化している。このため、非ひねり部30Aおよびひねり部30Bの境界における第1ルーメン30c(第2ルーメン30d)の内周面は、段差、折れ部などがなく滑らかに連続している。
As shown in FIG. 1, the twisted portion 30 </ b > B has a length LB in the longitudinal direction of the tube 30 from the end opposite to the first end E <b> 1 in the non-twisted portion 30 </ b > A toward the second end E < b > 2. Is formed.
In the twisted portion 30B, the first lumen 30c and the second lumen 30d are both spirally turned in the same direction around the central axis O. The distance between the first lumen 30c and the second lumen 30d in a cross section perpendicular to the extending direction of the first lumen 30c and the second lumen 30d is constant along the turning path.
Although not particularly illustrated, the first lumen 30c (second lumen 30d) at the boundary between the non-twisted portion 30A and the twisted portion 30B smoothly changes from a straight shape to a spiral shape. For this reason, the inner peripheral surface of the first lumen 30c (second lumen 30d) at the boundary between the non-twisted portion 30A and the twisted portion 30B is smoothly continuous without a step or a bent portion.
 非ひねり部30Cは、チューブ30の長手方向において、ひねり部30Bの非ひねり部30Aと反対側の端部から第2端部E2までの長さLの範囲に形成されている。
 特に図示しないが、非ひねり部30Cにおいて、第1ルーメン30cおよび第2ルーメン30dは、いずれもガイドワイヤールーメン30bと外周面30aとの間で、中心軸線Oに沿って真直に延びている。
 ひねり部30Bおよび非ひねり部30Cの境界における第1ルーメン30c(第2ルーメン30d)は、螺旋状から直線状に滑らかに変化している。このため、ひねり部30Bおよび非ひねり部30Cの境界における第1ルーメン30c(第2ルーメン30d)の内周面は、段差、折れ部などがなく滑らかに連続している。
The non-twisted portion 30C is formed in a range of a length L C from the end portion of the twisted portion 30B opposite to the non-twisted portion 30A to the second end portion E2 in the longitudinal direction of the tube 30.
Although not particularly illustrated, in the non-twisted portion 30C, the first lumen 30c and the second lumen 30d both extend straight along the central axis O between the guide wire lumen 30b and the outer peripheral surface 30a.
The first lumen 30c (second lumen 30d) at the boundary between the twisted portion 30B and the non-twisted portion 30C smoothly changes from a spiral shape to a linear shape. For this reason, the inner peripheral surface of the first lumen 30c (second lumen 30d) at the boundary between the twisted portion 30B and the non-twisted portion 30C is smoothly continuous without a step or a bent portion.
 次に、チューブ30を製造する本実施形態の医療用チューブひねり装置の一例について説明する。
 図4は、本発明の実施形態の医療用チューブひねり装置の構成例を示す模式的な正面図である。図5は、本発明の実施形態の医療用チューブひねり装置の制御に関連する構成のブロック図である。図6は、図4におけるD-D断面図(E-E断面図)である。図7は、図4におけるF-F断面図である。
Next, an example of the medical tube twisting device of the present embodiment for manufacturing the tube 30 will be described.
FIG. 4 is a schematic front view showing a configuration example of the medical tube twisting device according to the embodiment of the present invention. FIG. 5 is a block diagram of a configuration related to control of the medical tube twisting device according to the embodiment of the present invention. FIG. 6 is a cross-sectional view taken along the line DD (cross-sectional view taken along line EE) in FIG. 7 is a cross-sectional view taken along line FF in FIG.
 図4に示すように、本実施形態のチューブひねり装置1(医療用チューブひねり装置)は、チューブ搬送機構6、ひねり機構3、ヒーター2、および冷却部7を備える。図5に示すように、チューブひねり装置1は、操作部9と、制御部8とをさらに備える。
 チューブひねり装置1は、図2に示す加工用チューブ20(医療用チューブ)の長手方向における一部分を部分的にひねることによって、チューブ30を製造することができる。さらに、チューブひねり装置1は、すでにひねり加工が施された医療用チューブに、さらに、ひねり加工を施こすこともできる。このため、チューブひねり装置1は、加工用チューブ20における複数箇所に、ひねり加工を施すことができる。
As shown in FIG. 4, the tube twisting device 1 (medical tube twisting device) of this embodiment includes a tube transport mechanism 6, a twisting mechanism 3, a heater 2, and a cooling unit 7. As shown in FIG. 5, the tube twisting device 1 further includes an operation unit 9 and a control unit 8.
The tube twisting apparatus 1 can manufacture the tube 30 by partially twisting a part in the longitudinal direction of the processing tube 20 (medical tube) shown in FIG. Further, the tube twisting device 1 can further twist the medical tube that has already been twisted. For this reason, the tube twisting apparatus 1 can perform twisting processing at a plurality of locations in the processing tube 20.
 加工用チューブ20は、非ひねり部30Aにおけるチューブ30が中心軸線Oに沿って延ばされた形状と同様な形状を有する。以下では、加工用チューブ20の中心軸線もチューブ30と同様、中心軸線Oで表す。
 加工用チューブ20の材料は、チューブ30の材料と同様である。加工用チューブ20は、ひねり加工されない状態でも、医療用チューブとして使用できる。
 加工用チューブ20における外周面20aは、非ひねり部30Aにおけるチューブ30の外周面30aと同径の円筒面で構成される。
 加工用チューブ20は内部に、非ひねり部30Aにおけるチューブ30のガイドワイヤールーメン30b、第1ルーメン30c、第2ルーメン30dに対応して、それぞれガイドワイヤールーメン20b、第1ルーメン20c、第2ルーメン20dを備える(図6参照)。
The processing tube 20 has a shape similar to the shape in which the tube 30 in the non-twisted portion 30A is extended along the central axis O. In the following, the central axis of the processing tube 20 is also represented by the central axis O, like the tube 30.
The material of the processing tube 20 is the same as the material of the tube 30. The processing tube 20 can be used as a medical tube even when it is not twisted.
The outer peripheral surface 20a in the processing tube 20 is configured by a cylindrical surface having the same diameter as the outer peripheral surface 30a of the tube 30 in the non-twisted portion 30A.
The processing tube 20 has a guide wire lumen 20b, a first lumen 20c, and a second lumen 20d corresponding to the guide wire lumen 30b, the first lumen 30c, and the second lumen 30d of the tube 30 in the non-twisted portion 30A. (See FIG. 6).
 ガイドワイヤールーメン20bは、ガイドワイヤールーメン30bと同様、加工用チューブ20の中心軸線Oに沿って延びている。ガイドワイヤールーメン20bの内径は、非ひねり部30Aにおけるガイドワイヤールーメン30bの内径に等しい。
 第1ルーメン20c(第2ルーメン20d)は、非ひねり部30Aにおけるチューブ30の第1ルーメン30c(第2ルーメン30d)と同様、中心軸線Oと平行な軸線に沿って真直に延びている。第1ルーメン20c(第2ルーメン20d)の内径は、非ひねり部30Aにおける第1ルーメン30c(第2ルーメン30d)の内径に等しい。
 中心軸線Oに直交する断面におけるガイドワイヤールーメン20b、第1ルーメン20c、および第2ルーメン20dの相対位置関係は、非ひねり部30Aにおけるチューブ30のガイドワイヤールーメン30b、第1ルーメン30c、および第2ルーメン30dの相対位置関係と同様である。
The guide wire lumen 20b extends along the central axis O of the processing tube 20 like the guide wire lumen 30b. The inner diameter of the guide wire lumen 20b is equal to the inner diameter of the guide wire lumen 30b in the non-twisted portion 30A.
The first lumen 20c (second lumen 20d) extends straight along an axis parallel to the central axis O, like the first lumen 30c (second lumen 30d) of the tube 30 in the non-twisted portion 30A. The inner diameter of the first lumen 20c (second lumen 20d) is equal to the inner diameter of the first lumen 30c (second lumen 30d) in the non-twisted portion 30A.
The relative positional relationship between the guide wire lumen 20b, the first lumen 20c, and the second lumen 20d in a cross section orthogonal to the central axis O is such that the guide wire lumen 30b, the first lumen 30c, and the second lumen of the tube 30 in the non-twisted portion 30A. This is the same as the relative positional relationship of the lumen 30d.
 このような加工用チューブ20は、例えば、チューブ30を形成するための樹脂材料を押出成形するなどして、予め製造される。加工用チューブ20は、チューブひねり装置1によるひねり加工時にはすでに硬化済みである。加工用チューブ20を製造する押し出し成形機としては、マルチルーメンチューブを製造する周知の押し出し成形機が用いられてもよい。
 加工用チューブ20における第1端部e1から第2端部e2までの長さは、ひねり加工後にチューブ30の第1端部E1から第2端部E2までの長さになっていれば、チューブ30の長さと異なっていてもよい。本実施形態では後述するように、一例として、加工用チューブ20の長さの方が、チューブ30の長さよりも長くなっている。
Such a processing tube 20 is manufactured in advance, for example, by extruding a resin material for forming the tube 30. The tube 20 for processing is already hardened at the time of twisting by the tube twisting device 1. As the extrusion molding machine for manufacturing the processing tube 20, a known extrusion molding machine for manufacturing a multi-lumen tube may be used.
If the length from the first end e1 to the second end e2 in the processing tube 20 is the length from the first end E1 to the second end E2 of the tube 30 after the twist processing, the tube It may be different from 30 lengths. In this embodiment, as will be described later, as an example, the length of the processing tube 20 is longer than the length of the tube 30.
 図4に示すように、チューブひねり装置1は、装置内の軸線Cに沿って配置された加工用チューブ20をひねり加工する。後述するように、本実施形態では、チューブひねり装置1は、加工用チューブ20を軸線Cに沿う移動経路に沿って移動することによって、位置を変えてひねり加工することができる。チューブひねり装置1は、加工用チューブ20の第1端部e1の方から第2端部e2の方に向かって、加工用チューブ20の必要な領域にひねり加工を行う。
 加工用チューブ20は、中心軸線Oがチューブひねり装置1における軸線Cと同軸となるように、チューブひねり装置1に配置される。加工用チューブ20は、チューブひねり装置1において、軸線Cを中心に回転できる状態で支持されている。
As shown in FIG. 4, the tube twisting apparatus 1 twists the processing tube 20 arranged along the axis C in the apparatus. As will be described later, in the present embodiment, the tube twisting device 1 can perform twisting processing by changing the position by moving the processing tube 20 along the movement path along the axis C. The tube twisting device 1 twists a necessary region of the processing tube 20 from the first end e1 of the processing tube 20 toward the second end e2.
The processing tube 20 is arranged in the tube twisting device 1 so that the central axis O is coaxial with the axis C in the tube twisting device 1. The tube 20 for processing is supported in the tube twist apparatus 1 in the state which can be rotated centering on the axis C. FIG.
 以下では、チューブひねり装置1において軸線Cに沿う方向における端部のうち、図4における左側の端部を第1端部Ea、右側の端部を第2端部Ebと称する。軸線Cに沿って第2端部Ebから第1端部Eaに向かう方向を第1の方向f、第1の方向fと反対方向を第2の方向bと称する。
 チューブひねり装置1においては、第1の方向fにおいて、ヒーター2、冷却部7、およびチューブ搬送機構6がこの順に配置されている。ひねり機構3は、ヒーター2を間に挟んで、第1端部Ea寄りの位置に配置された第1の装置部分と、第2端部Eb寄りの位置に配置された第2の装置部分と、に分かれている。ひねり機構3の第1の装置部分は、冷却部7とヒーター2との間に配置されている。
Hereinafter, among the end portions in the direction along the axis C in the tube twisting device 1, the left end portion in FIG. 4 is referred to as a first end portion Ea, and the right end portion is referred to as a second end portion Eb. A direction from the second end Eb to the first end Ea along the axis C is referred to as a first direction f, and a direction opposite to the first direction f is referred to as a second direction b.
In the tube twisting device 1, the heater 2, the cooling unit 7, and the tube transport mechanism 6 are arranged in this order in the first direction f. The twist mechanism 3 includes a first device part disposed near the first end Ea and a second device part disposed near the second end Eb with the heater 2 interposed therebetween. , Is divided into. The first device portion of the twist mechanism 3 is disposed between the cooling unit 7 and the heater 2.
 チューブ搬送機構6は、加工用チューブ20を軸線Cに沿って進退させる装置部分である。チューブ搬送機構6は、クランパー6A、6Bと、クランパー駆動部6Cと、を備える。
 クランパー6A、6Bは、軸線Cを挟んで互いに対向して配置されている。クランパー6A、6Bは、後述するクランパー駆動部6Cによって、対向方向において進退できる状態で支持されている。図6に示すように、クランパー6A、6Bは、軸線Cに向かって進出することによって加工用チューブ20を外周面20aにおいて把持することができる。クランパー6A、6Bは、加工用チューブ20の第1端部e1の近くを把持することができる。
 クランパー6A、6Bの形状は、加工用チューブ20を把持できる形状であれば、限定されない。図6に示す例では、クランパー6A、6Bは、外周面20aにそれぞれ3箇所で外接する把持溝6aを有している。把持溝6aにおいて、少なくとも外周面20aと接する部位は、加工用チューブ20を移動する間に加工用チューブ20との滑りを起こさない程度の摩擦力を発生する材料で構成されている。
 クランパー6A、6Bは、軸線Cから離れる方向に退避することによって加工用チューブ20の把持を解除することができる。
 さらに、クランパー6A、6Bは、後述するクランパー駆動部6Cによって、軸線Cに沿う方向に移動できる状態で支持されている。クランパー6A、6Bは、第1の方向fおよび第2の方向bのいずれにも移動できる。
 クランパー6A、6Bは、加工用チューブ20を把持した状態で、軸線Cに沿う搬送方向に移動することによって加工用チューブ20を搬送する。
The tube transport mechanism 6 is a device portion that moves the processing tube 20 forward and backward along the axis C. The tube transport mechanism 6 includes clampers 6A and 6B and a clamper driving unit 6C.
The clampers 6A and 6B are disposed to face each other with the axis C therebetween. The clampers 6A and 6B are supported by a clamper driving unit 6C, which will be described later, in a state where the clampers 6A and 6B can advance and retreat in the facing direction. As shown in FIG. 6, the clampers 6 </ b> A and 6 </ b> B can grip the processing tube 20 on the outer peripheral surface 20 a by advancing toward the axis C. The clampers 6A and 6B can grip the vicinity of the first end e1 of the processing tube 20.
The shape of the clampers 6 </ b> A and 6 </ b> B is not limited as long as the shape can grip the processing tube 20. In the example shown in FIG. 6, the clampers 6 </ b> A and 6 </ b> B have gripping grooves 6 a that circumscribe each of the outer peripheral surfaces 20 a at three locations. In the gripping groove 6a, at least a portion in contact with the outer peripheral surface 20a is made of a material that generates a frictional force that does not cause a slip with the processing tube 20 while the processing tube 20 is moved.
The clampers 6A and 6B can release the grip of the processing tube 20 by retreating in a direction away from the axis C.
Furthermore, the clampers 6A and 6B are supported in a state in which the clampers 6A and 6B can move in a direction along the axis C by a clamper driving unit 6C described later. The clampers 6A and 6B can move in both the first direction f and the second direction b.
The clampers 6 </ b> A and 6 </ b> B transport the processing tube 20 by moving in the transporting direction along the axis C while holding the processing tube 20.
 クランパー駆動部6Cは、クランパー6A、6Bを軸線Cに対して進退させることによって、加工用チューブ20に対して把持動作および把持解除動作を行えるように構成されている。さらに、クランパー駆動部6Cは、クランパー6A、6Bが加工用チューブ20を把持した状態でも、クランパー6A、6Bが加工用チューブ20を把持解除した状態でも、クランパー6A、6Bを軸線Cに沿って移動させることができる。
 図5に示すように、クランパー駆動部6Cは、後述する制御部8と、通信できる状態で接続されている。クランパー駆動部6Cは、後述する制御部8からの制御信号に応じて、クランパー6A、6Bを駆動する。
 例えば、クランパー駆動部6Cは、クランパー6A、6Bを軸線Cに対して進退させる第1のアクチュエータと、クランパー6A、6Bを軸線Cに沿って平行移動する移動ステージなどの第2のアクチュエータとを備える。
The clamper driving unit 6C is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the clampers 6A and 6B back and forth with respect to the axis C. Furthermore, the clamper driving unit 6C moves the clampers 6A and 6B along the axis C regardless of whether the clampers 6A and 6B are gripping the processing tube 20 or the clampers 6A and 6B are not gripping the processing tube 20. Can be made.
As shown in FIG. 5, the clamper driving unit 6C is connected in a communicable state with a control unit 8 to be described later. The clamper driving unit 6C drives the clampers 6A and 6B according to a control signal from the control unit 8 described later.
For example, the clamper driving unit 6C includes a first actuator that moves the clampers 6A and 6B back and forth with respect to the axis C, and a second actuator such as a moving stage that translates the clampers 6A and 6B along the axis C. .
 図4に示すひねり機構3は、加工用チューブ20の一部を固定した状態で、加工用チューブ20を軸線Cを中心に回転する装置部分である。ひねり機構3は、後述するように、ヒーター2によって加熱された加工用チューブ20の一部を固定した状態で、加工用チューブ20を軸線Cを中心に回転することによってひねり部を形成する。
 ひねり機構3は、クランパー5A、5B(第1の把持部)、クランパー駆動部5C、把持ローラー4A、4B、4C(第2の把持部)、およびローラー駆動部4D(回転駆動部)を備える。ここで、クランパー5A、5B、およびクランパー駆動部5Cは、上述した装置部分(第1の装置部分)である。把持ローラー4A、4B、4C、およびローラー駆動部4Dは、上述した装置部分(第2の装置部分)である。
The twist mechanism 3 shown in FIG. 4 is a device portion that rotates the processing tube 20 about the axis C in a state where a part of the processing tube 20 is fixed. As will be described later, the twist mechanism 3 forms a twist portion by rotating the processing tube 20 about the axis C in a state where a part of the processing tube 20 heated by the heater 2 is fixed.
The twist mechanism 3 includes clampers 5A and 5B (first gripping units), a clamper driving unit 5C, gripping rollers 4A, 4B and 4C (second gripping units), and a roller driving unit 4D (rotation driving unit). Here, the clampers 5A and 5B and the clamper driving unit 5C are the above-described device portions (first device portions). The gripping rollers 4A, 4B, 4C, and the roller driving unit 4D are the above-described device parts (second device parts).
 クランパー5A、5Bは、軸線Cに沿う方向における配置位置がクランパー6A、6Bと異なる点と、軸線Cに沿う方向の配置位置が固定されている点と、を除くと、クランパー6A、6Bと同様な構成を有する。以下、クランパー5A、5Bがクランパー6A、6Bと異なる点を中心に説明する。
 クランパー5A、5Bは、軸線Cに沿う方向において、後述する冷却部7とヒーター2との間に配置されている。クランパー5A、5Bは、クランパー6A、6Bと同様、軸線Cと同軸に配置された加工用チューブ20を把持したり、把持解除したりすることできるように構成されている。
The clampers 5A and 5B are the same as the clampers 6A and 6B except that the arrangement positions in the direction along the axis C are different from the clampers 6A and 6B and the arrangement positions in the direction along the axis C are fixed. It has a configuration. The following description will focus on the differences between the clampers 5A and 5B and the clampers 6A and 6B.
The clampers 5 </ b> A and 5 </ b> B are disposed between the cooling unit 7 and the heater 2 described later in the direction along the axis C. Like the clampers 6A and 6B, the clampers 5A and 5B are configured to be able to grip and release the processing tube 20 arranged coaxially with the axis C.
 加工用チューブ20を把持できれば、クランパー5A、5Bの形状は特に限定されない。ただし、本実施形態では、一例として、クランパー5A、5Bは、クランパー6A、6Bと略同様の構成を備える。
 クランパー5A、5Bは、軸線Cを挟んで互いに対向して配置されている。クランパー5A、5Bは、後述するクランパー駆動部5Cによって、対向方向において進退できる状態で支持されている。クランパー5A、5Bは、外周面20aにそれぞれ3箇所で外接する把持溝5aを有している。把持溝5aにおいて、少なくとも外周面20aと接する部位は、加工用チューブ20がひねり加工される間に、周方向において加工用チューブ20との滑りを起こさない程度の摩擦力を発生する材料で構成されている。
 このため、クランパー5A、5Bは、加工用チューブ20を把持した状態で、把持位置における加工用チューブ20の軸線Cの回りの回転を阻止することができる。
 クランパー5A、5Bは、軸線Cから離れる方向に退避することによって加工用チューブ20の把持を解除することができる。
The shape of the clampers 5A and 5B is not particularly limited as long as the processing tube 20 can be gripped. However, in the present embodiment, as an example, the clampers 5A and 5B have substantially the same configuration as the clampers 6A and 6B.
The clampers 5A and 5B are arranged to face each other with the axis C interposed therebetween. The clampers 5A and 5B are supported in a state in which they can be advanced and retracted in the facing direction by a clamper driving unit 5C described later. The clampers 5A and 5B have gripping grooves 5a circumscribing at three locations on the outer peripheral surface 20a. In the gripping groove 5a, at least a portion in contact with the outer peripheral surface 20a is made of a material that generates a frictional force that does not cause a slip with the processing tube 20 in the circumferential direction while the processing tube 20 is twisted. ing.
For this reason, the clampers 5A and 5B can prevent rotation around the axis C of the processing tube 20 at the gripping position in a state where the processing tube 20 is gripped.
The clampers 5A and 5B can release the grip of the processing tube 20 by retracting in a direction away from the axis C.
 クランパー駆動部5Cは、クランパー5A、5Bを軸線Cに対して進退させることによって、加工用チューブ20に対して把持動作および把持解除動作を行えるように構成されている。
 図5に示すように、クランパー駆動部5Cは、後述する制御部8と、通信できる状態で接続されている。クランパー駆動部5Cは、後述する制御部8からの制御信号に応じて、クランパー5A、5Bを駆動する。
 例えば、クランパー駆動部5Cは、クランパー駆動部6Cと同様の第1のアクチュエータを備えている。
The clamper driving unit 5C is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the clampers 5A and 5B forward and backward with respect to the axis C.
As shown in FIG. 5, the clamper driving unit 5C is connected in a communicable state with a control unit 8 to be described later. The clamper driving unit 5C drives the clampers 5A and 5B according to a control signal from the control unit 8 described later.
For example, the clamper driving unit 5C includes a first actuator similar to the clamper driving unit 6C.
 図7に示すように、把持ローラー4A、4B、4Cは、それぞれ、軸線Cに平行に配置されている。把持ローラー4A、4B、4Cは、それぞれ、軸線Cと直交する方向において進退できる状態で支持されている。本実施形態では、把持ローラー4A、4B、4Cは、軸線Cの回りの周方向において、円周を三等分する位置のそれぞれに軸線に沿って配置され、軸線Cに対して進退できる。各把持ローラー4A、4B、4Cが軸線Cに向かって進出すると、各把持ローラー4A、4B、4Cによって、加工用チューブ20が軸線C上に把持される。
 図7に示すように、把持ローラー4A、4B、4Cを第2端部Ebから第1端部Eaに向かって見る場合、各把持ローラー4A、4B、4Cは、それぞれローラー中心軸C、C、Cを中心として、図中の時計回りに回転できる状態で支持されている。ローラー中心軸C、C、Cは、軸線Cに平行である。把持ローラー4A、4B、4Cのうち、少なくとも1つは、ローラー駆動部4Dによってローラー中心軸を中心に回転駆動される。把持ローラー4A、4B、4Cのうち、複数のローラーが回転駆動される場合には、それぞれの回転は、互いに同期している。以下では、一例として、把持ローラー4A、4B、4Cのすべてがローラー駆動部4Dによって回転駆動される場合の例で説明する。
As shown in FIG. 7, the gripping rollers 4 </ b> A, 4 </ b> B, and 4 </ b> C are disposed in parallel to the axis C, respectively. The gripping rollers 4A, 4B, and 4C are supported in a state in which they can advance and retreat in a direction orthogonal to the axis C, respectively. In the present embodiment, the gripping rollers 4A, 4B, and 4C are arranged along the axis at positions that divide the circumference into three equal parts in the circumferential direction around the axis C, and can move forward and backward with respect to the axis C. When each gripping roller 4A, 4B, 4C advances toward the axis C, the processing tube 20 is gripped on the axis C by each gripping roller 4A, 4B, 4C.
As shown in FIG. 7, when the gripping rollers 4A, 4B, and 4C are viewed from the second end portion Eb toward the first end portion Ea, the gripping rollers 4A, 4B, and 4C each have a roller center axis C A , C B, around the C C, is supported in a state that can be rotated clockwise in FIG. The roller central axes C A , C B , and C C are parallel to the axis C. At least one of the gripping rollers 4A, 4B, and 4C is rotationally driven around the roller central axis by the roller driving unit 4D. When a plurality of rollers are rotationally driven among the gripping rollers 4A, 4B, and 4C, the respective rotations are synchronized with each other. In the following, as an example, an example in which all of the gripping rollers 4A, 4B, and 4C are rotationally driven by the roller driving unit 4D will be described.
 各把持ローラー4A、4B、4Cの表面4aは、各把持ローラー4A、4B、4Cによって、加工用チューブ20が把持された際に、加工用チューブ20の外周面20aと滑りが生じない程度の摩擦力が発生するように構成されている。
 このため、各把持ローラー4A、4B、4Cが図中の時計回りに回転すると、各把持ローラー4A、4B、4Cに把持された加工用チューブ20は、図中の反時計回りに回転する。
The surface 4a of each gripping roller 4A, 4B, 4C has a friction that does not cause slippage with the outer peripheral surface 20a of the processing tube 20 when the processing tube 20 is gripped by each gripping roller 4A, 4B, 4C. It is configured to generate force.
For this reason, when each gripping roller 4A, 4B, 4C rotates clockwise in the figure, the processing tube 20 gripped by each gripping roller 4A, 4B, 4C rotates counterclockwise in the figure.
 ローラー駆動部4Dは、把持ローラー4A、4B、4Cを軸線Cに対して進退させることによって、加工用チューブ20に対して把持動作および把持解除動作を行えるように構成されている。さらに、ローラー駆動部4Dは、把持ローラー4A、4B、4Cがそれぞれのローラー中心軸C、C、Cを中心に回転させるために、把持ローラー4A、4B、4Cに回転駆動力を伝達する。
 図5に示すように、ローラー駆動部4Dは、後述する制御部8と、通信できる状態で接続されている。ローラー駆動部4Dは、後述する制御部8からの制御信号に応じて、把持ローラー4A、4B、4Cを駆動する。
 例えば、ローラー駆動部4Dは、把持ローラー4A、4B、4Cを軸線Cに対して進退させる第3のアクチュエータと、把持ローラー4A、4B、4Cをそれぞれのローラー中心軸C、C、Cを中心に回転させるモータおよび回転伝達機構とを備える。
The roller driving unit 4D is configured to perform a gripping operation and a grip releasing operation on the processing tube 20 by moving the gripping rollers 4A, 4B, and 4C forward and backward with respect to the axis C. Furthermore, the roller drive unit 4D is transferred gripping rollers 4A, 4B, 4C each roller central axis C A, C B, to rotate around the C C, the gripping rollers 4A, 4B, the rotational driving force to 4C To do.
As shown in FIG. 5, the roller driving unit 4D is connected to a control unit 8 described later in a state where communication is possible. The roller driving unit 4D drives the gripping rollers 4A, 4B, and 4C according to a control signal from the control unit 8 described later.
For example, the roller driving unit 4D includes a third actuator that moves the gripping rollers 4A, 4B, and 4C back and forth with respect to the axis C, and the gripping rollers 4A, 4B, and 4C with the respective roller central axes C A , C B , and C C. And a rotation transmission mechanism.
 ヒーター2は、加工用チューブ20を、加工用チューブ20の長手方向における一部分を部分的に加熱する。ヒーター2は、クランパー5A、5Bと、把持ローラー4A、4B、4Cとの間における、軸線Cを囲む加熱用領域Rに熱エネルギーが供給されるように構成された加熱源である。
 軸線Cに対する加熱用領域Rの径方向の大きさは、少なくとも加工用チューブ20を内部に通すことができる大きさである。
 軸線Cに沿う加熱用領域Rの長さLは、チューブ30に形成するひねり部30Bの長さの最小値以下である。
 加熱用領域Rにおける加工用チューブ20の温度は、ひねり加工を行うことができる温度とする。ここで、ひねり加工を行うことができる温度とは、加工用チューブ20をひねる外力を加工用チューブ20に加えることによって加工用チューブ20をひねることができ、かつ加熱が停止されても加工用チューブ20の変形した状態が略保たれる温度である。例えば、加熱用領域Rにおける加工用チューブ20の温度は、加工用チューブ20の材料のガラス転移点以上、融点未満であってもよい。
The heater 2 partially heats the processing tube 20 in a part in the longitudinal direction of the processing tube 20. The heater 2 is a heating source configured to supply heat energy to a heating region RH that surrounds the axis C between the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C.
The size in the radial direction of the heating region RH with respect to the axis C is a size that allows at least the processing tube 20 to pass through.
The length L T of the heating region R H along the axis C is less than or equal to the minimum value of the length of the twist portion 30B to be formed in the tube 30.
The temperature of the processing tube 20 in the heating region RH is set to a temperature at which twisting can be performed. Here, the temperature at which the twisting process can be performed means that the processing tube 20 can be twisted by applying an external force that twists the processing tube 20 to the processing tube 20, and even if the heating is stopped. This is the temperature at which the 20 deformed state is substantially maintained. For example, the temperature of the processing tube 20 in the heating region RH may be equal to or higher than the glass transition point of the material of the processing tube 20 and lower than the melting point.
 ヒーター2の構成は、上述の加熱用領域Rが形成できれば、特に限定されない。
 例えば、ヒーター2は、軸線Cを囲む円筒状あるいは螺旋状に形成された、1個以上の発熱部によって構成されてもよい。例えば、ヒーター2は、軸線Cに対して、径方向あるいは軸方向において互いに離間して配置された複数個の発熱部によって構成されてもよい。
 ヒーター2の具体例としては、例えば、ハロゲンヒーター、近赤外線ヒーター、電磁加熱ヒーター、抵抗発熱ヒーター、温風ヒーターなどが挙げられる。例えば、電磁加熱ヒーターの例としては、金属を電磁誘導により加熱する電磁誘導加熱コイルを含む構成が挙げられる。電磁加熱ヒーターによれば、後述するように加工用チューブ20に金属製の芯金を挿入して加工する場合に、芯金を発熱させることができるため、加工用チューブ20を内部から加熱することができる。
 ヒーター2は、1種類の加熱方式によるヒーターで構成されてもよいし、複数種類の加熱方式によるヒーターが組み合わされてもよい。
 ヒーター2としては、上記のうちでは、特に、近赤外線ヒーターが好ましい。近赤外線ヒーターは、例えば、加工用チューブ20に複数の方向から近赤外線を照射することによって加工用チューブ20を内側に含む加熱スポットを形成することができる。このため、加工用チューブ20を効率的に加熱することができる。
 近赤外線ヒーターから照射された近赤外線は、加工用チューブ20の内部にも浸透して吸収される。このため、近赤外線ヒーターは、加工用チューブ20の外表面および内部を加熱できる。例えば、加工用チューブ20の外表面または内表面の熱伝導によって加熱する場合に比べると、近赤外線ヒーターは、均一性が高くかつ効率的に加工用チューブ20を加熱できる。
The configuration of the heater 2 is not particularly limited as long as the above-described heating region RH can be formed.
For example, the heater 2 may be configured by one or more heat generating portions formed in a cylindrical shape or a spiral shape surrounding the axis C. For example, the heater 2 may be configured by a plurality of heat generating portions that are arranged away from each other in the radial direction or the axial direction with respect to the axis C.
Specific examples of the heater 2 include, for example, a halogen heater, a near infrared heater, an electromagnetic heating heater, a resistance heating heater, a warm air heater, and the like. For example, as an example of the electromagnetic heater, a configuration including an electromagnetic induction heating coil that heats metal by electromagnetic induction can be given. According to the electromagnetic heater, when a metal cored bar is inserted into the processing tube 20 to be processed as will be described later, the cored bar can be heated, so that the processing tube 20 is heated from the inside. Can do.
The heater 2 may be composed of a heater of one kind of heating method, or a combination of heaters of a plurality of kinds of heating methods.
Of the above, the heater 2 is particularly preferably a near infrared heater. The near-infrared heater can form a heating spot including the processing tube 20 inside by irradiating the processing tube 20 with near-infrared rays from a plurality of directions, for example. For this reason, the processing tube 20 can be efficiently heated.
Near-infrared rays irradiated from the near-infrared heater penetrate into the processing tube 20 and are absorbed. For this reason, the near-infrared heater can heat the outer surface and the inside of the processing tube 20. For example, the near-infrared heater can heat the processing tube 20 with high uniformity and efficiency as compared with the case of heating by heat conduction on the outer surface or the inner surface of the processing tube 20.
 図5に示すように、ヒーター2は、後述する制御部8と、通信できる状態で接続されている。ヒーター2は、後述する制御部8からの制御信号に応じて、加熱の開始および停止の動作と、加熱温度と、が制御される。 As shown in FIG. 5, the heater 2 is connected in a state where it can communicate with a control unit 8 described later. The heater 2 is controlled to start and stop heating and a heating temperature in accordance with a control signal from the control unit 8 described later.
 冷却部7は、ヒーター2によって加熱された加工用チューブ20を冷却する装置部分である。冷却部7の構成は、加工用チューブ20の材料のガラス転移点未満の温度に、加工用チューブ20を冷却することができれば、特に限定されない。
 例えば、冷却部7は、加工用チューブ20に、加工用チューブ20の材料のガラス転移点未満の温度の冷媒を接触させる構成が用いられてもよい。このような冷却部7に用いる冷媒には、液体および気体の少なくとも一方が含まれてもよい。
The cooling unit 7 is a device part that cools the processing tube 20 heated by the heater 2. The configuration of the cooling unit 7 is not particularly limited as long as the processing tube 20 can be cooled to a temperature lower than the glass transition point of the material of the processing tube 20.
For example, the cooling unit 7 may be configured such that the processing tube 20 is brought into contact with a coolant having a temperature lower than the glass transition point of the material of the processing tube 20. The refrigerant used for such a cooling unit 7 may include at least one of a liquid and a gas.
 図4に示す冷却部7は、一例として、液体吐出ノズル7A、気体吐出ノズル7B、および液体排出部7Cを備える。
 液体吐出ノズル7Aは、液体冷媒を、軸線C上に配置された加工用チューブ20に噴射する。液体冷媒は、図示略の液体冷媒供給部から配管を通して液体吐出ノズル7Aに供給される。
 液体冷媒としては、例えば、水が用いられてもよい。液体冷媒は、液体で吐出されてもよいし、液滴化された状態で吐出されてもよい。液体冷媒を液滴化する場合、液体冷媒が微粒化するため、液体冷媒に噴射用気体が混合されてもよい。
 例えば、液体吐出ノズル7Aは、液体冷媒を空気などの気体とともに霧状にして吐出するスプレイノズルが用いられてもよい。このような構成では、液体冷媒と混合される気体も冷媒としての機能を有する。
 この場合、液体冷媒が霧状に吐出されるため、加工用チューブ20との接触によって気化が起こりやすくなる。液体冷媒の液滴が加工用チューブ20と接触して気化することによって、加工用チューブ20から気化熱を奪うため、加工用チューブ20の冷却効率が向上する。
As an example, the cooling unit 7 illustrated in FIG. 4 includes a liquid discharge nozzle 7A, a gas discharge nozzle 7B, and a liquid discharge unit 7C.
The liquid discharge nozzle 7A injects the liquid refrigerant onto the processing tube 20 disposed on the axis C. The liquid refrigerant is supplied from a liquid refrigerant supply unit (not shown) to the liquid discharge nozzle 7A through a pipe.
For example, water may be used as the liquid refrigerant. The liquid refrigerant may be discharged as a liquid, or may be discharged in the form of droplets. When the liquid refrigerant is formed into droplets, the liquid refrigerant is atomized, so that an injection gas may be mixed with the liquid refrigerant.
For example, as the liquid discharge nozzle 7A, a spray nozzle that discharges the liquid refrigerant in a mist form together with a gas such as air may be used. In such a configuration, the gas mixed with the liquid refrigerant also has a function as a refrigerant.
In this case, since the liquid refrigerant is discharged in the form of a mist, vaporization easily occurs due to contact with the processing tube 20. Since the liquid refrigerant droplets are vaporized in contact with the processing tube 20, the heat of vaporization is removed from the processing tube 20, so that the cooling efficiency of the processing tube 20 is improved.
 気体吐出ノズル7Bは、気体冷媒を、軸線C上に配置された加工用チューブ20に噴射する。気体冷媒は、図示略の気体冷媒供給部から配管を通して気体吐出ノズル7Bに供給される。
 気体冷媒としては、例えば、空気が用いられてもよい。気体冷媒は、加工用チューブ20との接触において、加工用チューブ20の表面に付着した液体冷媒の乾燥を促進するため、乾燥気体が用いられることがより好ましい。
 図4は模式図のため、液体吐出ノズル7A、気体吐出ノズル7Bが、加工用チューブ20の上側のみに描かれている。しかし、液体吐出ノズル7A、気体吐出ノズル7Bは、加工用チューブ20の周方向における冷却に偏りが生じないために、適宜位置に適宜個数配置されてよい。例えば、液体吐出ノズル7A、気体吐出ノズル7Bは、複数設けられ軸線Cを囲んでもよい。
The gas discharge nozzle 7B injects the gas refrigerant onto the processing tube 20 arranged on the axis C. The gas refrigerant is supplied from a gas refrigerant supply unit (not shown) to the gas discharge nozzle 7B through a pipe.
For example, air may be used as the gas refrigerant. The gas refrigerant is more preferably a dry gas in order to promote drying of the liquid refrigerant adhering to the surface of the processing tube 20 in contact with the processing tube 20.
4 is a schematic diagram, the liquid discharge nozzle 7A and the gas discharge nozzle 7B are drawn only on the upper side of the processing tube 20. FIG. However, the liquid discharge nozzle 7 </ b> A and the gas discharge nozzle 7 </ b> B may be arranged in an appropriate number at appropriate positions so that the cooling in the circumferential direction of the processing tube 20 is not biased. For example, a plurality of liquid discharge nozzles 7A and gas discharge nozzles 7B may be provided and surround the axis C.
 液体排出部7Cは、液体吐出ノズル7Aから吐出された液体冷媒を回収する装置部分である。液体排出部7Cは、液体冷媒を貯留する貯留容器と、貯留容器から液体冷媒を排出するドレインとを備える。ドレインから排出される液体冷媒は、回収後再利用されてもよいし、排水処理されてもよい。
 液体排出部7Cは、液体吐出ノズル7Aから吐出された液体冷媒が回収できる位置に配置されている。液体排出部7Cは、少なくとも、軸線Cより上側に配置された液体吐出ノズル7Aに対向する位置に配置される。特に、本実施形態では、液体排出部7Cは、軸線Cを間に挟んで液体吐出ノズル7Aおよび気体吐出ノズル7Bと対向するように設けられている。このため、液体排出部7Cは、加工用チューブ20に付着した後に、気体吐出ノズル7Bからの気体冷媒が吹き付けられることによって加工用チューブ20から離脱した液体冷媒も回収できる。
The liquid discharge part 7C is an apparatus part that collects the liquid refrigerant discharged from the liquid discharge nozzle 7A. The liquid discharge unit 7C includes a storage container that stores the liquid refrigerant, and a drain that discharges the liquid refrigerant from the storage container. The liquid refrigerant discharged from the drain may be reused after recovery or may be subjected to wastewater treatment.
The liquid discharge part 7C is disposed at a position where the liquid refrigerant discharged from the liquid discharge nozzle 7A can be recovered. The liquid discharge part 7C is disposed at a position facing at least the liquid discharge nozzle 7A disposed above the axis C. In particular, in the present embodiment, the liquid discharge portion 7C is provided so as to face the liquid discharge nozzle 7A and the gas discharge nozzle 7B with the axis C interposed therebetween. For this reason, after the liquid discharge part 7C adheres to the processing tube 20, the liquid refrigerant separated from the processing tube 20 can be recovered by blowing the gas refrigerant from the gas discharge nozzle 7B.
 液体吐出ノズル7Aから吐出される液体冷媒と、気体吐出ノズル7Bから吐出される気体冷媒とが分布する領域は、冷却用領域Rを構成する。
 軸線Cに対する冷却用領域Rの径方向の大きさは、少なくとも加工用チューブ20を内部に通すことができる大きさである。
 軸線Cに沿う冷却用領域Rの長さは、チューブ搬送機構6によって加工用チューブ20が冷却用領域Rを通過する間に、加工用チューブ20が、加工用チューブ20の材料のガラス転移点未満の温度になるまで冷却される程度である。冷却用領域Rの長さは、加工用チューブ20の通過速度と、冷却部7における冷却性能と、に応じて、適宜の値に設定される。
A region where the liquid refrigerant discharged from the liquid discharge nozzle 7A and the gas refrigerant discharged from the gas discharge nozzle 7B are distributed constitutes a cooling region RC .
The diameter direction of the cooling area R C with respect to the axis C is large enough to be passed through the inside of at least the working tube 20.
The length of the cooling area R C along the axis C, while the working tube 20 by the tube conveying mechanism 6 passes through the cooling area R C, the processing tube 20, the glass transition of the material of the processing tube 20 It is only cooled to a temperature below the point. The length of the cooling region RC is set to an appropriate value according to the passing speed of the processing tube 20 and the cooling performance in the cooling unit 7.
 図5に示す操作部9は、操作者からの操作入力を制御部8に伝達する装置部分である。操作部9は、例えば、操作レバー、操作ボタン、スイッチ、キーボード、マウス、操作パネルなどの適宜の操作入力手段を備える。
 操作部9は、後述する制御部8と、通信できる状態で接続されている。
An operation unit 9 illustrated in FIG. 5 is a device part that transmits an operation input from the operator to the control unit 8. The operation unit 9 includes appropriate operation input means such as an operation lever, an operation button, a switch, a keyboard, a mouse, and an operation panel.
The operation unit 9 is connected to a control unit 8 to be described later in a communicable state.
 図5に示すように、制御部8は、操作部9からの操作入力に基づいて、チューブひねり装置1の動作を制御する装置部分である。
 制御部8は、操作部9、ヒーター2、冷却部7、ローラー駆動部4D、およびクランパー駆動部5C、6Cと、通信できる状態で接続されている。
 制御部8は、制御モードとして、自動モードと、マニュアルモードと、を有している。
 自動モードは、作業者が制御に必要な情報を入力した後、加工開始の操作入力が行われたら、制御部8がチューブひねり装置1の動作を自動的に制御する制御モードである。
 マニュアルモードは、自動モードにおいて実行される後述の動作の一部または全てを作業者の操作入力に基づいて実行する制御モードである。
 以下では、特に断らない限り、自動モードの動作について説明する。
 制御部8における具体的な制御動作は、後述するチューブひねり装置1の動作説明の中で説明する。
 制御部8は、本実施形態では、CPU、メモリ、入出力インターフェース、外部記憶装置などを備えるコンピュータを含んで構成されている。制御部8は、メモリに記憶された制御プログラムを実行することによって、後述する制御を行う。
As shown in FIG. 5, the control unit 8 is a device part that controls the operation of the tube twisting device 1 based on an operation input from the operation unit 9.
The control unit 8 is connected to the operation unit 9, the heater 2, the cooling unit 7, the roller driving unit 4D, and the clamper driving units 5C and 6C in a communicable state.
The control unit 8 has an automatic mode and a manual mode as control modes.
The automatic mode is a control mode in which the controller 8 automatically controls the operation of the tube twisting device 1 when an operation input for starting machining is performed after the operator inputs information necessary for control.
The manual mode is a control mode in which part or all of the below-described operations executed in the automatic mode are executed based on the operator's operation input.
Hereinafter, the operation in the automatic mode will be described unless otherwise specified.
A specific control operation in the control unit 8 will be described in an operation description of the tube twisting device 1 described later.
In the present embodiment, the control unit 8 includes a computer including a CPU, a memory, an input / output interface, an external storage device, and the like. The control unit 8 performs later-described control by executing a control program stored in the memory.
 本実施形態の医療用チューブひねり方法について、チューブひねり装置1の動作とともに説明する。
 図8は、本発明の実施形態の医療用チューブひねり方法の一例を示すフローチャートである。図9は、ひねり部形成領域の一例を示す模式図である。図10~図13は、本発明の実施形態の医療用チューブひねり装置の動作説明図である。
The medical tube twisting method of the present embodiment will be described together with the operation of the tube twisting device 1.
FIG. 8 is a flowchart showing an example of the medical tube twisting method according to the embodiment of the present invention. FIG. 9 is a schematic diagram illustrating an example of a twisted portion forming region. 10 to 13 are explanatory views of the operation of the medical tube twisting device according to the embodiment of the present invention.
 本実施形態の医療用チューブひねり方法においては、例えば、図8に示すステップS1~S11が図8に示すフローに沿って行われてもよい。 In the medical tube twisting method of the present embodiment, for example, steps S1 to S11 shown in FIG. 8 may be performed along the flow shown in FIG.
 ステップS1では、加工用チューブ20に芯金が挿入される。
 まず、適宜の長さに切断された加工用チューブ20と、加工用チューブ20に挿入する芯金10(図4参照)とが準備される。
 芯金10は、加工用チューブ20がひねり加工の妨げとなる程度に湾曲したり、搬送中に座屈したりしないように、加工用チューブ20を補強する線状部材である。芯金10は、加工用チューブ20よりも長い。本実施形態では、ひねり加工の間、加工用チューブ20を真直に保つため、芯金10も真直に延びている。
 芯金10は、加工用チューブ20のガイドワイヤールーメン30bにおいて軸方向および周方向に摺動できる状態で嵌合できる形状に構成される。具体的には、ガイドワイヤールーメン30bの内径よりもわずかに小さい外径を有するワイヤーが用いられる。
 芯金10の材料としては、加工用チューブ20の加熱温度に対する耐熱性を有する金属または樹脂材料が用いられる。例えば、芯金10の材料としては、ステンレス、PEEK(ポリエーテルエーテルケトン)などが用いられてもよい。
In step S <b> 1, a core metal is inserted into the processing tube 20.
First, a processing tube 20 cut to an appropriate length and a cored bar 10 (see FIG. 4) to be inserted into the processing tube 20 are prepared.
The cored bar 10 is a linear member that reinforces the processing tube 20 so that the processing tube 20 is not bent to an extent that hinders twisting processing or buckles during conveyance. The cored bar 10 is longer than the processing tube 20. In this embodiment, the cored bar 10 also extends straight in order to keep the processing tube 20 straight during the twisting process.
The cored bar 10 is configured in a shape that can be fitted in a state in which the guidewire lumen 30b of the processing tube 20 can slide in the axial direction and the circumferential direction. Specifically, a wire having an outer diameter slightly smaller than the inner diameter of the guide wire lumen 30b is used.
As the material of the cored bar 10, a metal or resin material having heat resistance against the heating temperature of the processing tube 20 is used. For example, stainless steel, PEEK (polyetheretherketone), or the like may be used as the material of the cored bar 10.
 芯金10は、ガイドワイヤールーメン30bに通されて、ガイドワイヤールーメン30bを貫通する。図4に示す例では、芯金10の両端部は、第1端部e1および第2端部e2からそれぞれ突出している。
 以上で、ステップS1が終了する。
 ステップS1は、例えば、予め芯金10がガイドワイヤールーメン20bに通された加工用チューブ20が準備されていれば省略することができる。
The core metal 10 is passed through the guide wire lumen 30b and penetrates the guide wire lumen 30b. In the example shown in FIG. 4, both ends of the cored bar 10 protrude from the first end e1 and the second end e2.
Thus, step S1 is completed.
Step S1 can be omitted if, for example, the processing tube 20 in which the core 10 is passed through the guide wire lumen 20b is prepared in advance.
 ステップS1の後、ステップS2が行われる。
 ステップS2では、加工用チューブ20がチューブひねり装置1にセットされる。
 ステップS1において芯金10が挿入された加工用チューブ20は、図4に示すように、芯金10とともにチューブひねり装置1にセットされる。
 チューブひねり装置1の初期状態では、クランパー6A、6B、クランパー5A、5B、および把持ローラー4A、4B、4Cはそれぞれ把持解除状態になっている。クランパー6A、6Bは、軸線Cに沿う方向の移動範囲において最も第2端部Eb寄りに位置している。
Step S2 is performed after step S1.
In step S <b> 2, the processing tube 20 is set in the tube twisting device 1.
The processing tube 20 into which the core metal 10 is inserted in step S1 is set in the tube twisting device 1 together with the core metal 10 as shown in FIG.
In the initial state of the tube twisting device 1, the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B, and 4C are in a gripping release state. The clampers 6A and 6B are located closest to the second end Eb in the movement range in the direction along the axis C.
 作業者は、芯金10が通された加工用チューブ20を、第1端部e1の方から軸線Cに沿ってチューブひねり装置1内に挿入する。作業者は、加工用チューブ20の第1端部e1の近傍がクランパー6A、6Bの間に入るように加工用チューブ20を移動する。このとき、加工用チューブ20は、芯金10で補強されているため、自重によるたわみを除けば、略真直状態である。
 この後、作業者は、操作部9を通して、クランパー6A、6B、クランパー5A、5B、および把持ローラー4A、4B、4Cをそれぞれ把持状態とする操作入力を行う。
 操作部9を介した操作入力に応じて、制御部8は、クランパー6A、6B、クランパー5A、5B、および把持ローラー4A、4B、4Cによって、加工用チューブ20が把持されるように、クランパー駆動部6C、5C、ローラー駆動部4Dを制御する。
 加工用チューブ20は、第1端部e1の近傍においてクランパー6A、6Bによって把持される。加工用チューブ20は、冷却部7とヒーター2との間においてクランパー5A、5Bによって把持される。加工用チューブ20は、把持ローラー4A、4B、4Cによって把持される。
 この結果、加工用チューブ20は、中心軸線Oが軸線Cと同軸である状態で、チューブひねり装置1にセットされる。
 以上で、ステップS2が終了する。
The operator inserts the processing tube 20 through which the core bar 10 is passed into the tube twisting device 1 along the axis C from the first end e1. The operator moves the processing tube 20 so that the vicinity of the first end e1 of the processing tube 20 enters between the clampers 6A and 6B. At this time, since the processing tube 20 is reinforced by the cored bar 10, it is substantially straight except for deflection due to its own weight.
Thereafter, the operator performs an operation input for bringing the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B, and 4C into the gripping state through the operation unit 9, respectively.
In response to an operation input via the operation unit 9, the control unit 8 drives the clamper so that the processing tube 20 is gripped by the clampers 6A and 6B, the clampers 5A and 5B, and the gripping rollers 4A, 4B and 4C. The units 6C and 5C and the roller driving unit 4D are controlled.
The processing tube 20 is gripped by the clampers 6A and 6B in the vicinity of the first end e1. The processing tube 20 is gripped between the cooling unit 7 and the heater 2 by the clampers 5A and 5B. The processing tube 20 is gripped by the gripping rollers 4A, 4B, 4C.
As a result, the processing tube 20 is set in the tube twisting apparatus 1 with the central axis O being coaxial with the axis C.
This is the end of step S2.
 ステップS2の後、ステップS3が行われる。
 ステップS3では、ひねり部30Bの加工回数Nが設定される。
 チューブひねり装置1では、後述するように、加工用チューブ20は、加熱用領域Rに配置された部分においてひねり加工される。このため、ひねり部30Bの長さLが加熱用領域Rの軸線Cに沿う長さLより長い場合には、複数回のひねり加工が行われる。
 例えば、図9には、加工回数Nが複数の場合における加工用チューブ20上の第nのひねり部形成領域T(ただし、n=1,…、N、以下同様)が図示されている。各第nのひねり部形成領域の中心軸線Oに沿う長さは、いずれもLである。互いに隣り合う第kのひねり部形成領域と第k+1のひねり部形成領域と(ただし、k=1,…,N-1)は、幅L(ただし、0≦L<L)の重なりを有する。
 例えば、軸線Cに沿う方向における加熱用領域Rの温度分布などによっては、加熱用領域Rの範囲における適正にひねり加工された長さがLよりも短くなる場合がある。このような場合に、幅Lの重なりが設けられていると、各第nのひねり部形成領域Tの境界部においてひねり加工による形状が不安定な部位が、再度ひねり加工を受けることによって、適正な形状に修正される。さらに、幅Lの重なりが設けられていると、各第nのひねり部形成領域Tの境界部における第1ルーメン20c、第2ルーメン20dの螺旋形状の変化がより滑らかになる。
 例えば、幅Lは、加熱用領域Rの軸線Cに沿う長さLの50%以上とされてもよい。
Step S3 is performed after step S2.
In step S3, the number of times N of processing of the twisted portion 30B is set.
In the tube twisting device 1, as will be described later, the processing tube 20 is twisted at a portion disposed in the heating region RH . Therefore, the twisting portion 30B length L B is longer than the length L T along the axis C of the heating region R H is, multiple twist processing is performed.
For example, FIG. 9 shows an nth twist portion forming region T n (where n = 1,..., N, and so on) on the processing tube 20 when the number of times of processing N is plural. Length along the center axis O of the twist portion formation region of each of the n are both L T. The kth twist portion forming region and the k + 1 th twist portion forming region (where k = 1,..., N−1) adjacent to each other overlap each other with a width L O (where 0 ≦ L O <L T ). Have
For example, some such as the temperature distribution of the heating region R H in the direction along the axis C, there is a case where a length that is properly twist processing in the range of the heating region R H is shorter than L T. In such a case, if an overlap of the width L 2 O is provided, a portion whose shape is unstable due to the twist processing at the boundary portion of each n-th twist portion formation region T n is subjected to the twist processing again. , Corrected to the proper shape. Further, when the overlap width L O is provided, the first lumen 20c in the boundary portion of the twist portion formation region T n of each of the n, the change in helical shape of the second lumen 20d becomes smoother.
For example, the width L O may be 50% or more of the length L T along the axis C of the heating region R H.
 各第nのひねり部形成領域Tは、全体として、チューブ30におけるひねり部30Bに対応するひねり部領域Tを構成する。ひねり部領域Tは、チューブ30におけるひねり部30Bに対応する領域である。
 ひねり部領域Tと第1端部e1との間は、チューブ30における非ひねり部30Aに対応する領域である。ひねり部領域Tと第2端部e2との間は、チューブ30における非ひねり部30Cに対応する領域である。これらの領域では、ひねり加工が行われないため、以下では、加工用チューブ20においても、非ひねり部30A、30Cと称する。
 加工用チューブ20における非ひねり部30A、30Cの中心軸線Oに沿う長さはチューブ30と同様、L、Lである。
 これに対して、ひねり部領域Tの中心軸線Oに沿う長さL’は、ひねり加工後に、ひねり部30Bの長さLに一致する長さである。このような長さL’は、例えば、長さL、加工用チューブ20の材料、ひねり加工のひねり量、ひねり部の外径などに応じて、予め決められている。
 本実施形態では、ひねり部30Bの外径が、非ひねり部30A、30Cの外径と略一致するようにひねり加工が行われる場合の例で説明する。この場合には、L’はLよりも長くする必要がある。
Twist portion formation region T n of each of the n as a whole, constitute a twist region T B corresponding to the twist portion 30B of the tube 30. The twist portion region TB is a region corresponding to the twist portion 30 </ b > B in the tube 30.
Between the twisting area T B and the first end e1 is a region corresponding to the non-twist portion 30A of the tube 30. Between the twisting area T B and a second end e2 is an area corresponding to the non-twist portion 30C of the tube 30. In these regions, the twisting process is not performed, and hence the processing tube 20 is also referred to as non-twisted portions 30A and 30C below.
The lengths along the central axis O of the non-twisted portions 30 </ b > A and 30 </ b > C in the processing tube 20 are L A and LB as in the tube 30.
In contrast, the length L B 'is along the central axis O of the torsion region T B, after twisting process, is the length that matches the length L B of the twisting portion 30B. Such a length L B ′ is determined in advance according to, for example, the length L B , the material of the processing tube 20, the twist amount of twist processing, the outer diameter of the twist portion, and the like.
In the present embodiment, an example in which twisting is performed so that the outer diameter of the twisted portion 30B substantially matches the outer diameter of the non-twisted portions 30A and 30C will be described. In this case, L B 'needs to be longer than L B.
 加工回数Nは、例えば、操作部9を介した作業者の操作入力によって、制御部8に設定されてもよい。
 加工回数Nは、例えば、作業者によって操作部9に入力される加工用チューブ20の長さL’等の情報と、制御部8に予め記憶された長さL、Lの情報とに基づいて、制御部8によって算出されてもよい。
 加工回数Nが設定されたら、ステップS3が終了する。
The processing number N may be set in the control unit 8 by, for example, an operator input through the operation unit 9.
The number of times of processing N is, for example, information such as the length L B ′ of the processing tube 20 input to the operation unit 9 by the operator, and information on the lengths L T and L O stored in advance in the control unit 8. Based on the above, it may be calculated by the control unit 8.
When the number of times of machining N is set, step S3 is finished.
 ステップS3の後、ステップS4が行われる。
 ステップS4は、作業者が、操作部9を操作してひねり加工を開始するための操作入力を行うことによって開始される。操作入力が行われると、制御部8は、ひねり加工を開始するための初期化動作を開始する。
 例えば、制御部8は、ひねり加工の実行回数を制御するためのカウンタnを0に設定する。
 初期化動作が完了すると、ステップS4が終了する。
Step S4 is performed after step S3.
Step S4 is started when the operator performs an operation input for operating the operation unit 9 to start twist processing. When the operation input is performed, the control unit 8 starts an initialization operation for starting the twisting process.
For example, the control unit 8 sets a counter n for controlling the number of times of twist processing to 0.
When the initialization operation is completed, step S4 ends.
 ステップS4の後、ステップS5が行われる。
 ステップS5では、制御部8がカウンタnを更新する(n=n+1)。
 ステップS5の後、制御部8の制御によって、チューブひねり装置1がステップS6~S10の動作を行う。
Step S5 is performed after step S4.
In step S5, the control unit 8 updates the counter n (n = n + 1).
After step S5, the tube twisting device 1 performs the operations of steps S6 to S10 under the control of the control unit 8.
 ステップS6では、加工用チューブ20における第nのひねり部形成領域Tが加熱用領域Rに配置される。
 具体的には、制御部8は、クランパー5A、5Bおよび把持ローラー4A、4B、4Cのいずれかが把持状態になっている場合、把持状態を把持解除状態に変えるよう制御する。例えば、クランパー5A、5Bおよび把持ローラー4A、4B、4Cが把持状態になっている場合には、クランパー駆動部5C、ローラー駆動部4Dに制御信号を送って、クランパー5A、5Bと、把持ローラー4A、4B、4Cと、をそれぞれ把持解除状態に変えるよう制御する。これにより、クランパー駆動部5C、ローラー駆動部4Dによって、クランパー5A、5Bと、把持ローラー4A、4B、4Cと、がそれぞれ把持解除状態になる。
In step S6, the n-th twist portion forming region T n in the processing tube 20 is arranged in the heating region RH .
Specifically, when any of the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C is in the gripping state, the control unit 8 controls to change the gripping state to the gripping release state. For example, when the clampers 5A, 5B and the gripping rollers 4A, 4B, 4C are in the gripping state, a control signal is sent to the clamper driving unit 5C, the roller driving unit 4D, and the clampers 5A, 5B and the gripping roller 4A 4B and 4C are controlled so as to change to the grip release state. As a result, the clamper driving unit 5C and the roller driving unit 4D bring the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C into the grip release state, respectively.
 把持解除状態になった後、制御部8は、クランパー駆動部6Cに制御信号を送って、第nのひねり部形成領域Tが加熱用領域Rに含まれる位置に加工用チューブ20を移動するよう制御する。これにより、クランパー駆動部6Cによって、第nのひねり部形成領域Tが加熱用領域Rに含まれる位置に、加工用チューブ20が移動する(図4参照)。
 加工用チューブ20の移動方向および移動量は、ステップS5における第nのひねり部形成領域Tの位置の情報に基づいて、制御部8によって求められる。
Once in the grip release state, the control unit 8 sends a control signal to the damper driving unit 6C, move the working tube 20 to a position where twist portion formation region T n of the n is included in the heating region R H Control to do. Thus, the clamper driving unit 6C, a position twist portion formation region T n of the n is included in the heating region R H, the processing tube 20 is moved (see FIG. 4).
Movement direction and the movement amount of the processing tube 20 based on the position information of the twist portion formation region T n of the n in step S5, determined by the control unit 8.
 この後、制御部8は、クランパー駆動部5C、ローラー駆動部4Dに制御信号を送って、クランパー5A、5Bと、把持ローラー4A、4B、4Cと、をそれぞれ把持状態にするよう制御する。これにより、クランパー駆動部5C、ローラー駆動部4Dによって、クランパー5A、5Bと、把持ローラー4A、4B、4Cと、がそれぞれ把持状態になる。
 以上でステップS6が終了する。
Thereafter, the control unit 8 sends control signals to the clamper driving unit 5C and the roller driving unit 4D to control the clampers 5A and 5B and the gripping rollers 4A, 4B, and 4C to be in the gripping state. As a result, the clamper driving unit 5C and the roller driving unit 4D hold the clampers 5A and 5B and the holding rollers 4A, 4B, and 4C, respectively.
Step S6 is complete | finished above.
 ステップS6には、チューブ搬送機構6によって加工用チューブ20を移動し、加熱用領域Rに加工用チューブ20の一部分(第nのひねり部形成領域T)を配置する第1の動作が含まれる。 Step S6 includes a first operation in which the processing tube 20 is moved by the tube transport mechanism 6 and a part of the processing tube 20 (the nth twist portion formation region T n ) is disposed in the heating region RH. It is.
 ステップS6の後、ステップS7が行われる。
 ステップS7では、第nのひねり部形成領域Tの加工用チューブ20が加熱される。
 具体的には、制御部8は、ヒーター2に加熱を開始する制御信号を送って、ヒーター2の加熱制御を行う。ヒーター2は、加熱用領域Rにおける加工用チューブ20の温度をひねり加工を行うことができる温度に保つ。
 ここで、加熱用領域Rにおける加工用チューブ20の温度は、適宜の温度センサによって計測されてもよい。ただし、ヒーター2の加熱温度、加熱時間などの加熱条件と、加工用チューブ20の温度との対応関係が予め知られている場合には、加工用チューブ20の温度の計測は省略されてもよい。
Step S7 is performed after step S6.
In step S7, the processing tube 20 in the nth twist portion forming region Tn is heated.
Specifically, the control unit 8 controls the heating of the heater 2 by sending a control signal for starting heating to the heater 2. The heater 2 keeps the temperature of the processing tube 20 in the heating region RH at a temperature at which twisting can be performed.
Here, the temperature of the processing tube 20 in the heating region RH may be measured by an appropriate temperature sensor. However, when the correspondence relationship between the heating conditions such as the heating temperature and the heating time of the heater 2 and the temperature of the processing tube 20 is known in advance, the measurement of the temperature of the processing tube 20 may be omitted. .
 ステップS7では、後述するステップS8におけるひねり加工に支障がなくなるタイミングで、ヒーター2による加熱が停止される。これにより、ステップS7が終了する。
 ステップS7は、後述するステップS8におけるひねり加工に支障がなければ、ステップS8の開始前に終了されてもよい。例えば、ステップS7における加熱が終了されても、後述するステップS8におけるひねり加工が終了するまで、加工用チューブ20の温度がひねり加工を行うことができる温度になっている場合、ステップS7は、ステップS8の開始前に終了されてもよい。
 ステップS7は、後述のステップS8においてひねり加工が終了するまで、継続されてもよい。この場合、加工用チューブ20の温度は、加熱停止後の温度低下の余裕を見込んだ温度に設定しなくてもよい。このため、ステップS7における加工用チューブ20の温度は、ひねり加工を行うことができる温度範囲のうち、より低い温度に設定してもよい。
In step S7, heating by the heater 2 is stopped at a timing at which no trouble is caused in the twisting process in step S8 described later. Thereby, step S7 is completed.
Step S7 may be ended before the start of step S8 if there is no problem with the twisting process in step S8 described later. For example, even if the heating in step S7 is completed, if the temperature of the processing tube 20 is a temperature at which the twisting process can be performed until the twisting process in step S8 to be described later is completed, step S7 is a step. It may be ended before the start of S8.
Step S7 may be continued until the twist processing is finished in step S8 described later. In this case, the temperature of the processing tube 20 may not be set to a temperature that allows for a margin of temperature decrease after the heating is stopped. For this reason, you may set the temperature of the tube 20 for a process in step S7 to a lower temperature among the temperature ranges which can perform a twist process.
 ステップS7には、加熱用領域Rに配置された加工用チューブ20の一部分をヒーター2によって加熱する第2の動作が含まれる。 Step S7 includes a second operation in which a portion of the processing tube 20 disposed in the heating region RH is heated by the heater 2.
 ステップS7において、加工用チューブ20がひねり加工を行うことができる温度になると、ステップS8が行われる。
 ステップS8では、第nのひねり部形成領域Tに第nのひねり部tが形成される。
 具体的には、制御部8は、ローラー駆動部4Dに制御信号を送って、把持ローラー4A、4B、4Cを所定量回転するよう制御する。図10に示すように、ローラー駆動部4Dは、把持ローラー4A、4B、4Cをそれぞれのローラー中心軸C、C、Cを中心とした同方向に所定量回転させる。これにより、把持ローラー4A、4B、4Cに把持された加工用チューブ20が、把持ローラー4A、4B、4Cの回転方向と反対方向に回転する。加工用チューブ20は、把持ローラー4A、4B、4Cの把持中心である軸線Cを中心として回転する。加工用チューブ20において、軸線Cと同軸であるガイドワイヤールーメン20bには、芯金10が周方向に摺動できる状態で通されている。このため、加工用チューブ20は、芯金10の表面を滑って周方向に回転する。
 所定量の回転が終了したら、把持ローラー4A、4B、4Cは、回転が停止された状態で、加工用チューブ20を把持し続ける。
 この結果、加工用チューブ20の、クランパー5A、5Bによる第1の把持位置と、把持ローラー4A、4B、4Cによる第2の把持位置と、の間の部分に軸線Cを中心としたひねりが加えられる。加工用チューブ20の、第1の把持位置と第2の把持位置との間の部分において、内部の第1ルーメン20c、第2ルーメン20dが螺旋を描くように変形する。
 このため、第nのひねり部形成領域Tには、第nのひねり部tが形成される。
In step S7, when the processing tube 20 reaches a temperature at which twisting can be performed, step S8 is performed.
In step S8, twisting portion t n of the n is formed in the twist portion formation region T n of the n.
Specifically, the control unit 8 sends a control signal to the roller driving unit 4D to control the gripping rollers 4A, 4B, and 4C to rotate by a predetermined amount. As shown in FIG. 10, the roller driving unit 4D is gripped rollers 4A, 4B, 4C each roller central axis C A, C B, by a predetermined amount of rotation in the same direction around the C C. Thereby, the processing tube 20 gripped by the gripping rollers 4A, 4B, and 4C rotates in the direction opposite to the rotation direction of the gripping rollers 4A, 4B, and 4C. The processing tube 20 rotates about the axis C that is the gripping center of the gripping rollers 4A, 4B, and 4C. In the processing tube 20, the cored bar 10 is passed through a guide wire lumen 20 b coaxial with the axis C in a state in which the cored bar 10 can slide in the circumferential direction. For this reason, the processing tube 20 slides on the surface of the cored bar 10 and rotates in the circumferential direction.
When the predetermined amount of rotation is completed, the gripping rollers 4A, 4B, and 4C continue to grip the processing tube 20 in a state where the rotation is stopped.
As a result, a twist about the axis C is added to the portion of the processing tube 20 between the first gripping position by the clampers 5A, 5B and the second gripping position by the gripping rollers 4A, 4B, 4C. It is done. In the portion of the processing tube 20 between the first gripping position and the second gripping position, the inner first lumen 20c and the second lumen 20d are deformed so as to draw a spiral.
Thus, the twist portion formation region T n of the n, twisting portion t n of the n is formed.
 特に、加熱用領域Rに位置する加工用チューブ20がガラス転移点以上に加熱されていると、加工用チューブ20は非弾性的に変形し、ひねりの外力が解除されても変形前の状態に戻らない。
 加熱用領域Rと第1の把持位置との間、および加熱用領域Rと第2の把持位置との間では、加工用チューブ20の変形は弾性的である。この場合、ひねりの外力が解除されると加工用チューブ20は変形前の状態に戻る。
 加熱用領域Rの両端部では、両端部における温度降下と、加熱用領域Rの外部に位置する加工用チューブ20への熱伝導によって進む放熱と、の影響を受ける。このため、加熱用領域Rの両端部における加工用チューブ20の温度は、加熱用領域Rの中央部の温度よりも低くなる。
 このため、加熱用領域Rの両端部における加工用チューブ20の形状は、ひねり加工の外力が解除されると、ある程度は、変形前の状態に戻ろうとする傾向がある。
 このため、第nのひねり部tにおける第1ルーメン20c、第2ルーメン20dの螺旋形状は、第nのひねり部形成領域Tの両端部を除くと、ひねり量に応じて一定の螺旋形状になっている。
 ただし、第nのひねり部形成領域Tにおける第2端部e2寄りの端部における螺旋形状の変化は、後述するように第n+1のひねり部形成領域Tのひねり加工時に修正される。
In particular, when the processing tube 20 located in the heating region RH is heated to a temperature higher than the glass transition point, the processing tube 20 is deformed inelastically, and the state before deformation is released even when the external force of the twist is released. Do not return to.
The deformation of the processing tube 20 is elastic between the heating region RH and the first gripping position and between the heating region RH and the second gripping position. In this case, when the external force of the twist is released, the processing tube 20 returns to the state before the deformation.
The opposite ends of the heating region R H, undergoes a temperature drop in the end portions, the heat radiation and proceeding by heat conduction to the working tube 20 located outside the heating region R H, the effect of. Therefore, the temperature of the processing tube 20 at the both end portions of the heating region R H is lower than the temperature of the central portion of the heating region R H.
For this reason, the shape of the processing tube 20 at both ends of the heating region RH tends to return to the state before the deformation to some extent when the external force of the twist processing is released.
Therefore, the first lumen 20c of the twisting unit t n of the n, helical shape of the second lumen 20d, except for both end portions of the twist portion formation region T n of the n, constant helix shape in accordance with the twist amount It has become.
However, the change in helical shape at the second end e2 side of the end portion in the twist portion formation region T n of the n is modified during twisting processing of the (n + 1) of the twist portion formation region T n as described later.
 ステップS8において、ひねり加工は、実質的に把持ローラー4A、4B、4Cの回転停止とともに終了する。しかし、加工用チューブ20の変形状態を安定させるため、把持ローラー4A、4B、4Cの回転停止後、一定時間が経過するまでは、把持ローラー4A、4B、4Cによる把持状態を維持することがより好ましい。この場合、ひねり加工には、把持ローラー4A、4B、4Cによって加工用チューブ20を一定時間把持することが含まれる。
 以上で、ステップS8が終了する。
In step S8, the twisting process is substantially terminated with the rotation of the gripping rollers 4A, 4B, and 4C stopped. However, in order to stabilize the deformed state of the processing tube 20, the gripping state by the gripping rollers 4 </ b> A, 4 </ b> B, 4 </ b> C may be maintained until a certain time has elapsed after the rotation of the gripping rollers 4 </ b> A, 4 </ b> B, 4 </ b> C is stopped. preferable. In this case, the twisting process includes gripping the processing tube 20 by the gripping rollers 4A, 4B, and 4C for a predetermined time.
Above, step S8 is complete | finished.
 ステップS8には、ひねり機構3によって第nのひねり部t(ひねり部)を形成する第3の動作が含まれる。
 ステップS7をステップS8の間に終了する場合、ステップS7は、ステップS8における把持ローラー4A、4B、4Cの回転停止後、速やかに加工用チューブ20の温度がひねり加工を行うことができる温度未満に低下するように、終了することが好ましい。この場合、自然放熱による加工用チューブ20の硬化が始まるため、ひねり加工による変形状態を迅速に固定することができる。
 ステップS8において、把持ローラー4A、4B、4Cの回転停止後、把持状態を一定時間維持する場合、加工用チューブ20の温度は、一定時間の間にひねり加工を行うことができる温度未満に低下することがより好ましい。
Step S8 includes a third operation in which the twist mechanism 3 forms the nth twist portion tn (twist portion).
When step S7 is completed during step S8, step S7 is performed after the stop of rotation of the gripping rollers 4A, 4B, and 4C in step S8, so that the temperature of the processing tube 20 can be quickly reduced to a temperature at which twisting can be performed. It is preferable to end so as to decrease. In this case, since the processing tube 20 is cured by natural heat dissipation, the deformed state due to the twisting process can be quickly fixed.
In step S8, when the gripping state is maintained for a certain time after the rotation of the gripping rollers 4A, 4B, and 4C is stopped, the temperature of the processing tube 20 is lowered to a temperature that can be twisted during the certain time. It is more preferable.
 ステップS8の後に、ステップS9、S10が行われる。
 ステップS9では、第nのひねり部tが加熱用領域Rの外部に移動する。ここで、加熱用領域Rの外部とは、加熱用領域Rよりも低温の外部を意味する。
 チューブひねり装置1においては、特に第nのひねり部tが、冷却部7における冷却用領域Rを通るように移動する。このため、本実施形態では、ステップS9における移動動作は、第1の移動動作と、第2の移動動作と、に分けられる。
 第1の移動動作では、第nのひねり部tにおける第1端部Ea寄りの端部が加熱用領域Rから冷却用領域Rにおける第2端部Eb寄りの端部の位置まで移動する。
 第2の移動動作では、第nのひねり部tが第1の方向fにおいて冷却用領域Rを横切るように移動する。
 ステップS9では、ヒーター2によって加熱された第nのひねり部tが、加熱用領域Rから、加熱用領域Rよりも低温の外部に移動するため、第nのひねり部tの冷却が進むことによって、第nのひねり部tが硬化される。このため、ステップS9においては、第nのひねり部tが硬化されるステップS10が並行して行われることになる。
Steps S9 and S10 are performed after step S8.
In step S9, twisting portion t n of the n moves to the outside of the heating region R H. Here, the external heating region R H, which means the low temperature of the external than the heating area R H.
In the tube twisting device 1, in particular, the n-th twist part t n moves so as to pass through the cooling region RC in the cooling part 7. For this reason, in this embodiment, the movement operation in step S9 is divided into a first movement operation and a second movement operation.
In the first movement operation, the end portion near the first end portion Ea in the n- th twist portion t n moves from the heating region RH to the position of the end portion near the second end portion Eb in the cooling region RC . To do.
In the second travel operation, twisting portion t n of the n moves across the cooling area R C in the first direction f.
In step S9, twisting portion t n of the n which has been heated by the heater 2, the heating region R H, to move to the low temperature of the external than the heating area R H, the cooling of the twisting portion t n of the n As the process proceeds, the n-th twist part t n is cured. Therefore, in step S9, so that the step S10 of twisting unit t n of the n-th cured are performed in parallel.
 ステップS10では、ステップS9における第1の移動動作、第2の移動動作に対応して、第1の硬化、第2の硬化が行われる。
 第1の硬化では、第1の移動動作が行われる間に、第nのひねり部tから放熱が進むため、第nのひねり部tの硬化が進む。
 第2の硬化では、第2の移動動作が行われる間に、後述する冷却部7による冷却によって、第nのひねり部tの硬化が進む。
In step S10, the first curing and the second curing are performed corresponding to the first moving operation and the second moving operation in step S9.
In the first curing, since the heat radiation proceeds from the n-th twist portion t n while the first movement operation is performed, the curing of the n-th twist portion t n proceeds.
In the second curing, while the second moving operation is performed, the n-th twisted portion t n is cured by cooling by the cooling unit 7 described later.
 このように、ステップS9には、第nのひねり部tを加熱用領域Rの外部に移動する動作(本実施形態の医療用チューブひねり方法における第4の動作)が含まれる。
 ステップS10には、加熱用領域R外部において、第nのひねり部tを硬化させる動作(本実施形態の医療用チューブひねり方法における第5の動作)が含まれる。
 特に、チューブひねり装置1においては、第nのひねり部tを、チューブ搬送機構6によって第1の方向fに移動して冷却用領域Rに配置する動作(チューブひねり装置における第4の動作)が行われる。さらに、チューブひねり装置1においては、冷却部7によって冷却用領域Rに配置された第nのひねり部tを硬化させる動作(チューブひねり装置における第5の動作)が含まれる。
Thus, step S9 includes an operation of moving the n-th twist portion t n to the outside of the heating region RH (a fourth operation in the medical tube twisting method of the present embodiment).
Step S10 includes an operation of curing the n-th twist portion t n outside the heating region RH (a fifth operation in the medical tube twisting method of the present embodiment).
In particular, in the tube twisting device 1, an operation of moving the n-th twisted portion t n in the first direction f by the tube transport mechanism 6 and arranging it in the cooling region RC (fourth operation in the tube twisting device). ) Is performed. Furthermore, the tube twisting device 1 includes an operation (fifth operation in the tube twisting device) for curing the nth twisted portion t n arranged in the cooling region RC by the cooling unit 7.
 以下、ステップS9、S10の具体的な動作について説明する。
 制御部8においては、第nのひねり部tの移動は、第nのひねり部形成領域Tの位置情報に基づいて制御される。以下では、第nのひねり部tの代わりに第nのひねり部形成領域Tを用いて説明する。
 制御部8は、チューブ搬送機構6のクランパー駆動部6Cに制御信号を送って、第1の移動動作、第2の移動動作を行うよう制御する。
 これにより、クランパー駆動部6Cによって、第1の移動動作が行われるため、加工用チューブ20の第nのひねり部形成領域Tの第1の方向fにおける端部は、冷却用領域Rの第2端部Eb寄りの端部まで移動する。
 制御部8は、第1の移動動作が終了するまでに、冷却部7に制御信号を送って、液体吐出ノズル7Aからは液体冷媒7aを、気体吐出ノズル7Bからは気体冷媒7bを吐出させるよう制御する。これにより、冷却部7によって、軸線Cに向かって液体冷媒7aおよび気体冷媒7bが吐出される(図11参照)。液体吐出ノズル7A、気体吐出ノズル7Bに対向する軸線Cの周囲には、それぞれ液体冷媒7a、気体冷媒7bが存在する冷却用領域Rが形成される。
Hereinafter, specific operations in steps S9 and S10 will be described.
In the control unit 8, the movement of the nth twist portion t n is controlled based on the positional information of the nth twist portion formation region T n . The following description with reference to twist portion formation region T n of the n instead of the twisting portion t n of the n.
The control unit 8 sends a control signal to the clamper driving unit 6C of the tube transport mechanism 6 so as to perform the first moving operation and the second moving operation.
Thereby, since the first movement operation is performed by the clamper driving unit 6C, the end portion of the n-th twist portion forming region T n of the processing tube 20 in the first direction f is in the cooling region RC . It moves to the end near the second end Eb.
The control unit 8 sends a control signal to the cooling unit 7 until the first moving operation is completed so that the liquid refrigerant 7a is discharged from the liquid discharge nozzle 7A and the gas refrigerant 7b is discharged from the gas discharge nozzle 7B. Control. Thereby, the liquid refrigerant 7a and the gas refrigerant 7b are discharged toward the axis C by the cooling unit 7 (see FIG. 11). Around the axis C facing the liquid discharge nozzle 7A and the gas discharge nozzle 7B, a cooling region RC in which the liquid refrigerant 7a and the gas refrigerant 7b are present is formed, respectively.
 第1の移動動作に続いて、クランパー駆動部6Cによって第2の移動動作を行うため、第nのひねり部形成領域Tは、第1の方向fにおいて、冷却用領域Rを通過するように移動する。図11は、第nのひねり部形成領域T全体が冷却用領域Rの内部に配置されている状態を示す。
 第2の移動動作に伴って、第nのひねり部形成領域Tにおける加工用チューブ20は、液体冷媒7a、気体冷媒7bに順次接触する。これにより、第nのひねり部形成領域Tにおける加工用チューブ20は、初めに液体冷媒7aによって、次に気体冷媒7bによって、それぞれ冷却される。特に、気体冷媒7bは、気体冷媒7b自体の温度による冷却効果と、加工用チューブ20の表面に付着する液体冷媒7aを気化させて気化熱を奪う冷却効果とを備える。さらに、気体冷媒7bは、加工用チューブ20の表面に付着する液体冷媒7aの気化を促進することで、加工用チューブ20の表面を乾燥させる作用も備える。
 このようにして、冷却用領域Rにおいて加工用チューブ20の冷却が進むため、第nのひねり部形成領域Tに形成された第nのひねり部tが硬化する。その結果、第nのひねり部tの形状は安定化する。
Following the first moving operation, for performing a second moving operation by the clamper driving unit 6C, twist portion formation region T n of the n-th in the first direction f, to pass through the cooling area R C Move to. FIG. 11 shows a state in which the entire nth twist portion formation region Tn is disposed inside the cooling region RC .
With the second moving operation, the processing tube 20 in the twist portion formation region T n of the n sequentially contacting the liquid refrigerant 7a, the gaseous refrigerant 7b. Thus, the processing tube 20 in the twist portion formation region T n of the n-th, by liquid refrigerant 7a initially, then by the gas refrigerant 7b, are respectively cooled. In particular, the gas refrigerant 7b has a cooling effect due to the temperature of the gas refrigerant 7b itself and a cooling effect that vaporizes the liquid refrigerant 7a adhering to the surface of the processing tube 20 to take away the heat of vaporization. Furthermore, the gas refrigerant 7b also has an action of drying the surface of the processing tube 20 by promoting vaporization of the liquid refrigerant 7a attached to the surface of the processing tube 20.
In this manner, the cooling of the processing tube 20 proceeds in the cooling region RC , and thus the nth twist portion t n formed in the nth twist portion formation region Tn is cured. As a result, the shape of the twisting portion t n of the n-th stabilized.
 制御部8は、第nのひねり部形成領域Tが冷却用領域Rを通過した後、第2の移動動作を停止するよう制御する。これにより、第nのひねり部形成領域Tが冷却用領域Rよりも第1端部Ea寄りに移動した状態で、加工用チューブ20が停止する。
 以上で、ステップS9、S10が終了する。
Control unit 8, after the twisting portion formation region T n of the n passes through the cooling area R C, performs control so as to stop the second moving operation. Thus, in a state where the twist portion formation region T n of the n is moved in the first end Ea nearer cooling area R C, the processing tube 20 is stopped.
Thus, steps S9 and S10 are completed.
 ステップS9、S10の後、ステップS11が行われる。
 ステップS11では、カウンタnの値が加工回数N以上か否か判定する。
 具体的には、制御部8がカウンタnの値を加工回数Nと比較することにより判定が行われる。
 カウンタnが加工回数N未満であれば、ステップS5に移行する。これにより、上記と同様にして、ステップS5~S11が繰り返される。
 カウンタnが加工回数N以上であれば、制御部8は、チューブひねり装置1による加工用チューブ20の加工を終了する。これにより、チューブ30が製造される。
Step S11 is performed after step S9 and S10.
In step S11, it is determined whether or not the value of the counter n is equal to or greater than the number of machining times N.
Specifically, the determination is performed by the control unit 8 comparing the value of the counter n with the number of times of machining N.
If the counter n is less than the processing number N, the process proceeds to step S5. Accordingly, steps S5 to S11 are repeated in the same manner as described above.
If the counter n is equal to or greater than the number of times of processing N, the control unit 8 ends the processing of the processing tube 20 by the tube twisting device 1. Thereby, the tube 30 is manufactured.
 ここで、ステップS11からステップS5に移行した場合の動作について、簡単に説明する。
 ステップS5では、カウンタがn=n+1に更新される。以下、移行前の状態と分かりやすく対比するため、n+1をそのまま用いて説明する。
 ステップS6では、すでにステップS10において、ひねり機構3が把持解除状態になっているため、ただちに加工用チューブ20が移動する。
 具体的には、制御部8は、クランパー駆動部6Cに制御信号を送って、第n+1のひねり部形成領域Tn+1が加熱用領域Rに含まれる位置に加工用チューブ20を移動するよう制御する。これにより、クランパー駆動部6Cによって、加工用チューブ20が第2の方向bに移動して、第n+1のひねり部形成領域Tn+1が加熱用領域Rに含まれる位置に移動する(図12参照)。このとき、本実施形態では、第nのひねり部形成領域Tの第2端部Eb寄りの端部が、幅Lと同じ長さ、加熱用領域Rに進入する。
 加工用チューブ20の移動量は、第n+1のひねり部形成領域Tn+1のステップS11における位置の情報に基づいて、制御部8によって求められる。
 この後、制御部8は、上述のようにして、ひねり機構3を把持状態にするよう制御する。これにより、クランパー駆動部5Cによってクランパー5A、5Bが把持状態となり、ローラー駆動部4Dによって把持ローラー4A、4B、4Cが把持状態となる。
Here, the operation when the process proceeds from step S11 to step S5 will be briefly described.
In step S5, the counter is updated to n = n + 1. In the following description, n + 1 is used as it is for easy comparison with the state before the transition.
In step S6, since the twist mechanism 3 has already been released from the gripping state in step S10, the processing tube 20 moves immediately.
Specifically, the control unit 8 sends a control signal to the clamper driving unit 6C to control the processing tube 20 to move to a position where the (n + 1) th twist portion forming region Tn + 1 is included in the heating region RH. To do. Accordingly, the processing tube 20 is moved in the second direction b by the clamper driving unit 6C, and the (n + 1) th twist portion forming region Tn + 1 is moved to a position included in the heating region RH (see FIG. 12). ). At this time, in the present embodiment, the end near the second end Eb of the n-th twist portion formation region Tn enters the heating region RH having the same length as the width L O.
The amount of movement of the processing tube 20 is obtained by the control unit 8 based on the position information in step S11 of the ( n + 1) th twist portion forming region Tn + 1 .
Thereafter, the control unit 8 controls the twist mechanism 3 to be in the gripping state as described above. As a result, the clampers 5A and 5B are gripped by the clamper driving unit 5C, and the gripping rollers 4A, 4B and 4C are gripped by the roller driving unit 4D.
 2回目以降のステップS6は、チューブ搬送機構6によって加工用チューブ20を第2の方向bに移動することによって、第3の動作において冷却用領域Rに配置された第nのひねり部に対して第2の方向bにおいて隣り合う第n+1のひねり部形成領域を加熱用領域Rに移動する第6の動作を含んでいる。 In step S6 after the second time, the tube transport mechanism 6 moves the processing tube 20 in the second direction b, so that the nth twist portion arranged in the cooling region RC in the third operation is performed. And a sixth operation of moving the (n + 1) th twist portion forming region adjacent in the second direction b to the heating region RH .
 ステップS7では、第n+1のひねり部形成領域Tn+1の加工用チューブ20が上述したように加熱および加熱停止される。
 ステップS7において、加工用チューブ20がひねり加工を行うことができる温度になると、ステップS8が行われる。
 ステップS8では、上述したように、制御部8は、ローラー駆動部4Dに制御信号を送って、把持ローラー4A、4B、4Cを所定量回転するよう制御する。これにより、図13に示すように、加工用チューブ20の、クランパー5A、5Bによる第1の把持位置と、把持ローラー4A、4B、4Cによる第2の把持位置との間の部分に軸線Cを中心としたひねりが加えられる。この結果、第n+1のひねり部形成領域Tn+1には、第n+1のひねり部tn+1が形成される。
 このとき、第nのひねり部形成領域Tも、第1の把持位置よりも第2端部Eb寄りの部分がひねられて変形する。ただし、第2端部Eb寄りの幅Lの領域以外における変形は弾性的であるため、ひねり加工による変形が残るのは、第n+1のひねり部形成領域Tn+1の範囲に限られる。第nのひねり部形成領域Tにおける第2端部Eb寄りの端部では、最初のひねり加工による変形が不十分であっても、再度のひねり加工を受けることによって、第nのひねり部形成領域Tの中央部と同様の螺旋形状が形成される。
In step S7, the processing tube 20 in the (n + 1) th twist portion forming region Tn + 1 is heated and stopped as described above.
In step S7, when the processing tube 20 reaches a temperature at which twisting can be performed, step S8 is performed.
In step S8, as described above, the control unit 8 sends a control signal to the roller driving unit 4D to control the gripping rollers 4A, 4B, and 4C to rotate by a predetermined amount. As a result, as shown in FIG. 13, the axis C is placed at a portion of the processing tube 20 between the first holding position by the clampers 5A, 5B and the second holding position by the holding rollers 4A, 4B, 4C. A central twist is added. As a result, the (n + 1) th twist portion t n + 1 is formed in the (n + 1) th twist portion formation region T n + 1 .
At this time, the n-th twist portion forming region T n is also deformed by being twisted at a portion closer to the second end portion Eb than the first gripping position. However, since the deformation outside the region of the width L O close to the second end Eb is elastic, the deformation due to the twist processing remains only in the range of the ( n + 1) th twist portion formation region T n + 1 . In the end portion near the second end portion Eb in the n-th twist portion formation region T n , even if the deformation due to the first twist processing is insufficient, the n-th twist portion is formed by undergoing another twist processing. similar helical shape and the central portion of the region T n are formed.
 ステップS9、S10では、第n+1のひねり部形成領域Tn+1が移動および硬化の対象となる以外は、上述と同様な動作が行われる。
 このようにステップS5~S10が必要な回数だけ繰り返されることによって、加工用チューブ20の長さL’の範囲が順次ひねり加工される。
In steps S9 and S10, operations similar to those described above are performed except that the ( n + 1) -th twist portion formation region T n + 1 is to be moved and cured.
As described above, steps S5 to S10 are repeated as many times as necessary, so that the range of the length L B ′ of the processing tube 20 is sequentially twisted.
 このようなステップS5~S11の繰り返しは、第1の動作の後、第2の動作から第6の動作をこの順に1回以上繰り返す第7の動作を含んでいる。
 本実施形態のチューブひねり装置1によれば、制御部8によって、N=1の場合は第1の動作の後に、N≧2の場合は第7の動作の後に、第2の動作から第5の動作をこの順に行う第8の動作を制御する。マニュアルモードの場合には、作業者の操作入力によって、上述の第8の動作が行われる。
Such repetition of steps S5 to S11 includes a seventh operation in which the second operation to the sixth operation are repeated one or more times in this order after the first operation.
According to the tube twisting device 1 of the present embodiment, the controller 8 controls the second operation to the fifth operation after the first operation when N = 1, and after the seventh operation when N ≧ 2. The eighth operation of performing the operations in this order is controlled. In the case of the manual mode, the above-described eighth operation is performed by an operation input from the operator.
 加工用チューブ20におけるすべてのひねり加工が終了すると、チューブひねり装置1から加工用チューブ20が取り外され、芯金10が除去される。
 これにより、図1に示すようなひねり部30Bを有するチューブ30が製造される。
When all the twisting processes in the processing tube 20 are completed, the processing tube 20 is removed from the tube twisting apparatus 1 and the cored bar 10 is removed.
Thereby, the tube 30 which has the twist part 30B as shown in FIG. 1 is manufactured.
 以上、チューブ30において、ひねり部30Bが1つの領域に形成される場合の例で説明した。チューブひねり装置1によれば、複数箇所にひねり部を有する医療用チューブも上記と略同様にして製造される。この場合、制御部8には、複数のひねり部を形成するためすべてのひねり部形成領域の位置情報が予め入力されるようにする。さらに、加工回数Nは、ひねり部ごとに、ひねり部の長さに応じて設定される。制御部8は、1つのひねり部に対して、上述したフローに基づいてひねり部を形成するよう制御する。制御部8は、1つのひねり部が形成されたら、ステップS3以降のフローを他のひねり部ごとに繰り返す。 In the above, in the tube 30, the twist part 30B was demonstrated in the example in the case of forming in one area | region. According to the tube twisting device 1, a medical tube having twisted portions at a plurality of locations is manufactured in substantially the same manner as described above. In this case, in order to form a plurality of twisted portions, position information of all twisted portion forming regions is input to the control unit 8 in advance. Further, the number of times of machining N is set for each twisted part according to the length of the twisted part. The control unit 8 controls one twist unit to form the twist unit based on the above-described flow. When one twist part is formed, the control part 8 repeats the flow after step S3 for every other twist part.
 次に、チューブ30の作用について説明する。
 チューブ30は、被検体の内部に挿入される場合、挿入経路の形状に応じて湾曲する。チューブ30のような可撓性のチューブが湾曲すると、曲げの中立軸よりも曲げ内側(以下、内側領域)ではチューブが圧縮されるため、内部の管路の経路が短縮する。これに対して、曲げの中立軸よりも曲げ外側(以下、外側領域)ではチューブが伸長されるため、内部の管路の経路が伸長する。このため、チューブ30の内部に軸線Cに平行な管路が形成されていると、内側領域を通るか、外側領域を通るかに応じて、チューブ30の湾曲時の経路長が変化する。例えば、このような湾曲した管路に処置具の操作ワイヤーなどが通される場合、経路長が変化するために処置具の操作に狂いが生じるという問題がある。
 これに対して、本実施形態のチューブ30では、第1ルーメン30c、第2ルーメン30dは、ひねり部30Bにおいて螺旋状に延びている。このため、ひねり部30Bが湾曲すると、第1ルーメン30c、第2ルーメン30dは、内側領域と外側領域とをそれぞれほぼ半々の割合で通過する。この結果、第1ルーメン30c、第2ルーメン30dの経路長の変化は全体として略キャンセルされるため、例えば、処置具の操作の狂いなどが抑制される。
Next, the operation of the tube 30 will be described.
When the tube 30 is inserted into the subject, the tube 30 bends according to the shape of the insertion path. When a flexible tube such as the tube 30 is bent, the tube is compressed on the bending inner side (hereinafter referred to as an inner region) with respect to the neutral axis of the bending, so that the path of the internal conduit is shortened. On the other hand, since the tube is extended outside the bending neutral axis (hereinafter referred to as the outer region), the path of the internal conduit is extended. For this reason, when a pipe line parallel to the axis C is formed inside the tube 30, the path length when the tube 30 is bent changes depending on whether the tube 30 passes through the inner region or the outer region. For example, when an operation wire of a treatment instrument is passed through such a curved pipe line, there is a problem that the operation of the treatment instrument is distorted because the path length changes.
On the other hand, in the tube 30 of this embodiment, the 1st lumen | rumen 30c and the 2nd lumen | rumen 30d are extended helically in the twist part 30B. For this reason, when the twist portion 30B is curved, the first lumen 30c and the second lumen 30d pass through the inner region and the outer region at a ratio of approximately half. As a result, the change in the path lengths of the first lumen 30c and the second lumen 30d is substantially canceled as a whole, and thus, for example, an operation error of the treatment instrument is suppressed.
 このようなチューブ30のひねり部30Bは、チューブひねり装置1を用いた本実施形態の医療用チューブひねり方法によって形成されることによって、形状精度および寸法精度が向上される。
 本実施形態では、ひねり加工中の加工用チューブ20は、加熱用領域Rの外部における第1の把持位置および第2の把持位置などで把持される。このため、ひねり加工中の第1の把持位置および第2の把持位置において加工用チューブ20が塑性変形することはない。さらに、ひねり加工の回転駆動力は、第2の把持位置によって加えられるため、回転駆動による外力が、第2の把持位置で加工用チューブ20の塑性変形を起こすこともない。
 このように、本実施形態では、ひねり加工中にひねり部形成領域に接触する部材が存在しない。この結果、軟化した状態のひねり部形成領域が非接触状態に保たれるため、ひねり加工による外形の形状精度および寸法精度が向上する。
 さらに、チューブひねり装置1では、加工用チューブ20のひねり部形成領域が第1の把持位置および第2の把持位置の間で軸線Cと同軸に支持された状態で加工が行われる。このため、把持ローラー4A、4B、4Cによってひねり力が加えられても、加工用チューブ20が軸線Cからずれることがないため、加工中の脱線が防止できる。
 さらに、本実施形態では、加工用チューブ20には、芯金10が通されているため、加熱時および非加熱時のいずれにおいても、芯金10によって、略真直状態が保たれる。このため、加工用チューブ20の湾曲を原因とする、製造誤差などが抑制される。
Such a twisted portion 30B of the tube 30 is formed by the medical tube twisting method of the present embodiment using the tube twisting device 1, whereby the shape accuracy and the dimensional accuracy are improved.
In the present embodiment, the processing tube 20 being twisted is gripped at a first gripping position, a second gripping position, and the like outside the heating region RH . For this reason, the processing tube 20 is not plastically deformed at the first gripping position and the second gripping position during the twist processing. Further, since the rotational driving force for twisting is applied by the second gripping position, the external force due to the rotational driving does not cause plastic deformation of the processing tube 20 at the second gripping position.
Thus, in this embodiment, there is no member that contacts the twisted portion forming region during the twisting process. As a result, the twisted portion forming region in the softened state is maintained in a non-contact state, so that the shape accuracy and dimensional accuracy of the outer shape by twisting are improved.
Further, in the tube twisting apparatus 1, processing is performed in a state where the twisted portion forming region of the processing tube 20 is supported coaxially with the axis C between the first gripping position and the second gripping position. For this reason, even if a twisting force is applied by the gripping rollers 4A, 4B, 4C, the processing tube 20 does not deviate from the axis C, so that derailment during processing can be prevented.
Furthermore, in the present embodiment, since the cored bar 10 is passed through the processing tube 20, a substantially straight state is maintained by the cored bar 10 during both heating and non-heating. For this reason, manufacturing errors caused by the bending of the processing tube 20 are suppressed.
 ここで、本実施形態の医療用チューブひねり方法によって製造されたチューブ30の実施例を、比較例と対比して説明する。
 実施例のチューブ30は、外径3.34mm、長さ2200mmの加工用チューブ20を用いて製造された。加工用チューブ20の材料は、ナイロン系エラストマー(ガラス転移点:353K)が用いられた。ガイドワイヤールーメン30b、第1ルーメン30c、第2ルーメン30dの内径は、それぞれ、1.00mm、0.70mm、0.70mmとされた。加工用チューブ20は、押し出し成形機によって、製造された。
 チューブ30において、ひねり部30Bの形成範囲は、L=2000(mm)とされた。ひねり部30Bにおけるひねりピッチの目標値は、283mm/roundとされた。非ひねり部30A、30Cの長さは、それぞれ、L=100(mm)、L=100(mm)とされた。
 チューブひねり装置1において、加熱用領域Rの長さおよび第nのひねり部形成領域Tの長さは、それぞれ、L=300(mm)とされた。実施例のひねり加工において、加工回数Nは、40回とされた。加熱用領域Rにおける加工用チューブ20の温度は、373Kに設定された。冷却部7においては、液体冷媒としては、10℃の水、気体冷媒としては、20℃の空気が用いられた。
Here, the Example of the tube 30 manufactured by the medical tube twisting method of this embodiment is demonstrated as contrasted with a comparative example.
The tube 30 of the example was manufactured using the processing tube 20 having an outer diameter of 3.34 mm and a length of 2200 mm. As the material for the processing tube 20, a nylon elastomer (glass transition point: 353K) was used. The inner diameters of the guide wire lumen 30b, the first lumen 30c, and the second lumen 30d were 1.00 mm, 0.70 mm, and 0.70 mm, respectively. The processing tube 20 was manufactured by an extrusion molding machine.
In the tube 30, the formation range of the twisted portion 30B was L B = 2000 (mm). The target value of the twist pitch in the twist portion 30B was set to 283 mm / round. The lengths of the non-twisted portions 30A and 30C were set to L A = 100 (mm) and L C = 100 (mm), respectively.
In the tube twisting device 1, the length and the length of the twist portion formation region T n of the n of the heating region R H were respectively, L T = 300 and (mm). In the twist processing of the example, the number of times of processing N was set to 40 times. The temperature of the processing tube 20 in the heating region RH was set to 373K. In the cooling unit 7, 10 ° C. water was used as the liquid refrigerant, and 20 ° C. air was used as the gas refrigerant.
 比較例のチューブは、特許文献1に開示されたような従来のひねり装置によって製造された。すなわち、加工用チューブ20と同形状の加工用チューブが押し出し成形され、この加工用チューブが硬化する前に、斜交ローラーによってひねりが加えられた。ひねりが加えられたチューブは冷却されて硬化された。
 比較例のチューブは、実施例の加工用チューブ20と同じ材料で製造された。
 比較例のチューブにおける非ひねり部のチューブの外径、ひねり部の位置、長さの目標値は、上記実施例と同様とされた。ただし、ひねりピッチの目標値は、後述するように多少異なる。
The tube of the comparative example was manufactured by a conventional twisting device as disclosed in Patent Document 1. That is, a processing tube having the same shape as the processing tube 20 was extruded and twisted by an oblique roller before the processing tube was cured. The tube with the twist was cooled and cured.
The tube of the comparative example was manufactured with the same material as the processing tube 20 of the example.
The outer diameter of the non-twisted tube, the position of the twisted portion, and the target value of the length of the tube of the comparative example were the same as those in the above example. However, the target value of the twist pitch is slightly different as will be described later.
 実施例、比較例の評価としては、ひねり加工後の各チューブのひねりピッチ、ひねり部における外径が測定された。各チューブのひねり部において、長手方向に離間した3箇所の外形が測定された。下記[表1]、[表2]に評価結果を示す。 As an evaluation of Examples and Comparative Examples, the twist pitch of each tube after twist processing and the outer diameter at the twist portion were measured. At the twisted part of each tube, three external shapes separated in the longitudinal direction were measured. The evaluation results are shown in the following [Table 1] and [Table 2].
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [表1]に示すように、実施例のチューブ30のひねりピッチは、目標値283mm/roundに対して、平均値が282.7mm/roundとなった。目標値に対する誤差は-0.1%であった。実施例のチューブ30のひねりピッチの測定値の標準偏差は0.58mm/round、変動係数は0.0020であった。ここで、変動係数は、目標値が異なる比較例の測定値と比較できるように算出した。
 これに対して、比較例のチューブのひねりピッチは、目標値300mm/roundに対して、平均値が303.3mm/roundとなった。目標値に対する誤差は+1.1%であった。目標値に対する平均値の誤差は、比較例の方が実施例よりも大きかった。比較例のチューブのひねりピッチの測定値の標準偏差は2.89mm/round、変動係数は0.0095であった。
 実施例の測定値のバラツキは、標準偏差で見ても変動係数で見ても、比較例に比べて格段に小さかった。
As shown in [Table 1], the average value of the twist pitch of the tube 30 of the example was 282.7 mm / round with respect to the target value of 283 mm / round. The error relative to the target value was -0.1%. The standard deviation of the measured value of the twist pitch of the tube 30 of the example was 0.58 mm / round, and the coefficient of variation was 0.0020. Here, the coefficient of variation was calculated so that it could be compared with measured values of comparative examples having different target values.
In contrast, the twist pitch of the tube of the comparative example was 303.3 mm / round with respect to the target value of 300 mm / round. The error relative to the target value was + 1.1%. The error of the average value with respect to the target value was larger in the comparative example than in the example. The standard deviation of the measured value of the twist pitch of the tube of the comparative example was 2.89 mm / round, and the coefficient of variation was 0.0095.
The variation in the measured values of the examples was much smaller than that of the comparative example, both in terms of standard deviation and in terms of coefficient of variation.
 [表2]に示すように、実施例のチューブ30のひねり部の外径は、目標値3.35mmに対して、平均値が3.343mmとなり、目標値に近い値であった。実施例のチューブ30のひねり部の外径の測定値の標準偏差は0.006mm、変動係数は0.0017であった。比較例のチューブのひねり部の外径の測定値の標準偏差は0.015mm、変動係数は0.0045であった。
 実施例の測定値のバラツキは、標準偏差で見ても変動係数で見ても、比較例に比べて格段に小さかった。
As shown in [Table 2], the outer diameter of the twist portion of the tube 30 of the example was 3.343 mm with respect to the target value of 3.35 mm, and was close to the target value. The standard deviation of the measured value of the outer diameter of the twist portion of the tube 30 of the example was 0.006 mm, and the coefficient of variation was 0.0017. The standard deviation of the measured value of the outer diameter of the twist portion of the tube of the comparative example was 0.015 mm, and the coefficient of variation was 0.0045.
The variation in the measured values of the examples was much smaller than that of the comparative example, both in terms of standard deviation and in terms of coefficient of variation.
 このように、実施例のチューブ30のひねり部のピッチおよび外径の寸法精度は、比較例の寸法精度に比べて向上できた。この原因の一つとしては、本実施形態は、軟化したチューブにローラーが接触することなくひねり加工が行われる点で比較例と異なっていたことが考えられる。 Thus, the dimensional accuracy of the pitch and the outer diameter of the twist portion of the tube 30 of the example could be improved as compared with the dimensional accuracy of the comparative example. As one of the causes, this embodiment may be different from the comparative example in that the twisting process is performed without the roller coming into contact with the softened tube.
 なお、上記実施形態の説明では、チューブひねり装置1の主要部の構成について説明した。チューブひねり装置1は、加工性を向上するため、必要に応じて適宜の装置部分が追加されてもよい。
 例えば、加工中の加工用チューブ20を補助的に支持する支持ローラー、搬送ガイドなどの部材が追加されてもよい。
 例えば、チューブ搬送機構6は、加工用チューブ20の第1端部e1の近傍以外の複数箇所を把持したり、搬送を保持したりする構成が追加されてもよい。
In the description of the above embodiment, the configuration of the main part of the tube twisting device 1 has been described. In order to improve the workability of the tube twisting device 1, an appropriate device portion may be added as necessary.
For example, members such as a support roller and a conveyance guide that support the processing tube 20 being processed may be added.
For example, the tube transport mechanism 6 may be configured to grip a plurality of locations other than the vicinity of the first end e1 of the processing tube 20 or hold the transport.
 上記実施形態の説明では、加工用チューブ20に芯金10が通された状態でひねり加工が行われる場合の例で説明した。しかし、芯金10が通されていなくても、ひねり加工中に加工用チューブ20が略真直に保持される場合には、芯金10は省略されてもよい。 In the description of the above embodiment, an example in which twist processing is performed in a state where the core bar 10 is passed through the processing tube 20 has been described. However, even if the core bar 10 is not passed, the core bar 10 may be omitted when the processing tube 20 is held substantially straight during the twisting process.
 上記実施形態の説明では、チューブひねり装置1の冷却部7が液体吐出ノズル7Aおよび気体吐出ノズル7Bを備える場合の例で説明した。
 しかし、チューブひねり装置1の冷却部7が、液体吐出ノズル7Aおよび気体吐出ノズル7Bのいずれか一方のみを備えてもよい。あるいは、液体冷媒と気体冷媒とが混合された混合冷媒を吐出する1種類の吐出ノズルが用いられてもよい。
 さらに、加熱用領域Rの外部による自然放熱のみでも、ひねり部が迅速に硬化する場合には、冷却部7は省略されてもよい。
In the description of the above-described embodiment, an example in which the cooling unit 7 of the tube twisting device 1 includes the liquid discharge nozzle 7A and the gas discharge nozzle 7B has been described.
However, the cooling unit 7 of the tube twisting device 1 may include only one of the liquid discharge nozzle 7A and the gas discharge nozzle 7B. Alternatively, one type of discharge nozzle that discharges a mixed refrigerant in which a liquid refrigerant and a gas refrigerant are mixed may be used.
Furthermore, the cooling unit 7 may be omitted when the twisted part is rapidly cured by only natural heat radiation outside the heating region RH .
 上記実施形態の説明では、ひねり機構3の一部およびチューブ搬送機構6にそれぞれ、クランパー5A、5B、6A、6Bが用いられる場合の例で説明した。しかし、これらのクランパーは、一方向に対向する一対の部材からなる構成には限定されない。例えば、これらのクランパーは、三つ爪チャックなどで構成されてもよい。 In the description of the above embodiment, an example in which the clampers 5A, 5B, 6A, and 6B are used for a part of the twist mechanism 3 and the tube transport mechanism 6 has been described. However, these clampers are not limited to a configuration composed of a pair of members opposed in one direction. For example, these clampers may be configured with a three-claw chuck or the like.
 上記実施形態の説明では、ひねり機構が第1の把持部、第2の把持部、および回転駆動部と、を備え、回転駆動部は第2の把持部を回転駆動する場合の例で説明した。しかし、回転駆動部は、第1の把持部および第2の把持部の間の医療用チューブがひねられるように、第1の把持部および第2の把持部を相対回転できればよい。例えば、上記実施形態において、ひねり加工中に、クランパー6A、6Bを把持解除状態にし、かつ第1の把持部が回転することによって、ひねり加工に必要な相対回転が行われてもよい。 In the description of the above-described embodiment, the twisting mechanism includes the first gripping unit, the second gripping unit, and the rotation driving unit, and the rotation driving unit is described as an example in the case of rotationally driving the second gripping unit. . However, the rotation drive unit only needs to be able to relatively rotate the first gripping unit and the second gripping unit so that the medical tube between the first gripping unit and the second gripping unit is twisted. For example, in the above-described embodiment, the relative rotation necessary for the twisting process may be performed by putting the clampers 6A and 6B in the gripping release state and rotating the first gripping part during the twisting process.
 以上、本発明の好ましい実施形態を説明したが、本発明はこの実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this embodiment. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the appended claims.
 本発明は、医療用チューブひねり装置および医療用チューブひねり方法に広く適用でき、長手方向の少なくとも一部において螺旋状のルーメンが形成された医療用チューブの形状精度および寸法精度を向上することができる。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to a medical tube twisting apparatus and a medical tube twisting method, and can improve the shape accuracy and dimensional accuracy of a medical tube in which a spiral lumen is formed in at least a part of the longitudinal direction. .
1 チューブひねり装置(医療用チューブひねり装置)
2 ヒーター
3 ひねり機構
4A、4B、4C 把持ローラー(第2の把持部)
4D ローラー駆動部(回転駆動部)
5a 把持溝
5A、5B クランパー(第1の把持部)
5C、6C クランパー駆動部
6 チューブ搬送機構
6A、6B クランパー
7 冷却部
7a 液体冷媒
7b 気体冷媒
8 制御部
10 芯金
20 加工用チューブ(医療用チューブ)
20b、30b ガイドワイヤールーメン
20c、30c 第1ルーメン
20d、30d 第2ルーメン
30 チューブ(医療用チューブ)
30A、30C 非ひねり部
30B ひねり部
C 軸線
e1、E1、Ea 第1端部
e2、E2、Eb 第2端部
f 第1の方向
b 第2の方向
O 中心軸線
 冷却用領域
 加熱用領域
 ひねり部領域
 第nのひねり部
 第nのひねり部形成領域
1 Tube twist device (medical tube twist device)
2 Heater 3 Twist mechanism 4A, 4B, 4C Gripping roller (second gripping part)
4D roller drive (rotary drive)
5a Gripping grooves 5A, 5B Clamper (first gripping part)
5C, 6C Clamper drive unit 6 Tube transport mechanism 6A, 6B Clamper 7 Cooling unit 7a Liquid refrigerant 7b Gas refrigerant 8 Control unit 10 Core 20 Processing tube (medical tube)
20b, 30b Guide wire lumens 20c, 30c First lumen 20d, 30d Second lumen 30 Tube (medical tube)
30A, 30C Non-twisted portion 30B Twisted portion C Axis e1, E1, Ea First end e2, E2, Eb Second end f First direction b Second direction O Central axis R C Cooling region RH Heating use region T B twisting region t n twist portion formation region of the twisting section T n the n-th of the n

Claims (8)

  1.  加熱用領域において医療用チューブを部分的に加熱するヒーターと、
     前記医療用チューブの長手方向に延びる軸線の回りに前記医療用チューブを回転することにより、前記ヒーターによって加熱された前記医療用チューブにひねり部を形成するひねり機構と、
     前記ひねり部を、前記加熱用領域の外部に移動するチューブ搬送機構と、
    を備える、医療用チューブひねり装置。
    A heater for partially heating the medical tube in the heating area;
    A twist mechanism that forms a twist portion in the medical tube heated by the heater by rotating the medical tube around an axis extending in a longitudinal direction of the medical tube;
    A tube transport mechanism for moving the twist portion to the outside of the heating area;
    A medical tube twisting device comprising:
  2.  前記加熱用領域の外部にある冷却用領域において前記ひねり部を冷却する冷却部をさらに備え、
     前記チューブ搬送機構は、前記ひねり部を、前記加熱用領域から前記冷却用領域に移動する、
    請求項1に記載の医療用チューブひねり装置。
    A cooling section that cools the twist section in a cooling area outside the heating area;
    The tube transport mechanism moves the twist portion from the heating region to the cooling region.
    The medical tube twisting device according to claim 1.
  3.  前記チューブ搬送機構は、前記医療用チューブの搬送方向を、前記軸線に沿う第1の方向および前記第1の方向と反対の第2の方向のいずれかに切り替えることができ、
     前記加熱用領域および前記冷却用領域は、前記医療用チューブの移動経路を含み、
     前記加熱用領域および前記冷却用領域は、前記移動経路に沿う方向において隣り合って形成されている、
    請求項2に記載の医療用チューブひねり装置。
    The tube transport mechanism can switch the transport direction of the medical tube to one of a first direction along the axis and a second direction opposite to the first direction,
    The heating area and the cooling area include a moving path of the medical tube,
    The heating region and the cooling region are formed adjacent to each other in a direction along the movement path.
    The medical tube twisting device according to claim 2.
  4.  前記ヒーター、前記ひねり機構、前記チューブ搬送機構、および前記冷却部を制御する制御部をさらに備え、
     前記制御部は、
     前記チューブ搬送機構によって前記医療用チューブを移動し、前記加熱用領域に前記医療用チューブの一部分を配置する第1の動作と、
     前記加熱用領域に配置された前記医療用チューブの前記一部分を、前記ヒーターによって加熱する第2の動作と、
     前記ひねり機構によって前記ひねり部を形成する第3の動作と、
     前記第3の動作において形成された前記ひねり部を、前記チューブ搬送機構によって前記第1の方向に移動して前記冷却用領域に配置する第4の動作と、
     前記冷却部によって前記冷却用領域に配置された前記ひねり部を硬化する第5の動作と、
     前記チューブ搬送機構によって前記医療用チューブを前記第2の方向に移動することによって、前記第3の動作において前記冷却用領域に配置された前記ひねり部に対して前記第2の方向において隣り合う前記医療用チューブの領域を、前記加熱用領域に移動する第6の動作と、
     前記第1の動作の後、前記第2の動作から前記第6の動作をこの順に1回以上繰り返す第7の動作と、
     前記第1の動作の後または前記第7の動作の後、前記第2の動作から前記第5の動作をこの順に行う第8の動作と、
    を制御する、
    請求項3に記載の医療用チューブひねり装置。
    The heater, the twist mechanism, the tube transport mechanism, and a controller that controls the cooling unit,
    The controller is
    A first operation of moving the medical tube by the tube transport mechanism and disposing a portion of the medical tube in the heating region;
    A second operation of heating the portion of the medical tube disposed in the heating region by the heater;
    A third action of forming the twisted portion by the twisting mechanism;
    A fourth operation in which the twisted portion formed in the third operation is moved in the first direction by the tube transport mechanism and arranged in the cooling region;
    A fifth operation for curing the twist portion disposed in the cooling region by the cooling portion;
    By moving the medical tube in the second direction by the tube transport mechanism, the second portion is adjacent to the twist portion disposed in the cooling region in the third operation in the second direction. A sixth operation of moving the medical tube region to the heating region;
    A seventh operation that repeats the second operation to the sixth operation one or more times in this order after the first operation;
    After the first operation or after the seventh operation, an eighth operation that performs the second operation to the fifth operation in this order;
    To control the
    The medical tube twisting device according to claim 3.
  5.  前記ひねり機構は、
     前記第1の方向における前記加熱用領域の外部において、前記医療用チューブを把持する第1の把持部と、
     前記第2の方向における前記加熱用領域の外部において、前記医療用チューブを把持する第2の把持部と、
     前記第1の把持部および前記第2の把持部を、前記軸線の回りに相対回転する回転駆動部と、
    を備える、請求項3に記載の医療用チューブひねり装置。
    The twist mechanism is
    A first gripping part for gripping the medical tube outside the heating area in the first direction;
    A second gripping part for gripping the medical tube outside the heating area in the second direction;
    A rotation drive unit that relatively rotates the first gripping part and the second gripping part about the axis;
    The medical tube twisting device according to claim 3, comprising:
  6.  前記冷却部は、前記冷却用領域において前記医療用チューブに向かって、液体および気体の少なくとも一方からなる冷媒を吐出する、
    請求項2に記載の医療用チューブひねり装置。
    The cooling unit discharges a refrigerant composed of at least one of a liquid and a gas toward the medical tube in the cooling region.
    The medical tube twisting device according to claim 2.
  7.  医療用チューブの一部分を加熱用領域に配置する第1の動作と、
     前記加熱用領域に配置された前記一部分を加熱する第2の動作と、
     前記一部分が加熱された状態で、前記一部分を間に挟む2箇所で、前記医療用チューブを把持した状態で、前記2箇所の把持位置において、前記医療用チューブの長手方向に延びる軸線の回りにひねりを加えることによって、前記一部分にひねり部を形成する第3の動作と、
     前記ひねり部を前記加熱用領域の外部に移動する第4の動作と、
     前記加熱用領域の前記外部において、前記ひねり部を硬化する第5の動作と、を含む、医療用チューブひねり方法。
    A first action of placing a portion of the medical tube in the heating area;
    A second operation for heating the portion disposed in the heating region;
    In a state where the medical tube is gripped at two locations sandwiching the portion in a state where the portion is heated, at a gripping position of the two locations around an axis extending in the longitudinal direction of the medical tube A third action of forming a twist in said portion by applying a twist;
    A fourth operation of moving the twisted part to the outside of the heating area;
    A medical tube twisting method comprising: a fifth operation of curing the twisted portion outside the heating region.
  8.  前記ひねり部が硬化した後、前記ひねり部に隣り合う領域を前記加熱用領域に移動する第6の動作をさらに含み、
     前記第6の動作の後、
     前記第2の動作から前記第6の動作をこの順に1回以上繰り返すか、または、前記第2の動作から前記第5の動作をこの順に行う、
    請求項7に記載の医療用チューブひねり方法。
    And further comprising a sixth operation of moving a region adjacent to the twisted portion to the heating region after the twisted portion is cured,
    After the sixth operation,
    The sixth operation is repeated one or more times in this order from the second operation, or the fifth operation is performed in this order from the second operation.
    The medical tube twisting method according to claim 7.
PCT/JP2018/004615 2017-02-15 2018-02-09 Medical tube twisting device and medical tube twisting method WO2018151045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-025982 2017-02-15
JP2017025982A JP2018130886A (en) 2017-02-15 2017-02-15 Medical tube twisting apparatus and medical tube twist method

Publications (1)

Publication Number Publication Date
WO2018151045A1 true WO2018151045A1 (en) 2018-08-23

Family

ID=63169844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004615 WO2018151045A1 (en) 2017-02-15 2018-02-09 Medical tube twisting device and medical tube twisting method

Country Status (2)

Country Link
JP (1) JP2018130886A (en)
WO (1) WO2018151045A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141884A (en) * 2019-03-07 2020-09-10 株式会社カネカ Positioning device of machining place of multi-lumen tube and manufacturing method of machining multi-lumen tube using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437849B (en) * 2022-03-16 2023-05-23 中国石油化工股份有限公司胜利油田分公司纯梁采油厂 Desulfurizing equipment for natural gas exploitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475549U (en) * 1990-11-13 1992-07-01
JPH0928664A (en) * 1995-07-14 1997-02-04 Terumo Corp Catheter tube
US20080132762A1 (en) * 2006-12-04 2008-06-05 University Of Washington Flexible endoscope tip bending mechanism using optical fiber as compression member
JP5917819B2 (en) * 2011-03-28 2016-05-18 株式会社工販 Rotational take-type extrusion molding method, extrusion molding apparatus enabling the molding method, and tube body provided with a spiral independent lumen on a tube tube wall manufactured by the molding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408958B2 (en) * 1995-02-28 2010-02-03 ボストン サイエンティフィック コーポレーション Medical instruments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475549U (en) * 1990-11-13 1992-07-01
JPH0928664A (en) * 1995-07-14 1997-02-04 Terumo Corp Catheter tube
US20080132762A1 (en) * 2006-12-04 2008-06-05 University Of Washington Flexible endoscope tip bending mechanism using optical fiber as compression member
JP5917819B2 (en) * 2011-03-28 2016-05-18 株式会社工販 Rotational take-type extrusion molding method, extrusion molding apparatus enabling the molding method, and tube body provided with a spiral independent lumen on a tube tube wall manufactured by the molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141884A (en) * 2019-03-07 2020-09-10 株式会社カネカ Positioning device of machining place of multi-lumen tube and manufacturing method of machining multi-lumen tube using the same
JP7271233B2 (en) 2019-03-07 2023-05-11 株式会社カネカ Positioning device for processing location of multi-lumen tube and manufacturing method of processed multi-lumen tube using same

Also Published As

Publication number Publication date
JP2018130886A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
US6554942B2 (en) Method of manufacturing a guidewire with an extrusion jacket
US10406319B2 (en) Steerable catheters and methods for making them
CA2212808C (en) Polymeric implements for torque transmission
US6436056B1 (en) Polymeric implements for torque transmission
US10065015B2 (en) Catheter devices and methods for making them
WO2018151045A1 (en) Medical tube twisting device and medical tube twisting method
US20200330725A1 (en) Catheter devices and methods for making them
EP2766084B1 (en) Medical tubing and associated devices, systems, and methods
CN105338877B (en) The manufacture method of spiral element, insertion apparatus and spiral element
US20210236767A1 (en) Filament wrapping and reflow system and methods to manufacture an elongate medical device
JP5822285B2 (en) Hot three-dimensional bending machine
JP2000126821A (en) Method for bending and device therefor
JP5917819B2 (en) Rotational take-type extrusion molding method, extrusion molding apparatus enabling the molding method, and tube body provided with a spiral independent lumen on a tube tube wall manufactured by the molding method
US20220040453A1 (en) Medical devices with multi-plane articulation
US10906239B2 (en) Resin material plasticizing device and resin material plasticizing method
JPH11192662A (en) Pultrusion molding method for thermoplastic tube
JP2008061668A (en) Manufacturing device of treatment device insertion channel of endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754017

Country of ref document: EP

Kind code of ref document: A1