WO2018150942A1 - Light source device and light projecting device - Google Patents

Light source device and light projecting device Download PDF

Info

Publication number
WO2018150942A1
WO2018150942A1 PCT/JP2018/003935 JP2018003935W WO2018150942A1 WO 2018150942 A1 WO2018150942 A1 WO 2018150942A1 JP 2018003935 W JP2018003935 W JP 2018003935W WO 2018150942 A1 WO2018150942 A1 WO 2018150942A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
laser light
wavelength conversion
Prior art date
Application number
PCT/JP2018/003935
Other languages
French (fr)
Japanese (ja)
Inventor
博隆 上野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018568122A priority Critical patent/JP7065267B2/en
Publication of WO2018150942A1 publication Critical patent/WO2018150942A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to a light source device that emits light and a light projecting device using the light source device.
  • a light source device that generates light of a predetermined wavelength by irradiating a wavelength conversion member with light emitted from a laser light source.
  • this light source device for example, light that has been subjected to wavelength conversion by the wavelength conversion member and diffused and light that has been diffused without being subjected to wavelength conversion by the wavelength conversion member are combined to generate light of a predetermined color such as white light. Generated.
  • a light source device is used, for example, as a light source device for a vehicle headlamp.
  • Patent Document 1 the light emitting surface of a phosphor (wavelength conversion member) is scanned with a laser beam by a swingable micromirror to generate an optical image on the light emitting surface, and the generated optical image is converted into an optical system.
  • a vehicle headlamp to be projected onto a road is described.
  • an optical sensor is arranged at a position where the laser beam reflected by the light emitting surface is detected at a predetermined swing position of the micromirror, and the position and movement of the micromirror are detected by a signal from the optical sensor. Is done.
  • Patent Document 1 since the reflected light is incident on the optical sensor only when the tilt angle of the micromirror is at a predetermined angle, the operation state of the micromirror is properly detected in a range other than this angle. I can't. For example, when the reflected light does not enter the optical sensor because the micromirror does not properly respond to the drive signal, the configuration of Patent Document 1 immediately detects this based on the output from the optical sensor. I can't.
  • the present disclosure provides a light source device capable of accurately and accurately detecting a state of a deflector that scans light with respect to a wavelength conversion member, and a light projecting device using the light source device. Objective.
  • the first aspect of the present disclosure relates to a light source device.
  • the light source device includes a laser light source, a wavelength conversion member, an optical deflector, and a position detector.
  • the laser light source emits laser light.
  • the wavelength conversion member has an incident surface on the optical path of the laser light, converts the wavelength of the laser light to another wavelength, generates converted light, and diffuses the converted light.
  • the optical deflector scans the laser beam at least one dimension on the incident surface of the wavelength conversion member.
  • the position detector receives the laser beam specularly reflected on the incident surface of the wavelength conversion member with respect to all scanning ranges on the incident surface and outputs a detection signal corresponding to the light receiving position of the laser beam.
  • regular reflection means that excitation light is reflected at the same angle as the incident angle without being absorbed and diffused by the phosphor. Regular reflection is also called direct reflection.
  • the detection signal is output from the position detector for the entire scanning range on the incident surface of the wavelength conversion member. Therefore, by monitoring this detection signal, the operation state of the optical deflector can be detected in the entire scanning range. Therefore, the operation state of the optical deflector can be detected accurately and with high accuracy.
  • the second aspect of the present invention relates to a light projecting device.
  • the light projecting device according to the second aspect includes the light source device according to the first aspect and a projection optical system that projects the light diffused by the wavelength conversion member.
  • the same effect as in the first aspect can be achieved.
  • the light source device and the light projecting device According to the light source device and the light projecting device according to the present disclosure, it is possible to accurately and accurately detect the state of the deflector that scans the wavelength conversion member with light.
  • FIG. 1 is a perspective view illustrating a configuration of a light projecting device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device according to the first embodiment.
  • FIG. 3A is a perspective view showing the configuration of the optical deflector according to the first embodiment.
  • FIG. 3B is a perspective view in which a part of the optical deflector according to the first embodiment is cut away.
  • FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member according to the first embodiment.
  • FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member according to the first embodiment.
  • FIG. 5A is a diagram for explaining a configuration of a position detector and a method for generating a position detection signal according to the first embodiment.
  • FIG. 5B is a cross-sectional view schematically showing the configuration of the position detector according to the first embodiment.
  • FIG. 6A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member according to the first embodiment.
  • FIG. 6B is a diagram schematically showing the movement of the specularly reflected light spot on the position detector when the beam spot moves as shown in FIG. 6A according to the first embodiment.
  • FIG. 7 is a circuit block diagram illustrating a main circuit configuration of the light source device according to the first embodiment.
  • FIG. 8A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member when the mirror swing angle is lower than a predetermined swing angle according to the first embodiment.
  • FIG. 8B is a diagram schematically showing the movement of the specularly reflected light spot on the light receiving surface of the position detector when the beam spot is moved as shown in FIG. 8A according to the first embodiment.
  • FIG. 9 is a timing chart for explaining an interpolation method of the position detection signal when the laser light source is controlled to be extinguished during a predetermined period according to the first embodiment.
  • FIG. 10A is a flowchart illustrating threshold value setting processing for detecting an abnormality of the wavelength conversion member according to the first embodiment.
  • FIG. 10B is a flowchart illustrating a process for detecting an abnormality of the wavelength conversion member according to the first embodiment.
  • FIG. 11A is a partial cross-sectional view illustrating a configuration of a light projecting device according to a first modification of the first embodiment.
  • FIG. 11B is a partial cross-sectional view illustrating a configuration of a light projecting device according to a second modification of the first embodiment.
  • FIG. 12A is a partial cross-sectional view illustrating a configuration of a light projecting device according to a third modification of the first embodiment.
  • FIG. 12B is a partial cross-sectional view illustrating a configuration of a light projecting device according to a third modification of the first embodiment.
  • FIG. 11A is a partial cross-sectional view illustrating a configuration of a light projecting device according to a first modification of the first embodiment.
  • FIG. 12B is a partial cross-sectional view illustrating a configuration of a light projecting device according to a third
  • FIG. 13 is a perspective view showing a configuration of an optical deflector according to the second embodiment.
  • FIG. 14A is a perspective view in which a part of the optical deflector according to the second embodiment is cut away.
  • FIG. 14B is a perspective view in which a part of the optical deflector according to the second embodiment is cut away.
  • FIG. 15A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member according to the second embodiment.
  • FIG. 15B is a diagram schematically illustrating the movement of the specularly reflected light spot on the position detector when the beam spot moves as illustrated in FIG. 6A according to the second embodiment.
  • FIG. 16 is a cross-sectional view illustrating a configuration of a light projecting device according to the third embodiment.
  • the X, Y, and Z axes orthogonal to each other are appended to each drawing.
  • the X-axis direction and the Y-axis direction are the width direction and the depth direction of the light projecting device, respectively, and the Z-axis direction is the height direction of the light projecting device.
  • the positive Z-axis direction is the light projection direction in the light projecting device.
  • FIG. 1 is a perspective view showing a configuration of a light projecting device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device 1 according to the first embodiment.
  • FIG. 2 shows a cross-sectional view of the light projecting device 1 cut at a central position in the X-axis direction along a plane parallel to the YZ plane.
  • the light projecting device 1 includes a light source device 2 that generates light and a projection optical system 3 that projects the light generated by the light source device 2.
  • the projection optical system 3 includes two lenses 3a and 3b. The light from the light source device 2 is condensed by these lenses 3a and 3b and projected onto the target area. Note that the projection optical system 3 does not necessarily have only two lenses 3a and 3b, and may include other lenses and mirrors, for example. Further, the projection optical system 3 may be configured to condense light from the light source device 2 using a concave mirror.
  • the light source device 2 has a configuration in which various members are installed on the base 11. Specifically, a laser light source 12, a collimator lens 13, an optical deflector 14, and a wavelength conversion member 15 are installed on the base 11 as a configuration for generating projection light.
  • the collimator lens 13 is installed on the base 11 via the holder 16.
  • the laser light source 12 emits laser light in a blue wavelength band (for example, 450 nm) in the positive direction of the Z axis.
  • the laser light source 12 is made of, for example, a semiconductor laser.
  • the wavelength of the laser light emitted from the laser light source 12 can be changed as appropriate.
  • the laser light source 12 does not necessarily emit a laser beam having a single wavelength band, and may be, for example, a multi-emitting semiconductor laser in which a plurality of light emitting elements are mounted on one substrate.
  • the collimator lens 13 converts the laser light emitted from the laser light source 12 into parallel light.
  • the position of the collimator lens 13 in the optical axis direction may be adjusted so that the laser light emitted from the laser light source 12 becomes convergent light.
  • the optical deflector 14 includes a mirror 17 and changes the traveling direction of the laser light that has passed through the collimator lens 13 by rotating the mirror 17 about the rotation axis L1.
  • the incident surface of the mirror 17 is a plane.
  • the mirror 17 is, for example, a high reflectance mirror in which a dielectric multilayer film is formed on a glass plate. In the neutral position, the mirror 17 is disposed so as to be inclined by a predetermined angle in a direction parallel to the YZ plane with respect to a plane parallel to the XZ plane.
  • the rotation axis L1 of the mirror 17 is parallel to the YZ plane and tilted by a predetermined angle with respect to the Z-axis direction.
  • the configuration of the optical deflector 14 will be described later with reference to FIGS. 3A and 3B.
  • the wavelength conversion member 15 is disposed at a position where the laser beam reflected by the mirror 17 is incident.
  • the wavelength conversion member 15 is a rectangular plate-like member, and is installed on the base 11 so that the incident surface is parallel to the XY plane and the longitudinal direction is parallel to the X axis. As described above, when the mirror 17 rotates about the rotation axis L1, the wavelength conversion member 15 is scanned in the longitudinal direction by the laser light.
  • the wavelength conversion member 15 converts part of the incident laser light into a wavelength different from the blue wavelength band and diffuses it in the Z-axis direction.
  • the other laser light that has not been wavelength-converted is diffused in the Z-axis direction by the wavelength conversion member 15.
  • the light of the two types of wavelengths diffused in this way is combined to generate light of a predetermined color. Light of each wavelength is taken into the projection optical system 3 and projected onto the target area.
  • the wavelength conversion member 15 converts part of the laser light into light in the yellow wavelength band.
  • the diffused light in the yellow wavelength band after wavelength conversion and the scattered light in the blue wavelength band that has not been wavelength-converted are combined to generate white light.
  • the wavelength after wavelength conversion may not be a yellow wavelength range, and the color of the light produced
  • the configuration of the wavelength conversion member 15 will be described later with reference to FIGS. 4A and 4B.
  • a circuit board 18 is installed on the lower surface of the base 11.
  • a circuit for controlling the laser light source 12 and the optical deflector 14 is mounted on the circuit board 18. As shown in FIG. 1, the terminal portion of the circuit board 18 is exposed to the outside on the Y axis positive side of the base 11.
  • the position detector 19 is installed at a position for receiving laser light specularly reflected by the incident surface of the wavelength conversion member 15 (hereinafter referred to as “regular reflected light”).
  • the position detector 19 is in a plane parallel to the XZ plane so that when the mirror 17 is in the neutral position, the central axis of the specularly reflected light is perpendicular to the incident surface of the position detector 19. It is installed on the base 11 in a state inclined by a predetermined angle in a direction parallel to the YZ plane.
  • the position detector 19 receives regular reflection light for all scanning ranges on the incident surface of the wavelength conversion member 15 and outputs a detection signal corresponding to the light receiving position. That is, the position detector 19 has a light receiving surface that is long in the X-axis direction so as to be able to receive regular reflection light for the entire scanning range on the incident surface of the wavelength conversion member 15.
  • a band pass filter 31 that removes yellow light converted by the wavelength conversion member and transmits blue light that is regular reflection light; It is desirable to have a neutral density filter 32 for reducing regular reflection light.
  • the position detector 19 is made of, for example, PSD (Position Sensitive Detector).
  • the position detector 19 may have a configuration in which a photo detector is arranged on an array, or may be an image pickup device such as a CCD (Charge-Coupled Device).
  • FIG. 3A and 3B are a perspective view showing a configuration of the optical deflector 14 and a perspective view in which a part of the optical deflector 14 is cut away, respectively.
  • FIG. 3B shows a cross section 3b obtained by cutting the optical deflector 14 shown in FIG. 3A along a plane including a straight line IIIB-IIIB passing through the central position in the y-axis direction of the optical deflector 14 along the xz plane. ing.
  • FIGS. 3A and 3B newly show x, y, and z axes in order to explain the configuration of the optical deflector 14.
  • the x axis is in the same direction as the X axis shown in FIGS. 1 and 2.
  • the x, y, and z axes are obtained by rotating the X, Y, and Z axes shown in FIGS. 1 and 2 around the X axis by a predetermined angle.
  • the y axis corresponds to the short direction of the optical deflector 14, and the z axis corresponds to the height direction of the optical deflector 14.
  • the z-axis negative side is defined as the upper side of the optical deflector 14.
  • the optical deflector 14 is configured to drive the mirror 17 using electromagnetic force.
  • a component for electromagnetic driving is installed in the housing 101.
  • the housing 101 has a rectangular parallelepiped shape that is long in the x-axis direction.
  • a rectangular recess 101a is formed on the upper surface of the housing 101 in plan view.
  • the housing 101 has bosses 101b formed on the upper surfaces of the positive and negative edges of the x-axis. The two bosses 101b are disposed at an intermediate position of the housing 101 in the y-axis direction.
  • the housing 101 is made of a metal material having high rigidity.
  • a frame-shaped leaf spring 102 is installed on the upper surface of the housing 101.
  • the leaf spring 102 has a frame portion 102a, a support portion 102b, two beam portions 102c, and two holes 102d.
  • Two beam portions 102c are formed so as to extend in parallel to the y-axis direction from the frame portion 102a at an intermediate position in the x-axis direction, and the frame portion 102a and the support portion 102b are connected by these beam portions 102c.
  • the support portion 102b is rectangular in plan view, and two beam portions 102c are connected to the support portion 102b at an intermediate position in the x-axis direction of the support portion 102b.
  • the x-axis positive side hole 102d is circular in plan view, and the x-axis negative side hole 102d is long in the x-axis direction in plan view.
  • the leaf spring 102 is symmetric in the y-axis direction, and is symmetric in the x-axis direction except for the two holes 102d.
  • the leaf spring 102 is integrally formed of a flexible metal material.
  • the two holes 102d are provided at positions corresponding to the two bosses 101b, respectively. With the boss 101b fitted in the hole 102d, the leaf spring 102 is fixed to the upper surface of the housing 101 by the four screws 103.
  • the mirror 17 is fixed to the upper surface of the support portion 102b with an adhesive or the like.
  • the mirror 17 is substantially square in plan view.
  • the axis connecting the two beam portions 102c is the rotation axis L1 of the mirror 17.
  • the laser light from the laser light source 12 is incident on the center position of the mirror 17. That is, the laser light from the laser light source 12 enters the mirror 17 so that the rotation axis L1 and the central axis of the laser light intersect.
  • the coil 104 is mounted on the lower surface of the support portion 102b.
  • the coil 104 circulates in a shape with rounded rectangular corners in plan view.
  • the coil 104 is installed on the lower surface of the support portion 102b so that the middle position of the long side coincides with the rotation axis L1.
  • the coil 104, the support portion 102b, and the mirror 17 constitute a movable portion of the optical deflector 14.
  • Two sets of magnets 105 and 106 are arranged so that the x-axis positive side and x-axis negative side portions of the coil 104 are sandwiched in the x-axis direction, respectively.
  • Magnet 105 and magnet 106 are installed on yoke 107, and yoke 107 is installed on the bottom surface of recess 101 a of housing 101.
  • the magnets 105 and 106 are permanent magnets having a substantially uniform magnetic flux density on the magnetic pole surface.
  • the direction of the magnetic field generated by the x-axis positive magnets 105 and 106 and the direction of the magnetic field generated by the x-axis negative magnets 105 and 106 are the same.
  • the x-axis positive magnet 105 has the north pole facing the coil 104
  • the x-axis negative magnet 105 has the south pole facing the coil 104.
  • the x-axis positive magnet 106 has the south pole facing the coil 104
  • the x-axis negative magnet 106 has the north pole opposed to the coil 104.
  • FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member 15.
  • the wavelength conversion member 15 has a configuration in which a reflective film 202 and a phosphor layer 203 are laminated on the upper surface of a substrate 201.
  • the substrate 201 is made of, for example, silicon or aluminum nitride ceramic.
  • the reflective film 202 is configured by laminating a first reflective film 202a and a second reflective film 202b.
  • the first reflective film 202a is, for example, a metal film such as Ag, an Ag alloy, or Al.
  • the second reflection film 202b has a function of protecting the first reflection film 202a from oxidation and the like as well as reflection.
  • SiO 2 , ZnO, ZrO 2 , Nb 2 O 5 , Al 2 O 3 , TiO 2 are used.
  • SiN, AlN, or other dielectric material The reflective film 202 does not necessarily need to be composed of the first reflective film 202a and the second reflective film 202b, and may be a single layer or a structure in which three or more layers are laminated.
  • the phosphor layer 203 is formed by fixing phosphor particles 203a with a binder 203b.
  • the phosphor particles 203a emit fluorescence in the yellow wavelength band when irradiated with laser light in the blue wavelength band emitted from the laser light source 12.
  • As the phosphor particles 203a for example, (Y n Gd 1-n ) 3 (Al m Ga 1-m ) 5 O 12 : Ce (0.5 ⁇ n ⁇ 1, 0.5) having an average particle diameter of 1 ⁇ m to 30 ⁇ m. ⁇ m ⁇ 1) is used. Further, a transparent material mainly containing silsesquioxane such as polymethylsilsesquioxane is used as the binder 203b.
  • the phosphor layer 203 may further contain Al 2 O 3 fine particles having an average particle diameter of 0.1 to 10 ⁇ m and a thermal conductivity of 30 W / (m ⁇ K) as the second particles.
  • grains are mixed by the ratio of 10 vol% or more and 90 vol% or less with respect to the fluorescent substance particle 203a.
  • silsesquioxane (refractive index 1.5) refractive index difference is large
  • Al 2 O 3 is a material of the binder 203b (refractive index 1.8) is used. With this configuration, the light scattering property inside the phosphor layer 203 can be improved, and the thermal conductivity of the phosphor layer 203 can be increased.
  • the phosphor layer 203 is provided with a void 203 c formed near the center of the phosphor layer 203 and a void 203 c formed near the interface between the reflective film 202.
  • the void 203c formed inside the phosphor layer 203 is configured to have a higher density as it is closer to the reflective film 202. With this configuration, it is possible to more efficiently scatter laser light that has entered the inside and extract it from the light source device 2.
  • the void 203c formed near the interface with the reflective film 202 is in contact with the second reflective film 202b, which is a dielectric, it effectively scatters laser light and fluorescence while reducing energy loss due to the metal surface. Can be made.
  • the arrangement of the void 203c as described above is achieved by configuring the wavelength conversion member 15 using a phosphor paste in which phosphor particles 203a made of YAG: Ce and a binder 203b made of polysilsesquioxane are mixed. Can be easily formed. Specifically, the phosphor particles 203a and the second particles are formed on the substrate 201 (reflection film 202) using a phosphor paste in which polysilsesquioxane is mixed with a binder 203b in which an organic solvent is dissolved. Then, the organic solvent in the paste is vaporized by performing high-temperature annealing at about 200 ° C.
  • the void 203c can be easily formed in the portion close to the substrate 201.
  • the high-density void 203c can be easily formed in the vicinity of the reflective film 202.
  • the phosphor layer 203 further includes a filler 203d for increasing strength and heat resistance.
  • the difference in refractive index between the filler 203d and the binder 203b is also set to be large, similar to the difference in refractive index between the phosphor particles 203a and the binder 203b.
  • the laser light emitted from the laser light source 12 is irradiated to the excitation region R1 shown in FIG. 4A, and is scattered and absorbed on the surface or inside of the phosphor layer 203. At this time, part of the laser light is converted into light in the yellow wavelength band by the phosphor particles 203 a and emitted from the phosphor layer 203. Further, the other part of the laser light is scattered without being converted into light in the yellow wavelength band, and is emitted from the phosphor layer 203 as light in the blue wavelength band. At this time, light in each wavelength band is scattered while propagating through the phosphor layer 203, and thus is emitted from the light emitting region R2 wider than the excitation region R1.
  • the phosphor layer 203 is configured such that the refractive index difference between the binder 203b and the phosphor particle 203a and the refractive index difference between the binder 203b and the filler 203d are both large, thereby scattering light. And propagation of light inside the phosphor layer 203 can be suppressed. As a result, light can be emitted from the light emitting region R2 that is slightly wider than the excitation region R1.
  • the void 203c is further arranged in the phosphor layer 203 to enhance light scattering. As a result, the excitation region R1 and the light emission region R2 can be brought closer to each other.
  • FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member 15.
  • the wavelength conversion member 15 has a rectangular shape that is long in the X-axis direction in plan view.
  • the wavelength conversion member 15 is scanned in the X-axis direction with a laser beam when the mirror 17 of the optical deflector 14 is rotated.
  • B1 indicates the beam spot of the laser beam.
  • the beam spot B1 reciprocates on the incident surface 15a of the wavelength conversion member 15 in the width W1.
  • a triangular wave-shaped drive signal (current) having an amplitude center at zero level is applied to the coil 104. Due to the driving force excited in the coil 104 by this driving signal, the mirror 17 together with the support portion 102b rotates around a neutral position with a predetermined rotation width. Thereby, the laser beam (beam spot B1) reflected by the mirror 17 reciprocates on the incident surface 15a of the wavelength conversion member 15 in the width W1.
  • the “neutral position” is the position of the mirror 17 when the drive signal (current) is not applied to the coil 104.
  • the position of the mirror 17 when the mirror 102b and the mirror 17 are not rotated in any direction about the rotation axis L1 and is in a state parallel to the xy plane.
  • the reciprocation of the beam spot B1 is indicated by a straight arrow.
  • the actual movement locus of the beam spot B1 is X A slightly curved locus in which both ends in the X-axis positive and negative directions are displaced in the Y-axis negative direction with respect to the axial center position.
  • the region of the beam spot B1 on the incident surface 15a corresponds to the excitation region R1 in FIG. 4A. While the beam spot B1 moves on the incident surface 15a of the wavelength conversion member 15, the diffused light in the blue wavelength band and the diffused light in the yellow wavelength band from the light emitting region R2 slightly wider than the region of the beam spot B1 in the positive direction of the Z axis. Radiated.
  • the light in the two wavelength bands thus radiated is taken in by the projection optical system 3 shown in FIGS. 1 and 2 and projected onto the target area. Accordingly, white light obtained by combining light in the blue wavelength band and light in the yellow wavelength band is projected from the light projecting device 1 onto the target area.
  • the active layer of the laser element mounted on the laser light source 12 is parallel to the XZ plane.
  • the beam shape of the laser light incident on the collimator lens 13 is an elliptical shape that is long in the Y-axis direction.
  • the laser beam is irradiated onto the incident surface 15 a of the wavelength conversion member 15 with the beam spot B ⁇ b> 1 that is long in the Y-axis direction.
  • the shape of the beam spot B1 is not limited to an ellipse, and may be another shape that is long in the Y-axis direction.
  • the collimator lens 13 may have an optical action for adjusting the beam shape, or the reflecting surface of the mirror 17 is made a predetermined concave shape so that the beam shape is adjusted on the mirror 17. You may give an optical action.
  • FIG. 5A is a diagram for explaining a configuration of the position detector 19 and a method of generating a position detection signal.
  • FIG. 5B is a cross-sectional view schematically showing the configuration of the position detector 19.
  • the position detector 19 has a structure in which a P-type resistance layer serving as a light-receiving surface and a resistance layer is formed on the surface of an N-type high-resistance silicon substrate. Electrodes X1 and X2 for outputting a lateral photocurrent are formed on the resistance layer on the front surface side, and a common electrode X3 is formed on the resistance layer on the back surface side. The photocurrent flowing into the electrodes X1 and X2 is output from the terminals 19b and 19c.
  • the photocurrent output from the terminals 19b and 19c has a size divided in inverse proportion to the distance from the irradiation position of the regular reflection light to the electrodes X1 and X2. Therefore, it is possible to detect the irradiation position of the regular reflection light in the X-axis direction on the light receiving surface based on the current value of the photocurrent output from the terminals 19b and 19c.
  • the horizontal coordinate Px of the irradiation position with respect to the horizontal center position Lmx of the light receiving surface 19a is the current value of the photocurrent output from the electrodes X1 and X2, respectively Ix1, Ix2, and the horizontal electrode
  • the distance between X1 and X2 is Lx, it is calculated by the following equation.
  • FIG. 6A is a diagram schematically showing the movement of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15.
  • FIG. 6B is a diagram schematically showing the movement of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 when the beam spot B1 moves as shown in FIG. 6A.
  • the specularly reflected light spot RB1 moves on the light receiving surface 19a of the position detector 19 as shown in FIG. 6B.
  • the lateral movement position of the specularly reflected light spot RB1 corresponds to each movement position in the X-axis direction of the beam spot B1 on the incident surface 15a on a one-to-one basis.
  • the specularly reflected light spot RB1 moves in the lateral direction on the light receiving surface 19a of the position detector 19 within the range of the width Lw.
  • the position of the beam spot B1 on the incident surface 15a corresponds to the rotation angle of the mirror 17 in the optical deflector 14. Therefore, the lateral position of the specularly reflected light spot RB1 on the light receiving surface 19a of the position detector 19 with respect to the center position Lmx corresponds to the rotation angle of the optical deflector 14 with respect to the neutral position of the mirror 17. Therefore, not only the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 but also the mirror 17 of the optical deflector 14 is detected by the position detection signal (coordinate Px) calculated based on the above formula (1). The rotation angle can also be detected.
  • the optical deflector 14 is set so that the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 becomes a predetermined scanning state. Is controlled.
  • FIG. 7 is a circuit block diagram showing a main circuit configuration of the light source device 2.
  • the light source device 2 includes a controller 301, a laser drive circuit 302, a mirror drive circuit 303, a position detection circuit 304, and an interface 305 as a circuit unit configuration. These circuits are mounted on the circuit board 18 shown in FIGS. A laser light source 12 is further installed on the circuit board 18. The circuit may be configured such that a part or all of each circuit is mounted on a circuit board different from the circuit board 18 and connected to the circuit on the circuit board 18 side with a cable.
  • the controller 301 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a memory, and controls each unit according to a predetermined control program.
  • the laser drive circuit 302 drives the laser light source 12 according to a control signal from the controller 301.
  • the mirror drive circuit 303 drives the mirror 17 of the optical deflector 14 in accordance with a control signal from the controller 301.
  • the position detection circuit 304 performs the calculation of the above formula (1) based on the detection signal input from the position detector 19, that is, the current output from the terminals 19b and 19c in FIGS. 5A and 5B.
  • the position detection signal (coordinate Px) obtained by the calculation is output to the controller 301.
  • the interface 305 is an input / output circuit for the controller 301 to transmit / receive signals to / from an external control circuit such as a vehicle-side control circuit.
  • the controller 301 monitors the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 based on the position detection signal (coordinate Px) input from the position detection circuit 304, and determines whether the scanning state of the laser beam is appropriate as needed. Determine. And when the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 deviates from a predetermined scanning state, the optical deflector 14 is controlled so that the scanning state becomes appropriate.
  • FIG. 8A is a diagram schematically showing the movement of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 when the swing angle of the mirror 17 is lower than a predetermined swing angle.
  • FIG. 8B is a diagram schematically showing the movement of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 when the beam spot B1 moves as shown in FIG. 8A.
  • the rotation width of the mirror 17 according to the drive signal may be reduced from a predetermined rotation width due to, for example, deterioration of the optical deflector 14 over time.
  • the movement width of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 is reduced by ⁇ W with respect to the predetermined width W1.
  • the movement width of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 also decreases by ⁇ L from the predetermined width Lw.
  • the controller 301 sends the drive signal amplitude to the mirror drive circuit 303, that is, so that the movement width of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 becomes the predetermined width Lw. Control is performed to increase the amplitude of the drive signal having a triangular waveform centered on the zero level. By this control, the movement width of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 is matched with the predetermined width W1.
  • the controller 301 measures the time required for the specularly reflected light spot RB1 to move between the boundaries on both sides of the width Lw, and based on the measurement result, the frequency of the reciprocating movement of the specularly reflected light spot RB1. (Period) is acquired. Then, the controller 301 determines that resonance occurs in the operation of the mirror 17 when the acquired frequency (cycle) greatly deviates from the frequency (cycle) of the drive signal of the optical deflector 14. Based on this determination result, the controller 301 changes the frequency of the drive signal so that the frequency (cycle) of the reciprocating movement of the regular reflection light spot RB1 matches the frequency of the drive signal.
  • the control based on the position detection signal in the controller 301 is not limited to the above control.
  • the controller 301 determines whether or not the movement width of the regular reflection light spot RB1 is shifted laterally from a predetermined width Lw based on the position detection signal, and the movement width of the regular reflection light spot RB1 is a predetermined width. You may perform control which adjusts the drive signal of the optical deflector 14 so that it may match with Lw. Alternatively, when the right-side movement width and the left-side movement width of the regular reflection light spot RB1 are different from the center position Lm, the drive signal of the optical deflector 14 is adjusted so that these movement widths are equal to each other. Control may be performed.
  • the laser light source 12 in a predetermined section in the width W1.
  • Control to turn off can be performed. For example, when a vehicle or oncoming vehicle is detected within the range of the headlamp on the vehicle side, control to turn off the position of the preceding vehicle or oncoming vehicle, light is applied only to the human area, etc.
  • the light source device 2 is instructed from the vehicle side to control the so-called spot illumination, in which the region is not irradiated. This instruction is input to the controller 301 via the interface 305 in FIG. In this case, the controller 301 controls the laser drive circuit 302 to turn off the laser light source 12 in a predetermined section in the width W1 in accordance with an instruction from the vehicle side.
  • the process of interpolating the position detection signal during the non-lighting period of the laser light source 12 based on the position detection signal acquired during the lighting period of the laser light source 12 includes: This is performed in the controller 301.
  • FIG. 9 is a timing chart for explaining the interpolation method of the position detection signal when the laser light source 12 is controlled to be extinguished during a predetermined period.
  • Drive signals output from the mirror drive circuit 303 and the laser drive circuit 302 are shown in the uppermost stage and the middle stage of FIG. 9, respectively, and a position detection signal output from the position detection circuit 304 is shown in the lowermost stage of FIG. It is shown.
  • the optical deflector 14 is supplied with a triangular wave drive signal centered on the zero level as the amplitude.
  • the position detection signal is output from the position detection circuit 304 only during the period (T1-T2, T4-T5, T7-T8, T10-T11) when the laser light source 12 is turned on.
  • the controller 301 interpolates similarly the drive signal in the non-lighting period as indicated by the dotted line in the lowermost stage, based on the slope and value of the output drive signal.
  • the controller 301 obtains a straight line that overlaps the drive signal between the timings T1 and T2 based on the value of the drive signal at the timings T1 and T2 and the slope of the drive signal between the timings T1 and T2. Similarly, the controller 301 obtains a straight line that overlaps the drive signal between timings T4 and T5, a straight line that overlaps the drive signal between timings T7 and T8, and a straight line that overlaps the drive signal between timings T10 and T11. Then, the controller 301 obtains the intersection of these straight lines, and interpolates the position detection signal during the non-lighting period of the laser light source 12 with the line segments up to the intersections of the respective straight lines. The controller 301 executes the above-described control process based on the position detection signal after interpolation thus obtained.
  • the controller 301 executes a process of determining the state of the wavelength conversion member 15 based on a signal output from the position detector 19 in addition to the various processes described above.
  • the thickness of the phosphor layer 203 may gradually decrease from the initial thickness due to factors such as continued irradiation with high-power laser light.
  • the thickness of the phosphor layer 203 is thus reduced, the excited fluorescence is reduced, and light of a desired color is not output.
  • the phosphor layer 203 disappears completely in a part of the region, almost all of the light irradiated to the region is reflected laterally by the reflective film 202 and is not taken into the projection optical system 3.
  • the thickness of the phosphor layer 203 decreases or the phosphor layer 203 disappears in a part of the region, the color of light generated in the part changes from a desired color, or the The light irradiated to the part is not taken into the projection optical system 3.
  • the state of the phosphor layer 203 in the wavelength conversion member 15 can be determined by monitoring the amount of specularly reflected light incident on the position detector 19.
  • a light amount signal corresponding to the amount of specularly reflected light incident on the light receiving surface 19a of the position detector 19 is acquired from the signal output from the position detector 19, and the acquired light amount signal is obtained. Based on this, the state of the wavelength conversion member 15 is determined.
  • the light quantity signal is acquired as a signal obtained by adding the current values Ix1 and Ix2 of the photocurrent output from the terminals 19b and 19c shown in FIGS. 5A and 5B. Therefore, the position detection circuit 304 shown in FIG. 7 further executes a calculation process for calculating the light amount signal by adding the current values Ix1 and Ix2 of the photocurrent, and the light amount signal acquired by the calculation process is converted to the controller as needed. A configuration for outputting to 301 is also provided.
  • the controller 301 determines whether or not there is an abnormality in the wavelength conversion member 15 based on the light quantity signal thus acquired. Specifically, the controller 301 determines that an abnormality has occurred in the phosphor layer 203 of the wavelength conversion member 15 when the light amount signal exceeds a predetermined threshold value.
  • the controller 301 executes processing for updating the threshold value to be compared with the light amount signal based on the total lighting time of the laser light source 12.
  • FIG. 10A is a flowchart showing a threshold value Dth setting process for detecting an abnormality of the wavelength conversion member 15.
  • the controller 301 starts measuring the total activation time T of the laser light source 12 (S11).
  • the total activation time T is the total activation time of the laser light source 12 after the laser light source 12 is first activated.
  • the total activation time T is measured only during a period in which the laser light source 12 is in a lighting state after the light source device 2 is activated, and is not measured in a period in which the laser light source 12 is in a non-lighting state.
  • the controller 301 determines whether or not the total activation time T has reached a preset update time Tc (S12). When the total activation time T reaches the update time Tc (S12: YES), the controller 301 updates the threshold value Dth (S13). When the total activation time T has not reached the update time Tc (S12: NO), the controller 301 skips step S13.
  • the controller 301 repeatedly executes the processes of steps S11 to S13 until the light source device 2 is powered off (S14: YES). When the power supply to the light source device 2 is shut off (S14: YES), the controller 301 ends the measurement of the total activation time T and stores the total activation time T after measurement in the internal memory (S15).
  • a plurality of update times Tc in step S12 are held in the controller 301 in advance. For example, when four update times Tc are held, the controller 301 first decreases the threshold Dth at the timing when the total activation time T reaches the first update time Tc, and then the total activation time T is The threshold value Dth is further lowered at the timing when the next update time Tc is reached. Thereafter, similarly, the controller 301 decreases the threshold value Dth every time the total activation time T reaches the third and fourth update times Tc.
  • the threshold value Dth of each update time Tc is set in consideration of, for example, a change in emission power over time, which can occur normally in the laser light source 12. That is, the output power at each update time Tc is set based on a standard change over time, and a predetermined ratio (for example, 1.8) Is set to the value of the light amount signal that can be generated when the laser light is emitted with the set output power. A value obtained by multiplying 5) is set as the threshold value Dth at the update time Tc. The threshold value Dth at each update time Tc is held in the internal memory of the controller 301 in advance.
  • FIG. 10B is a flowchart showing a process for detecting an abnormality of the wavelength conversion member 15 using the threshold value Dth set by the process of FIG. 10A.
  • the controller 301 determines whether or not the acquired light amount signal Da exceeds the threshold value Dth (S22).
  • the controller 301 ends the lighting of the laser light source 12, and sets a flag indicating that an abnormality has occurred in the wavelength conversion member 15 (S23).
  • the controller 301 may output a notification signal indicating that an abnormality has occurred in the wavelength conversion member 15 to an external control circuit (for example, a control circuit on the vehicle side) via the interface 305.
  • the controller 301 skips step S23.
  • the controller 301 repeatedly executes the processes of steps S21 to S23 until the power to the light source device 2 is shut off (S24: YES).
  • the controller 301 ends the abnormality detection process of the wavelength conversion member 15.
  • a detection signal is output from the position detector 19 for the entire scanning range (width W1) on the incident surface 15a of the wavelength conversion member 15. Therefore, by monitoring this detection signal, the operation state of the optical deflector 14 can be detected in the entire scanning range (width W1). Therefore, the operating state of the optical deflector 14 can be detected accurately and with high accuracy.
  • the band pass filter 31 it becomes possible to detect signals more accurately by removing unnecessary yellow light as signal light, and by having the neutral density filter 32, the signal light is not saturated. It is possible to adjust the signal amount.
  • the controller 301 changes the scanning state of the laser light on the incident surface 15 a of the wavelength conversion member 15 to a predetermined scanning state based on the detection signal from the position detector 19.
  • the optical deflector 14 is controlled. Thereby, even when the operation of the optical deflector 14 is deteriorated due to aging deterioration or the like, the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 can be adjusted to a predetermined scanning state. It can also be used as a synchronizing signal between the laser light source 12 and the optical deflector 14 for determining the lighting position for illumination.
  • the controller 301 disappears based on the detection signal of the lighting period.
  • the detection signal for the period is interpolated, and the optical deflector 14 is controlled based on the detection signal after the interpolation.
  • the controller 301 outputs a light amount signal Da corresponding to the amount of laser light (regular reflection light) regularly reflected on the incident surface 15 a of the wavelength conversion member 15 from the position detector 19. Is obtained based on the obtained signal, and the state of the wavelength conversion member 15 is determined based on the obtained light quantity signal Da. Thereby, the abnormality of the wavelength conversion member 15 can be further detected based on the detection signal from the position detector 19 and the controller 301 can appropriately take measures such as stopping the lighting of the laser light source 12.
  • the configuration for detecting the specularly reflected light can be variously changed in addition to the configuration shown in the first embodiment.
  • the position detector 19 is installed on the circuit board 18, and the specularly reflected light that is specularly reflected by the incident surface 15 a of the wavelength conversion member 15 is mirror 20 (light guide member). ) May be guided to the position detector 19.
  • the base 11 is provided with a hole 11 a for guiding the specularly reflected light reflected by the mirror 20 to the position detector 19.
  • the condensing lens 21 is further attached to the base 11 as a condensing member for condensing the specularly reflected light on the light receiving surface 19a of the position detector 19. It may be installed.
  • the size of the specularly reflected light spot RB1 can be further reduced.
  • the position detection accuracy of the regular reflection light spot RB1 on the light receiving surface 19a can be increased. For this reason, the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 and the rotational position of the mirror 17 can be detected with higher accuracy.
  • the specularly reflected light may be condensed on the light receiving surface 19 a of the position detector 19 by a concave mirror 22 instead of the condenser lens 21.
  • the concave mirror 22 functions as a light guide member that guides the specularly reflected light to the position detector 19 and a light collecting member that condenses the specularly reflected light on the light receiving surface 19 a of the position detector 19.
  • the condensing lens 21 can be omitted from the configuration of FIG. 11B, so that the configuration can be simplified.
  • the specularly reflected light that is specularly reflected by the incident surface 15 a of the wavelength conversion member 15 is collected on the light receiving surface 19 a of the position detector 19.
  • the condensing lens 23 may be installed on the base 11. Also in this case, since the position detection accuracy of the regular reflection light spot RB1 on the light receiving surface 19a can be increased, the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 and the rotation position of the mirror 17 are further increased. It can be detected with high accuracy.
  • the optical deflector 14 is configured to rotate the driven part about one axis.
  • the optical deflector 14 is configured so that the mirror 17 can rotate about two rotation axes orthogonal to each other.
  • the scanning locus of the laser beam on the incident surface 15a of the wavelength conversion member 15 is different from that in the first embodiment.
  • a plurality of scanning lines are set on the incident surface 15a of the wavelength conversion member 15, and accordingly, the size of the beam spot that scans the incident surface 15a of the wavelength conversion member 15 is It is narrowed down compared to the first embodiment.
  • Other configurations of the light projecting device 1 and the light source device 2 are the same as those in the first embodiment.
  • the size of the beam spot can be further reduced by adjusting the distance between the laser light source 12 and the collimator lens 13, the numerical aperture of the collimator lens 13, and the like. Further, the collimator lens 13 or the mirror 17 may be further provided with an optical action for adjusting the size and shape of the beam spot.
  • FIG. 13 is a perspective view showing the configuration of the optical deflector 14 according to the second embodiment.
  • 14A and 14B are perspective views in which a part of the optical deflector 14 according to the second embodiment is cut away.
  • 13, 14 ⁇ / b> A, and 14 ⁇ / b> B show the same x, y, and z axes as in FIGS. 3A and 3B.
  • FIG. 14A shows a cross section 14a obtained by cutting the optical deflector 14 shown in FIG. 13 along a plane including a straight line XIVA-XIVA passing through the central position in the y-axis direction of the optical deflector 14 along the xz plane.
  • the optical deflector 14 shown in FIG. 13 in a plane parallel to the yz plane is parallel to the yz plane and includes a straight line XIVB-XIVB passing through the central position in the x-axis direction.
  • a cut section 14b is shown.
  • the housing 111 has a rectangular parallelepiped shape that is long in the x-axis direction. On the upper surface of the housing 111, a rectangular recess 111a is formed in plan view.
  • the housing 111 is made of a metal material having high rigidity.
  • a frame-shaped leaf spring 112 is installed on the upper surface of the housing 111.
  • the leaf spring 112 has an outer frame portion 112a, an inner frame portion 112b, two beam portions 112c, a support portion 112d, and two beam portions 112e.
  • Two beam portions 112c are formed so as to extend in parallel to the x-axis direction from the outer frame portion 112a at an intermediate position in the y-axis direction, and the outer frame portion 112a and the inner frame portion 112b are connected by these beam portions 112c.
  • two beam portions 112e are formed so as to extend in parallel to the y-axis direction from the inner frame portion 112b, and the inner frame portion 112b and the support portion 112d are formed by these beam portions 112e. It is connected.
  • the inner frame portion 112b has a contour with rounded rectangular corners in plan view, and two beam portions 112c are connected to the inner frame portion 112b at an intermediate position in the y-axis direction of the inner frame portion 112b.
  • the support portion 112d has a rectangular outline in plan view, and two beam portions 112e are connected to the support portion 112d at an intermediate position in the x-axis direction of the support portion 112d.
  • the leaf spring 112 has a symmetrical shape in the x-axis direction and the y-axis direction.
  • the leaf spring 112 is integrally formed of a flexible metal material.
  • the plate spring 112 is fixed to the upper surface of the housing 111 with four screws 113 in a state where the outer frame portion 112 a is placed on the upper surface of the housing 111.
  • the mirror 17 is fixed to the upper surface of the support portion 112d with an adhesive or the like.
  • the mirror 17 is substantially square in plan view.
  • the axis connecting the two beam portions 112e becomes the rotation axis L1 of the mirror 17 for scanning the laser beam in the longitudinal direction of the wavelength conversion member 15 as in the first embodiment.
  • the axis connecting the two beam portions 112c becomes the rotation axis L2 of the mirror 17 for changing the scanning line of the laser beam in the wavelength conversion member 15.
  • the laser light from the laser light source 12 enters the center position of the mirror 17. That is, the laser light from the laser light source 12 is incident on the mirror 17 so that the central axis of the laser light passes through the position where the rotation axes L1 and L2 intersect.
  • the coil 114 is attached to the lower surface of the support portion 112d.
  • the coil 114 circulates in a shape with rounded rectangular corners in plan view.
  • the coil 114 is installed on the lower surface of the support portion 112d so that the middle position of the long side coincides with the rotation axis L1.
  • the coil 114, the support part 112 d, and the mirror 17 constitute a first movable part of the optical deflector 14.
  • Two sets of magnets 115 and 116 are arranged so as to sandwich the coil 114 in the x-axis direction.
  • the magnets 115 and 116 are installed on the yoke 117, and the yoke 117 is installed on the bottom surface of the recess 111 a of the housing 111.
  • the method of adjusting the magnetic poles of each set of magnets 115 and 116 is the same as that of the magnets 105 and 106 shown in FIGS. 3A and 3B.
  • a coil 118 is attached to the lower surface of the inner frame portion 112b.
  • the coil 118 has the same shape as the inner frame portion 112b in plan view.
  • the coil 118 is installed on the lower surface of the inner frame portion 112b so that the intermediate position of the short side coincides with the rotation axis L2.
  • the coil 118 and the inner frame portion 112b constitute a second movable portion of the optical deflector 14.
  • Magnets 119 are arranged on the y-axis positive side and the y-axis negative side with respect to the coil 114, respectively. These magnets 119 are installed on the yoke 117. Further, these two magnets 119 are installed on the yoke 117 so that the magnetic poles facing the coil 118 are different from each other.
  • the magnet 119 is a permanent magnet having a substantially uniform magnetic flux density on the magnetic pole surface.
  • the inner frame portion 112b rotates about the rotation axis L2, and according to the magnitude of the drive signal.
  • the inner frame portion 112b is inclined by the angle. That is, the inner frame portion 112b is inclined from the neutral position shown in FIG. 13 by an angle at which the elastic restoring force generated in the beam portion 112c and the electromagnetic force excited by the coil 118 are balanced.
  • the mirror 17 rotates together with the support portion 112d as the inner frame portion 112b rotates.
  • the support portion 112d rotates about the rotation axis L1 by applying a drive signal (current) to the coil 114 as in the configuration of FIGS. 3A and 3B.
  • a drive signal current
  • the mirror 17 rotates about the rotation axis L1.
  • the drive signal current is independently applied to the coils 114 and 118, whereby the mirror 17 is individually moved about the rotation axes L 1 and L 2. Can be rotated.
  • FIG. 15A is a diagram schematically showing a scanning state of the laser light in the wavelength conversion member 15.
  • a plurality of scanning lines SL1 are set on the incident surface 15a of the wavelength conversion member 15.
  • three scanning lines SL1 are set on the incident surface 15a.
  • the number of scanning lines SL1 is not limited to this.
  • the beam spot B2 is narrowed down more than in the case of the first embodiment, and the shape of the beam spot B2 is adjusted to be circular.
  • Such adjustment of the size and shape of the beam spot B2 is realized, for example, by giving the collimator lens 13 an optical action for converging the laser beam in a circular shape on the incident surface 15a of the wavelength conversion member 15.
  • such an optical action may be imparted to the reflecting surface of the mirror 17.
  • the reflecting surface of the mirror 17 is adjusted to a concave shape that can impart such an optical action to the laser light.
  • the laser beam spot B2 is positioned at the start position on the X-axis positive side of the second-stage scan line SL1 after the uppermost scan line SL1 is moved to the end position in the X-axis positive direction. Thereafter, the beam spot B2 is positioned at the X axis negative start position of the third scanning line SL1 after the second scanning line SL1 is moved to the end position in the X axis negative direction. Similarly, when the beam spot B2 moves to the end position on the X axis positive side of the third-stage scanning line SL1, the beam spot B2 is positioned at the start position of the second-stage scanning line SL1.
  • the beam spot B2 is positioned at the start position on the X-axis negative side of the first-stage scan line SL1 after the second-stage scan line SL1 is moved to the end position in the X-axis negative direction. Thereafter, the same scanning is repeated for the three scanning lines SL1.
  • the movement of the beam spot B2 along the scanning line SL1 is performed by rotating the mirror 17 about the rotation axis L1 shown in FIG.
  • the scan line SL1 is changed by rotating and tilting the mirror 17 about the rotation axis L2 shown in FIG.
  • the optical deflector 14 is controlled by the control circuit mounted on the circuit board 18 of FIG. 1 so that the beam spot B2 scans the incident surface 15a of the wavelength conversion member 15 as described above.
  • the feed lines TL1 and TL2 in FIG. 15A indicate the movement trajectory of the beam spot B2 when laser light is emitted, and in actual control, the laser light source 12 in the feed lines TL1 and TL2 is shown. Is controlled to be turned off.
  • the laser beam scanning method for the incident surface 15a of the wavelength conversion member 15 is not limited to the above.
  • the incident surface 15a of the wavelength conversion member 15 is scanned with a laser beam so that the beam spot B2 jumps back and forth along each scanning line SL1 and then jumps to the start position of the next scanning line SL1. May be.
  • the position detector 19 is replaced with a two-dimensional detection position detector 19 ′ shown in FIG. 15B so that the scanning position of the beam spot B2 in each scanning line SL1 can be detected. It is done.
  • the position detector 19 ′ is a pair for outputting a photocurrent in the vertical direction to the resistance layer on the surface side shown in FIG. 5B. The electrodes are formed at the vertical edges, and the photocurrents flowing into these electrodes are output from the terminals 19d and 19e, respectively.
  • the vertical coordinate Py of the irradiation position with the vertical center position Lmy of the light receiving surface 19a as a reference is calculated by the following equation.
  • Iy1 and Iy2 are current values of photocurrents output from the terminals 19d and 19e
  • Ly is a distance between the electrodes in the vertical direction.
  • the specularly reflected light spot RB2 on the light receiving surface 19a is obtained by performing the calculation of the equation (2) based on the current values Iy1 and Iy2 of the photocurrent output from the terminals 19d and 19e of the position detector 19 ′.
  • a position detection signal (coordinate Py) indicating the position in the vertical direction can be calculated.
  • the position detection signal (coordinate Px) indicating the lateral position of the regular reflection light spot RB2 on the light receiving surface 19a can be calculated based on the above equation (1).
  • the specularly reflected light spot RB2 moves along the light receiving surface 19a of the position detector 19 ′ as shown in FIG. 15B. Move to.
  • the position of the beam spot B1 on the incident surface 15a and the position of the specularly reflected light spot RB1 on the light receiving surface 19a correspond one-to-one. Therefore, also in this case, the position of the beam spot B1 on the incident surface 15a and the rotation position of the mirror 17 can be detected by the two types of position detection signals calculated by the above formulas (1) and (2).
  • the position detection circuit 304 acquires two types of position detection signals indicating the positions of the regular reflection light spot RB2 in the horizontal direction and the vertical direction based on the above formulas (1) and (2). These position detection signals are output to the controller 301 as needed. Further, the position detection circuit 304 adds the current values Ix1, Ix2, Iy1, and Iy2 of the photocurrents output from the terminals 19b to 19e to acquire a light amount signal, and outputs the acquired light amount signal to the controller 301.
  • the controller 301 determines the scanning state of the beam spot B2 for each scanning line SL1 based on the two types of position detection signals calculated by the above formulas (1) and (2), and the beam spot B2 performs predetermined scanning.
  • the optical deflector 14 is controlled so as to appropriately scan the incident surface 15a of the wavelength conversion member 15 according to the line SL1. Further, the controller 301 performs wavelength conversion based on the light amount signal obtained by adding the current values Ix1, Ix2, Iy1, and Iy2 of the photocurrents output from the terminals 19b to 19e, as in the first embodiment.
  • a process for detecting an abnormality of the member 15 is executed.
  • the operation state of the optical deflector 14 can be detected in the entire scanning range (width W1, scanning line SL1) by monitoring the detection signal. Therefore, the operating state of the optical deflector 14 can be detected accurately and with high accuracy.
  • the wavelength conversion member 15 is scanned along the plurality of scanning lines SL1 with the more narrow beam spot B2, for example, white light is emitted on the light emitting region R2.
  • the region where the light emission is stopped and the region where the white light is emitted can be set more finely. For this reason, when the white light generated from the light source device 2 is projected onto the target area by the projection optical system 3, the area where the white light projection is stopped or the area where the white light projection is performed on the target area is more Can be set in detail.
  • the white light irradiation region and the non-irradiation region are set more finely according to the position of the oncoming vehicle and the position of the pedestrian. be able to.
  • the reflective wavelength conversion member 15 is used.
  • a transmissive wavelength conversion member 15 is used.
  • the substrate 201 shown in FIG. 4A is formed of a material having excellent light transmittance, and the reflective film 202 transmits laser light in the blue wavelength band and reflects fluorescence in the yellow wavelength band. Changed to dichroic membrane. Laser light is incident from the lower surface of the substrate 201 opposite to the phosphor layer 203.
  • FIG. 16 is a cross-sectional view showing the configuration of the light projecting device 1 according to the third embodiment.
  • the wavelength conversion member 15 is installed on the base 11 so as to face the mirror 17 from the Y axis negative side. Further, the tilt angle of the mirror 17 is adjusted so that the wavelength conversion member 15 can be irradiated with laser light.
  • a position detector 19 is installed at a position where the regular reflection light regularly reflected by the wavelength conversion member 15 is incident. Similar to the first embodiment, the position detector 19 is arranged so that the specularly reflected light can be received in the entire scanning range on the incident surface 15 a of the wavelength conversion member 15.
  • the wavelength conversion member 15 is scanned with laser light as the mirror 17 rotates.
  • diffused light in the yellow wavelength band and diffused light in the blue wavelength band are emitted from the Y axis negative side of the wavelength conversion member 15, and these diffused lights are taken into the lenses 3 a and 3 b of the projection optical system 3.
  • white light is emitted from the projection optical system 3.
  • the controller 301 monitors the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 as in the first embodiment.
  • the controller 301 controls the optical deflector 14 so that the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 becomes a predetermined scanning state.
  • the same effect as in the first embodiment can be obtained. Also in the third embodiment, the configuration of the second embodiment or the configuration of each modification shown in FIGS. 11A to 12B can be applied as appropriate.
  • the shape of the leaf springs 102 and 112 is not necessarily limited to the shape shown in the first embodiment and the second embodiment.
  • the region of the frame portion 102a other than the region sandwiched between the screws 103 may be omitted.
  • the shape of the mirror 17 does not necessarily have to be a square in a plan view, and may be a rectangle or a circle in a plan view.
  • the shape of the support portion 102b can also be changed as appropriate.
  • the type of the phosphor particles 203a included in the phosphor layer 203 of the wavelength conversion member 15 is not necessarily one type.
  • a plurality of types that generate fluorescence with different wavelengths by the laser light from the laser light source 12 are used.
  • Phosphor particles 203 a may be included in the phosphor layer 203.
  • light of a predetermined color is generated by the diffused light of the fluorescence generated from each type of phosphor particles 203a and the diffused light of the laser light that has not been wavelength-converted by the phosphor particles 203a.
  • the light source device and the light projecting device of the present disclosure can accurately and accurately detect the state of a deflector that scans light with respect to a wavelength conversion member. For example, as a light source device for a vehicle headlamp It is very useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Filters (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

Provided are a light source device capable of detecting correctly and with high precision the state of a deflector which causes light to scan across a wavelength converting member, and a light projecting device provided with the same. A light source device (2) is provided with a laser light source, a wavelength converting member (15), an optical deflector (14), and a position detector (19). The laser light source emits laser light. The wavelength converting member (15) converts the wavelength of the laser light into another wavelength, and diffuses the wavelength-converted laser light. The optical deflector (14) causes the laser light to scan in at least one dimension on a surface of incidence of the wavelength converting member (15). The position detector (19) receives laser light that has been specularly reflected at the surface of incidence of the wavelength converting member (15), for the entire scanning range at the surface of incidence of the wavelength converting member (15), and outputs a detection signal corresponding to a light reception position.

Description

光源装置および投光装置Light source device and light projecting device
 本開示は、光を発する光源装置およびそれを用いた投光装置に関する。 The present disclosure relates to a light source device that emits light and a light projecting device using the light source device.
 従来、レーザ光源から出射された光を波長変換部材に照射することにより所定波長の光を生成する光源装置が知られている。この光源装置では、たとえば、波長変換部材により波長変換されて拡散された光と、波長変換部材により波長変換されずに拡散された光とが合成されて、白色光等、所定の色の光が生成される。このような光源装置が、たとえば、車両用前照灯の光源装置として利用されている。 Conventionally, there has been known a light source device that generates light of a predetermined wavelength by irradiating a wavelength conversion member with light emitted from a laser light source. In this light source device, for example, light that has been subjected to wavelength conversion by the wavelength conversion member and diffused and light that has been diffused without being subjected to wavelength conversion by the wavelength conversion member are combined to generate light of a predetermined color such as white light. Generated. Such a light source device is used, for example, as a light source device for a vehicle headlamp.
 以下の特許文献1には、揺動自在なマイクロミラーによって蛍光体(波長変換部材)の発光面をレーザビームで走査して発光面に光像を生成し、生成した光像を、光学系を介して道路上に投影する車両用前照灯が記載されている。この車両用前照灯では、マイクロミラーの所定の揺動位置において発光面で反射されたレーザビームを検出する位置に光センサが配置され、光センサからの信号によりマイクロミラーの位置および運動が検出される。 In Patent Document 1 below, the light emitting surface of a phosphor (wavelength conversion member) is scanned with a laser beam by a swingable micromirror to generate an optical image on the light emitting surface, and the generated optical image is converted into an optical system. A vehicle headlamp to be projected onto a road is described. In this vehicle headlamp, an optical sensor is arranged at a position where the laser beam reflected by the light emitting surface is detected at a predetermined swing position of the micromirror, and the position and movement of the micromirror are detected by a signal from the optical sensor. Is done.
特表2016-528671号公報Special table 2016-528671
 上記特許文献1では、マイクロミラーの傾き角が所定の角度にあるときにのみ反射光が光センサに入射する構成であるため、この角度以外の範囲において、マイクロミラーの動作状態を適正に検出することができない。たとえば、マイクロミラーが駆動信号に適正に応答しないために反射光が光センサに入射しなかったような場合、特許文献1の構成では、そのことを、光センサからの出力に基づいて直ちに検出することができない。 In the above-mentioned Patent Document 1, since the reflected light is incident on the optical sensor only when the tilt angle of the micromirror is at a predetermined angle, the operation state of the micromirror is properly detected in a range other than this angle. I can't. For example, when the reflected light does not enter the optical sensor because the micromirror does not properly respond to the drive signal, the configuration of Patent Document 1 immediately detects this based on the output from the optical sensor. I can't.
 かかる課題に鑑み、本開示は、波長変換部材に対して光を走査させる偏向器の状態を正確かつ高精度に検出することが可能な光源装置およびそれを用いた投光装置を提供することを目的とする。 In view of such a problem, the present disclosure provides a light source device capable of accurately and accurately detecting a state of a deflector that scans light with respect to a wavelength conversion member, and a light projecting device using the light source device. Objective.
 本開示の第1の態様は、光源装置に関する。第1の態様に係る光源装置は、レーザ光源と、波長変換部材と、光偏向器と、位置検出器とを備える。レーザ光源は、レーザ光を出射する。波長変換部材は、レーザ光の光路上に入射面を有し、レーザ光の波長を他の波長に変換して変換光を生じせしめるとともに変換光を拡散させる。光偏向器は、レーザ光を波長変換部材の入射面上において少なくとも1次元に走査させる。位置検出器は、波長変換部材の入射面において正反射したレーザ光を、入射面上の全ての走査範囲に対して受光するとともに、レーザ光の受光位置に応じた検出信号を出力する。なお、正反射とは、励起光が蛍光体で吸収、拡散されずに、入射角と同じ角度で反射されることをいう。正反射のことを直接反射ともいう。 The first aspect of the present disclosure relates to a light source device. The light source device according to the first aspect includes a laser light source, a wavelength conversion member, an optical deflector, and a position detector. The laser light source emits laser light. The wavelength conversion member has an incident surface on the optical path of the laser light, converts the wavelength of the laser light to another wavelength, generates converted light, and diffuses the converted light. The optical deflector scans the laser beam at least one dimension on the incident surface of the wavelength conversion member. The position detector receives the laser beam specularly reflected on the incident surface of the wavelength conversion member with respect to all scanning ranges on the incident surface and outputs a detection signal corresponding to the light receiving position of the laser beam. Here, regular reflection means that excitation light is reflected at the same angle as the incident angle without being absorbed and diffused by the phosphor. Regular reflection is also called direct reflection.
 本態様に係る光源装置によれば、波長変換部材の入射面上の全走査範囲に対して、位置検出器から検出信号が出力される。このため、この検出信号を監視することにより、全走査範囲において光偏向器の動作状態を検出できる。よって、光偏向器の動作状態を正確かつ高精度に検出することができる。 According to the light source device according to this aspect, the detection signal is output from the position detector for the entire scanning range on the incident surface of the wavelength conversion member. Therefore, by monitoring this detection signal, the operation state of the optical deflector can be detected in the entire scanning range. Therefore, the operation state of the optical deflector can be detected accurately and with high accuracy.
 本発明の第2の態様は、投光装置に関する。第2の態様に係る投光装置は、第1の態様に係る光源装置と、波長変換部材により拡散された光を投射する投射光学系と、を備える。 The second aspect of the present invention relates to a light projecting device. The light projecting device according to the second aspect includes the light source device according to the first aspect and a projection optical system that projects the light diffused by the wavelength conversion member.
 本態様に係る投光装置によれば、第1の態様と同様の効果が奏され得る。 According to the light projecting device according to this aspect, the same effect as in the first aspect can be achieved.
 以上のとおり、本開示に係る光源装置および投光装置によれば、波長変換部材に対して光を走査させる偏向器の状態を正確かつ高精度に検出することができる。 As described above, according to the light source device and the light projecting device according to the present disclosure, it is possible to accurately and accurately detect the state of the deflector that scans the wavelength conversion member with light.
 本開示にかかる発明(以下、本発明という)の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。 The effects or significance of the invention according to the present disclosure (hereinafter referred to as the present invention) will be further clarified by the following description of embodiments. However, the embodiment described below is merely an example when the present invention is implemented, and the present invention is not limited to what is described in the following embodiment.
図1は、第1の実施形態に係る投光装置の構成を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration of a light projecting device according to the first embodiment. 図2は、第1の実施形態に係る投光装置の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device according to the first embodiment. 図3Aは、第1の実施形態に係る光偏向器の構成を示す斜視図である。FIG. 3A is a perspective view showing the configuration of the optical deflector according to the first embodiment. 図3Bは、第1の実施形態に係る光偏向器の一部を切り欠いた斜視図である。FIG. 3B is a perspective view in which a part of the optical deflector according to the first embodiment is cut away. 図4Aは、第1の実施形態に係る波長変換部材の構成を模式的に示す側面図である。FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member according to the first embodiment. 図4Bは、第1の実施形態に係る波長変換部材の構成を模式的に示す平面図である。FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member according to the first embodiment. 図5Aは、第1の実施形態に係る位置検出器の構成および位置検出信号の生成方法を説明するための図である。FIG. 5A is a diagram for explaining a configuration of a position detector and a method for generating a position detection signal according to the first embodiment. 図5Bは、第1の実施形態に係る位置検出器の構成を模式的に示す断面図である。FIG. 5B is a cross-sectional view schematically showing the configuration of the position detector according to the first embodiment. 図6Aは、第1の実施形態に係る、波長変換部材の入射面におけるビームスポットの移動を模式的に示す図である。FIG. 6A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member according to the first embodiment. 図6Bは、第1の実施形態に係る、図6Aのようにビームスポットが移動した場合の位置検出器上における正反射光スポットの移動を模式的に示す図である。FIG. 6B is a diagram schematically showing the movement of the specularly reflected light spot on the position detector when the beam spot moves as shown in FIG. 6A according to the first embodiment. 図7は、第1の実施形態に係る光源装置の主たる回路構成を示す回路ブロック図である。FIG. 7 is a circuit block diagram illustrating a main circuit configuration of the light source device according to the first embodiment. 図8Aは、第1の実施形態に係る、ミラーの振り角が所定の振り角よりも低下した場合の波長変換部材の入射面上におけるビームスポットの移動を模式的に示す図である。FIG. 8A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member when the mirror swing angle is lower than a predetermined swing angle according to the first embodiment. 図8Bは、第1の実施形態に係る、図8Aのようにビームスポットが移動した場合の位置検出器の受光面上における正反射光スポットの移動を模式的に示す図である。FIG. 8B is a diagram schematically showing the movement of the specularly reflected light spot on the light receiving surface of the position detector when the beam spot is moved as shown in FIG. 8A according to the first embodiment. 図9は、第1の実施形態に係る、レーザ光源を所定の期間において消灯させる制御がなされた場合の位置検出信号の補間方法を説明するためのタイミングチャートである。FIG. 9 is a timing chart for explaining an interpolation method of the position detection signal when the laser light source is controlled to be extinguished during a predetermined period according to the first embodiment. 図10Aは、第1の実施形態に係る、波長変換部材の異常を検出するための閾値の設定処理を示すフローチャートである。FIG. 10A is a flowchart illustrating threshold value setting processing for detecting an abnormality of the wavelength conversion member according to the first embodiment. 図10Bは、第1の実施形態に係る、波長変換部材の異常を検出するための処理を示すフローチャートである。FIG. 10B is a flowchart illustrating a process for detecting an abnormality of the wavelength conversion member according to the first embodiment. 図11Aは、第1の実施形態の第1変更例に係る投光装置の構成を示す部分断面図である。FIG. 11A is a partial cross-sectional view illustrating a configuration of a light projecting device according to a first modification of the first embodiment. 図11Bは、第1の実施形態の第2変更例に係る投光装置の構成を示す部分断面図である。FIG. 11B is a partial cross-sectional view illustrating a configuration of a light projecting device according to a second modification of the first embodiment. 図12Aは、第1の実施形態の第3変更例に係る投光装置の構成を示す部分断面図である。FIG. 12A is a partial cross-sectional view illustrating a configuration of a light projecting device according to a third modification of the first embodiment. 図12Bは、第1の実施形態の第3変更例に係る投光装置の構成を示す部分断面図である。FIG. 12B is a partial cross-sectional view illustrating a configuration of a light projecting device according to a third modification of the first embodiment. 図13は、第2の実施形態に係る光偏向器の構成を示す斜視図である。FIG. 13 is a perspective view showing a configuration of an optical deflector according to the second embodiment. 図14Aは、第2の実施形態に係る光偏向器の一部を切り欠いた斜視図である。FIG. 14A is a perspective view in which a part of the optical deflector according to the second embodiment is cut away. 図14Bは、第2の実施形態に係る光偏向器の一部を切り欠いた斜視図である。FIG. 14B is a perspective view in which a part of the optical deflector according to the second embodiment is cut away. 図15Aは、第2の実施形態に係る、波長変換部材の入射面におけるビームスポットの移動を模式的に示す図である。FIG. 15A is a diagram schematically illustrating the movement of the beam spot on the incident surface of the wavelength conversion member according to the second embodiment. 図15Bは、第2の実施形態に係る、図6Aのようにビームスポットが移動した場合の位置検出器上における正反射光スポットの移動を模式的に示す図である。FIG. 15B is a diagram schematically illustrating the movement of the specularly reflected light spot on the position detector when the beam spot moves as illustrated in FIG. 6A according to the second embodiment. 図16は、第3の実施形態に係る投光装置の構成を示す断面図である。FIG. 16 is a cross-sectional view illustrating a configuration of a light projecting device according to the third embodiment.
 以下、本発明の実施の形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。X軸方向およびY軸方向は、それぞれ、投光装置の幅方向および奥行き方向であり、Z軸方向は投光装置の高さ方向である。以下の第1の実施形態および第2の実施形態では、Z軸正方向が、投光装置における光の投射方向である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience, the X, Y, and Z axes orthogonal to each other are appended to each drawing. The X-axis direction and the Y-axis direction are the width direction and the depth direction of the light projecting device, respectively, and the Z-axis direction is the height direction of the light projecting device. In the following first and second embodiments, the positive Z-axis direction is the light projection direction in the light projecting device.
 <第1の実施形態>
 図1は、第1の実施形態に係る投光装置1の構成を示す斜視図である。図2は、第1の実施形態に係る投光装置1の構成を示す断面図である。図2には、Y-Z平面に平行な平面で投光装置1をX軸方向の中央位置において切断した断面図が示されている。
<First Embodiment>
FIG. 1 is a perspective view showing a configuration of a light projecting device 1 according to the first embodiment. FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device 1 according to the first embodiment. FIG. 2 shows a cross-sectional view of the light projecting device 1 cut at a central position in the X-axis direction along a plane parallel to the YZ plane.
 図1および図2を参照して、投光装置1は、光を生成する光源装置2と、光源装置2により生成された光を投射するための投射光学系3とを備える。投射光学系3は、2つのレンズ3a、3bを備え、これらレンズ3a、3bによって光源装置2からの光を集光して目標領域へと投射する。なお、投射光学系3は、必ずしも2つのレンズ3a、3bのみから構成されなくともよく、たとえば、他のレンズやミラーを備えていてもよい。また、投射光学系3は、凹面ミラーによって光源装置2からの光を集光する構成であってもよい。 1 and 2, the light projecting device 1 includes a light source device 2 that generates light and a projection optical system 3 that projects the light generated by the light source device 2. The projection optical system 3 includes two lenses 3a and 3b. The light from the light source device 2 is condensed by these lenses 3a and 3b and projected onto the target area. Note that the projection optical system 3 does not necessarily have only two lenses 3a and 3b, and may include other lenses and mirrors, for example. Further, the projection optical system 3 may be configured to condense light from the light source device 2 using a concave mirror.
 光源装置2は、ベース11に、各種部材が設置された構成となっている。具体的には、投射用の光を生成するための構成として、レーザ光源12と、コリメータレンズ13と、光偏向器14と、波長変換部材15がベース11に設置されている。コリメータレンズ13は、ホルダ16を介してベース11に設置されている。 The light source device 2 has a configuration in which various members are installed on the base 11. Specifically, a laser light source 12, a collimator lens 13, an optical deflector 14, and a wavelength conversion member 15 are installed on the base 11 as a configuration for generating projection light. The collimator lens 13 is installed on the base 11 via the holder 16.
 レーザ光源12は、青色波長帯(たとえば、450nm)のレーザ光をZ軸正方向に出射する。レーザ光源12は、たとえば、半導体レーザからなっている。レーザ光源12から出射されるレーザ光の波長は、適宜変更可能である。また、レーザ光源12は、必ずしも単一波長帯のレーザ光を出射するものでなくともよく、たとえば、1基板に複数の発光素子がマウントされたマルチ発光の半導体レーザであってもよい。 The laser light source 12 emits laser light in a blue wavelength band (for example, 450 nm) in the positive direction of the Z axis. The laser light source 12 is made of, for example, a semiconductor laser. The wavelength of the laser light emitted from the laser light source 12 can be changed as appropriate. Further, the laser light source 12 does not necessarily emit a laser beam having a single wavelength band, and may be, for example, a multi-emitting semiconductor laser in which a plurality of light emitting elements are mounted on one substrate.
 コリメータレンズ13は、レーザ光源12から出射されたレーザ光を平行光に変換する。なお、レーザ光源12から出射されたレーザ光が収束光となるように、コリメータレンズ13の光軸方向の位置が調整されてもよい。 The collimator lens 13 converts the laser light emitted from the laser light source 12 into parallel light. The position of the collimator lens 13 in the optical axis direction may be adjusted so that the laser light emitted from the laser light source 12 becomes convergent light.
 光偏向器14は、ミラー17を備え、ミラー17を回動軸L1について回動させることにより、コリメータレンズ13を通過したレーザ光の進行方向を変化させる。ミラー17の入射面は平面である。ミラー17は、たとえば、ガラス板に誘電体多層膜を形成した高反射率のミラーである。ミラー17は、中立位置において、X-Z平面に平行な面に対して、Y-Z平面に平行な方向に所定角度だけ傾くように配置される。ミラー17の回動軸L1は、Y-Z平面に平行で、且つ、Z軸方向に対して所定角度だけ傾いている。光偏向器14の構成は、追って、図3A、図3Bを参照して説明する。 The optical deflector 14 includes a mirror 17 and changes the traveling direction of the laser light that has passed through the collimator lens 13 by rotating the mirror 17 about the rotation axis L1. The incident surface of the mirror 17 is a plane. The mirror 17 is, for example, a high reflectance mirror in which a dielectric multilayer film is formed on a glass plate. In the neutral position, the mirror 17 is disposed so as to be inclined by a predetermined angle in a direction parallel to the YZ plane with respect to a plane parallel to the XZ plane. The rotation axis L1 of the mirror 17 is parallel to the YZ plane and tilted by a predetermined angle with respect to the Z-axis direction. The configuration of the optical deflector 14 will be described later with reference to FIGS. 3A and 3B.
 波長変換部材15は、ミラー17によって反射されたレーザ光が入射する位置に配置されている。波長変換部材15は、長方形形状の板状の部材であり、入射面がX-Y平面に平行となり、且つ、長手方向がX軸に平行となるように、ベース11に設置されている。上記のように、ミラー17が回動軸L1について回動することにより、波長変換部材15は、レーザ光によって長手方向に走査される。 The wavelength conversion member 15 is disposed at a position where the laser beam reflected by the mirror 17 is incident. The wavelength conversion member 15 is a rectangular plate-like member, and is installed on the base 11 so that the incident surface is parallel to the XY plane and the longitudinal direction is parallel to the X axis. As described above, when the mirror 17 rotates about the rotation axis L1, the wavelength conversion member 15 is scanned in the longitudinal direction by the laser light.
 波長変換部材15は、入射したレーザ光の一部を、青色波長帯とは異なる波長に変換して、Z軸方向に拡散させる。波長変換されなかった他のレーザ光は、波長変換部材15によってZ軸方向に拡散される。こうして拡散された2種類の波長の光が合成されて、所定の色の光が生成される。各波長の光は、投射光学系3に取り込まれて、目標領域に投射される。 The wavelength conversion member 15 converts part of the incident laser light into a wavelength different from the blue wavelength band and diffuses it in the Z-axis direction. The other laser light that has not been wavelength-converted is diffused in the Z-axis direction by the wavelength conversion member 15. The light of the two types of wavelengths diffused in this way is combined to generate light of a predetermined color. Light of each wavelength is taken into the projection optical system 3 and projected onto the target area.
 第1の実施形態では、波長変換部材15によって、レーザ光の一部が、黄色波長帯の光に変換される。波長変換後の黄色波長帯の拡散光と、波長変換されなかった青色波長帯の散乱光とが合成されて、白色の光が生成される。なお、波長変換後の波長は黄色波長帯でなくてもよく、生成される光の色は、白以外の色であってもよい。波長変換部材15の構成は、追って、図4A、図4Bを参照して説明する。 In the first embodiment, the wavelength conversion member 15 converts part of the laser light into light in the yellow wavelength band. The diffused light in the yellow wavelength band after wavelength conversion and the scattered light in the blue wavelength band that has not been wavelength-converted are combined to generate white light. In addition, the wavelength after wavelength conversion may not be a yellow wavelength range, and the color of the light produced | generated may be colors other than white. The configuration of the wavelength conversion member 15 will be described later with reference to FIGS. 4A and 4B.
 ベース11の下面には、回路基板18が設置されている。この回路基板18に、レーザ光源12および光偏向器14を制御するための回路が実装されている。図1に示すように、回路基板18の端子部が、ベース11のY軸正側において、外部に露出している。 A circuit board 18 is installed on the lower surface of the base 11. A circuit for controlling the laser light source 12 and the optical deflector 14 is mounted on the circuit board 18. As shown in FIG. 1, the terminal portion of the circuit board 18 is exposed to the outside on the Y axis positive side of the base 11.
 さらに、第1の実施形態では、波長変換部材15の入射面で正反射されたレーザ光(以下、「正反射光」という)を受光する位置に、位置検出器19が設置されている。位置検出器19は、ミラー17が中立位置にあるときに、正反射光の中心軸が位置検出器19の入射面に対して垂直となるように、X-Z平面に平行な面に対して所定角度だけY-Z平面に平行な方向に傾いた状態で、ベース11に設置されている。 Furthermore, in the first embodiment, the position detector 19 is installed at a position for receiving laser light specularly reflected by the incident surface of the wavelength conversion member 15 (hereinafter referred to as “regular reflected light”). The position detector 19 is in a plane parallel to the XZ plane so that when the mirror 17 is in the neutral position, the central axis of the specularly reflected light is perpendicular to the incident surface of the position detector 19. It is installed on the base 11 in a state inclined by a predetermined angle in a direction parallel to the YZ plane.
 位置検出器19は、波長変換部材15の入射面上の全ての走査範囲に対して正反射光を受光するとともに、受光位置に応じた検出信号を出力する。すなわち、位置検出器19は、波長変換部材15の入射面上の全ての走査範囲に対して正反射光を受光可能なように、X軸方向に長い受光面を有する。 The position detector 19 receives regular reflection light for all scanning ranges on the incident surface of the wavelength conversion member 15 and outputs a detection signal corresponding to the light receiving position. That is, the position detector 19 has a light receiving surface that is long in the X-axis direction so as to be able to receive regular reflection light for the entire scanning range on the incident surface of the wavelength conversion member 15.
 また、位置検出器19と波長変換部材15の間の正反射の光路内に、例えば波長変換部材で変換された黄色光を除去し、正反射光である青色光を透過するバンドパスフィルタ31と、正反射光を減光するための減光フィルタ32を有することが望ましい。 Further, in the regular reflection optical path between the position detector 19 and the wavelength conversion member 15, for example, a band pass filter 31 that removes yellow light converted by the wavelength conversion member and transmits blue light that is regular reflection light; It is desirable to have a neutral density filter 32 for reducing regular reflection light.
 位置検出器19は、たとえば、PSD(Position Sensitive Detector)からなっている。この他、位置検出器19は、フォトディテクタがアレイ上に配置された構成であってもよく、CCD(Charge Coupled Device)等の撮像素子であってもよい。 The position detector 19 is made of, for example, PSD (Position Sensitive Detector). In addition, the position detector 19 may have a configuration in which a photo detector is arranged on an array, or may be an image pickup device such as a CCD (Charge-Coupled Device).
 位置検出器19の構成および位置検出信号の生成方法については、追って、図5A、図5Bを参照して説明する。 The configuration of the position detector 19 and the method of generating the position detection signal will be described later with reference to FIGS. 5A and 5B.
 図3A、図3Bは、それぞれ、光偏向器14の構成を示す斜視図および光偏向器14の一部を切り欠いた斜視図である。図3Bには、図3Aに示す光偏向器14を、x-z平面に平行かつ光偏向器14のy軸方向における中央位置を通る直線IIIB-IIIBを含む平面で切った断面3bが示されている。 3A and 3B are a perspective view showing a configuration of the optical deflector 14 and a perspective view in which a part of the optical deflector 14 is cut away, respectively. FIG. 3B shows a cross section 3b obtained by cutting the optical deflector 14 shown in FIG. 3A along a plane including a straight line IIIB-IIIB passing through the central position in the y-axis direction of the optical deflector 14 along the xz plane. ing.
 なお、便宜上、図3A、図3Bには、光偏向器14の構成を説明するために、新たにx、y、z軸が示されている。このうち、x軸は、図1および図2に示したX軸と同一方向である。x、y、z軸は、図1および図2に示したX、Y、Z軸を、X軸周りに、所定の角度だけ回転させたものである。y軸は、光偏向器14の短手方向に対応し、z軸は、光偏向器14の高さ方向に対応する。ここでは、便宜上、z軸負側を光偏向器14の上側と定義する。 For convenience, FIGS. 3A and 3B newly show x, y, and z axes in order to explain the configuration of the optical deflector 14. Among these, the x axis is in the same direction as the X axis shown in FIGS. 1 and 2. The x, y, and z axes are obtained by rotating the X, Y, and Z axes shown in FIGS. 1 and 2 around the X axis by a predetermined angle. The y axis corresponds to the short direction of the optical deflector 14, and the z axis corresponds to the height direction of the optical deflector 14. Here, for convenience, the z-axis negative side is defined as the upper side of the optical deflector 14.
 図3A、図3Bを参照して、光偏向器14は、電磁力を利用してミラー17を駆動する構成となっている。ハウジング101に、電磁駆動のための構成部材が設置されている。 3A and 3B, the optical deflector 14 is configured to drive the mirror 17 using electromagnetic force. A component for electromagnetic driving is installed in the housing 101.
 ハウジング101は、x軸方向に長い直方体形状を有する。ハウジング101の上面には、平面視において長方形の凹部101aが形成されている。また、ハウジング101には、x軸正負の縁の上面に、それぞれ、ボス101bが形成されている。2つのボス101bは、ハウジング101のy軸方向の中間位置に配置されている。ハウジング101は、剛性が高い金属材料からなっている。 The housing 101 has a rectangular parallelepiped shape that is long in the x-axis direction. A rectangular recess 101a is formed on the upper surface of the housing 101 in plan view. The housing 101 has bosses 101b formed on the upper surfaces of the positive and negative edges of the x-axis. The two bosses 101b are disposed at an intermediate position of the housing 101 in the y-axis direction. The housing 101 is made of a metal material having high rigidity.
 ハウジング101の上面に、枠状の板バネ102が設置される。板バネ102は、枠部102aと、支持部102bと、2つの梁部102cと、2つの孔102dとを有する。 A frame-shaped leaf spring 102 is installed on the upper surface of the housing 101. The leaf spring 102 has a frame portion 102a, a support portion 102b, two beam portions 102c, and two holes 102d.
 x軸方向の中間位置において、枠部102aからy軸方向に平行に延びるように、2つの梁部102cが形成され、これら梁部102cによって、枠部102aと支持部102bとが連結されている。支持部102bは、平面視において長方形であり、支持部102bのx軸方向の中間位置において、2つの梁部102cが支持部102bに繋がっている。x軸正側の孔102dは、ボス101bと同様、平面視において円形で、x軸負側の孔102dは、平面視においてx軸方向に長い形状である。板バネ102は、y軸方向に対称な形状であり、また、2つの孔102dを除いてx軸方向に対称な形状である。板バネ102は、可撓性の金属材料により一体形成されている。 Two beam portions 102c are formed so as to extend in parallel to the y-axis direction from the frame portion 102a at an intermediate position in the x-axis direction, and the frame portion 102a and the support portion 102b are connected by these beam portions 102c. . The support portion 102b is rectangular in plan view, and two beam portions 102c are connected to the support portion 102b at an intermediate position in the x-axis direction of the support portion 102b. Similarly to the boss 101b, the x-axis positive side hole 102d is circular in plan view, and the x-axis negative side hole 102d is long in the x-axis direction in plan view. The leaf spring 102 is symmetric in the y-axis direction, and is symmetric in the x-axis direction except for the two holes 102d. The leaf spring 102 is integrally formed of a flexible metal material.
 2つの孔102dは、それぞれ、2つのボス101bに対応する位置に設けられている。孔102dにボス101bが嵌められた状態で、4つのネジ103により、板バネ102がハウジング101の上面に固定される。支持部102bの上面にミラー17が接着剤等によって固定される。ミラー17は、平面視において略正方形である。2つの梁部102cを繋いだ軸が、ミラー17の回動軸L1となる。 The two holes 102d are provided at positions corresponding to the two bosses 101b, respectively. With the boss 101b fitted in the hole 102d, the leaf spring 102 is fixed to the upper surface of the housing 101 by the four screws 103. The mirror 17 is fixed to the upper surface of the support portion 102b with an adhesive or the like. The mirror 17 is substantially square in plan view. The axis connecting the two beam portions 102c is the rotation axis L1 of the mirror 17.
 なお、レーザ光源12からのレーザ光は、ミラー17の中央位置に入射する。すなわち、回動軸L1とレーザ光の中心軸とが交差するように、レーザ光源12からのレーザ光が、ミラー17に入射する。 The laser light from the laser light source 12 is incident on the center position of the mirror 17. That is, the laser light from the laser light source 12 enters the mirror 17 so that the rotation axis L1 and the central axis of the laser light intersect.
 支持部102bの下面にコイル104が装着される。コイル104は、平面視において長方形の角が丸められた形状に周回している。コイル104は、長辺の中間位置が回動軸L1に一致するように、支持部102bの下面に設置される。コイル104、支持部102bおよびミラー17が、光偏向器14の可動部を構成する。 The coil 104 is mounted on the lower surface of the support portion 102b. The coil 104 circulates in a shape with rounded rectangular corners in plan view. The coil 104 is installed on the lower surface of the support portion 102b so that the middle position of the long side coincides with the rotation axis L1. The coil 104, the support portion 102b, and the mirror 17 constitute a movable portion of the optical deflector 14.
 コイル104のx軸正側およびx軸負側の部分をそれぞれx軸方向に挟むように、磁石105および磁石106の組が2つ配置される。磁石105と磁石106は、ヨーク107に設置され、ヨーク107が、ハウジング101の凹部101aの底面に設置されている。磁石105、106は、磁極面における磁束密度が略均一の永久磁石である。 Two sets of magnets 105 and 106 are arranged so that the x-axis positive side and x-axis negative side portions of the coil 104 are sandwiched in the x-axis direction, respectively. Magnet 105 and magnet 106 are installed on yoke 107, and yoke 107 is installed on the bottom surface of recess 101 a of housing 101. The magnets 105 and 106 are permanent magnets having a substantially uniform magnetic flux density on the magnetic pole surface.
 x軸正側の磁石105、106によって生じる磁界の向きと、x軸負側の磁石105、106によって生じる磁界の向きは、同じである。たとえば、x軸正側の磁石105は、N極がコイル104に対向し、x軸負側の磁石105は、S極がコイル104に対向する。また、x軸正側の磁石106は、S極がコイル104に対向し、x軸負側の磁石106は、N極がコイル104に対向する。このように磁極(磁界の向き)を調整することにより、コイル104に駆動信号(電流)が印加されると、回動軸L1周りの駆動力がコイル104に励起される。これにより、ミラー17が、回動軸L1を軸として回動する。本実施形態では電磁式の光偏向器としているが、光偏向器は、電磁式、圧電式、静電式のいずれを用いても良い。 The direction of the magnetic field generated by the x-axis positive magnets 105 and 106 and the direction of the magnetic field generated by the x-axis negative magnets 105 and 106 are the same. For example, the x-axis positive magnet 105 has the north pole facing the coil 104, and the x-axis negative magnet 105 has the south pole facing the coil 104. The x-axis positive magnet 106 has the south pole facing the coil 104, and the x-axis negative magnet 106 has the north pole opposed to the coil 104. By adjusting the magnetic pole (the direction of the magnetic field) in this way, when a drive signal (current) is applied to the coil 104, the drive force around the rotation axis L1 is excited in the coil 104. As a result, the mirror 17 rotates about the rotation axis L1. Although an electromagnetic optical deflector is used in the present embodiment, any of an electromagnetic type, a piezoelectric type, and an electrostatic type may be used as the optical deflector.
 図4Aは、波長変換部材15の構成を模式的に示す側面図である。 FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member 15.
 波長変換部材15は、基板201の上面に、反射膜202と、蛍光体層203とを積層した構成となっている。 The wavelength conversion member 15 has a configuration in which a reflective film 202 and a phosphor layer 203 are laminated on the upper surface of a substrate 201.
 基板201は、たとえば、シリコンや窒化アルミニウムセラミックなどからなっている。 The substrate 201 is made of, for example, silicon or aluminum nitride ceramic.
 反射膜202は、第1の反射膜202aと第2の反射膜202bとが積層されて構成されている。第1の反射膜202aは、たとえば、Ag、Ag合金、Alなどの金属膜である。第2の反射膜202bは、反射とともに第1の反射膜202aを酸化などから保護する機能をも有し、たとえば、SiO、ZnO、ZrO、Nb、Al、TiO、SiN、AlNなど誘電体の1つまたは複数の層からなっている。反射膜202は、必ずしも、第1の反射膜202aおよび第2の反射膜202bから構成されなくともよく、単層または3つ以上の層が積層された構成であってもよい。 The reflective film 202 is configured by laminating a first reflective film 202a and a second reflective film 202b. The first reflective film 202a is, for example, a metal film such as Ag, an Ag alloy, or Al. The second reflection film 202b has a function of protecting the first reflection film 202a from oxidation and the like as well as reflection. For example, SiO 2 , ZnO, ZrO 2 , Nb 2 O 5 , Al 2 O 3 , TiO 2 are used. , SiN, AlN, or other dielectric material. The reflective film 202 does not necessarily need to be composed of the first reflective film 202a and the second reflective film 202b, and may be a single layer or a structure in which three or more layers are laminated.
 蛍光体層203は、蛍光体粒子203aをバインダ203bで固定することにより形成される。蛍光体粒子203aは、レーザ光源12から出射された青色波長帯のレーザ光が照射されることによって黄色波長帯の蛍光を発する。蛍光体粒子203aとして、たとえば、平均粒子径が1μm~30μmの(YGd1-n(AlGa1-m12:Ce(0.5≦n≦1、0.5≦m≦1)が用いられる。また、バインダ203bとして、ポリメチルシルセスキオキサンなどのシルセスキオキサンを主に含む透明材料が用いられる。 The phosphor layer 203 is formed by fixing phosphor particles 203a with a binder 203b. The phosphor particles 203a emit fluorescence in the yellow wavelength band when irradiated with laser light in the blue wavelength band emitted from the laser light source 12. As the phosphor particles 203a, for example, (Y n Gd 1-n ) 3 (Al m Ga 1-m ) 5 O 12 : Ce (0.5 ≦ n ≦ 1, 0.5) having an average particle diameter of 1 μm to 30 μm. ≦ m ≦ 1) is used. Further, a transparent material mainly containing silsesquioxane such as polymethylsilsesquioxane is used as the binder 203b.
 蛍光体層203には、さらに、第2粒子として、平均粒子径が0.1~10μmで熱伝導率30W/(m・K)のAlの微粒子が混合されるとよい。この場合、第2粒子は、蛍光体粒子203aに対して10vol%以上、90vol%以下の比率で混合される。たとえば、第2粒子として、バインダ203bの材料であるシルセスキオキサン(屈折率1.5)と屈折率差が大きいAl(屈折率1.8)が用いられる。この構成により、蛍光体層203の内部での光散乱性が向上するとともに、蛍光体層203の熱伝導率を高くすることができる。 The phosphor layer 203 may further contain Al 2 O 3 fine particles having an average particle diameter of 0.1 to 10 μm and a thermal conductivity of 30 W / (m · K) as the second particles. In this case, 2nd particle | grains are mixed by the ratio of 10 vol% or more and 90 vol% or less with respect to the fluorescent substance particle 203a. For example, as the second particles, silsesquioxane (refractive index 1.5) refractive index difference is large Al 2 O 3 is a material of the binder 203b (refractive index 1.8) is used. With this configuration, the light scattering property inside the phosphor layer 203 can be improved, and the thermal conductivity of the phosphor layer 203 can be increased.
 さらに、蛍光体層203の内部に、ボイド203cを設けることが好ましい。第1の実施形態では、蛍光体層203の中央付近に形成されたボイド203cと、反射膜202との界面付近に形成されたボイド203cが蛍光体層203に設けられる。 Furthermore, it is preferable to provide a void 203 c inside the phosphor layer 203. In the first embodiment, the phosphor layer 203 is provided with a void 203 c formed near the center of the phosphor layer 203 and a void 203 c formed near the interface between the reflective film 202.
 ここで、蛍光体層203の内部に形成されたボイド203cは、反射膜202に近いほど密度が高くなるように構成される。この構成により、内部に侵入したレーザ光をより効率的に散乱させて、光源装置2から取り出すことができる。また、反射膜202との界面付近に形成されたボイド203cは、誘電体である第2の反射膜202bと接するため、金属表面によるエネルギーロスを低減しつつ、効果的にレーザ光と蛍光を散乱させることができる。 Here, the void 203c formed inside the phosphor layer 203 is configured to have a higher density as it is closer to the reflective film 202. With this configuration, it is possible to more efficiently scatter laser light that has entered the inside and extract it from the light source device 2. In addition, since the void 203c formed near the interface with the reflective film 202 is in contact with the second reflective film 202b, which is a dielectric, it effectively scatters laser light and fluorescence while reducing energy loss due to the metal surface. Can be made.
 上記のようなボイド203cの配置は、YAG:Ceからなる蛍光体粒子203aと、ポリシルセスキオキサンからなるバインダ203bとを混合した、蛍光体ペーストを用いて波長変換部材15を構成することで容易に形成できる。具体的には、蛍光体粒子203aと第2粒子とを、ポリシルセスキオキサンを有機溶剤に溶かしたバインダ203bに混合した蛍光体ペーストを用いて基板201(反射膜202)上に成膜し、その後、200℃程度の高温アニールを行うことで、ペースト中の有機溶剤を気化させる。このとき、波長変換部材15の基板201に近い部分から気化した有機溶剤は保持されやすいため、基板201に近い部分では、ボイド203cが容易に形成され得る。このような製造方法により、容易に反射膜202の近傍に高い密度のボイド203cを形成することができる。 The arrangement of the void 203c as described above is achieved by configuring the wavelength conversion member 15 using a phosphor paste in which phosphor particles 203a made of YAG: Ce and a binder 203b made of polysilsesquioxane are mixed. Can be easily formed. Specifically, the phosphor particles 203a and the second particles are formed on the substrate 201 (reflection film 202) using a phosphor paste in which polysilsesquioxane is mixed with a binder 203b in which an organic solvent is dissolved. Then, the organic solvent in the paste is vaporized by performing high-temperature annealing at about 200 ° C. At this time, since the organic solvent evaporated from the portion near the substrate 201 of the wavelength conversion member 15 is easily retained, the void 203c can be easily formed in the portion close to the substrate 201. By such a manufacturing method, the high-density void 203c can be easily formed in the vicinity of the reflective film 202.
 なお、蛍光体層203には、さらに、強度および耐熱性を高めるためのフィラー203dが含まれる。フィラー203dとバインダ203bとの屈折率差も、蛍光体粒子203aとバインダ203bとの屈折率差と同様、大きく設定される。 The phosphor layer 203 further includes a filler 203d for increasing strength and heat resistance. The difference in refractive index between the filler 203d and the binder 203b is also set to be large, similar to the difference in refractive index between the phosphor particles 203a and the binder 203b.
 レーザ光源12から出射されたレーザ光は、図4Aに示す励起領域R1に照射され、蛍光体層203の表面または内部で、散乱、吸収される。このとき、レーザ光の一部は、蛍光体粒子203aにより黄色波長帯の光に変換されて、蛍光体層203から放射される。また、レーザ光の他の一部は、黄色波長帯の光に変換されずに散乱されて青色波長帯の光のまま蛍光体層203から放射される。このとき、各波長帯の光は、蛍光体層203内を伝搬しながら散乱されるため、励起領域R1よりも広い発光領域R2から放射される。 The laser light emitted from the laser light source 12 is irradiated to the excitation region R1 shown in FIG. 4A, and is scattered and absorbed on the surface or inside of the phosphor layer 203. At this time, part of the laser light is converted into light in the yellow wavelength band by the phosphor particles 203 a and emitted from the phosphor layer 203. Further, the other part of the laser light is scattered without being converted into light in the yellow wavelength band, and is emitted from the phosphor layer 203 as light in the blue wavelength band. At this time, light in each wavelength band is scattered while propagating through the phosphor layer 203, and thus is emitted from the light emitting region R2 wider than the excitation region R1.
 なお、上記のようにバインダ203bと蛍光体粒子203aの屈折率差、および、バインダ203bとフィラー203dの屈折率差が何れも大きくなるように蛍光体層203が構成されることにより、光を散乱し易くでき、また、光の蛍光体層203内部での伝搬を抑制することができる。この結果、励起領域R1よりも微小に広い発光領域R2から光を放射させることができる。また、第1の実施形態では、さらに、蛍光体層203にボイド203cを配置して、光の散乱を増強させている。この結果、さらに励起領域R1と発光領域R2とを近づけることができる。 In addition, as described above, the phosphor layer 203 is configured such that the refractive index difference between the binder 203b and the phosphor particle 203a and the refractive index difference between the binder 203b and the filler 203d are both large, thereby scattering light. And propagation of light inside the phosphor layer 203 can be suppressed. As a result, light can be emitted from the light emitting region R2 that is slightly wider than the excitation region R1. In the first embodiment, the void 203c is further arranged in the phosphor layer 203 to enhance light scattering. As a result, the excitation region R1 and the light emission region R2 can be brought closer to each other.
 図4Bは、波長変換部材15の構成を模式的に示す平面図である。 FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member 15.
 波長変換部材15は、平面視において、X軸方向に長い長方形の形状を有する。波長変換部材15は、光偏向器14のミラー17が回動されることにより、レーザ光でX軸方向に走査される。図4Bにおいて、B1は、レーザ光のビームスポットを示している。ビームスポットB1は、波長変換部材15の入射面15aを幅W1において往復移動する。 The wavelength conversion member 15 has a rectangular shape that is long in the X-axis direction in plan view. The wavelength conversion member 15 is scanned in the X-axis direction with a laser beam when the mirror 17 of the optical deflector 14 is rotated. In FIG. 4B, B1 indicates the beam spot of the laser beam. The beam spot B1 reciprocates on the incident surface 15a of the wavelength conversion member 15 in the width W1.
 たとえば、コイル104に、ゼロレベルを振幅中心とする三角波状の駆動信号(電流)が印加される。この駆動信号によりコイル104に励起される駆動力によって、支持部102bとともにミラー17が中立位置を中心に所定の回動幅で回動する。これにより、ミラー17で反射されたレーザ光(ビームスポットB1)が、波長変換部材15の入射面15aを幅W1において往復移動する。 For example, a triangular wave-shaped drive signal (current) having an amplitude center at zero level is applied to the coil 104. Due to the driving force excited in the coil 104 by this driving signal, the mirror 17 together with the support portion 102b rotates around a neutral position with a predetermined rotation width. Thereby, the laser beam (beam spot B1) reflected by the mirror 17 reciprocates on the incident surface 15a of the wavelength conversion member 15 in the width W1.
 なお、「中立位置」とは、コイル104に駆動信号(電流)が印加されていない場合のミラー17の位置のことであり、第1の実施形態の構成では、図3Aのように、支持部102bおよびミラー17が、回動軸L1について何れの方向にも回動しておらず、x-y平面に平行な状態にあるときのミラー17の位置をいう。 The “neutral position” is the position of the mirror 17 when the drive signal (current) is not applied to the coil 104. In the configuration of the first embodiment, as shown in FIG. The position of the mirror 17 when the mirror 102b and the mirror 17 are not rotated in any direction about the rotation axis L1 and is in a state parallel to the xy plane.
 また、図4Bには、ビームスポットB1の往復移動が直線の矢印で示されているが、レーザ光が斜め方向から波長変換部材15に入射するため、実際のビームスポットB1の移動軌跡は、X軸方向の中央位置に対してX軸正負方向の両端がY軸負方向に変位した、やや湾曲した軌跡となる。 In FIG. 4B, the reciprocation of the beam spot B1 is indicated by a straight arrow. However, since the laser light is incident on the wavelength conversion member 15 from an oblique direction, the actual movement locus of the beam spot B1 is X A slightly curved locus in which both ends in the X-axis positive and negative directions are displaced in the Y-axis negative direction with respect to the axial center position.
 入射面15a上におけるビームスポットB1の領域は、図4Aの励起領域R1に対応する。波長変換部材15の入射面15aをビームスポットB1が移動する間に、ビームスポットB1の領域よりもやや広い発光領域R2から青色波長帯の拡散光と黄色波長帯の拡散光がZ軸正方向に放射される。 The region of the beam spot B1 on the incident surface 15a corresponds to the excitation region R1 in FIG. 4A. While the beam spot B1 moves on the incident surface 15a of the wavelength conversion member 15, the diffused light in the blue wavelength band and the diffused light in the yellow wavelength band from the light emitting region R2 slightly wider than the region of the beam spot B1 in the positive direction of the Z axis. Radiated.
 こうして放射された2つの波長帯の光が、図1、2に示した投射光学系3により取り込まれ、目標領域に投射される。これにより、青色波長帯の光と黄色波長帯の光が合成された白色の光が、投光装置1から目標領域に投射される。 The light in the two wavelength bands thus radiated is taken in by the projection optical system 3 shown in FIGS. 1 and 2 and projected onto the target area. Accordingly, white light obtained by combining light in the blue wavelength band and light in the yellow wavelength band is projected from the light projecting device 1 onto the target area.
 なお、図2に示す構成において、レーザ光源12にマウントされたレーザ素子の活性層は、X-Z平面に平行となっている。このため、コリメータレンズ13に入射するレーザ光のビーム形状は、Y軸方向に長い楕円形状となる。これにより、図4Bに示すように、Y軸方向に長いビームスポットB1でレーザ光が波長変換部材15の入射面15aに照射される。 In the configuration shown in FIG. 2, the active layer of the laser element mounted on the laser light source 12 is parallel to the XZ plane. For this reason, the beam shape of the laser light incident on the collimator lens 13 is an elliptical shape that is long in the Y-axis direction. As a result, as shown in FIG. 4B, the laser beam is irradiated onto the incident surface 15 a of the wavelength conversion member 15 with the beam spot B <b> 1 that is long in the Y-axis direction.
 ただし、ビームスポットB1の形状は、楕円に限らず、Y軸方向に長い他の形状であってもよい。この場合、たとえば、コリメータレンズ13にビーム形状を調整するための光学作用を持たせてもよく、あるいは、ミラー17の反射面を所定の凹面形状にして、ミラー17にビーム形状を調整するための光学作用を持たせてもよい。 However, the shape of the beam spot B1 is not limited to an ellipse, and may be another shape that is long in the Y-axis direction. In this case, for example, the collimator lens 13 may have an optical action for adjusting the beam shape, or the reflecting surface of the mirror 17 is made a predetermined concave shape so that the beam shape is adjusted on the mirror 17. You may give an optical action.
 図5Aは、位置検出器19の構成および位置検出信号の生成方法を説明するための図である。図5Bは、位置検出器19の構成を模式的に示す断面図である。 FIG. 5A is a diagram for explaining a configuration of the position detector 19 and a method of generating a position detection signal. FIG. 5B is a cross-sectional view schematically showing the configuration of the position detector 19.
 図5Bに示すように、位置検出器19は、N型高抵抗シリコン基板の表面に、受光面と抵抗層を兼ねたP型抵抗層を形成した構造となっている。表面側の抵抗層には、横方向における光電流を出力するための電極X1、X2が形成され、裏面側の抵抗層には共通電極X3が形成されている。電極X1、X2に流入した光電流は、端子19b、19cから出力される。 As shown in FIG. 5B, the position detector 19 has a structure in which a P-type resistance layer serving as a light-receiving surface and a resistance layer is formed on the surface of an N-type high-resistance silicon substrate. Electrodes X1 and X2 for outputting a lateral photocurrent are formed on the resistance layer on the front surface side, and a common electrode X3 is formed on the resistance layer on the back surface side. The photocurrent flowing into the electrodes X1 and X2 is output from the terminals 19b and 19c.
 次に、位置検出器19における照射位置の算出方法について説明する。位置検出器19の受光面19aに正反射光(正反射光スポットRB1)が照射されると、照射位置に光量に比例した電荷が発生する。この電荷は光電流として抵抗層に到達し、各電極X1、X2までの距離に逆比例して分割されて、電極X1、X2に接続された端子19b、19cから出力される。 Next, a method for calculating the irradiation position in the position detector 19 will be described. When the light receiving surface 19a of the position detector 19 is irradiated with specular reflection light (regular reflection light spot RB1), an electric charge proportional to the amount of light is generated at the irradiation position. This charge reaches the resistance layer as a photocurrent, is divided in inverse proportion to the distance to each of the electrodes X1 and X2, and is output from the terminals 19b and 19c connected to the electrodes X1 and X2.
 ここで、位置検出器19において、端子19b、19cから出力される光電流は、正反射光の照射位置から電極X1、X2までの距離に逆比例して分割された大きさを有する。よって、端子19b、19cから出力される光電流の電流値をもとに、受光面上におけるX軸方向の正反射光の照射位置を検出することができる。 Here, in the position detector 19, the photocurrent output from the terminals 19b and 19c has a size divided in inverse proportion to the distance from the irradiation position of the regular reflection light to the electrodes X1 and X2. Therefore, it is possible to detect the irradiation position of the regular reflection light in the X-axis direction on the light receiving surface based on the current value of the photocurrent output from the terminals 19b and 19c.
 たとえば、位置検出器19について、図5Aの位置に正反射光スポットRB1が照射されたとする。この場合、受光面19aの横方向のセンター位置Lmxを基準とする照射位置の横方向の座標Pxは、電極X1、X2から出力される光電流の電流値をそれぞれIx1、Ix2、横方向における電極X1、X2間の距離をLxとすると、以下の式によって算出される。 For example, assume that the specularly reflected light spot RB1 is irradiated to the position detector 19 at the position shown in FIG. 5A. In this case, the horizontal coordinate Px of the irradiation position with respect to the horizontal center position Lmx of the light receiving surface 19a is the current value of the photocurrent output from the electrodes X1 and X2, respectively Ix1, Ix2, and the horizontal electrode When the distance between X1 and X2 is Lx, it is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 こうして、位置検出器19の端子19b、19cから出力された光電流の電流値Ix1、Ix2をもとに、式(1)の演算を行うことにより、受光面19a上における正反射光スポットRB1の位置を示す位置検出信号(座標Px)を算出できる。 Thus, by performing the calculation of Expression (1) based on the current values Ix1 and Ix2 of the photocurrent output from the terminals 19b and 19c of the position detector 19, the specularly reflected light spot RB1 on the light receiving surface 19a is calculated. A position detection signal (coordinate Px) indicating the position can be calculated.
 図6Aは、波長変換部材15の入射面15aにおけるビームスポットB1の移動を模式的に示す図である。図6Bは、図6AのようにビームスポットB1が移動した場合の位置検出器19の受光面19a上における正反射光スポットRB1の移動を模式的に示す図である。 FIG. 6A is a diagram schematically showing the movement of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15. FIG. FIG. 6B is a diagram schematically showing the movement of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 when the beam spot B1 moves as shown in FIG. 6A.
 波長変換部材15の入射面15a上をビームスポットB1が図6Aに示すように移動すると、これに伴い、正反射光スポットRB1は、位置検出器19の受光面19a上を図6Bのように移動する。ここで、正反射光スポットRB1の横方向の移動位置は、入射面15a上におけるビームスポットB1のX軸方向の各移動位置に1対1で対応する。また、ビームスポットB1が幅W1の範囲をX軸方向に移動すると、正反射光スポットRB1は、位置検出器19の受光面19aを幅Lwの範囲で横方向に移動する。 When the beam spot B1 moves on the incident surface 15a of the wavelength conversion member 15 as shown in FIG. 6A, the specularly reflected light spot RB1 moves on the light receiving surface 19a of the position detector 19 as shown in FIG. 6B. To do. Here, the lateral movement position of the specularly reflected light spot RB1 corresponds to each movement position in the X-axis direction of the beam spot B1 on the incident surface 15a on a one-to-one basis. When the beam spot B1 moves in the X axis direction within the range of the width W1, the specularly reflected light spot RB1 moves in the lateral direction on the light receiving surface 19a of the position detector 19 within the range of the width Lw.
 ここで、入射面15a上におけるビームスポットB1の位置は、光偏向器14におけるミラー17の回動角に対応する。したがって、位置検出器19の受光面19a上における正反射光スポットRB1のセンター位置Lmxに対する横方向の位置は、光偏向器14におけるミラー17の中立位置に対する回動角に対応する。よって、上記式(1)に基づいて算出される位置検出信号(座標Px)により、波長変換部材15の入射面15a上におけるビームスポットB1の走査位置のみならず、光偏向器14のミラー17の回動角をも検出することができる。 Here, the position of the beam spot B1 on the incident surface 15a corresponds to the rotation angle of the mirror 17 in the optical deflector 14. Therefore, the lateral position of the specularly reflected light spot RB1 on the light receiving surface 19a of the position detector 19 with respect to the center position Lmx corresponds to the rotation angle of the optical deflector 14 with respect to the neutral position of the mirror 17. Therefore, not only the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 but also the mirror 17 of the optical deflector 14 is detected by the position detection signal (coordinate Px) calculated based on the above formula (1). The rotation angle can also be detected.
 第1の実施形態では、こうして取得される位置検出信号(座標Px)に基づいて、波長変換部材15の入射面15aに対するレーザ光の走査状態が所定の走査状態となるように、光偏向器14が制御される。 In the first embodiment, based on the position detection signal (coordinate Px) acquired in this way, the optical deflector 14 is set so that the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 becomes a predetermined scanning state. Is controlled.
 図7は、光源装置2の主たる回路構成を示す回路ブロック図である。 FIG. 7 is a circuit block diagram showing a main circuit configuration of the light source device 2.
 図7に示すように、光源装置2は、回路部の構成として、コントローラ301と、レーザ駆動回路302と、ミラー駆動回路303と、位置検出回路304と、インタフェース305と、を備えている。これらの回路は、図1、2に示した回路基板18に実装されている。回路基板18には、さらにレーザ光源12も設置されている。なお、上記各回路の一部または全部が回路基板18とは別の回路基板に実装され、回路基板18側の回路とケーブルで接続された構成であってもよい。 As shown in FIG. 7, the light source device 2 includes a controller 301, a laser drive circuit 302, a mirror drive circuit 303, a position detection circuit 304, and an interface 305 as a circuit unit configuration. These circuits are mounted on the circuit board 18 shown in FIGS. A laser light source 12 is further installed on the circuit board 18. The circuit may be configured such that a part or all of each circuit is mounted on a circuit board different from the circuit board 18 and connected to the circuit on the circuit board 18 side with a cable.
 コントローラ301は、CPU(Central Processing Unit)等の演算処理回路と、メモリとを備え、所定の制御プログラムに従って各部を制御する。レーザ駆動回路302は、コントローラ301からの制御信号に従って、レーザ光源12を駆動する。ミラー駆動回路303は、コントローラ301からの制御信号に従って、光偏向器14のミラー17を駆動する。 The controller 301 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a memory, and controls each unit according to a predetermined control program. The laser drive circuit 302 drives the laser light source 12 according to a control signal from the controller 301. The mirror drive circuit 303 drives the mirror 17 of the optical deflector 14 in accordance with a control signal from the controller 301.
 位置検出回路304は、位置検出器19から入力された検出信号、すなわち、図5A、図5Bの端子19b、19cから出力された電流に基づいて、上記式(1)の演算を実行し、この演算により得られた位置検出信号(座標Px)をコントローラ301に出力する。インタフェース305は、たとえば、車両側の制御回路等、外部制御回路との間でコントローラ301が信号の送受信を行うための入出力回路である。 The position detection circuit 304 performs the calculation of the above formula (1) based on the detection signal input from the position detector 19, that is, the current output from the terminals 19b and 19c in FIGS. 5A and 5B. The position detection signal (coordinate Px) obtained by the calculation is output to the controller 301. The interface 305 is an input / output circuit for the controller 301 to transmit / receive signals to / from an external control circuit such as a vehicle-side control circuit.
 コントローラ301は、位置検出回路304から入力された位置検出信号(座標Px)に基づいて、波長変換部材15の入射面15aに対するレーザ光の走査状態を監視し、随時、レーザ光の走査状態の適否を判定する。そして、波長変換部材15の入射面15aに対するレーザ光の走査状態が所定の走査状態から外れた場合、走査状態が適正となるように、光偏向器14を制御する。 The controller 301 monitors the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 based on the position detection signal (coordinate Px) input from the position detection circuit 304, and determines whether the scanning state of the laser beam is appropriate as needed. Determine. And when the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 deviates from a predetermined scanning state, the optical deflector 14 is controlled so that the scanning state becomes appropriate.
 以下、光偏向器14の制御例について、説明する。 Hereinafter, a control example of the optical deflector 14 will be described.
 図8Aは、ミラー17の振り角が所定の振り角よりも低下した場合の波長変換部材15の入射面15a上におけるビームスポットB1の移動を模式的に示す図である。図8Bは、図8AのようにビームスポットB1が移動した場合の位置検出器19の受光面19a上における正反射光スポットRB1の移動を模式的に示す図である。 FIG. 8A is a diagram schematically showing the movement of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 when the swing angle of the mirror 17 is lower than a predetermined swing angle. FIG. 8B is a diagram schematically showing the movement of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 when the beam spot B1 moves as shown in FIG. 8A.
 たとえば、光偏向器14の経年劣化等によって、駆動信号に応じたミラー17の回動幅が、所定の回動幅から低下することが起こり得る。この場合、図8Aに示すように、波長変換部材15の入射面15a上におけるビームスポットB1の移動幅が、所定の幅W1に対してΔWだけ低下する。このように、ビームスポットB1の移動幅が低下すると、これに伴い、位置検出器19の受光面19aにおける正反射光スポットRB1の移動幅も、所定の幅LwからΔLだけ低下する。 For example, the rotation width of the mirror 17 according to the drive signal may be reduced from a predetermined rotation width due to, for example, deterioration of the optical deflector 14 over time. In this case, as shown in FIG. 8A, the movement width of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 is reduced by ΔW with respect to the predetermined width W1. Thus, when the movement width of the beam spot B1 decreases, the movement width of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 also decreases by ΔL from the predetermined width Lw.
 この場合、コントローラ301は、位置検出器19の受光面19aにおける正反射光スポットRB1の移動幅が、所定の幅Lwとなるように、ミラー駆動回路303に対し、駆動信号の振り幅、すなわち、ゼロレベルを振幅中心とする三角波状の駆動信号の振幅を増加させる制御を行う。この制御により、波長変換部材15の入射面15a上におけるビームスポットB1の移動幅が、所定の幅W1に整合するようになる。 In this case, the controller 301 sends the drive signal amplitude to the mirror drive circuit 303, that is, so that the movement width of the regular reflection light spot RB1 on the light receiving surface 19a of the position detector 19 becomes the predetermined width Lw. Control is performed to increase the amplitude of the drive signal having a triangular waveform centered on the zero level. By this control, the movement width of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 is matched with the predetermined width W1.
 また、光偏向器14に印加される駆動信号の周波数によっては、ミラー17の動作に共振が生じることが起こり得る。この場合、コントローラ301は、たとえば、正反射光スポットRB1が幅Lwの両側の境界間を移動するのに要した時間を計測し、計測結果に基づいて、正反射光スポットRB1の往復移動の周波数(周期)を取得する。そして、コントローラ301は、取得した周波数(周期)が、光偏向器14の駆動信号の周波数(周期)から大きく乖離する場合に、ミラー17の動作に共振が生じていると判定する。この判定結果に基づき、コントローラ301は、正反射光スポットRB1の往復移動の周波数(周期)が駆動信号の周波数に整合するように、駆動信号の周波数を変化させる。 Further, depending on the frequency of the drive signal applied to the optical deflector 14, resonance may occur in the operation of the mirror 17. In this case, for example, the controller 301 measures the time required for the specularly reflected light spot RB1 to move between the boundaries on both sides of the width Lw, and based on the measurement result, the frequency of the reciprocating movement of the specularly reflected light spot RB1. (Period) is acquired. Then, the controller 301 determines that resonance occurs in the operation of the mirror 17 when the acquired frequency (cycle) greatly deviates from the frequency (cycle) of the drive signal of the optical deflector 14. Based on this determination result, the controller 301 changes the frequency of the drive signal so that the frequency (cycle) of the reciprocating movement of the regular reflection light spot RB1 matches the frequency of the drive signal.
 なお、コントローラ301における位置検出信号に基づく制御は、上記の制御に限られるものではない。たとえば、コントローラ301は、正反射光スポットRB1の移動幅が所定の幅Lwから横方向にずれているか否かを位置検出信号に基づいて判定し、正反射光スポットRB1の移動幅が所定の幅Lwに整合するように、光偏向器14の駆動信号を調整する制御を行ってもよい。あるいは、センター位置Lmに対して、正反射光スポットRB1の右側の移動幅と左側の移動幅とが相違する場合、これらの移動幅が互いに等しくなるように、光偏向器14の駆動信号を調整する制御を行ってもよい。 The control based on the position detection signal in the controller 301 is not limited to the above control. For example, the controller 301 determines whether or not the movement width of the regular reflection light spot RB1 is shifted laterally from a predetermined width Lw based on the position detection signal, and the movement width of the regular reflection light spot RB1 is a predetermined width. You may perform control which adjusts the drive signal of the optical deflector 14 so that it may match with Lw. Alternatively, when the right-side movement width and the left-side movement width of the regular reflection light spot RB1 are different from the center position Lm, the drive signal of the optical deflector 14 is adjusted so that these movement widths are equal to each other. Control may be performed.
 ところで、光源装置2においては、たとえば車両側の制御回路からの制御指令によって、位置検出信号をレーザと光偏向器14の同期信号として使用することにより、幅W1中の所定の区間においてレーザ光源12を消灯させる制御が行われ得る。たとえば、車両側において、前照灯の範囲内に前走車や対向車を検出された場合、前走車や対向車の位置を消灯する制御や、人の領域のみに光を照射し、その他の領域は非照射状態とする、いわゆるスポット照明の制御が、車両側から光源装置2に指示される。この指示は、図7のインタフェース305を介してコントローラ301に入力される。この場合、コントローラ301は、車両側からの指示に応じて、幅W1中の所定の区間にレーザ光源12を消灯させる制御を、レーザ駆動回路302に対し行う。 By the way, in the light source device 2, for example, by using a position detection signal as a synchronization signal between the laser and the optical deflector 14 in accordance with a control command from a control circuit on the vehicle side, the laser light source 12 in a predetermined section in the width W1. Control to turn off can be performed. For example, when a vehicle or oncoming vehicle is detected within the range of the headlamp on the vehicle side, control to turn off the position of the preceding vehicle or oncoming vehicle, light is applied only to the human area, etc. The light source device 2 is instructed from the vehicle side to control the so-called spot illumination, in which the region is not irradiated. This instruction is input to the controller 301 via the interface 305 in FIG. In this case, the controller 301 controls the laser drive circuit 302 to turn off the laser light source 12 in a predetermined section in the width W1 in accordance with an instruction from the vehicle side.
 この制御では、レーザ光源12が消灯されている期間において、正反射光が位置検出器19の受光面19aに入射しなくなるため、この期間において、位置検出信号の出力が途切れてしまう。したがって、レーザ光源12の消灯期間においては、波長変換部材15の入射面15aにおけるレーザ光の走査状態や、ミラー17の回動状態を検出することができなくなってしまう。 In this control, since the regular reflection light does not enter the light receiving surface 19a of the position detector 19 during the period when the laser light source 12 is turned off, the output of the position detection signal is interrupted during this period. Therefore, during the extinguishing period of the laser light source 12, it becomes impossible to detect the scanning state of the laser light on the incident surface 15 a of the wavelength conversion member 15 and the rotation state of the mirror 17.
 このような不都合を解消するため、第1の実施形態では、レーザ光源12の点灯期間において取得された位置検出信号に基づいて、レーザ光源12の非点灯期間における位置検出信号を補間する処理が、コントローラ301において行われる。 In order to eliminate such an inconvenience, in the first embodiment, the process of interpolating the position detection signal during the non-lighting period of the laser light source 12 based on the position detection signal acquired during the lighting period of the laser light source 12 includes: This is performed in the controller 301.
 図9は、レーザ光源12を所定期間において消灯させる制御がなされた場合の位置検出信号の補間方法を説明するためのタイミングチャートである。図9の最上段および中段には、それぞれ、ミラー駆動回路303およびレーザ駆動回路302から出力される駆動信号が示され、図9の最下段には、位置検出回路304から出力される位置検出信号が示されている。上記のように、光偏向器14には、ゼロレベルを振幅中心とする三角波状の駆動信号が供給される。 FIG. 9 is a timing chart for explaining the interpolation method of the position detection signal when the laser light source 12 is controlled to be extinguished during a predetermined period. Drive signals output from the mirror drive circuit 303 and the laser drive circuit 302 are shown in the uppermost stage and the middle stage of FIG. 9, respectively, and a position detection signal output from the position detection circuit 304 is shown in the lowermost stage of FIG. It is shown. As described above, the optical deflector 14 is supplied with a triangular wave drive signal centered on the zero level as the amplitude.
 図9に示すように、位置検出回路304からは、レーザ光源12が点灯されている期間(T1-T2、T4-T5、T7-T8、T10-T11)においてのみ、位置検出信号が出力される。この場合、コントローラ301は、出力された駆動信号の傾きおよび値によって、非点灯期間の駆動信号を、最下段の点線のように相似的に補間する。 As shown in FIG. 9, the position detection signal is output from the position detection circuit 304 only during the period (T1-T2, T4-T5, T7-T8, T10-T11) when the laser light source 12 is turned on. . In this case, the controller 301 interpolates similarly the drive signal in the non-lighting period as indicated by the dotted line in the lowermost stage, based on the slope and value of the output drive signal.
 たとえば、コントローラ301は、タイミングT1、T2における駆動信号の値およびタイミングT1、T2間の駆動信号の傾きによって、タイミングT1、T2間の駆動信号に重なる直線を求める。同様に、コントローラ301は、タイミングT4、T5間の駆動信号に重なる直線、タイミングT7、T8間の駆動信号に重なる直線、および、タイミングT10、T11間の駆動信号に重なる直線を求める。そして、コントローラ301は、これら直線の交点を求め、各直線の交点までの線分により、レーザ光源12の非点灯期間における位置検出信号を補間する。コントローラ301は、こうして取得した補間後の位置検出信号に基づいて、上述の制御処理を実行する。 For example, the controller 301 obtains a straight line that overlaps the drive signal between the timings T1 and T2 based on the value of the drive signal at the timings T1 and T2 and the slope of the drive signal between the timings T1 and T2. Similarly, the controller 301 obtains a straight line that overlaps the drive signal between timings T4 and T5, a straight line that overlaps the drive signal between timings T7 and T8, and a straight line that overlaps the drive signal between timings T10 and T11. Then, the controller 301 obtains the intersection of these straight lines, and interpolates the position detection signal during the non-lighting period of the laser light source 12 with the line segments up to the intersections of the respective straight lines. The controller 301 executes the above-described control process based on the position detection signal after interpolation thus obtained.
 なお、コントローラ301は、以上に述べた各種処理の他、位置検出器19から出力される信号に基づいて、波長変換部材15の状態を判定する処理を実行する。 The controller 301 executes a process of determining the state of the wavelength conversion member 15 based on a signal output from the position detector 19 in addition to the various processes described above.
 すなわち、図4Aに示す波長変換部材15は、高パワーのレーザ光が照射され続けること等の要因によって、蛍光体層203の厚みが初期の厚みから次第に減少することが起こり得る。このように蛍光体層203の厚みが減少すると、励起される蛍光が減少し、所望の色の光が出力されなくなってしまう。また、一部の領域において蛍光体層203が完全に消失すると、その領域に照射された光は、略全てが反射膜202で側方に反射されて、投射光学系3に取り込まれなくなる。 That is, in the wavelength conversion member 15 shown in FIG. 4A, the thickness of the phosphor layer 203 may gradually decrease from the initial thickness due to factors such as continued irradiation with high-power laser light. When the thickness of the phosphor layer 203 is thus reduced, the excited fluorescence is reduced, and light of a desired color is not output. Further, when the phosphor layer 203 disappears completely in a part of the region, almost all of the light irradiated to the region is reflected laterally by the reflective film 202 and is not taken into the projection optical system 3.
 このように、一部の領域において、蛍光体層203の厚みが減少し、あるいは、蛍光体層203が消失すると、その部分で生成される光の色が所望の色から変化し、あるいは、その部分に照射された光が投射光学系3に取り込まれなくなってしまう。 As described above, when the thickness of the phosphor layer 203 decreases or the phosphor layer 203 disappears in a part of the region, the color of light generated in the part changes from a desired color, or the The light irradiated to the part is not taken into the projection optical system 3.
 ここで、レーザ光が照射される蛍光体層203の領域の厚みが初期の厚みから減少すると、それに伴い、位置検出器19に向かう正反射光の光量が上昇する。また、蛍光体層203の一部が完全に消失した場合は、この部分に照射されたレーザ光は、略そのまま反射膜202で反射されて、位置検出器19に入射する。したがって、位置検出器19に入射した正反射光の光量を監視することにより、波長変換部材15における蛍光体層203の状態を判定できる。 Here, when the thickness of the region of the phosphor layer 203 irradiated with the laser light decreases from the initial thickness, the amount of specularly reflected light toward the position detector 19 increases accordingly. When a part of the phosphor layer 203 disappears completely, the laser light applied to this part is reflected by the reflecting film 202 as it is and enters the position detector 19. Therefore, the state of the phosphor layer 203 in the wavelength conversion member 15 can be determined by monitoring the amount of specularly reflected light incident on the position detector 19.
 そこで、第1の実施形態では、位置検出器19から出力された信号から位置検出器19の受光面19aに入射した正反射光の光量に応じた光量信号が取得され、取得された光量信号に基づいて、波長変換部材15の状態が判定される。 Therefore, in the first embodiment, a light amount signal corresponding to the amount of specularly reflected light incident on the light receiving surface 19a of the position detector 19 is acquired from the signal output from the position detector 19, and the acquired light amount signal is obtained. Based on this, the state of the wavelength conversion member 15 is determined.
 ここで、光量信号は、図5A、図5Bに示した端子19b、19cから出力される光電流の電流値Ix1、Ix2を加算した信号として取得される。したがって、図7に示した位置検出回路304は、光電流の電流値Ix1、Ix2を加算して光量信号を算出する演算処理をさらに実行し、当該演算処理により取得した光量信号を、随時、コントローラ301に出力する構成も備える。 Here, the light quantity signal is acquired as a signal obtained by adding the current values Ix1 and Ix2 of the photocurrent output from the terminals 19b and 19c shown in FIGS. 5A and 5B. Therefore, the position detection circuit 304 shown in FIG. 7 further executes a calculation process for calculating the light amount signal by adding the current values Ix1 and Ix2 of the photocurrent, and the light amount signal acquired by the calculation process is converted to the controller as needed. A configuration for outputting to 301 is also provided.
 コントローラ301は、こうして取得した光量信号に基づいて、波長変換部材15における異常の有無を判定する。具体的には、コントローラ301は、光量信号が所定の閾値を超えた場合に、波長変換部材15の蛍光体層203に異常が生じたと判定する。 The controller 301 determines whether or not there is an abnormality in the wavelength conversion member 15 based on the light quantity signal thus acquired. Specifically, the controller 301 determines that an abnormality has occurred in the phosphor layer 203 of the wavelength conversion member 15 when the light amount signal exceeds a predetermined threshold value.
 ただし、レーザ光源12の出力は、経年劣化によって次第に低下するため、これに伴い、位置検出器19に受光される正反射光の光量も低下していく。このため、光量信号と比較すべき閾値も、レーザ光源12の経年劣化に応じて徐々に低下させる必要がある。そこで、コントローラ301は、光量信号と比較すべき閾値を、レーザ光源12の総点灯時間に基づいて更新する処理を実行する。 However, since the output of the laser light source 12 gradually decreases due to aging, the amount of specularly reflected light received by the position detector 19 also decreases accordingly. For this reason, the threshold value to be compared with the light amount signal needs to be gradually lowered according to the aging deterioration of the laser light source 12. Therefore, the controller 301 executes processing for updating the threshold value to be compared with the light amount signal based on the total lighting time of the laser light source 12.
 図10Aは、波長変換部材15の異常を検出するための閾値Dthの設定処理を示すフローチャートである。 FIG. 10A is a flowchart showing a threshold value Dth setting process for detecting an abnormality of the wavelength conversion member 15.
 光源装置2が起動されると、コントローラ301は、レーザ光源12の総起動時間Tの計測を開始する(S11)。ここで、総起動時間Tは、レーザ光源12が最初に起動された後のレーザ光源12の総起動時間である。総起動時間Tは、光源装置2が起動された後、レーザ光源12が点灯状態にある期間のみ計測され、レーザ光源12が非点灯状態にある期間は計測されない。 When the light source device 2 is activated, the controller 301 starts measuring the total activation time T of the laser light source 12 (S11). Here, the total activation time T is the total activation time of the laser light source 12 after the laser light source 12 is first activated. The total activation time T is measured only during a period in which the laser light source 12 is in a lighting state after the light source device 2 is activated, and is not measured in a period in which the laser light source 12 is in a non-lighting state.
 次に、コントローラ301は、総起動時間Tが、予め設定された更新時間Tcに到達したか否かを判定する(S12)。総起動時間Tが更新時間Tcに到達すると(S12:YES)、コントローラ301は、閾値Dthを更新する(S13)。総起動時間Tが更新時間Tcに到達していない場合(S12:NO)、コントローラ301は、ステップS13をスキップする。コントローラ301は、ステップS11~S13の処理を、光源装置2の電源が遮断されるまで(S14:YES)、繰り返し実行する。光源装置2に対する電源が遮断されると(S14:YES)、コントローラ301は、総起動時間Tの計測を終了し、計測後の総起動時間Tを内部メモリに記憶させる(S15)。 Next, the controller 301 determines whether or not the total activation time T has reached a preset update time Tc (S12). When the total activation time T reaches the update time Tc (S12: YES), the controller 301 updates the threshold value Dth (S13). When the total activation time T has not reached the update time Tc (S12: NO), the controller 301 skips step S13. The controller 301 repeatedly executes the processes of steps S11 to S13 until the light source device 2 is powered off (S14: YES). When the power supply to the light source device 2 is shut off (S14: YES), the controller 301 ends the measurement of the total activation time T and stores the total activation time T after measurement in the internal memory (S15).
 なお、ステップS12における更新時間Tcは、予め、コントローラ301において複数保持されている。たとえば、4段階の更新時間Tcが保持されている場合、コントローラ301は、まず、総起動時間Tが最初の更新時間Tcに到達したタイミングで、閾値Dthを低下させ、その後、総起動時間Tが次の更新時間Tcに到達したタイミングで、閾値Dthをさらに低下させる。以降、同様に、コントローラ301は、総起動時間Tが3番目および4番目の更新時間Tcに到達するごとに、閾値Dthを低下させる。 Note that a plurality of update times Tc in step S12 are held in the controller 301 in advance. For example, when four update times Tc are held, the controller 301 first decreases the threshold Dth at the timing when the total activation time T reaches the first update time Tc, and then the total activation time T is The threshold value Dth is further lowered at the timing when the next update time Tc is reached. Thereafter, similarly, the controller 301 decreases the threshold value Dth every time the total activation time T reaches the third and fourth update times Tc.
 ここで、各更新時間Tcの閾値Dthは、たとえば、レーザ光源12において標準的に起こり得る、出射パワーの経時変化を考慮して設定される。すなわち、各更新時間Tcにおける出射パワーを標準的な経時変化に基づいて設定し、設定した出射パワーでレーザ光が出射された場合に生じ得る光量信号の値に、所定の比率(たとえば、1.5)を乗じた値を、その更新時間Tcにおける閾値Dthに設定する。各更新時間Tcにおける閾値Dthは、予め、コントローラ301の内部メモリに保持されている。 Here, the threshold value Dth of each update time Tc is set in consideration of, for example, a change in emission power over time, which can occur normally in the laser light source 12. That is, the output power at each update time Tc is set based on a standard change over time, and a predetermined ratio (for example, 1....) Is set to the value of the light amount signal that can be generated when the laser light is emitted with the set output power. A value obtained by multiplying 5) is set as the threshold value Dth at the update time Tc. The threshold value Dth at each update time Tc is held in the internal memory of the controller 301 in advance.
 図10Bは、図10Aの処理により設定された閾値Dthを用いて波長変換部材15の異常を検出するための処理を示すフローチャートである。 FIG. 10B is a flowchart showing a process for detecting an abnormality of the wavelength conversion member 15 using the threshold value Dth set by the process of FIG. 10A.
 コントローラ301は、位置検出回路304から光量信号Daを取得すると(S21)、取得した光量信号Daが閾値Dthを超えたか否かを判定する(S22)。ここで、光量信号Daが閾値Dthを超えた場合(S22:YES)、コントローラ301は、レーザ光源12の点灯を終了し、波長変換部材15に異常が生じたことを示すフラグを設定する(S23)。この場合、コントローラ301は、インタフェース305を介して、外部制御回路(たとえば、車両側の制御回路)に、波長変換部材15に異常が生じたことを示す報知信号を出力してもよい。 When the controller 301 acquires the light amount signal Da from the position detection circuit 304 (S21), the controller 301 determines whether or not the acquired light amount signal Da exceeds the threshold value Dth (S22). Here, when the light amount signal Da exceeds the threshold value Dth (S22: YES), the controller 301 ends the lighting of the laser light source 12, and sets a flag indicating that an abnormality has occurred in the wavelength conversion member 15 (S23). ). In this case, the controller 301 may output a notification signal indicating that an abnormality has occurred in the wavelength conversion member 15 to an external control circuit (for example, a control circuit on the vehicle side) via the interface 305.
 他方、光量信号Daが閾値Dthを超えていない場合(S22:NO)、コントローラ301は、ステップS23をスキップする。コントローラ301は、ステップS21~S23の処理を、光源装置2に対する電源が遮断されるまで(S24:YES)、繰り返し実行する。光源装置2に対する電源が遮断されると(S24:YES)、コントローラ301は、波長変換部材15の異常検出処理を終了する。 On the other hand, when the light quantity signal Da does not exceed the threshold value Dth (S22: NO), the controller 301 skips step S23. The controller 301 repeatedly executes the processes of steps S21 to S23 until the power to the light source device 2 is shut off (S24: YES). When the power supply to the light source device 2 is shut off (S24: YES), the controller 301 ends the abnormality detection process of the wavelength conversion member 15.
 <第1の実施形態の効果>
 以上、第1の実施形態によれば、以下の効果が奏される。
<Effect of the first embodiment>
As described above, according to the first embodiment, the following effects are exhibited.
 図6A、図6Bを参照して説明したとおり、波長変換部材15の入射面15a上の全走査範囲(幅W1)に対して、位置検出器19から検出信号が出力される。このため、この検出信号を監視することにより、全走査範囲(幅W1)において光偏向器14の動作状態を検出できる。よって、光偏向器14の動作状態を正確かつ高精度に検出することができる。 As described with reference to FIGS. 6A and 6B, a detection signal is output from the position detector 19 for the entire scanning range (width W1) on the incident surface 15a of the wavelength conversion member 15. Therefore, by monitoring this detection signal, the operation state of the optical deflector 14 can be detected in the entire scanning range (width W1). Therefore, the operating state of the optical deflector 14 can be detected accurately and with high accuracy.
 またバンドパスフィルター31を有することによって、信号光として不要な黄色光を除去することで、さらに正確に信号を検出することが可能となり、減光フィルター32を有することで、信号光が飽和しないように信号量を調整することが可能となる。 Further, by having the band pass filter 31, it becomes possible to detect signals more accurately by removing unnecessary yellow light as signal light, and by having the neutral density filter 32, the signal light is not saturated. It is possible to adjust the signal amount.
 図8A、図8Bを参照して説明したとおり、コントローラ301は、位置検出器19からの検出信号に基づいて、波長変換部材15の入射面15aに対するレーザ光の走査状態が所定の走査状態となるように、光偏向器14を制御する。これにより、経年劣化等により光偏向器14の動作が劣化した場合も、波長変換部材15の入射面15aに対するレーザ光の走査状態が所定の走査状態に調整することができ、消灯位置や、スポット照明となる点灯位置を決めるためのレーザ光源12と光偏向器14の同期信号としても使用することができる。 As described with reference to FIGS. 8A and 8B, the controller 301 changes the scanning state of the laser light on the incident surface 15 a of the wavelength conversion member 15 to a predetermined scanning state based on the detection signal from the position detector 19. Thus, the optical deflector 14 is controlled. Thereby, even when the operation of the optical deflector 14 is deteriorated due to aging deterioration or the like, the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 can be adjusted to a predetermined scanning state. It can also be used as a synchronizing signal between the laser light source 12 and the optical deflector 14 for determining the lighting position for illumination.
 図9を参照して説明したとおり、コントローラ301は、レーザ光源12が非点灯状態にあるために位置検出器19からの検出信号に消失期間が生じた場合、点灯期間の検出信号に基づいて消失期間の検出信号を補間し、補間後の検出信号に基づいて、光偏向器14を制御する。これにより、スポット照射等、レーザ光源12を非点灯とする制御が行われた場合においても、波長変換部材15の入射面15aに対するレーザ光の走査状態を所定の走査状態に調整することができる。 As described with reference to FIG. 9, when the disappearance period occurs in the detection signal from the position detector 19 because the laser light source 12 is in the non-lighting state, the controller 301 disappears based on the detection signal of the lighting period. The detection signal for the period is interpolated, and the optical deflector 14 is controlled based on the detection signal after the interpolation. Thereby, even when the laser light source 12 is controlled not to be turned on, such as spot irradiation, the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 can be adjusted to a predetermined scanning state.
 図10A、図10Bを参照して説明したとおり、コントローラ301は、波長変換部材15の入射面15aにおいて正反射したレーザ光(正反射光)の光量に応じた光量信号Daを位置検出器19からの信号に基づいて取得し、取得した光量信号Daに基づいて、波長変換部材15の状態を判定する。これにより、位置検出器19からの検出信号に基づいて、さらに、波長変換部材15の異常を検出でき、適宜、コントローラ301において、レーザ光源12の点灯を停止させる等の対応をとることができる。 As described with reference to FIG. 10A and FIG. 10B, the controller 301 outputs a light amount signal Da corresponding to the amount of laser light (regular reflection light) regularly reflected on the incident surface 15 a of the wavelength conversion member 15 from the position detector 19. Is obtained based on the obtained signal, and the state of the wavelength conversion member 15 is determined based on the obtained light quantity signal Da. Thereby, the abnormality of the wavelength conversion member 15 can be further detected based on the detection signal from the position detector 19 and the controller 301 can appropriately take measures such as stopping the lighting of the laser light source 12.
 <第1の実施形態の変更例>
 投光装置1において、正反射光を検出するための構成は、上記第1の実施形態に示した構成以外に、種々の変更が可能である。
<Modified example of the first embodiment>
In the light projecting device 1, the configuration for detecting the specularly reflected light can be variously changed in addition to the configuration shown in the first embodiment.
 (第1変更例)
 たとえば、図11Aに示すように、光源装置2において、位置検出器19が回路基板18に設置され、波長変換部材15の入射面15aで正反射された正反射光が、ミラー20(導光部材)によって位置検出器19へと導かれる構成とされてもよい。この場合、ベース11には、ミラー20で反射された正反射光を位置検出器19へと導くための孔11aが設けられる。この構成では、回路基板18に位置検出器19が実装されるため、別途、位置検出器19と回路基板18とをケーブル等で接続しなくてよい。よって、回路系の構成を簡素化できる。
(First change example)
For example, as illustrated in FIG. 11A, in the light source device 2, the position detector 19 is installed on the circuit board 18, and the specularly reflected light that is specularly reflected by the incident surface 15 a of the wavelength conversion member 15 is mirror 20 (light guide member). ) May be guided to the position detector 19. In this case, the base 11 is provided with a hole 11 a for guiding the specularly reflected light reflected by the mirror 20 to the position detector 19. In this configuration, since the position detector 19 is mounted on the circuit board 18, it is not necessary to separately connect the position detector 19 and the circuit board 18 with a cable or the like. Therefore, the configuration of the circuit system can be simplified.
 (第2変更例)
 なお、図11Aの構成では、たとえば、図11Bに示すように、さらに、正反射光を位置検出器19の受光面19aに集光するための集光部材として、集光レンズ21がベース11に設置されてもよい。このように、受光面19aに正反射光を集光することにより、正反射光スポットRB1のサイズをより小さく絞ることができる。これにより、受光面19a上における正反射光スポットRB1の位置検出精度を高めることができる。このため、波長変換部材15の入射面15a上におけるビームスポットB1の走査位置およびミラー17の回動位置をより精度良く検出することができる。
(Second modification)
In the configuration of FIG. 11A, for example, as shown in FIG. 11B, the condensing lens 21 is further attached to the base 11 as a condensing member for condensing the specularly reflected light on the light receiving surface 19a of the position detector 19. It may be installed. In this way, by condensing the specularly reflected light on the light receiving surface 19a, the size of the specularly reflected light spot RB1 can be further reduced. Thereby, the position detection accuracy of the regular reflection light spot RB1 on the light receiving surface 19a can be increased. For this reason, the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 and the rotational position of the mirror 17 can be detected with higher accuracy.
 (第3変更例)
 この場合、図12Aに示すように、集光レンズ21に代えて、凹面ミラー22により、正反射光を位置検出器19の受光面19aに集光するようにしてもよい。この構成では、凹面ミラー22が、正反射光を位置検出器19へと導く導光部材、および、正反射光を位置検出器19の受光面19aに集光する集光部材としての機能を発揮する。この構成によれば、図11Bの構成から集光レンズ21を省略できるため、構成の簡素化を図ることができる。
(Third change example)
In this case, as shown in FIG. 12A, the specularly reflected light may be condensed on the light receiving surface 19 a of the position detector 19 by a concave mirror 22 instead of the condenser lens 21. In this configuration, the concave mirror 22 functions as a light guide member that guides the specularly reflected light to the position detector 19 and a light collecting member that condenses the specularly reflected light on the light receiving surface 19 a of the position detector 19. To do. According to this configuration, the condensing lens 21 can be omitted from the configuration of FIG. 11B, so that the configuration can be simplified.
 また、上記第1の実施形態の構成においても、図12Bに示すように、波長変換部材15の入射面15aで正反射された正反射光を位置検出器19の受光面19aに集光するための集光レンズ23を、ベース11に設置してもよい。この場合も、受光面19a上における正反射光スポットRB1の位置検出精度を高めることができるため、波長変換部材15の入射面15a上におけるビームスポットB1の走査位置およびミラー17の回動位置をより精度良く検出することができる。 Also in the configuration of the first embodiment, as shown in FIG. 12B, the specularly reflected light that is specularly reflected by the incident surface 15 a of the wavelength conversion member 15 is collected on the light receiving surface 19 a of the position detector 19. The condensing lens 23 may be installed on the base 11. Also in this case, since the position detection accuracy of the regular reflection light spot RB1 on the light receiving surface 19a can be increased, the scanning position of the beam spot B1 on the incident surface 15a of the wavelength conversion member 15 and the rotation position of the mirror 17 are further increased. It can be detected with high accuracy.
 <第2の実施形態>
 上記第1の実施形態では、光偏向器14が、被駆動部を1軸で回動させる構成であった。これに対し、第2の実施形態では、ミラー17が互いに直交する2つの回動軸について回動可能なように、光偏向器14が構成されている。
<Second Embodiment>
In the first embodiment, the optical deflector 14 is configured to rotate the driven part about one axis. On the other hand, in the second embodiment, the optical deflector 14 is configured so that the mirror 17 can rotate about two rotation axes orthogonal to each other.
 第2の実施形態では、ミラー17が2軸駆動可能であるため、波長変換部材15の入射面15aにおけるレーザ光の走査軌跡が第1の実施形態と異なっている。第2の実施形態では、後述のように、波長変換部材15の入射面15aに複数の走査ラインが設定され、これに伴い、波長変換部材15の入射面15aを走査するビームスポットのサイズが、第1の実施形態に比べて絞られている。投光装置1および光源装置2のその他の構成は、上記第1の実施形態と同様である。 In the second embodiment, since the mirror 17 can be driven in two axes, the scanning locus of the laser beam on the incident surface 15a of the wavelength conversion member 15 is different from that in the first embodiment. In the second embodiment, as described later, a plurality of scanning lines are set on the incident surface 15a of the wavelength conversion member 15, and accordingly, the size of the beam spot that scans the incident surface 15a of the wavelength conversion member 15 is It is narrowed down compared to the first embodiment. Other configurations of the light projecting device 1 and the light source device 2 are the same as those in the first embodiment.
 なお、ビームスポットのサイズは、レーザ光源12とコリメータレンズ13との間の距離や、コリメータレンズ13の開口数等を調整することにより、より小さく絞ることができる。また、コリメータレンズ13またはミラー17に、ビームスポットのサイズおよび形状を調整する光学作用がさらに付与されてもよい。 Note that the size of the beam spot can be further reduced by adjusting the distance between the laser light source 12 and the collimator lens 13, the numerical aperture of the collimator lens 13, and the like. Further, the collimator lens 13 or the mirror 17 may be further provided with an optical action for adjusting the size and shape of the beam spot.
 図13は、第2の実施形態に係る光偏向器14の構成を示す斜視図である。また、図14A、図14Bは、それぞれ、第2の実施形態に係る光偏向器14の一部を切り欠いた斜視図である。図13および図14A、図14Bには、図3A、図3Bと同様のx、y、z軸が示されている。図14Aには、図13に示す光偏向器14を、x-z平面に平行かつ光偏向器14のy軸方向における中央位置を通る直線XIVA-XIVAを含む平面にて切断した断面14aが示されている。また、図14Bには、y-z平面に平行な平面で図13に示す光偏向器14を、y-z平面に平行かつx軸方向における中央位置を通る直線XIVB-XIVBを含む平面にて切断した断面14bが示されている。 FIG. 13 is a perspective view showing the configuration of the optical deflector 14 according to the second embodiment. 14A and 14B are perspective views in which a part of the optical deflector 14 according to the second embodiment is cut away. 13, 14 </ b> A, and 14 </ b> B show the same x, y, and z axes as in FIGS. 3A and 3B. FIG. 14A shows a cross section 14a obtained by cutting the optical deflector 14 shown in FIG. 13 along a plane including a straight line XIVA-XIVA passing through the central position in the y-axis direction of the optical deflector 14 along the xz plane. Has been. In FIG. 14B, the optical deflector 14 shown in FIG. 13 in a plane parallel to the yz plane is parallel to the yz plane and includes a straight line XIVB-XIVB passing through the central position in the x-axis direction. A cut section 14b is shown.
 図13および図14A、図14Bを参照して、ハウジング111は、x軸方向に長い直方体形状を有する。ハウジング111の上面には、平面視において長方形の凹部111aが形成されている。ハウジング111は、剛性が高い金属材料からなっている。 Referring to FIG. 13, FIG. 14A, and FIG. 14B, the housing 111 has a rectangular parallelepiped shape that is long in the x-axis direction. On the upper surface of the housing 111, a rectangular recess 111a is formed in plan view. The housing 111 is made of a metal material having high rigidity.
 ハウジング111の上面に、枠状の板バネ112が設置される。板バネ112は、外枠部112aと、内枠部112bと、2つの梁部112cと、支持部112dと、2つの梁部112eとを有する。y軸方向の中間位置において、外枠部112aからx軸方向に平行に延びるように、2つの梁部112cが形成され、これら梁部112cによって、外枠部112aと内枠部112bとが連結されている。また、x軸方向の中間位置において、内枠部112bからy軸方向に平行に延びるように、2つの梁部112eが形成され、これら梁部112eによって、内枠部112bと支持部112dとが連結されている。 A frame-shaped leaf spring 112 is installed on the upper surface of the housing 111. The leaf spring 112 has an outer frame portion 112a, an inner frame portion 112b, two beam portions 112c, a support portion 112d, and two beam portions 112e. Two beam portions 112c are formed so as to extend in parallel to the x-axis direction from the outer frame portion 112a at an intermediate position in the y-axis direction, and the outer frame portion 112a and the inner frame portion 112b are connected by these beam portions 112c. Has been. Further, at the intermediate position in the x-axis direction, two beam portions 112e are formed so as to extend in parallel to the y-axis direction from the inner frame portion 112b, and the inner frame portion 112b and the support portion 112d are formed by these beam portions 112e. It is connected.
 内枠部112bは、平面視において長方形の角が丸められた輪郭を有し、内枠部112bのy軸方向の中間位置において、2つの梁部112cが内枠部112bに繋がっている。また、支持部112dは、平面視において長方形の輪郭を有し、支持部112dのx軸方向の中間位置において、2つの梁部112eが支持部112dに繋がっている。板バネ112は、x軸方向およびy軸方向に対称な形状である。板バネ112は、可撓性の金属材料により一体形成されている。 The inner frame portion 112b has a contour with rounded rectangular corners in plan view, and two beam portions 112c are connected to the inner frame portion 112b at an intermediate position in the y-axis direction of the inner frame portion 112b. The support portion 112d has a rectangular outline in plan view, and two beam portions 112e are connected to the support portion 112d at an intermediate position in the x-axis direction of the support portion 112d. The leaf spring 112 has a symmetrical shape in the x-axis direction and the y-axis direction. The leaf spring 112 is integrally formed of a flexible metal material.
 外枠部112aをハウジング111の上面に載せた状態で、4つのネジ113により、板バネ112がハウジング111の上面に固定される。支持部112dの上面にミラー17が接着剤等によって固定される。ミラー17は、平面視において略正方形である。2つの梁部112eを繋いだ軸が、上記第1の実施形態と同様、レーザ光を波長変換部材15の長手方向に走査させるための、ミラー17の回動軸L1となる。また、2つの梁部112cを繋いだ軸が、波長変換部材15におけるレーザ光の走査ラインを変更するための、ミラー17の回動軸L2となる。 The plate spring 112 is fixed to the upper surface of the housing 111 with four screws 113 in a state where the outer frame portion 112 a is placed on the upper surface of the housing 111. The mirror 17 is fixed to the upper surface of the support portion 112d with an adhesive or the like. The mirror 17 is substantially square in plan view. The axis connecting the two beam portions 112e becomes the rotation axis L1 of the mirror 17 for scanning the laser beam in the longitudinal direction of the wavelength conversion member 15 as in the first embodiment. In addition, the axis connecting the two beam portions 112c becomes the rotation axis L2 of the mirror 17 for changing the scanning line of the laser beam in the wavelength conversion member 15.
 なお、上記第1の実施形態と同様、レーザ光源12からのレーザ光は、ミラー17の中央位置に入射する。すなわち、回動軸L1、L2が交わる位置をレーザ光の中心軸が貫くように、レーザ光源12からのレーザ光が、ミラー17に入射する。 Note that, as in the first embodiment, the laser light from the laser light source 12 enters the center position of the mirror 17. That is, the laser light from the laser light source 12 is incident on the mirror 17 so that the central axis of the laser light passes through the position where the rotation axes L1 and L2 intersect.
 支持部112dの下面にコイル114が装着される。コイル114は、平面視において長方形の角が丸められた形状に周回している。コイル114は、長辺の中間位置が回動軸L1に一致するように、支持部112dの下面に設置される。コイル114、支持部112dおよびミラー17が、光偏向器14の第1の可動部を構成する。 The coil 114 is attached to the lower surface of the support portion 112d. The coil 114 circulates in a shape with rounded rectangular corners in plan view. The coil 114 is installed on the lower surface of the support portion 112d so that the middle position of the long side coincides with the rotation axis L1. The coil 114, the support part 112 d, and the mirror 17 constitute a first movable part of the optical deflector 14.
 コイル114をx軸方向に挟むように、磁石115および磁石116の組が2つ配置される。磁石115と磁石116は、ヨーク117に設置され、ヨーク117が、ハウジング111の凹部111aの底面に設置されている。各組の磁石115および磁石116の磁極の調整方法は、図3A、図3Bに示した磁石105および磁石106と同様である。 Two sets of magnets 115 and 116 are arranged so as to sandwich the coil 114 in the x-axis direction. The magnets 115 and 116 are installed on the yoke 117, and the yoke 117 is installed on the bottom surface of the recess 111 a of the housing 111. The method of adjusting the magnetic poles of each set of magnets 115 and 116 is the same as that of the magnets 105 and 106 shown in FIGS. 3A and 3B.
 さらに、内枠部112bの下面にコイル118が装着される。コイル118は、平面視において内枠部112bと同様の形状である。コイル118は、短辺の中間位置が回動軸L2に一致するように、内枠部112bの下面に設置される。コイル118および内枠部112bが、光偏向器14の第2の可動部を構成する。 Furthermore, a coil 118 is attached to the lower surface of the inner frame portion 112b. The coil 118 has the same shape as the inner frame portion 112b in plan view. The coil 118 is installed on the lower surface of the inner frame portion 112b so that the intermediate position of the short side coincides with the rotation axis L2. The coil 118 and the inner frame portion 112b constitute a second movable portion of the optical deflector 14.
 コイル114に対して、y軸正側とy軸負側に、それぞれ、磁石119が配置される。これら磁石119は、ヨーク117に設置されている。また、これら2つの磁石119は、コイル118に対向する磁極が互いに異なるように、ヨーク117に設置されている。磁石119は、磁極面における磁束密度が略均一の永久磁石である。 Magnets 119 are arranged on the y-axis positive side and the y-axis negative side with respect to the coil 114, respectively. These magnets 119 are installed on the yoke 117. Further, these two magnets 119 are installed on the yoke 117 so that the magnetic poles facing the coil 118 are different from each other. The magnet 119 is a permanent magnet having a substantially uniform magnetic flux density on the magnetic pole surface.
 このように2つの磁石119の磁極を調整することにより、コイル118に駆動信号(電流)が印加されると、回動軸L2について内枠部112bが回動し、駆動信号の大きさに応じた角度だけ、内枠部112bが傾く。すなわち、内枠部112bは、梁部112cに生じる弾性復帰力とコイル118に励起された電磁力とが釣り合う角度だけ図13に示した中立位置から傾く。このとき、内枠部112bの回動に伴って、支持部112dとともにミラー17が回動する。 By adjusting the magnetic poles of the two magnets 119 in this way, when a drive signal (current) is applied to the coil 118, the inner frame portion 112b rotates about the rotation axis L2, and according to the magnitude of the drive signal. The inner frame portion 112b is inclined by the angle. That is, the inner frame portion 112b is inclined from the neutral position shown in FIG. 13 by an angle at which the elastic restoring force generated in the beam portion 112c and the electromagnetic force excited by the coil 118 are balanced. At this time, the mirror 17 rotates together with the support portion 112d as the inner frame portion 112b rotates.
 支持部112dは、図3A、図3Bの構成と同様、コイル114に駆動信号(電流)を印加することにより、回動軸L1を軸として回動する。支持部112dの回動に伴い、ミラー17が回動軸L1を軸として回動する。このように、第2の実施形態の光偏向器14によれば、コイル114、118にそれぞれ独立して駆動信号(電流)を印加することにより、ミラー17を、回動軸L1、L2について個別に回動させることができる。 The support portion 112d rotates about the rotation axis L1 by applying a drive signal (current) to the coil 114 as in the configuration of FIGS. 3A and 3B. As the support portion 112d rotates, the mirror 17 rotates about the rotation axis L1. As described above, according to the optical deflector 14 of the second embodiment, the drive signal (current) is independently applied to the coils 114 and 118, whereby the mirror 17 is individually moved about the rotation axes L 1 and L 2. Can be rotated.
 図15Aは、波長変換部材15におけるレーザ光の走査状態を模式的に示す図である。 FIG. 15A is a diagram schematically showing a scanning state of the laser light in the wavelength conversion member 15.
 図15Aに示すように、第2の実施形態では、波長変換部材15の入射面15aに複数の走査ラインSL1が設定される。図15Aの例では、3つの走査ラインSL1が、入射面15aに設定されている。ただし、走査ラインSL1の数は、これに限られるものではない。 As shown in FIG. 15A, in the second embodiment, a plurality of scanning lines SL1 are set on the incident surface 15a of the wavelength conversion member 15. In the example of FIG. 15A, three scanning lines SL1 are set on the incident surface 15a. However, the number of scanning lines SL1 is not limited to this.
 なお、ここでは、ビームスポットB2が、上記第1の実施形態の場合に比べてより小さく絞られるとともに、ビームスポットB2の形状が円形に調整されている。このようなビームスポットB2のサイズおよび形状の調整は、たとえば、波長変換部材15の入射面15aにおいてレーザ光を円形に収束させる光学作用を、コリメータレンズ13に付与することにより実現される。この他、このような光学作用が、ミラー17の反射面に付与されてもよい。この場合、ミラー17の反射面は、このような光学作用をレーザ光に付与可能な凹面形状に調整される。 In addition, here, the beam spot B2 is narrowed down more than in the case of the first embodiment, and the shape of the beam spot B2 is adjusted to be circular. Such adjustment of the size and shape of the beam spot B2 is realized, for example, by giving the collimator lens 13 an optical action for converging the laser beam in a circular shape on the incident surface 15a of the wavelength conversion member 15. In addition, such an optical action may be imparted to the reflecting surface of the mirror 17. In this case, the reflecting surface of the mirror 17 is adjusted to a concave shape that can impart such an optical action to the laser light.
 レーザ光のビームスポットB2は、最上段の走査ラインSL1をX軸正方向に終端位置まで移動した後、2段目の走査ラインSL1のX軸正側の開始位置に位置付けられる。その後、ビームスポットB2は、2段目の走査ラインSL1をX軸負方向に終端位置まで移動した後、3段目の走査ラインSL1のX軸負側の開始位置に位置付けられる。同様に、3段目の走査ラインSL1のX軸正側の終端位置までビームスポットB2が移動すると、ビームスポットB2は、2段目の走査ラインSL1の開始位置に位置付けられる。その後、ビームスポットB2は、2段目の走査ラインSL1をX軸負方向に終端位置まで移動した後、1段目の走査ラインSL1のX軸負側の開始位置に位置付けられる。以下、3つの走査ラインSL1について同様の走査が繰り返される。 The laser beam spot B2 is positioned at the start position on the X-axis positive side of the second-stage scan line SL1 after the uppermost scan line SL1 is moved to the end position in the X-axis positive direction. Thereafter, the beam spot B2 is positioned at the X axis negative start position of the third scanning line SL1 after the second scanning line SL1 is moved to the end position in the X axis negative direction. Similarly, when the beam spot B2 moves to the end position on the X axis positive side of the third-stage scanning line SL1, the beam spot B2 is positioned at the start position of the second-stage scanning line SL1. Thereafter, the beam spot B2 is positioned at the start position on the X-axis negative side of the first-stage scan line SL1 after the second-stage scan line SL1 is moved to the end position in the X-axis negative direction. Thereafter, the same scanning is repeated for the three scanning lines SL1.
 走査ラインSL1に沿ったビームスポットB2の移動は、図13に示した回動軸L1についてミラー17を回動させることにより行われる。走査ラインSL1の変更は、図13に示した回動軸L2についてミラー17を回動させて傾けることにより行われる。光偏向器14は、図1の回路基板18に実装された制御回路によって、ビームスポットB2が上記のように波長変換部材15の入射面15aを走査するように制御される。 The movement of the beam spot B2 along the scanning line SL1 is performed by rotating the mirror 17 about the rotation axis L1 shown in FIG. The scan line SL1 is changed by rotating and tilting the mirror 17 about the rotation axis L2 shown in FIG. The optical deflector 14 is controlled by the control circuit mounted on the circuit board 18 of FIG. 1 so that the beam spot B2 scans the incident surface 15a of the wavelength conversion member 15 as described above.
 なお、ビームスポットB2が、1つの走査ラインSL1の終端位置から次の走査ラインSL1の開始位置に移動する期間は、レーザ光源12からのレーザ光の出射が停止される。すなわち、図15Aの送りラインTL1、TL2は、仮にレーザ光が出射されている場合のビームスポットB2の移動軌跡を示すものであって、実際の制御では、送りラインTL1、TL2において、レーザ光源12は消灯状態に制御される。 Note that during the period in which the beam spot B2 moves from the end position of one scan line SL1 to the start position of the next scan line SL1, the emission of the laser light from the laser light source 12 is stopped. That is, the feed lines TL1 and TL2 in FIG. 15A indicate the movement trajectory of the beam spot B2 when laser light is emitted, and in actual control, the laser light source 12 in the feed lines TL1 and TL2 is shown. Is controlled to be turned off.
 なお、波長変換部材15の入射面15aに対するレーザ光の走査方法は、上記に限られるものではない。たとえば、ビームスポットB2が、各走査ラインSL1を往復移動した後、次の走査ラインSL1の開始位置へとジャンプするように、波長変換部材15の入射面15aがレーザ光で走査される構成であってもよい。 The laser beam scanning method for the incident surface 15a of the wavelength conversion member 15 is not limited to the above. For example, the incident surface 15a of the wavelength conversion member 15 is scanned with a laser beam so that the beam spot B2 jumps back and forth along each scanning line SL1 and then jumps to the start position of the next scanning line SL1. May be.
 第2の実施形態の構成では、各走査ラインSL1におけるビームスポットB2の走査位置が検出可能となるように、位置検出器19が、図15Bに示す2次元検出用の位置検出器19’に置き換えられる。ここで、位置検出器19’は、上記第1の実施形態の位置検出器19の構造に加えて、図5Bに示した表面側の抵抗層に、縦方向における光電流を出力するための一対の電極が縦方向の端縁にそれぞれ形成され、これら電極に流入した光電流が、それぞれ、端子19d、19eから出力される構造となっている。 In the configuration of the second embodiment, the position detector 19 is replaced with a two-dimensional detection position detector 19 ′ shown in FIG. 15B so that the scanning position of the beam spot B2 in each scanning line SL1 can be detected. It is done. Here, in addition to the structure of the position detector 19 of the first embodiment, the position detector 19 ′ is a pair for outputting a photocurrent in the vertical direction to the resistance layer on the surface side shown in FIG. 5B. The electrodes are formed at the vertical edges, and the photocurrents flowing into these electrodes are output from the terminals 19d and 19e, respectively.
 この位置検出器19’では、受光面19aの縦方向のセンター位置Lmyを基準とする照射位置の縦方向の座標Pyが、以下の式によって算出される。ここで、Iy1、Iy2は、端子19d、19eから出力される光電流の電流値、Lyは、縦方向における電極間の距離である。 In this position detector 19 ', the vertical coordinate Py of the irradiation position with the vertical center position Lmy of the light receiving surface 19a as a reference is calculated by the following equation. Here, Iy1 and Iy2 are current values of photocurrents output from the terminals 19d and 19e, and Ly is a distance between the electrodes in the vertical direction.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 こうして、位置検出器19’の端子19d、19eから出力された光電流の電流値Iy1、Iy2をもとに、式(2)の演算を行うことにより、受光面19a上における正反射光スポットRB2の縦方向の位置を示す位置検出信号(座標Py)を算出できる。なお、この場合も、受光面19a上における正反射光スポットRB2の横方向の位置を示す位置検出信号(座標Px)は、上記式(1)に基づいて算出できる。 Thus, the specularly reflected light spot RB2 on the light receiving surface 19a is obtained by performing the calculation of the equation (2) based on the current values Iy1 and Iy2 of the photocurrent output from the terminals 19d and 19e of the position detector 19 ′. A position detection signal (coordinate Py) indicating the position in the vertical direction can be calculated. In this case as well, the position detection signal (coordinate Px) indicating the lateral position of the regular reflection light spot RB2 on the light receiving surface 19a can be calculated based on the above equation (1).
 図15Aのように波長変換部材15の入射面15a上をビームスポットB1が移動すると、これに伴い、正反射光スポットRB2が、位置検出器19’の受光面19a上を、図15Bに示すように移動する。入射面15a上におけるビームスポットB1の位置と、受光面19a上における正反射光スポットRB1の位置は、1対1に対応する。したがって、この場合も、上記式(1)、(2)により算出された2種類の位置検出信号によって、入射面15a上におけるビームスポットB1の位置およびミラー17の回動位置を検出できる。 When the beam spot B1 moves on the incident surface 15a of the wavelength converting member 15 as shown in FIG. 15A, the specularly reflected light spot RB2 moves along the light receiving surface 19a of the position detector 19 ′ as shown in FIG. 15B. Move to. The position of the beam spot B1 on the incident surface 15a and the position of the specularly reflected light spot RB1 on the light receiving surface 19a correspond one-to-one. Therefore, also in this case, the position of the beam spot B1 on the incident surface 15a and the rotation position of the mirror 17 can be detected by the two types of position detection signals calculated by the above formulas (1) and (2).
 第2の実施形態において、位置検出回路304は、上記式(1)、(2)に基づいて、横方向および縦方向の正反射光スポットRB2の位置を示す2種類の位置検出信号を取得し、これら位置検出信号を随時、コントローラ301に出力する。また、位置検出回路304は、端子19b~19eから出力される光電流の電流値Ix1、Ix2、Iy1、Iy2を加算して光量信号を取得し、取得した光量信号をコントローラ301に出力する。 In the second embodiment, the position detection circuit 304 acquires two types of position detection signals indicating the positions of the regular reflection light spot RB2 in the horizontal direction and the vertical direction based on the above formulas (1) and (2). These position detection signals are output to the controller 301 as needed. Further, the position detection circuit 304 adds the current values Ix1, Ix2, Iy1, and Iy2 of the photocurrents output from the terminals 19b to 19e to acquire a light amount signal, and outputs the acquired light amount signal to the controller 301.
 コントローラ301は、上記式(1)、(2)により算出された2種類の位置検出信号に基づいて、走査ラインSL1ごとに、ビームスポットB2の走査状態を判定し、ビームスポットB2が所定の走査ラインSL1に従って適正に波長変換部材15の入射面15a上を走査するように、光偏向器14を制御する。また、コントローラ301は、端子19b~19eから出力される光電流の電流値Ix1、Ix2、Iy1、Iy2を加算して得られた光量信号に基づいて、上記第1の実施形態と同様、波長変換部材15の異常を検出する処理を実行する。 The controller 301 determines the scanning state of the beam spot B2 for each scanning line SL1 based on the two types of position detection signals calculated by the above formulas (1) and (2), and the beam spot B2 performs predetermined scanning. The optical deflector 14 is controlled so as to appropriately scan the incident surface 15a of the wavelength conversion member 15 according to the line SL1. Further, the controller 301 performs wavelength conversion based on the light amount signal obtained by adding the current values Ix1, Ix2, Iy1, and Iy2 of the photocurrents output from the terminals 19b to 19e, as in the first embodiment. A process for detecting an abnormality of the member 15 is executed.
 第2の実施形態の構成によれば、上記第1の実施形態と同様、波長変換部材15の入射面15a上の全走査範囲(幅W1、走査ラインSL1)に対して、位置検出器19から検出信号が出力されるため、この検出信号を監視することにより、全走査範囲(幅W1、走査ラインSL1)において光偏向器14の動作状態を検出できる。よって、光偏向器14の動作状態を正確かつ高精度に検出することができる。 According to the configuration of the second embodiment, as in the first embodiment, from the position detector 19 with respect to the entire scanning range (width W1, scanning line SL1) on the incident surface 15a of the wavelength conversion member 15. Since the detection signal is output, the operation state of the optical deflector 14 can be detected in the entire scanning range (width W1, scanning line SL1) by monitoring the detection signal. Therefore, the operating state of the optical deflector 14 can be detected accurately and with high accuracy.
 また、第2の実施形態の構成によれば、より絞られたビームスポットB2で、波長変換部材15が複数の走査ラインSL1に沿って走査されるため、たとえば、発光領域R2上において、白色光の発光を停止させる領域や、白色光の発光を生じさせる領域を、より細かく設定できる。このため、光源装置2から生じた白色光を投射光学系3で目標領域に投射する場合に、目標領域上において、白色光の投射を停止させる領域や、白色光の投射を行う領域を、より細かく設定できる。よって、たとえば、投光装置1が車両の前照灯に組み込まれた場合には、対向車の位置や歩行者の位置に応じて、より細かく、白色光の照射領域および非照射領域を設定することができる。 Further, according to the configuration of the second embodiment, since the wavelength conversion member 15 is scanned along the plurality of scanning lines SL1 with the more narrow beam spot B2, for example, white light is emitted on the light emitting region R2. The region where the light emission is stopped and the region where the white light is emitted can be set more finely. For this reason, when the white light generated from the light source device 2 is projected onto the target area by the projection optical system 3, the area where the white light projection is stopped or the area where the white light projection is performed on the target area is more Can be set in detail. Therefore, for example, when the light projecting device 1 is incorporated in the headlight of the vehicle, the white light irradiation region and the non-irradiation region are set more finely according to the position of the oncoming vehicle and the position of the pedestrian. be able to.
 なお、第2の実施形態においても、図11A~図12Bに示した各変更例の構成を適宜適用可能である。 In the second embodiment, the configuration of each modified example shown in FIGS. 11A to 12B can be applied as appropriate.
 <第3の実施形態>
 上記第1の実施形態および第2の実施形態では、反射型の波長変換部材15が用いられた。これに対し、第3の実施形態では、透過型の波長変換部材15が用いられる。
<Third Embodiment>
In the first embodiment and the second embodiment, the reflective wavelength conversion member 15 is used. On the other hand, in the third embodiment, a transmissive wavelength conversion member 15 is used.
 透過型の波長変換部材15では、図4Aに示す基板201が光透過性に優れた材料で形成され、反射膜202が、青色波長帯のレーザ光を透過し、黄色波長帯の蛍光を反射するダイクロイック膜に変更される。レーザ光は、蛍光体層203と反対側の基板201の下面から入射される。 In the transmissive wavelength conversion member 15, the substrate 201 shown in FIG. 4A is formed of a material having excellent light transmittance, and the reflective film 202 transmits laser light in the blue wavelength band and reflects fluorescence in the yellow wavelength band. Changed to dichroic membrane. Laser light is incident from the lower surface of the substrate 201 opposite to the phosphor layer 203.
 図16は、第3の実施形態に係る投光装置1の構成を示す断面図である。 FIG. 16 is a cross-sectional view showing the configuration of the light projecting device 1 according to the third embodiment.
 図16の構成では、波長変換部材15が、ミラー17に対してY軸負側から対向するように、ベース11に設置される。また、波長変換部材15に対してレーザ光を照射可能に、ミラー17の傾き角が調整されている。波長変換部材15で正反射された正反射光が入射する位置に、位置検出器19が設置されている。上記第1の実施形態と同様、位置検出器19は、正反射光を、波長変換部材15の入射面15a上の全ての走査範囲に対して受光可能に配置されている。 16, the wavelength conversion member 15 is installed on the base 11 so as to face the mirror 17 from the Y axis negative side. Further, the tilt angle of the mirror 17 is adjusted so that the wavelength conversion member 15 can be irradiated with laser light. A position detector 19 is installed at a position where the regular reflection light regularly reflected by the wavelength conversion member 15 is incident. Similar to the first embodiment, the position detector 19 is arranged so that the specularly reflected light can be received in the entire scanning range on the incident surface 15 a of the wavelength conversion member 15.
 図16の構成において、ミラー17が回動することにより波長変換部材15がレーザ光で走査される。この走査により、波長変換部材15のY軸負側から黄色波長帯の拡散光と青色波長帯の拡散光が放射され、これら拡散光が投射光学系3のレンズ3a、3bに取り込まれる。こうして、投射光学系3から白色の光が出射される。このとき、位置検出器19から出力される検出信号に基づいて、上記第1の実施形態と同様、波長変換部材15の入射面15aに対するレーザ光の走査状態が、コントローラ301によって監視される。コントローラ301は、波長変換部材15の入射面15aに対するレーザ光の走査状態が所定の走査状態となるように、光偏向器14を制御する。 In the configuration of FIG. 16, the wavelength conversion member 15 is scanned with laser light as the mirror 17 rotates. By this scanning, diffused light in the yellow wavelength band and diffused light in the blue wavelength band are emitted from the Y axis negative side of the wavelength conversion member 15, and these diffused lights are taken into the lenses 3 a and 3 b of the projection optical system 3. Thus, white light is emitted from the projection optical system 3. At this time, based on the detection signal output from the position detector 19, the controller 301 monitors the scanning state of the laser beam with respect to the incident surface 15a of the wavelength conversion member 15 as in the first embodiment. The controller 301 controls the optical deflector 14 so that the scanning state of the laser light with respect to the incident surface 15a of the wavelength conversion member 15 becomes a predetermined scanning state.
 第3の実施形態によっても、第1の実施形態と同様の効果が奏され得る。また、第3の実施形態においても、適宜、第2の実施形態の構成または図11A~図12Bに示した各変更例の構成を適用可能である。 Also in the third embodiment, the same effect as in the first embodiment can be obtained. Also in the third embodiment, the configuration of the second embodiment or the configuration of each modification shown in FIGS. 11A to 12B can be applied as appropriate.
 <他の変更例>
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に何らの制限を受けるものではない。
<Other changes>
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 たとえば、板バネ102、112の形状は、必ずしも、上記第1の実施形態および第2の実施形態に示した形状に限られるものではなく、たとえば、図3Aにおいて、x軸方向に隣り合う2つのネジ103で挟まれた領域以外の枠部102aの領域が省略されてもよい。 For example, the shape of the leaf springs 102 and 112 is not necessarily limited to the shape shown in the first embodiment and the second embodiment. For example, in FIG. The region of the frame portion 102a other than the region sandwiched between the screws 103 may be omitted.
 また、ミラー17の形状は、必ずしも、平面視において正方形でなくともよく、平面視において長方形または円形であってもよい。支持部102bの形状も、適宜変更可能である。 Further, the shape of the mirror 17 does not necessarily have to be a square in a plan view, and may be a rectangle or a circle in a plan view. The shape of the support portion 102b can also be changed as appropriate.
 また、波長変換部材15の蛍光体層203に含まれる蛍光体粒子203aの種類は、必ずしも1種類でなくてもよく、たとえば、レーザ光源12からのレーザ光によって互いに異なる波長の蛍光を生じる複数種類の蛍光体粒子203aが蛍光体層203に含まれてもよい。この場合、各種類の蛍光体粒子203aから生じた蛍光の拡散光と、これら蛍光体粒子203aによって波長変換されなかったレーザ光の拡散光とによって、所定の色の光が生成される。 Further, the type of the phosphor particles 203a included in the phosphor layer 203 of the wavelength conversion member 15 is not necessarily one type. For example, a plurality of types that generate fluorescence with different wavelengths by the laser light from the laser light source 12 are used. Phosphor particles 203 a may be included in the phosphor layer 203. In this case, light of a predetermined color is generated by the diffused light of the fluorescence generated from each type of phosphor particles 203a and the diffused light of the laser light that has not been wavelength-converted by the phosphor particles 203a.
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, the embodiment of the present invention can be variously modified as appropriate within the scope of the technical idea shown in the claims.
 本開示の光源装置および投光装置は、波長変換部材に対して光を走査させる偏向器の状態を正確かつ高精度に検出することができるものであり、例えば車両用前照灯の光源装置として大変有用である。 The light source device and the light projecting device of the present disclosure can accurately and accurately detect the state of a deflector that scans light with respect to a wavelength conversion member. For example, as a light source device for a vehicle headlamp It is very useful.
 1 投光装置
 2 光源装置
 3 投射光学系
 3b,14a,14b 断面
 12 レーザ光源
 14 光偏向器
 15 波長変換部材
 15a 入射面
 17 ミラー(導光部材)
 18 回路基板
 19,19’ 位置検出器
 20 ミラー(導光部材)
 21 集光レンズ(集光部材)
 22 凹面ミラー(導光部材、集光部材)
 23 集光レンズ(集光部材)
 31 バンドパスフィルタ
 32 減光フィルタ
 301 コントローラ
DESCRIPTION OF SYMBOLS 1 Light projector 2 Light source device 3 Projection optical system 3b, 14a, 14b Section 12 Laser light source 14 Optical deflector 15 Wavelength conversion member 15a Incident surface 17 Mirror (light guide member)
18 Circuit board 19, 19 'Position detector 20 Mirror (light guide member)
21 Condensing lens (Condensing member)
22 Concave mirror (light guide member, condensing member)
23 Condensing lens (Condensing member)
31 Band pass filter 32 Neutral filter 301 Controller

Claims (10)

  1.  レーザ光を出射するレーザ光源と、
     前記レーザ光の光路上に入射面を有し、前記レーザ光の波長を他の波長に変換して変換光を生ずるとともに前記変換光を拡散させる波長変換部材と、
     前記入射面上において前記レーザ光を少なくとも1次元に走査させる光偏向器と、
     前記入射面において正反射した前記レーザ光を、前記入射面上の全ての走査範囲に対して受光するとともに、前記レーザ光の受光位置に応じた検出信号を出力する位置検出器と、を備える、
    ことを特徴とする光源装置。
    A laser light source for emitting laser light;
    A wavelength converting member that has an incident surface on the optical path of the laser light, converts the wavelength of the laser light to another wavelength, generates converted light, and diffuses the converted light;
    An optical deflector for scanning the laser beam at least one dimension on the incident surface;
    The laser beam specularly reflected on the incident surface is received with respect to all scanning ranges on the incident surface, and a position detector that outputs a detection signal corresponding to the light receiving position of the laser beam is provided.
    A light source device characterized by that.
  2.  請求項1に記載の光源装置において、
     前記正反射した前記レーザ光の光路中に、前記変換光を除去し、前記正反射した前記レーザ光を透過するバンドパスフィルタと、を備える、
    ことを特徴とする光源装置。
    The light source device according to claim 1,
    A band-pass filter that removes the converted light and transmits the specularly reflected laser light in the optical path of the specularly reflected laser light;
    A light source device characterized by that.
  3.  請求項1に記載の光源装置において、
     前記正反射した前記レーザ光の光路中に、前記正反射した前記レーザ光を減光するための減光フィルタと、を備える、
    ことを特徴とする光源装置。
    The light source device according to claim 1,
    A neutral density filter for reducing the specularly reflected laser light in the optical path of the specularly reflected laser light;
    A light source device characterized by that.
  4.  請求項1から3の何れか一項に記載の光源装置において、
     前記波長変換部材の前記入射面において正反射した前記レーザ光を、前記位置検出器の受光面上に集光する集光部材を備える、
    ことを特徴とする光源装置。
    In the light source device according to any one of claims 1 to 3,
    A condensing member for condensing the laser light specularly reflected on the incident surface of the wavelength conversion member on a light receiving surface of the position detector;
    A light source device characterized by that.
  5.  請求項1から4の何れか一項に記載の光源装置において、
     前記位置検出器は、前記入射面で正反射した前記レーザ光の進行方向と異なる位置において回路基板に設置され、
     前記正反射したレーザ光を前記位置検出器へと導く導光部材を備える、
    ことを特徴とする光源装置。
    In the light source device according to any one of claims 1 to 4,
    The position detector is installed on the circuit board at a position different from the traveling direction of the laser beam specularly reflected by the incident surface,
    A light guide member for guiding the specularly reflected laser light to the position detector;
    A light source device characterized by that.
  6.  請求項5に記載の光源装置において、
     前記導光部材は、前記入射面において正反射した前記レーザ光を、前記位置検出器の受光面上に集光する機能をさらに備える、
    ことを特徴とする光源装置。
    The light source device according to claim 5,
    The light guide member further includes a function of condensing the laser light regularly reflected on the incident surface onto a light receiving surface of the position detector,
    A light source device characterized by that.
  7.  請求項1から6の何れか一項に記載の光源装置において、
     前記光偏向器を制御するコントローラを備え、
     前記コントローラは、前記位置検出器からの検出信号に基づいて、前記波長変換部材の前記入射面に対する前記レーザ光の走査状態が所定の走査状態となるように、前記光偏向器を制御する、
    ことを特徴とする光源装置。
    The light source device according to any one of claims 1 to 6,
    A controller for controlling the optical deflector;
    The controller controls the optical deflector based on a detection signal from the position detector so that a scanning state of the laser light with respect to the incident surface of the wavelength conversion member becomes a predetermined scanning state.
    A light source device characterized by that.
  8.  請求項7に記載の光源装置において、
     前記コントローラは、前記レーザ光源が非点灯状態にあるために前記位置検出器からの検出信号に消失期間が生じた場合、前記レーザ光源の点灯期間の前記検出信号に基づいて前記消失期間の前記検出信号を補間し、補間後の前記検出信号に基づいて、前記光偏向器を制御する、
    ことを特徴とする光源装置。
    The light source device according to claim 7.
    The controller detects the disappearance period based on the detection signal of the lighting period of the laser light source when the disappearance period occurs in the detection signal from the position detector because the laser light source is in a non-lighting state. Interpolating a signal, and controlling the optical deflector based on the detection signal after the interpolation,
    A light source device characterized by that.
  9.  請求項1から8の何れか一項に記載の光源装置において、
     前記コントローラは、前記波長変換部材の前記入射面において正反射した前記レーザ光の光量に応じた光量信号を前記位置検出器からの信号に基づいて取得し、取得した前記光量信号に基づいて、前記波長変換部材の状態を判定する、
    ことを特徴とする光源装置。
    In the light source device according to any one of claims 1 to 8,
    The controller acquires a light amount signal corresponding to the light amount of the laser light specularly reflected on the incident surface of the wavelength conversion member based on a signal from the position detector, and based on the acquired light amount signal, Determining the state of the wavelength conversion member;
    A light source device characterized by that.
  10.  請求項1から9の何れか一項に記載の光源装置と、
     前記波長変換部材により拡散された光を投射する投射光学系と、を備える、
    ことを特徴とする投光装置。
    The light source device according to any one of claims 1 to 9,
    A projection optical system for projecting the light diffused by the wavelength conversion member,
    A light projection device characterized by that.
PCT/JP2018/003935 2017-02-15 2018-02-06 Light source device and light projecting device WO2018150942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568122A JP7065267B2 (en) 2017-02-15 2018-02-06 Light source device and floodlight device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026371 2017-02-15
JP2017-026371 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018150942A1 true WO2018150942A1 (en) 2018-08-23

Family

ID=63169353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003935 WO2018150942A1 (en) 2017-02-15 2018-02-06 Light source device and light projecting device

Country Status (2)

Country Link
JP (1) JP7065267B2 (en)
WO (1) WO2018150942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102785A1 (en) * 2020-11-16 2022-05-19 市光工業株式会社 Vehicle lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195920C (en) * 1999-11-12 2005-04-06 花王株式会社 Softener composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767751A1 (en) * 2013-02-14 2014-08-20 Valeo Vision Secure adaptive lighting system
EP2821692A1 (en) * 2013-06-28 2015-01-07 Valeo Vision Secure optical module for a motor vehicle including a laser source
WO2016098319A1 (en) * 2014-12-16 2016-06-23 パナソニックIpマネジメント株式会社 Illumination device, automobile equipped with illumination device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767751A1 (en) * 2013-02-14 2014-08-20 Valeo Vision Secure adaptive lighting system
EP2821692A1 (en) * 2013-06-28 2015-01-07 Valeo Vision Secure optical module for a motor vehicle including a laser source
WO2016098319A1 (en) * 2014-12-16 2016-06-23 パナソニックIpマネジメント株式会社 Illumination device, automobile equipped with illumination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102785A1 (en) * 2020-11-16 2022-05-19 市光工業株式会社 Vehicle lamp
EP4246036A4 (en) * 2020-11-16 2024-06-05 Ichikoh Industries, Ltd. Vehicle lamp

Also Published As

Publication number Publication date
JPWO2018150942A1 (en) 2019-12-12
JP7065267B2 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
CN109416166B (en) Light emitting device and lighting device
JP5656290B2 (en) Semiconductor light emitting device
JP5673247B2 (en) Light source device and projector
JP2019160624A (en) Light source device and light projector
JP2015184591A (en) Optical scanner and vehicle headlamp device
US20190120462A1 (en) Light emission device and illumination device
JP2012220811A (en) Method for adjusting light source device, light source device, and projector
JP6033586B2 (en) Lighting device and vehicle headlamp
WO2018150942A1 (en) Light source device and light projecting device
CN107436529B (en) Light source device and projection display device
WO2018150889A1 (en) Light source device and light projection device
WO2017126027A1 (en) Fluorescent body wheel, and light-emitting unit and projector using same
JP2018147703A (en) Light source device
JP7046917B2 (en) Wavelength conversion element and light emitting device
JPWO2019049589A1 (en) Light source device and light projecting device
JP2020087574A (en) Light source device and projection device
JPWO2019044374A1 (en) Light source device and light projecting device
JP7029608B2 (en) Light source device and floodlight device
JP2020008363A (en) Optical distance measuring device
WO2018150814A1 (en) Light source device and light projection device
JP6998523B2 (en) Light source device and floodlight device
WO2018173802A1 (en) Light source device and light projection device
KR20070117250A (en) Laser white light emitting device
JP2019046749A (en) Light source device and light projection device
JP2009037784A (en) Photoelectric sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754110

Country of ref document: EP

Kind code of ref document: A1