WO2018150939A1 - 送信方法、及び、受信装置 - Google Patents

送信方法、及び、受信装置 Download PDF

Info

Publication number
WO2018150939A1
WO2018150939A1 PCT/JP2018/003901 JP2018003901W WO2018150939A1 WO 2018150939 A1 WO2018150939 A1 WO 2018150939A1 JP 2018003901 W JP2018003901 W JP 2018003901W WO 2018150939 A1 WO2018150939 A1 WO 2018150939A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
ldpc code
bits
bit
parity check
Prior art date
Application number
PCT/JP2018/003901
Other languages
English (en)
French (fr)
Inventor
雄二 篠原
山本 真紀子
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017056767A external-priority patent/JP6895053B2/ja
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/475,557 priority Critical patent/US10965323B2/en
Priority to EP18755111.4A priority patent/EP3584942B1/en
Priority to BR112019016763-3A priority patent/BR112019016763A2/pt
Priority to KR1020197023316A priority patent/KR102474717B1/ko
Publication of WO2018150939A1 publication Critical patent/WO2018150939A1/ja
Priority to PH12019501862A priority patent/PH12019501862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/271Row-column interleaver with permutations, e.g. block interleaving with inter-row, inter-column, intra-row or intra-column permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/033Theoretical methods to calculate these checking codes
    • H03M13/036Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • H03M13/1165QC-LDPC codes as defined for the digital video broadcasting [DVB] specifications, e.g. DVB-Satellite [DVB-S2]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/19Single error correction without using particular properties of the cyclic codes, e.g. Hamming codes, extended or generalised Hamming codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/255Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with Low Density Parity Check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2707Simple row-column interleaver, i.e. pure block interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2778Interleaver using block-wise interleaving, e.g. the interleaving matrix is sub-divided into sub-matrices and the permutation is performed in blocks of sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2792Interleaver wherein interleaving is performed jointly with another technique such as puncturing, multiplexing or routing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/152Bose-Chaudhuri-Hocquenghem [BCH] codes

Definitions

  • the present technology relates to a transmission method and a reception device, and more particularly, to a transmission method and a reception device that can ensure good communication quality in data transmission using an LDPC code, for example.
  • LDPC Low Density Parity Check
  • DVB Digital Video Broadcasting
  • DVB-T.2 DVB-C.2
  • ATSC Advanced Television Systems Committee
  • LDPC codes have been found to have performance close to the Shannon limit as the code length is increased, as is the case with turbo codes and the like.
  • the LDPC code has the property that the minimum distance is proportional to the code length, its characteristic is that the block error probability characteristic is good, and furthermore, the so-called error floor phenomenon observed in the decoding characteristic such as turbo code is observed.
  • An advantage is that it hardly occurs.
  • ATSC Standard Physical Layer Protocol (A / 322), 7 September 2016
  • the LDPC code is used as a symbol of quadrature modulation (digital modulation) such as QPSK (Quadrature Phase Shift Keying), and the symbol is used as a signal point for quadrature modulation. Mapped and sent.
  • quadrature modulation digital modulation
  • QPSK Quadrature Phase Shift Keying
  • the present technology has been made in view of such a situation, and is intended to ensure good communication quality in data transmission using an LDPC code.
  • a first transmission method of the present technology includes an encoding step of performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 2/16, and the LDPC code
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • a first receiving device of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 2/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • the second transmission method of the present technology includes an encoding step for performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 4/16, and the LDPC code A groupwise interleaving step for performing groupwise interleaving for interleaving in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • a second receiving device of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 4/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • a third transmission method of the present technology includes an encoding step for performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 6/16, and the LDPC code
  • a groupwise interleaving step for performing groupwise interleaving for interleaving in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • a third receiving device of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 6/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • the C matrix adjacent below the A matrix and the B matrix, and the D matrix that is a unit matrix adjacent to the right of the C matrix in the NK-M1 row NK-M1 column, and the predetermined value M1 Is 1800, the A matrix and the C matrix are represented by a parity check matrix initial value table, and the parity check matrix initial value table is a table that represents the position of one element of the A matrix and the C matrix every 360 columns.
  • a fourth transmission method of the present technology includes an encoding step of performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 8/16, and the LDPC code A groupwise interleaving step for performing groupwise interleaving for interleaving in units of 360-bit bit groups, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • Bit group 21 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 1 72, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53,
  • a fourth receiving apparatus of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 8/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • Bit group 21 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 1 21, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53,
  • a fifth transmission method of the present technology includes an encoding step of performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 10/16, and the LDPC code A groupwise interleaving step for performing groupwise interleaving for interleaving in units of 360-bit bit groups, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • a fifth receiving apparatus of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 10/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • a sixth transmission method of the present technology includes an encoding step of performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 12/16, and the LDPC code A groupwise interleaving step for performing groupwise interleaving for interleaving in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • a sixth receiving apparatus of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 12/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • the bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • a seventh transmission method of the present technology includes an encoding step of performing LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 14/16, and the LDPC code A groupwise interleaving step for performing groupwise interleaving for interleaving in units of 360-bit bit groups, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • a seventh receiving apparatus of the present technology includes an encoding unit that performs LDPC encoding based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 14/16, and the LDPC code A group-wise interleaving unit that performs group-wise interleaving that interleaves in 360-bit bit group units, and the LDPC code in 4096 QAM 1D-NUC (Non-Uniform Constellation) 4096 signal points in 12-bit units.
  • bit group 0 to 191 of the 69120-bit LDPC code is defined as a bit group i with the i + 1-th bit group from the head of the LDPC code as the bit group i.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 2/16.
  • Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • bit group 0 to 191 of the 69120-bit LDPC code is represented by bit groups 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95
  • the arrangement of the LDPC codes after group-wise interleaving obtained from the data transmitted from the transmitting device that implements the first transmission method is returned to the original order.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 4/16.
  • Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • the bit group 0 to 191 of the 69120-bit LDPC code is arranged as bit groups 191, 38, 101, i + 1 as a bit group i from the head of the LDPC code.
  • the arrangement of the LDPC codes after group-wise interleaving obtained from the data transmitted from the transmitting device that implements the second transmission method is returned to the original order.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 6/16
  • Group-wise interleaving is performed to interleave bits in bit groups.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • the bit group 0 to 191 of the 69120-bit LDPC code is a bit group 100, 152, 16, and the i + 1-th bit group from the head of the LDPC code is a bit group i.
  • the arrangement of the LDPC codes after group-wise interleaving obtained from data transmitted from the transmitting device that implements the third transmission method is returned to the original sequence.
  • LDPC coding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and a coding rate r of 8/16.
  • Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • the bit group 0 to 191 of the 69120-bit LDPC code is a bit group 21, 5, 2, and the bit group i is the i + 1-th bit group from the beginning of the LDPC code.
  • the arrangement of the LDPC codes after group-wise interleaving obtained from the data transmitted from the transmitting device that implements the fourth transmission method is returned to the original order.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 10/16.
  • Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • an i + 1-th bit group from the head of the LDPC code is a bit group i
  • the bit group 0 to 191 of the 69120-bit LDPC code includes bit groups 113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32
  • the arrangement of the LDPC codes after group-wise interleaving obtained from the data transmitted from the transmitting device that implements the fifth transmission method is returned to the original order.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 12/16, Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • the bit group 0 to 191 of the 69120-bit LDPC code is arranged as bit groups 131, 148, 141, with the i + 1-th bit group from the beginning of the LDPC code as bit group i.
  • the arrangement of the LDPC codes after group-wise interleaving obtained from data transmitted from the transmitting apparatus that implements the sixth transmission method is returned to the original order.
  • LDPC encoding is performed based on a parity check matrix of an LDPC code having a code length N of 69120 bits and an encoding rate r of 14/16, Group-wise interleaving is performed in which bits are interleaved in bit group units.
  • the LDPC code is mapped to one of 4096 signal points of 1D-NUC (Non-Uniform Constellation) of 4096QAM in units of 12 bits.
  • an i + 1-th bit group from the beginning of the LDPC code is a bit group i
  • the bit group 0 to 191 of the 69120-bit LDPC code includes bit groups 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96
  • the arrangement of the LDPC codes after group-wise interleaving obtained from the data transmitted from the transmitting apparatus that implements the seventh transmission method is returned to the original sequence.
  • the receiving device may be an independent device, or may be an internal block constituting one device.
  • FIG. 3 is a block diagram illustrating a configuration example of a transmission device 11.
  • FIG. 3 is a block diagram illustrating a configuration example of a bit interleaver 116.
  • FIG. 12 is a flowchart illustrating an example of processing performed by a bit interleaver 116 and a mapper 117.
  • 3 is a block diagram illustrating a configuration example of an LDPC encoder 115.
  • FIG. 5 is a flowchart illustrating an example of processing of an LDPC encoder 115.
  • Fig. 38 is a diagram illustrating an example of a parity check matrix initial value table with the code rate 1/4 and the code length 16200. It is a figure explaining the method of calculating
  • FIG. It is a figure explaining the block interleaving performed with the block interleaver 25.
  • FIG. It is a figure explaining the block interleaving performed with the block interleaver 25.
  • FIG. It is a figure explaining the groupwise interleaving performed in the groupwise interleaver 24.
  • FIG. It is a figure which shows the 1st example of GW pattern with respect to the LDPC code whose code length N is 69120 bits.
  • FIG. 10 is a block diagram which shows the structural example of the bit deinterleaver 165.
  • FIG. 10 is a flowchart illustrating an example of processing performed by a demapper 164, a bit deinterleaver 165, and an LDPC decoder 166. It is a figure which shows the example of the check matrix of a LDPC code. It is a figure which shows the example of the matrix (conversion test matrix) which performed row substitution and column substitution to the check matrix. It is a figure which shows the example of the conversion test matrix divided
  • FIG. 3 is a block diagram illustrating a configuration example of an LDPC decoder 166.
  • FIG. It is a figure explaining the block deinterleave performed by the block deinterleaver.
  • It is a block diagram which shows the other structural example of the bit deinterleaver 165.
  • FIG. It is a block diagram which shows the 1st structural example of the receiving system which can apply the receiving device.
  • It is a block diagram which shows the 2nd structural example of the receiving system which can apply the receiving device.
  • It is a block diagram which shows the 3rd structural example of the receiving system which can apply the receiving device.
  • FIG. 18 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • LDPC code is a linear code and does not necessarily need to be binary, but here it will be described as being binary.
  • LDPC code is characterized by the fact that the parity check matrix that defines the LDPC code is sparse.
  • a sparse matrix is a matrix in which the number of “1” s in the matrix is very small (a matrix in which most elements are 0).
  • FIG. 1 is a diagram illustrating an example of a parity check matrix H of an LDPC code.
  • the weight of each column (column weight) (the number of “1”) (weight) is “3”, and the weight of each row (row weight) is “6”. .
  • a generator matrix G is generated based on the check matrix H, and the generator matrix G is multiplied by binary information bits to generate a codeword (LDPC code). ) Is generated.
  • the generator matrix G is a K ⁇ N matrix
  • the encoding device multiplies the generator matrix G by a bit string (vector u) of information bits made up of K bits to generate a code made up of N bits.
  • the code word (LDPC code) generated by this encoding device is received on the receiving side via a predetermined communication path.
  • LDPC code decoding is an algorithm proposed by Gallager called probabilistic decoding (Probabilistic Decoding), consisting of variable nodes (also called message nodes) and check nodes (check nodes). This can be done by a message passing algorithm based on belief propagation on a so-called Tanner graph.
  • the variable node and the check node are also simply referred to as nodes as appropriate.
  • FIG. 2 is a flowchart showing a procedure for decoding an LDPC code.
  • a real value (reception LLR) expressing the “0” likelihood of the value of the i-th code bit of the LDPC code (1 codeword) received on the receiving side as a log likelihood ratio as appropriate. ) Is also referred to as a received value u 0i . Further, a message output from the check node is u j and a message output from the variable node is v i .
  • step S11 the LDPC code is received, the message (check node message) u j is initialized to “0”, and the counter of the iterative process is used.
  • the variable k taking the integer of is initialized to “0”, and the process proceeds to step S12.
  • step S12 a message (variable node message) v i is obtained by performing the calculation (variable node calculation) shown in Expression (1) based on the received value u 0i obtained by receiving the LDPC code.
  • the message u j is obtained by performing the calculation (check node calculation) shown in Expression (2).
  • Equation (1) and Equation (2) can be arbitrarily selected to indicate the number of “1” s in the vertical direction (column) and horizontal direction (row) of the parity check matrix H, respectively.
  • variable node calculation of Expression (1) the message input from the edge (line connecting the variable node and the check node) to which the message is to be output, respectively.
  • the computation range is 1 to d v -1 or 1 to d c -1.
  • the check node calculation of equation (2) actually creates a table of function R (v 1 , v 2 ) shown in equation (3) defined by one output for two inputs v 1 and v 2 in advance. In addition, this is performed by using it continuously (recursively) as shown in Equation (4).
  • step S12 the variable k is further incremented by “1”, and the process proceeds to step S13.
  • step S13 it is determined whether or not the variable k is larger than a predetermined iterative decoding count C. If it is determined in step S13 that the variable k is not greater than C, the process returns to step S12, and thereafter the same processing is repeated.
  • step S13 determines whether the variable k is larger than C. If it is determined in step S13 that the variable k is larger than C, the process proceeds to step S14, and a message v i as a decoding result to be finally output is obtained by performing the calculation shown in equation (5). And the LDPC code decoding process ends.
  • equation (5) is performed using messages u j from all branches connected to the variable node.
  • FIG. 3 is a diagram illustrating an example of a parity check matrix H of a (3, 6) LDPC code (coding rate 1/2, code length 12).
  • the column weight is 3 and the row weight is 6, as in FIG.
  • FIG. 4 is a diagram showing a Tanner graph of the check matrix H in FIG.
  • a plus “+” represents a check node
  • Check nodes and variable nodes correspond to the rows and columns of the parity check matrix H, respectively.
  • the connection between the check node and the variable node is an edge, and corresponds to “1” of the check matrix element.
  • FIG. 5 is a diagram showing variable node calculation performed in the variable node.
  • the message v i corresponding to the branch to be calculated is the variable node of the formula (1) using the messages u 1 and u 2 from the remaining branches connected to the variable node and the received value u 0i. It is obtained by calculation. Messages corresponding to other branches are obtained in the same manner.
  • FIG. 6 is a diagram showing a check node calculation performed in the check node.
  • Equation (6) can be transformed into Equation (7).
  • the message u j corresponding to the branch to be calculated is the messages v 1 , v 2 , v 3 , v 4 , v from the remaining branches connected to the check node. It is obtained by the check node calculation of Equation (7) using 5 . Messages corresponding to other branches are obtained in the same manner.
  • ⁇ (x) and ⁇ ⁇ 1 (x) are mounted on hardware, they may be mounted using a LUT (Look Up Table), but both are the same LUT.
  • FIG. 7 shows a transmission system to which the present technology is applied (a system is a logical collection of a plurality of devices, regardless of whether or not each component device is in the same housing). It is a figure which shows the structural example of embodiment.
  • the transmission system includes a transmission device 11 and a reception device 12.
  • the transmission device 11 transmits (broadcasts) (transmits) a television broadcast program, for example. That is, the transmission device 11 encodes target data to be transmitted, such as image data and audio data as a program, into an LDPC code, for example, a satellite line, a terrestrial wave, a cable (wired line), or the like. It transmits via the communication path 13.
  • target data to be transmitted such as image data and audio data as a program
  • an LDPC code for example, a satellite line, a terrestrial wave, a cable (wired line), or the like. It transmits via the communication path 13.
  • the receiving device 12 receives the LDPC code transmitted from the transmitting device 11 via the communication path 13, decodes it into the target data, and outputs it.
  • the LDPC code used in the transmission system of FIG. 7 exhibits extremely high capability in an AWGN (Additive White Gaussian Noise) channel.
  • AWGN Additional White Gaussian Noise
  • a burst error or erasure may occur in the communication path 13.
  • D / U Desired to Undesired Ratio
  • Desired main path power
  • a burst error may occur due to the state of the wiring from the receiving unit (not shown) such as an antenna that receives a signal from the transmitting device 11 to the receiving device 12 on the receiving device 12 side or the instability of the power supply of the receiving device 12. May occur.
  • the code bit of the LDPC code (the received value u 0i ) Since the variable node calculation of Expression (1) involving addition is performed, if an error occurs in the sign bit used for the variable node calculation, the accuracy of the required message is reduced.
  • the check node performs the check node calculation of Expression (7) using the message obtained by the variable node connected to the check node, so that a plurality of connected variable nodes ( When the number of check nodes in which the error (including erasure) of the code bits of the LDPC code corresponding to) simultaneously increases, the decoding performance deteriorates.
  • the check node sends a message with an equal probability of a probability of 0 and a probability of 1 to all the variable nodes. return.
  • a check node that returns an equiprobable message does not contribute to one decoding process (one set of variable node calculation and check node calculation), and as a result, requires a large number of repetitions of the decoding process. As a result, the decoding performance deteriorates, and the power consumption of the receiving apparatus 12 that decodes the LDPC code increases.
  • FIG. 8 is a block diagram illustrating a configuration example of the transmission device 11 of FIG.
  • one or more input streams (Input Streams) as target data are supplied to a Mode Adaptation / Multiplexer 111.
  • the mode adaptation / multiplexer 111 performs processing such as mode selection and multiplexing of one or more input streams supplied thereto as necessary, and supplies the resulting data to a padder 112. .
  • the padder 112 performs necessary zero padding (Null insertion) on the data from the mode adaptation / multiplexer 111 and supplies the resulting data to the BB scrambler 113.
  • the BB scrambler 113 subjects the data from the padder 112 to BB scramble (Base-Band Scrambling), and supplies the resulting data to a BCH encoder (BCH encoder) 114.
  • BCH encoder BCH encoder
  • the BCH encoder 114 BCH-encodes the data from the BB scrambler 113, and supplies the resulting data to an LDPC encoder 115 as LDPC target data that is an LDPC encoding target.
  • the LDPC encoder 115 performs LDPC coding on the LDPC target data from the BCH encoder 114, for example, according to a parity check matrix that is a portion corresponding to the parity bit of the LDPC code, and a parity matrix having a dual (diagonal) structure. To output an LDPC code having LDPC target data as information bits.
  • the LDPC encoder 115 defines the LDPC target data in a predetermined standard such as DVB-S.2, DVB-T.2, DVB-C.2, ATSC 3.0 (in the check matrix). (Corresponding) LDPC code and other LDPC codes are encoded, and the resulting LDPC code is output.
  • the LDPC code defined in the DVB-S.2 and ATSC 3.0 standards and the LDPC code to be adopted in ATSC 3.0 are IRA (Irregular Repeat Accumulate) codes, and the LDPC code check matrix
  • the parity matrix in (a part or all of) has a staircase structure. The parity matrix and the staircase structure will be described later.
  • IRA codes for example, “Irregular Repeat-Accumulate Codes,” H. Jin, A. Khandekar, and R. J. McEliece, in Proceedings of 2nd International Symposium on Turbo codes and Related Topics-8 , Sept. 2000.
  • the LDPC code output from the LDPC encoder 115 is supplied to a bit interleaver 116.
  • the bit interleaver 116 performs bit interleaving described later on the LDPC code from the LDPC encoder 115 and supplies the LDPC code after the bit interleaving to the mapper 117.
  • the mapper 117 maps the LDPC code from the bit interleaver 116 to a signal point representing one symbol of orthogonal modulation in units of one or more code bits (symbol unit) of the LDPC code and performs orthogonal modulation (multiple modulation). Value modulation).
  • the mapper 117 converts the LDPC code from the bit interleaver 116 on the constellation, which is an IQ plane defined by an I axis representing an I component in phase with a carrier wave and a Q axis representing a Q component orthogonal to the carrier wave.
  • the quadrature modulation is performed by mapping to signal points determined by the modulation method for performing quadrature modulation of the LDPC code.
  • the mapper 117 When the number of constellation signal points used in the orthogonal modulation method performed by the mapper 117 is 2 m , the mpp code bit of the LDPC code is used as a symbol (one symbol), and the mapper 117 The LDPC code from the bit interleaver 116 is mapped in symbol units to signal points representing symbols among 2 m signal points.
  • a modulation method of the orthogonal modulation performed by the mapper 117 for example, a modulation method defined in the DVB-S.2 or ATSC3.0 standard, or the like, for example, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 8PSK (Phase-Shift Keying), 16APSK (Amplitude Phase-Shift Keying), 32APSK, 16QAM (Quadrature Amplitude Modulation), 16QAM, 64QAM, 256QAM, 1024QAM, 4096QAM, 4PAM (Pulse Amplitude Modulation) etc.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadadrature Phase Shift Keying
  • 8PSK Phase-Shift Keying
  • 16APSK Amplitude Phase-Shift Keying
  • 32APSK 16QAM (Quadrature Amplitude Modulation)
  • 16QAM 64QAM, 256QAM, 1024
  • Data obtained by processing in the mapper 117 (mapping result obtained by mapping symbols to signal points) is supplied to a time interleaver 118.
  • the time interleaver 118 performs time interleaving (interleaving in the time direction) on the data from the mapper 117 in units of symbols, and the resulting data is converted into SISO / MISO encoders (SISO / MISO (Single / Input / Single / Output / Multiple). Input Single Output) encoder) 119.
  • SISO / MISO encoders SISO / MISO encoders
  • the SISO / MISO encoder 119 performs space-time coding on the data from the time interleaver 118 and supplies it to a frequency interleaver 120.
  • the frequency interleaver 120 performs frequency interleaving (interleaving in the frequency direction) on a symbol-by-symbol basis for the data from the SISO / MISO encoder 119 and supplies the data to a frame builder / resource allocation unit (Frame Builder & Resource Allocation) 131.
  • a frame builder / resource allocation unit Fre Builder & Resource Allocation
  • the BCH encoder 121 is supplied with control data (signalling) for transmission control such as BB signaling (Base Band Signaling) (BB Header).
  • BB signaling Basic Band Signaling
  • the BCH encoder 121 performs BCH encoding on the control data supplied thereto in the same manner as the BCH encoder 114, and supplies the resulting data to the LDPC encoder 122.
  • the LDPC encoder 122 performs LDPC encoding on the data from the BCH encoder 121 as LDPC target data in the same manner as the LDPC encoder 115, and supplies the resulting LDPC code to the mapper 123.
  • the mapper 123 maps the LDPC code from the LDPC encoder 122 to a signal point that represents one symbol of orthogonal modulation in units of one or more code bits (symbol unit) of the LDPC code. Then, quadrature modulation is performed, and data obtained as a result is supplied to the frequency interleaver 124.
  • the frequency interleaver 124 performs frequency interleaving on the data from the mapper 123 in units of symbols and supplies the data to the frame builder / resource allocation unit 131.
  • the frame builder / resource allocation unit 131 inserts pilot symbols at necessary positions of the data (symbols) from the frequency interleavers 120 and 124, and from the resulting data (symbols), a predetermined number
  • a frame composed of a number of symbols for example, a PL (Physical Layer) frame, a T2 frame, a C2 frame, etc.
  • OFDM generation OFDM generation
  • the OFDM generation unit 132 generates an OFDM signal corresponding to the frame from the frame from the frame builder / resource allocation unit 131, and transmits the OFDM signal via the communication path 13 (FIG. 7).
  • the transmission apparatus 11 is configured without providing some of the blocks illustrated in FIG. 8 such as the time interleaver 118, the SISO / MISO encoder 119, the frequency interleaver 120, and the frequency interleaver 124, for example. Can do.
  • FIG. 9 is a block diagram illustrating a configuration example of the bit interleaver 116 of FIG.
  • the bit interleaver 116 has a function of interleaving data, and includes a parity interleaver 23, a group-wise interleaver 24, and a block interleaver 25.
  • the parity interleaver 23 performs parity interleaving for interleaving the parity bits of the LDPC code from the LDPC encoder 115 to the positions of other parity bits, and supplies the LDPC code after the parity interleaving to the group-wise interleaver 24.
  • the groupwise interleaver 24 performs groupwise interleaving on the LDPC code from the parity interleaver 23, and supplies the LDPC code after the groupwise interleaving to the block interleaver 25.
  • an LDPC code for one code is partitioned from the beginning into 360-bit units equal to a unit size P described later, and the one-part 360 bits are used as a bit group to generate a parity interleaver 23.
  • bit group units are interleaved in bit group units.
  • the error rate can be improved compared to when not performing groupwise interleaving, and as a result, good communication quality can be ensured in data transmission.
  • the block interleaver 25 performs block interleaving for demultiplexing the LDPC code from the group-wise interleaver 24, so that, for example, an LDPC code for one code is converted into an m-bit symbol that is a unit of mapping. And supplied to the mapper 117 (FIG. 8).
  • a column as a storage area for storing a predetermined number of bits in the column (vertical) direction is equal to the number m of symbol bits in the row (horizontal) direction.
  • the LDPC code from the group-wise interleaver 24 is written in the column direction and read out in the row direction for the storage areas arranged only in this manner, so that the LDPC code is symbolized into m-bit symbols.
  • FIG. 10 is a diagram illustrating an example of a parity check matrix H used for LDPC encoding by the LDPC encoder 115 of FIG.
  • LDGM Low-Density Generation Matrix
  • the number of information bits and the number of parity bits in the code bits of one LDPC code are referred to as an information length K and a parity length M, respectively, and one (1
  • the information length K and the parity length M for an LDPC code having a certain code length N are determined by the coding rate.
  • the parity check matrix H is a matrix in which rows ⁇ columns are M ⁇ N (a matrix having M rows and N columns). Then, the information matrix H A, becomes the matrix of M ⁇ K, the parity matrix H T is a matrix of M ⁇ M.
  • Figure 11 is a diagram showing an example of a parity matrix H T of the parity check matrix H used in LDPC encoding by the LDPC encoder 115 of FIG.
  • the parity matrix H T of the parity check matrix H used in LDPC encoding by the LDPC encoder 115 for example, the same parity matrix H T and the check matrix H of an LDPC code prescribed in standards such as DVB-T.2 Can be adopted.
  • DVB-T.2 like parity matrix H T of the parity check matrix H of an LDPC code of which is specified in the Standard, as shown in FIG. 11, first element is, so to speak a matrix of step structure arranged stepwise (lower bidiagonal matrix).
  • the row weight of the parity matrix H T is 1 for the first row and 2 for all the remaining rows.
  • the column weight is 1 for the last column and 2 for all the remaining columns.
  • LDPC codes of the check matrix H the parity matrix H T has a staircase structure can be using the check matrix H, readily produced.
  • an LDPC code (one codeword), together represented by a row vector c, and column vector obtained by transposing the row vector is represented as c T. Further, in the row vector c which is an LDPC code, the information bit portion is represented by the row vector A, and the parity bit portion is represented by the row vector T.
  • FIG. 12 is a diagram for explaining a parity check matrix H of an LDPC code defined in a standard such as DVB-T.2.
  • the column weight is X, and for the subsequent K3 column, the column weight is 3, and then For the M-1 column, the column weight is 2, and for the last column, the column weight is 1.
  • KX + K3 + M-1 + 1 is equal to the code length N.
  • FIG. 13 is a diagram showing the number of columns KX, K3, and M, and the column weight X for each coding rate r of the LDPC code defined in the DVB-T.2 standard and the like.
  • Standards such as DVB-T.2 specify LDPC codes with code length N of 64800 bits and 16200 bits.
  • LDPC code having a code length N of 64,800 bits 11 coding rates (nominal rates) 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3 / 4, 4/5, 5/6, 8/9, and 9/10 are defined, and for an LDPC code having a code length N of 16200 bits, 10 coding rates 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 8/9 are specified.
  • the code length N of 64800 bits is also referred to as 64k bits
  • the code length N of 16200 bits is also referred to as 16k bits.
  • the error rate tends to be lower for code bits corresponding to columns having a larger column weight of the check matrix H.
  • the column weight on the head side (left side) tends to be large.
  • the LDPC code corresponding to H the first code bit tends to be more resistant to errors (tolerant to errors), and the last code bit tends to be weaker to errors.
  • parity interleaving by the parity interleaver 23 in FIG. 9 will be described with reference to FIGS.
  • FIG. 14 is a diagram illustrating an example of (part of) a Tanner graph of a parity check matrix of an LDPC code.
  • variable nodes corresponding code bits
  • all the check nodes are connected to the check node.
  • a message having a probability that the value is 0 and the probability that the value is 1 is returned to the variable node. For this reason, if a plurality of variable nodes connected to the same check node simultaneously become erasures or the like, the decoding performance deteriorates.
  • an LDPC code output from the LDPC encoder 115 of FIG. 8 for example, similarly to the LDPC code prescribed in standards such as DVB-T.2, an IRA code, the parity matrix H T of the parity check matrix H As shown in FIG. 11, it has a staircase structure.
  • FIG. 15 is a diagram illustrating an example of a parity matrix H T having a staircase structure and a Tanner graph corresponding to the parity matrix H T as illustrated in FIG.
  • FIG. 15A shows an example of a parity matrix H T having a staircase structure
  • FIG. 15B shows a Tanner graph corresponding to the parity matrix H T of A in FIG.
  • parity matrix H T has a staircase structure, in each row (except the first row) first element is adjacent. Therefore, in the Tanner graph of the parity matrix H T, the value of the parity matrix H T corresponding to the columns of two adjacent elements are set to 1, the two variable nodes adjacent, connected to the same check node Yes.
  • the parity interleaver 23 (FIG. 9) performs parity interleaving for interleaving the parity bits of the LDPC code from the LDPC encoder 115 to the positions of other parity bits in order to prevent the above-described degradation in decoding performance. .
  • Figure 16 is a diagram illustrating a parity matrix H T of the parity check matrix H corresponding to the LDPC code after parity interleave to the parity interleaver 23 of FIG. 9 is performed.
  • the information matrix H A of the parity check matrix H corresponding to the LDPC code output from the LDPC encoder 115 is the same as the information matrix of the parity check matrix H corresponding to the LDPC code defined in the standard such as DVB-T.2. In addition, it has a cyclic structure.
  • a cyclic structure is a structure in which a column matches a cyclic shift of another column.For example, for each P column, the position of 1 in each row of the P column is the first of the P column.
  • a structure in which the column is cyclically shifted in the column direction by a predetermined value such as a value proportional to the value q obtained by dividing the parity length M is also included.
  • the P row in the cyclic structure is referred to as a unit size as appropriate.
  • the unit size P is defined as 360 which is one of the divisors of the parity length M except 1 and M.
  • the parity interleaver 23 sets the information length to K, sets x to an integer between 0 and less than P, and sets y to an integer between 0 and less than q.
  • the K + qx + y + 1-th code bit is interleaved at the position of the K + Py + x + 1-th code bit.
  • the K + qx + y + 1-th code bit and the K + Py + x + 1-th code bit are both the K + 1-th code bit and the subsequent parity bits, and are therefore parity bits. According to interleaving, the position of the parity bit of the LDPC code is moved.
  • variable nodes connected to the same check node are separated by unit size P, that is, 360 bits here, so the burst length is less than 360 bits.
  • unit size P that is, 360 bits here
  • the LDPC code after parity interleaving that interleaves the K + qx + y + 1-th code bit at the position of the K + Py + x + 1-th code bit is K + qx + of the original parity check matrix H.
  • the pseudo cyclic structure means a structure in which a part except for a part has a cyclic structure.
  • the parity check matrix obtained by performing column replacement equivalent to parity interleaving on the parity check matrix of the LDPC code specified in the DVB-T.2 standard, etc. is 360 rows ⁇
  • the 360-column part (shift matrix described later) there is only one element of 1 (it is an element of 0). In that respect, it is not a (perfect) cyclic structure, but a pseudo cyclic structure. ing.
  • the conversion parity check matrix for the LDPC code parity check matrix output from the LDPC encoder 115 has, for example, a pseudo cyclic structure, similar to the conversion parity check matrix for the LDPC code parity check matrix stipulated in a standard such as DVB-T.2. ing.
  • the conversion check matrix in FIG. 16 replaces rows so that the conversion check matrix is configured with a configuration matrix described later. (Row replacement) is also applied to the matrix.
  • FIG. 17 is a flowchart for explaining processing performed by the LDPC encoder 115, the bit interleaver 116, and the mapper 117 of FIG.
  • the LDPC encoder 115 waits for the LDPC target data to be supplied from the BCH encoder 114, encodes the LDPC target data into an LDPC code in step S101, and supplies the LDPC code to the bit interleaver 116. The process proceeds to step S102.
  • step S102 the bit interleaver 116 performs bit interleaving on the LDPC code from the LDPC encoder 115, supplies a symbol obtained by the bit interleaving to the mapper 117, and the process proceeds to step S103.
  • the parity interleaver 23 performs parity interleaving for the LDPC code from the LDPC encoder 115, and converts the LDPC code after the parity interleaving to the group-wise interleave. Supplied to Lever 24.
  • the groupwise interleaver 24 performs groupwise interleaving on the LDPC code from the parity interleaver 23 and supplies it to the block interleaver 25.
  • the block interleaver 25 performs block interleaving on the LDPC code after group-wise interleaving by the group-wise interleaver 24, and supplies the m-bit symbol obtained as a result to the mapper 117.
  • step S103 the mapper 117 maps the symbol from the block interleaver 25 to one of 2 m signal points determined by the orthogonal modulation method performed by the mapper 117, and performs quadrature modulation. Data is supplied to the time interleaver 118.
  • the parity interleaver 23 that is a block that performs parity interleaving and the group-wise interleaver 24 that is a block that performs group-wise interleaving are configured separately.
  • the parity interleaver 23 and the group-wise interleaver 24 can be configured integrally.
  • both parity interleaving and group-wise interleaving can be performed by writing and reading code bits to and from the memory, and an address (write address) for writing code bits is an address for reading code bits. It can be represented by a matrix to be converted into (read address).
  • parity interleaving is performed by converting the sign bit using those matrices, and further, A result of group-wise interleaving the LDPC code after parity interleaving can be obtained.
  • the block interleaver 25 can also be configured integrally.
  • the block interleaving performed by the block interleaver 25 can also be represented by a matrix that converts the write address of the memory storing the LDPC code into the read address.
  • FIG. 18 is a block diagram illustrating a configuration example of the LDPC encoder 115 of FIG.
  • LDPC encoder 122 of FIG. 8 is similarly configured.
  • N LDPC codes 64800 bits and 16200 bits are defined.
  • LDPC codes having a code length N of 64,800 bits eleven coding rates 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4 / 5, 5/6, 8/9, and 9/10 are defined, and for LDPC codes with a code length N of 16200 bits, 10 coding rates 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 8/9 are defined (FIGS. 12 and 13).
  • the LDPC encoder 115 performs encoding (error correction coding) using an LDPC code having a code length N of 64,800 bits or 16200 bits for each code length N and each code rate. This can be performed according to the prepared check matrix H.
  • the LDPC encoder 115 can perform LDPC encoding according to a parity check matrix H of an LDPC code having an arbitrary code length N and an arbitrary coding rate r.
  • the LDPC encoder 115 includes an encoding processing unit 601 and a storage unit 602.
  • the encoding processing unit 601 includes an encoding rate setting unit 611, an initial value table reading unit 612, a parity check matrix generation unit 613, an information bit reading unit 614, an encoded parity calculation unit 615, and a control unit 616, and an LDPC encoder
  • the LDPC encoding of the LDPC target data supplied to 115 is performed, and the resulting LDPC code is supplied to the bit interleaver 116 (FIG. 8).
  • the coding rate setting unit 611 sets, for example, the code length N of the LDPC code, the coding rate r, and other specific information for specifying the LDPC code in accordance with an operator operation or the like.
  • the initial value table reading unit 612 reads, from the storage unit 602, a parity check matrix initial value table, which will be described later, representing a parity check matrix of an LDPC code specified by the specific information set by the coding rate setting unit 611.
  • the parity check matrix generation unit 613 generates a parity check matrix H based on the parity check matrix initial value table read by the initial value table reading unit 612 and stores it in the storage unit 602.
  • the parity check matrix H is generated by arranging 1 element in the column direction at a period of every 360 columns (unit size P), and stored in the storage unit 602.
  • the information bit reading unit 614 reads (extracts) information bits for the information length K from the LDPC target data supplied to the LDPC encoder 115.
  • the encoded parity calculation unit 615 reads the parity check matrix H generated by the parity check matrix generation unit 613 from the storage unit 602, and uses the parity check matrix H to calculate a parity bit for the information bits read by the information bit reading unit 614, A codeword (LDPC code) is generated by calculating based on the formula.
  • LDPC code LDPC code
  • the control unit 616 controls each block constituting the encoding processing unit 601.
  • the storage unit 602 stores, for example, a plurality of parity check matrix initial value tables corresponding to a plurality of coding rates and the like shown in FIGS. 12 and 13 for code lengths N such as 64800 bits and 16200 bits, respectively. Has been.
  • the storage unit 602 temporarily stores data necessary for the processing of the encoding processing unit 601.
  • FIG. 19 is a flowchart for explaining an example of processing of the LDPC encoder 115 of FIG.
  • step S201 the coding rate setting unit 611 sets code length N and coding rate r for performing LDPC coding, and specific information for identifying other LDPC codes.
  • step S202 the initial value table reading unit 612 stores a predetermined parity check matrix initial value table specified by the code length N, the encoding rate r, and the like as specific information set by the encoding rate setting unit 611. , Read from the storage unit 602.
  • step S203 the parity check matrix generation unit 613 uses the parity check matrix initial value table read from the storage unit 602 by the initial value table reading unit 612, and sets the code length N and the coding rate set by the coding rate setting unit 611.
  • the parity check matrix H of the LDPC code of r is obtained (generated), supplied to the storage unit 602 and stored.
  • Xr information bits are read, and the check matrix H obtained by the check matrix generation unit 613 is read from the storage unit 602 and supplied to the encoded parity calculation unit 615.
  • step S205 the encoded parity calculation unit 615 sequentially calculates the parity bits of the codeword c satisfying Expression (8) using the information bits from the information bit reading unit 614 and the check matrix H.
  • c represents a row vector as a code word (LDPC code), and c T represents transposition of the row vector c.
  • the information bit portion is represented by the row vector A and the parity bit portion is represented by the row vector T.
  • step S206 the control unit 616 determines whether or not to end LDPC encoding. If it is determined in step S206 that the LDPC encoding is not terminated, that is, for example, if there is still LDPC target data to be LDPC encoded, the process returns to step S201 (or step S204). The processing from S201 (or step S204) to S206 is repeated.
  • step S206 If it is determined in step S206 that the LDPC encoding is to be ended, that is, for example, if there is no LDPC target data to be LDPC encoded, the LDPC encoder 115 ends the processing.
  • a parity check matrix initial value table (representing a parity check matrix) of LDPC codes having various code lengths N and coding rates r can be prepared in advance.
  • the LDPC encoder 115 can perform LDPC encoding to LDPC codes of various code lengths N and coding rates r using a check matrix H generated from a check matrix initial value table prepared in advance.
  • the parity check matrix initial value table includes, for example, an information matrix H A (corresponding to a code length N of an LDPC code (LDPC code defined by the parity check matrix H) and an information length K corresponding to a coding rate r of the parity check matrix H.
  • FIG. 10 is a table showing the position of one element for each 360 columns (unit size P), and is created in advance for each check matrix H of each code length N and each coding rate r.
  • the parity check matrix initial value table represents at least the position of one element of the information matrix HA for every 360 columns (unit size P).
  • the parity check matrix H includes a parity check matrix in which all of the parity matrix H T has a staircase structure, and a part of the parity matrix H T has a staircase structure, and the remaining part is a diagonal matrix (unit matrix). There is a parity check matrix.
  • the representation method of the parity check matrix initial value table represents the check matrix the rest becomes a diagonal matrix, also referred to as Type A system.
  • all of the parity matrix H T is an expression scheme of the parity check matrix initial value table representative of the parity check matrix having a staircase structure, also referred to as type B method.
  • an LDPC code for a parity check matrix represented by a type A parity check matrix initial value table is also referred to as a type A code
  • an LDPC code for a parity check matrix represented by a type B parity check matrix initial value table is also referred to as a type B code.
  • the names of “Type A” and “Type B” are names in accordance with the ATSC V3.0 standard. For example, in ATSC 3.0, both type A code and type B code are adopted.
  • type B code is adopted.
  • FIG. 20 is a diagram illustrating an example of a type B check matrix initial value table.
  • FIG. 20 shows that the code length N is 16200 bits and the coding rate (coding rate in the notation of DVB-T.2) r is 1/4 as defined in the DVB-T.2 standard.
  • the check matrix initial value table (representing the check matrix H) of the type B code is shown.
  • the parity check matrix generation unit 613 obtains the parity check matrix H as follows using the type B parity check matrix initial value table.
  • FIG. 21 is a diagram for explaining a method of obtaining the parity check matrix H from the type B parity check matrix initial value table.
  • FIG. 21 shows a parity check matrix initial value table of a type B code defined in the DVB-T.2 standard and having a code length N of 16200 bits and a code rate r of 2/3.
  • the type B parity check matrix initial value table has 360 columns (unit size) of the position of one element of the information matrix HA corresponding to the information length K corresponding to the code length N and coding rate r of the LDPC code. P), and the i-th row contains the row number of the 1st element of the 1 + 360 ⁇ (i-1) column of the parity check matrix H (the row number of the first row of the parity check matrix H). (The row number set to 0) is arranged by the number of column weights of the 1 + 360 ⁇ (i ⁇ 1) th column.
  • the parity check matrix initial value table If the information matrix H A (FIG. 10) corresponding to the information length K can be obtained, the check matrix H can be obtained.
  • the number of rows k + 1 in the type B check matrix initial value table differs depending on the information length K.
  • Equation (9) The relationship of Equation (9) is established between the information length K and the number k + 1 of rows in the parity check matrix initial value table.
  • 360 in equation (9) is the unit size P described in FIG.
  • the column weights of the parity check matrix H obtained from the parity check matrix initial value table of FIG. 21 are 13 from the first column to the 1 + 360 ⁇ (3-1) ⁇ 1 column, and 1 + 360 ⁇ (3-1) It is 3 from the column to the Kth column.
  • the first row of the parity check matrix initial value table in FIG. 21 is 0,2084,1613,1548,1286,1460,3196,4297,2481,3369,3451,4620,2622, which is the parity check matrix H
  • the row number is 0,2084,1613,1548,1286,1460,3196,4297,2481,3369,3451,4620,2622
  • the element of the row is 1 (and other elements) Is 0).
  • the second row of the parity check matrix initial value table in FIG. 21 is 1,122,1516,3448,2880,1407,1847,3799,3529,373,971,4358,3108, which is 361 of the parity check matrix H.
  • the row number is 1,122,1516,3448,2880,1407,1847,3799,3529,373,971,4358,3108, indicating that the element is 1 ing.
  • the parity check matrix initial value table represents the position of one element of the information matrix HA of the parity check matrix H for every 360 columns.
  • the numerical value of the i-th row (i-th from the top) and j-th column (j-th from the left) of the parity check matrix initial value table is represented as h i, j and j items in the w-th column of the parity check matrix H. If the row number of the first element is represented as H wj , the row number H of the first element in the w column, which is a column other than the 1 + 360 ⁇ (i ⁇ 1) column of the parity check matrix H wj can be obtained by Expression (10).
  • mod (x, y) means the remainder of dividing x by y.
  • the parity check matrix generation unit 613 (FIG. 18) specifies the row number of the 1 element in the 1 + 360 ⁇ (i ⁇ 1) column of the parity check matrix H by using the parity check matrix initial value table.
  • the parity check matrix generation unit 613 calculates the row number H wj of the first element of the w-th column other than the 1 + 360 ⁇ (i ⁇ 1) -th column of the parity check matrix H by the formula ( 10) to generate a parity check matrix H in which the element of the row number obtained as described above is 1.
  • FIG. 22 is a diagram illustrating the structure of a type A check matrix H.
  • the type A check matrix consists of an A matrix, a B matrix, a C matrix, a D matrix, and a Z matrix.
  • the B matrix is a matrix with a staircase structure adjacent to the right of the A matrix, with M1 rows and M1 columns.
  • the C matrix is a matrix adjacent to the N-K-M1 row K + M1 column below the A matrix and the B matrix.
  • the D matrix is an N-K-M1 row N-K-M1 column adjacent unit matrix to the right of the C matrix.
  • the Z matrix is a zero matrix (0 matrix) that is adjacent to the right of the B matrix with M1 rows and N-K-M1 columns.
  • a part of the A matrix and the C matrix constitutes an information matrix
  • a B matrix The remaining part of the C matrix, the D matrix, and the Z matrix constitute a parity matrix.
  • the B matrix is a staircase structure matrix and the D matrix is a unit matrix
  • part of the parity matrix of the type A check matrix H (part of the B matrix) has a staircase structure.
  • the remaining part (D matrix part) is a diagonal matrix (unit matrix).
  • the A matrix and the C matrix have a cyclic structure for each column of unit size P (for example, 360 columns), like the information matrix of the check matrix H of the type B method, and the check matrix initial value table of the type A method Represents the position of one element of the A matrix and the C matrix every 360 columns.
  • the initial value table represents at least the position of one element of the information matrix every 360 columns.
  • the type A check matrix initial value table indicates the position of 1 element of the A matrix and the C matrix for every 360 columns, the part of the check matrix (the remaining part of the C matrix) It can also be said that the position is represented every 360 columns.
  • FIG. 23 is a diagram illustrating an example of a check matrix initial value table of a type A method.
  • FIG. 23 shows an example of a parity check matrix initial value table representing a parity check matrix H having a code length N of 35 bits and an encoding rate r of 2/7.
  • the parity check matrix initial value table of the type A method is a table that represents the position of one element of the A matrix and the C matrix for each unit size P.
  • the row number of the 1st element in the column (the row number where the row number of the first row of the check matrix H is 0) is the column of the 1 + P ⁇ (i-1) th column.
  • the number of weights is lined up.
  • the unit size P is assumed to be 5, for example.
  • M1 (FIG. 22) is a parameter for determining the size of the B matrix, and takes a value that is a multiple of the unit size P.
  • M1 the performance of the LDPC code changes, and is adjusted to a predetermined value when the parity check matrix H is determined.
  • it is assumed that 15 which is three times the unit size P 5 is adopted as M1.
  • M2 (FIG. 22) takes a value M-M1 obtained by subtracting M1 from the parity length M.
  • each column is arranged by cyclically shifting 1 element of 1 + P ⁇ (i-1) column determined by the parity check matrix initial value table downward (downward column).
  • Q1 represents the number of cyclic shifts in the A matrix.
  • each column is arranged by cyclically shifting 1 element of 1 + P ⁇ (i-1) column determined by the parity check matrix initial value table downward (downward column).
  • Q2 represents the number of shifts of the cyclic shift in the C matrix.
  • the first row of the parity check matrix initial value table of FIG. 23 is 2,6,18. This is because the row numbers of 2,6,18 in the first column of the parity check matrix H are as follows. The element is 1 (and the other elements are 0).
  • the A matrix (FIG. 22) is a matrix of 15 rows and 10 columns (M1 rows and K columns), and the C matrix (FIG. 22) is 10 rows and 25 columns (NK-M1 rows K + M1).
  • Column of the check matrix H are rows of the A matrix, and rows of the check matrix H are row numbers 15 to 24 of the C matrix.
  • rows # 2, # 6, and # 18 are rows of the A matrix
  • rows # 18 is the C matrix row.
  • the rows # 2, # 10 of the rows # 2, # 10, # 19 are rows of the A matrix.
  • row # 19 is a row of the C matrix.
  • row # 22 is a row of the C matrix.
  • the 2 + 5 ⁇ (i-1) column is cyclically shifted downward by Q1).
  • FIG. 24 is a diagram showing an A matrix generated from the parity check matrix initial value table of FIG.
  • FIG. 25 is a diagram showing parity interleaving of the B matrix.
  • FIG. 25 shows the A matrix and the B matrix after parity interleaving of the B matrix in FIG.
  • FIG. 26 is a diagram showing a C matrix generated from the parity check matrix initial value table of FIG.
  • the element in row # 15 of the ( ⁇ (5-1)) column is 1.
  • the parity check matrix generation unit 613 (FIG. 18) generates a C matrix using the parity check matrix initial value table, and places the C matrix below the A matrix and the B matrix (after parity interleaving).
  • check matrix generation unit 613 arranges the Z matrix to the right of the B matrix and arranges the D matrix to the right of the C matrix to generate a check matrix H shown in FIG.
  • FIG. 27 is a diagram showing parity interleaving of the D matrix.
  • FIG. 27 shows the parity check matrix H after parity interleaving of the D matrix for the parity check matrix H in FIG.
  • the LDPC encoder 115 (the encoded parity calculation unit 615 (FIG. 18)) performs LDPC encoding (generation of an LDPC code) using, for example, the parity check matrix H of FIG.
  • the LDPC code generated using the parity check matrix H of FIG. 27 is an LDPC code subjected to parity interleaving. Therefore, the LDPC code generated using the parity check matrix H of FIG. It is not necessary to perform parity interleaving in the parity interleaver 23 (FIG. 9). That is, since the LDPC code generated using the parity check matrix H after the parity interleaving of the D matrix is the LDPC code subjected to the parity interleaving, the parity interleaving in the parity interleaver 23 is performed for the LDPC code. Is skipped.
  • FIG. 28 returns the parity interleaving to the B matrix of the parity check matrix H of FIG. 27, a part of the C matrix (the part of the C matrix arranged below the B matrix), and the D matrix. It is a figure which shows the check matrix H which performed column permutation (column
  • LDPC encoder 115 can perform LDPC encoding (generation of LDPC code) using parity check matrix H in FIG.
  • parity interleaving is performed in parity interleaver 23 (FIG. 9).
  • FIG. 29 is a diagram showing a conversion parity check matrix H obtained by performing row permutation on the parity check matrix H of FIG.
  • the conversion parity check matrix is a P ⁇ P unit matrix, a quasi-unit matrix in which one or more of the unit matrices become 0, a shift matrix obtained by cyclically shifting the unit matrix or the quasi-unit matrix, It is a matrix represented by a combination of a sum matrix that is a sum of two or more of a unit matrix, a quasi-unit matrix, or a shift matrix, and a P ⁇ P 0 matrix.
  • one method for ensuring good communication quality is to use a high-performance LDPC code.
  • a new LDPC code with good performance (hereinafter also referred to as a new LDPC code) will be described.
  • the unit size P is 360, which is the same as DVB-T.2 or ATSC 3.0, and the type A code or type B code corresponding to the check matrix H of the cyclic structure may be adopted. it can.
  • the LDPC encoder 115 (FIGS. 8 and 18) has a code length N longer than 64k bits, for example, 69120 bits, and a coding rate r of, for example, 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, or 14/16 LDPC encoding to the new LDPC code can be performed using the parity check matrix initial value table of the new LDPC code (check matrix H obtained from the above).
  • a check matrix initial value table of the new LDPC code is stored in the storage unit 602 of the LDPC encoder 115 (FIG. 8).
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 32 is a diagram following FIG.
  • r 4/16 type A code
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 35 is a diagram following FIG.
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 37 is a diagram following FIG.
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 39 is a diagram following FIG.
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 41 is a figure following FIG.
  • FIG. 10 is a diagram illustrating an example of a parity check matrix initial value table (of a type B method) representing a parity check matrix H.
  • FIG. 10 is a diagram illustrating an example of a parity check matrix initial value table (of a type B method) representing a parity check matrix H.
  • FIG. 43 is a diagram following FIG.
  • FIG. 45 is a diagram following FIG.
  • the type B code of r 7/16 obtained from the parity check matrix initial value table (indicated by the parity check matrix H) shown in FIG. 44 and FIG.
  • 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H.
  • FIG. 47 is a diagram following FIG.
  • FIG. 49 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 51 is a diagram following FIG. 50
  • FIG. 52 is a diagram following FIG.
  • FIG. 54 is a diagram following FIG. 53
  • FIG. 55 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 57 is a diagram following FIG. 56
  • FIG. 58 is a diagram following FIG.
  • FIG. 60 is a diagram following FIG. 59
  • FIG. 61 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 63 is a diagram following FIG. 62
  • FIG. 64 is a diagram following FIG.
  • FIG. 65 is a diagram following FIG. 65
  • FIG. 67 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 69 is a diagram following FIG. 68
  • FIG. 70 is a diagram following FIG.
  • FIG. 72 is a diagram following FIG. 71
  • FIG. 73 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 75 is a diagram following FIG. 74
  • FIG. 76 is a diagram following FIG.
  • FIG. 78 is a diagram following FIG. 77
  • FIG. 79 is a diagram following FIG.
  • FIG. 6 is a diagram illustrating an example of a parity check matrix initial value table representing a parity check matrix H of FIG.
  • FIG. 81 is a diagram following FIG. 80
  • FIG. 82 is a diagram following FIG.
  • FIG. 84 is a diagram following FIG. 83
  • FIG. 85 is a diagram following FIG.
  • the new LDPC code is a high-performance LDPC code.
  • a high-performance LDPC code is an LDPC code obtained from an appropriate check matrix H.
  • An appropriate check matrix H is, for example, when an LDPC code obtained from the check matrix H is transmitted at a low E s / N 0 or E b / N o (signal power to noise power ratio per bit).
  • E s / N 0 or E b / N o signal power to noise power ratio per bit.
  • BER bit error rate
  • FER frame error rate
  • An appropriate parity check matrix H can be obtained, for example, by performing a simulation for measuring the BER when LDPC codes obtained from various parity check matrices satisfying a predetermined condition are transmitted at low E s / N o .
  • the predetermined conditions that the appropriate check matrix H should satisfy are, for example, that the analysis result obtained by the code performance analysis method called “Density Evolution” is good, There are no loops, etc.
  • the decoding performance of the LDPC code is deteriorated when one element is dense as in the cycle 4. It is desirable that 4 does not exist.
  • the minimum value of the loop length (loop length) composed of 1 elements is called girth.
  • the absence of cycle 4 means that the girth is greater than 4.
  • the predetermined condition to be satisfied by the appropriate parity check matrix H can be determined as appropriate from the viewpoints of improving the decoding performance of the LDPC code, facilitating (simplifying) the decoding process of the LDPC code, and the like.
  • FIG. 86 and FIG. 87 are diagrams for explaining density evolution in which an analysis result as a predetermined condition that should be satisfied by an appropriate check matrix H is obtained.
  • Density evolution is a code analysis method that calculates the expected value of the error probability for the entire LDPC code (ensemble) with a code length N of ⁇ characterized by a degree sequence described later. It is.
  • the noise variance when the noise variance is increased from 0, the expected value of the error probability of a certain ensemble is initially 0, but the noise variance is greater than a certain threshold. Then, it is not 0.
  • the expected value of the error probability is not zero, and the threshold of noise variance (hereinafter also referred to as performance threshold) is compared to determine whether the ensemble performance (appropriateness of the check matrix) is good or bad. Can be decided.
  • performance threshold the threshold of noise variance
  • a high-performance LDPC code can be found among the LDPC codes belonging to the ensemble.
  • the above-described degree sequence represents the ratio of variable nodes and check nodes having weights of each value to the code length N of the LDPC code.
  • a regular (3,6) LDPC code with a coding rate of 1/2 is a degree in which the weights (column weights) of all variable nodes are 3 and the weights (row weights) of all check nodes are 6. Belongs to an ensemble characterized by a sequence.
  • FIG. 86 shows a Tanner graph of such an ensemble.
  • Each variable node is connected with three edges equal to the column weight, and therefore there are only 3N branches connected to the N variable nodes.
  • each check node is connected with 6 branches equal to the row weight, and therefore there are only 3N branches connected to N / 2 check nodes.
  • the interleaver randomly reorders 3N branches connected to N variable nodes, and reorders each of the rearranged branches into 3N branches connected to N / 2 check nodes. Connect to one of them.
  • the interleaver through which the branch connected to the variable node and the branch connected to the check node pass is divided into multiple (multi edge), which makes it possible to further characterize the ensemble. Strictly done.
  • FIG. 87 shows an example of a Tanner graph of a multi-edge type ensemble.
  • Tanner graph of FIG. 87 there is one branch connected to the first interleaver, only one v1 variable node having zero branches connected to the second interleaver, and one branch connected to the first interleaver.
  • the Tanner graph of FIG. 87 there are 2 branches connected to the first interleaver, 0 branches connected to the second interleaver, only c1 check nodes, and 2 branches connected to the first interleaver.
  • the number of branches connected to the second interleaver is c2 check nodes, the number of branches connected to the first interleaver is 0, and the number of branches connected to the second interleaver is c3. Exists.
  • BER starts to decrease (becomes smaller) due to multi-edge type density evolution, which is E b / N 0 (signal power to noise power ratio per bit).
  • E b / N 0 signal power to noise power ratio per bit.
  • the new LDPC code (check matrix initial value table representing the check matrix) was obtained by the above simulation.
  • FIG. 88 is a diagram for explaining column weights of a check matrix H of a type A code as a new LDPC code.
  • the column weight of the K1 column from the first column of the A matrix is Y1
  • the column weight of the subsequent K2 column of the A matrix is Y2
  • the C matrix The column weight of the K1 column from the first column is represented as X1, the column weight of the subsequent K2 column of the C matrix as X2, and the column weight of the M1 column after the C matrix as X3.
  • K1 + K2 is equal to the information length K
  • the column weights from the first column to the M1-1 column of the B matrix are 2, and the column weight of the M1 column (last column) of the B matrix is 1. Further, the column weight of the D matrix is 1, and the column weight of the Z matrix is 0.
  • FIG. 89 is a diagram showing parameters of the parity check matrix H of the type A code (represented by the parity check matrix initial value table) in FIGS. 30 to 41.
  • Parameters X1, Y1, K1 (or K2), X2, Y2, X3, and M1 (or M2) are set so that the performance (for example, error rate) of the LDPC code is further improved.
  • FIG. 90 is a diagram for explaining column weights of a check matrix H of a type B code as a new LDPC code.
  • the column weight of the KX1 column from the first column is X1
  • the column weight of the subsequent KX2 column is X2
  • the column weight of the subsequent KY1 column is Y1.
  • the column weight of the subsequent KY2 column is represented as Y2.
  • KX1 + KX2 + KY1 + KY2 is equal to the information length K
  • the column weight of the M-1 column excluding the last one of the last M columns is 2, and the column weight of the last one column is 1.
  • FIG. 91 is a diagram showing parameters of a parity check matrix H of a type B code (represented by the parity check matrix initial value table) in FIGS. 42 to 85.
  • Parameters X1, KX1, X2, KX2, Y1, KY1, Y2, and KY2 are set so that the performance of the LDPC code is further improved.
  • the new LDPC code realizes good BER / FER and capacity (communication channel capacity) close to the Shannon limit.
  • 92 to 116 are diagrams showing examples of constellations that can be employed in the transmission system of FIG.
  • a constellation used in the MODCOD can be set for MODCOD which is a combination of a modulation scheme (MODulation) and an LDPC code (CODe).
  • MODCOD which is a combination of a modulation scheme (MODulation) and an LDPC code (CODe).
  • One or more constellations can be set for one MODCOD.
  • Constellations include UC (Uniform Constellation) in which signal points are uniformly arranged and NUC (Non Uniform Constellation) in which signal points are not uniformly arranged.
  • NUC includes, for example, a constellation called 1D-NUC (1-dimensional (M 2 -QAM) non-uniform constellation) and a constellation called 2D-NUC (2-dimensional (QQAM) non-uniform constellation).
  • M 2 -QAM 1-dimensional
  • QQAM Q-dimensional
  • 1D-NUC improves BER over UC
  • 2D-NUC improves over BER over 1D-NUC
  • Constellation with QPSK modulation is UC.
  • UC or 2D-NUC can be used as the constellation such as 16QAM, 64QAM, or 256QAM, and the constellation such as 1024QAM or 4096QAM is used as the constellation such as UC or 1D.
  • -NUC can be adopted.
  • constellations defined by ATSC3.0, DVB-C.2, etc., and various other constellations that improve the error rate can be used.
  • the modulation scheme is QPSK, for example, the same UC can be used for each coding rate r of the LDPC code.
  • the modulation scheme is 16QAM, 64QAM, or 256QAM, for example, the same UC can be used for each coding rate r of the LDPC code.
  • the modulation scheme is 16QAM, 64QAM, or 256QAM, for example, a different 2D-NUC can be used for each coding rate r of the LDPC code.
  • the modulation scheme is 1024QAM or 4096QAM, for example, the same UC can be used for each coding rate r of the LDPC code. Furthermore, when the modulation scheme is 1024QAM or 4096QAM, for example, a different 1D-NUC can be used for each coding rate r of the LDPC code.
  • the UC of QPSK described with QPSK-UC
  • the UC of 2 m QAM also referred to as 2 m QAM-UC
  • 2 m QAM 1D-NUC and 2D-NUC are also referred to as 2 m QAM-1D-NUC and 2 m QAM-2D-NUC, respectively.
  • FIG. 92 is a diagram showing the coordinates of QPSK-UC signal points used for all coding rates of LDPC codes defined in ATSC 3.0 when the modulation scheme is QPSK.
  • “Input Data cell y” represents a 2-bit symbol mapped to QPSK-UC
  • “Constellation point z s ” represents the coordinates of the signal point z s .
  • the index s of the signal point z s (the same applies to the index q of the signal point z q described later) represents the discrete time of the symbol (time interval between one symbol and the next symbol).
  • the coordinates of the signal point z s are represented in the form of complex numbers, and j represents an imaginary unit ( ⁇ ( ⁇ 1)).
  • w # k represents the coordinates of signal points in the first quadrant of the constellation.
  • the signal points in the second quadrant of the constellation are arranged at positions shifted symmetrically with respect to the Q axis in the first quadrant, and the signal points in the third quadrant of the constellation are A signal point in one quadrant is arranged at a position moved symmetrically with respect to the origin.
  • the signal points in the fourth quadrant of the constellation are arranged at positions where the signal points in the first quadrant are moved symmetrically with respect to the I axis.
  • the modulation method is 2 m QAM
  • m bits are regarded as one symbol, and the one symbol is mapped to a signal point corresponding to the symbol.
  • an m-bit symbol can be represented by an integer value of 0 to 2 m ⁇ 1.
  • y (0), y (1), ..., y (2 m -1) are symbols y (0) to y (b-1), y (b) to y (2b-1), y ( 2b) to y (3b-1) and y (3b) to y (4b-1).
  • the suffix k of w # k takes an integer value ranging from 0 to b-1, and w # k represents a symbol y (k) ranging from symbol y (0) to y (b-1). Represents the coordinates of the signal point corresponding to.
  • the coordinates of the signal point corresponding to the symbol y (k + b) in the range of the symbols y (b) to y (2b-1) are represented by -conj (w # k), and the symbols y (2b) to The coordinates of the signal point corresponding to the symbol y (k + 2b) in the range of y (3b-1) are represented by conj (w # k). Further, the coordinates of the signal point corresponding to the symbol y (k + 3b) in the range of the symbols y (3b) to y (4b-1) are represented by -w # k.
  • conj (w # k) represents the complex conjugate of w # k.
  • the modulation scheme is 16QAM
  • the symbols y There are four categories: (0) to y (3), y (4) to y (7), y (8) to y (11), and y (12) to y (15).
  • the coding rate r (CR) of the LDPC code is 9/15, for example, according to FIG. 93, w0 when the modulation scheme is 16QAM and the coding rate r is 9/15. Is 0.2386 + j0.5296, the coordinates -w0 of the signal point corresponding to the symbol y (12) is-(0.2386 + j0.5296).
  • FIG. 95 is a diagram showing the relationship between the 1024QAM symbol y and the position vector u (component u # k).
  • the 10-bit symbol y of 1024QAM is changed from the first bit (most significant bit) to y 0, s , y 1, s , y 2, s , y 3, s , y 4, s , y 5, s , y6 , s , y7 , s , y8 , s , y9 , s .
  • FIG. 95A shows even-numbered 5 bits y 1, s , y 3, s , y 5, s , y 7, s , y 9, s of the symbol y and a signal point z s corresponding to the symbol y. This represents a correspondence relationship with u # k representing the real part Re (z s ).
  • 1024QAM 10-bit symbol y (y 0, s , y 1, s , y 2, s , y 3, s , y 4, s , y 5, s , y 6, s , y 7, s , y 8, s , y 9, s ) is, for example, (0,0,1,0,0,1,1,0,0), the odd-numbered 5 bits (y 0, s , y 2, s , y 4, s , y 6, s , y 8, s ) is (0,1,0,1,0) and the even-numbered 5 bits (y 1, s , y 3, s , Y 5, s , y 7, s , y 9, ) is (0,0,1,1,0).
  • the modulation scheme is 1024QAM
  • the coding rate r (CR) of the LDPC code is 6/15.
  • u3 is 0.1295 and u11 is 0.7196.
  • 1D-NUC signal points are arranged in a lattice pattern on a straight line parallel to the I axis and a straight line parallel to the Q axis in the constellation.
  • the interval between signal points is not constant.
  • the average power of signal points on the constellation can be normalized. Normalization is expressed as the average square value of absolute values of all the signal points (coordinates) on the constellation as P ave, and the square root of the square average value P ave ⁇ the inverse of P ave 1 / ( ⁇ P ave ) can be multiplied by each signal point z s on the constellation.
  • the constellation defined by ATSC3.0 as described above can be used.
  • 96 to 107 are diagrams showing the coordinates of the UC signal points defined in DVB-C.2.
  • FIG. 96 is a diagram illustrating the real part Re (z q ) of the coordinate z q of the signal point of QPSK-UC (UC of QPSK) defined in DVB-C.2.
  • FIG. 97 is a diagram illustrating the imaginary part Im (z q ) of the coordinate z q of the signal point of QPSK-UC defined in DVB-C.2.
  • FIG. 98 is a diagram illustrating the real part Re (z q ) of the coordinate z q of the signal point of 16QAM-UC (UC of 16QAM) defined in DVB-C.2.
  • Figure 99 is a diagram showing an imaginary part Im (z q) coordinate z q of signal points of 16QAM-UC as defined in DVB-C.2.
  • FIG. 100 is a diagram illustrating the real part Re (z q ) of the coordinate z q of the signal point of 64QAM-UC (UC of 64QAM) defined in DVB-C.2.
  • FIG. 101 is a diagram illustrating an imaginary part Im (z q ) of the coordinate z q of the signal point of 64QAM-UC defined in DVB-C.2.
  • FIG. 102 is a diagram illustrating the real part Re (z q ) of the coordinate z q of the signal point of 256QAM-UC (UC of 256QAM) defined in DVB-C.2.
  • FIG. 103 is a diagram showing an imaginary part Im (z q ) of the coordinates z q of the signal points of 256QAM-UC defined in DVB-C.2.
  • FIG. 104 is a diagram illustrating the real part Re (z q ) of the coordinate z q of the signal point of 1024QAM-UC (UC of 1024QAM) defined in DVB-C.2.
  • 105 is a diagram showing an imaginary part Im (z q ) of the coordinates z q of the signal points of 1024QAM-UC defined in DVB-C.2.
  • FIG. 106 is a diagram illustrating the real part Re (z q ) of the coordinates z q of the signal points of 4096QAM-UC (UC of 4096QAM) defined in DVB-C.2.
  • Figure 107 is a diagram showing an imaginary part Im (z q) coordinate z q of signal points of 4096QAM-UC as defined in DVB-C.2.
  • y i, q represents the (i + 1) th bit from the beginning of m bits (for example, 2 bits in QPSK) of 2 m QAM.
  • the average power of signal points on the constellation can be normalized. Normalization is expressed as the average square value of absolute values of all the signal points (coordinates) on the constellation as P ave, and the square root of the square average value P ave ⁇ the inverse of P ave 1 / ( ⁇ P ave ) can be multiplied by each signal point z q on the constellation.
  • the UC specified in DVB-C.2 as described above can be used.
  • the code length N is 69120 bits
  • the coding rate r is 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 8/16
  • the new LDPC codes (corresponding to the parity check matrix initial value table) for 9/16, 10/16, 11/16, 12/16, 13/16, and 14/16, respectively, are shown in FIGS. UC can be used.
  • FIGS. 108 to 116 show the code length N of 69120 bits and the coding rate r of 2/16, 3/16, 4/16, 5/16, 6/16, 7/16 of FIGS. , 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, and 14/16 examples of the coordinates of other NUC signal points that can be used for each new LDPC code FIG.
  • FIG. 108 shows the coding rate r (CR) of 2/16, 4/16, 6/16, 8/16 of the new LDPC codes with code length N of 69120 bits of FIGS. , 10/16, 12/16, and 14/16 are diagrams illustrating examples of coordinates of signal points of 16QAM-2D-NUC that can be used for the new LDPC codes.
  • FIG. 109 shows a code rate r of 3/16, 5/16, 7/16, 9/16, 11/16 of the new LDPC codes with code length N of 69120 bits of FIGS.
  • FIG. 14 is a diagram illustrating an example of coordinates of signal points of 64QAM-2D-NUC that can be used for 13/16 new LDPC codes.
  • FIG. 16 is a diagram illustrating examples of coordinates of signal points of 256QAM-2D-NUC that can be used for each of the new LDPC codes of / 16, 12/16, and 14/16.
  • FIG. 111 is a figure following FIG.
  • the coordinates of the signal point z s are represented in the form of complex numbers, and j represents an imaginary unit.
  • w # k represents the coordinates of signal points in the first quadrant of the constellation, as in FIG.
  • the symbols y (0), y (1),..., Y (2 m -1) represented by the symbols y (0) to y (b-1), y (b) to y (2b- 1), y (2b) to y (3b-1), and y (3b) to y (4b-1).
  • the suffix k of w # k takes an integer value in the range of 0 to b-1, and w # k represents the symbols y (0) to y (b-1 ) Represents the coordinates of the signal point corresponding to the symbol y (k) in the range.
  • FIG. 112 shows an encoding rate r of 3/16, 5/16, 7/16, 9/16, 11/16 of the new LDPC codes with code length N of 69120 bits of FIGS.
  • FIG. 14 is a diagram illustrating an example of coordinates of signal points of 1024QAM-1D-NUC that can be used for 13/16 new LDPC codes.
  • FIG. 112 shows a complex real part Re (z s ) and an imaginary part Im (z s ) as coordinates of a signal point z s of 1024QAM-1D-NUC, a position vector u (component u # k), and It is a figure which shows the relationship.
  • FIG. 113 is a diagram showing the relationship between the symbol y of 1024QAM and the position vector u (component u # k) of FIG.
  • the 10-bit symbol y of 1024QAM is changed from the first bit (most significant bit) to y 0, s , y 1, s , y 2, s , y 3, s , y 4, s , y 5, s , y 6, s , y 7, s , y 8, s , y 9, s .
  • FIG. 113A shows an odd-numbered 5 bits y 0, s , y 2, s , y 4, s , y 6, s , y 8, s of a 10-bit symbol y and a signal corresponding to the symbol y.
  • a correspondence relationship between the point z s (coordinates) and the position vector u # k representing the real part Re (z s ) is shown.
  • B in FIG. 113 indicates the even-numbered 5 bits y 1, s , y 3, s , y 5, s , y 7, s , y 9, s of the 10-bit symbol y and the signal corresponding to the symbol y.
  • the correspondence relationship with the position vector u # k representing the imaginary part Im (z s ) of the point z s is shown.
  • FIG. 114 shows the coding rate r of 2/16, 4/16, 6/16, 8/16, 10/16, among the new LDPC codes with code length N of 69120 bits of FIGS. It is a figure which shows the example of the coordinate of the signal point of 4096QAM-1D-NUC which can be used about each new LDPC code of 12/16 and 14/16.
  • FIG. 114 shows the relationship between the real part Re (z s ) and the imaginary part Im (z s ) as the coordinates of the signal point z s of 4096QAM-1D-NUC and the position vector u (u # k).
  • FIG. 114 shows the relationship between the real part Re (z s ) and the imaginary part Im (z s ) as the coordinates of the signal point z s of 4096QAM-1D-NUC and the position vector u (u # k).
  • 115 and 116 are diagrams showing the relationship between the 4096QAM symbol y and the position vector u (component u # k) of FIG.
  • the 4096QAM 12-bit symbol y is changed from the first bit (most significant bit) to y 0, s , y 1, s , y 2, s , y 3, s , y 4, s , y 5, s , y 6, s , y 7, s , y 8, s , y 9, s , y 10, s , y 11, s .
  • FIG. 115 shows the odd-numbered 6 bits y 0, s , y 2, s , y 4, s , y 6, s , y 8, s , y 10, s and the symbol y of the 12-bit symbol y.
  • the correspondence relationship with the position vector u # k representing the real part Re (z s ) of the corresponding signal point z s is shown.
  • FIG. 116 shows the even-numbered 6 bits y 1, s , y 3, s , y 5, s , y 7, s , y 9, s , y 11, s of the 12-bit symbol y and the symbol y
  • the corresponding relationship with the position vector u # k representing the imaginary part Im (z s ) of the corresponding signal point z s is shown.
  • the average power of signal points on the constellation can be normalized when transmitting NUC signal points (data mapped to) in FIGS. Normalization is expressed as the average square value of absolute values of all the signal points (coordinates) on the constellation as P ave, and the square root of the square average value P ave ⁇ the inverse of P ave 1 / ( ⁇ P ave ) can be multiplied by each signal point z s on the constellation.
  • the odd-numbered bits of the symbol y are associated with the position vector u # k representing the imaginary part Im (z s ) of the signal point z s and the even-numbered bits of the symbol y Is associated with the position vector u # k representing the real part Re (z s ) of the signal point z s , but in FIG. 113, FIG. 115 and FIG. represent together is associated with the position vector u # k but representing the real part Re (z s) of the signal point z s, imaginary part Im of the even-numbered bit signal point z s symbol y a (z s) It is associated with the position vector u # k.
  • FIG. 117 is a diagram illustrating block interleaving performed by the block interleaver 25 in FIG.
  • Block interleaving is performed by dividing the LDPC code of one codeword into a part called part 1 (part 1) and a part called part 2 (part 2) from the beginning.
  • Npart1 + Npart2 is equal to the code length N.
  • the column as a storage area for storing Npart1 / m bits in the column (vertical) direction as one direction, the number of symbol bits in the row direction orthogonal to the column direction
  • a number m equal to m is arranged, and each column is partitioned from the top into 360-bit small units of unit size P.
  • This small unit of column is also referred to as a column unit.
  • writing part 1 of the LDPC code of one codeword from the top to the bottom (column direction) of the first column unit of the column is possible from the left to the right column. Done towards.
  • part 1 of the LDPC code is read in m-bit units in the row direction from the first row of all m columns as shown in FIG. .
  • the m-bit unit of Part 1 is supplied from the block interleaver 25 to the mapper 117 (FIG. 8) as an m-bit symbol.
  • Reading part 1 in m-bit units is performed sequentially toward the bottom row of m columns, and when reading of part 1 is completed, part 2 is divided into m-bit units from the beginning, and m bits Are supplied from the block interleaver 25 to the mapper 117.
  • part 1 is symbolized while being interleaved
  • part 2 is symbolized by sequentially dividing into m bits without being interleaved.
  • the length of the column, Npart1 / m, is a multiple of 360, which is the unit size P, and the LDPC code of one codeword is part 1 and part 2 so that Npart1 / m is a multiple of 360. And divided.
  • FIG. 118 is a diagram illustrating examples of Part 1 and Part 2 of an LDPC code having a code length N of 69120 bits when the modulation scheme is QPSK, 16QAM, 64QAM, 256QAM, 1024QAM, and 4096QAM.
  • part 1 when the modulation scheme is 1024QAM, Part 1 is 68400 bits, Part 2 is 720 bits, and the modulation scheme is QPSK, 16QAM, 64QAM, 256QAM, and 4096QAM, whichever In this case, part 1 is 69120 bits and part 2 is 0 bits.
  • FIG. 119 is a diagram for explaining group-wise interleaving performed by the group-wise interleaver 24 in FIG.
  • an LDPC code of one codeword is divided into 360-bit units equal to the unit size P from the head, and one bit of 360 bits as one bit group is used as one bit code.
  • the LDPC codes of words are interleaved according to a predetermined pattern (hereinafter also referred to as GW pattern) in bit group units.
  • bit group i 1-th bit group from the beginning when the LDPC code of one codeword is divided into bit groups.
  • the GW pattern is represented by a sequence of numbers representing bit groups.
  • N code length
  • the GW pattern 4, 2, 0, 3, 1 includes an arrangement of bit groups 0, 1, 2, 3, 4, and bit groups 4, 2, 0. , 3, and 1 are interleaved (reordered).
  • the 1800-bit LDPC code ⁇ x 0 , x 1 , ..., x 1799 ⁇ is represented by ⁇ x 1440 , x 1441 , ..., x 1799 ⁇ , ⁇ x 720 , x 721 , ..., x 1079 ⁇ , ⁇ x 0 , x 1 , ..., x 359 ⁇ , ⁇ x 1080 , x 1081 , ..., x 1439 ⁇ , ⁇ x 360 , x 361 , ..., x 719 ⁇ are interleaved.
  • the GW pattern has two or more of the code length N of the LDPC code, the coding rate r, the modulation method, the constellation, and the code length N, the coding rate r, the modulation method, and the constellation. Can be set for each combination.
  • FIG. 120 is a diagram illustrating a first example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 12, 8, 132, 26, 3, 18, 19, 98, 37, 190, 123, 81, 95, 167, 76, 66, 27, 46, 105, 28, 29, 170, 20, 96, 35, 177, 24, 86, 114, 63, 52, 80, 119, 153, 121, 107, 97, 129, 57, 38, 15, 91, 122, 14, 104, 175, 150, 1, 124, 72, 90, 32, 161, 78, 44, 73, 134, 162, 5, 11, 179, 93, 6, 152, 180, 68, 36, 103, 160, 100, 138, 146, 9, 82, 187, 147, 7, 87, 17, 102, 69, 110, 130, 42, 16, 71, 2, 169, 58, 33, 136, 106, 140, 84, 79,
  • 121 is a diagram showing a second example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is a bit group 14, 119, 182, 5, 127, 21, 152, 11, 39, 164, 25, 69, 59, 140, 73, 9, 104, 148, 77, 44, 138, 89, 184, 35, 112, 150, 178, 26, 123, 133, 91, 76, 70, 0, 176, 118, 22, 147, 96, 108, 109, 139, 18, 157, 181, 126, 174, 179, 116, 38, 45, 158, 106, 168, 10, 97, 114, 129, 180, 52, 7, 67, 43, 50, 120, 122, 3, 13, 72, 185, 34, 83, 124, 105, 162, 87, 131, 155, 135, 42, 64, 165, 41, 71, 189, 159, 143, 102, 153, 17,
  • FIG. 122 is a diagram showing a third example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 121, 28, 49, 4, 21, 191, 90, 101, 188, 126, 8, 131, 81, 150, 141, 152, 17, 82, 61, 119, 125, 145, 153, 45, 108, 22, 94, 48, 29, 12, 59, 140, 75, 169, 183, 157, 142, 158, 113, 79, 89, 186, 112, 80, 56, 120, 166, 15, 43, 2, 62, 115, 38, 123, 73, 179, 155, 171, 185, 5, 168, 172, 190, 106, 174, 96, 116, 91, 30, 147, 19, 149, 37, 175, 124, 156, 14, 144, 86, 110, 40, 68, 162, 66, 130, 74, 165, 180, 13, 177,
  • FIG. 123 is a diagram showing a fourth example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 99, 59, 95, 50, 122, 15, 144, 6, 129, 36, 175, 159, 165, 35, 182, 181, 189, 29, 2, 115, 91, 41, 60, 160, 51, 106, 168, 173, 20, 138, 183, 70, 24, 127, 47, 5, 119, 171, 102, 135, 116, 156, 120, 105, 117, 136, 149, 128, 85, 46, 186, 113, 73, 103, 52, 82, 89, 184, 22, 185, 155, 125, 133, 37, 27, 10, 137, 76, 12, 98, 148, 109, 42, 16, 190, 84, 94, 97, 25, 11, 88, 166, 131, 48, 161, 65, 9, 8, 58, 56, 124, 68, 54,
  • FIG. 124 is a diagram illustrating a fifth example of the GW pattern for the LDPC code having the code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 170, 45, 67, 94, 110, 153, 19, 38, 112, 176, 49, 138, 35, 114, 184, 159, 17, 41, 47, 189, 65, 125, 154, 57, 83, 6, 97, 167, 51, 59, 23, 81, 54, 46, 168, 178, 148, 5, 122, 129, 155, 179, 95, 102, 8, 119, 29, 113, 14, 60, 43, 66, 55, 103, 111, 88, 56, 7, 118, 63, 134, 108, 61, 187, 124, 31, 133, 22, 79, 52, 36, 144, 89, 177, 40, 116, 121, 135, 163, 92, 117, 162, 149, 106, 173, 181, 11, 164, 185,
  • FIG. 125 is a diagram showing a sixth example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 126 is a diagram illustrating a seventh example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
  • FIG. 127 is a diagram illustrating an eighth example of the GW pattern for the LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
  • 128 is a diagram illustrating a ninth example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
  • FIG. 129 is a diagram illustrating a tenth example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
  • FIG. 130 is a diagram illustrating an eleventh example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
  • FIG. 131 is a diagram showing a twelfth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
  • FIG. 132 is a diagram illustrating a thirteenth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
  • FIG. 133 is a diagram illustrating a fourteenth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 154, 106, 99, 177, 191, 55, 189, 181, 22, 62, 80, 114, 110, 141, 83, 103, 169, 156, 130, 186, 92, 45, 68, 126, 112, 185, 160, 158, 17, 145, 162, 127, 152, 174, 134, 18, 157, 120, 3, 29, 13, 135, 173, 86, 73, 150, 46, 153, 33, 61, 142, 102, 171, 168, 78, 77, 139, 85, 176, 163, 128, 101, 42, 2, 14, 38, 10, 125, 90, 30, 63, 172, 47, 108, 89, 0, 32, 94, 23, 34, 59, 35, 129, 12, 146, 8, 60, 27, 147, 180, 100, 87, 184,
  • FIG. 134 is a diagram illustrating a fifteenth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 1, 182, 125, 0, 121, 47, 63, 154, 76, 99, 82, 163, 102, 166, 28, 189, 56, 67, 54, 39, 40, 185, 184, 65, 179, 4, 91, 87, 137, 170, 98, 71, 169, 49, 73, 37, 11, 143, 150, 123, 93, 62, 3, 50, 26, 140, 178, 95, 183, 33, 21, 53, 112, 128, 118, 120, 106, 139, 32, 130, 173, 132, 156, 119, 83, 176, 159, 13, 145, 36, 30, 113, 2, 41, 147, 174, 94, 88, 92, 60, 165, 59, 25, 161, 100, 85, 81, 61, 138, 48, 177
  • FIG. 135 is a diagram showing a sixteenth example of GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 136 is a diagram illustrating a seventeenth example of GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 155, 188, 123, 132, 15, 79, 59, 119, 66, 68, 41, 175, 184, 78, 142, 32, 54, 111, 139, 134, 95, 34, 161, 150, 58, 141, 74, 112, 121, 99, 178, 179, 57, 90, 80, 21, 11, 29, 67, 104, 52, 87, 38, 81, 181, 160, 176, 16, 71, 13, 186, 171, 9, 170, 2, 177, 0, 88, 149, 190, 69, 33, 183, 146, 61, 117, 113, 6, 96, 120, 162, 23, 53, 140, 91, 128, 46, 93, 174, 126, 159, 133, 8, 152, 103, 102, 151, 143, 100,
  • FIG. 137 is a diagram illustrating an eighteenth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 152, 87, 170, 33, 48, 95, 2, 184, 145, 51, 94, 164, 38, 90, 158, 70, 124, 128, 66, 111, 79, 42, 45, 141, 83, 73, 57, 119, 20, 67, 31, 179, 123, 183, 26, 188, 15, 163, 1, 133, 105, 72, 81, 153, 69, 182, 101, 180, 185, 190, 77, 6, 127, 138, 75, 59, 24, 175, 30, 186, 139, 56, 100, 176, 147, 189, 116, 131, 25, 5, 16, 117, 74, 50, 171, 114, 76, 44, 107, 135, 71, 181, 13, 43, 122, 78, 4, 58, 35, 63, 187
  • FIG. 138 is a diagram illustrating a nineteenth example of GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 140, 8, 176, 13, 41, 165, 27, 109, 121, 153, 58, 181, 143, 164, 103, 115, 91, 66, 60, 189, 101, 4, 14, 102, 45, 124, 104, 159, 130, 133, 135, 77, 25, 59, 180, 141, 144, 62, 114, 182, 134, 148, 11, 20, 125, 83, 162, 75, 126, 67, 9, 178, 171, 152, 166, 69, 174, 15, 80, 168, 131, 95, 56, 48, 63, 82, 147, 51, 108, 52, 30, 139, 22, 37, 173, 112, 191, 98, 116, 149, 167, 142, 29, 154, 92, 94, 71, 117, 79,
  • FIG. 139 is a diagram illustrating a twentieth example of GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 10, 61, 30, 88, 33, 60, 1, 102, 45, 103, 119, 181, 82, 112, 12, 67, 69, 171, 108, 26, 145, 156, 81, 152, 8, 16, 68, 13, 99, 183, 146, 27, 158, 147, 132, 118, 180, 120, 173, 59, 186, 49, 7, 17, 35, 104, 129, 75, 54, 72, 18, 48, 15, 177, 191, 51, 24, 93, 106, 22, 71, 29, 141, 32, 143, 128, 175, 86, 190, 74, 36, 43, 144, 46, 63, 65, 133, 31, 87, 44, 20, 117, 76, 187, 80, 101, 151, 47, 130, 116, 162, 127, 153, 100, 94, 2,
  • FIG. 140 is a diagram illustrating a twenty-first example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 141 is a diagram showing a twenty-second example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 17, 84, 125, 70, 134, 63, 68, 162, 61, 31, 74, 137, 7, 138, 5, 60, 76, 105, 160, 12, 114, 81, 155, 112, 153, 191, 82, 148, 118, 108, 58, 159, 43, 161, 149, 96, 71, 30, 145, 174, 67, 77, 47, 94, 48, 156, 151, 141, 131, 176, 183, 41, 35, 83, 164, 55, 169, 98, 187, 124, 100, 54, 104, 40, 2, 72, 8, 85, 182, 103, 6, 37, 107, 39, 42, 123, 57, 106, 13, 150, 129, 46, 109, 188, 45, 113, 44, 90,
  • 142 is a diagram illustrating a twenty-third example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 157, 20, 116, 115, 49, 178, 148, 152, 174, 130, 171, 81, 60, 146, 182, 72, 46, 22, 93, 101, 9, 55, 40, 163, 118, 30, 52, 181, 151, 31, 87, 117, 120, 82, 95, 190, 23, 36, 67, 62, 14, 167, 80, 27, 24, 43, 94, 0, 63, 5, 74, 78, 158, 88, 84, 109, 147, 112, 124, 110, 21, 47, 45, 68, 184, 70, 1, 66, 149, 105, 140, 170, 56, 98, 135, 61, 79, 123, 166, 185, 41, 108, 122, 92, 16, 26, 37, 177, 173, 113, 136, 89, 16
  • FIG. 143 is a diagram illustrating a twenty-fourth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 42, 168, 36, 37, 152, 118, 14, 83, 105, 131, 26, 120, 92, 130, 158, 132, 49, 72, 137, 100, 88, 24, 53, 142, 110, 102, 74, 188, 113, 121, 12, 173, 5, 126, 127, 3, 93, 46, 164, 109, 151, 2, 98, 153, 116, 89, 101, 136, 35, 80, 0, 133, 183, 162, 185, 56, 17, 87, 117, 184, 54, 70, 176, 91, 134, 51, 38, 73, 165, 99, 169, 43, 167, 86, 11, 144, 78, 58, 64, 13, 119, 33, 166, 6, 75, 31, 15, 28, 125, 148, 27, 114,
  • FIG. 144 is a diagram illustrating a 25th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 92, 132, 39, 44, 190, 21, 70, 146, 48, 13, 17, 187, 119, 43, 94, 157, 150, 98, 96, 47, 86, 63, 152, 158, 84, 170, 81, 7, 62, 191, 174, 99, 116, 10, 85, 113, 135, 28, 53, 122, 83, 141, 77, 23, 131, 4, 40, 168, 129, 109, 51, 130, 188, 147, 29, 50, 26, 78, 148, 164, 167, 103, 36, 134, 2, 177, 20, 123, 27, 90, 176, 5, 33, 133, 189, 138, 76, 41, 89, 35, 72, 139, 32, 73, 68, 67, 101, 166, 93, 54, 52
  • FIG. 145 is a diagram illustrating a twenty-sixth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 146 is a diagram illustrating a 27th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 147 is a diagram illustrating a twenty-eighth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of the bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 61, 110, 123, 127, 148, 162, 131, 71, 176, 22, 157, 0, 151, 155, 112, 189, 36, 181, 10, 46, 133, 75, 80, 88, 6, 165, 97, 54, 31, 174, 49, 139, 98, 4, 170, 26, 50, 16, 141, 187, 13, 109, 106, 120, 72, 32, 63, 59, 79, 172, 83, 100, 92, 24, 56, 130, 167, 81, 103, 111, 158, 159, 153, 175, 8, 41, 136, 70, 33, 45, 84, 150, 39, 166, 164, 99, 126, 190, 134, 40, 87, 64, 154, 140, 116, 184, 115, 183, 30, 35,
  • FIG. 148 is a diagram illustrating a 29th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 8, 174, 121, 46, 70, 106, 183, 9, 96, 109, 72, 130, 47, 168, 1, 190, 18, 90, 103, 135, 105, 112, 23, 33, 185, 31, 171, 111, 0, 115, 4, 159, 25, 65, 134, 146, 26, 37, 16, 169, 167, 74, 67, 155, 154, 83, 117, 53, 19, 161, 76, 12, 7, 131, 59, 51, 189, 42, 114, 142, 126, 66, 164, 191, 55, 132, 35, 153, 137, 87, 5, 100, 122, 150, 2, 49, 32, 172, 149, 177, 15, 82, 98, 34, 140, 170, 56, 78, 188, 57, 118, 186, 181,
  • FIG. 149 is a diagram illustrating a thirtieth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 150 is a diagram showing a thirty-first example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 151 is a diagram showing a thirty-second example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • 152 is a diagram illustrating a thirty-third example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 178, 39, 54, 68, 122, 20, 86, 137, 156, 55, 52, 72, 130, 152, 147, 12, 69, 48, 107, 44, 88, 23, 181, 174, 124, 81, 59, 93, 22, 46, 82, 110, 3, 99, 75, 36, 38, 119, 131, 51, 115, 78, 84, 33, 163, 11, 2, 188, 161, 34, 89, 50, 8, 90, 109, 136, 77, 103, 67, 41, 149, 176, 134, 189, 159, 184, 153, 53, 129, 63, 160, 139, 150, 169, 148, 127, 25, 175, 142, 98, 56, 144, 102, 94, 101, 85, 132, 76, 5,
  • FIG. 153 is a diagram illustrating a thirty-fourth example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 139, 112, 159, 99, 87, 70, 175, 161, 51, 56, 174, 143, 12, 36, 77, 60, 155, 167, 160, 73, 127, 82, 123, 145, 8, 76, 164, 178, 144, 86, 7, 124, 27, 187, 130, 162, 191, 182, 16, 106, 141, 38, 72, 179, 111, 29, 59, 183, 66, 52, 43, 121, 20, 11, 190, 92, 55, 166, 94, 138, 1, 122, 171, 119, 109, 58, 23, 31, 163, 53, 13, 188, 100, 158, 156, 136, 34, 118, 185, 10, 25, 126, 104, 30, 83, 47, 146, 63, 134, 39, 21, 44,
  • FIG. 154 is a diagram illustrating a 35th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 21, 20, 172, 86, 178, 25, 104, 133, 17, 106, 191, 68, 80, 190, 129, 29, 125, 108, 147, 23, 94, 167, 27, 61, 12, 166, 131, 120, 159, 28, 7, 62, 134, 59, 78, 0, 121, 149, 6, 5, 143, 171, 153, 161, 186, 35, 92, 113, 55, 163, 16, 54, 93, 79, 37, 44, 75, 182, 127, 148, 179, 95, 169, 141, 38, 168, 128, 56, 31, 57, 175, 140, 164, 24, 177, 88, 51, 112, 49, 185, 170, 87, 32, 60, 65, 77, 89, 3, 18, 116, 184, 45, 109, 53
  • FIG. 155 is a diagram illustrating a 36th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 156 is a diagram illustrating a 37th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 157 is a diagram illustrating a 38th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 158 is a diagram illustrating a 39th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit group 20, 118, 185, 106, 82, 53, 41, 40, 121, 180, 45, 10, 145, 175, 191, 160, 177, 172, 13, 29, 133, 42, 89, 51, 141, 99, 7, 134, 52, 48, 169, 162, 124, 25, 165, 128, 95, 148, 98, 171, 14, 75, 59, 26, 76, 47, 34, 122, 69, 131, 105, 60, 132, 63, 81, 109, 43, 189, 19, 186, 79, 62, 85, 54, 16, 46, 27, 44, 139, 113, 11, 102, 130, 184, 119, 1, 152, 146, 37, 178, 61, 150, 32, 163, 92, 166, 142, 67, 140, 157, 188, 18, 87
  • FIG. 159 is a diagram illustrating a 40th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 42, 43, 190, 119, 183, 103, 51, 28, 171, 20, 18, 25, 85, 22, 157, 99, 174, 5, 53, 62, 150, 128, 38, 153, 37, 148, 39, 24, 118, 102, 184, 49, 111, 48, 87, 76, 81, 40, 55, 82, 70, 105, 66, 115, 14, 86, 88, 135, 168, 139, 56, 80, 93, 95, 165, 13, 4, 100, 29, 104, 11, 72, 116, 83, 112, 67, 186, 169, 8, 57, 44, 17, 164, 31, 96, 84, 2, 125, 59, 3, 6, 173, 149, 78, 27, 160, 156, 187, 34, 129, 154, 79, 52, 117, 110, 0,
  • FIG. 160 is a diagram illustrating a 41st example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 111, 33, 21, 133, 18, 30, 73, 139, 125, 35, 77, 105, 122, 91, 41, 86, 11, 8, 55, 71, 151, 107, 45, 12, 168, 51, 50, 59, 7, 132, 144, 16, 190, 31, 108, 89, 124, 110, 94, 67, 159, 46, 140, 87, 54, 142, 185, 85, 84, 120, 178, 101, 180, 20, 174, 47, 28, 145, 70, 24, 131, 4, 83, 56, 79, 37, 27, 109, 92, 52, 96, 177, 141, 188, 155, 38, 156, 169, 136, 81, 137, 112, 95, 93, 106, 149, 138, 15, 39, 170, 146
  • FIG. 161 is a diagram illustrating a forty-second example of a GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 148, 32, 94, 31, 146, 15, 41, 7, 79, 58, 52, 167, 154, 4, 161, 38, 64, 127, 131, 78, 34, 125, 171, 173, 133, 122, 50, 95, 129, 57, 71, 37, 137, 69, 82, 107, 26, 10, 140, 156, 47, 178, 163, 117, 139, 174, 143, 138, 111, 11, 166, 43, 141, 114, 45, 39, 177, 103, 96, 123, 63, 23, 18, 20, 187, 27, 66, 130, 65, 142, 5, 135, 113, 90, 121, 54, 190, 134, 153, 147, 92, 157, 3, 97, 102, 106, 172, 91, 46,
  • FIG. 162 is a diagram illustrating a 43rd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 161, 38, 41, 138, 20, 24, 14, 35, 32, 179, 68, 97, 94, 142, 43, 53, 22, 28, 44, 81, 148, 187, 169, 89, 115, 144, 75, 40, 31, 152, 30, 124, 80, 135, 160, 8, 129, 147, 60, 112, 171, 0, 133, 100, 156, 180, 77, 110, 151, 69, 95, 25, 117, 127, 154, 64, 146, 143, 29, 168, 177, 183, 126, 10, 26, 3, 50, 92, 164, 163, 11, 109, 21, 37, 84, 122, 49, 71, 52, 15, 88, 149, 86, 61, 90, 155, 162, 9, 153, 67, 119, 189, 82, 131,
  • FIG. 163 is a diagram illustrating a 44th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 164 is a diagram illustrating a 45th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 89, 123, 13, 47, 178, 159, 1, 190, 53, 12, 57, 109, 115, 19, 36, 143, 82, 96, 163, 66, 154, 173, 49, 65, 131, 2, 78, 15, 155, 90, 38, 130, 63, 188, 138, 184, 166, 102, 139, 28, 50, 186, 17, 20, 112, 41, 11, 8, 59, 79, 45, 162, 146, 40, 43, 129, 119, 18, 157, 37, 126, 124, 110, 191, 85, 165, 60, 142, 135, 74, 187, 179, 141, 164, 34, 69, 26, 33, 113, 120, 95, 169, 30, 0, 175, 70, 91, 104, 140, 25, 132, 23, 105, 158,
  • FIG. 165 is a diagram illustrating a 46th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 116, 157, 105, 191, 110, 149, 0, 186, 88, 165, 141, 179, 160, 121, 35, 170, 97, 7, 181, 31, 130, 123, 184, 34, 101, 167, 68, 135, 18, 91, 159, 81, 53, 36, 164, 139, 61, 162, 79, 4, 176, 127, 42, 148, 147, 150, 55, 109, 132, 124, 9, 66, 14, 128, 134, 27, 29, 59, 153, 22, 120, 13, 187, 112, 69, 163, 11, 70, 58, 15, 25, 102, 188, 182, 156, 20, 17, 10, 32, 76, 5, 28, 46, 166, 140, 143, 65, 63, 107, 119, 87, 145, 62, 108
  • FIG. 166 is a diagram illustrating a 47th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 167 is a diagram illustrating a 48th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 31, 178, 143, 125, 159, 168, 34, 127, 158, 157, 21, 124, 153, 162, 59, 156, 165, 40, 108, 43, 98, 119, 33, 13, 175, 166, 117, 25, 63, 111, 74, 1, 38, 169, 131, 100, 164, 0, 171, 101, 151, 113, 20, 185, 17, 86, 146, 11, 12, 19, 145, 85, 3, 80, 133, 93, 10, 72, 152, 172, 140, 45, 115, 79, 161, 39, 99, 5, 37, 110, 155, 170, 123, 70, 52, 81, 65, 160, 132, 103, 9, 88, 15, 130, 71, 129, 177, 128, 121, 150, 36, 35, 163,
  • FIG. 168 is a diagram illustrating a 49th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 36, 20, 126, 165, 181, 59, 90, 186, 191, 120, 182, 170, 171, 137, 62, 84, 146, 106, 64, 129, 56, 136, 57, 108, 190, 74, 70, 10, 68, 139, 35, 104, 63, 16, 19, 66, 1, 15, 61, 97, 172, 72, 26, 141, 80, 151, 138, 156, 46, 82, 95, 142, 77, 76, 17, 102, 92, 60, 148, 99, 140, 2, 78, 145, 29, 174, 32, 103, 3, 133, 163, 23, 150, 155, 44, 185, 65, 134, 184, 11, 38, 119, 117, 167, 79, 5, 130, 94, 33, 157, 154
  • FIG. 169 is a diagram illustrating a 50th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 170 is a diagram illustrating a 51st example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 140, 166, 22, 87, 107, 121, 66, 80, 85, 109, 45, 13, 144, 63, 0, 52, 131, 122, 135, 173, 105, 98, 117, 168, 8, 123, 157, 93, 129, 37, 119, 143, 40, 59, 162, 21, 79, 102, 34, 36, 32, 41, 177, 48, 83, 94, 191, 78, 101, 155, 160, 189, 77, 57, 11, 148, 124, 65, 187, 110, 100, 114, 67, 150, 82, 156, 43, 5, 1, 126, 46, 167, 149, 72, 31, 161, 23, 113, 137, 132, 35, 76, 26, 61, 141, 15, 4, 25, 17, 182, 92, 29, 27, 27,
  • FIG. 171 is a diagram illustrating a 52nd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 128, 120, 91, 121, 189, 30, 127, 35, 76, 26, 144, 45, 178, 93, 14, 31, 123, 155, 19, 28, 152, 174, 177, 168, 56, 169, 95, 7, 96, 133, 136, 146, 172, 187, 90, 44, 98, 150, 40, 20, 104, 191, 37, 61, 42, 43, 27, 159, 163, 100, 164, 151, 111, 102, 165, 132, 138, 180, 22, 70, 184, 62, 167, 134, 60, 160, 175, 157, 153, 77, 87, 185, 116, 115, 176, 78, 5, 39, 88, 33, 126, 13, 71, 188, 171, 135, 21, 16, 143, 51, 99,
  • FIG. 172 is a diagram illustrating a 53rd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of the bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 36, 180, 61, 100, 163, 168, 14, 24, 105, 104, 131, 56, 40, 73, 165, 157, 126, 47, 160, 181, 166, 161, 1, 81, 58, 182, 189, 177, 85, 17, 13, 46, 171, 149, 91, 79, 109, 133, 164, 125, 52, 77, 118, 186, 107, 150, 135, 33, 130, 87, 167, 158, 23, 83, 152, 114, 68, 12, 132, 178, 106, 184, 176, 72, 31, 53, 21, 110, 76, 146, 4, 18, 113, 65, 34, 179, 111, 185, 84, 144, 27, 39, 151, 50, 69, 30, 169, 175, 9, 42, 54, 43
  • FIG. 173 is a diagram illustrating a 54th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 92, 83, 138, 67, 27, 88, 13, 26, 73, 16, 187, 18, 76, 28, 79, 130, 91, 58, 140, 38, 6, 43, 17, 168, 141, 96, 70, 147, 112, 164, 97, 161, 139, 65, 78, 95, 146, 3, 32, 158, 24, 0, 94, 120, 176, 128, 59, 81, 21, 102, 190, 8, 114, 113, 29, 45, 103, 56, 54, 173, 177, 12, 174, 108, 169, 148, 123, 129, 150, 77, 157, 184, 61, 127, 121, 156, 104, 111, 68, 160, 107, 117, 124, 84, 35, 10, 90, 106, 144, 66,
  • FIG. 174 is a diagram illustrating a 55th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 52, 117, 42, 131, 45, 120, 44, 63, 91, 0, 33, 176, 95, 36, 134, 170, 148, 32, 130, 20, 124, 51, 152, 96, 92, 90, 184, 103, 53, 14, 110, 80, 107, 145, 181, 137, 61, 149, 114, 126, 136, 161, 58, 162, 88, 8, 171, 178, 174, 94, 118, 19, 35, 1, 191, 115, 23, 10, 150, 67, 46, 56, 172, 129, 109, 98, 89, 68, 101, 121, 78, 182, 12, 173, 128, 77, 168, 156, 186, 165, 39, 187, 5, 158, 104, 2, 49, 154, 59, 82,
  • FIG. 175 is a diagram illustrating a 56th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 60, 117, 182, 104, 53, 26, 11, 121, 71, 32, 179, 34, 38, 145, 166, 65, 137, 7, 124, 58, 90, 29, 144, 116, 91, 88, 98, 161, 83, 177, 85, 154, 146, 178, 123, 76, 75, 3, 64, 151, 99, 118, 57, 106, 16, 61, 162, 19, 12, 94, 39, 93, 92, 73, 82, 138, 108, 139, 130, 163, 152, 159, 168, 189, 102, 134, 101, 66, 4, 171, 170, 188, 107, 23, 180, 35, 175, 18, 89, 181, 17, 97, 62, 56, 52, 128, 40, 25, 191, 74, 95,
  • FIG. 176 is a diagram illustrating a 57th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 7, 156, 171, 76, 165, 68, 5, 72, 86, 57, 42, 98, 162, 130, 88, 31, 63, 170, 92, 100, 145, 146, 117, 62, 123, 55, 22, 138, 75, 99, 177, 83, 135, 190, 79, 84, 182, 140, 136, 0, 108, 77, 8, 154, 73, 37, 147, 14, 10, 128, 111, 168, 38, 159, 125, 32, 120, 132, 148, 27, 69, 96, 127, 103, 34, 110, 161, 41, 18, 35, 142, 116, 28, 121, 91, 112, 51, 178, 139, 95, 155, 20, 78, 33, 133, 29, 9, 54, 24, 176, 122, 3,
  • FIG. 177 is a diagram illustrating a 58th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 134, 124, 102, 133, 161, 34, 18, 17, 119, 172, 43, 25, 130, 84, 46, 167, 23, 100, 31, 121, 30, 15, 99, 127, 62, 20, 143, 103, 139, 171, 13, 42, 1, 26, 76, 159, 27, 82, 48, 146, 22, 156, 188, 69, 86, 177, 129, 160, 33, 67, 176, 148, 168, 158, 169, 0, 155, 118, 154, 110, 96, 191, 4, 36, 39, 56, 112, 14, 145, 182, 3, 88, 126, 91, 105, 174, 128, 157, 125, 74, 116, 61, 52, 187, 117, 98, 73, 95, 92, 181, 111, 65
  • FIG. 178 is a diagram illustrating a 59th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 18, 161, 152, 30, 91, 138, 83, 88, 127, 54, 33, 46, 125, 120, 122, 169, 51, 150, 100, 52, 95, 186, 149, 81, 11, 53, 164, 130, 19, 176, 93, 107, 29, 86, 124, 65, 75, 71, 74, 68, 44, 82, 59, 104, 118, 103, 131, 101, 8, 96, 97, 119, 166, 77, 50, 34, 158, 21, 184, 24, 165, 171, 142, 36, 181, 45, 90, 175, 99, 13, 37, 10, 140, 3, 69, 16, 133, 172, 173, 27, 132, 79, 76, 111, 123, 7, 94, 70, 116, 174, 15, 156,
  • FIG. 179 is a diagram illustrating a 60th example of GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 172, 48, 104, 60, 184, 162, 86, 185, 11, 132, 155, 50, 146, 178, 5, 28, 133, 169, 106, 90, 174, 95, 42, 10, 78, 177, 21, 112, 54, 153, 136, 12, 115, 108, 92, 152, 180, 151, 13, 62, 25, 51, 191, 84, 167, 139, 96, 111, 130, 150, 7, 143, 144, 117, 124, 27, 38, 72, 6, 128, 36, 39, 26, 156, 32, 127, 181, 122, 52, 131, 68, 140, 173, 182, 154, 190, 137, 61, 2, 138, 43, 110, 29, 116, 176, 30, 57, 189, 14, 4, 65, 80, 33, 75, 13
  • FIG. 180 is a diagram illustrating a 61st example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 181 is a diagram illustrating a 62nd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 182 is a diagram illustrating a 63rd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of 69120-bit LDPC code bit groups 0 to 191 is represented by bit groups 47, 85, 118, 136, 166, 98, 72, 163, 63, 116, 162, 169, 114, 124, 144, 110, 46, 152, 104, 88, 99, 106, 181, 109, 3, 10, 172, 107, 33, 100, 191, 75, 157, 79, 52, 128, 6, 12, 139, 30, 68, 111, 83, 5, 119, 1, 97, 56, 38, 117, 78, 80, 155, 141, 185, 20, 161, 123, 28, 180, 77, 50, 29, 64, 41, 121, 53, 36, 48, 127, 44, 22, 35, 165, 59, 147, 187, 153, 89, 154, 18, 55, 90, 69, 19, 148, 129, 188, 24, 8, 102, 151, 11, 74,
  • FIG. 183 is a diagram illustrating a 64th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 97, 39, 99, 33, 10, 6, 189, 179, 130, 172, 76, 185, 131, 40, 176, 159, 8, 17, 167, 116, 16, 160, 5, 174, 27, 115, 43, 41, 136, 175, 153, 144, 106, 29, 105, 84, 67, 35, 152, 191, 72, 56, 83, 168, 12, 184, 65, 146, 104, 80, 98, 79, 51, 26, 64, 137, 181, 165, 52, 129, 186, 48, 128, 154, 58, 141, 77, 187, 94, 109, 81, 119, 82, 38, 18, 188, 143, 170, 147, 2, 162, 95, 21, 11, 74, 151, 19, 59, 1, 138, 145,
  • FIG. 184 is a diagram illustrating a 65th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 35, 75, 166, 145, 143, 184, 62, 96, 54, 63, 157, 103, 32, 43, 126, 187, 144, 91, 78, 44, 39, 109, 185, 102, 10, 68, 29, 42, 149, 83, 133, 94, 130, 27, 171, 19, 51, 165, 148, 28, 36, 33, 173, 136, 87, 82, 100, 49, 120, 152, 161, 162, 147, 71, 137, 57, 8, 53, 132, 151, 163, 123, 47, 92, 90, 60, 99, 79, 59, 108, 115, 72, 0, 12, 140, 160, 61, 180, 74, 37, 86, 117, 191, 101, 52, 15, 80, 156, 127, 81
  • FIG. 185 is a diagram illustrating a 66th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 138, 38, 106, 76, 172, 27, 150, 95, 44, 187, 64, 18, 28, 98, 180, 101, 149, 146, 126, 26, 93, 178, 186, 70, 104, 131, 19, 45, 102, 122, 152, 66, 63, 173, 9, 55, 25, 1, 154, 85, 5, 51, 43, 82, 86, 151, 148, 48, 190, 179, 62, 60, 94, 174, 142, 39, 169, 170, 47, 125, 33, 128, 162, 2, 129, 57, 79, 118, 114, 69, 78, 167, 11, 136, 99, 155, 90, 21, 119, 10, 52, 91, 115, 185, 6, 110, 88, 96, 181, 143, 0, 160
  • FIG. 186 is a diagram illustrating a 67th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 37, 136, 161, 62, 163, 129, 160, 73, 76, 66, 34, 162, 122, 5, 87, 94, 50, 105, 132, 32, 121, 47, 74, 189, 110, 45, 75, 175, 17, 29, 108, 191, 1, 153, 20, 113, 61, 42, 51, 2, 165, 124, 43, 186, 40, 86, 168, 180, 155, 16, 93, 26, 166, 119, 159, 56, 12, 44, 46, 143, 49, 25, 176, 158, 92, 147, 54, 172, 182, 64, 157, 112, 38, 39, 11, 6, 127, 48, 151, 82, 4, 36, 183, 88, 126, 117, 111, 188, 138, 65, 70, 170,
  • FIG. 187 is a diagram illustrating a 68th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 148, 189, 3, 121, 80, 135, 7, 96, 46, 109, 190, 111, 118, 23, 5, 149, 19, 140, 106, 36, 161, 71, 6, 176, 160, 76, 8, 168, 171, 173, 40, 37, 25, 50, 164, 108, 139, 31, 127, 142, 163, 177, 24, 20, 157, 83, 116, 42, 73, 69, 88, 184, 147, 136, 187, 49, 45, 35, 170, 62, 63, 181, 117, 123, 122, 72, 55, 53, 133, 159, 94, 175, 179, 158, 97, 93, 13, 130, 144, 81, 68, 2, 64, 155, 119, 43, 143, 1, 112, 18, 146,
  • FIG. 188 is a diagram illustrating a 69th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 67, 20, 9, 75, 143, 94, 144, 122, 56, 88, 180, 72, 102, 100, 113, 157, 170, 59, 128, 162, 26, 38, 61, 156, 115, 117, 190, 77, 22, 74, 119, 12, 8, 179, 182, 85, 188, 191, 154, 41, 58, 142, 186, 107, 73, 189, 15, 130, 127, 160, 55, 19, 45, 137, 124, 133, 146, 43, 60, 183, 153, 177, 123, 181, 95, 49, 140, 4, 51, 3, 21, 164, 83, 187, 148, 11, 168, 149, 92, 65, 30, 90, 23, 116, 57, 161, 125, 175, 129, 126, 97,
  • FIG. 189 is a diagram illustrating a 70th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 190 is a diagram illustrating a 71st example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 30, 127, 60, 115, 80, 50, 150, 39, 176, 171, 47, 104, 70, 33, 56, 3, 10, 26, 19, 149, 153, 141, 98, 46, 64, 71, 130, 107, 94, 16, 164, 169, 57, 168, 126, 157, 133, 12, 154, 135, 35, 53, 40, 183, 28, 1, 160, 67, 163, 134, 181, 59, 99, 186, 86, 36, 178, 152, 48, 117, 44, 14, 66, 172, 17, 31, 182, 166, 187, 55, 62, 143, 69, 77, 9, 113, 158, 91, 189, 84, 151, 74, 45, 97, 122, 114, 75, 41, 162, 90, 110, 106,
  • FIG. 191 is a diagram illustrating a 72nd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106,
  • FIG. 192 is a diagram illustrating a 73rd example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code are arranged in bit groups 191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68
  • FIG. 193 is a diagram illustrating a 74th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of the bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180,
  • FIG. 194 is a diagram illustrating a 75th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • bit groups 0 to 191 of the 69120-bit LDPC code is represented by bit groups 21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110,
  • FIG. 195 is a diagram illustrating a 76th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 196 is a diagram illustrating a 77th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • FIG. 197 is a diagram illustrating a 78th example of the GW pattern for an LDPC code having a code length N of 69120 bits.
  • the arrangement of bit groups 0 to 191 of the 69120-bit LDPC code is the bit groups 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141,
  • the first to 45th examples of the GW pattern for the LDPC code having the code length N of 69120 bits are the LDPC code having the code length N of 69120 bits, the arbitrary coding rate r, the arbitrary modulation scheme, and It can be applied to any combination of constellations.
  • the GW pattern to be applied is set for each combination of LDPC code code length N, LDPC code coding rate r, modulation method, and constellation.
  • the rate can be improved further.
  • LDPC code), QPSK, and the combination of QPSK-UC in FIGS. 96 and 97 can achieve particularly good error rates.
  • An error rate can be achieved.
  • An error rate can be achieved.
  • An error rate can be achieved.
  • a good error rate can be achieved.
  • a good error rate can be achieved.
  • FIG. 198 is a block diagram illustrating a configuration example of the receiving device 12 of FIG.
  • An OFDM processor 151 receives an OFDM signal from the transmission device 11 (FIG. 7) and performs signal processing on the OFDM signal. Data obtained by performing signal processing by the OFDM processing unit 151 is supplied to a frame management unit 152.
  • the frame management unit 152 performs processing (frame interpretation) of a frame composed of data supplied from the OFDM processing unit 151, and converts the target data signal and the control data signal obtained as a result thereof into a frequency deinterleaver. (Frequency Deinterleaver) 161 and 153, respectively.
  • the frequency deinterleaver 153 performs frequency deinterleaving on the data from the frame management unit 152 in units of symbols, and supplies the demapper 154 with the data.
  • the demapper 154 demaps the data (constellation data) from the frequency deinterleaver 153 based on the signal point arrangement (constellation) determined by the orthogonal modulation performed on the transmission device 11 side.
  • the data (LDPC code (likelihood)) obtained as a result is supplied to an LDPC decoder (LDPC decoder) 155.
  • the LDPC decoder 155 performs LDPC decoding of the LDPC code from the demapper 154, and supplies the LDPC target data (in this case, BCH code) obtained as a result to the BCH decoder 156.
  • the BCH decoder 156 performs BCH decoding of the LDPC target data from the LDPC decoder 155 and outputs control data (signaling) obtained as a result.
  • the frequency deinterleaver 161 performs frequency deinterleaving on the data from the frame management unit 152 in units of symbols and supplies the data to a SISO / MISO decoder 162.
  • the SISO / MISO decoder 162 performs space-time decoding of the data from the frequency deinterleaver 161 and supplies it to a time deinterleaver (Time Deinterleaver) 163.
  • the time deinterleaver 163 performs time deinterleaving on the data from the SISO / MISO decoder 162 in units of symbols and supplies the demapper 164 with it.
  • the demapper 164 demaps the data (data on the constellation) from the time deinterleaver 163 based on the signal point arrangement (constellation) determined by the orthogonal modulation performed on the transmission device 11 side.
  • the data obtained as a result is supplied to a bit deinterleaver 165.
  • the bit deinterleaver 165 performs bit deinterleaving on the data from the demapper 164 and supplies the LDPC code (the likelihood) that is the data after the bit deinterleaving to the LDPC decoder 166.
  • the LDPC decoder 166 performs LDPC decoding of the LDPC code from the bit deinterleaver 165 and supplies the LDPC target data (in this case, BCH code) obtained as a result to the BCH decoder 167.
  • the BCH decoder 167 performs BCH decoding of the LDPC target data from the LDPC decoder 155 and supplies data obtained as a result to a BB descrambler BB.
  • the BB descrambler 168 performs BB descrambling on the data from the BCH decoder 167 and supplies the data obtained as a result to a null deletion unit (Null Deletion) 169.
  • the null deletion unit 169 deletes the null inserted by the padder 112 in FIG. 8 from the data from the BB descrambler 168 and supplies the null to the demultiplexer 170.
  • the demultiplexer 170 separates each of one or more streams (target data) multiplexed in the data from the null deletion unit 169, performs necessary processing, and outputs the result as an output stream (Output stream).
  • the receiving device 12 can be configured without providing a part of the block shown in FIG. That is, for example, when the transmission apparatus 11 (FIG. 8) is configured without the time interleaver 118, the SISO / MISO encoder 119, the frequency interleaver 120, and the frequency interleaver 124, the reception apparatus 12 A time deinterleaver 163, a SISO / MISO decoder 162, and a frequency deinterleaver 161, which are blocks corresponding to the time interleaver 118, SISO / MISO encoder 119, frequency interleaver 120, and frequency interleaver 124, respectively, of the transmission apparatus 11. And it can comprise without providing the frequency deinterleaver 153.
  • FIG. 199 is a block diagram illustrating a configuration example of the bit deinterleaver 165 of FIG.
  • the bit deinterleaver 165 includes a block deinterleaver 54 and a groupwise deinterleaver 55, and performs symbol bit deinterleaving of symbols as data from the demapper 164 (FIG. 198).
  • the block deinterleaver 54 targets the symbol bit of the symbol from the demapper 164 and performs block deinterleave corresponding to the block interleave performed by the block interleaver 25 in FIG.
  • Block deinterleaving is performed to return the position of the code bits (likelihood) of the LDPC codes rearranged by interleaving to the original position, and the resulting LDPC code is supplied to the group-wise deinterleaver 55.
  • the group-wise deinterleaver 55 targets the LDPC code from the block deinterleaver 54 and performs group-wise deinterleave corresponding to the group-wise interleave performed by the group-wise interleaver 24 in FIG. 9 (reverse processing of the group-wise interleave). That is, for example, by reordering the code bits of the LDPC code whose arrangement has been changed in units of bit groups by the groupwise interleaving described with reference to FIG. 119, groupwise deinterleaving to restore the original order is performed.
  • the bit deinterleaver 165 uses the parity corresponding to the parity interleaving.
  • Deinterleaving reverse processing of parity interleaving, that is, parity deinterleaving for returning the code bits of the LDPC code whose sequence has been changed by parity interleaving
  • block deinterleaving corresponding to block interleaving and groupwise interleaving All of the groupwise deinterleaves corresponding to can be performed.
  • bit deinterleaver 165 of FIG. 199 the block deinterleaver 54 that performs block deinterleave corresponding to block interleave, and the groupwise deinterleaver 55 that performs groupwise deinterleave corresponding to groupwise interleave, Although provided, a block that performs parity deinterleaving corresponding to parity interleaving is not provided, and parity deinterleaving is not performed.
  • bit deinterleaver 165 groupwise deinterleaver 55
  • LDPC decoder 166 an LDPC code subjected to block deinterleaving and groupwise deinterleaving and not subjected to parity deinterleaving. Is supplied.
  • the LDPC decoder 166 performs LDPC decoding of the LDPC code from the bit deinterleaver 165, and column replacement corresponding to parity interleaving for the parity check matrix H of the type B scheme used by the LDPC encoder 115 in FIG. 8 for LDPC encoding. Is performed using a conversion parity check matrix obtained by performing row substitution on a type A parity check matrix (FIG. 27) and data obtained as a result of the LDPC target. Output as data decryption result.
  • FIG. 200 is a flowchart for explaining processing performed by the demapper 164, the bit deinterleaver 165, and the LDPC decoder 166 of FIG. 199.
  • step S111 the demapper 164 demaps and orthogonally demodulates the data from the time deinterleaver 163 (data on the constellation mapped to the signal points), supplies it to the bit deinterleaver 165, and performs the processing.
  • the process proceeds to step S112.
  • step S112 the bit deinterleaver 165 performs deinterleaving (bit deinterleaving) of data from the demapper 164, and the process proceeds to step S113.
  • step S112 in the bit deinterleaver 165, the block deinterleaver 54 performs block deinterleaving on the data (symbol) from the demapper 164, and the code bits of the LDPC code obtained as a result are grouped. Supplied to the wise deinterleaver 55.
  • the groupwise deinterleaver 55 performs groupwise deinterleaving on the LDPC code from the block deinterleaver 54 and supplies the resulting LDPC code (its likelihood) to the LDPC decoder 166.
  • step S113 the LDPC decoder 166 performs LDPC decoding of the LDPC code from the group-wise deinterleaver 55 using the parity check matrix H used by the LDPC encoder 115 of FIG. 8 for LDPC encoding.
  • the conversion check matrix obtained from the matrix H is used, and the data obtained as a result is output to the BCH decoder 167 as the decoding result of the LDPC target data.
  • FIG. 199 similarly to the case of FIG. 9, a block deinterleaver 54 that performs block deinterleaving and a groupwise deinterleaver 55 that performs groupwise deinterleaving are separately configured for convenience of explanation.
  • the block deinterleaver 54 and the groupwise deinterleaver 55 can be configured integrally.
  • the receiving device 12 can be configured without providing the group-wise deinterleaver 55 that performs group-wise deinterleaving.
  • the LDPC decoding performed by the LDPC decoder 166 in FIG. 198 will be further described.
  • the block deinterleave and the groupwise deinterleave from the groupwise deinterleaver 55 are performed, and the LDPC code of the LDPC code in which the parity deinterleave is not performed.
  • Decoding is performed by performing at least a column permutation equivalent to parity interleaving on the type B parity check matrix H used by the LDPC encoder 115 of FIG. 8 for LDPC encoding, and a type A parity check matrix. This is performed using a conversion check matrix (FIG. 29) obtained by performing row substitution on the matrix (FIG. 27).
  • FIG. 201 is a diagram illustrating an example of a parity check matrix H of an LDPC code having a code length N of 90 and an encoding rate of 2/3.
  • 0 is represented by a period (.).
  • the parity matrix has a staircase structure.
  • FIG. 202 is a diagram showing a parity check matrix H ′ obtained by subjecting the parity check matrix H of FIG. 201 to row replacement of Expression (11) and column replacement of Expression (12).
  • s, t, x, and y are integers in the range of 0 ⁇ s ⁇ 5, 0 ⁇ t ⁇ 6, 0 ⁇ x ⁇ 5, 0 ⁇ t ⁇ 6, respectively. It is.
  • the first, seventh, thirteenth, nineteenth and twenty-fifth rows which are divided by six and the remainder is 1, the first, second, third, fourth, and fifth rows respectively.
  • the second, eighth, eighth, ninth, and tenth lines that are divided by the remainder of 2 are replaced with the sixth, seventh, eighth, ninth, and tenth lines, respectively.
  • the 61st column, the 61st column (parity matrix) and the 61st column, the 67th column, the 73rd column, the 79th column, and the 85th column whose remainder is 1 are divided by 61, respectively.
  • 62, 63, 64, and 65, the 62, 68, 74, 80, and 86 columns, which are divided by 6 and have a remainder of 2 are called 66, 67, 68, 69, and 70 columns, respectively.
  • the replacement is performed accordingly.
  • a matrix obtained by performing row and column replacement on the parity check matrix H in FIG. 201 is the parity check matrix H ′ in FIG.
  • the parity check matrix H ′ in FIG. 202 is the K + qx + y + 1-th column of the parity check matrix H in FIG. 201 (hereinafter referred to as the original parity check matrix as appropriate) as the K + Py + x + 1-th column.
  • This is a conversion check matrix obtained by performing at least column replacement to be replaced with this column.
  • the conversion parity check matrix H ′ of FIG. 202 is a parity check matrix of the LDPC code c ′ obtained by performing the column replacement of the equation (12) on the LDPC code c of the original parity check matrix H.
  • Equation (12) the column replacement of Equation (12) is performed on the LDPC code c of the original parity check matrix H, and the LDPC code c ′ after the column replacement is decoded using the transform parity check matrix H ′ of FIG. 202 (LDPC decoding). Then, the decoding result similar to the case of decoding the LDPC code of the original parity check matrix H using the parity check matrix H is obtained by performing the inverse permutation of the column permutation of the equation (12) on the decoding result. Can do.
  • FIG. 203 is a diagram showing the conversion check matrix H ′ of FIG. 202 with a space in 5 ⁇ 5 matrix units.
  • these 5 ⁇ 5 matrices (unit matrix, quasi-unit matrix, shift matrix, sum matrix, 0 matrix) constituting the conversion check matrix H ′ are hereinafter appropriately referred to as constituent matrices.
  • FIG. 204 is a block diagram illustrating a configuration example of a decoding device that performs such decoding.
  • FIG. 204 performs decoding of an LDPC code using at least the transformed parity check matrix H ′ of FIG. 203 obtained by performing column replacement of equation (12) on the original parity check matrix H of FIG. 2 shows a configuration example of a decoding device.
  • Decoding apparatus six FIFO 300 1 to the edge data storage memory 300 consisting of 300 6, FIFO 300 1 to the selector 301 for selecting 300 6, a check node calculation section 302,2 one cyclic shift circuit 303 and 308 in FIG. 204, 18 FIFOs 304 1 to 304 18 the edge data storage memory 304 consisting of, FIFOs 304 1 to 304 18 to select the selector 305, the reception data memory 306 for storing received data, a variable node calculation section 307, a decoded word calculation section 309
  • the branch data storage memory 300 is composed of six FIFOs 300 1 to 300 6 that are numbers obtained by dividing the number of rows 30 of the conversion check matrix H ′ of FIG. 203 by the number of rows (unit size P) 5 of the configuration matrix. .
  • the number of stages in the storage area of the FIFO 300 y is 9, which is the maximum number of 1s in the row direction (Hamming weight) in the conversion parity check matrix of FIG.
  • the storage area of the first stage of the FIFO 300 1 includes (1, 1) to (5, 5) of the conversion parity check matrix H ′. The data corresponding to the position of 1 in the 5 ⁇ 5 unit matrix is stored.
  • the shift check matrix H '(1,21) to (5,25) shift matrix (shift matrix obtained by cyclically shifting three 5 ⁇ 5 unit matrices to the right by 3)
  • the data corresponding to the 1 position is stored.
  • the third to eighth storage areas store data in association with the conversion parity check matrix H ′.
  • 1 in the first row of the 5 ⁇ 5 unit matrix is replaced with 0 in the shift matrix from (1,86) to (5,90) of the conversion check matrix H ′. Data corresponding to one position of the shift matrix that has been shifted by one to the left.
  • the storage area of the first stage of the FIFO 300 2 has a sum matrix of (6,1) to (10,5) of the conversion check matrix H ′ (5 ⁇ 5 unit matrix cyclically shifted by one to the right)
  • the data corresponding to the position of 1 of the first shift matrix constituting the first shift matrix and the sum matrix which is the sum of the second shift matrix cyclically shifted by two to the right is stored.
  • the second storage area stores data corresponding to position 1 of the second shift matrix constituting the sum matrix of (6,1) to (10,5) of the conversion check matrix H ′.
  • the constituent matrix is a P ⁇ P unit matrix having a weight of 1, a quasi-unit matrix in which one or more of the elements of the unit matrix are 0, or Data corresponding to the unit matrix, quasi-unit matrix, or 1 position of the shift matrix when the unit matrix or quasi-unit matrix is expressed in the form of a plurality of shift matrices obtained by cyclically shifting the unit matrix or quasi-unit matrix (Messages corresponding to branches belonging to the unit matrix, quasi-unit matrix, or shift matrix) are stored in the same address (the same FIFO among the FIFOs 300 1 to 300 6 ).
  • the third to ninth storage areas are also stored in association with the conversion check matrix H ′.
  • the FIFOs 300 3 to 300 6 store data in association with the conversion check matrix H ′.
  • Edge data storage memory 304, the column number 90 of the conversion parity check matrix H ', and a 18 FIFOs 304 1 to 304 18 divided by 5 is the column number of the component matrices (unit size P).
  • the FIFO304 1 the data corresponding to the first position from the first row of the conversion parity check matrix H of FIG. 203 'to the fifth column (messages u j from the check nodes) are packed vertically in each column both Stored in the form (ignoring 0). That is, data corresponding to the position of 1 in the 5 ⁇ 5 unit matrix of (1, 1) to (5, 5) of the conversion parity check matrix H ′ is stored in the first-stage storage area of the FIFO 304 1 . .
  • the sum matrix of (6,1) to (10,5) of the conversion check matrix H ′ (the first shift obtained by cyclically shifting one 5 ⁇ 5 unit matrix to the right by one)
  • the data corresponding to the position of 1 of the first shift matrix constituting the matrix and the sum matrix that is the sum of the matrix and the second shift matrix cyclically shifted by two to the right is stored.
  • the third storage area stores data corresponding to position 1 of the second shift matrix constituting the sum matrix of (6,1) to (10,5) of the conversion check matrix H ′.
  • the constituent matrix is a P ⁇ P unit matrix having a weight of 1, a quasi-unit matrix in which one or more of the elements of the unit matrix are 0, or Data corresponding to the unit matrix, quasi-unit matrix, or 1 position of the shift matrix when the unit matrix or quasi-unit matrix is expressed in the form of a plurality of shift matrices obtained by cyclically shifting the unit matrix or quasi-unit matrix (identity matrix, the message corresponding to the branch belonging to quasi unit matrix or shift matrix) are stored in the same address (same FIFO from among the FIFOs 304 1 to 304 18).
  • data is also stored in the storage areas of the fourth and fifth stages in association with the conversion parity check matrix H ′.
  • the number of stages in the storage area of the FIFO 304 1 is 5, which is the maximum number of 1s (Hamming weights) in the row direction in the first to fifth columns of the conversion parity check matrix H ′.
  • the FIFOs 304 2 and 304 3 store data in association with the conversion parity check matrix H ′, and each has a length (number of stages) of 5.
  • the FIFOs 304 4 to 304 12 store data in association with the conversion check matrix H ′, and each has a length of 3.
  • the FIFOs 304 13 to 304 18 store data in association with the conversion check matrix H ′, and each has a length of 2.
  • the branch data storage memory 300 is composed of six FIFOs 300 1 to 300 6 , and to which row of the conversion check matrix H ′ of FIG. 203 the five messages D 311 supplied from the preceding cyclic shift circuit 308 belong. according to the information (Matrix data) D312, a FIFO to store the data, select from among the FIFO300 1 to 300 6, will be stored in the order together five messages D311 to the selected FIFO. Also, the edge data storage memory 300, when reading data, sequentially reads five messages D300 1 from FIFO 300 1, supplied to the next stage of the selector 301. The branch data storage memory 300 reads the messages in order from the FIFOs 300 2 to 300 6 after reading the messages from the FIFO 300 1 and supplies them to the selector 301.
  • the selector 301 selects five messages from the FIFO from which the current data is read out of the FIFOs 300 1 to 300 6 according to the select signal D301, and supplies the selected message to the check node calculation unit 302 as a message D302.
  • Check node calculation section 302, 302 1 five check node calculator to consist 302 5, messages D302 (D302 1 to D302 5) supplied through the selector 301 using (messages v i of the expression (7)), A check node operation is performed according to Equation (7), and five messages D303 (D303 1 to D303 5 ) (message u j in Equation (7)) obtained as a result of the check node operation are supplied to the cyclic shift circuit 303.
  • the cyclic shift circuit 303 circulates the five messages D303 1 to D303 5 obtained by the check node calculation unit 302 using unit matrices (or quasi-unit matrices) whose corresponding branches are the original in the conversion check matrix H ′.
  • a cyclic shift is performed based on the information (Matrix data) D305 indicating whether the data has been click-shifted, and the result is supplied as a message D304 to the branch data storage memory 304.
  • the branch data storage memory 304 includes 18 FIFOs 304 1 to 304 18 , and according to information D 305 indicating which row of the conversion check matrix H ′ the five messages D 304 supplied from the preceding cyclic shift circuit 303 belong to.
  • the FIFO for storing data is selected from the FIFOs 304 1 to 304 18 , and the five messages D 304 are collectively stored in the selected FIFO in order.
  • the edge data storage memory 304 when reading data, sequentially reads five messages D306 1 from FIFOs 304 1, supplied to the next stage of the selector 305.
  • Edge data storage memory 304 after completion of the data read from the FIFOs 304 1, from FIFOs 304 2 to 304 18, sequentially reads out a message, to the selector 305.
  • the selector 305 selects five messages from the FIFO from which the current data is read out of the FIFOs 304 1 to 304 18 in accordance with the select signal D307, and as the message D308, the variable node calculation unit 307 and the decoded word calculation unit 309.
  • the received data rearrangement unit 310 rearranges the LDPC code D313 corresponding to the parity check matrix H of FIG. 201 received through the communication path 13 by performing column replacement of equation (12), and receives the received data D314 as The data is supplied to the reception data memory 306.
  • the reception data memory 306 calculates and stores reception LLRs (log likelihood ratios) from the reception data D314 supplied from the reception data rearrangement unit 310, and collects the reception LLRs by five as reception values D309.
  • the variable node calculation unit 307 and the decoded word calculation unit 309 are supplied.
  • the variable node calculation unit 307 includes five variable node calculators 307 1 to 307 5 , a message D308 (D308 1 to D308 5 ) (message u j in Expression (1)) supplied through the selector 305, and received data. using five reception values supplied from use memory 306 D309 (formula (reception values u 0i 1)), the variable node operation according to equation (1), to the message D310 (D310 1 not obtained as a result of the calculation D310 5 ) (message v i in equation (1)) is supplied to the cyclic shift circuit 308.
  • the cyclic shift circuit 308 cyclically shifts the message D310 1 to D310 5 calculated by the variable node calculation unit 307 by a number of unit matrices (or quasi-unit matrices) whose corresponding branches are the original in the transformation check matrix H ′. A cyclic shift is performed based on the information as to whether or not the data has been obtained, and the result is supplied to the branch data storage memory 300 as a message D311.
  • the LDPC code can be decoded once (variable node calculation and check node calculation) by performing the above operation once.
  • the decoding apparatus in FIG. 204 decodes the LDPC code a predetermined number of times, and then obtains and outputs a final decoding result in the decoded word calculation unit 309 and the decoded data rearrangement unit 311.
  • the decoded word calculation unit 309 includes five decoded word calculators 309 1 to 309 5 , and five messages D308 (D308 1 to D308 5 ) (message u j in Expression (5)) output from the selector 305 and Using the five reception values D309 (the reception value u 0i in equation (5)) supplied from the reception data memory 306, the decoding result (decoding) based on equation (5) is used as the final stage of multiple times of decoding. And the decoded data D315 obtained as a result is supplied to the decoded data rearranging unit 311.
  • the decoded data rearranging unit 311 rearranges the order of the decoded data D315 supplied from the decoded word calculation unit 309 by performing the column replacement in the formula (12), and obtains the final decoding result. Output as D316.
  • one or both of row permutation and column permutation is applied to the parity check matrix (original parity check matrix), and one or more of the P ⁇ P unit matrix and one of its elements is set to 0.
  • a quasi-unit matrix, a unit matrix or a shift matrix obtained by cyclically shifting a quasi-unit matrix, a unit matrix, a quasi-unit matrix, a sum matrix that is a sum of shift matrices, or a combination of P ⁇ P 0 matrices By converting to a parity check matrix (conversion parity check matrix) that can be represented by a combination of constituent matrices, decoding of LDPC code, check node operation and variable node operation, P smaller than the number of rows and columns of the parity check matrix It is possible to adopt an architecture that performs them simultaneously.
  • the LDPC decoder 166 constituting the receiving device 12 performs LDPC decoding by simultaneously performing P check node operations and P variable node operations, for example, similarly to the decoding device in FIG. 204.
  • the parity check matrix of the LDPC code output from the LDPC encoder 115 that constitutes the transmission apparatus 11 of FIG. 8 is, for example, the parity matrix shown in FIG.
  • the parity interleaver 23 of the transmission apparatus 11 interleaves the K + qx + y + 1-th code bit at the position of the K + Py + x + 1-th code bit.
  • the information length K is set to 60
  • the unit size P is set to 5
  • the group-wise deinterleaver 55 sends the LDPC decoder 166 the LDPC code that has not been subjected to parity deinterleaving, that is, the sequence of equation (12).
  • the LDPC code in a state where the replacement is performed is supplied, and the LDPC decoder 166 performs the same processing as that of the decoding device in FIG. 204 except that the column replacement of Expression (12) is not performed.
  • FIG. 205 is a diagram showing a configuration example of the LDPC decoder 166 of FIG.
  • the LDPC decoder 166 is configured in the same manner as the decoding device in FIG. 204 except that the received data rearrangement unit 310 in FIG. 204 is not provided, and the column replacement of Expression (12) is performed. Except for this, the same processing as that of the decoding apparatus in FIG.
  • the scale can be reduced as compared with the decoding apparatus of FIG.
  • the code length N of the LDPC code is 90
  • the information length K is 60
  • the unit size (number of rows and columns of the constituent matrix) P is 5.
  • the LDPC decoder 166 in FIG. 205 simultaneously performs P check node operations and P variable node operations on such LDPC codes.
  • the present invention can be applied when LDPC decoding is performed.
  • the parity part of the decoded result is unnecessary, and when only the information bits of the decoded result are output, the LDPC decoder 166 without the decoded data rearranging unit 311 is output. Can be configured.
  • FIG. 206 is a diagram for explaining block deinterleaving performed by the block deinterleaver 54 in FIG. 199.
  • block deinterleaving the reverse sequence of the block interleaving of the block interleaver 25 described with reference to FIG. 117 is performed, whereby the sequence of code bits of the LDPC code is restored (restored).
  • the LDPC code is written to and read from m columns equal to the number m of symbol bits, whereby the arrangement of code bits of the LDPC code is restored to the original sequence. Returned.
  • LDPC codes are written in the order in which LDPC codes are read out in block interleaving. Further, in block deinterleaving, LDPC codes are read in the order in which LDPC codes are written in block interleaving.
  • LDPC code part 1 in the m-bit symbol unit is written in the row direction from the first row of all m columns. That is, the sign bit of the LDPC code that is an m-bit symbol is written in the row direction.
  • Part 1 writing in units of m bits is sequentially performed toward the lower row of m columns, and when writing of part 1 is finished, as shown in FIG. 206, the upper part of the first column unit of the column is Reading part 1 from down to down is done from left to right column.
  • FIG. 207 is a block diagram showing another configuration example of the bit deinterleaver 165 of FIG.
  • bit deinterleaver 165 in FIG. 207 has the same configuration as that in FIG. 199 except that a parity deinterleaver 1011 is newly provided.
  • the bit deinterleaver 165 includes a block deinterleaver 54, a groupwise deinterleaver 55, and a parity deinterleaver 1011.
  • the bit deinterleaver 165 performs bit deinterleaving of code bits of the LDPC code from the demapper 164. .
  • the block deinterleaver 54 targets the LDPC code from the demapper 164, and performs block deinterleave corresponding to the block interleave performed by the block interleaver 25 of the transmission apparatus 11 (block inverse interleaving process), that is, block interleave.
  • Block deinterleaving is performed to return the position of the code bit replaced by the original position to the original position, and the resulting LDPC code is supplied to the groupwise deinterleaver 55.
  • the groupwise deinterleaver 55 performs groupwise deinterleaving corresponding to the groupwise interleaving as the rearrangement process performed by the groupwise interleaver 24 of the transmission device 11 on the LDPC code from the block deinterleaver 54.
  • the LDPC code obtained as a result of groupwise deinterleaving is supplied from the groupwise deinterleaver 55 to the parity deinterleaver 1011.
  • the parity deinterleaver 1011 targets the code bit after groupwise deinterleaving in the groupwise deinterleaver 55, and performs parity deinterleaving corresponding to the parity interleaving performed by the parity interleaver 23 of the transmission device 11 (inverse of parity interleaving). In other words, parity deinterleaving is performed to return the code bits of the LDPC code whose arrangement has been changed by parity interleaving to the original order.
  • the LDPC code obtained as a result of parity deinterleaving is supplied from the parity deinterleaver 1011 to the LDPC decoder 166.
  • the LDPC decoder 166 includes an LDPC code in which block deinterleaving, groupwise deinterleaving, and parity deinterleaving are performed, that is, LDPC coding according to the parity check matrix H.
  • the LDPC code obtained by is supplied.
  • the LDPC decoder 166 performs LDPC decoding of the LDPC code from the bit deinterleaver 165 using the parity check matrix H used by the LDPC encoder 115 of the transmission device 11 for LDPC encoding.
  • the LDPC decoder 166 uses the LDPC decoding of the LDPC code from the bit deinterleaver 165 and the LDPC encoder 115 of the transmission apparatus 11 for the LDPC encoding (type B scheme) check matrix H This is used as it is or by using a conversion parity check matrix obtained by performing at least column replacement corresponding to parity interleaving on the parity check matrix H.
  • the LDPC decoder 166 uses the LDPC decoding of the LDPC code from the bit deinterleaver 165 and the parity check matrix (for the type A scheme) used by the LDPC encoder 115 of the transmission apparatus 11 for the LDPC encoding ( 27) using a parity check matrix obtained by performing column substitution (FIG. 28) or a transform parity check matrix obtained by performing row substitution on the parity check matrix used in LDPC encoding (FIG. 27) (FIG. 29).
  • the LDPC code obtained by LDPC encoding according to the parity check matrix H is supplied from the bit deinterleaver 165 (its parity deinterleaver 1011) to the LDPC decoder 166, the LDPC The LDPC decoding of the code is column-replaced with the type B parity check matrix H itself used by the LDPC encoder 115 of the transmitter 11 for LDPC encoding or the type A parity check matrix (FIG. 27) used for LDPC encoding.
  • the parity check matrix FIG. 207
  • the LDPC decoder 166 performs full message processing (check node message, variable node message) sequentially by one node at a time.
  • Decoding device that performs LDPC decoding using coding (full serial decoding) method and message operation for all nodes simultaneously (parallel) It can be composed of a decoding device for performing LDPC decoding by full parallel decoding (full parallel decoding) method of performing.
  • the LDPC decoder 166 performs LDPC decoding of the LDPC code by performing at least column replacement corresponding to parity interleaving on the type B check matrix H used by the LDPC encoder 115 of the transmission apparatus 11 for LDPC encoding.
  • the conversion check matrix obtained or the conversion check matrix (FIG. 29) obtained by performing row substitution on the type A check matrix (FIG. 27) used for LDPC encoding is used.
  • FIG. 207 for convenience of explanation, a block deinterleaver 54 that performs block deinterleaving, a groupwise deinterleaver 55 that performs groupwise deinterleaving, and a parity deinterleaver 1011 that performs parity deinterleaving are illustrated. However, two or more of the block deinterleaver 54, the groupwise deinterleaver 55, and the parity deinterleaver 1011 are included in the parity interleaver 23, the groupwise interleaver 24, And like the block interleaver 25, it can comprise integrally.
  • FIG. 208 is a block diagram illustrating a first configuration example of a receiving system to which the receiving device 12 can be applied.
  • the reception system includes an acquisition unit 1101, a transmission path decoding processing unit 1102, and an information source decoding processing unit 1103.
  • the acquisition unit 1101 obtains a signal including an LDPC code obtained by LDPC encoding at least LDPC target data such as program image data and audio data, for example, terrestrial digital broadcasting, satellite digital broadcasting, CATV network, the Internet, and the like. Obtained via a transmission path (communication path) (not shown) such as a network of the network, and supplied to the transmission path decoding processing unit 1102.
  • a transmission path communication path
  • the acquisition unit 1101 when the signal acquired by the acquisition unit 1101 is broadcast from a broadcasting station via a terrestrial wave, a satellite wave, a CATV (Cable Television) network, or the like, the acquisition unit 1101 includes a tuner, It consists of STB (Set Top Box). Further, when the signal acquired by the acquisition unit 1101 is transmitted from a web server by multicast such as IPTV (Internet Protocol) Television, for example, the acquisition unit 1101 may be a NIC (Network Interface Card) or the like. Network I / F (Inter face).
  • NIC Network Interface Card
  • the transmission path decoding processing unit 1102 corresponds to the receiving device 12.
  • the transmission path decoding processing unit 1102 performs a transmission path decoding process including at least processing for correcting an error occurring in the transmission path on the signal acquired by the acquisition unit 1101 via the transmission path, and obtains a signal obtained as a result thereof.
  • the information is supplied to the information source decoding processing unit 1103.
  • the signal acquired by the acquisition unit 1101 via the transmission path is a signal obtained by performing at least error correction coding for correcting an error occurring in the transmission path.
  • the transmission path decoding processing unit 1102 Such a signal is subjected to transmission path decoding processing such as error correction processing, for example.
  • examples of error correction coding include LDPC coding and BCH coding.
  • at least LDPC encoding is performed as error correction encoding.
  • the transmission path decoding process may include demodulation of the modulation signal.
  • the information source decoding processing unit 1103 performs an information source decoding process including at least a process of expanding the compressed information into the original information on the signal subjected to the transmission path decoding process.
  • the signal acquired by the acquisition unit 1101 via the transmission path may be subjected to compression coding for compressing information in order to reduce the amount of data such as images and sounds as information.
  • the information source decoding processing unit 1103 performs information source decoding processing such as processing (decompression processing) for expanding the compressed information to the original information on the signal subjected to the transmission path decoding processing.
  • the information source decoding processing unit 1103 performs a process of expanding the compressed information to the original information. I will not.
  • examples of the decompression process include MPEG decoding.
  • the transmission path decoding process may include descrambling and the like in addition to the decompression process.
  • the acquisition unit 1101 for example, compression coding such as MPEG coding is performed on data such as images and sound, and further error correction codes such as LDPC coding are performed.
  • the processed signal is acquired via the transmission path and supplied to the transmission path decoding processing unit 1102.
  • the transmission path decoding processing unit 1102 for example, processing similar to that performed by the receiving device 12 is performed on the signal from the acquisition unit 1101 as transmission path decoding processing, and the resulting signal is used as an information source. This is supplied to the decryption processing unit 1103.
  • the information source decoding processing unit 1103 performs information source decoding processing such as MPEG decoding on the signal from the transmission path decoding processing unit 1102 and outputs the resulting image or sound.
  • the reception system of FIG. 208 as described above can be applied to, for example, a television tuner that receives a television broadcast as a digital broadcast.
  • the acquisition unit 1101, the transmission path decoding processing unit 1102, and the information source decoding processing unit 1103 are each configured as one independent device (hardware (IC (IntegratedIntegrCircuit) or the like) or software module)). It is possible.
  • the set of the unit 1103, the acquisition unit 1101, the transmission path decoding processing unit 1102, and the information source decoding processing unit 1103 can be configured as one independent device.
  • FIG. 209 is a block diagram illustrating a second configuration example of a receiving system to which the receiving device 12 can be applied.
  • the reception system of FIG. 209 has an acquisition unit 1101, a transmission path decoding processing unit 1102, and an information source decoding processing unit 1103, and is the same as the case of FIG. 208, in that an output unit 1111 is newly provided. This is different from the case of FIG.
  • the output unit 1111 is, for example, a display device that displays an image or a speaker that outputs audio, and outputs an image, audio, or the like as a signal output from the information source decoding processing unit 1103. That is, the output unit 1111 displays an image or outputs sound.
  • the reception system of FIG. 209 as described above can be applied to, for example, a TV (television receiver) that receives a television broadcast as a digital broadcast, a radio receiver that receives a radio broadcast, or the like.
  • a TV television receiver
  • a radio receiver that receives a radio broadcast
  • the signal output from the transmission path decoding processing unit 1102 is supplied to the output unit 1111.
  • FIG. 210 is a block diagram illustrating a third configuration example of a receiving system to which the receiving device 12 can be applied.
  • the reception system in FIG. 210 is common to the case in FIG. 208 in that it includes an acquisition unit 1101 and a transmission path decoding processing unit 1102.
  • the receiving system of FIG. 210 is different from the case of FIG. 208 in that the information source decoding processing unit 1103 is not provided and the recording unit 1121 is newly provided.
  • the recording unit 1121 records a signal (for example, TS packet of MPEG TS) output from the transmission path decoding processing unit 1102 on a recording (storage) medium such as an optical disk, a hard disk (magnetic disk), or a flash memory (memory). )
  • a recording (storage) medium such as an optical disk, a hard disk (magnetic disk), or a flash memory (memory).
  • the reception system of FIG. 210 as described above can be applied to a recorder or the like for recording a television broadcast.
  • the reception system is configured by providing an information source decoding processing unit 1103, and the information source decoding processing unit 1103 performs a signal after the information source decoding processing, that is, an image obtained by decoding, Audio can be recorded by the recording unit 1121.
  • FIG. 211 shows a configuration example of an embodiment of a computer in which a program for executing the above-described series of processing is installed.
  • the program can be recorded in advance in a hard disk 705 or a ROM 703 as a recording medium built in the computer.
  • the program is stored temporarily on a removable recording medium 711 such as a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a magnetic disc, or a semiconductor memory. It can be stored permanently (recorded).
  • a removable recording medium 711 can be provided as so-called package software.
  • the program is installed in the computer from the removable recording medium 711 as described above, or transferred from the download site to the computer wirelessly via a digital satellite broadcasting artificial satellite, LAN (Local Area Network),
  • the program can be transferred to a computer via a network such as the Internet.
  • the computer can receive the program transferred in this way by the communication unit 708 and install it in the built-in hard disk 705.
  • the computer has a CPU (Central Processing Unit) 702 built-in.
  • An input / output interface 710 is connected to the CPU 702 via a bus 701, and the CPU 702 operates an input unit 707 including a keyboard, a mouse, a microphone, and the like by the user via the input / output interface 710.
  • a program stored in a ROM (Read Only Memory) 703 is executed accordingly.
  • the CPU 702 may be a program stored in the hard disk 705, a program transferred from a satellite or a network, received by the communication unit 708 and installed in the hard disk 705, or a removable recording medium 711 installed in the drive 709.
  • the program read and installed in the hard disk 705 is loaded into a RAM (Random Access Memory) 704 and executed.
  • the CPU 702 performs processing according to the above-described flowchart or processing performed by the configuration of the above-described block diagram.
  • the CPU 702 outputs the processing result from the output unit 706 configured by an LCD (Liquid Crystal Display), a speaker, or the like, for example, via the input / output interface 710 or from the communication unit 708 as necessary. Transmission and further recording on the hard disk 705 are performed.
  • processing steps for describing a program for causing a computer to perform various types of processing do not necessarily have to be processed in time series according to the order described in the flowchart, but in parallel or individually. This includes processing to be executed (for example, parallel processing or processing by an object).
  • the program may be processed by one computer, or may be processed in a distributed manner by a plurality of computers. Furthermore, the program may be transferred to a remote computer and executed.
  • the above-described new LDPC code (its check matrix initial value table) and GW pattern can be used for satellite lines, terrestrial waves, cables (wired lines), and other communication paths 13 (FIG. 7). Furthermore, the new LDPC code and GW pattern can be used for data transmission other than digital broadcasting.

Abstract

本技術は、LDPC符号を用いたデータ伝送において、良好な通信品質を確保することができるようにする送信方法、及び、受信装置に関する。 グループワイズインターリーブでは、符号長Nが69120ビットのLDPC符号が、360ビットのビットグループ単位でインターリーブされる。グループワイズデインターリーブでは、グループワイズインターリーブ後のLDPC符号の並びが元の並びに戻される。本技術は、例えば、LDPC符号を用いたデータ伝送等を行う場合に適用できる。

Description

送信方法、及び、受信装置
 本技術は、送信方法、及び、受信装置に関し、特に、例えば、LDPC符号を用いたデータ伝送において、良好な通信品質を確保することができるようにする送信方法、及び、受信装置に関する。
 LDPC(Low Density Parity Check)符号は、高い誤り訂正能力を有し、近年では、例えば、欧州等のDVB(Digital Video Broadcasting)-S.2や、DVB-T.2、DVB-C.2、米国等のATSC(Advanced Television Systems Committee)3.0等のディジタル放送等の伝送方式に広く採用されている(例えば、非特許文献1を参照)。
 LDPC符号は、近年の研究により、ターボ符号等と同様に、符号長を長くしていくにしたがって、シャノン限界に近い性能が得られることがわかりつつある。また、LDPC符号は、最小距離が符号長に比例するという性質があることから、その特徴として、ブロック誤り確率特性がよく、さらに、ターボ符号等の復号特性において観測される、いわゆるエラーフロア現象が殆ど生じないことも利点として挙げられる。
ATSC Standard:Physical Layer Protocol(A/322), 7 September 2016
 LDPC符号を用いたデータ伝送では、例えば、LDPC符号が、QPSK(Quadrature Phase Shift Keying)等の直交変調(ディジタル変調)のシンボルとされ(シンボル化され)、そのシンボルが、直交変調の信号点にマッピングされて送信される。
 以上のようなLDPC符号を用いたデータ伝送は、世界的に拡がりつつあり、良好な通信(伝送)品質を確保することが要請されている。
 本技術は、このような状況に鑑みてなされたものであり、LDPC符号を用いたデータ伝送において、良好な通信品質を確保することができるようにするものである。
 本技術の第1の送信方法は、符号長Nが69120ビットであり、符号化率rが2/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 1617 1754 1768 2501 6874 12486 12872 16244 18612 19698 21649 30954 33221 33723 34495 37587 38542 41510 42268 52159 59780
 206 610 991 2665 4994 5681 12371 17343 25547 26291 26678 27791 27828 32437 33153 35429 39943 45246 46732 53342 60451
 119 682 963 3339 6794 7021 7295 8856 8942 10842 11318 14050 14474 27281 28637 29963 37861 42536 43865 48803 59969
 175 201 355 5418 7990 10567 10642 12987 16685 18463 21861 24307 25274 27515 39631 40166 43058 47429 55512 55519 59426
 117 839 1043 1960 6896 19146 24022 26586 29342 29906 33129 33647 33883 34113 34550 38720 40247 45651 51156 53053 56614
 135 236 257 7505 9412 12642 19752 20201 26010 28967 31146 37156 44685 45667 50066 51283 54365 55475 56501 58763 59121
 109 840 1573 5523 19968 23924 24644 27064 29410 31276 31526 32173 38175 43570 43722 46655 46660 48353 54025 57319 59818
 522 1236 1573 6563 11625 13846 17570 19547 22579 22584 29338 30497 33124 33152 35407 36364 37726 41426 53800 57130
 504 1330 1481 13809 15761 20050 26339 27418 29630 32073 33762 34354 36966 43315 47773 47998 48824 50535 53437 55345
 348 1244 1492 9626 9655 15638 22727 22971 28357 28841 31523 37543 41100 42372 48983 50354 51434 54574 55031 58193
 742 1223 1459 20477 21731 23163 23587 30829 31144 32186 32235 32593 34130 40829 42217 42294 42753 44058 49940 51993
 841 860 1534 5878 7083 7113 9658 10508 12871 12964 14023 21055 22680 23927 32701 35168 40986 42139 50708 55350
 657 1018 1690 6454 7645 7698 8657 9615 16462 18030 19850 19857 33265 33552 42208 44424 48965 52762 55439 58299
 14 511 1376 2586 6797 9409 9599 10784 13076 18509 27363 27667 30262 34043 37043 38143 40246 53811 58872 59250
 315 883 1487 2067 7537 8749 10785 11820 15702 20232 22850 23540 30247 41182 44884 50601 52140 55970 57879 58514
 256 1442 1534 2342 9734 10789 15334 15356 20334 20433 22923 23521 29391 30553 35406 35643 35701 37968 39541 58097
 260 1238 1557 14167 15271 18046 20588 23444 25820 26660 30619 31625 33258 38554 40401 46471 53589 54904 56455 60016
 591 885 1463 3411 14043 17083 17372 23029 23365 24691 25527 26389 28621 29999 40343 40359 40394 45685 46209 54887
 1119 1411 1664 7879 17732 27000 28506 32237 32445 34100 34926 36470 42848 43126 44117 48780 49519 49592 51901 56580
 147 1333 1560 6045 11526 14867 15647 19496 26626 27600 28044 30446 35920 37523 42907 42974 46452 52480 57061 60152
 304 591 680 5557 6948 13550 19689 19697 22417 23237 25813 31836 32736 36321 36493 36671 46756 53311 59230 59248
 586 777 1018 2393 2817 4057 8068 10632 12430 13193 16433 17344 24526 24902 27693 39301 39776 42300 45215 52149
 684 1425 1732 2436 4279 7375 8493 10023 14908 20703 25656 25757 27251 27316 33211 35741 38872 42908 55079 58753
 962 981 1773 2814 3799 6243 8163 12655 21226 31370 32506 35372 36697 47037 49095 55400 57506 58743 59678 60422
 6229 6484 8795 8981 13576 28622 35526 36922 37284 42155 43443 44080 44446 46649 50824 52987 59033
 2742 5176 10231 10336 16729 17273 18474 25875 28227 34891 39826 42595 48600 52542 53023 53372 57331
 3512 4163 4725 8375 8585 19795 22844 28615 28649 29481 41484 41657 53255 54222 54229 57258 57647
 3358 5239 9423 10858 15636 17937 20678 22427 31220 37069 38770 42079 47256 52442 55152 56964 59169
 2243 10090 12309 15437 19426 23065 24872 36192 36336 36949 41387 49915 50155 54338 54422 56561 57984
 である送信方法である。
 本技術の第1の受信装置は、符号長Nが69120ビットであり、符号化率rが2/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 1617 1754 1768 2501 6874 12486 12872 16244 18612 19698 21649 30954 33221 33723 34495 37587 38542 41510 42268 52159 59780
 206 610 991 2665 4994 5681 12371 17343 25547 26291 26678 27791 27828 32437 33153 35429 39943 45246 46732 53342 60451
 119 682 963 3339 6794 7021 7295 8856 8942 10842 11318 14050 14474 27281 28637 29963 37861 42536 43865 48803 59969
 175 201 355 5418 7990 10567 10642 12987 16685 18463 21861 24307 25274 27515 39631 40166 43058 47429 55512 55519 59426
 117 839 1043 1960 6896 19146 24022 26586 29342 29906 33129 33647 33883 34113 34550 38720 40247 45651 51156 53053 56614
 135 236 257 7505 9412 12642 19752 20201 26010 28967 31146 37156 44685 45667 50066 51283 54365 55475 56501 58763 59121
 109 840 1573 5523 19968 23924 24644 27064 29410 31276 31526 32173 38175 43570 43722 46655 46660 48353 54025 57319 59818
 522 1236 1573 6563 11625 13846 17570 19547 22579 22584 29338 30497 33124 33152 35407 36364 37726 41426 53800 57130
 504 1330 1481 13809 15761 20050 26339 27418 29630 32073 33762 34354 36966 43315 47773 47998 48824 50535 53437 55345
 348 1244 1492 9626 9655 15638 22727 22971 28357 28841 31523 37543 41100 42372 48983 50354 51434 54574 55031 58193
 742 1223 1459 20477 21731 23163 23587 30829 31144 32186 32235 32593 34130 40829 42217 42294 42753 44058 49940 51993
 841 860 1534 5878 7083 7113 9658 10508 12871 12964 14023 21055 22680 23927 32701 35168 40986 42139 50708 55350
 657 1018 1690 6454 7645 7698 8657 9615 16462 18030 19850 19857 33265 33552 42208 44424 48965 52762 55439 58299
 14 511 1376 2586 6797 9409 9599 10784 13076 18509 27363 27667 30262 34043 37043 38143 40246 53811 58872 59250
 315 883 1487 2067 7537 8749 10785 11820 15702 20232 22850 23540 30247 41182 44884 50601 52140 55970 57879 58514
 256 1442 1534 2342 9734 10789 15334 15356 20334 20433 22923 23521 29391 30553 35406 35643 35701 37968 39541 58097
 260 1238 1557 14167 15271 18046 20588 23444 25820 26660 30619 31625 33258 38554 40401 46471 53589 54904 56455 60016
 591 885 1463 3411 14043 17083 17372 23029 23365 24691 25527 26389 28621 29999 40343 40359 40394 45685 46209 54887
 1119 1411 1664 7879 17732 27000 28506 32237 32445 34100 34926 36470 42848 43126 44117 48780 49519 49592 51901 56580
 147 1333 1560 6045 11526 14867 15647 19496 26626 27600 28044 30446 35920 37523 42907 42974 46452 52480 57061 60152
 304 591 680 5557 6948 13550 19689 19697 22417 23237 25813 31836 32736 36321 36493 36671 46756 53311 59230 59248
 586 777 1018 2393 2817 4057 8068 10632 12430 13193 16433 17344 24526 24902 27693 39301 39776 42300 45215 52149
 684 1425 1732 2436 4279 7375 8493 10023 14908 20703 25656 25757 27251 27316 33211 35741 38872 42908 55079 58753
 962 981 1773 2814 3799 6243 8163 12655 21226 31370 32506 35372 36697 47037 49095 55400 57506 58743 59678 60422
 6229 6484 8795 8981 13576 28622 35526 36922 37284 42155 43443 44080 44446 46649 50824 52987 59033
 2742 5176 10231 10336 16729 17273 18474 25875 28227 34891 39826 42595 48600 52542 53023 53372 57331
 3512 4163 4725 8375 8585 19795 22844 28615 28649 29481 41484 41657 53255 54222 54229 57258 57647
 3358 5239 9423 10858 15636 17937 20678 22427 31220 37069 38770 42079 47256 52442 55152 56964 59169
 2243 10090 12309 15437 19426 23065 24872 36192 36336 36949 41387 49915 50155 54338 54422 56561 57984
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第2の送信方法は、符号長Nが69120ビットであり、符号化率rが4/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 561 825 1718 4745 7515 13041 13466 18039 19065 21821 32596 32708 35323 36399 36450 41124 43036 43218 43363 44875 49948
 56 102 1779 2427 5381 8768 15336 26473 35717 38748 39066 45002 50720
 694 1150 1533 2177 5801 6610 7601 16657 18949 33472 47746 49581 50668
 90 1122 1472 2085 2593 4986 8200 9175 15502 44084 46057 48546 50487
 521 619 708 6915 8978 14211 17426 23058 23463 27440 29822 33443 42871
 449 912 1471 8058 9344 11928 20533 20600 20737 26557 26970 27616 33791
 355 700 1528 6478 9588 10790 20992 33122 34283 41295 43439 46249 47763
 997 1543 1679 5874 7973 7975 11113 28275 28812 29864 35070 36864 50676
 85 326 1392 4186 10855 11005 12913 19263 22984 31733 33787 37567 48173
 986 1144 1508 19864 28918 29117 33609 36452 47975 48432 48842 49274 51533
 437 1190 1413 3814 6695 17541 22060 25845 28431 37453 38912 44170 49231
 327 1171 1204 6952 11880 16469 25058 28956 31523 36770 40189 43422 46481
 123 605 619 8118 8455 19550 20529 21762 21950 28485 30946 34755 34765
 113 896 971 6400 27059 33383 34537 35827 38796 40582 42594 43098 48525
 162 854 1015 2938 10659 12085 13040 32772 33023 35878 49674 51060 51333
 100 452 1703 1932 4208 5127 12086 14549 16084 17890 20870 41364 48498
 1569 1633 1666 12957 18611 22499 38418 38719 42135 46815 48274 50947 51387
 119 691 1190 2457 3865 7468 12512 30782 31811 33508 36586 41789 47426
 867 1117 1666 4376 13263 13466 33524 37440 38136 39800 41454 41620 42510
 378 900 1754 16303 25369 27103 28360 30958 35316 44165 46682 47016 50004
 1321 1549 1570 16276 17284 19431 23482 23920 27386 27517 46253 48617 50118
 37 383 1418 15792 22551 28843 36532 36718 38805 39226 45671 47712 51769
 150 787 1441 17828 19396 21576 21805 24048 31868 32891 42486 43020 45492
 1095 1214 1744 2445 5773 10209 11526 29604 30121 36526 45786 47376 49366
 412 448 1281 11164 14501 15538 15773 23305 31960 32721 40744 45731 50269
 183 626 837 4491 12237 13705 15177 15973 21266 25374 41232 44147 50529
 618 1550 1594 5474 9260 16552 18122 26061 30420 30922 32661 34390 43236
 135 496 757 9327 15659 20738 24327 26688 29063 38993 46155 49532 50001
 64 126 1714 5561 8921 11300 12688 14454 16857 19585 20528 24107 27252
 528 687 1730 9735 11737 16396 19200 33712 34271 38241 42027 44471 45581
 69 646 1447 8603 19706 22153 22398 23840 24638 27254 29107 30368 41419
 673 845 1285 9100 11064 14804 15425 17357 27248 31223 32410 35444 48018
 124 1531 1677 3672 3673 3786 8886 9557 10003 11053 13053 22458 25413
 102 1154 1758 5721 6034 14567 17772 28670 33380 34284 35356 47480 48123
 48 351 760 2078 9797 22956 26120 34119 39658 41039 45237 47861 49022
 254 445 841 6835 18340 19021 20053 22874 32639 36679 42004 45696 49530
 16 802 903 6218 16206 22068 23049 28201 30377 33947 44358 44739 49303
 153 1542 1629 7992 29900 34931 36927 38651 39981 41085 41327 50185 51484
 525 1291 1765 9425 20271 31229 37444 38996 39145 41711 43188 45203 51255
 2 244 1648 12321 14991 17426 18456 20126 29915 32581 38880 39516 49013
 23 452 705 9414 11862 13764 18179 35458 37892 40471 46041 46494 48746
 509 1201 1328 8921 9867 10947 19476 22693 32636 34301 38356 39238 51797
 246 249 1390 12438 13266 24060 33628 37130 42923 43298 43709 43721 45413
 117 257 748 9419 9461 11350 12790 16724 33147 34168 34683 37884 42699
 619 646 740 7468 7604 8152 16296 19120 27614 27748 40170 40289 49366
 914 1360 1716 10817 17672 18919 26146 29631 40903 46716 49502 51576 51657
 68 702 1552 10431 10925 12856 24516 26440 30834 31179 32277 35019 44108
 588 880 1524 6641 9453 9653 13679 14488 20714 25865 42217 42637 48312
 6380 12240 12558 12816 21460 24206 26129 28555 41616 51767
 8889 16221 21629 23476 33954 40572 43494 44666 44885 49813
 16938 17727 17913 18898 21754 32515 35686 36920 39898 43560
 9170 11747 14681 22874 24537 24685 26989 28947 33592 34621
 2427 10241 29649 30522 37700 37789 41656 44020 49801 51268
 である送信方法である。
 本技術の第2の受信装置は、符号長Nが69120ビットであり、符号化率rが4/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 561 825 1718 4745 7515 13041 13466 18039 19065 21821 32596 32708 35323 36399 36450 41124 43036 43218 43363 44875 49948
 56 102 1779 2427 5381 8768 15336 26473 35717 38748 39066 45002 50720
 694 1150 1533 2177 5801 6610 7601 16657 18949 33472 47746 49581 50668
 90 1122 1472 2085 2593 4986 8200 9175 15502 44084 46057 48546 50487
 521 619 708 6915 8978 14211 17426 23058 23463 27440 29822 33443 42871
 449 912 1471 8058 9344 11928 20533 20600 20737 26557 26970 27616 33791
 355 700 1528 6478 9588 10790 20992 33122 34283 41295 43439 46249 47763
 997 1543 1679 5874 7973 7975 11113 28275 28812 29864 35070 36864 50676
 85 326 1392 4186 10855 11005 12913 19263 22984 31733 33787 37567 48173
 986 1144 1508 19864 28918 29117 33609 36452 47975 48432 48842 49274 51533
 437 1190 1413 3814 6695 17541 22060 25845 28431 37453 38912 44170 49231
 327 1171 1204 6952 11880 16469 25058 28956 31523 36770 40189 43422 46481
 123 605 619 8118 8455 19550 20529 21762 21950 28485 30946 34755 34765
 113 896 971 6400 27059 33383 34537 35827 38796 40582 42594 43098 48525
 162 854 1015 2938 10659 12085 13040 32772 33023 35878 49674 51060 51333
 100 452 1703 1932 4208 5127 12086 14549 16084 17890 20870 41364 48498
 1569 1633 1666 12957 18611 22499 38418 38719 42135 46815 48274 50947 51387
 119 691 1190 2457 3865 7468 12512 30782 31811 33508 36586 41789 47426
 867 1117 1666 4376 13263 13466 33524 37440 38136 39800 41454 41620 42510
 378 900 1754 16303 25369 27103 28360 30958 35316 44165 46682 47016 50004
 1321 1549 1570 16276 17284 19431 23482 23920 27386 27517 46253 48617 50118
 37 383 1418 15792 22551 28843 36532 36718 38805 39226 45671 47712 51769
 150 787 1441 17828 19396 21576 21805 24048 31868 32891 42486 43020 45492
 1095 1214 1744 2445 5773 10209 11526 29604 30121 36526 45786 47376 49366
 412 448 1281 11164 14501 15538 15773 23305 31960 32721 40744 45731 50269
 183 626 837 4491 12237 13705 15177 15973 21266 25374 41232 44147 50529
 618 1550 1594 5474 9260 16552 18122 26061 30420 30922 32661 34390 43236
 135 496 757 9327 15659 20738 24327 26688 29063 38993 46155 49532 50001
 64 126 1714 5561 8921 11300 12688 14454 16857 19585 20528 24107 27252
 528 687 1730 9735 11737 16396 19200 33712 34271 38241 42027 44471 45581
 69 646 1447 8603 19706 22153 22398 23840 24638 27254 29107 30368 41419
 673 845 1285 9100 11064 14804 15425 17357 27248 31223 32410 35444 48018
 124 1531 1677 3672 3673 3786 8886 9557 10003 11053 13053 22458 25413
 102 1154 1758 5721 6034 14567 17772 28670 33380 34284 35356 47480 48123
 48 351 760 2078 9797 22956 26120 34119 39658 41039 45237 47861 49022
 254 445 841 6835 18340 19021 20053 22874 32639 36679 42004 45696 49530
 16 802 903 6218 16206 22068 23049 28201 30377 33947 44358 44739 49303
 153 1542 1629 7992 29900 34931 36927 38651 39981 41085 41327 50185 51484
 525 1291 1765 9425 20271 31229 37444 38996 39145 41711 43188 45203 51255
 2 244 1648 12321 14991 17426 18456 20126 29915 32581 38880 39516 49013
 23 452 705 9414 11862 13764 18179 35458 37892 40471 46041 46494 48746
 509 1201 1328 8921 9867 10947 19476 22693 32636 34301 38356 39238 51797
 246 249 1390 12438 13266 24060 33628 37130 42923 43298 43709 43721 45413
 117 257 748 9419 9461 11350 12790 16724 33147 34168 34683 37884 42699
 619 646 740 7468 7604 8152 16296 19120 27614 27748 40170 40289 49366
 914 1360 1716 10817 17672 18919 26146 29631 40903 46716 49502 51576 51657
 68 702 1552 10431 10925 12856 24516 26440 30834 31179 32277 35019 44108
 588 880 1524 6641 9453 9653 13679 14488 20714 25865 42217 42637 48312
 6380 12240 12558 12816 21460 24206 26129 28555 41616 51767
 8889 16221 21629 23476 33954 40572 43494 44666 44885 49813
 16938 17727 17913 18898 21754 32515 35686 36920 39898 43560
 9170 11747 14681 22874 24537 24685 26989 28947 33592 34621
 2427 10241 29649 30522 37700 37789 41656 44020 49801 51268
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第3の送信方法は、符号長Nが69120ビットであり、符号化率rが6/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 608 1394 3635 14404 15203 19848 22161 23175 26651 31945 41227
 481 570 11088 11673 11866 17145 17247 17564 21607 25992 31286
 1207 1257 1870 8472 8855 10511 15656 17064 22720 28352 30914
 1171 1585 6218 7621 10121 11374 13184 22714 27207 27959 38572
 244 548 2073 4937 7509 11840 12850 18762 25618 27902 37150
 15 1352 7060 7886 8151 10574 14172 15258 24838 30827 35337
 1009 1651 13300 13958 26240 29983 32340 40743 41553 42475 42873
 638 1405 5544 6797 10001 14934 24766 35758 40719 41787 42342
 1467 1481 3202 11324 14048 15217 17608 22544 26736 32073 33405
 1274 1343 3576 4166 8712 10756 21175 26866 37021 40341 42064
 1232 1590 4409 8705 13307 28481 30893 36031 36780 37697 39149
 189 1678 9943 10774 11765 25520 26133 27351 27353 40664 41534
 125 1421 5009 9365 12792 15933 16231 25975 27076 27997 32429
 1361 1764 5376 11071 14456 16324 20318 26168 28445 30392 34235
 1017 1303 3312 6738 7813 18149 25506 29032 36789 38742 43116
 463 967 10876 13874 14303 16789 21656 26555 38738 39195 40668
 630 1104 3029 3165 5157 12880 14175 16498 35121 38917 40944
 716 1054 10011 11739 16913 19396 20892 23370 24392 27614 38467
 1081 1238 2872 10259 13618 16943 17363 23570 29721 32411 38969
 775 1002 2978 9202 16618 22697 30716 31750 36517 37294 40454
 25 497 10687 13308 15302 17525 17539 21865 22279 24516 26992
 781 878 6426 8551 12328 21375 27626 28192 29731 35423 35606
 729 1734 3479 6850 14347 14776 21998 33617 34690 38597 38704
 122 1378 1660 7448 7659 11900 13039 13796 19908
 504 716 1551 5655 6245 8365 9825 16627 29100
 88 900 1057 2620 16729 17278 17444 26106 26587
 30 1697 1736 8718 11664 20885 27043 42569 42913
 293 634 1188 4005 5266 6205 26756 30207 37757
 254 755 1187 4631 13433 25055 28354 28583 30446
 316 1381 1522 3131 4340 27284 28246 28282 43174
 84 293 645 2148 7925 13104 25010 36836 39033
 982 1486 1660 4287 5335 18350 26913 30774 31280
 418 1028 1039 3334 4577 6553 7011 17259 31922
 1324 1361 1690 5991 7740 16880 18479 25713 31823
 735 1322 1727 8629 14655 15815 16762 23263 36859
 19 928 1561 11161 12894 14226 21331 41128 41883
 327 940 1004 13616 15894 31400 34106 34443 37957
 576 953 1226 2122 4900 5002 10248 25476 30787
 249 632 1240 5432 23019 29225 31719 36658 41360
 980 1154 1783 4351 10245 23347 27442 28328 38555
 581 863 1552 5057 7572 14544 20482 29482 31672
 4 502 1450 4883 5176 6824 10430 32680 39581
 81 761 1558 2269 5391 13213 24184 25523 39429
 1085 1163 1244 7694 9125 17387 22223 26343 37933
 204 1127 1483 18302 19939 20576 31599 32619 42911
 345 387 591 8727 18080 20628 32251 34562 42821
 957 1126 1133 4099 12272 15595 20906 23606 34564
 409 1310 1335 2761 11952 26853 27941 29262 31647
 329 818 1527 3890 5238 8742 15586 28739 43015
 231 1158 1677 4314 15937 17526 18391 22963 39232
 34 275 526 2975 4742 16109 17346 29145 37673
 497 735 1261 7468 8769 17342 19763 32646 33497
 879 1233 1633 11612 22941 23723 31969 35571 39510
 886 954 1355 5532 8283 26965 29267 30820 40402
 356 1199 1452 8833 14845 21722 23840 26539 27970
 553 1570 1732 8249 16820 23181 23234 30754 40399
 457 1304 1698 2774 11357 32906 34484 38700 41799
 456 579 1155 23844 27261 29172 30980 35000 40984
 301 1290 1782 6798 9735 23655 31040 35554 36366
 228 483 561 12346 16698 32688 34518 38648 41677
 35 184 997 4915 7077 9878 16772 26263 27270
 181 193 1255 7548 17103 34511 36590 38107 42065
 697 1024 1541 2164 15638 20061 32499 32667 32732
 654 968 1632 3215 4901 6286 12414 13963 29636
 89 150 450 5771 10863 29809 36886 37914 42983
 517 1046 1153 5458 18093 25579 31084 37779 42050
 345 914 1372 4548 6720 13678 13755 15422 41938
 301 518 1107 3603 6076 9265 19580 41645 42621
 155 1013 1441 10166 10545 22042 30084 33026 34505
 899 1308 1766 22228 24520 24589 30833 32126 37147
 177 230 349 6309 9642 25713 30455 34964 40524
 802 1364 1703 3573 17317 20364 22849 24265 24925
 3952 10609 11011 16296 31430 39995 40207 41606 42424
 16548 19896 22579 23043 23126 24141 34331 34959 37990
 12197 15244 22990 23110 25507 30011 37681 38902 39432
 2292 11871 15562 22304 33059 35126 39158 41206 41866
 3497 7847 11510 16212 19408 26780 27967 33953 34451
 である送信方法である。
 本技術の第3の受信装置は、符号長Nが69120ビットであり、符号化率rが6/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
 の並びにインターリーブし、前記検査行列は、所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列とを含み、前記所定値M1は、1800であり、前記A行列及びC行列は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
 608 1394 3635 14404 15203 19848 22161 23175 26651 31945 41227
 481 570 11088 11673 11866 17145 17247 17564 21607 25992 31286
 1207 1257 1870 8472 8855 10511 15656 17064 22720 28352 30914
 1171 1585 6218 7621 10121 11374 13184 22714 27207 27959 38572
 244 548 2073 4937 7509 11840 12850 18762 25618 27902 37150
 15 1352 7060 7886 8151 10574 14172 15258 24838 30827 35337
 1009 1651 13300 13958 26240 29983 32340 40743 41553 42475 42873
 638 1405 5544 6797 10001 14934 24766 35758 40719 41787 42342
 1467 1481 3202 11324 14048 15217 17608 22544 26736 32073 33405
 1274 1343 3576 4166 8712 10756 21175 26866 37021 40341 42064
 1232 1590 4409 8705 13307 28481 30893 36031 36780 37697 39149
 189 1678 9943 10774 11765 25520 26133 27351 27353 40664 41534
 125 1421 5009 9365 12792 15933 16231 25975 27076 27997 32429
 1361 1764 5376 11071 14456 16324 20318 26168 28445 30392 34235
 1017 1303 3312 6738 7813 18149 25506 29032 36789 38742 43116
 463 967 10876 13874 14303 16789 21656 26555 38738 39195 40668
 630 1104 3029 3165 5157 12880 14175 16498 35121 38917 40944
 716 1054 10011 11739 16913 19396 20892 23370 24392 27614 38467
 1081 1238 2872 10259 13618 16943 17363 23570 29721 32411 38969
 775 1002 2978 9202 16618 22697 30716 31750 36517 37294 40454
 25 497 10687 13308 15302 17525 17539 21865 22279 24516 26992
 781 878 6426 8551 12328 21375 27626 28192 29731 35423 35606
 729 1734 3479 6850 14347 14776 21998 33617 34690 38597 38704
 122 1378 1660 7448 7659 11900 13039 13796 19908
 504 716 1551 5655 6245 8365 9825 16627 29100
 88 900 1057 2620 16729 17278 17444 26106 26587
 30 1697 1736 8718 11664 20885 27043 42569 42913
 293 634 1188 4005 5266 6205 26756 30207 37757
 254 755 1187 4631 13433 25055 28354 28583 30446
 316 1381 1522 3131 4340 27284 28246 28282 43174
 84 293 645 2148 7925 13104 25010 36836 39033
 982 1486 1660 4287 5335 18350 26913 30774 31280
 418 1028 1039 3334 4577 6553 7011 17259 31922
 1324 1361 1690 5991 7740 16880 18479 25713 31823
 735 1322 1727 8629 14655 15815 16762 23263 36859
 19 928 1561 11161 12894 14226 21331 41128 41883
 327 940 1004 13616 15894 31400 34106 34443 37957
 576 953 1226 2122 4900 5002 10248 25476 30787
 249 632 1240 5432 23019 29225 31719 36658 41360
 980 1154 1783 4351 10245 23347 27442 28328 38555
 581 863 1552 5057 7572 14544 20482 29482 31672
 4 502 1450 4883 5176 6824 10430 32680 39581
 81 761 1558 2269 5391 13213 24184 25523 39429
 1085 1163 1244 7694 9125 17387 22223 26343 37933
 204 1127 1483 18302 19939 20576 31599 32619 42911
 345 387 591 8727 18080 20628 32251 34562 42821
 957 1126 1133 4099 12272 15595 20906 23606 34564
 409 1310 1335 2761 11952 26853 27941 29262 31647
 329 818 1527 3890 5238 8742 15586 28739 43015
 231 1158 1677 4314 15937 17526 18391 22963 39232
 34 275 526 2975 4742 16109 17346 29145 37673
 497 735 1261 7468 8769 17342 19763 32646 33497
 879 1233 1633 11612 22941 23723 31969 35571 39510
 886 954 1355 5532 8283 26965 29267 30820 40402
 356 1199 1452 8833 14845 21722 23840 26539 27970
 553 1570 1732 8249 16820 23181 23234 30754 40399
 457 1304 1698 2774 11357 32906 34484 38700 41799
 456 579 1155 23844 27261 29172 30980 35000 40984
 301 1290 1782 6798 9735 23655 31040 35554 36366
 228 483 561 12346 16698 32688 34518 38648 41677
 35 184 997 4915 7077 9878 16772 26263 27270
 181 193 1255 7548 17103 34511 36590 38107 42065
 697 1024 1541 2164 15638 20061 32499 32667 32732
 654 968 1632 3215 4901 6286 12414 13963 29636
 89 150 450 5771 10863 29809 36886 37914 42983
 517 1046 1153 5458 18093 25579 31084 37779 42050
 345 914 1372 4548 6720 13678 13755 15422 41938
 301 518 1107 3603 6076 9265 19580 41645 42621
 155 1013 1441 10166 10545 22042 30084 33026 34505
 899 1308 1766 22228 24520 24589 30833 32126 37147
 177 230 349 6309 9642 25713 30455 34964 40524
 802 1364 1703 3573 17317 20364 22849 24265 24925
 3952 10609 11011 16296 31430 39995 40207 41606 42424
 16548 19896 22579 23043 23126 24141 34331 34959 37990
 12197 15244 22990 23110 25507 30011 37681 38902 39432
 2292 11871 15562 22304 33059 35126 39158 41206 41866
 3497 7847 11510 16212 19408 26780 27967 33953 34451
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第4の送信方法は、符号長Nが69120ビットであり、符号化率rが8/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 1850 4176 4190 7294 8168 8405 9258 9710 13440 16304 16600 18184 18834 19899 22513 25068 26659 27137 27232 29186 29667 30549 31428 33634
 2477 2543 5094 8081 9573 10269 11276 11439 13016 13327 16717 18042 19362 19721 20089 20425 20503 21396 24677 24722 28703 32486 32759 33630
 1930 2158 2315 2683 3818 4883 5252 5505 8760 9580 11867 13117 14566 15639 17273 18820 21069 24945 25667 26785 30678 31271 33003 33244
 1279 1491 2038 2347 2432 4336 4905 6588 7507 7666 8775 9172 10405 12249 12270 12373 12936 13046 13364 15130 17597 22855 27548 32895
 620 1897 3775 5552 6799 7621 10167 10172 10615 11367 12093 13241 15426 16623 19467 19792 22069 22370 24472 24594 25205 25954 27800 29422
 582 1618 4673 5809 6318 6883 8051 12335 12409 13176 14078 15206 17580 18624 18876 19079 20786 21177 25894 26395 27377 27757 30167 31971
 1157 2189 4160 4480 5055 8961 9171 9444 10533 11581 12904 14256 14620 15773 16232 17598 19756 21134 21443 22559 23258 25137 25555 28150
 987 1258 1269 2394 4859 5642 5705 6093 6408 7734 8804 10657 11946 16132 20267 25402 26505 26548 27060 29767 29780 31915 31966 33590
 1010 1363 1626 5283 6356 10961 12418 14332 14362 16288 16303 16592 17096 20115 20285 20478 21774 22165 22425 23198 25048 25596 31540 32841
 895 2743 2912 4971 8803 11183 14500 14617 14638 16776 17901 18622 20244 20845 22214 25676 26161 26281 29978 30392 30922 31542 32038 32443
 188 260 411 2823 5512 5645 10019 11856 12671 14273 14673 16091 16169 22333 22934 22945 23542 26503 27159 27279 28277 30114 31626 32722
 357 516 3530 4317 8587 9491 10348 11330 13446 14533 15423 17003 17217 19127 20088 20750 21767 22386 24021 27749 29008 29376 30329 32940
 2909 3036 4875 9967 10632 12069 12410 14004 14628 15605 15852 18231 18657 19705 20620 22241 29575 29656 31246 32190 32781 33489 33842 34492
 4242 5461 5577 7662 11130 13663 17240 17773 18339 19400 22905 24219 25464 25890 26359 27121 27318 27840 30800 32587 32924 33427 33940 34058
 421 2222 3457 5257 5600 10147 12754 17380 18854 20333 20345 20752 24578 25196 25638 25725 25822 27610 28006 28563 29632 29973 29991 34166
 41 207 1043 4650 5387 6826 7261 8687 9092 10775 11446 12596 16613 19463 20923 24155 24927 25384 26064 27377 28094 32578 32639 34115
 1050 5731 15820 16281 26130 29314
 5980 6161 14479 22181 22537 32924
 7828 9134 11297 17143 25449 29674
 8299 10457 14486 21548 22510 32039
 1527 7792 10424 19166 29302 29768
 5823 13974 21254 21506 25658 29491
 6285 9873 12846 14474 17005 29377
 1740 4929 8285 20994 32271 34522
 12862 16827 22427 23369 27051 30378
 4787 10372 10408 12091 20349 26162
 6659 22752 24697 28261 28917 32536
 6788 15367 21778 28916 30324 33927
 7181 12373 21912 24703 28680 34045
 2238 4945 14336 19270 29574 33459
 10283 15311 17440 24599 24867 28293
 324 5264 5375 6581 24348 30288
 3112 7656 23825
 21624 22318 22633
 5284 19790 22758
 2700 4039 12576
 17028 17520 19579
 11914 17834 33989
 2199 5502 7184
 22 20701 26497
 5551 27014 32876
 4019 26547 28521
 7580 10016 33855
 4328 11674 34018
 8491 9956 10029
 6167 11267 24914
 5317 9049 29657
 20717 28724 33012
 16841 21647 31096
 11931 16278 20287
 9402 10557 11008
 11826 15349 34420
 14369 17031 20597
 19164 27947 29775
 15537 18796 33662
 5404 21027 26757
 6269 12671 24309
 8601 29048 29262
 10099 20323 21457
 15952 17074 30434
 7597 20987 33095
 11298 24182 29217
 12055 16250 16971
 5350 9354 31390
 8168 14168 18570
 5448 13141 32381
 3921 21113 28176
 8756 19895 27917
 9391 16617 25586
 3357 18527 34238
 2378 16840 28948
 7470 27466 32928
 8366 19376 30916
 3116 7267 18016
 15309 18445 21799
 4731 23773 34546
 260 4898 5180
 8897 22266 29587
 2539 23717 33142
 19233 28750 29724
 9937 15384 16599
 10234 17089 26776
 8869 9425 13658
 6197 24086 31929
 9237 20931 27785
 10403 13822 16734
 20038 21196 26868
 13170 27813 28875
 1110 20329 24508
 11844 22662 28987
 2891 2918 14512
 15707 27399 34135
 8687 20019 26178
 6847 8903 16307
 23737 23775 27776
 17388 27970 31983
 である送信方法である。
 本技術の第4の受信装置は、符号長Nが69120ビットであり、符号化率rが8/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 1850 4176 4190 7294 8168 8405 9258 9710 13440 16304 16600 18184 18834 19899 22513 25068 26659 27137 27232 29186 29667 30549 31428 33634
 2477 2543 5094 8081 9573 10269 11276 11439 13016 13327 16717 18042 19362 19721 20089 20425 20503 21396 24677 24722 28703 32486 32759 33630
 1930 2158 2315 2683 3818 4883 5252 5505 8760 9580 11867 13117 14566 15639 17273 18820 21069 24945 25667 26785 30678 31271 33003 33244
 1279 1491 2038 2347 2432 4336 4905 6588 7507 7666 8775 9172 10405 12249 12270 12373 12936 13046 13364 15130 17597 22855 27548 32895
 620 1897 3775 5552 6799 7621 10167 10172 10615 11367 12093 13241 15426 16623 19467 19792 22069 22370 24472 24594 25205 25954 27800 29422
 582 1618 4673 5809 6318 6883 8051 12335 12409 13176 14078 15206 17580 18624 18876 19079 20786 21177 25894 26395 27377 27757 30167 31971
 1157 2189 4160 4480 5055 8961 9171 9444 10533 11581 12904 14256 14620 15773 16232 17598 19756 21134 21443 22559 23258 25137 25555 28150
 987 1258 1269 2394 4859 5642 5705 6093 6408 7734 8804 10657 11946 16132 20267 25402 26505 26548 27060 29767 29780 31915 31966 33590
 1010 1363 1626 5283 6356 10961 12418 14332 14362 16288 16303 16592 17096 20115 20285 20478 21774 22165 22425 23198 25048 25596 31540 32841
 895 2743 2912 4971 8803 11183 14500 14617 14638 16776 17901 18622 20244 20845 22214 25676 26161 26281 29978 30392 30922 31542 32038 32443
 188 260 411 2823 5512 5645 10019 11856 12671 14273 14673 16091 16169 22333 22934 22945 23542 26503 27159 27279 28277 30114 31626 32722
 357 516 3530 4317 8587 9491 10348 11330 13446 14533 15423 17003 17217 19127 20088 20750 21767 22386 24021 27749 29008 29376 30329 32940
 2909 3036 4875 9967 10632 12069 12410 14004 14628 15605 15852 18231 18657 19705 20620 22241 29575 29656 31246 32190 32781 33489 33842 34492
 4242 5461 5577 7662 11130 13663 17240 17773 18339 19400 22905 24219 25464 25890 26359 27121 27318 27840 30800 32587 32924 33427 33940 34058
 421 2222 3457 5257 5600 10147 12754 17380 18854 20333 20345 20752 24578 25196 25638 25725 25822 27610 28006 28563 29632 29973 29991 34166
 41 207 1043 4650 5387 6826 7261 8687 9092 10775 11446 12596 16613 19463 20923 24155 24927 25384 26064 27377 28094 32578 32639 34115
 1050 5731 15820 16281 26130 29314
 5980 6161 14479 22181 22537 32924
 7828 9134 11297 17143 25449 29674
 8299 10457 14486 21548 22510 32039
 1527 7792 10424 19166 29302 29768
 5823 13974 21254 21506 25658 29491
 6285 9873 12846 14474 17005 29377
 1740 4929 8285 20994 32271 34522
 12862 16827 22427 23369 27051 30378
 4787 10372 10408 12091 20349 26162
 6659 22752 24697 28261 28917 32536
 6788 15367 21778 28916 30324 33927
 7181 12373 21912 24703 28680 34045
 2238 4945 14336 19270 29574 33459
 10283 15311 17440 24599 24867 28293
 324 5264 5375 6581 24348 30288
 3112 7656 23825
 21624 22318 22633
 5284 19790 22758
 2700 4039 12576
 17028 17520 19579
 11914 17834 33989
 2199 5502 7184
 22 20701 26497
 5551 27014 32876
 4019 26547 28521
 7580 10016 33855
 4328 11674 34018
 8491 9956 10029
 6167 11267 24914
 5317 9049 29657
 20717 28724 33012
 16841 21647 31096
 11931 16278 20287
 9402 10557 11008
 11826 15349 34420
 14369 17031 20597
 19164 27947 29775
 15537 18796 33662
 5404 21027 26757
 6269 12671 24309
 8601 29048 29262
 10099 20323 21457
 15952 17074 30434
 7597 20987 33095
 11298 24182 29217
 12055 16250 16971
 5350 9354 31390
 8168 14168 18570
 5448 13141 32381
 3921 21113 28176
 8756 19895 27917
 9391 16617 25586
 3357 18527 34238
 2378 16840 28948
 7470 27466 32928
 8366 19376 30916
 3116 7267 18016
 15309 18445 21799
 4731 23773 34546
 260 4898 5180
 8897 22266 29587
 2539 23717 33142
 19233 28750 29724
 9937 15384 16599
 10234 17089 26776
 8869 9425 13658
 6197 24086 31929
 9237 20931 27785
 10403 13822 16734
 20038 21196 26868
 13170 27813 28875
 1110 20329 24508
 11844 22662 28987
 2891 2918 14512
 15707 27399 34135
 8687 20019 26178
 6847 8903 16307
 23737 23775 27776
 17388 27970 31983
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第5の送信方法は、符号長Nが69120ビットであり、符号化率rが10/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 200 588 3305 4771 6288 8400 11092 11126 14245 14255 17022 17190 19241 20350 20451 21069 25243
 80 2914 4126 5426 6129 7790 9546 12909 14660 17357 18278 19612 21168 22367 23314 24801 24907
 1216 2713 4897 6540 7016 7787 8321 9717 9934 12295 18749 20344 21386 21682 21735 24205 24825
 6784 8163 8691 8743 10045 10319 10767 11141 11756 12004 12463 13407 14682 15458 20771 21060 22914
 463 1260 1897 2128 2908 5157 7851 14177 16187 17463 18212 18221 19212 21864 24198 25318 25450
 794 835 1163 4551 4597 5792 6092 7809 8576 8862 10986 12164 13053 14459 15978 23829 25072
 144 4258 4342 7326 8165 9627 11432 12552 17582 17621 18145 19201 19372 19718 21036 25147 25774
 617 2639 2749 2898 3414 4305 4802 6183 8551 9850 13679 20759 22501 24244 24331 24631 25587
 1622 2258 4257 6069 10343 10642 11003 12520 13993 17086 18236 18522 24679 25361 25371 25595
 1826 3926 5021 5905 6192 6839 7678 9136 9188 9716 10986 11191 12551 14648 16169 16234
 2175 2396 2473 8548 9753 12115 12208 13469 15438 16985 19350 20424 21357 22819 22830 25671
 265 397 6675 7152 8074 13030 13161 13336 15843 16917 17930 18014 18660 19218 22236 24940
 5744 6883 7780 7839 8485 10016 10548 12131 12158 16211 16793 18749 20570 21757 22255 24489
 2082 4768 7025 8803 10237 10932 13885 14266 14370 14982 16411 18443 18773 19570 21420 23311
 1040 1376 2823 2998 3789 6636 7755 9819 13705 13868 14176 16202 16247 24943 25196 25489
 223 1967 3289 4541 7420 9881 11086 12868 13550 14760 15434 18287 19098 20909 22905 25887
 1906 2049 2147 2756 2845 4773 8337 8832 9363 12375 13651 16366 17546 20486 21624 22664
 1619 1955 2393 3078 3208 3593 5246 8565 10956 11335 11865 14837 15006 15544 18820 22687
 2086 3409 3586 4269 6587 8650 10165 11241 15624 16728 17814 18392 18667 19859 21132 25339
 382 1160 1912 3700 3783 12069 14672 16842 18053 19626 20724 21244 21792 22679 23873 24517
 1217 1486 5139 6774 7413 10622 11571 11697 13406 13487 20713 22436 22610 22806 23522 23632
 1225 2927 6221 6247 8197 9322 11826 11948 12230 13899 15820 16791 17444 23155 24543 24650
 1056 2975 6018 7698 7736 7940 11870 12964 17498 17577 19541 20124 20705 22693 23151 25627
 658 790 1559 3683 6060 9059 12347 12990 13095 16317 17801 18816 20050 20979 23584 25472
 1133 3343 6895 7146 7261 8340 9115 11248 14543 16030 16291 17972 22369 22479 24388 25280
 1907 4021 8277 17631
 7807 8063 10076 24958
 5455 8638 13801 18832
 15525 24030 24978
 7854 21083 21197
 8416 15614 24639
 9382 13998 24091
 1244 19468 24804
 5100 14187 21263
 12267 18441 22757
 185 23294 23412
 5136 24218 25509
 6159 12323 19472
 7490 9770 19813
 1457 2204 4186
 14200 15609 18700
 4544 6337 17759
 3697 13810 14537
 10853 16611 23001
 504 12709 23116
 1338 21523 22880
 1098 8530 23846
 13699 19776 25783
 3299 3629 16222
 1821 2402 12416
 11177 20793 24292
 21580 24038 24094
 11769 13819 13950
 5388 9428 13527
 20320 23996 24752
 2923 14906 18768
 911 10059 17607
 1535 3090 22968
 3398 8243 12265
 9801 10001 20184
 11839 15703 16757
 1834 13797 14101
 4469 11503 14694
 4047 8684 23737
 15682 21342 21898
 7345 8077 22245
 4108 20676 24406
 8787 19625 22194
 8536 15518 20879
 3339 15738 19592
 2916 13483 23680
 3853 12107 18338
 16962 21265 25429
 10181 18667 25563
 2867 21873 23535
 8601 19728 23807
 4484 17647 22060
 6457 17641 23777
 17432 18680 20224
 3046 14453 19429
 807 2064 12639
 17630 20286 21847
 13703 13720 24044
 8382 9588 10339
 18818 23311 24714
 5397 13213 24988
 4077 9348 21707
 10628 15352 21292
 1075 7625 18287
 5771 20506 20926
 13545 18180 21566
 12022 19203 25134
 86 12306 20066
 7797 10752 15305
 2986 4186 9128
 9099 17285 24986
 3530 17904 21836
 2283 20216 25272
 22562 24667 25143
 1673 3837 5198
 4188 13181 22061
 17800 20341 22591
 3466 4433 24958
 145 7746 23940
 4718 15618 19372
 2735 11877 13719
 3560 6483 10536
 4167 7567 8558
 4511 5862 16331
 3268 6965 25578
 5552 20627 24489
 1425 2331 4414
 3352 12606 19595
 4653 8383 20029
 9163 22097 24174
 7324 16151 20228
 280 4353 25404
 5173 7657 25604
 6910 13531 22225
 18274 19994 21778
 である送信方法である。
 本技術の第5の受信装置は、符号長Nが69120ビットであり、符号化率rが10/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 200 588 3305 4771 6288 8400 11092 11126 14245 14255 17022 17190 19241 20350 20451 21069 25243
 80 2914 4126 5426 6129 7790 9546 12909 14660 17357 18278 19612 21168 22367 23314 24801 24907
 1216 2713 4897 6540 7016 7787 8321 9717 9934 12295 18749 20344 21386 21682 21735 24205 24825
 6784 8163 8691 8743 10045 10319 10767 11141 11756 12004 12463 13407 14682 15458 20771 21060 22914
 463 1260 1897 2128 2908 5157 7851 14177 16187 17463 18212 18221 19212 21864 24198 25318 25450
 794 835 1163 4551 4597 5792 6092 7809 8576 8862 10986 12164 13053 14459 15978 23829 25072
 144 4258 4342 7326 8165 9627 11432 12552 17582 17621 18145 19201 19372 19718 21036 25147 25774
 617 2639 2749 2898 3414 4305 4802 6183 8551 9850 13679 20759 22501 24244 24331 24631 25587
 1622 2258 4257 6069 10343 10642 11003 12520 13993 17086 18236 18522 24679 25361 25371 25595
 1826 3926 5021 5905 6192 6839 7678 9136 9188 9716 10986 11191 12551 14648 16169 16234
 2175 2396 2473 8548 9753 12115 12208 13469 15438 16985 19350 20424 21357 22819 22830 25671
 265 397 6675 7152 8074 13030 13161 13336 15843 16917 17930 18014 18660 19218 22236 24940
 5744 6883 7780 7839 8485 10016 10548 12131 12158 16211 16793 18749 20570 21757 22255 24489
 2082 4768 7025 8803 10237 10932 13885 14266 14370 14982 16411 18443 18773 19570 21420 23311
 1040 1376 2823 2998 3789 6636 7755 9819 13705 13868 14176 16202 16247 24943 25196 25489
 223 1967 3289 4541 7420 9881 11086 12868 13550 14760 15434 18287 19098 20909 22905 25887
 1906 2049 2147 2756 2845 4773 8337 8832 9363 12375 13651 16366 17546 20486 21624 22664
 1619 1955 2393 3078 3208 3593 5246 8565 10956 11335 11865 14837 15006 15544 18820 22687
 2086 3409 3586 4269 6587 8650 10165 11241 15624 16728 17814 18392 18667 19859 21132 25339
 382 1160 1912 3700 3783 12069 14672 16842 18053 19626 20724 21244 21792 22679 23873 24517
 1217 1486 5139 6774 7413 10622 11571 11697 13406 13487 20713 22436 22610 22806 23522 23632
 1225 2927 6221 6247 8197 9322 11826 11948 12230 13899 15820 16791 17444 23155 24543 24650
 1056 2975 6018 7698 7736 7940 11870 12964 17498 17577 19541 20124 20705 22693 23151 25627
 658 790 1559 3683 6060 9059 12347 12990 13095 16317 17801 18816 20050 20979 23584 25472
 1133 3343 6895 7146 7261 8340 9115 11248 14543 16030 16291 17972 22369 22479 24388 25280
 1907 4021 8277 17631
 7807 8063 10076 24958
 5455 8638 13801 18832
 15525 24030 24978
 7854 21083 21197
 8416 15614 24639
 9382 13998 24091
 1244 19468 24804
 5100 14187 21263
 12267 18441 22757
 185 23294 23412
 5136 24218 25509
 6159 12323 19472
 7490 9770 19813
 1457 2204 4186
 14200 15609 18700
 4544 6337 17759
 3697 13810 14537
 10853 16611 23001
 504 12709 23116
 1338 21523 22880
 1098 8530 23846
 13699 19776 25783
 3299 3629 16222
 1821 2402 12416
 11177 20793 24292
 21580 24038 24094
 11769 13819 13950
 5388 9428 13527
 20320 23996 24752
 2923 14906 18768
 911 10059 17607
 1535 3090 22968
 3398 8243 12265
 9801 10001 20184
 11839 15703 16757
 1834 13797 14101
 4469 11503 14694
 4047 8684 23737
 15682 21342 21898
 7345 8077 22245
 4108 20676 24406
 8787 19625 22194
 8536 15518 20879
 3339 15738 19592
 2916 13483 23680
 3853 12107 18338
 16962 21265 25429
 10181 18667 25563
 2867 21873 23535
 8601 19728 23807
 4484 17647 22060
 6457 17641 23777
 17432 18680 20224
 3046 14453 19429
 807 2064 12639
 17630 20286 21847
 13703 13720 24044
 8382 9588 10339
 18818 23311 24714
 5397 13213 24988
 4077 9348 21707
 10628 15352 21292
 1075 7625 18287
 5771 20506 20926
 13545 18180 21566
 12022 19203 25134
 86 12306 20066
 7797 10752 15305
 2986 4186 9128
 9099 17285 24986
 3530 17904 21836
 2283 20216 25272
 22562 24667 25143
 1673 3837 5198
 4188 13181 22061
 17800 20341 22591
 3466 4433 24958
 145 7746 23940
 4718 15618 19372
 2735 11877 13719
 3560 6483 10536
 4167 7567 8558
 4511 5862 16331
 3268 6965 25578
 5552 20627 24489
 1425 2331 4414
 3352 12606 19595
 4653 8383 20029
 9163 22097 24174
 7324 16151 20228
 280 4353 25404
 5173 7657 25604
 6910 13531 22225
 18274 19994 21778
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第6の送信方法は、符号長Nが69120ビットであり、符号化率rが12/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 1507 1536 2244 4721 6374 7839 11001 12684 13196 13602 14245 14383 14398 16182 17248
 623 696 1186 1370 4409 5237 5911 8278 9539 12139 12810 13422 15525 16232 16252
 530 1953 3745 5512 6676 9069 9433 10683 11530 12263 12519 14931 15326 15581 16208
 273 685 3132 5872 6388 7149 7316 7367 9041 11102 11211 12059 15189 15973 16435
 814 1297 1896 6018 7801 8810 9701 9992 10314 13618 13771 14934 15198 16340 16742
 58 803 2553 3967 6032 8374 9168 10047 10073 10909 12701 12748 13543 14111 17043
 1082 1577 2108 2344 5035 5051 10038 10356 12156 12308 13815 15453 15830 16305 17234
 1882 3731 5182 5554 6330 6605 7126 10195 10508 12151 12191 12241 12288 13755 16472
 85 604 1278 3768 4831 6820 9471 10773 10873 12785 12973 13623 14562 14697 16811
 928 1864 6027 7023 7644 8279 8580 9221 9417 9883 12032 12483 12734 14335 15842
 2104 2752 4530 4820 5662 9197 9464 9972 10057 11079 12408 13005 13684 15507 16295
 82 752 3374 4026 7265 8112 12236 12434 12460 13110 13495 15110 15299 15359 17221
 1137 1411 1546 1614 1835 6053 6151 8618 9059 14057 14941 15670 16321 16965
 447 1960 2369 2861 3047 3508 4077 4358 4370 5806 12517 13658 14371 14749
 420 981 1657 2313 3353 4699 5094 5184 10076 10530 11521 13040 15960 16853
 3572 3851 3870 5218 6400 6780 9167 9603 10328 10543 12892 13722 16910 16929
 203 2588 4522 4692 5399 6840 7417 8896 9045 9188 10390 12507 12615 16386
 543 1262 2536 4358 7658 7714 9392 11079 12283 12694 14734 16195 16317 16751
 905 1059 3393 4347 4554 4758 5568 8652 9991 10717 10975 11146 12824 16373
 1229 2308 4876 5329 5424 5906 6227 6667 7141 7697 12055 12969 13582 16638
 697 1864 2560 4190 5097 5288 6565 9150 9282 9519 10727 12492 13292 16924
 363 3152 3715 3722 4582 5050 8399 9413 9851 10305 12116 13471 15318 16018
 338 2342 2404 4733 6189 6792 7251 7921 8509 8579 8729 11921 12900 15546
 1630 1867 2018 3038 3202 6364 7648 8692 9496 9705 10433 13508 14583 16341
 1041 2754 3015 3427 3512 4351 5174 6539 8100 8639 9912 11911 12666 14187
 1134 1619 4758 5545 6842 7045 8421 10373 10390 12672 13484 15178 16697 16727
 589 652 1174 2157 3951 4733 5278 5859 7619 9488 11665 12335 15516 16024
 1457 1832 2525 3690 5093 6000 6276 7974 8652 9759 10434 15025 15267 16448
 932 3328 3349 3511 4776 6266 6711 7761 8674 9748 11167 12134 12942 14354
 1939 1979 3141 4238 6715 7148 7673 12025 12455 14829 14989 15081 16491 17242
 1363 2451
 1953 10230
 6218 7655
 9302 15856
 10461 10503
 9005 16075
 878 14223 15181
 3535 5327 14405
 8116 8396 9828
 2864 6306 14832
 24 11009 16377
 7064 11014 16139
 4318 8353 14997
 583 5626 10217
 11196 13669 16585
 6123 7518 9304
 2258 8250 12082
 7564 14195 15236
 10104 10233 13778
 2044 7801 11705
 10906 11443 13227
 1592 7853 14796
 3054 8887 13077
 6486 7003 9238
 424 9055 13390
 618 4077 11120
 11159 13405 16070
 2927 8689 17210
 723 5842 12062
 4817 9269 10820
 208 6947 12903
 2987 10116 11520
 3522 6321 15637
 148 3087 12764
 262 1613 14121
 7236 10798 11759
 3193 4958 11292
 7537 12439 15202
 8000 9580 17269
 9665 9691 15654
 5946 14246 16040
 4283 8145 10944
 1082 1829 11267
 1272 6119 13182
 20 11943 14128
 4591 8403 16530
 2212 13724 13933
 2079 10365 14633
 1269 11307 16370
 2467 4744 10714
 6256 7915 9724
 8799 11433 16880
 459 6799 10102
 3795 6930 13350
 1295 13018 14967
 3542 7310 10974
 6905 15080 16105
 2673 3143 12349
 4698 4801 14770
 7512 15844 15965
 3276 4069 10099
 1893 4676 6679
 1985 7244 10163
 6333 12760 12912
 852 5954 11771
 6958 9242 10613
 5651 10089 12309
 4124 7455 13224
 503 6787 10720
 10594 12717 14007
 4501 5311 8067
 4507 5620 13932
 9133 11025 13866
 5021 16201 16217
 6166 7438 17185
 1324 5671 11586
 2266 6335 7716
 512 9515 11595
 869 6096 13886
 10049 12536 14474
 470 8286 8306
 1268 5478 6424
 8178 8817 14506
 11460 15128 16761
 6364 10121 16806
 9347 15211 16915
 1587 3591 15546
 17 4132 17071
 1677 8810 15764
 3862 7633 13685
 3855 11931 12792
 2652 13909 17080
 5581 13919 16126
 7129 8976 11152
 6662 7845 13424
 9751 9965 13847
 3662 9308 9534
 4283 7474 7682
 2418 8774 13433
 508 3864 6859
 12098 13920 15326
 1129 3271 16892
 5072 8819 10323
 4749 4984 6390
 212 13603 14893
 4966 8895 9320
 1012 3677 5711
 6654 9969 15178
 4596 5147 5905
 1541 4149 15594
 8005 8604 15147
 2519 10882 11961
 190 8417 13600
 3543 4639 14618
 である送信方法である。
 本技術の第6の受信装置は、符号長Nが69120ビットであり、符号化率rが12/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 1507 1536 2244 4721 6374 7839 11001 12684 13196 13602 14245 14383 14398 16182 17248
 623 696 1186 1370 4409 5237 5911 8278 9539 12139 12810 13422 15525 16232 16252
 530 1953 3745 5512 6676 9069 9433 10683 11530 12263 12519 14931 15326 15581 16208
 273 685 3132 5872 6388 7149 7316 7367 9041 11102 11211 12059 15189 15973 16435
 814 1297 1896 6018 7801 8810 9701 9992 10314 13618 13771 14934 15198 16340 16742
 58 803 2553 3967 6032 8374 9168 10047 10073 10909 12701 12748 13543 14111 17043
 1082 1577 2108 2344 5035 5051 10038 10356 12156 12308 13815 15453 15830 16305 17234
 1882 3731 5182 5554 6330 6605 7126 10195 10508 12151 12191 12241 12288 13755 16472
 85 604 1278 3768 4831 6820 9471 10773 10873 12785 12973 13623 14562 14697 16811
 928 1864 6027 7023 7644 8279 8580 9221 9417 9883 12032 12483 12734 14335 15842
 2104 2752 4530 4820 5662 9197 9464 9972 10057 11079 12408 13005 13684 15507 16295
 82 752 3374 4026 7265 8112 12236 12434 12460 13110 13495 15110 15299 15359 17221
 1137 1411 1546 1614 1835 6053 6151 8618 9059 14057 14941 15670 16321 16965
 447 1960 2369 2861 3047 3508 4077 4358 4370 5806 12517 13658 14371 14749
 420 981 1657 2313 3353 4699 5094 5184 10076 10530 11521 13040 15960 16853
 3572 3851 3870 5218 6400 6780 9167 9603 10328 10543 12892 13722 16910 16929
 203 2588 4522 4692 5399 6840 7417 8896 9045 9188 10390 12507 12615 16386
 543 1262 2536 4358 7658 7714 9392 11079 12283 12694 14734 16195 16317 16751
 905 1059 3393 4347 4554 4758 5568 8652 9991 10717 10975 11146 12824 16373
 1229 2308 4876 5329 5424 5906 6227 6667 7141 7697 12055 12969 13582 16638
 697 1864 2560 4190 5097 5288 6565 9150 9282 9519 10727 12492 13292 16924
 363 3152 3715 3722 4582 5050 8399 9413 9851 10305 12116 13471 15318 16018
 338 2342 2404 4733 6189 6792 7251 7921 8509 8579 8729 11921 12900 15546
 1630 1867 2018 3038 3202 6364 7648 8692 9496 9705 10433 13508 14583 16341
 1041 2754 3015 3427 3512 4351 5174 6539 8100 8639 9912 11911 12666 14187
 1134 1619 4758 5545 6842 7045 8421 10373 10390 12672 13484 15178 16697 16727
 589 652 1174 2157 3951 4733 5278 5859 7619 9488 11665 12335 15516 16024
 1457 1832 2525 3690 5093 6000 6276 7974 8652 9759 10434 15025 15267 16448
 932 3328 3349 3511 4776 6266 6711 7761 8674 9748 11167 12134 12942 14354
 1939 1979 3141 4238 6715 7148 7673 12025 12455 14829 14989 15081 16491 17242
 1363 2451
 1953 10230
 6218 7655
 9302 15856
 10461 10503
 9005 16075
 878 14223 15181
 3535 5327 14405
 8116 8396 9828
 2864 6306 14832
 24 11009 16377
 7064 11014 16139
 4318 8353 14997
 583 5626 10217
 11196 13669 16585
 6123 7518 9304
 2258 8250 12082
 7564 14195 15236
 10104 10233 13778
 2044 7801 11705
 10906 11443 13227
 1592 7853 14796
 3054 8887 13077
 6486 7003 9238
 424 9055 13390
 618 4077 11120
 11159 13405 16070
 2927 8689 17210
 723 5842 12062
 4817 9269 10820
 208 6947 12903
 2987 10116 11520
 3522 6321 15637
 148 3087 12764
 262 1613 14121
 7236 10798 11759
 3193 4958 11292
 7537 12439 15202
 8000 9580 17269
 9665 9691 15654
 5946 14246 16040
 4283 8145 10944
 1082 1829 11267
 1272 6119 13182
 20 11943 14128
 4591 8403 16530
 2212 13724 13933
 2079 10365 14633
 1269 11307 16370
 2467 4744 10714
 6256 7915 9724
 8799 11433 16880
 459 6799 10102
 3795 6930 13350
 1295 13018 14967
 3542 7310 10974
 6905 15080 16105
 2673 3143 12349
 4698 4801 14770
 7512 15844 15965
 3276 4069 10099
 1893 4676 6679
 1985 7244 10163
 6333 12760 12912
 852 5954 11771
 6958 9242 10613
 5651 10089 12309
 4124 7455 13224
 503 6787 10720
 10594 12717 14007
 4501 5311 8067
 4507 5620 13932
 9133 11025 13866
 5021 16201 16217
 6166 7438 17185
 1324 5671 11586
 2266 6335 7716
 512 9515 11595
 869 6096 13886
 10049 12536 14474
 470 8286 8306
 1268 5478 6424
 8178 8817 14506
 11460 15128 16761
 6364 10121 16806
 9347 15211 16915
 1587 3591 15546
 17 4132 17071
 1677 8810 15764
 3862 7633 13685
 3855 11931 12792
 2652 13909 17080
 5581 13919 16126
 7129 8976 11152
 6662 7845 13424
 9751 9965 13847
 3662 9308 9534
 4283 7474 7682
 2418 8774 13433
 508 3864 6859
 12098 13920 15326
 1129 3271 16892
 5072 8819 10323
 4749 4984 6390
 212 13603 14893
 4966 8895 9320
 1012 3677 5711
 6654 9969 15178
 4596 5147 5905
 1541 4149 15594
 8005 8604 15147
 2519 10882 11961
 190 8417 13600
 3543 4639 14618
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第7の送信方法は、符号長Nが69120ビットであり、符号化率rが14/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップとを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 387 648 945 3023 3889 4856 5002 5167 6868 7477 7590 8165 8354
 42 406 1279 1968 3016 4196 4599 4996 5019 6350 6785 7051 8529
 534 784 1034 1160 2530 5033 5171 5469 6167 6372 6913 7718 8621
 944 2506 2806 3149 3559 5101 6076 6083 6092 6147 6866 7908 8155
 308 1869 1888 2569 3297 4742 5232 5442 6135 6814 7284 8238 8405
 34 464 667 899 2421 3425 5382 6258 6373 6399 6489 7367 7922
 2276 3014 3525 3829 4135 4276 4611 4733 4738 4956 6025 7152 8155
 1047 1370 2406 2819 4600 4991 5017 5590 6199 6483 6556 6834 7760
 66 380 2033 3698 4068 6096 6223 6238 6757 7541 7641 7677 8595
 562 697 782 808 921 1703 3032 4300 7027 7481 7839 8160 8526
 236 962 1557 2023 2135 2190 2892 3072 4523 6254 6838 7209 7381
 196 1167 1179 1426 1675 1763 2345 2560 2613 5024 5761 6522 7973
 512 822 1778 1924 2610 3445 4570 4805 5263 5299 8439 8448 8464
 1923 2270 3204 3698 4456 4522 4601 5161 5207 6260 6310 6441 6851
 104 281 622 1276 2172 2334 2731 3417 3854 4698 8095 8195 8333
 451 528 1269 2169 2274 2393 3853 5002 5543 6121 6351 7364 8139
 1685 2675 2790 2953 3103 3560 4336 5372 5495 5568 6429 6492 8206
 604 1190 1279 2427 2714 3283 3312 3855 4566 6045 6664 6788 8317
 338 917 1873 2102 2561 2655 4635 4765 5370 6249 6724 7668 8456
 184 1166 1583 1859 2376 2521 3093 4181 4713 4926 5146 6070 8004
 175 1227 2367 3402 3628 3982 4265 4282 4355 5972 6434 7280 7765
 801 922 1029 1531 1606 3170 3824 4358 4732 4849 5225 6759 8183
 509 1507 1704 1765 2183 2574 3271 4050 4299 4964 5968 6324 7091
 567 795 1376 2390 2767 3424 5195 6355 6726 7607 8346 8352
 308 1060 1973 2364 2937 3526 4221 4745 5185 5845 6146 7762
 323 590 732 917 2636 3008 3792 3990 4322 4893 5211 8014
 471 1249 1674 1841 2567 3124 3130 4885 5575 7521 7648 8227
 1582 1669 1772 2386 3340 3387 3881 4322 6018 6055 6488 7177
 976 1003 2127 3575 3816 6225 7404 7499 7542 8237 8421 8630
 675 961 1957 3825 3858 4646 5248 5801 5940 6533 7040 8037
 79 639 1363 1436 1763 2570 3874 4876 6870 6886 7104 8399
 20 297 1330 2264 3287 3534 4441 4746 6569 6971 6976 8179
 482 1125 1589 2892 3759 3871 4635 6038 6214 6796 6816 7621
 1127 3336 3867 3929 4269 4794 5054 5842 6471 6547 7039 8560
 217 1521
 1983 8283
 3731 4402
 208 6703
 242 4988
 4170 5038
 4108 8035
 3301 8543
 3168 8249
 5028 5838
 3470 8597
 2901 5264
 2505 4505
 934 5117
 1712 5819
 3165 7273
 3274 6115
 4576 6330 7327
 5380 6732 8439
 2474 3723 7782
 384 2783 5846
 1453 4436 6625
 3220 4261 4835
 163 3117 7554
 502 2119 4059
 2200 4263 4930
 2378 6294 7713
 743 5501 6809
 1364 6062 7808
 4680 6468 7895
 3469 3602 7304
 1609 5386 5647
 267 2921 3206
 2565 3020 6269
 1651 5224 5718
 1128 5058 8579
 286 3396 7660
 1497 5171 6519
 1894 6349 7924
 1306 7744 8083
 3096 3438 3836
 2556 7409 8570
 3273 4245 7935
 1633 2023 3125
 584 4914 6062
 2015 2915 3435
 1457 6366 6461
 23 3576 8132
 5322 6300 6520
 5715 7113 7822
 2044 5053 6607
 63 5432 7850
 5353 6355 8637
 346 590 2648
 4780 5997 6991
 2556 2583 6537
 661 2497 8350
 7610 8307 8441
 671 860 5986
 1133 3158 5891
 4360 5802 6547
 4782 5688 6955
 447 5030 6268
 1501 5163 7232
 1133 2743 3214
 959 4100 7554
 5712 7643 8385
 1442 3180 8008
 697 3078 8421
 137 922 5123
 597 2879 6340
 824 2071 7882
 1827 4411 5941
 3846 5970 6398
 1561 1580 7668
 4335 6936 8042
 4504 5309 6737
 1846 3273 3333
 272 4885 6718
 1835 4761 6931
 2141 3760 5129
 3975 5012 6504
 1258 2822 6030
 242 4947 7668
 559 6100 8425
 1655 1962 4401
 2369 2476 2765
 114 156 3195
 1651 4154 4448
 4669 6064 7317
 4988 5567 6697
 2963 5578 5679
 2064 2286 7790
 289 4639 7582
 1258 4312 5340
 2428 4219 7268
 1752 2321 6806
 118 7302 8603
 4170 4280 4445
 2207 5067 7257
 2 55 7413
 1141 4791 7149
 3407 5649 8075
 2773 3198 3720
 6970 7222 8633
 2498 4764 5281
 1048 2093 5031
 2500 2851 8396
 1694 3795 6666
 2565 3343 4688
 4228 4374 5947
 2267 6745 7172
 175 2662 3926
 90 1517 6056
 4069 5439 7648
 1679 3394 4707
 2136 4553 8265
 482 2100 2302
 3306 3729 8063
 5263 7710 8240
 1001 1335 4500
 576 6736 7250
 181 3601 3755
 5899 7515 7714
 1181 5332 7197
 542 1150 1196
 1386 2156 5873
 656 3019 3213
 263 1117 5957
 4495 5904 6462
 2547 2786 4215
 4954 5848 6225
 940 4478 7633
 2124 3347 7069
 である送信方法である。
 本技術の第7の受信装置は、符号長Nが69120ビットであり、符号化率rが14/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部とを備え、前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
 の並びにインターリーブし、前記LDPC符号は、情報ビットとパリティビットを含み、前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、前記情報行列部は、検査行列初期値テーブルによって表され、前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
 387 648 945 3023 3889 4856 5002 5167 6868 7477 7590 8165 8354
 42 406 1279 1968 3016 4196 4599 4996 5019 6350 6785 7051 8529
 534 784 1034 1160 2530 5033 5171 5469 6167 6372 6913 7718 8621
 944 2506 2806 3149 3559 5101 6076 6083 6092 6147 6866 7908 8155
 308 1869 1888 2569 3297 4742 5232 5442 6135 6814 7284 8238 8405
 34 464 667 899 2421 3425 5382 6258 6373 6399 6489 7367 7922
 2276 3014 3525 3829 4135 4276 4611 4733 4738 4956 6025 7152 8155
 1047 1370 2406 2819 4600 4991 5017 5590 6199 6483 6556 6834 7760
 66 380 2033 3698 4068 6096 6223 6238 6757 7541 7641 7677 8595
 562 697 782 808 921 1703 3032 4300 7027 7481 7839 8160 8526
 236 962 1557 2023 2135 2190 2892 3072 4523 6254 6838 7209 7381
 196 1167 1179 1426 1675 1763 2345 2560 2613 5024 5761 6522 7973
 512 822 1778 1924 2610 3445 4570 4805 5263 5299 8439 8448 8464
 1923 2270 3204 3698 4456 4522 4601 5161 5207 6260 6310 6441 6851
 104 281 622 1276 2172 2334 2731 3417 3854 4698 8095 8195 8333
 451 528 1269 2169 2274 2393 3853 5002 5543 6121 6351 7364 8139
 1685 2675 2790 2953 3103 3560 4336 5372 5495 5568 6429 6492 8206
 604 1190 1279 2427 2714 3283 3312 3855 4566 6045 6664 6788 8317
 338 917 1873 2102 2561 2655 4635 4765 5370 6249 6724 7668 8456
 184 1166 1583 1859 2376 2521 3093 4181 4713 4926 5146 6070 8004
 175 1227 2367 3402 3628 3982 4265 4282 4355 5972 6434 7280 7765
 801 922 1029 1531 1606 3170 3824 4358 4732 4849 5225 6759 8183
 509 1507 1704 1765 2183 2574 3271 4050 4299 4964 5968 6324 7091
 567 795 1376 2390 2767 3424 5195 6355 6726 7607 8346 8352
 308 1060 1973 2364 2937 3526 4221 4745 5185 5845 6146 7762
 323 590 732 917 2636 3008 3792 3990 4322 4893 5211 8014
 471 1249 1674 1841 2567 3124 3130 4885 5575 7521 7648 8227
 1582 1669 1772 2386 3340 3387 3881 4322 6018 6055 6488 7177
 976 1003 2127 3575 3816 6225 7404 7499 7542 8237 8421 8630
 675 961 1957 3825 3858 4646 5248 5801 5940 6533 7040 8037
 79 639 1363 1436 1763 2570 3874 4876 6870 6886 7104 8399
 20 297 1330 2264 3287 3534 4441 4746 6569 6971 6976 8179
 482 1125 1589 2892 3759 3871 4635 6038 6214 6796 6816 7621
 1127 3336 3867 3929 4269 4794 5054 5842 6471 6547 7039 8560
 217 1521
 1983 8283
 3731 4402
 208 6703
 242 4988
 4170 5038
 4108 8035
 3301 8543
 3168 8249
 5028 5838
 3470 8597
 2901 5264
 2505 4505
 934 5117
 1712 5819
 3165 7273
 3274 6115
 4576 6330 7327
 5380 6732 8439
 2474 3723 7782
 384 2783 5846
 1453 4436 6625
 3220 4261 4835
 163 3117 7554
 502 2119 4059
 2200 4263 4930
 2378 6294 7713
 743 5501 6809
 1364 6062 7808
 4680 6468 7895
 3469 3602 7304
 1609 5386 5647
 267 2921 3206
 2565 3020 6269
 1651 5224 5718
 1128 5058 8579
 286 3396 7660
 1497 5171 6519
 1894 6349 7924
 1306 7744 8083
 3096 3438 3836
 2556 7409 8570
 3273 4245 7935
 1633 2023 3125
 584 4914 6062
 2015 2915 3435
 1457 6366 6461
 23 3576 8132
 5322 6300 6520
 5715 7113 7822
 2044 5053 6607
 63 5432 7850
 5353 6355 8637
 346 590 2648
 4780 5997 6991
 2556 2583 6537
 661 2497 8350
 7610 8307 8441
 671 860 5986
 1133 3158 5891
 4360 5802 6547
 4782 5688 6955
 447 5030 6268
 1501 5163 7232
 1133 2743 3214
 959 4100 7554
 5712 7643 8385
 1442 3180 8008
 697 3078 8421
 137 922 5123
 597 2879 6340
 824 2071 7882
 1827 4411 5941
 3846 5970 6398
 1561 1580 7668
 4335 6936 8042
 4504 5309 6737
 1846 3273 3333
 272 4885 6718
 1835 4761 6931
 2141 3760 5129
 3975 5012 6504
 1258 2822 6030
 242 4947 7668
 559 6100 8425
 1655 1962 4401
 2369 2476 2765
 114 156 3195
 1651 4154 4448
 4669 6064 7317
 4988 5567 6697
 2963 5578 5679
 2064 2286 7790
 289 4639 7582
 1258 4312 5340
 2428 4219 7268
 1752 2321 6806
 118 7302 8603
 4170 4280 4445
 2207 5067 7257
 2 55 7413
 1141 4791 7149
 3407 5649 8075
 2773 3198 3720
 6970 7222 8633
 2498 4764 5281
 1048 2093 5031
 2500 2851 8396
 1694 3795 6666
 2565 3343 4688
 4228 4374 5947
 2267 6745 7172
 175 2662 3926
 90 1517 6056
 4069 5439 7648
 1679 3394 4707
 2136 4553 8265
 482 2100 2302
 3306 3729 8063
 5263 7710 8240
 1001 1335 4500
 576 6736 7250
 181 3601 3755
 5899 7515 7714
 1181 5332 7197
 542 1150 1196
 1386 2156 5873
 656 3019 3213
 263 1117 5957
 4495 5904 6462
 2547 2786 4215
 4954 5848 6225
 940 4478 7633
 2124 3347 7069
 である送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える受信装置である。
 本技術の第1の送信方法においては、符号長Nが69120ビットであり、符号化率rが2/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第1の受信装置においては、第1の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第2の送信方法においては、符号長Nが69120ビットであり、符号化率rが4/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第2の受信装置においては、第2の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第3の送信方法においては、符号長Nが69120ビットであり、符号化率rが6/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第3の受信装置においては、第3の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第4の送信方法においては、符号長Nが69120ビットであり、符号化率rが8/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第4の受信装置においては、第4の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第5の送信方法においては、符号長Nが69120ビットであり、符号化率rが10/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第5の受信装置においては、第5の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第6の送信方法においては、符号長Nが69120ビットであり、符号化率rが12/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第6の受信装置においては、第6の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 本技術の第7の送信方法においては、符号長Nが69120ビットであり、符号化率rが14/16のLDPC符号の検査行列に基づき、LDPC符号化が行われ、前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブが行われる。そして、前記LDPC符号が、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングされる。前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
 の並びにインターリーブされる。前記検査行列を規定する前記検査行列初期値テーブルは、上述のようになっている。
 本技術の第7の受信装置においては、第7の送信方法を実施する送信装置から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びが元の並びに戻される。
 なお、受信装置は、独立した装置であっても良いし、1個の装置を構成している内部ブロックであっても良い。
 本技術によれば、LDPC符号を用いたデータ伝送において、良好な通信品質を確保することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
LDPC符号の検査行列Hを説明する図である。 LDPC符号の復号手順を説明するフローチャートである。 LDPC符号の検査行列の例を示す図である。 検査行列のタナーグラフの例を示す図である。 バリアブルノードの例を示す図である。 チェックノードの例を示す図である。 本技術を適用した伝送システムの一実施の形態の構成例を示す図である。 送信装置11の構成例を示すブロック図である。 ビットインターリーバ116の構成例を示すブロック図である。 検査行列の例を示す図である。 パリティ行列の例を示す図である。 DVB-T.2の規格に規定されているLDPC符号の検査行列を説明する図である。 DVB-T.2の規格に規定されているLDPC符号の検査行列を説明する図である。 LDPC符号の復号についてのタナーグラフの例を示す図である。 階段構造になっているパリティ行列HTと、そのパリティ行列HTに対応するタナーグラフの例を示す図である。 パリティインターリーブ後のLDPC符号に対応する検査行列Hのパリティ行列HTの例を示す図である。 ビットインターリーバ116、及び、マッパ117で行われる処理の例を説明するフローチャートである。 LDPCエンコーダ115の構成例を示すブロック図である。 LDPCエンコーダ115の処理の例を説明するフローチャートである。 符号化率1/4、符号長16200の検査行列初期値テーブルの例を示す図である。 検査行列初期値テーブルから検査行列Hを求める方法を説明する図である。 検査行列の構造を示す図である。 検査行列初期値テーブルの例を示す図である。 検査行列初期値テーブルから生成されるA行列を説明する図である。 B行列のパリティインターリーブを説明する図である。 検査行列初期値テーブルから生成されるC行列を説明する図である。 D行列のパリティインターリーブを説明する図である。 検査行列に、パリティインターリーブを元に戻すパリティデインターリーブとしての列置換(column permutation)を行った検査行列を示す図である。 検査行列に、行置換(row permutation)を行うことにより得られる変換検査行列を示す図である。 N=69120ビットで、r=2/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=3/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=3/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=4/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=5/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=5/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=6/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=6/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=7/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=7/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=8/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=8/16のタイプA符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=7/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=7/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=7/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=7/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=8/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=8/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=8/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=8/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=9/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=10/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=11/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=12/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=13/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 N=69120ビットで、r=14/16のタイプB符号の検査行列初期値テーブルの他の例を示す図である。 列重みが3で、行重みが6であるデグリーシーケンスのアンサンブルのタナーグラフの例を示す図である。 マルチエッジタイプのアンサンブルのタナーグラフの例を示す図である。 タイプA方式の検査行列を説明する図である。 タイプA方式の検査行列を説明する図である。 タイプB方式の検査行列を説明する図である。 タイプB方式の検査行列を説明する図である。 変調方式がQPSKである場合のUCの信号点の座標の例を示す図である。 変調方式が16QAMである場合の2D-NUCの信号点の座標の例を示す図である。 変調方式が1024QAMである場合の1D-NUCの信号点の座標の例を示す図である。 1024QAMのシンボルyと、位置ベクトルuとの関係を示す図である。 QPSK-UCの信号点の座標zqの例を示す図である。 QPSK-UCの信号点の座標zqの例を示す図である。 16QAM-UCの信号点の座標zqの例を示す図である。 16QAM-UCの信号点の座標zqの例を示す図である。 64QAM-UCの信号点の座標zqの例を示す図である。 64QAM-UCの信号点の座標zqの例を示す図である。 256QAM-UCの信号点の座標zqの例を示す図である。 256QAM-UCの信号点の座標zqの例を示す図である。 1024QAM-UCの信号点の座標zqの例を示す図である。 1024QAM-UCの信号点の座標zqの例を示す図である。 4096QAM-UCの信号点の座標zqの例を示す図である。 4096QAM-UCの信号点の座標zqの例を示す図である。 16QAM-2D-NUCの信号点の座標zsの例を示す図である。 64QAM-2D-NUCの信号点の座標zsの例を示す図である。 256QAM-2D-NUCの信号点の座標zsの例を示す図である。 256QAM-2D-NUCの信号点の座標zsの例を示す図である。 1024QAM-1D-NUCの信号点の座標zsの例を示す図である。 1024QAMのシンボルyと、位置ベクトルuとの関係を示す図である。 4096QAM-1D-NUCの信号点の座標zsの例を示す図である。 4096QAMのシンボルyと、位置ベクトルuとの関係を示す図である。 4096QAMのシンボルyと、位置ベクトルuとの関係を示す図である。 ブロックインターリーバ25で行われるブロックインターリーブを説明する図である。 ブロックインターリーバ25で行われるブロックインターリーブを説明する図である。 グループワイズインターリーバ24で行われるグループワイズインターリーブを説明する図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第1の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第2の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第3の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第4の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第5の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第6の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第7の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第8の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第9の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第10の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第11の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第12の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第13の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第14の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第15の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第16の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第17の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第18の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第19の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第20の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第21の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第22の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第23の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第24の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第25の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第26の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第27の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第28の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第29の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第30の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第31の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第32の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第33の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第34の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第35の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第36の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第37の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第38の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第39の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第40の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第41の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第42の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第43の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第44の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第45の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第46の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第47の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第48の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第49の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第50の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第51の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第52の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第53の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第54の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第55の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第56の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第57の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第58の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第59の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第60の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第61の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第62の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第63の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第64の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第65の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第66の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第67の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第68の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第69の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第70の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第71の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第72の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第73の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第74の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第75の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第76の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第77の例を示す図である。 符号長Nが69120ビットのLDPC符号に対するGWパターンの第78の例を示す図である。 受信装置12の構成例を示すブロック図である。 ビットデインターリーバ165の構成例を示すブロック図である。 デマッパ164、ビットデインターリーバ165、及び、LDPCデコーダ166が行う処理の例を説明するフローチャートである。 LDPC符号の検査行列の例を示す図である。 検査行列に行置換と列置換を施した行列(変換検査行列)の例を示す図である。 5×5単位に分割した変換検査行列の例を示す図である。 ノード演算をP個まとめて行う復号装置の構成例を示すブロック図である。 LDPCデコーダ166の構成例を示すブロック図である。 ブロックデインターリーバ54で行われるブロックデインターリーブを説明する図である。 ビットデインターリーバ165の他の構成例を示すブロック図である。 受信装置12を適用可能な受信システムの第1の構成例を示すブロック図である。 受信装置12を適用可能な受信システムの第2の構成例を示すブロック図である。 受信装置12を適用可能な受信システムの第3の構成例を示すブロック図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 以下、本技術の実施の形態について説明するが、その前に、LDPC符号について説明する。
 <LDPC符号>
 なお、LDPC符号は、線形符号であり、必ずしも2元である必要はないが、ここでは、2元であるものとして説明する。
 LDPC符号は、そのLDPC符号を定義する検査行列(parity check matrix)が疎なものであることを最大の特徴とする。ここで、疎な行列とは、行列の要素の"1"の個数が非常に少ない行列(ほとんどの要素が0の行列)である。
 図1は、LDPC符号の検査行列Hの例を示す図である。
 図1の検査行列Hでは、各列の重み(列重み)("1"の数)(weight)が"3"であり、且つ、各行の重み(行重み)が"6"になっている。
 LDPC符号による符号化(LDPC符号化)では、例えば、検査行列Hに基づいて生成行列Gを生成し、この生成行列Gを2元の情報ビットに対して乗算することで、符号語(LDPC符号)が生成される。
 具体的には、LDPC符号化を行う符号化装置は、まず、検査行列Hの転置行列HTとの間に、式GHT=0が成立する生成行列Gを算出する。ここで、生成行列Gが、K×N行列である場合には、符号化装置は、生成行列Gに対してKビットからなる情報ビットのビット列(ベクトルu)を乗算し、Nビットからなる符号語c(=uG)を生成する。この符号化装置によって生成された符号語(LDPC符号)は、所定の通信路を介して受信側において受信される。
 LDPC符号の復号は、Gallagerが確率復号(Probabilistic Decoding)と称して提案したアルゴリズムであって、バリアブルノード(variable node(メッセージノード(message node)とも呼ばれる))と、チェックノード(check node)とからなる、いわゆるタナーグラフ(Tanner graph)上での確率伝播(belief propagation)によるメッセージ・パッシング・アルゴリズムによって行うことが可能である。ここで、以下、適宜、バリアブルノードとチェックノードを、単に、ノードともいう。
 図2は、LDPC符号の復号の手順を示すフローチャートである。
 なお、以下、適宜、受信側で受信したLDPC符号(1符号語)のi番目の符号ビットの、値の"0"らしさを対数尤度比(log likelihood ratio)で表現した実数値(受信LLR)を、受信値u0iともいう。また、チェックノードから出力されるメッセージをujとし、バリアブルノードから出力されるメッセージをviとする。
 まず、LDPC符号の復号においては、図2に示すように、ステップS11において、LDPC符号が受信され、メッセージ(チェックノードメッセージ)ujが"0"に初期化されるとともに、繰り返し処理のカウンタとしての整数をとる変数kが"0"に初期化され、ステップS12に進む。ステップS12において、LDPC符号を受信して得られる受信値u0iに基づいて、式(1)に示す演算(バリアブルノード演算)を行うことによってメッセージ(バリアブルノードメッセージ)viが求められ、さらに、このメッセージviに基づいて、式(2)に示す演算(チェックノード演算)を行うことによってメッセージujが求められる。
Figure JPOXMLDOC01-appb-M000001
                      ・・・(1)
Figure JPOXMLDOC01-appb-M000002
                      ・・・(2)
 ここで、式(1)と式(2)におけるdvとdcは、それぞれ、検査行列Hの縦方向(列)と横方向(行)の"1"の個数を示す任意に選択可能とされるパラメータである。例えば、図1に示したような列重みが3で、行重みが6の検査行列Hに対するLDPC符号((3,6)LDPC符号)の場合には、dv=3,dc=6となる。
 なお、式(1)のバリアブルノード演算、及び(2)のチェックノード演算においては、それぞれ、メッセージを出力しようとする枝(edge)(バリアブルノードとチェックノードとを結ぶ線)から入力されたメッセージを、演算の対象としないことから、演算の範囲が、1ないしdv-1又は1ないしdc-1となっている。また、式(2)のチェックノード演算は、実際には、2入力v1,v2に対する1出力で定義される式(3)に示す関数R(v1,v2)のテーブルを予め作成しておき、これを式(4)に示すように連続的(再帰的)に用いることによって行われる。
Figure JPOXMLDOC01-appb-M000003
                      ・・・(3)
Figure JPOXMLDOC01-appb-M000004
                      ・・・(4)
 ステップS12では、さらに、変数kが"1"だけインクリメントされ、ステップS13に進む。ステップS13では、変数kが所定の繰り返し復号回数Cよりも大きいか否かが判定される。ステップS13において、変数kがCよりも大きくないと判定された場合、ステップS12に戻り、以下、同様の処理が繰り返される。
 また、ステップS13において、変数kがCよりも大きいと判定された場合、ステップS14に進み、式(5)に示す演算を行うことによって最終的に出力する復号結果としてのメッセージviが求められて出力され、LDPC符号の復号処理が終了する。
Figure JPOXMLDOC01-appb-M000005
                      ・・・(5)
 ここで、式(5)の演算は、式(1)のバリアブルノード演算とは異なり、バリアブルノードに接続している全ての枝からのメッセージujを用いて行われる。
 図3は、(3,6)LDPC符号(符号化率1/2、符号長12)の検査行列Hの例を示す図である。
 図3の検査行列Hでは、図1と同様に、列の重みが3に、行の重みが6に、それぞれなっている。
 図4は、図3の検査行列Hのタナーグラフを示す図である。
 ここで、図4において、プラス"+"で表わされるのが、チェックノードであり、イコール"="で表わされるのが、バリアブルノードである。チェックノードとバリアブルノードは、それぞれ、検査行列Hの行と列に対応する。チェックノードとバリアブルノードとの間の結線は、枝(edge)であり、検査行列の要素の"1"に相当する。
 すなわち、検査行列の第j行第i列の要素が1である場合には、図4において、上からi番目のバリアブルノード("="のノード)と、上からj番目のチェックノード("+"のノード)とが、枝により接続される。枝は、バリアブルノードに対応する符号ビットが、チェックノードに対応する拘束条件を持つことを表す。
 LDPC符号の復号方法であるサムプロダクトアルゴリズム(Sum Product Algorithm)では、バリアブルノード演算とチェックノード演算とが繰り返し行われる。
 図5は、バリアブルノードで行われるバリアブルノード演算を示す図である。
 バリアブルノードでは、計算しようとしている枝に対応するメッセージviは、バリアブルノードに繋がっている残りの枝からのメッセージu1およびu2と、受信値u0iを用いた式(1)のバリアブルノード演算により求められる。他の枝に対応するメッセージも同様に求められる。
 図6は、チェックノードで行われるチェックノード演算を示す図である。
 ここで、式(2)のチェックノード演算は、式a×b=exp{ln(|a|)+ln(|b|)}×sign(a)×sign(b)の関係を用いて、式(6)に書き直すことができる。但し、sign(x)は、x≧0のとき1であり、x<0のとき-1である。
Figure JPOXMLDOC01-appb-M000006
                      ・・・(6)
 x≧0において、関数φ(x)を、式φ(x)=ln(tanh(x/2))と定義すると、式φ-1(x)=2tanh-1(e-x)が成り立つから、式(6)は、式(7)に変形することができる。
Figure JPOXMLDOC01-appb-M000007
                      ・・・(7)
 チェックノードでは、式(2)のチェックノード演算が、式(7)に従って行われる。
 すなわち、チェックノードでは、図6のように、計算しようとしている枝に対応するメッセージujは、チェックノードに繋がっている残りの枝からのメッセージv1,v2,v3,v4,v5を用いた式(7)のチェックノード演算によって求められる。他の枝に対応するメッセージも同様に求められる。
 なお、式(7)の関数φ(x)は、式φ(x)=ln((ex+1)/(ex-1))で表すことができ、x>0において、φ(x)=φ-1(x)である。関数φ(x)およびφ-1(x)をハードウェアに実装する際には、LUT(Look Up Table)を用いて実装される場合があるが、両者共に同一のLUTとなる。
 <本技術を適用した伝送システムの構成例>
 図7は、本技術を適用した伝送システム(システムとは、複数の装置が論理的に集合した物をいい、各構成の装置が同一筐体中にあるか否かは、問わない)の一実施の形態の構成例を示す図である。
 図7において、伝送システムは、送信装置11と受信装置12とから構成される。
 送信装置11は、例えば、テレビジョン放送の番組等の送信(放送)(伝送)を行う。すなわち、送信装置11は、例えば、番組としての画像データや音声データ等の、送信の対象である対象データをLDPC符号に符号化し、例えば、衛星回線や、地上波、ケーブル(有線回線)等の通信路13を介して送信する。
 受信装置12は、送信装置11から通信路13を介して送信されてくるLDPC符号を受信し、対象データに復号して出力する。
 ここで、図7の伝送システムで使用されるLDPC符号は、AWGN(Additive White Gaussian Noise)通信路で極めて高い能力を発揮することが知られている。
 一方、通信路13では、バースト(burst)誤りやイレージャ(erasure)を発生することがある。例えば、特に、通信路13が地上波である場合、OFDM(Orthogonal Frequency Division Multiplexing)システムでは、D/U(Desired to Undesired Ratio)が0dB(Undesired=echoのパワーがDesired=メインパスのパワーと等しい)のマルチパス環境において、エコー(echo)(メインパス以外のパス)の遅延(delay)に応じて、特定のシンボルのパワーが0になってしまう(erasure)ことがある。
 また、フラッタ(flutter)(遅延が0でドップラ(doppler)周波数の掛かったechoが加算される通信路)でも、D/Uが0dBである場合には、ドップラ周波数によって、特定の時刻のOFDMのシンボル全体のパワーが0になる(erasure)場合が生じる。
 さらに、受信装置12側の、送信装置11からの信号を受信するアンテナ等の受信部(図示せず)から受信装置12までの配線の状況や、受信装置12の電源の不安定性により、バースト誤りが発生することがある。
 一方、LDPC符号の復号においては、検査行列Hの列、ひいては、LDPC符号の符号ビットに対応するバリアブルノードにおいて、図5に示したように、LDPC符号の符号ビット(の受信値u0i)の加算を伴う式(1)のバリアブルノード演算が行われるため、そのバリアブルノード演算に用いられる符号ビットにエラーが生じると、求められるメッセージの精度が低下する。
 そして、LDPC符号の復号では、チェックノードにおいて、そのチェックノードに繋がっているバリアブルノードで求められるメッセージを用いて、式(7)のチェックノード演算が行われるため、繋がっている複数のバリアブルノード(に対応するLDPC符号の符号ビット)が同時にエラー(イレージャを含む)となるチェックノードの数が多くなると、復号の性能が劣化する。
 すなわち、例えば、チェックノードは、そのチェックノードに繋がっているバリアブルノードの2個以上が同時にイレージャになると、全バリアブルノードに、値が0である確率と1である確率とが等確率のメッセージを戻す。この場合、等確率のメッセージを戻すチェックノードは、1回の復号処理(1セットのバリアブルノード演算及びチェックノード演算)に寄与しないこととなり、その結果、復号処理の繰り返し回数を多く必要とすることになって、復号の性能が劣化し、さらに、LDPC符号の復号を行う受信装置12の消費電力が増大する。
 そこで、図7の伝送システムでは、AWGN通信路(AWGNチャネル)での性能を維持しつつ、バースト誤りやイレージャへの耐性を向上させることが可能になっている。
 <送信装置11の構成例>
 図8は、図7の送信装置11の構成例を示すブロック図である。
 送信装置11では、対象データとしての1以上のインプットストリーム(Input Streams)が、モードアダプテーション/マルチプレクサ(Mode Adaptation/Multiplexer)111に供給される。
 モードアダプテーション/マルチプレクサ111は、モード選択、及び、そこに供給される1以上のインプットストリームの多重化等の処理を必要に応じて行い、その結果得られるデータを、パダー(padder)112に供給する。
 パダー112は、モードアダプテーション/マルチプレクサ111からのデータに対して、必要なゼロ詰め(Nullの挿入)を行い、その結果得られるデータを、BBスクランブラ(BB Scrambler)113に供給する。
 BBスクランブラ113は、パダー112からのデータに、BBスクランブル(Base-Band Scrambling)を施し、その結果得られるデータを、BCHエンコーダ(BCH encoder)114に供給する。
 BCHエンコーダ114は、BBスクランブラ113からのデータをBCH符号化し、その結果得られるデータを、LDPC符号化の対象であるLDPC対象データとして、LDPCエンコーダ(LDPC encoder)115に供給する。
 LDPCエンコーダ115は、BCHエンコーダ114からのLDPC対象データについて、例えば、LDPC符号のパリティビットに対応する部分であるパリティ行列が階段(dual diagonal)構造になっている検査行列等に従ったLDPC符号化を行い、LDPC対象データを情報ビットとするLDPC符号を出力する。
 すなわち、LDPCエンコーダ115は、LDPC対象データを、例えば、DVB-S.2や、DVB-T.2,DVB-C.2,ATSC3.0等の所定の規格に規定されている(検査行列に対応する)LDPC符号、その他のLDPC符号に符号化するLDPC符号化を行い、その結果得られるLDPC符号を出力する。
 ここで、DVB-S.2やATSC3.0の規格に規定されているLDPC符号や、ATSC3.0で採用予定のLDPC符号は、IRA(Irregular Repeat Accumulate)符号であり、そのLDPC符号の検査行列におけるパリティ行列(の一部又は全部)は、階段構造になっている。パリティ行列、及び、階段構造については、後述する。また、IRA符号については、例えば、"Irregular Repeat-Accumulate Codes," H. Jin, A. Khandekar, and R. J. McEliece, in Proceedings of 2nd International Symposium on Turbo codes and Related Topics, pp. 1-8, Sept. 2000に記載されている。
 LDPCエンコーダ115が出力するLDPC符号は、ビットインターリーバ(Bit Interleaver)116に供給される。
 ビットインターリーバ116は、LDPCエンコーダ115からのLDPC符号について、後述するビットインターリーブを行い、そのビットインターリーブ後のLDPC符号を、マッパ(Mapper)117に供給する。
 マッパ117は、ビットインターリーバ116からのLDPC符号を、そのLDPC符号の1ビット以上の符号ビットの単位(シンボル単位)で、直交変調の1つのシンボルを表す信号点にマッピングして直交変調(多値変調)を行う。
 すなわち、マッパ117は、ビットインターリーバ116からのLDPC符号を、搬送波と同相のI成分を表すI軸と、搬送波と直交するQ成分を表すQ軸とで規定されるIQ平面であるコンスタレーション上の、LDPC符号の直交変調を行う変調方式で定める信号点にマッピングして直交変調を行う。
 マッパ117で行われる直交変調の変調方式で使用するコンスタレーションの信号点の数が、2m個である場合、LDPC符号のmビットの符号ビットを、シンボル(1シンボル)として、マッパ117では、ビットインターリーバ116からのLDPC符号が、シンボル単位で、2m個の信号点のうちの、シンボルを表す信号点にマッピングされる。
 ここで、マッパ117で行われる直交変調の変調方式としては、例えば、DVB-S.2やATSC3.0の規格等に規定されている変調方式、その他の変調方式、すなわち、例えば、BPSK(Binary Phase Shift Keying)や、QPSK(Quadrature Phase Shift Keying),8PSK(Phase-Shift Keying),16APSK(Amplitude Phase-Shift Keying),32APSK,16QAM(Quadrature Amplitude Modulation),16QAM,64QAM,256QAM,1024QAM,4096QAM,4PAM(Pulse Amplitude Modulation)等がある。マッパ117において、いずれの変調方式による直交変調が行われるかは、例えば、送信装置11のオペレータの操作等に従って、あらかじめ設定される。
 マッパ117での処理により得られるデータ(シンボルを信号点にマッピングしたマッピング結果)は、時間インターリーバ(Time Interleaver)118に供給される。
 時間インターリーバ118は、マッパ117からのデータについて、シンボル単位での時間インターリーブ(時間方向のインターリーブ)を行い、その結果得られるデータを、SISO/MISOエンコーダ(SISO/MISO(Single Input Single Output/Multiple Input Single Output) encoder)119に供給する。
 SISO/MISOエンコーダ119は、時間インターリーバ118からのデータに、時空間符号化を施し、周波数インターリーバ(Frequency Interleaver)120に供給する。
 周波数インターリーバ120は、SISO/MISOエンコーダ119からのデータについて、シンボル単位での周波数インターリーブ(周波数方向のインターリーブ)を行い、フレームビルダ/リソースアロケーション部(Frame Builder & Resource Allocation)131に供給する。
 一方、BCHエンコーダ121には、例えば、BBシグナリング(Base Band Signalling)(BB Header)等の伝送制御用の制御データ(signalling)が供給される。
 BCHエンコーダ121は、そこに供給される制御データを、BCHエンコーダ114と同様にBCH符号化し、その結果得られるデータを、LDPCエンコーダ122に供給する。
 LDPCエンコーダ122は、BCHエンコーダ121からのデータを、LDPC対象データとして、LDPCエンコーダ115と同様にLDPC符号化し、その結果得られるLDPC符号を、マッパ123に供給する。
 マッパ123は、マッパ117と同様に、LDPCエンコーダ122からのLDPC符号を、そのLDPC符号の1ビット以上の符号ビットの単位(シンボル単位)で、直交変調の1つのシンボルを表す信号点にマッピングして直交変調を行い、その結果得られるデータを、周波数インターリーバ124に供給する。
 周波数インターリーバ124は、周波数インターリーバ120と同様に、マッパ123からのデータについて、シンボル単位での周波数インターリーブを行い、フレームビルダ/リソースアロケーション部131に供給する。
 フレームビルダ/リソースアロケーション部131は、周波数インターリーバ120、及び、124からのデータ(シンボル)の必要な位置に、パイロット(Pilot)のシンボルを挿入し、その結果られるデータ(シンボル)から、所定の数のシンボルで構成されるフレーム(例えば、PL(Physical Layer)フレームや、T2フレーム、C2フレーム等)を構成して、OFDM生成部(OFDM generation)132に供給する。
 OFDM生成部132は、フレームビルダ/リソースアロケーション部131からのフレームから、そのフレームに対応するOFDM信号を生成し、通信路13(図7)を介して送信する。
 なお、送信装置11は、例えば、時間インターリーバ118、SISO/MISOエンコーダ119、周波数インターリーバ120、及び、周波数インターリーバ124等の、図8に図示したブロックの一部を設けずに構成することができる。
 <ビットインターリーバ116の構成例>
 図9は、図8のビットインターリーバ116の構成例を示すブロック図である。
 ビットインターリーバ116は、データをインターリーブする機能を有し、パリティインターリーバ(Parity Interleaver)23、グループワイズインターリーバ(Group-Wise Interleaver)24、及びブロックインターリーバ(Block Interleaver)25から構成される。
 パリティインターリーバ23は、LDPCエンコーダ115からのLDPC符号のパリティビットを、他のパリティビットの位置にインターリーブするパリティインターリーブを行い、そのパリティインターリーブ後のLDPC符号を、グループワイズインターリーバ24に供給する。
 グループワイズインターリーバ24は、パリティインターリーバ23からのLDPC符号について、グループワイズインターリーブを行い、そのグループワイズインターリーブ後のLDPC符号を、ブロックインターリーバ25に供給する。
 ここで、グループワイズインターリーブでは、1符号分のLDPC符号を、その先頭から、後述するユニットサイズPに等しい360ビット単位に区分した、その1区分の360ビットを、ビットグループとして、パリティインターリーバ23からのLDPC符号が、ビットグループ単位でインターリーブされる。
 グループワイズインターリーブを行う場合には、グループワイズインターリーブを行わない場合に比較して、エラーレートを改善させることができ、その結果、データ伝送において、良好な通信品質を確保することができる。
 ブロックインターリーバ25は、グループワイズインターリーバ24からのLDPC符号を逆多重化するためのブロックインターリーブを行うことで、例えば、1符号分のLDPC符号を、マッピングの単位であるmビットのシンボルにシンボル化し、マッパ117(図8)に供給する。
 ここで、ブロックインターリーブでは、例えば、カラム(column)(縦)方向に所定のビット数を記憶する記憶領域としてのカラムが、ロウ(row)(横)方向に、シンボルのビット数mに等しい数だけ並んだ記憶領域に対して、グループワイズインターリーバ24からのLDPC符号が、カラム方向に書き込まれ、ロウ方向に読み出されることで、LDPC符号が、mビットのシンボルにシンボル化される。
 <LDPC符号の検査行列>
 図10は、図8のLDPCエンコーダ115でLDPC符号化に用いられる検査行列Hの例を示す図である。
 検査行列Hは、LDGM(Low-Density Generation Matrix)構造になっており、LDPC符号の符号ビットのうちの、情報ビットに対応する部分の情報行列HAと、パリティビットに対応するパリティ行列HTとによって、式H=[HA|HT](情報行列HAの要素を左側の要素とし、パリティ行列HTの要素を右側の要素とする行列)で表すことができる。
 ここで、1符号のLDPC符号(1符号語)の符号ビットのうちの情報ビットのビット数と、パリティビットのビット数を、それぞれ、情報長Kと、パリティ長Mというとともに、1個(1符号語)のLDPC符号の符号ビットのビット数を、符号長N(=K+M)という。
 ある符号長NのLDPC符号についての情報長Kとパリティ長Mは、符号化率によって決まる。また、検査行列Hは、行×列がM×Nの行列(M行N列の行列)となる。そして、情報行列HAは、M×Kの行列となり、パリティ行列HTは、M×Mの行列となる。
 図11は、図8のLDPCエンコーダ115でLDPC符号化に用いられる検査行列Hのパリティ行列HTの例を示す図である。
 LDPCエンコーダ115でLDPC符号化に用いられる検査行列Hのパリティ行列HTとしては、例えば、DVB-T.2等の規格に規定されているLDPC符号の検査行列Hと同様のパリティ行列HTを採用することができる。
 DVB-T.2等の規格に規定されているLDPC符号の検査行列Hのパリティ行列HTは、図11に示すように、1の要素が、いわば階段状に並ぶ階段構造の行列(lower bidiagonal matrix)になっている。パリティ行列HTの行重みは、1行目については1で、残りの全ての行については2になっている。また、列重みは、最後の1列については1で、残りの全ての列で2になっている。
 以上のように、パリティ行列HTが階段構造になっている検査行列HのLDPC符号は、その検査行列Hを用いて、容易に生成することができる。
 すなわち、LDPC符号(1符号語)を、行ベクトルcで表すとともに、その行ベクトルを転置して得られる列ベクトルを、cTと表す。また、LDPC符号である行ベクトルcのうちの、情報ビットの部分を、行ベクトルAで表すとともに、パリティビットの部分を、行ベクトルTで表すこととする。
 この場合、行ベクトルcは、情報ビットとしての行ベクトルAと、パリティビットとしての行ベクトルTとによって、式c =[A|T](行ベクトルAの要素を左側の要素とし、行ベクトルTの要素を右側の要素とする行ベクトル)で表すことができる。
 検査行列Hと、LDPC符号としての行ベクトルc=[A|T]とは、式HcT=0を満たす必要があり、かかる式HcT=0を満たす行ベクトルc=[A|T]を構成するパリティビットとしての行ベクトルTは、検査行列H=[HA|HT]のパリティ行列HTが、図11に示した階段構造になっている場合には、式HcT=0における列ベクトルHcTの1行目の要素から順に、各行の要素を0にしていくようにすることで、逐次的(順番)に求めることができる。
 図12は、DVB-T.2等の規格に規定されているLDPC符号の検査行列Hを説明する図である。
 DVB-T.2等の規格に規定されているLDPC符号の検査行列Hの1列目からのKX列については、列重みがXに、その後のK3列については、列重みが3に、その後のM-1列については、列重みが2に、最後の1列については、列重みが1に、それぞれなっている。
 ここで、KX+K3+M-1+1は、符号長Nに等しい。
 図13は、DVB-T.2等の規格に規定されているLDPC符号の各符号化率rについての、列数KX,K3、及びM、並びに、列重みXを示す図である。
 DVB-T.2等の規格では、64800ビットと16200ビットの符号長NのLDPC符号が規定されている。
 そして、符号長Nが64800ビットのLDPC符号については、11個の符号化率(nominal rate)1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6,8/9、及び9/10が規定されており、符号長Nが16200ビットのLDPC符号については、10個の符号化率1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6、及び8/9が規定されている。
 ここで、以下、64800ビットの符号長Nを、64kビットともいい、16200ビットの符号長Nを、16kビットともいう。
 LDPC符号については、検査行列Hの列重みが大の列に対応する符号ビットほど、エラーレートが低い傾向がある。
 図12及び図13に示した、DVB-T.2等の規格に規定されている検査行列Hでは、先頭側(左側)の列ほど、列重みが大の傾向にあり、したがって、その検査行列Hに対応するLDPC符号については、先頭の符号ビットほど、エラーに強く(エラーに対する耐性があり)、終わりの符号ビットほど、エラーに弱い傾向がある。
 <パリティインターリーブ>
 図14ないし図16を参照して、図9のパリティインターリーバ23によるパリティインターリーブについて説明する。
 図14は、LDPC符号の検査行列のタナーグラフ(の一部)の例を示す図である。
 チェックノードは、図14に示すように、そのチェックノードに繋がっているバリアブルノード(に対応する符号ビット)の2個等の複数が同時にイレージャ等のエラーになると、そのチェックノードに繋がっている全バリアブルノードに、値が0である確率と1である確率とが等確率のメッセージを戻す。このため、同一のチェックノードに繋がっている複数のバリアブルノードが同時にイレージャ等になると、復号の性能が劣化する。
 ところで、図8のLDPCエンコーダ115が出力するLDPC符号は、例えば、DVB-T.2等の規格に規定されているLDPC符号と同様に、IRA符号であり、検査行列Hのパリティ行列HTは、図11に示したように、階段構造になっている。
 図15は、図11に示したように、階段構造になっているパリティ行列HTと、そのパリティ行列HTに対応するタナーグラフの例を示す図である。
 図15のAは、階段構造になっているパリティ行列HTの例を示しており、図15のBは、図15のAのパリティ行列HTに対応するタナーグラフを示している。
 階段構造になっているパリティ行列HTでは、各行において、1の要素が隣接する(1行目を除く)。このため、パリティ行列HTのタナーグラフにおいて、パリティ行列HTの値が1になっている隣接する2つの要素の列に対応する、隣接する2つのバリアブルノードは、同一のチェックノードに繋がっている。
 したがって、バースト誤りやイレージャ等によって、上述の隣接する2つのバリアブルノードに対応するパリティビットが同時にエラーとなると、そのエラーとなった2つのパリティビットに対応する2つのバリアブルノード(パリティビットを用いてメッセージを求めるバリアブルノード)に繋がっているチェックノードは、値が0である確率と1である確率とが等確率のメッセージを、そのチェックノードに繋がっているバリアブルノードに戻すため、復号の性能が劣化する。そして、バースト長(連続してエラーとなるパリティビットのビット数)が大になると、等確率のメッセージを戻すチェックノードが増加し、復号の性能は、さらに劣化する。
 そこで、パリティインターリーバ23(図9)は、上述した復号の性能の劣化を防止するため、LDPCエンコーダ115からの、LDPC符号のパリティビットを、他のパリティビットの位置にインターリーブするパリティインターリーブを行う。
 図16は、図9のパリティインターリーバ23が行うパリティインターリーブ後のLDPC符号に対応する検査行列Hのパリティ行列HTを示す図である。
 ここで、LDPCエンコーダ115が出力するLDPC符号に対応する検査行列Hの情報行列HAは、DVB-T.2等の規格に規定されているLDPC符号に対応する検査行列Hの情報行列と同様に、巡回構造になっている。
 巡回構造とは、ある列が、他の列をサイクリックシフトしたものと一致している構造をいい、例えば、P列ごとに、そのP列の各行の1の位置が、そのP列の最初の列を、パリティ長Mを除算して得られる値qに比例する値等の所定の値だけ、列方向にサイクリックシフトした位置になっている構造も含まれる。以下、適宜、巡回構造におけるP列を、ユニットサイズという。
 DVB-T.2等の規格に規定されているLDPC符号としては、図12及び図13で説明したように、符号長Nが64800ビットと16200ビットとの、2種類のLDPC符号があり、その2種類のLDPC符号のいずれについても、ユニットサイズPが、パリティ長Mの約数のうちの、1とMを除く約数の1つである360に規定されている。
 また、パリティ長Mは、符号化率によって異なる値qを用いて、式M=q×P=q×360で表される素数以外の値になっている。したがって、値qも、ユニットサイズPと同様に、パリティ長Mの約数のうちの、1とMを除く約数の他の1つであり、パリティ長Mを、ユニットサイズPで除算することにより得られる(パリティ長Mの約数であるP及びqの積は、パリティ長Mとなる)。
 パリティインターリーバ23は、上述したように、情報長をKとし、また、0以上P未満の整数をxとするとともに、0以上q未満の整数をyとすると、パリティインターリーブとして、NビットのLDPC符号の符号ビットのうちの、K+qx+y+1番目の符号ビットを、K+Py+x+1番目の符号ビットの位置にインターリーブする。
 K+qx+y+1番目の符号ビット、及び、K+Py+x+1番目の符号ビットは、いずれも、K+1番目以降の符号ビットであるから、パリティビットであり、したがって、パリティインターリーブによれば、LDPC符号のパリティビットの位置が移動される。
 このようなパリティインターリーブによれば、同一のチェックノードに繋がれるバリアブルノード(に対応するパリティビット)が、ユニットサイズP、すなわち、ここでは、360ビットだけ離れるので、バースト長が360ビット未満である場合には、同一のチェックノードに繋がっているバリアブルノードの複数が同時にエラーになる事態を避けることができ、その結果、バースト誤りに対する耐性を改善することができる。
 なお、K+qx+y+1番目の符号ビットを、K+Py+x+1番目の符号ビットの位置にインターリーブするパリティインターリーブ後のLDPC符号は、元の検査行列Hの、K+qx+y+1番目の列を、K+Py+x+1番目の列に置換する列置換を行って得られる検査行列(以下、変換検査行列ともいう)のLDPC符号に一致する。
 また、変換検査行列のパリティ行列には、図16に示すように、P列(図16では、360列)を単位とする擬似巡回構造が現れる。
 ここで、擬似巡回構造とは、一部を除く部分が巡回構造になっている構造を意味する。
 DVB-T.2等の規格に規定されているLDPC符号の検査行列に対して、パリティインターリーブに相当する列置換を施して得られる変換検査行列は、変換検査行列の右上隅部分の360行×360列の部分(後述するシフト行列)に、1の要素が1つだけ足らず(0の要素になっており)、その点で、(完全な)巡回構造ではなく、いわば、擬似巡回構造になっている。
 LDPCエンコーダ115が出力するLDPC符号の検査行列に対する変換検査行列は、例えば、DVB-T.2等の規格に規定されているLDPC符号の検査行列に対する変換検査行列と同様に、擬似巡回構造になっている。
 なお、図16の変換検査行列は、元の検査行列Hに対して、パリティインターリーブに相当する列置換の他、変換検査行列が、後述する構成行列で構成されるようにするための行の置換(行置換)も施された行列になっている。
 図17は、図8のLDPCエンコーダ115、ビットインターリーバ116、及び、マッパ117で行われる処理を説明するフローチャートである。
 LDPCエンコーダ115は、BCHエンコーダ114から、LDPC対象データが供給されるのを待って、ステップS101において、LDPC対象データを、LDPC符号に符号化し、そのLDPC符号を、ビットインターリーバ116に供給して、処理は、ステップS102に進む。
 ビットインターリーバ116は、ステップS102において、LDPCエンコーダ115からのLDPC符号を対象として、ビットインターリーブを行い、そのビットインターリーブによって得られるシンボルを、マッパ117に供給して、処理は、ステップS103に進む。
 すなわち、ステップS102では、ビットインターリーバ116(図9)において、パリティインターリーバ23が、LDPCエンコーダ115からのLDPC符号を対象として、パリティインターリーブを行い、そのパリティインターリーブ後のLDPC符号を、グループワイズインターリーバ24に供給する。
 グループワイズインターリーバ24は、パリティインターリーバ23からのLDPC符号を対象として、グループワイズインターリーブを行い、ブロックインターリーバ25に供給する。
 ブロックインターリーバ25は、グループワイズインターリーバ24によるグループワイズインターリーブ後のLDPC符号を対象として、ブロックインターリーブを行い、その結果得られるmビットのシンボルを、マッパ117に供給する。
 マッパ117は、ステップS103において、ブロックインターリーバ25からのシンボルを、マッパ117で行われる直交変調の変調方式で定める2m個の信号点のいずれかにマッピングして直交変調し、その結果得られるデータを、時間インターリーバ118に供給する。
 以上のように、パリティインターリーブや、グループワイズインターリーブを行うことで、LDPC符号の複数の符号ビットを1個のシンボルとして送信する場合のエラーレートを改善することができる。
 ここで、図9では、説明の便宜のため、パリティインターリーブを行うブロックであるパリティインターリーバ23と、グループワイズインターリーブを行うブロックであるグループワイズインターリーバ24とを、別個に構成するようにしたが、パリティインターリーバ23とグループワイズインターリーバ24とは、一体的に構成することができる。
 すなわち、パリティインターリーブと、グループワイズインターリーブとは、いずれも、メモリに対する符号ビットの書き込み、及び読み出しによって行うことができ、符号ビットの書き込みを行うアドレス(書き込みアドレス)を、符号ビットの読み出しを行うアドレス(読み出しアドレス)に変換する行列によって表すことができる。
 したがって、パリティインターリーブを表す行列と、グループワイズインターリーブを表す行列とを乗算して得られる行列を求めておけば、それらの行列によって、符号ビットを変換することで、パリティインターリーブを行い、さらに、そのパリティインターリーブ後のLDPC符号をグループワイズインターリーブした結果を得ることができる。
 また、パリティインターリーバ23とグループワイズインターリーバ24に加えて、ブロックインターリーバ25も、一体的に構成することが可能である。
 すなわち、ブロックインターリーバ25で行われるブロックインターリーブも、LDPC符号を記憶するメモリの書き込みアドレスを、読み出しアドレスに変換する行列によって表すことができる。
 したがって、パリティインターリーブを表す行列、グループワイズインターリーブを表す行列、及び、ブロックインターリーブを表す行列を乗算して得られる行列を求めておけば、それらの行列によって、パリティインターリーブ、グループワイズインターリーブ、及び、ブロックインターリーブを、一括して行うことができる。
 なお、パリティインターリーブ及びグループワイズインターリーブのうちの一方又は量は、行わないこととすることができる。
 <LDPCエンコーダ115の構成例>
 図18は、図8のLDPCエンコーダ115の構成例を示すブロック図である。
 なお、図8のLDPCエンコーダ122も、同様に構成される。
 図12及び図13で説明したように、DVB-T.2等の規格では、64800ビットと16200ビットとの2通りの符号長NのLDPC符号が規定されている。
 そして、符号長Nが64800ビットのLDPC符号については、11個の符号化率1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6,8/9、及び9/10が規定されており、符号長Nが16200ビットのLDPC符号については、10個の符号化率1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6、及び8/9が規定されている(図12及び図13)。
 LDPCエンコーダ115は、例えば、このような、符号長Nが64800ビットや16200ビットの各符号化率のLDPC符号による符号化(誤り訂正符号化)を、符号長Nごと、及び符号化率ごとに用意された検査行列Hに従って行うことができる。
 その他、LDPCエンコーダ115は、任意の符号長Nの、任意の符号化率rのLDPC符号の検査行列Hに従って、LDPC符号化を行うことができる。
 LDPCエンコーダ115は、符号化処理部601と記憶部602とから構成される。
 符号化処理部601は、符号化率設定部611、初期値テーブル読み出し部612、検査行列生成部613、情報ビット読み出し部614、符号化パリティ演算部615、及び制御部616から構成され、LDPCエンコーダ115に供給されるLDPC対象データのLDPC符号化を行い、その結果得られるLDPC符号を、ビットインターリーバ116(図8)に供給する。
 すなわち、符号化率設定部611は、例えば、オペレータの操作等に応じて、LDPC符号の符号長Nや符号化率r、その他、LDPC符号を特定する特定情報を設定する。
 初期値テーブル読み出し部612は、符号化率設定部611が設定した特定情報によって特定されるLDPC符号の検査行列を表す、後述する検査行列初期値テーブルを、記憶部602から読み出す。
 検査行列生成部613は、初期値テーブル読み出し部612が読み出した検査行列初期値テーブルに基づいて、検査行列Hを生成し、記憶部602に格納する。例えば、検査行列生成部613は、符号化率設定部611が設定した符号長N及び符号化率rに応じた情報長K(=符号長N-パリティ長M)に対応する情報行列HAの1の要素を列方向に360列(ユニットサイズP)ごとの周期で配置して検査行列Hを生成し、記憶部602に格納する。
 情報ビット読み出し部614は、LDPCエンコーダ115に供給されるLDPC対象データから、情報長K分の情報ビットを読み出す(抽出する)。
 符号化パリティ演算部615は、検査行列生成部613が生成した検査行列Hを記憶部602から読み出し、その検査行列Hを用いて、情報ビット読み出し部614が読み出した情報ビットに対するパリティビットを所定の式に基づいて算出することにより、符号語(LDPC符号)を生成する。
 制御部616は、符号化処理部601を構成する各ブロックを制御する。
 記憶部602には、例えば、64800ビットや16200ビット等の符号長Nそれぞれについての、図12及び図13に示した複数の符号化率等それぞれに対応する複数の検査行列初期値テーブル等が格納されている。また、記憶部602は、符号化処理部601の処理上必要なデータを一時記憶する。
 図19は、図18のLDPCエンコーダ115の処理の例を説明するフローチャートである。
 ステップS201において、符号化率設定部611は、LDPC符号化を行う符号長N及び符号化率r、その他のLDPC符号を特定する特定情報を設定する。
 ステップS202において、初期値テーブル読み出し部612は、符号化率設定部611により設定された特定情報としての符号長N及び符号化率r等により特定される、予め定められた検査行列初期値テーブルを、記憶部602から読み出す。
 ステップS203において、検査行列生成部613は、初期値テーブル読み出し部612が記憶部602から読み出した検査行列初期値テーブルを用いて、符号化率設定部611により設定された符号長N及び符号化率rのLDPC符号の検査行列Hを求め(生成し)、記憶部602に供給して格納する。
 ステップS204において、情報ビット読み出し部614は、LDPCエンコーダ115に供給されるLDPC対象データから、符号化率設定部611により設定された符号長N及び符号化率rに対応する情報長K(=N×r)の情報ビットを読み出すとともに、検査行列生成部613が求めた検査行列Hを、記憶部602から読み出し、符号化パリティ演算部615に供給する。
 ステップS205において、符号化パリティ演算部615は、情報ビット読み出し部614からの情報ビットと検査行列Hとを用い、式(8)を満たす符号語cのパリティビットを順次演算する。
   HcT=0
                      ・・・(8)
 式(8)において、cは、符号語(LDPC符号)としての行ベクトルを表し、cTは、行ベクトルcの転置を表す。
 ここで、上述したように、LDPC符号(1符号語)としての行ベクトルcのうちの、情報ビットの部分を、行ベクトルAで表すとともに、パリティビットの部分を、行ベクトルTで表す場合には、行ベクトルcは、情報ビットとしての行ベクトルAと、パリティビットとしての行ベクトルTとによって、式c =[A|T]で表すことができる。
 検査行列Hと、LDPC符号としての行ベクトルc=[A|T]とは、式HcT=0を満たす必要があり、かかる式HcT=0を満たす行ベクトルc=[A|T]を構成するパリティビットとしての行ベクトルTは、検査行列H=[HA|HT]のパリティ行列HTが、図11に示した階段構造になっている場合には、式HcT=0における列ベクトルHcTの1行目の要素から順に、各行の要素を0にしていくようにすることで、逐次的に求めることができる。
 符号化パリティ演算部615は、情報ビット読み出し部614からの情報ビットAに対して、パリティビットTを求め、その情報ビットAとパリティビットTとによって表される符号語c =[A|T]を、情報ビットAのLDPC符号化結果として出力する。
 その後、ステップS206において、制御部616は、LDPC符号化を終了するかどうかを判定する。ステップS206において、LDPC符号化を終了しないと判定された場合、すなわち、例えば、LDPC符号化すべきLDPC対象データが、まだある場合、処理は、ステップS201(又は、ステップS204)に戻り、以下、ステップS201(又は、ステップS204)ないしS206の処理が繰り返される。
 また、ステップS206において、LDPC符号化を終了すると判定された場合、すなわち、例えば、LDPC符号化すべきLDPC対象データがない場合、LDPCエンコーダ115は、処理を終了する。
 LDPCエンコーダ115については、様々な符号長Nや符号化率rのLDPC符号の(検査行列を表す)検査行列初期値テーブルをあらかじめ用意することができる。LDPCエンコーダ115では、あらかじめ用意された検査行列初期値テーブルから生成される検査行列Hを用いて、様々な符号長Nや符号化率rのLDPC符号へのLDPC符号化を行うことができる。
 <検査行列初期値テーブルの例>
 検査行列初期値テーブルは、例えば、検査行列Hの、LDPC符号(検査行列Hによって定義されるLDPC符号)の符号長N及び符号化率rに応じた情報長Kに対応する情報行列HA(図10)の1の要素の位置を360列(ユニットサイズP)ごとに表すテーブルであり、各符号長N及び各符号化率rの検査行列Hごとに、あらかじめ作成される。
 すなわち、検査行列初期値テーブルは、少なくとも、情報行列HAの1の要素の位置を360列(ユニットサイズP)ごとに表す。
 また、検査行列Hには、パリティ行列HTの全部が階段構造になっている検査行列や、パリティ行列HTの一部が階段構造になっており、残りの部分が対角行列(単位行列)になっている検査行列がある。
 以下、パリティ行列HTの一部が階段構造になっており、残りの部分が対角行列になっている検査行列を表す検査行列初期値テーブルの表現方式を、タイプA方式ともいう。また、パリティ行列HTの全部が階段構造になっている検査行列を表す検査行列初期値テーブルの表現方式を、タイプB方式ともいう。
 また、タイプA方式の検査行列初期値テーブルが表す検査行列に対するLDPC符号を、タイプA符号ともいい、タイプB方式の検査行列初期値テーブルが表す検査行列に対するLDPC符号を、タイプB符号ともいう。
 「タイプA」及び「タイプB」の呼称は、ATSC 3.0の規格に準じた呼称である。例えば、ATSC3.0では、タイプA符号及びタイプB符号の両方が採用されている。
 なお、DVB-T.2等では、タイプB符号が採用されている。
 図20は、タイプB方式の検査行列初期値テーブルの例を示す図である。
 すなわち、図20は、DVB-T.2の規格に規定されている、符号長Nが16200ビットの、符号化率(DVB-T.2の表記上の符号化率)rが1/4のタイプB符号の(検査行列Hを表す)検査行列初期値テーブルを示している。
 検査行列生成部613(図18)は、タイプB方式の検査行列初期値テーブルを用いて、以下のように、検査行列Hを求める。
 図21は、タイプB方式の検査行列初期値テーブルから検査行列Hを求める方法を説明する図である。
 すなわち、図21は、DVB-T.2の規格に規定されている、符号長Nが16200ビットの、符号化率rが2/3のタイプB符号の検査行列初期値テーブルを示している。
 タイプB方式の検査行列初期値テーブルは、LDPC符号の符号長N及び符号化率rに応じた情報長Kに対応する情報行列HAの全体の1の要素の位置を、360列(ユニットサイズP)ごとに表すテーブルであり、そのi行目には、検査行列Hの1+360×(i-1)列目の1の要素の行番号(検査行列Hの1行目の行番号を0とする行番号)が、その1+360×(i-1)列目の列が持つ列重みの数だけ並んでいる。
 ここで、タイプB方式の検査行列Hの、パリティ長Mに対応するパリティ行列HT(図10)は、図15に示したように階段構造に決まっているので、検査行列初期値テーブルにより、情報長Kに対応する情報行列HA(図10)を求めることができれば、検査行列Hを求めることができる。
 タイプB方式の検査行列初期値テーブルの行数k+1は、情報長Kによって異なる。
 情報長Kと、検査行列初期値テーブルの行数k+1との間には、式(9)の関係が成り立つ。
   K=(k+1)×360
                      ・・・(9)
 ここで、式(9)の360は、図16で説明したユニットサイズPである。
 図21の検査行列初期値テーブルでは、1行目から3行目までに、13個の数値が並び、4行目からk+1行目(図21では、30行目)までに、3個の数値が並んでいる。
 したがって、図21の検査行列初期値テーブルから求められる検査行列Hの列重みは、1列目から、1+360×(3-1)-1列目までは、13であり、1+360×(3-1)列目から、K列目までは、3である。
 図21の検査行列初期値テーブルの1行目は、0,2084,1613,1548,1286,1460,3196,4297,2481,3369,3451,4620,2622となっており、これは、検査行列Hの1列目において、行番号が、0,2084,1613,1548,1286,1460,3196,4297,2481,3369,3451,4620,2622の行の要素が1であること(かつ、他の要素が0であること)を示している。
 また、図21の検査行列初期値テーブルの2行目は、1,122,1516,3448,2880,1407,1847,3799,3529,373,971,4358,3108となっており、これは、検査行列Hの361(=1+360×(2-1))列目において、行番号が、1,122,1516,3448,2880,1407,1847,3799,3529,373,971,4358,3108の行の要素が1であることを示している。
 以上のように、検査行列初期値テーブルは、検査行列Hの情報行列HAの1の要素の位置を360列ごとに表す。
 検査行列Hの1+360×(i-1)列目以外の列、つまり、2+360×(i-1)列目から、360×i列目までの各列は、検査行列初期値テーブルによって定まる1+360×(i-1)列目の1の要素を、パリティ長Mに従って下方向(列の下方向)に、周期的にサイクリックシフトして配置したものになっている。
 すなわち、例えば、2+360×(i-1)列目は、1+360×(i-1)列目を、M/360(=q)だけ下方向にサイクリックシフトしたものとなっており、次の3+360×(i-1)列目は、1+360×(i-1)列目を、2×M/360(=2×q)だけ下方向にサイクリックシフトしたもの(2+360×(i-1)列目を、M/360(=q)だけ下方向にサイクリックシフトしたもの)となっている。
 いま、検査行列初期値テーブルのi行目(上からi番目)のj列目(左からj番目)の数値を、hi,jと表すとともに、検査行列Hのw列目の、j個目の1の要素の行番号を、Hw-jと表すこととすると、検査行列Hの1+360×(i-1)列目以外の列であるw列目の、1の要素の行番号Hw-jは、式(10)で求めることができる。
   Hw-j=mod{hi,j+mod((w-1),P)×q,M)
                     ・・・(10)
 ここで、mod(x,y)はxをyで割った余りを意味する。
 また、Pは、上述したユニットサイズであり、本実施の形態では、例えば、DVB-T.2等やATSC3.0の規格と同様に、360である。さらに、qは、パリティ長Mを、ユニットサイズP(=360)で除算することにより得られる値M/360である。
 検査行列生成部613(図18)は、検査行列初期値テーブルによって、検査行列Hの1+360×(i-1)列目の1の要素の行番号を特定する。
 さらに、検査行列生成部613(図18)は、検査行列Hの1+360×(i-1)列目以外の列であるw列目の、1の要素の行番号Hw-jを、式(10)に従って求め、以上により得られた行番号の要素を1とする検査行列Hを生成する。
 図22は、タイプA方式の検査行列Hの構造を示す図である。
 タイプA方式の検査行列は、A行列、B行列、C行列、D行列、及び、Z行列で構成される。
 A行列は、所定値M1と、LDPC符号の情報長K=符号長N×符号化率rとで表されるM1行K列の、検査行列Hの左上の行列である。
 B行列は、M1行M1列の、A行列の右に隣接する階段構造の行列である。
 C行列は、N-K-M1行K+M1列の、A行列及びB行列の下に隣接する行列である。
 D行列は、N-K-M1行N-K-M1列の、C行列の右に隣接する単位行列である。
 Z行列は、M1行N-K-M1列の、B行列の右に隣接するゼロ行列(0行列)である。
 以上のようなA行列ないしD行列、及び、Z行列で構成されるタイプA方式の検査行列Hでは、A行列、及び、C行列の一部が、情報行列を構成しており、B行列、C行列の残りの部分、D行列、及び、Z行列が、パリティ行列を構成している。
 なお、B行列は、階段構造の行列であり、D行列は、単位行列であるので、タイプA方式の検査行列Hのパリティ行列は、一部(B行列の部分)が階段構造になっており、残りの部分(D行列の部分)が対角行列(単位行列)になっている。
 A行列及びC行列は、タイプB方式の検査行列Hの情報行列と同様に、ユニットサイズPの列(例えば、360列)ごとの巡回構造になっており、タイプA方式の検査行列初期値テーブルは、A行列及びC行列の1の要素の位置を360列ごとに表す。
 ここで、上述したように、A行列、及び、C行列の一部は、情報行列を構成するから、A行列及びC行列の1の要素の位置を360列ごとに表すタイプA方式の検査行列初期値テーブルは、少なくとも、情報行列の1の要素の位置を360列ごとに表している、ということができる。
 なお、タイプA方式の検査行列初期値テーブルは、A行列及びC行列の1の要素の位置を360列ごとに表すから、検査行列の一部(C行列の残りの部分)の1の要素の位置を360列ごとに表している、ということもできる。
 図23は、タイプA方式の検査行列初期値テーブルの例を示す図である。
 すなわち、図23は、符号長Nが35ビットの、符号化率rが2/7の検査行列Hを表す検査行列初期値テーブルの例を示している。
 タイプA方式の検査行列初期値テーブルは、A行列及びC行列の1の要素の位置を、ユニットサイズPごとに表すテーブルであり、そのi行目には、検査行列Hの1+P×(i-1)列目の1の要素の行番号(検査行列Hの1行目の行番号を0とする行番号)が、その1+P×(i-1)列目の列が持つ列重みの数だけ並んでいる。
 なお、ここでは、説明を簡単にするため、ユニットサイズPは、例えば、5であるとする。
 タイプA方式の検査行列Hについては、パラメータとして、M1,M2,Q1、及び、Q2がある。
 M1(図22)は、B行列のサイズを決めるパラメータであり、ユニットサイズPの倍数の値をとる。M1を調整することで、LDPC符号の性能は変化し、検査行列Hを決定するときに、所定の値に調整される。ここでは、M1として、ユニットサイズP=5の3倍の15が採用されていることとする。
 M2(図22)は、パリティ長Mから、M1を減算した値M-M1をとる。
 ここでは、情報長Kは、N×r=35×2/7=10であり、パリティ長Mは、N-K=35-10=25であるので、M2は、M-M1=25-15=10となる。
 Q1は、式Q1=M1/Pに従って求められ、A行列におけるサイクリックシフトのシフト数(行数)を表す。
 すなわち、タイプA方式の検査行列HのA行列の1+P×(i-1)列目以外の列、つまり、2+P×(i-1)列目から、P×i列目までの各列は、検査行列初期値テーブルによって定まる1+P×(i-1)列目の1の要素を下方向(列の下方向)に、周期的にサイクリックシフトして配置したものになっており、Q1は、A行列における、そのサイクリックシフトのシフト数を表す。
 Q2は、式Q2=M2/Pに従って求められ、C行列におけるサイクリックシフトのシフト数(行数)を表す。
 すなわち、タイプA方式の検査行列HのC行列の1+P×(i-1)列目以外の列、つまり、2+P×(i-1)列目から、P×i列目までの各列は、検査行列初期値テーブルによって定まる1+P×(i-1)列目の1の要素を下方向(列の下方向)に、周期的にサイクリックシフトして配置したものになっており、Q2は、C行列における、そのサイクリックシフトのシフト数を表す。
 ここでは、Q1は、M1/P=15/5=3であり、Q2は、M2/P=10/5=2である。
 図23の検査行列初期値テーブルでは、1行目と2行目に、3個の数値が並び、3行目から5行目までに、1個の数値が並んでおり、かかる数値の並びによれば、図23の検査行列初期値テーブルから求められる検査行列HのA行列及びC行列の部分の列重みは、1=1+5×(1-1)列目から、10=5×2列目までは、3であり、11=1+5×(3-1)列目から、25=5×5列目までは、1である。
 すなわち、図23の検査行列初期値テーブルの1行目は、2,6,18となっており、これは、検査行列Hの1列目において、行番号が、2,6,18の行の要素が1であること(かつ、他の要素が0であること)を示している。
 ここで、いまの場合、A行列(図22)は、15行10列(M1行K列)の行列であり、C行列(図22)は、10行25列(N-K-M1行K+M1列)の行列であるから、検査行列Hの行番号0ないし14の行は、A行列の行であり、検査行列Hの行番号15ないし24の行は、C行列の行である。
 したがって、行番号が2,6,18の行(以下、行#2,#6,#18のように記載する)のうちの、行#2及び#6は、A行列の行であり、行#18は、C行列の行である。
 図23の検査行列初期値テーブルの2行目は、2,10,19となっており、これは、検査行列Hの6(=1+5×(2-1))列目において、行#2,#10,#19の要素が1であることを示している。
 ここで、検査行列Hの6(=1+5×(2-1))列目において、行#2,#10,#19のうちの、行#2及び#10は、A行列の行であり、行#19は、C行列の行である。
 図23の検査行列初期値テーブルの3行目は、22となっており、これは、検査行列Hの11(=1+5×(3-1))列目において、行#22の要素が1であることを示している。
 ここで、検査行列Hの11(=1+5×(3-1))列目において、行#22は、C行列の行である。
 以下同様に、図23の検査行列初期値テーブルの4行目の19は、検査行列Hの16(=1+5×(4-1))列目において、行#19の要素が1であることを示しており、図23の検査行列初期値テーブルの5行目の15は、検査行列Hの21(=1+5×(5-1))列目において、行#15の要素が1であることを示している。
 以上のように、検査行列初期値テーブルは、検査行列HのA行列及びC行列の1の要素の位置をユニットサイズP=5列ごとに表す。
 検査行列HのA行列及びC行列の1+5×(i-1)列目以外の列、つまり、2+5×(i-1)列目から、5×i列目までの各列は、検査行列初期値テーブルによって定まる1+5×(i-1)列目の1の要素を、パラメータQ1及びQ2に従って下方向(列の下方向)に、周期的にサイクリックシフトして配置したものになっている。
 すなわち、例えば、A行列の、2+5×(i-1)列目は、1+5×(i-1)列目を、Q1(=3)だけ下方向にサイクリックシフトしたものとなっており、次の3+5×(i-1)列目は、1+5×(i-1)列目を、2×Q1(=2×3)だけ下方向にサイクリックシフトしたもの(2+5×(i-1)列目を、Q1だけ下方向にサイクリックシフトしたもの)となっている。
 また、例えば、C行列の、2+5×(i-1)列目は、1+5×(i-1)列目を、Q2(=2)だけ下方向にサイクリックシフトしたものとなっており、次の3+5×(i-1)列目は、1+5×(i-1)列目を、2×Q2(=2×2)だけ下方向にサイクリックシフトしたもの(2+5×(i-1)列目を、Q2だけ下方向にサイクリックシフトしたもの)となっている。
 図24は、図23の検査行列初期値テーブルから生成されるA行列を示す図である。
 図24のA行列では、図23の検査行列初期値テーブルの1行目にしたがい、1(=1+5×(1-1))列目の行#2及び#6の要素が1になっている。
 そして、2(=2+5×(1-1))列目から5(=5+5×(1-1))列目までの各列は、直前の列を、Q1=3だけ下方向にサイクリックシフトしたものになっている。
 さらに、図24のA行列では、図23の検査行列初期値テーブルの2行目にしたがい、6(=1+5×(2-1))列目の行#2及び#10の要素が1になっている。
 そして、7(=2+5×(2-1))列目から10(=5+5×(2-1))列目までの各列は、直前の列を、Q1=3だけ下方向にサイクリックシフトしたものになっている。
 図25は、B行列のパリティインターリーブを示す図である。
 検査行列生成部613(図18)は、検査行列初期値テーブルを用いて、A行列を生成し、そのA行列の右隣に、階段構造のB行列を配置する。そして、検査行列生成部613は、B行列をパリティ行列とみなして、階段構造のB行列の隣接する1の要素が、行方向に、ユニットサイズP=5だけ離れるように、パリティインターリーブを行う。
 図25は、図24のB行列のパリティインターリーブ後のA行列及びB行列を示している。
 図26は、図23の検査行列初期値テーブルから生成されるC行列を示す図である。
 図26のC行列では、図23の検査行列初期値テーブルの1行目にしたがい、検査行列Hの1(=1+5×(1-1))列目の行#18の要素が1になっている。
 そして、C行列の2(=2+5×(1-1))列目から5(=5+5×(1-1))列目までの各列は、直前の列を、Q2=2だけ下方向にサイクリックシフトしたものになっている。
 さらに、図26のC行列では、図23の検査行列初期値テーブルの2行目ないし5行目にしたがい、検査行列Hの6(=1+5×(2-1))列目の行#19、11(=1+5×(3-1))列目の行#22、16(=1+5×(4-1))列目の行#19、及び、21(=1+5×(5-1))列目の行#15の要素が1になっている。
 そして、7(=2+5×(2-1))列目から10(=5+5×(2-1))列目までの各列、12(=2+5×(3-1))列目から15(=5+5×(3-1))列目までの各列、17(=2+5×(4-1))列目から20(=5+5×(4-1))列目までの各列、及び、22(=2+5×(5-1))列目から25(=5+5×(5-1))列目までの各列は、直前の列を、Q2=2だけ下方向にサイクリックシフトしたものになっている。
 検査行列生成部613(図18)は、検査行列初期値テーブルを用いて、C行列を生成し、そのC行列を、A行列及び(パリティインターリーブ後の)B行列の下に配置する。
 さらに、検査行列生成部613は、B行列の右隣に、Z行列を配置するとともに、C行列の右隣に、D行列を配置し、図26に示す検査行列Hを生成する。
 図27は、D行列のパリティインターリーブを示す図である。
 検査行列生成部613は、図26の検査行列Hを生成した後、D行列をパリティ行列とみなして、単位行列のD行列の奇数行と次の偶数行との1の要素が、行方向に、ユニットサイズP=5だけ離れるように、(D行列のみの)パリティインターリーブを行う。
 図27は、図26の検査行列Hについて、D行列のパリティインターリーブを行った後の検査行列Hを示している。
 LDPCエンコーダ115(の符号化パリティ演算部615(図18))は、例えば、図27の検査行列Hを用いて、LDPC符号化(LDPC符号の生成)を行う。
 ここで、図27の検査行列Hを用いて生成されるLDPC符号は、パリティインターリーブを行ったLDPC符号になっており、したがって、図27の検査行列Hを用いて生成されるLDPC符号については、パリティインターリーバ23(図9)において、パリティインターリーブを行う必要はない。すなわち、D行列のパリティインターリーブを行った後の検査行列Hを用いて生成されるLDPC符号は、パリティインターリーブを行ったLDPC符号になるため、かかるLDPC符号については、パリティインターリーバ23でのパリティインターリーブは、スキップされる。
 図28は、図27の検査行列HのB行列、C行列の一部(C行列のうちの、B行列の下に配置されている部分)、及び、D行列に、パリティインターリーブを元に戻すパリティデインターリーブとしての列置換(column permutation)を行った検査行列Hを示す図である。
 LDPCエンコーダ115では、図28の検査行列Hを用いて、LDPC符号化(LDPC符号の生成)を行うことができる。
 図28の検査行列Hを用いて、LDPC符号化を行う場合、そのLDPC符号化によれば、パリティインターリーブを行っていないLDPC符号が得られる。したがって、図28の検査行列Hを用いて、LDPC符号化を行う場合には、パリティインターリーバ23(図9)において、パリティインターリーブが行われる。
 図29は、図27の検査行列Hに、行置換(row permutation)を行うことにより得られる変換検査行列Hを示す図である。
 変換検査行列は、後述するように、P×Pの単位行列、その単位行列の1のうち1個以上が0になった準単位行列、単位行列又は準単位行列をサイクリックシフトしたシフト行列、単位行列、準単位行列、又はシフト行列のうちの2以上の和である和行列、及び、P×Pの0行列の組合わせで表される行列になっている。
 変換検査行列を、LDPC符号の復号に用いることにより、LDPC符号の復号において、後述するように、チェックノード演算、及びバリアブルノード演算を、P個同時に行うアーキテクチャを採用することができる。
 <新LDPC符号>
 LDPC符号を用いたデータ伝送において、良好な通信品質を確保する方法の1つとして、性能の良いLDPC符号を用いる方法がある。
 以下では、性能の良い新たなLDPC符号(以下、新LDPC符号ともいう)について説明する。
 新LDPC符号としては、例えば、ユニットサイズPが、DVB-T.2やATSC3.0等と同様の360で、巡回構造の検査行列Hに対応するタイプA符号やタイプB符号を採用することができる。
 LDPCエンコーダ115(図8、図18)は、以下のような、符号長Nが、64kビットよりも長い、例えば、69120ビットで、符号化率rが、例えば、2/16,3/16,4/16,5/16,6/16,7/16,8/16,9/16,10/16,11/16,12/16,13/16、又は、14/16のうちのいずれかの新LDPC符号の検査行列初期値テーブル(から求められる検査行列H)を用いて、新LDPC符号へのLDPC符号化を行うことができる。
 この場合、LDPCエンコーダ115(図8)の記憶部602には、新LDPC符号の検査行列初期値テーブルが記憶される。
 図30は、符号長Nが69120ビットで、符号化率rが2/16の新LDPC符号としてのタイプA符号(以下、r=2/16のタイプA符号ともいう)の検査行列Hを表す(タイプA方式の)検査行列初期値テーブルの例を示す図である。
 図31、及び、図32は、符号長Nが69120ビットで、符号化率rが3/16の新LDPC符号としてのタイプA符号(以下、r=3/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図32は、図31に続く図である。
 図33は、符号長Nが69120ビットで、符号化率rが4/16の新LDPC符号としてのタイプA符号(以下、r=4/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 図34、及び、図35は、符号長Nが69120ビットで、符号化率rが5/16の新LDPC符号としてのタイプA符号(以下、r=5/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図35は、図34に続く図である。
 図36、及び、図37は、符号長Nが69120ビットで、符号化率rが6/16の新LDPC符号としてのタイプA符号(以下、r=6/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図37は、図36に続く図である。
 図38、及び、図39は、符号長Nが69120ビットで、符号化率rが7/16の新LDPC符号としてのタイプA符号(以下、r=7/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図39は、図38に続く図である。
 図40、及び、図41は、符号長Nが69120ビットで、符号化率rが8/16の新LDPC符号としてのタイプA符号(以下、r=8/16のタイプA符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図41は、図40に続く図である。
 図42、及び、図43は、符号長Nが69120ビットで、符号化率rが7/16の新LDPC符号としてのタイプB符号(以下、r=7/16のタイプB符号ともいう)の検査行列Hを表す(タイプB方式の)検査行列初期値テーブルの例を示す図である。
 なお、図43は、図42に続く図である。
 図44、及び、図45は、r=7/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図45は、図44に続く図である。図44、及び、図45の検査行列初期値テーブル(が表す検査行列H)から得られるr=7/16のタイプB符号を、以下、r=7/16の他のタイプB符号ともいう。
 図46、及び、図47は、符号長Nが69120ビットで、符号化率rが8/16の新LDPC符号としてのタイプB符号(以下、r=8/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図47は、図46に続く図である。
 図48、及び、図49は、r=8/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図49は、図48に続く図である。図48、及び、図49の検査行列初期値テーブルから得られるr=8/16のタイプB符号を、以下、r=8/16の他のタイプB符号ともいう。
 図50、図51、及び、図52は、符号長Nが69120ビットで、符号化率rが9/16の新LDPC符号としてのタイプB符号(以下、r=9/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図51は、図50に続く図であり、図52は、図51に続く図である。
 図53、図54、及び、図55は、r=9/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図54は、図53に続く図であり、図55は、図54に続く図である。図53ないし図55の検査行列初期値テーブルから得られるr=9/16のタイプB符号を、以下、r=9/16の他のタイプB符号ともいう。
 図56、図57、及び、図58は、符号長Nが69120ビットで、符号化率rが10/16の新LDPC符号としてのタイプB符号(以下、r=10/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図57は、図56に続く図であり、図58は、図57に続く図である。
 図59、図60、及び、図61は、r=10/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図60は、図59に続く図であり、図61は、図60に続く図である。図59ないし図61の検査行列初期値テーブルから得られるr=10/16のタイプB符号を、以下、r=10/16の他のタイプB符号ともいう。
 図62、図63、及び、図64は、符号長Nが69120ビットで、符号化率rが11/16の新LDPC符号としてのタイプB符号(以下、r=11/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図63は、図62に続く図であり、図64は、図63に続く図である。
 図65、図66、及び、図67は、r=11/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図66は、図65に続く図であり、図67は、図66に続く図である。図65ないし図67の検査行列初期値テーブルから得られるr=11/16のタイプB符号を、以下、r=11/16の他のタイプB符号ともいう。
 図68、図69、及び、図70は、符号長Nが69120ビットで、符号化率rが12/16の新LDPC符号としてのタイプB符号(以下、r=12/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図69は、図68に続く図であり、図70は、図69に続く図である。
 図71、図72、及び、図73は、r=12/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図72は、図71に続く図であり、図73は、図72に続く図である。図71ないし図73の検査行列初期値テーブルから得られるr=12/16のタイプB符号を、以下、r=12/16の他のタイプB符号ともいう。
 図74、図75、及び、図76は、符号長Nが69120ビットで、符号化率rが13/16の新LDPC符号としてのタイプB符号(以下、r=13/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図75は、図74に続く図であり、図76は、図75に続く図である。
 図77、図78、及び、図79は、r=13/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図78は、図77に続く図であり、図79は、図78に続く図である。図77ないし図79の検査行列初期値テーブルから得られるr=13/16のタイプB符号を、以下、r=13/16の他のタイプB符号ともいう。
 図80、図81、及び、図82は、符号長Nが69120ビットで、符号化率rが14/16の新LDPC符号としてのタイプB符号(以下、r=14/16のタイプB符号ともいう)の検査行列Hを表す検査行列初期値テーブルの例を示す図である。
 なお、図81は、図80に続く図であり、図82は、図81に続く図である。
 図83、図84、及び、図85は、r=14/16のタイプB符号の検査行列Hを表す検査行列初期値テーブルの他の例を示す図である。
 なお、図84は、図83に続く図であり、図85は、図84に続く図である。図83ないし図85の検査行列初期値テーブルから得られるr=14/16のタイプB符号を、以下、r=14/16の他のタイプB符号ともいう。
 新LDPC符号は、性能の良いLDPC符号になっている。
 ここで、性能の良いLDPC符号とは、適切な検査行列Hから得られるLDPC符号である。
 適切な検査行列Hとは、例えば、検査行列Hから得られるLDPC符号を、低いEs/N0、又はEb/No(1ビットあたりの信号電力対雑音電力比)で送信したときに、BER(bit error rate)(及びFER(frame error rate))をより小にする、所定の条件を満たす検査行列である。
 適切な検査行列Hは、例えば、所定の条件を満たす様々な検査行列から得られるLDPC符号を、低いEs/Noで送信したときのBERを計測するシミュレーションを行うことにより求めることができる。
 適切な検査行列Hが満たすべき所定の条件としては、例えば、デンシティエボリューション(Density Evolution)と呼ばれる符号の性能の解析法で得られる解析結果が良好であること、サイクル4と呼ばれる、1の要素のループが存在しないこと、等がある。
 ここで、情報行列HAにおいて、サイクル4のように、1の要素が密集していると、LDPC符号の復号性能が劣化することが知られており、このため、検査行列Hには、サイクル4が存在しないことが望ましい。
 検査行列Hにおいて、1の要素によって構成されるループの長さ(ループ長)の最小値は、ガース(girth)と呼ばれる。サイクル4が存在しないこととは、ガースが4より大であることを意味する。
 なお、適切な検査行列Hが満たすべき所定の条件は、LDPC符号の復号性能の向上や、LDPC符号の復号処理の容易化(単純化)等の観点から適宜決定することができる。
 図86及び図87は、適切な検査行列Hが満たすべき所定の条件としての解析結果が得られるデンシティエボリューションを説明する図である。
 デンシティエボリューションとは、後述するデグリーシーケンス(degree sequence)で特徴付けられる符号長Nが∞のLDPC符号全体(アンサンブル(ensemble))に対して、そのエラー確率の期待値を計算する、符号の解析法である。
 例えば、AWGNチャネル上で、ノイズの分散値を0からどんどん大きくしていくと、あるアンサンブルのエラー確率の期待値は、最初は0であるが、ノイズの分散値が、ある閾値(threshold)以上となると、0ではなくなる。
 デンシティエボリューションによれば、そのエラー確率の期待値が0ではなくなる、ノイズの分散値の閾値(以下、性能閾値ともいう)を比較することで、アンサンブルの性能(検査行列の適切さ)の良し悪しを決めることができる。
 なお、具体的なLDPC符号に対して、そのLDPC符号が属するアンサンブルを決定し、そのアンサンブルに対してデンシティエボリューションを行うと、そのLDPC符号のおおまかな性能を予想することができる。
 したがって、性能の良いLDPC符号は、性能の良いアンサンブルを見つければ、そのアンサンブルに属するLDPC符号の中から見つけることができる。
 ここで、上述のデグリーシーケンスとは、LDPC符号の符号長Nに対して、各値の重みをもつバリアブルノードやチェックノードがどれくらいの割合だけあるかを表す。
 例えば、符号化率が1/2のregular(3,6)LDPC符号は、すべてのバリアブルノードの重み(列重み)が3で、すべてのチェックノードの重み(行重み)が6であるというデグリーシーケンスによって特徴付けられるアンサンブルに属する。
 図86は、そのようなアンサンブルのタナーグラフ(Tanner graph)を示している。
 図86のタナーブラフでは、図中丸印(○印)で示すバリアブルノードが、符号長Nに等しいN個だけ存在し、図中四角形(□印)で示すチェックノードが、符号長Nに符号化率1/2を乗算した乗算値に等しいN/2個だけ存在する。
 各バリアブルノードには、列重みに等しい3本の枝(edge)が接続されており、したがって、N個のバリアブルノードに接続している枝は、全部で、3N本だけ存在する。
 また、各チェックノードには、行重みに等しい6本の枝が接続されており、したがって、N/2個のチェックノードに接続している枝は、全部で、3N本だけ存在する。
 さらに、図86のタナーグラフでは、1つのインターリーバが存在する。
 インターリーバは、N個のバリアブルノードに接続している3N本の枝をランダムに並べ替え、その並べ替え後の各枝を、N/2個のチェックノードに接続している3N本の枝のうちのいずれかに繋げる。
 インターリーバでの、N個のバリアブルノードに接続している3N本の枝を並べ替える並べ替えパターンは、(3N)!(=(3N)×(3N-1)×・・・×1)通りだけある。したがって、すべてのバリアブルノードの重みが3で、すべてのチェックノードの重みが6であるというデグリーリーケンスによって特徴付けられるアンサンブルは、(3N)!個のLDPC符号の集合となる。
 性能の良いLDPC符号(適切な検査行列)を求めるシミュレーションでは、デンシティエボリューションにおいて、マルチエッジタイプ(multi-edge type)のアンサンブルを用いた。
 マルチエッジタイプでは、バリアブルノードに接続している枝と、チェックノードに接続している枝とが経由するインターリーバが、複数(multi edge)に分割され、これにより、アンサンブルの特徴付けが、より厳密に行われる。
 図87は、マルチエッジタイプのアンサンブルのタナーグラフの例を示している。
 図87のタナーグラフでは、第1インターリーバと第2インターリーバとの2つのインターリーバが存在する。
 また、図87のタナーグラフでは、第1インターリーバに繋がる枝が1本で、第2インターリーバに繋がる枝が0本のバリアブルノードがv1個だけ、第1インターリーバに繋がる枝が1本で、第2インターリーバに繋がる枝が2本のバリアブルノードがv2個だけ、第1インターリーバに繋がる枝が0本で、第2インターリーバに繋がる枝が2本のバリアブルノードがv3個だけ、それぞれ存在する。
 さらに、図87のタナーグラフでは、第1インターリーバに繋がる枝が2本で、第2インターリーバに繋がる枝が0本のチェックノードがc1個だけ、第1インターリーバに繋がる枝が2本で、第2インターリーバに繋がる枝が2本のチェックノードがc2個だけ、第1インターリーバに繋がる枝が0本で、第2インターリーバに繋がる枝が3本のチェックノードがc3個だけ、それぞれ存在する。
 ここで、デンシティエボリューションと、その実装については、例えば、"On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit", S.Y.Chung, G.D.Forney, T.J.Richardson,R.Urbanke, IEEE Communications Leggers, VOL.5, NO.2, Feb 2001に記載されている。
 新LDPC符号(の検査行列)を求めるシミュレーションでは、マルチエッジタイプのデンシティエボリューションによって、BERが落ち始める(小さくなっていく)Eb/N0(1ビットあたりの信号電力対雑音電力比)である性能閾値が、所定値以下になるアンサンブルを見つけ、そのアンサンブルに属するLDPC符号の中から、QPSK等の1以上の直交変調を用いた場合のBERを小さくするLDPC符号を、性能の良いLDPC符号として選択した。
 新LDPC符号(の検査行列を表す検査行列初期値テーブル)は、以上のようなシミュレーションにより求められた。
 したがって、新LDPC符号によれば、データ伝送において、良好な通信品質を確保することができる。
 図88は、新LDPC符号としてのタイプA符号の検査行列Hの列重みを説明する図である。
 タイプA符号の検査行列Hについては、図88に示すように、A行列の1列目からK1列の列重みをY1と、A行列のその後のK2列の列重みをY2と、C行列の1列目からK1列の列重みをX1と、C行列のその後のK2列の列重みをX2と、C行列のさらにその後のM1列の列重みをX3と、それぞれ表すこととする。
 なお、K1+K2は、情報長Kに等しく、M1+M2は、パリティ長Mに等しい。したがって、K1+K2+M1+M2は、符号長N=69120ビットに等しい。
 また、タイプA符号の検査行列Hについては、B行列の1列目からM1-1列の列重みは2であり、B行列のM1列目(最後の列)の列重みは1である。さらに、D行列の列重みは1であり、Z行列の列重みは0である。
 図89は、図30ないし図41の(検査行列初期値テーブルが表す)タイプA符号の検査行列Hのパラメータを示す図である。
 r=2/16,3/16,4/16,5/16,6/16,7/16,8/16のタイプA符号の検査行列HのパラメータとしてのX1,Y1,K1,X2,Y2,K2,X3,M1,M2、及び、性能閾値は、図89に示す通りになっている。
 パラメータX1,Y1,K1(又はK2)、X2,Y2,X3,M1(又はM2)は、LDPC符号の性能(例えば、エラーレート等)がより向上するように設定される。
 図90は、新LDPC符号としてのタイプB符号の検査行列Hの列重みを説明する図である。
 タイプB符号の検査行列Hについては、図90に示すように、1列目からKX1列の列重みをX1と、その後のKX2列の列重みをX2と、その後のKY1列の列重みをY1と、その後のKY2列の列重みをY2と、それぞれ表すこととする。
 なお、KX1+KX2+KY1+KY2は、情報長Kに等しく、KX1+KX2+KY1+KY2+Mは、符号長N=69120ビットに等しい。
 また、タイプB符号の検査行列Hについては、最後のM列のうちの、最後の1列を除くM-1列の列重みは2であり、最後の1列の列重みは1である。
 図91は、図42ないし図85の(検査行列初期値テーブルが表す)タイプB符号の検査行列Hのパラメータを示す図である。
 r=7/16,8/16,9/16,10/16,11/16,12/16,13/16,14/16のタイプB符号及び他のタイプB符号の検査行列HのパラメータとしてのX1,KX1,X2,KX2,Y1,KY1,Y2,KY2,M、及び、性能閾値は、図91に示す通りになっている。
 パラメータX1,KX1,X2,KX2,Y1,KY1,Y2,KY2は、LDPC符号の性能がより向上するように設定される。
 新LDPC符号によれば、良好なBER/FERが実現されるとともに、シャノン限界に近いキャパシティ(通信路容量)が実現される。
 <コンスタレーション>
 図92ないし図116は、図7の伝送システムで採用し得るコンスタレーションの例を示す図である。
 図7の伝送システムでは、例えば、変調方式(MODulation)とLDPC符号(CODe)との組み合わせであるMODCODに対して、そのMODCODで使用するコンスタレーションを設定することができる。
 1のMODCODに対しては、1以上のコンスタレーションを設定することができる。
 コンスタレーションには、信号点の配置が一様になっているUC(Uniform Constellation)と、一様になっていないNUC(Non Uniform Constellation)とがある。
 また、NUCには、例えば、1D-NUC(1-dimensional (M2-QAM) non-uniform constellation)と呼ばれるコンスタレーションや、2D-NUC(2-dimensional (QQAM) non-uniform constellation)と呼ばれるコンスタレーション等がある。
 一般に、UCよりも1D-NUCの方が、BERが改善し、さらに、1D-NUCよりも2D-NUCの方が、BERが改善する。
 変調方式がQPSKのコンスタレーションは、UCになる。変調方式が16QAMや、64QAM,256QAM等のコンスタレーションとしては、例えば、UCや、2D-NUCを採用することができ、変調方式が1024QAMや4096QAM等のコンスタレーションとしては、例えば、UCや、1D-NUCを採用することができる。
 図7の伝送システムでは、例えば、ATSC3.0や、DVB-C.2等で規定されているコンスタレーション、その他、エラーレートを良好にする様々なコンスタレーションを使用することができる。
 すなわち、変調方式がQPSKである場合には、LDPC符号の各符号化率rについて、例えば、同一のUCを使用することができる。
 また、変調方式が、16QAM,64QAM、又は、256QAMである場合には、LDPC符号の各符号化率rについて、例えば、同一のUCを使用することができる。さらに、変調方式が、16QAM,64QAM、又は、256QAMである場合には、例えば、LDPC符号の符号化率rそれぞれごとに異なる2D-NUCを使用することができる。
 また、変調方式が、1024QAM又は4096QAMである場合には、LDPC符号の各符号化率rについて、例えば、同一のUCを使用することができる。さらに、変調方式が、1024QAM又は4096QAMである場合には、例えば、LDPC符号の符号化率rそれぞれごとに異なる1D-NUCを使用することができる。
 ここで、QPSKのUCを、QPSK-UCとも記載し、2mQAMのUCを、2mQAM-UCとも記載する。また、2mQAMの1D-NUC及び2D-NUCを、それぞれ、2mQAM-1D-NUC及び2mQAM-2D-NUCとも記載する。
 以下、ATSC3.0で規定されているコンスタレーションの幾つかについて説明する。
 図92は、変調方式がQPSKである場合に、ATSC3.0で規定されているLDPC符号のすべての符号化率について使用されるQPSK-UCの信号点の座標を示す図である。
 図92において、"Input Data cell y"は、QPSK-UCにマッピングする2ビットのシンボルを表し、"Constellation point zs"は、信号点zsの座標を表す。なお、信号点zsのインデクスsは(後述する信号点zqのインデクスqも同様)、シンボルの離散時間(あるシンボルと次のシンボルとの間の時間間隔)を表す。
 図92では、信号点zsの座標は、複素数の形で表されており、jは、虚数単位(√(-1))を表す。
 図93は、変調方式が16QAMである場合に、ATSC3.0で規定されているLDPC符号の符号化率r(CR)=2/15,3/15,4/15,5/15,6/15,7/15,8/15,9/15,10/15,11/15,12,15,13/15について使用される16QAM-2D-NUCの信号点の座標を示す図である。
 図93では、図92と同様に、信号点zsの座標は、複素数の形で表されており、jは、虚数単位を表す。
 図93において、w#kは、コンスタレーションの第1象限の信号点の座標を表す。
 2D-NUCにおいて、コンスタレーションの第2象限の信号点は、第1象限の信号点を、Q軸に対して対称に移動した位置に配置され、コンスタレーションの第3象限の信号点は、第1象限の信号点を、原点に対して対称に移動した位置に配置される。そして、コンスタレーションの第4象限の信号点は、第1象限の信号点を、I軸に対して対称に移動した位置に配置される。
 ここで、変調方式が2mQAMである場合には、mビットを1個のシンボルとして、その1個のシンボルが、そのシンボルに対応する信号点にマッピングされる。
 mビットのシンボルは、例えば、0ないし2m-1の整数値で表現することができるが、いま、b=2m/4とすると、0ないし2m-1の整数値で表現されるシンボルy(0),y(1),・・・,y(2m-1)は、シンボルy(0)ないしy(b-1),y(b)ないしy(2b-1),y(2b)ないしy(3b-1)、及び、y(3b)ないしy(4b-1)の4つに分類することができる。
 図93において、w#kのサフィックスkは、0ないしb-1の範囲の整数値をとり、w#kは、シンボルy(0)ないしy(b-1)の範囲のシンボルy(k)に対応する信号点の座標を表す。
 そして、シンボルy(b)ないしy(2b-1)の範囲のシンボルy(k+b)に対応する信号点の座標は、-conj(w#k)で表され、シンボルy(2b)ないしy(3b-1)の範囲のシンボルy(k+2b)に対応する信号点の座標は、conj(w#k)で表される。また、シンボルy(3b)ないしy(4b-1)の範囲のシンボルy(k+3b)に対応する信号点の座標は、-w#kで表される。
 ここで、conj(w#k)は、w#kの複素共役を表す。
 例えば、変調方式が16QAMである場合には、m=4ビットのシンボルy(0),y(1),・・・,y(15)は、b=24/4=4として、シンボルy(0)ないしy(3),y(4)ないしy(7),y(8)ないしy(11)、及び、y(12)ないしy(15)の4つに分類される。
 そして、シンボルy(0)ないしy(15)のうちの、例えば、シンボルy(12)は、シンボルy(3b)ないしy(4b-1)の範囲のシンボルy(k+3b)=y(0+3×4)であり、k=0であるから、シンボルy(12)に対応する信号点の座標は、-w#k=-w0となる。
 いま、LDPC符号の符号化率r(CR)が、例えば、9/15であるとすると、図93によれば、変調方式が16QAMで、符号化率rが、9/15である場合のw0は、0.2386+j0.5296であるので、シンボルy(12)に対応する信号点の座標-w0は、-(0.2386+j0.5296)となる。
 図94は、変調方式が1024QAMである場合に、ATSC3.0で規定されているLDPC符号の符号化率r(CR)=2/15,3/15,4/15,5/15,6/15,7/15,8/15,9/15,10/15,11/15,12,15,13/15について使用される1024QAM-1D-NUCの信号点の座標の例を示す図である。
 図94において、u#kは、1D-NUCの信号点zsの座標としての複素数のリアルパートRe(zs)及びイマジナリパートIm(zs)を表し、位置ベクトルと呼ばれるベクトルu=(u0, u1,..., u#V-1)のコンポーネントである。位置ベクトルuのコンポーネントu#kの数Vは、式V=√(2m)/2で与えられる。
 図95は、1024QAMのシンボルyと、位置ベクトルu(のコンポーネントu#k)との関係を示す図である。
 いま、1024QAMの10ビットのシンボルyを、その先頭のビット(最上位ビット)から、y0,s,y1,s,y2,s,y3,s,y4,s,y5,s,y6,s,y7,s,y8,s,y9,sと表すこととする。
 図95のAは、シンボルyの偶数番目の5ビットy1,s,y3,s,y5,s,y7,s,y9,sと、そのシンボルyに対応する信号点zsの(座標の)リアルパートRe(zs)を表すu#kとの対応関係を表している。
 図95のBは、シンボルyの奇数番目の5ビットy0,s,y2,s,y4,s,y6,s,y8,sと、そのシンボルyに対応する信号点zsのイマジナリパートIm(zs)を表すu#kとの対応関係を表している。
 1024QAMの10ビットのシンボルy=(y0,s,y1,s,y2,s,y3,s,y4,s,y5,s,y6,s,y7,s,y8,s,y9,s)が、例えば、(0,0,1,0,0,1,1,1,0,0)である場合、奇数番目の5ビット(y0,s,y2,s,y4,s,y6,s,y8,s)は、(0,1,0,1,0)であり、偶数番目の5ビット(y1,s,y3,s,y5,s,y7,s,y9,s)は、(0,0,1,1,0)である。
 図95のAでは、偶数番目の5ビット(0,0,1,1,0)は、u11に対応付けられており、したがって、シンボルy=(0,0,1,0,0,1,1,1,0,0)に対応する信号点zsのリアルパートRe(zs)は、u11になる。
 図95のBでは、奇数番目の5ビット(0,1,0,1,0)は、u3に対応付けられており、したがって、シンボルy=(0,0,1,0,0,1,1,1,0,0)に対応する信号点zsのイマジナリパートIm(zs)は、u3になる。
 一方、LDPC符号の符号化率rが、例えば、6/15であるとすると、上述の図94によれば、変調方式が1024QAMで、LDPC符号の符号化率r(CR)=6/15である場合に使用される1D-NUCについては、u3は、0.1295であり、u11は、0.7196である。
 したがって、シンボルy=(0,0,1,0,0,1,1,1,0,0)に対応する信号点zsのリアルパートRe(zs)は、u11=0.7196になり、イマジナリパートIm(zs)は、u3=0.1295になる。その結果、シンボルy=(0,0,1,0,0,1,1,1,0,0)に対応する信号点zsの座標は、0.7196+j0.1295で表される。
 なお、1D-NUCの信号点は、コンスタレーションにおいて、I軸に平行な直線上やQ軸に平行な直線上に、格子状に並ぶ。但し、信号点どうしの間隔は、一定にはならない。また、信号点(にマッピングされたデータ)の送信にあたって、コンスタレーション上の信号点の平均電力は正規化することができる。正規化は、コンスタレーション上の信号点(の座標)のすべてについての絶対値の自乗平均値をPaveと表すこととすると、その自乗平均値Paveの平方根√Paveの逆数1/(√Pave)を、コンスタレーション上の各信号点zsに乗算することによって行うことができる。
 図7の伝送システムでは、以上のようなATSC3.0で規定されているコンスタレーションを使用することができる。
 図96ないし図107は、DVB-C.2で規定されているUCの信号点の座標を示す図である。
 すなわち、図96は、DVB-C.2で規定されているQPSK-UC(QPSKのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図97は、DVB-C.2で規定されているQPSK-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 図98は、DVB-C.2で規定されている16QAM-UC(16QAMのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図99は、DVB-C.2で規定されている16QAM-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 図100は、DVB-C.2で規定されている64QAM-UC(64QAMのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図101は、DVB-C.2で規定されている64QAM-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 図102は、DVB-C.2で規定されている256QAM-UC(256QAMのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図103は、DVB-C.2で規定されている256QAM-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 図104は、DVB-C.2で規定されている1024QAM-UC(1024QAMのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図105は、DVB-C.2で規定されている1024QAM-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 図106は、DVB-C.2で規定されている4096QAM-UC(4096QAMのUC)の信号点の座標zqのリアルパートRe(zq)を示す図である。図107は、DVB-C.2で規定されている4096QAM-UCの信号点の座標zqのイマジナリパートIm(zq)を示す図である。
 なお、図96ないし図107において、yi,qは、2mQAMのmビット(例えば、QPSKでは2ビット)のシンボルの先頭から、i+1ビット目を表す。また、UCの信号点(にマッピングされたデータ)の送信にあたって、コンスタレーション上の信号点の平均電力は正規化することができる。正規化は、コンスタレーション上の信号点(の座標)のすべてについての絶対値の自乗平均値をPaveと表すこととすると、その自乗平均値Paveの平方根√Paveの逆数1/(√Pave)を、コンスタレーション上の各信号点zqに乗算することによって行うことができる。
 図7の伝送システムでは、以上のようなDVB-C.2で規定されているUCを使用することができる。
 すなわち、図30ないし図85の、符号長Nが69120ビットで、符号化率rが2/16,3/16,4/16,5/16,6/16,7/16,8/16,9/16,10/16,11/16,12/16,13/16、及び、14/16それぞれの(検査行列初期値テーブルに対応する)新LDPC符号については、図96ないし図107に示したUCを使用することができる。
 図108ないし図116は、図30ないし図85の、符号長Nが69120ビットで、符号化率rが2/16,3/16,4/16,5/16,6/16,7/16,8/16,9/16,10/16,11/16,12/16,13/16、及び、14/16それぞれの新LDPC符号について使用し得る他のNUCの信号点の座標の例を示す図である。
 すなわち、図108は、図30ないし図85の、符号長Nが69120ビットの新LDPC符号のうちの、符号化率r(CR)が2/16,4/16,6/16,8/16,10/16,12/16、及び、14/16それぞれの新LDPC符号について使用し得る16QAM-2D-NUCの信号点の座標の例を示す図である。
 図109は、図30ないし図85の、符号長Nが69120ビットの新LDPC符号のうちの、符号化率rが3/16,5/16,7/16,9/16,11/16、及び、13/16それぞれの新LDPC符号について使用し得る64QAM-2D-NUCの信号点の座標の例を示す図である。
 図110及び図111は、図30ないし図85の、符号長Nが69120ビットの新LDPC符号のうちの、符号化率rが2/16,4/16,6/16,8/16,10/16,12/16、及び、14/16それぞれの新LDPC符号について使用し得る256QAM-2D-NUCの信号点の座標の例を示す図である。
 なお、図111は、図110に続く図である。
 図108ないし図111では、図93と同様に、信号点zsの座標は、複素数の形で表されており、jは、虚数単位を表す。
 図108ないし図111において、w#kは、図93と同様に、コンスタレーションの第1象限の信号点の座標を表す。
 ここで、図93で説明したように、mビットのシンボルを、0ないし2m-1の整数値で表現することとし、b=2m/4とすると、0ないし2m-1の整数値で表現されるシンボルy(0),y(1),・・・,y(2m-1)は、シンボルy(0)ないしy(b-1),y(b)ないしy(2b-1),y(2b)ないしy(3b-1)、及び、y(3b)ないしy(4b-1)の4つに分類することができる。
 図108ないし図111では、図93と同様に、w#kのサフィックスkは、0ないしb-1の範囲の整数値をとり、w#kは、シンボルy(0)ないしy(b-1)の範囲のシンボルy(k)に対応する信号点の座標を表す。
 さらに、図108ないし図111では、図93と同様に、シンボルy(3b)ないしy(4b-1)の範囲のシンボルy(k+3b)に対応する信号点の座標は、-w#kで表される。
 但し、図93では、シンボルy(b)ないしy(2b-1)の範囲のシンボルy(k+b)に対応する信号点の座標は、-conj(w#k)で表され、シンボルy(2b)ないしy(3b-1)の範囲のシンボルy(k+2b)に対応する信号点の座標は、conj(w#k)で表されるが、図108ないし図111では、conjの符号が逆になる。
 すなわち、図108ないし図111では、シンボルy(b)ないしy(2b-1)の範囲のシンボルy(k+b)に対応する信号点の座標は、conj(w#k)で表され、シンボルy(2b)ないしy(3b-1)の範囲のシンボルy(k+2b)に対応する信号点の座標は、-conj(w#k)で表される。
 図112は、図30ないし図85の、符号長Nが69120ビットの新LDPC符号のうちの、符号化率rが3/16,5/16,7/16,9/16,11/16、及び、13/16それぞれの新LDPC符号について使用し得る1024QAM-1D-NUCの信号点の座標の例を示す図である。
 すなわち、図112は、1024QAM-1D-NUCの信号点zsの座標としての複素数のリアルパートRe(zs)及びイマジナリパートIm(zs)と、位置ベクトルu(のコンポーネントu#k)との関係を示す図である。
 図113は、1024QAMのシンボルyと、図112の位置ベクトルu(のコンポーネントu#k)との関係を示す図である。
 すなわち、いま、1024QAMの10ビットのシンボルyを、その先頭のビット(最上位ビット)から、y0,s,y1,s,y2,s,y3,s,y4,s,y5,s,y6,s,y7,s,y8,s,y9,sと表すこととする。
 図113のAは、10ビットのシンボルyの奇数番目の5ビットy0,s,y2,s,y4,s,y6,s,y8,sと、そのシンボルyに対応する信号点zs(の座標)のリアルパートRe(zs)を表す位置ベクトルu#kとの対応関係を表している。
 図113のBは、10ビットのシンボルyの偶数番目の5ビットy1,s,y3,s,y5,s,y7,s,y9,sと、そのシンボルyに対応する信号点zsのイマジナリパートIm(zs)を表す位置ベクトルu#kとの対応関係を表している。
 1024QAMの10ビットのシンボルyが、図112及び図113で規定される1024QAM-1D-NUCの信号点zsにマッピングされるときの、その信号点zsの座標の求め方は、図94及び図95で説明した場合と同様であるため、説明を省略する。
 図114は、図30ないし図85の、符号長Nが69120ビットの新LDPC符号のうちの、符号化率rが2/16,4/16,6/16,8/16,10/16,12/16、及び、14/16それぞれの新LDPC符号について使用し得る4096QAM-1D-NUCの信号点の座標の例を示す図である。
 すなわち、図114は、4096QAM-1D-NUCの信号点zsの座標としての複素数のリアルパートRe(zs)及びイマジナリパートIm(zs)と、位置ベクトルu(u#k)との関係を示す図である。
 図115及び図116は、4096QAMのシンボルyと、図114の位置ベクトルu(のコンポーネントu#k)との関係を示す図である。
 すなわち、いま、4096QAMの12ビットのシンボルyを、その先頭のビット(最上位ビット)から、y0,s,y1,s,y2,s,y3,s,y4,s,y5,s,y6,s,y7,s,y8,s,y9,s,y10,s,y11,sと表すこととする。
 図115は、12ビットのシンボルyの奇数番目の6ビットy0,s,y2,s,y4,s,y6,s,y8,s,y10,sと、そのシンボルyに対応する信号点zsのリアルパートRe(zs)を表す位置ベクトルu#kとの対応関係を表している。
 図116は、12ビットのシンボルyの偶数番目の6ビットy1,s,y3,s,y5,s,y7,s,y9,s,y11,sと、そのシンボルyに対応する信号点zsのイマジナリパートIm(zs)を表す位置ベクトルu#kとの対応関係を表している。
 4096QAMの12ビットのシンボルyが、図114ないし図116で規定される4096QAM-1D-NUCの信号点zsにマッピングされるときの、その信号点zsの座標の求め方は、図94及び図95で説明した場合と同様であるため、説明を省略する。
 なお、図108ないし図116のNUCの信号点(にマッピングされたデータ)の送信にあたって、コンスタレーション上の信号点の平均電力は正規化することができる。正規化は、コンスタレーション上の信号点(の座標)のすべてについての絶対値の自乗平均値をPaveと表すこととすると、その自乗平均値Paveの平方根√Paveの逆数1/(√Pave)を、コンスタレーション上の各信号点zsに乗算することによって行うことができる。また、上述の図95では、シンボルyの奇数番目のビットが信号点zsのイマジナリパートIm(zs)を表す位置ベクトルu#kに対応付けられているとともに、シンボルyの偶数番目のビットが信号点zsのリアルパートRe(zs)を表す位置ベクトルu#kに対応付けられているが、図113、並びに、図115及び図116では、逆に、シンボルyの奇数番目のビットが信号点zsのリアルパートRe(zs)を表す位置ベクトルu#kに対応付けられているとともに、シンボルyの偶数番目のビットが信号点zsのイマジナリパートIm(zs)を表す位置ベクトルu#kに対応付けられている。
 <ブロックインターリーバ25>
 図117は、図9のブロックインターリーバ25で行われるブロックインターリーブを説明する図である。
 ブロックインターリーブは、1符号語のLDPC符号を、その先頭から、パート1(part 1)と呼ばれる部分と、パート2(part 2)と呼ばれる部分とに分けて行われる。
 パート1の長さ(ビット数)を、Npart1を表すとともに、パート2の長さを、Npart2と表すこととすると、Npart1+Npart2は、符号長Nに等しい。
 観念的には、ブロックインターリーブでは、1方向としてのカラム(縦)方向に、Npart1/mビットを記憶する記憶領域としてのカラム(column)が、カラム方向と直交するロウ方向に、シンボルのビット数mに等しい数mだけ並べられ、各カラムが、上から、ユニットサイズPである360ビットの小単位に区切られる。この、カラムの小単位を、カラムユニットともいう。
 ブロックインターリーブでは、図117に示すように、1符号語のLDPC符号のパート1を、カラムの1番目のカラムユニットの上から下方向(カラム方向)に書き込むことが、左から右方向のカラムに向かって行われる。
 そして、右端のカラムの1番目のカラムユニットへの書き込みが終了すると、図117に示すように、左端のカラムに戻り、カラムの2番目のカラムユニットの上から下方向に書き込むことが、左から右方向のカラムに向かって行われ、以下、同様にして、1符号語のLDPC符号のパート1の書き込みが行われる。
 1符号語のLDPC符号のパート1の書き込みが終了すると、図117に示すように、m個すべてのカラムの1行目から、ロウ方向に、mビット単位で、LDPC符号のパート1が読み出される。
 このパート1のmビット単位は、mビットのシンボルとして、ブロックインターリーバ25からマッパ117(図8)に供給される。
 mビット単位でのパート1の読み出しは、m個のカラムの下の行に向かって順次行われ、パート1の読み出しが終了すると、パート2は、先頭から、mビット単位に分割され、mビットのシンボルとして、ブロックインターリーバ25からマッパ117に供給される。
 したがって、パート1は、インターリーブされながら、シンボル化され、パート2は、インターリーブされることなく、順次、mビットに区切って、シンボル化される。
 カラムの長さであるNpart1/mは、ユニットサイズPである360の倍数であり、そのようにNpart1/mが360の倍数になるように、1符号語のLDPC符号は、パート1とパート2とに分けられる。
 図118は、変調方式が、QPSK,16QAM,64QAM,256QAM,1024QAM、及び、4096QAMである場合それぞれの、符号長Nが69120ビットのLDPC符号のパート1及びパート2の例を示す図である。
 図118では、変調方式が1024QAMである場合に、パート1が68400ビットで、パート2が720ビットになっており、変調方式が、QPSK,16QAM,64QAM,256QAM、及び、4096QAMである場合、いずれの場合も、パート1が69120ビットで、パート2が0ビットになっている。
 <グループワイズインターリーブ>
 図119は、図9のグループワイズインターリーバ24で行われるグループワイズインターリーブを説明する図である。
 グループワイズインターリーブでは、図119に示すように、1符号語のLDPC符号を、その先頭から、ユニットサイズPに等しい360ビット単位に区分した、その1区分の360ビットを、ビットグループとして、1符号語のLDPC符号が、ビットグループ単位で、所定のパターン(以下、GWパターンともいう)に従ってインターリーブされる。
 ここで、1符号語のLDPC符号をビットグループに区分したときの先頭からi+1番目のビットグループを、以下、ビットグループiとも記載する。
 ユニットサイズPが360である場合、例えば、符号長Nが1800ビットのLDPC符号は、ビットグループ0,1,2,3,4の5(=1800/360)個のビットグループに区分される。さらに、例えば、符号長Nが69120ビットのLDPC符号は、ビットグループ0,1,・・・,191の192(=69120/360)個のビットグループに区分される。
 また、以下では、GWパターンを、ビットグループを表す数字の並びで表すこととする。例えば、符号長Nが1800ビットのLDPC符号について、例えば、GWパターン4,2,0,3,1は、ビットグループ0,1,2,3,4の並びを、ビットグループ4,2,0,3,1の並びにインターリーブする(並び替える)ことを表す。
 例えば、いま、符号長Nが1800ビットのLDPC符号の先頭からi+1番目の符号ビットを、xiで表すこととする。
 この場合、GWパターン4,2,0,3,1のグループワイズインターリーブによれば、1800ビットのLDPC符号{x0,x1,...,x1799}は、{x1440,x1441,...,x1799},{x720,x721,...,x1079},{x0,x1,...,x359},{x1080,x1081,...,x1439},{x360,x361,...,x719}の並びにインターリーブされる。
 GWパターンは、LDPC符号の符号長Nごとや、符号化率rごと、変調方式ごと、コンスタレーションごと、さらには、符号長N、符号化率r、変調方式、及び、コンスタレーションの2以上の組み合わせごとに設定することができる。
 <LDPC符号に対するGWパターンの例>
 図120は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第1の例を示す図である。
 図120のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 12, 8, 132, 26, 3, 18, 19, 98, 37, 190, 123, 81, 95, 167, 76, 66, 27, 46, 105, 28, 29, 170, 20, 96, 35, 177, 24, 86, 114, 63, 52, 80, 119, 153, 121, 107, 97, 129, 57, 38, 15, 91, 122, 14, 104, 175, 150, 1, 124, 72, 90, 32, 161, 78, 44, 73, 134, 162, 5, 11, 179, 93, 6, 152, 180, 68, 36, 103, 160, 100, 138, 146, 9, 82, 187, 147, 7, 87, 17, 102, 69, 110, 130, 42, 16, 71, 2, 169, 58, 33, 136, 106, 140, 84, 79, 143, 156, 139, 55, 116, 4, 21, 144, 64, 70, 158, 48, 118, 184, 50, 181, 120, 174, 133, 115, 53, 127, 74, 25, 49, 88, 22, 89, 34, 126, 61, 94, 172, 131, 39, 99, 183, 163, 111, 155, 51, 191, 31, 128, 149, 56, 85, 109, 10, 151, 188, 40, 83, 41, 47, 178, 186, 43, 54, 164, 13, 142, 117, 92, 113, 182, 168, 165, 101, 171, 159, 60, 166, 77, 30, 67, 23, 0, 65, 141, 185, 112, 145, 135, 108, 176, 45, 148, 137, 125, 62, 75, 189, 59, 173, 154, 157
 の並びにインターリーブされる。
 図121は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第2の例を示す図である。
 図121のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 14, 119, 182, 5, 127, 21, 152, 11, 39, 164, 25, 69, 59, 140, 73, 9, 104, 148, 77, 44, 138, 89, 184, 35, 112, 150, 178, 26, 123, 133, 91, 76, 70, 0, 176, 118, 22, 147, 96, 108, 109, 139, 18, 157, 181, 126, 174, 179, 116, 38, 45, 158, 106, 168, 10, 97, 114, 129, 180, 52, 7, 67, 43, 50, 120, 122, 3, 13, 72, 185, 34, 83, 124, 105, 162, 87, 131, 155, 135, 42, 64, 165, 41, 71, 189, 159, 143, 102, 153, 17, 24, 30, 66, 137, 62, 55, 48, 98, 110, 40, 121, 187, 74, 92, 60, 101, 57, 33, 130, 173, 32, 166, 128, 54, 99, 111, 100, 16, 84, 132, 161, 4, 190, 49, 95, 141, 28, 85, 61, 53, 183, 6, 68, 2, 163, 37, 103, 186, 154, 171, 170, 78, 117, 93, 8, 145, 51, 56, 191, 90, 82, 151, 115, 175, 1, 125, 79, 20, 80, 36, 169, 46, 167, 63, 177, 149, 81, 12, 156, 142, 31, 47, 88, 65, 134, 94, 86, 160, 172, 19, 23, 136, 58, 146, 15, 75, 107, 188, 29, 113, 144, 27
 の並びにインターリーブされる。
 図122は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第3の例を示す図である。
 図122のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 121, 28, 49, 4, 21, 191, 90, 101, 188, 126, 8, 131, 81, 150, 141, 152, 17, 82, 61, 119, 125, 145, 153, 45, 108, 22, 94, 48, 29, 12, 59, 140, 75, 169, 183, 157, 142, 158, 113, 79, 89, 186, 112, 80, 56, 120, 166, 15, 43, 2, 62, 115, 38, 123, 73, 179, 155, 171, 185, 5, 168, 172, 190, 106, 174, 96, 116, 91, 30, 147, 19, 149, 37, 175, 124, 156, 14, 144, 86, 110, 40, 68, 162, 66, 130, 74, 165, 180, 13, 177, 122, 23, 109, 95, 42, 117, 65, 3, 111, 18, 32, 52, 97, 184, 54, 46, 167, 136, 1, 134, 189, 187, 16, 36, 84, 132, 170, 34, 57, 24, 137, 100, 39, 127, 6, 102, 10, 25, 114, 146, 53, 99, 85, 35, 78, 148, 9, 143, 139, 92, 173, 27, 11, 26, 104, 176, 98, 129, 51, 103, 160, 71, 154, 118, 67, 33, 181, 87, 77, 47, 159, 178, 83, 70, 164, 44, 69, 88, 63, 161, 182, 133, 20, 41, 64, 76, 31, 50, 128, 105, 0, 135, 55, 72, 93, 151, 107, 163, 60, 138, 7, 58
 の並びにインターリーブされる。
 図123は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第4の例を示す図である。
 図123のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 99, 59, 95, 50, 122, 15, 144, 6, 129, 36, 175, 159, 165, 35, 182, 181, 189, 29, 2, 115, 91, 41, 60, 160, 51, 106, 168, 173, 20, 138, 183, 70, 24, 127, 47, 5, 119, 171, 102, 135, 116, 156, 120, 105, 117, 136, 149, 128, 85, 46, 186, 113, 73, 103, 52, 82, 89, 184, 22, 185, 155, 125, 133, 37, 27, 10, 137, 76, 12, 98, 148, 109, 42, 16, 190, 84, 94, 97, 25, 11, 88, 166, 131, 48, 161, 65, 9, 8, 58, 56, 124, 68, 54, 3, 169, 146, 87, 108, 110, 121, 163, 57, 90, 100, 66, 49, 61, 178, 18, 7, 28, 67, 13, 32, 34, 86, 153, 112, 63, 43, 164, 132, 118, 93, 38, 39, 17, 154, 170, 81, 141, 191, 152, 111, 188, 147, 180, 75, 72, 26, 177, 126, 179, 55, 1, 143, 45, 21, 40, 123, 23, 162, 77, 62, 134, 158, 176, 31, 69, 114, 142, 19, 96, 101, 71, 30, 140, 187, 92, 80, 79, 0, 104, 53, 145, 139, 14, 33, 74, 157, 150, 44, 172, 151, 64, 78, 130, 83, 167, 4, 107, 174
 の並びにインターリーブされる。
 図124は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第5の例を示す図である。
 図124のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 170, 45, 67, 94, 110, 153, 19, 38, 112, 176, 49, 138, 35, 114, 184, 159, 17, 41, 47, 189, 65, 125, 154, 57, 83, 6, 97, 167, 51, 59, 23, 81, 54, 46, 168, 178, 148, 5, 122, 129, 155, 179, 95, 102, 8, 119, 29, 113, 14, 60, 43, 66, 55, 103, 111, 88, 56, 7, 118, 63, 134, 108, 61, 187, 124, 31, 133, 22, 79, 52, 36, 144, 89, 177, 40, 116, 121, 135, 163, 92, 117, 162, 149, 106, 173, 181, 11, 164, 185, 99, 18, 158, 16, 12, 48, 9, 123, 147, 145, 169, 130, 183, 28, 151, 71, 126, 69, 165, 21, 13, 15, 62, 80, 182, 76, 90, 180, 50, 127, 131, 109, 3, 115, 120, 161, 82, 34, 78, 128, 142, 136, 75, 86, 137, 26, 25, 44, 91, 42, 73, 140, 146, 152, 27, 101, 93, 20, 166, 171, 100, 70, 84, 53, 186, 24, 98, 4, 37, 141, 190, 68, 150, 1, 72, 39, 87, 188, 191, 156, 33, 30, 160, 143, 64, 132, 77, 0, 58, 174, 157, 105, 175, 10, 172, 104, 2, 96, 139, 32, 85, 107, 74
 の並びにインターリーブされる。
 図125は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第6の例を示す図である。
 図125のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 111, 156, 189, 11, 132, 114, 100, 154, 77, 79, 95, 161, 47, 142, 36, 98, 3, 125, 159, 120, 40, 160, 29, 153, 16, 39, 101, 58, 191, 46, 76, 4, 183, 176, 62, 60, 74, 7, 37, 127, 19, 186, 71, 50, 139, 27, 188, 113, 38, 130, 124, 26, 146, 131, 102, 110, 105, 147, 86, 150, 94, 162, 175, 88, 104, 55, 89, 181, 34, 69, 22, 92, 133, 1, 25, 0, 158, 10, 24, 116, 164, 165, 112, 72, 106, 129, 81, 66, 54, 49, 136, 118, 83, 41, 2, 56, 145, 28, 177, 168, 117, 9, 157, 173, 115, 149, 42, 103, 14, 84, 155, 187, 99, 6, 43, 70, 140, 73, 32, 78, 75, 167, 148, 48, 134, 178, 59, 15, 63, 91, 82, 33, 135, 166, 190, 152, 96, 137, 12, 182, 61, 107, 128, 119, 179, 45, 184, 65, 172, 138, 31, 57, 174, 17, 180, 5, 30, 170, 23, 85, 185, 35, 44, 123, 90, 20, 122, 8, 64, 141, 169, 121, 97, 108, 80, 171, 18, 13, 87, 163, 109, 52, 51, 21, 93, 67, 126, 68, 53, 143, 144, 151
 の並びにインターリーブされる。
 図126は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第7の例を示す図である。
 図126のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図127は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第8の例を示す図である。
 図127のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図128は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第9の例を示す図である。
 図128のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図129は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第10の例を示す図である。
 図129のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図130は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第11の例を示す図である。
 図130のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図131は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第12の例を示す図である。
 図131のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図132は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第13の例を示す図である。
 図132のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191
 の並びにインターリーブされる。
 図133は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第14の例を示す図である。
 図133のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 154, 106, 99, 177, 191, 55, 189, 181, 22, 62, 80, 114, 110, 141, 83, 103, 169, 156, 130, 186, 92, 45, 68, 126, 112, 185, 160, 158, 17, 145, 162, 127, 152, 174, 134, 18, 157, 120, 3, 29, 13, 135, 173, 86, 73, 150, 46, 153, 33, 61, 142, 102, 171, 168, 78, 77, 139, 85, 176, 163, 128, 101, 42, 2, 14, 38, 10, 125, 90, 30, 63, 172, 47, 108, 89, 0, 32, 94, 23, 34, 59, 35, 129, 12, 146, 8, 60, 27, 147, 180, 100, 87, 184, 167, 36, 79, 138, 4, 95, 148, 72, 54, 91, 182, 28, 133, 164, 175, 123, 107, 137, 88, 44, 116, 69, 7, 31, 124, 144, 105, 170, 6, 165, 15, 161, 24, 58, 70, 11, 56, 143, 111, 104, 74, 67, 109, 82, 21, 52, 9, 71, 48, 26, 117, 50, 149, 140, 20, 57, 136, 113, 64, 151, 190, 131, 19, 51, 96, 76, 1, 97, 40, 53, 84, 166, 75, 159, 98, 81, 49, 66, 188, 118, 39, 132, 187, 25, 119, 41, 122, 16, 5, 93, 115, 178, 65, 121, 37, 155, 183, 43, 179
 の並びにインターリーブされる。
 図134は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第15の例を示す図である。
 図134のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 1, 182, 125, 0, 121, 47, 63, 154, 76, 99, 82, 163, 102, 166, 28, 189, 56, 67, 54, 39, 40, 185, 184, 65, 179, 4, 91, 87, 137, 170, 98, 71, 169, 49, 73, 37, 11, 143, 150, 123, 93, 62, 3, 50, 26, 140, 178, 95, 183, 33, 21, 53, 112, 128, 118, 120, 106, 139, 32, 130, 173, 132, 156, 119, 83, 176, 159, 13, 145, 36, 30, 113, 2, 41, 147, 174, 94, 88, 92, 60, 165, 59, 25, 161, 100, 85, 81, 61, 138, 48, 177, 77, 6, 22, 16, 43, 115, 23, 12, 66, 70, 9, 164, 122, 58, 105, 69, 42, 38, 19, 24, 180, 175, 74, 160, 34, 101, 72, 114, 142, 20, 8, 15, 190, 144, 104, 79, 172, 148, 31, 168, 10, 107, 14, 35, 52, 134, 126, 167, 149, 116, 186, 17, 162, 151, 5, 136, 55, 44, 110, 158, 46, 191, 29, 153, 155, 117, 188, 131, 97, 146, 103, 78, 109, 129, 57, 111, 45, 68, 157, 84, 141, 89, 64, 7, 108, 152, 75, 18, 96, 133, 171, 86, 181, 127, 27, 124, 187, 135, 80, 51, 90
 の並びにインターリーブされる。
 図135は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第16の例を示す図である。
 図135のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 35, 75, 166, 145, 143, 184, 62, 96, 54, 63, 157, 103, 32, 43, 126, 187, 144, 91, 78, 44, 39, 109, 185, 102, 10, 68, 29, 42, 149, 83, 133, 94, 130, 27, 171, 19, 51, 165, 148, 28, 36, 33, 173, 136, 87, 82, 100, 49, 120, 152, 161, 162, 147, 71, 137, 57, 8, 53, 132, 151, 163, 123, 47, 92, 90, 60, 99, 79, 59, 108, 115, 72, 0, 12, 140, 160, 61, 180, 74, 37, 86, 117, 191, 101, 52, 15, 80, 156, 127, 81, 131, 141, 142, 31, 95, 4, 73, 64, 16, 18, 146, 70, 181, 7, 89, 124, 77, 67, 116, 21, 34, 41, 105, 113, 97, 2, 6, 55, 17, 65, 38, 48, 158, 159, 179, 5, 30, 183, 170, 135, 125, 20, 106, 186, 182, 188, 114, 1, 14, 3, 134, 178, 189, 167, 40, 119, 22, 190, 58, 23, 155, 138, 98, 84, 11, 110, 88, 46, 177, 175, 25, 150, 118, 121, 129, 168, 13, 128, 104, 69, 112, 169, 9, 45, 174, 93, 26, 56, 76, 50, 154, 139, 66, 85, 153, 107, 111, 172, 176, 164, 24, 122
 の並びにインターリーブされる。
 図136は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第17の例を示す図である。
 図136のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 155, 188, 123, 132, 15, 79, 59, 119, 66, 68, 41, 175, 184, 78, 142, 32, 54, 111, 139, 134, 95, 34, 161, 150, 58, 141, 74, 112, 121, 99, 178, 179, 57, 90, 80, 21, 11, 29, 67, 104, 52, 87, 38, 81, 181, 160, 176, 16, 71, 13, 186, 171, 9, 170, 2, 177, 0, 88, 149, 190, 69, 33, 183, 146, 61, 117, 113, 6, 96, 120, 162, 23, 53, 140, 91, 128, 46, 93, 174, 126, 159, 133, 8, 152, 103, 102, 151, 143, 100, 4, 180, 166, 55, 164, 18, 49, 62, 20, 83, 7, 187, 153, 64, 37, 144, 185, 19, 114, 25, 116, 12, 173, 122, 127, 89, 115, 75, 101, 189, 124, 157, 108, 28, 165, 163, 65, 168, 77, 82, 27, 137, 86, 22, 110, 63, 148, 158, 97, 31, 105, 135, 98, 44, 70, 182, 191, 17, 156, 129, 39, 136, 169, 3, 145, 154, 109, 76, 5, 10, 106, 35, 94, 172, 45, 51, 60, 42, 50, 72, 85, 40, 118, 36, 14, 130, 131, 138, 43, 48, 125, 84, 24, 26, 1, 56, 107, 92, 147, 47, 30, 73, 167
 の並びにインターリーブされる。
 図137は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第18の例を示す図である。
 図137のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 152, 87, 170, 33, 48, 95, 2, 184, 145, 51, 94, 164, 38, 90, 158, 70, 124, 128, 66, 111, 79, 42, 45, 141, 83, 73, 57, 119, 20, 67, 31, 179, 123, 183, 26, 188, 15, 163, 1, 133, 105, 72, 81, 153, 69, 182, 101, 180, 185, 190, 77, 6, 127, 138, 75, 59, 24, 175, 30, 186, 139, 56, 100, 176, 147, 189, 116, 131, 25, 5, 16, 117, 74, 50, 171, 114, 76, 44, 107, 135, 71, 181, 13, 43, 122, 78, 4, 58, 35, 63, 187, 98, 37, 169, 148, 7, 10, 49, 80, 161, 167, 28, 142, 46, 97, 92, 121, 112, 88, 102, 106, 173, 19, 27, 41, 172, 91, 191, 34, 118, 108, 136, 166, 155, 96, 3, 165, 103, 84, 109, 104, 53, 23, 0, 178, 17, 86, 9, 168, 134, 110, 18, 32, 146, 129, 159, 55, 154, 126, 40, 151, 174, 60, 52, 22, 149, 156, 113, 143, 11, 93, 62, 177, 64, 61, 160, 150, 65, 130, 82, 29, 115, 137, 36, 8, 157, 54, 89, 99, 120, 68, 21, 140, 14, 39, 132, 125, 12, 85, 162, 47, 144
 の並びにインターリーブされる。
 図138は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第19の例を示す図である。
 図138のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 140, 8, 176, 13, 41, 165, 27, 109, 121, 153, 58, 181, 143, 164, 103, 115, 91, 66, 60, 189, 101, 4, 14, 102, 45, 124, 104, 159, 130, 133, 135, 77, 25, 59, 180, 141, 144, 62, 114, 182, 134, 148, 11, 20, 125, 83, 162, 75, 126, 67, 9, 178, 171, 152, 166, 69, 174, 15, 80, 168, 131, 95, 56, 48, 63, 82, 147, 51, 108, 52, 30, 139, 22, 37, 173, 112, 191, 98, 116, 149, 167, 142, 29, 154, 92, 94, 71, 117, 79, 122, 129, 24, 81, 105, 97, 137, 128, 1, 113, 170, 119, 7, 158, 76, 19, 183, 68, 31, 50, 118, 33, 72, 55, 65, 146, 185, 111, 145, 28, 21, 177, 160, 32, 61, 70, 106, 156, 78, 132, 88, 184, 35, 5, 53, 138, 47, 100, 10, 42, 36, 175, 93, 120, 190, 16, 123, 87, 54, 186, 18, 57, 84, 99, 12, 163, 157, 188, 64, 38, 26, 2, 136, 40, 169, 90, 107, 46, 172, 49, 6, 39, 44, 150, 85, 0, 17, 127, 155, 110, 34, 96, 74, 86, 187, 89, 151, 43, 179, 161, 73, 23, 3
 の並びにインターリーブされる。
 図139は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第20の例を示す図である。
 図139のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 10, 61, 30, 88, 33, 60, 1, 102, 45, 103, 119, 181, 82, 112, 12, 67, 69, 171, 108, 26, 145, 156, 81, 152, 8, 16, 68, 13, 99, 183, 146, 27, 158, 147, 132, 118, 180, 120, 173, 59, 186, 49, 7, 17, 35, 104, 129, 75, 54, 72, 18, 48, 15, 177, 191, 51, 24, 93, 106, 22, 71, 29, 141, 32, 143, 128, 175, 86, 190, 74, 36, 43, 144, 46, 63, 65, 133, 31, 87, 44, 20, 117, 76, 187, 80, 101, 151, 47, 130, 116, 162, 127, 153, 100, 94, 2, 41, 138, 125, 131, 11, 50, 40, 21, 184, 167, 172, 85, 160, 105, 73, 38, 157, 53, 39, 97, 107, 165, 168, 89, 148, 126, 3, 4, 114, 161, 155, 182, 136, 149, 111, 98, 113, 139, 92, 109, 174, 185, 95, 56, 135, 37, 163, 154, 0, 96, 78, 122, 5, 179, 140, 83, 123, 77, 9, 19, 66, 42, 137, 14, 23, 159, 189, 110, 142, 84, 169, 166, 52, 91, 164, 28, 124, 121, 70, 115, 90, 170, 58, 6, 178, 176, 64, 188, 57, 34, 79, 62, 25, 134, 150, 55
 の並びにインターリーブされる。
 図140は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第21の例を示す図である。
 図140のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 8, 165, 180, 182, 189, 61, 7, 140, 105, 78, 86, 75, 15, 28, 82, 1, 136, 130, 35, 24, 70, 152, 121, 11, 36, 66, 83, 57, 164, 111, 137, 128, 175, 156, 151, 48, 44, 147, 18, 64, 184, 42, 159, 3, 6, 162, 170, 98, 101, 29, 102, 21, 188, 79, 138, 45, 124, 118, 155, 125, 34, 27, 5, 97, 109, 145, 54, 56, 126, 187, 16, 149, 160, 178, 23, 141, 30, 117, 25, 69, 116, 131, 94, 65, 191, 99, 181, 185, 115, 67, 93, 106, 38, 71, 76, 113, 132, 172, 103, 95, 92, 107, 4, 163, 139, 72, 157, 0, 12, 52, 68, 88, 161, 183, 39, 14, 32, 49, 19, 77, 174, 47, 154, 17, 134, 133, 51, 120, 74, 177, 41, 108, 142, 143, 13, 26, 59, 100, 123, 55, 158, 62, 104, 148, 135, 9, 179, 53, 176, 33, 169, 129, 186, 43, 167, 87, 119, 84, 90, 150, 20, 10, 122, 114, 80, 50, 146, 144, 96, 171, 40, 73, 81, 168, 112, 190, 37, 173, 46, 110, 60, 85, 153, 2, 63, 91, 127, 89, 31, 58, 22, 166
 の並びにインターリーブされる。
 図141は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第22の例を示す図である。
 図141のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 17, 84, 125, 70, 134, 63, 68, 162, 61, 31, 74, 137, 7, 138, 5, 60, 76, 105, 160, 12, 114, 81, 155, 112, 153, 191, 82, 148, 118, 108, 58, 159, 43, 161, 149, 96, 71, 30, 145, 174, 67, 77, 47, 94, 48, 156, 151, 141, 131, 176, 183, 41, 35, 83, 164, 55, 169, 98, 187, 124, 100, 54, 104, 40, 2, 72, 8, 85, 182, 103, 6, 37, 107, 39, 42, 123, 57, 106, 13, 150, 129, 46, 109, 188, 45, 113, 44, 90, 20, 165, 142, 110, 22, 28, 173, 38, 52, 16, 34, 0, 3, 144, 27, 49, 139, 177, 132, 184, 25, 87, 152, 119, 158, 78, 186, 167, 97, 24, 99, 69, 120, 122, 133, 163, 21, 51, 101, 185, 111, 26, 18, 10, 33, 170, 95, 65, 14, 130, 157, 59, 115, 127, 92, 56, 1, 80, 66, 126, 178, 147, 75, 179, 171, 53, 146, 88, 4, 128, 121, 86, 117, 19, 23, 168, 181, 11, 102, 93, 73, 140, 89, 136, 9, 180, 62, 36, 79, 91, 190, 143, 29, 154, 32, 64, 166, 116, 15, 189, 175, 50, 135, 172
 の並びにインターリーブされる。
 図142は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第23の例を示す図である。
 図142のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 157, 20, 116, 115, 49, 178, 148, 152, 174, 130, 171, 81, 60, 146, 182, 72, 46, 22, 93, 101, 9, 55, 40, 163, 118, 30, 52, 181, 151, 31, 87, 117, 120, 82, 95, 190, 23, 36, 67, 62, 14, 167, 80, 27, 24, 43, 94, 0, 63, 5, 74, 78, 158, 88, 84, 109, 147, 112, 124, 110, 21, 47, 45, 68, 184, 70, 1, 66, 149, 105, 140, 170, 56, 98, 135, 61, 79, 123, 166, 185, 41, 108, 122, 92, 16, 26, 37, 177, 173, 113, 136, 89, 162, 85, 54, 39, 73, 58, 131, 134, 188, 127, 3, 164, 13, 132, 129, 179, 25, 18, 57, 32, 119, 111, 53, 155, 28, 107, 133, 144, 19, 160, 71, 186, 153, 103, 2, 12, 91, 106, 64, 175, 75, 189, 128, 142, 187, 76, 180, 34, 59, 169, 90, 11, 172, 97, 141, 38, 191, 17, 114, 126, 145, 83, 143, 125, 121, 10, 44, 137, 86, 29, 104, 154, 168, 65, 159, 15, 99, 35, 50, 48, 138, 96, 100, 102, 7, 42, 156, 8, 4, 69, 183, 51, 165, 6, 150, 77, 161, 33, 176, 139
 の並びにインターリーブされる。
 図143は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第24の例を示す図である。
 図143のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 42, 168, 36, 37, 152, 118, 14, 83, 105, 131, 26, 120, 92, 130, 158, 132, 49, 72, 137, 100, 88, 24, 53, 142, 110, 102, 74, 188, 113, 121, 12, 173, 5, 126, 127, 3, 93, 46, 164, 109, 151, 2, 98, 153, 116, 89, 101, 136, 35, 80, 0, 133, 183, 162, 185, 56, 17, 87, 117, 184, 54, 70, 176, 91, 134, 51, 38, 73, 165, 99, 169, 43, 167, 86, 11, 144, 78, 58, 64, 13, 119, 33, 166, 6, 75, 31, 15, 28, 125, 148, 27, 114, 82, 45, 55, 191, 160, 115, 1, 69, 187, 122, 177, 32, 172, 52, 112, 171, 124, 180, 85, 150, 7, 57, 60, 94, 181, 29, 97, 128, 19, 149, 175, 50, 140, 10, 174, 68, 59, 39, 106, 44, 62, 71, 18, 107, 156, 159, 146, 48, 81, 111, 96, 103, 34, 161, 141, 154, 76, 61, 135, 20, 84, 77, 108, 23, 145, 182, 170, 139, 157, 47, 9, 63, 123, 138, 155, 79, 4, 30, 143, 25, 90, 66, 147, 186, 179, 129, 21, 65, 41, 95, 67, 22, 163, 190, 16, 8, 104, 189, 40, 178
 の並びにインターリーブされる。
 図144は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第25の例を示す図である。
 図144のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 92, 132, 39, 44, 190, 21, 70, 146, 48, 13, 17, 187, 119, 43, 94, 157, 150, 98, 96, 47, 86, 63, 152, 158, 84, 170, 81, 7, 62, 191, 174, 99, 116, 10, 85, 113, 135, 28, 53, 122, 83, 141, 77, 23, 131, 4, 40, 168, 129, 109, 51, 130, 188, 147, 29, 50, 26, 78, 148, 164, 167, 103, 36, 134, 2, 177, 20, 123, 27, 90, 176, 5, 33, 133, 189, 138, 76, 41, 89, 35, 72, 139, 32, 73, 68, 67, 101, 166, 93, 54, 52, 42, 110, 59, 8, 179, 34, 171, 143, 137, 9, 126, 155, 108, 142, 120, 163, 12, 3, 75, 159, 107, 65, 128, 87, 6, 22, 57, 100, 24, 64, 106, 117, 19, 58, 95, 74, 180, 125, 136, 186, 154, 121, 161, 88, 37, 114, 102, 105, 160, 80, 185, 82, 124, 184, 15, 16, 18, 118, 173, 151, 11, 91, 79, 46, 140, 127, 1, 169, 0, 61, 66, 45, 162, 149, 115, 144, 30, 25, 175, 153, 183, 60, 38, 31, 111, 182, 49, 55, 145, 56, 181, 104, 14, 71, 178, 112, 172, 165, 69, 97, 156
 の並びにインターリーブされる。
 図145は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第26の例を示す図である。
 図145のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 133, 96, 46, 148, 78, 109, 149, 161, 55, 39, 183, 54, 186, 73, 150, 180, 189, 190, 22, 135, 12, 80, 42, 130, 164, 70, 126, 107, 57, 67, 15, 157, 52, 88, 5, 23, 123, 66, 53, 147, 177, 60, 131, 108, 171, 191, 44, 140, 98, 154, 37, 118, 176, 92, 124, 138, 132, 167, 173, 13, 79, 32, 145, 14, 113, 30, 2, 0, 165, 182, 153, 24, 144, 87, 82, 75, 141, 89, 137, 33, 100, 106, 128, 168, 29, 36, 172, 11, 111, 68, 16, 10, 34, 188, 35, 160, 77, 83, 178, 58, 59, 7, 56, 110, 104, 61, 76, 85, 121, 93, 19, 134, 179, 155, 163, 115, 185, 125, 112, 71, 8, 119, 18, 47, 151, 26, 103, 122, 9, 170, 146, 99, 49, 72, 102, 31, 40, 43, 158, 142, 4, 69, 139, 28, 174, 101, 84, 129, 156, 74, 62, 91, 159, 41, 38, 45, 136, 169, 21, 51, 181, 97, 166, 175, 90, 27, 86, 65, 105, 143, 127, 17, 6, 116, 94, 117, 48, 50, 25, 64, 95, 63, 184, 152, 120, 1, 187, 162, 114, 3, 81, 20
 の並びにインターリーブされる。
 図146は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第27の例を示す図である。
 図146のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 59, 34, 129, 18, 137, 6, 83, 139, 47, 148, 147, 110, 11, 98, 62, 149, 158, 14, 42, 180, 23, 128, 99, 181, 54, 176, 35, 130, 53, 179, 39, 152, 32, 52, 69, 82, 84, 113, 79, 21, 95, 7, 126, 191, 86, 169, 111, 12, 55, 27, 182, 120, 123, 88, 107, 50, 144, 49, 38, 165, 0, 159, 10, 43, 114, 187, 150, 19, 65, 48, 124, 8, 141, 171, 173, 17, 167, 92, 74, 170, 184, 67, 33, 172, 16, 119, 66, 57, 89, 106, 26, 78, 178, 109, 70, 2, 157, 15, 105, 22, 174, 127, 100, 71, 97, 163, 9, 77, 87, 41, 183, 117, 46, 40, 131, 85, 136, 72, 122, 1, 45, 13, 44, 56, 61, 146, 25, 132, 177, 76, 121, 160, 112, 5, 134, 73, 91, 135, 68, 3, 80, 90, 190, 60, 75, 145, 115, 81, 161, 156, 116, 166, 96, 28, 138, 94, 162, 140, 102, 4, 133, 30, 155, 189, 143, 64, 185, 164, 104, 142, 154, 118, 24, 31, 153, 103, 51, 108, 29, 37, 58, 186, 175, 36, 151, 63, 93, 188, 125, 101, 20, 168
 の並びにインターリーブされる。
 図147は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第28の例を示す図である。
 図147のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 61, 110, 123, 127, 148, 162, 131, 71, 176, 22, 157, 0, 151, 155, 112, 189, 36, 181, 10, 46, 133, 75, 80, 88, 6, 165, 97, 54, 31, 174, 49, 139, 98, 4, 170, 26, 50, 16, 141, 187, 13, 109, 106, 120, 72, 32, 63, 59, 79, 172, 83, 100, 92, 24, 56, 130, 167, 81, 103, 111, 158, 159, 153, 175, 8, 41, 136, 70, 33, 45, 84, 150, 39, 166, 164, 99, 126, 190, 134, 40, 87, 64, 154, 140, 116, 184, 115, 183, 30, 35, 7, 42, 146, 86, 58, 12, 14, 149, 89, 179, 128, 160, 95, 171, 74, 25, 29, 119, 143, 178, 28, 21, 23, 90, 188, 96, 173, 93, 147, 191, 18, 62, 2, 132, 20, 11, 17, 135, 152, 67, 73, 108, 76, 91, 156, 104, 48, 121, 94, 125, 38, 65, 177, 68, 37, 124, 78, 118, 186, 34, 185, 113, 169, 9, 69, 82, 163, 114, 145, 168, 44, 52, 105, 51, 137, 1, 161, 3, 55, 182, 101, 57, 43, 77, 5, 47, 144, 180, 66, 53, 19, 117, 60, 138, 142, 107, 122, 85, 27, 129, 15, 102
 の並びにインターリーブされる。
 図148は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第29の例を示す図である。
 図148のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 8, 174, 121, 46, 70, 106, 183, 9, 96, 109, 72, 130, 47, 168, 1, 190, 18, 90, 103, 135, 105, 112, 23, 33, 185, 31, 171, 111, 0, 115, 4, 159, 25, 65, 134, 146, 26, 37, 16, 169, 167, 74, 67, 155, 154, 83, 117, 53, 19, 161, 76, 12, 7, 131, 59, 51, 189, 42, 114, 142, 126, 66, 164, 191, 55, 132, 35, 153, 137, 87, 5, 100, 122, 150, 2, 49, 32, 172, 149, 177, 15, 82, 98, 34, 140, 170, 56, 78, 188, 57, 118, 186, 181, 52, 71, 24, 81, 22, 11, 156, 86, 148, 97, 38, 48, 64, 40, 165, 180, 125, 127, 143, 88, 43, 61, 158, 28, 162, 187, 110, 84, 157, 27, 41, 39, 124, 85, 58, 20, 44, 102, 36, 77, 147, 120, 179, 21, 60, 92, 138, 119, 173, 160, 144, 91, 99, 107, 101, 145, 184, 108, 95, 69, 63, 3, 89, 128, 136, 94, 129, 50, 79, 68, 151, 104, 163, 123, 182, 93, 29, 133, 152, 178, 80, 62, 54, 14, 141, 166, 176, 45, 30, 10, 6, 75, 73, 116, 175, 17, 113, 139, 13
 の並びにインターリーブされる。
 図149は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第30の例を示す図である。
 図149のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 179, 91, 101, 128, 169, 69, 185, 35, 156, 168, 132, 163, 46, 28, 5, 41, 162, 112, 108, 130, 153, 79, 118, 102, 125, 176, 71, 20, 115, 98, 124, 75, 103, 21, 164, 173, 9, 36, 56, 134, 24, 16, 159, 34, 15, 42, 104, 54, 120, 76, 60, 33, 127, 88, 133, 137, 61, 19, 3, 170, 87, 190, 13, 141, 188, 106, 113, 67, 145, 146, 111, 74, 89, 62, 175, 49, 32, 99, 93, 107, 171, 66, 80, 155, 100, 152, 4, 10, 126, 109, 181, 154, 105, 48, 136, 161, 183, 97, 31, 12, 8, 184, 47, 142, 18, 14, 117, 73, 84, 70, 68, 0, 23, 96, 165, 29, 122, 81, 17, 131, 44, 157, 26, 25, 189, 83, 178, 37, 123, 82, 191, 39, 7, 72, 160, 64, 143, 149, 138, 65, 58, 119, 63, 166, 114, 95, 172, 43, 140, 57, 158, 186, 86, 174, 92, 45, 139, 144, 147, 148, 151, 59, 30, 85, 40, 51, 187, 78, 38, 150, 129, 121, 27, 94, 52, 177, 110, 182, 55, 22, 167, 90, 77, 6, 11, 1, 116, 53, 2, 50, 135, 180
 の並びにインターリーブされる。
 図150は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第31の例を示す図である。
 図150のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 99, 59, 95, 50, 122, 15, 144, 6, 129, 36, 175, 159, 165, 35, 182, 181, 189, 29, 2, 115, 91, 41, 60, 160, 51, 106, 168, 173, 20, 138, 183, 70, 24, 127, 47, 5, 119, 171, 102, 135, 116, 156, 120, 105, 117, 136, 149, 128, 85, 46, 186, 113, 73, 103, 52, 82, 89, 184, 22, 185, 155, 125, 133, 37, 27, 10, 137, 76, 12, 98, 148, 109, 42, 16, 190, 84, 94, 97, 25, 11, 88, 166, 131, 48, 161, 65, 9, 8, 58, 56, 124, 68, 54, 3, 169, 146, 87, 108, 110, 121, 163, 57, 90, 100, 66, 49, 61, 178, 18, 7, 28, 67, 13, 32, 34, 86, 153, 112, 63, 43, 164, 132, 118, 93, 38, 39, 17, 154, 170, 81, 141, 191, 152, 111, 188, 147, 180, 75, 72, 26, 177, 126, 179, 55, 1, 143, 45, 21, 40, 123, 23, 162, 77, 62, 134, 158, 176, 31, 69, 114, 142, 19, 96, 101, 71, 30, 140, 187, 92, 80, 79, 0, 104, 53, 145, 139, 14, 33, 74, 157, 150, 44, 172, 151, 64, 78, 130, 83, 167, 4, 107, 174
 の並びにインターリーブされる。
 図151は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第32の例を示す図である。
 図151のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 16, 133, 14, 114, 145, 191, 53, 80, 166, 68, 21, 184, 73, 165, 147, 89, 180, 55, 135, 94, 189, 78, 103, 115, 72, 24, 105, 188, 84, 148, 85, 32, 1, 131, 34, 134, 41, 167, 81, 54, 142, 141, 75, 155, 122, 140, 13, 17, 8, 23, 61, 49, 51, 74, 181, 162, 143, 42, 71, 123, 161, 177, 110, 149, 126, 0, 63, 178, 35, 175, 186, 52, 43, 139, 112, 10, 40, 150, 182, 164, 64, 83, 174, 38, 47, 30, 2, 116, 25, 128, 160, 144, 99, 5, 187, 176, 82, 60, 18, 185, 104, 169, 39, 183, 137, 22, 109, 96, 151, 46, 33, 29, 65, 132, 95, 31, 136, 159, 170, 168, 67, 79, 93, 111, 90, 97, 113, 92, 76, 58, 127, 26, 27, 156, 3, 6, 28, 77, 125, 173, 98, 138, 172, 86, 45, 118, 171, 62, 179, 100, 19, 163, 50, 57, 56, 36, 102, 121, 117, 154, 119, 66, 20, 91, 130, 69, 44, 70, 153, 152, 158, 88, 108, 12, 59, 4, 11, 120, 87, 101, 37, 129, 146, 9, 106, 48, 7, 15, 124, 190, 107, 157
 の並びにインターリーブされる。
 図152は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第33の例を示す図である。
 図152のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 178, 39, 54, 68, 122, 20, 86, 137, 156, 55, 52, 72, 130, 152, 147, 12, 69, 48, 107, 44, 88, 23, 181, 174, 124, 81, 59, 93, 22, 46, 82, 110, 3, 99, 75, 36, 38, 119, 131, 51, 115, 78, 84, 33, 163, 11, 2, 188, 161, 34, 89, 50, 8, 90, 109, 136, 77, 103, 67, 41, 149, 176, 134, 189, 159, 184, 153, 53, 129, 63, 160, 139, 150, 169, 148, 127, 25, 175, 142, 98, 56, 144, 102, 94, 101, 85, 132, 76, 5, 177, 0, 128, 45, 162, 92, 62, 133, 30, 17, 9, 61, 70, 154, 4, 146, 24, 135, 104, 13, 185, 79, 138, 31, 112, 1, 49, 113, 106, 100, 65, 10, 83, 73, 26, 58, 114, 66, 126, 117, 96, 186, 14, 40, 164, 158, 118, 29, 121, 151, 168, 183, 179, 16, 105, 125, 190, 116, 165, 80, 64, 170, 140, 171, 173, 97, 60, 43, 123, 71, 182, 167, 95, 145, 141, 187, 166, 87, 143, 15, 74, 111, 157, 32, 172, 18, 57, 35, 191, 27, 47, 21, 6, 19, 155, 42, 120, 180, 37, 28, 91, 108, 7
 の並びにインターリーブされる。
 図153は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第34の例を示す図である。
 図153のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 139, 112, 159, 99, 87, 70, 175, 161, 51, 56, 174, 143, 12, 36, 77, 60, 155, 167, 160, 73, 127, 82, 123, 145, 8, 76, 164, 178, 144, 86, 7, 124, 27, 187, 130, 162, 191, 182, 16, 106, 141, 38, 72, 179, 111, 29, 59, 183, 66, 52, 43, 121, 20, 11, 190, 92, 55, 166, 94, 138, 1, 122, 171, 119, 109, 58, 23, 31, 163, 53, 13, 188, 100, 158, 156, 136, 34, 118, 185, 10, 25, 126, 104, 30, 83, 47, 146, 63, 134, 39, 21, 44, 151, 28, 22, 79, 110, 71, 90, 2, 103, 42, 35, 5, 57, 4, 0, 107, 37, 54, 18, 128, 148, 129, 26, 75, 120, 19, 116, 117, 147, 114, 48, 96, 61, 46, 88, 67, 135, 65, 180, 9, 74, 176, 6, 149, 49, 50, 125, 64, 169, 168, 157, 153, 24, 108, 89, 98, 33, 132, 93, 40, 154, 62, 142, 41, 69, 105, 189, 115, 152, 45, 133, 3, 95, 17, 186, 184, 85, 165, 32, 173, 113, 172, 78, 181, 150, 170, 102, 97, 140, 81, 91, 15, 137, 101, 80, 68, 14, 177, 131, 84
 の並びにインターリーブされる。
 図154は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第35の例を示す図である。
 図154のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 21, 20, 172, 86, 178, 25, 104, 133, 17, 106, 191, 68, 80, 190, 129, 29, 125, 108, 147, 23, 94, 167, 27, 61, 12, 166, 131, 120, 159, 28, 7, 62, 134, 59, 78, 0, 121, 149, 6, 5, 143, 171, 153, 161, 186, 35, 92, 113, 55, 163, 16, 54, 93, 79, 37, 44, 75, 182, 127, 148, 179, 95, 169, 141, 38, 168, 128, 56, 31, 57, 175, 140, 164, 24, 177, 88, 51, 112, 49, 185, 170, 87, 32, 60, 65, 77, 89, 3, 18, 116, 184, 45, 109, 53, 160, 9, 100, 8, 111, 69, 189, 36, 173, 33, 72, 144, 183, 115, 137, 98, 90, 142, 30, 154, 180, 122, 155, 130, 83, 138, 14, 41, 150, 132, 70, 152, 117, 11, 4, 124, 15, 42, 181, 58, 10, 22, 145, 99, 126, 107, 66, 174, 39, 13, 97, 63, 123, 84, 85, 67, 76, 158, 71, 46, 118, 81, 162, 146, 135, 2, 73, 50, 114, 82, 103, 188, 74, 101, 157, 151, 91, 119, 102, 48, 1, 40, 43, 64, 156, 34, 110, 52, 96, 136, 139, 165, 19, 176, 187, 47, 26, 105
 の並びにインターリーブされる。
 図155は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第36の例を示す図である。
 図155のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 160, 7, 29, 39, 110, 189, 140, 143, 163, 130, 173, 71, 191, 106, 60, 62, 149, 135, 9, 147, 124, 152, 55, 116, 85, 112, 14, 20, 79, 103, 156, 167, 19, 45, 73, 26, 159, 44, 86, 76, 56, 12, 109, 117, 128, 67, 150, 151, 31, 27, 133, 17, 120, 153, 108, 180, 52, 187, 98, 63, 176, 186, 179, 113, 161, 32, 24, 111, 41, 95, 38, 10, 154, 97, 141, 2, 127, 40, 105, 34, 11, 185, 155, 61, 114, 74, 158, 162, 5, 177, 43, 51, 148, 137, 28, 181, 171, 13, 104, 42, 168, 93, 172, 144, 80, 123, 89, 81, 68, 75, 78, 121, 53, 65, 122, 142, 157, 107, 136, 66, 90, 23, 8, 1, 77, 54, 125, 174, 35, 88, 82, 134, 101, 131, 33, 50, 87, 36, 15, 47, 83, 18, 6, 21, 30, 94, 72, 145, 138, 184, 69, 84, 58, 49, 16, 48, 70, 183, 3, 92, 25, 115, 0, 182, 139, 91, 146, 102, 96, 100, 119, 129, 178, 46, 37, 57, 118, 126, 59, 165, 170, 190, 188, 175, 166, 99, 4, 22, 132, 164, 64, 169
 の並びにインターリーブされる。
 図156は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第37の例を示す図である。
 図156のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 167, 97, 86, 166, 11, 57, 187, 169, 104, 102, 108, 63, 12, 181, 1, 71, 134, 152, 45, 144, 124, 22, 0, 51, 100, 150, 179, 54, 66, 79, 25, 172, 59, 48, 23, 55, 64, 185, 164, 123, 56, 80, 153, 9, 177, 176, 81, 17, 14, 43, 76, 27, 175, 60, 133, 91, 61, 41, 111, 163, 72, 95, 84, 67, 129, 52, 88, 121, 7, 49, 168, 154, 74, 138, 142, 158, 132, 127, 40, 139, 20, 44, 6, 128, 75, 114, 119, 2, 8, 157, 98, 118, 89, 46, 160, 190, 5, 165, 28, 68, 189, 161, 112, 173, 148, 183, 33, 131, 105, 186, 156, 70, 117, 170, 174, 36, 19, 135, 125, 122, 50, 113, 141, 37, 38, 31, 94, 149, 78, 32, 178, 34, 107, 13, 182, 146, 93, 10, 106, 109, 4, 77, 87, 3, 184, 83, 30, 180, 96, 15, 155, 110, 145, 191, 151, 101, 65, 99, 115, 140, 26, 147, 42, 136, 137, 18, 53, 116, 171, 16, 21, 92, 162, 130, 85, 69, 47, 35, 82, 120, 24, 73, 39, 58, 62, 126, 29, 90, 143, 159, 188, 103
 の並びにインターリーブされる。
 図157は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第38の例を示す図である。
 図157のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 74, 151, 79, 49, 174, 180, 133, 106, 116, 16, 163, 62, 164, 45, 187, 128, 176, 2, 126, 136, 63, 28, 118, 173, 19, 46, 93, 121, 162, 88, 0, 147, 131, 54, 117, 138, 69, 182, 68, 143, 78, 15, 7, 59, 109, 32, 10, 179, 165, 90, 73, 71, 171, 135, 123, 125, 31, 22, 70, 185, 155, 60, 120, 113, 41, 154, 177, 85, 64, 55, 26, 129, 84, 38, 166, 44, 30, 183, 189, 191, 124, 77, 80, 98, 190, 167, 140, 52, 153, 43, 25, 188, 103, 152, 137, 76, 149, 34, 172, 122, 40, 168, 141, 96, 142, 58, 110, 65, 9, 36, 42, 50, 184, 105, 156, 127, 8, 61, 146, 169, 181, 5, 87, 150, 91, 17, 18, 24, 112, 81, 170, 95, 29, 100, 130, 48, 159, 72, 75, 160, 27, 108, 148, 66, 144, 97, 57, 115, 114, 1, 132, 4, 21, 92, 11, 107, 175, 67, 145, 14, 186, 20, 51, 39, 3, 86, 89, 47, 53, 102, 82, 139, 23, 104, 157, 99, 158, 12, 161, 35, 178, 37, 134, 83, 94, 101, 111, 119, 6, 33, 13, 56
 の並びにインターリーブされる。
 図158は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第39の例を示す図である。
 図158のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 20, 118, 185, 106, 82, 53, 41, 40, 121, 180, 45, 10, 145, 175, 191, 160, 177, 172, 13, 29, 133, 42, 89, 51, 141, 99, 7, 134, 52, 48, 169, 162, 124, 25, 165, 128, 95, 148, 98, 171, 14, 75, 59, 26, 76, 47, 34, 122, 69, 131, 105, 60, 132, 63, 81, 109, 43, 189, 19, 186, 79, 62, 85, 54, 16, 46, 27, 44, 139, 113, 11, 102, 130, 184, 119, 1, 152, 146, 37, 178, 61, 150, 32, 163, 92, 166, 142, 67, 140, 157, 188, 18, 87, 149, 65, 183, 161, 5, 31, 71, 173, 73, 15, 138, 156, 28, 66, 170, 179, 135, 86, 39, 104, 17, 154, 174, 56, 153, 0, 97, 9, 72, 23, 167, 190, 80, 3, 38, 120, 4, 24, 159, 12, 103, 22, 125, 83, 50, 6, 77, 168, 74, 93, 49, 57, 147, 2, 155, 181, 96, 114, 107, 110, 30, 117, 127, 101, 94, 129, 35, 58, 70, 126, 182, 151, 111, 91, 64, 88, 144, 137, 143, 176, 84, 136, 8, 112, 123, 164, 115, 78, 36, 90, 100, 55, 108, 21, 158, 68, 33, 116, 187
 の並びにインターリーブされる。
 図159は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第40の例を示す図である。
 図159のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 42, 43, 190, 119, 183, 103, 51, 28, 171, 20, 18, 25, 85, 22, 157, 99, 174, 5, 53, 62, 150, 128, 38, 153, 37, 148, 39, 24, 118, 102, 184, 49, 111, 48, 87, 76, 81, 40, 55, 82, 70, 105, 66, 115, 14, 86, 88, 135, 168, 139, 56, 80, 93, 95, 165, 13, 4, 100, 29, 104, 11, 72, 116, 83, 112, 67, 186, 169, 8, 57, 44, 17, 164, 31, 96, 84, 2, 125, 59, 3, 6, 173, 149, 78, 27, 160, 156, 187, 34, 129, 154, 79, 52, 117, 110, 0, 7, 113, 137, 26, 47, 12, 178, 46, 136, 97, 15, 188, 101, 58, 35, 71, 32, 16, 109, 163, 134, 75, 68, 98, 132, 90, 124, 189, 121, 123, 170, 158, 159, 77, 108, 63, 180, 36, 74, 127, 21, 146, 147, 54, 155, 10, 144, 130, 60, 1, 141, 23, 177, 133, 50, 126, 167, 151, 161, 191, 91, 114, 162, 30, 181, 182, 9, 94, 69, 176, 65, 142, 152, 175, 73, 140, 41, 179, 172, 145, 64, 19, 138, 131, 166, 33, 107, 185, 106, 122, 120, 92, 45, 143, 61, 89
 の並びにインターリーブされる。
 図160は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第41の例を示す図である。
 図160のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 111, 33, 21, 133, 18, 30, 73, 139, 125, 35, 77, 105, 122, 91, 41, 86, 11, 8, 55, 71, 151, 107, 45, 12, 168, 51, 50, 59, 7, 132, 144, 16, 190, 31, 108, 89, 124, 110, 94, 67, 159, 46, 140, 87, 54, 142, 185, 85, 84, 120, 178, 101, 180, 20, 174, 47, 28, 145, 70, 24, 131, 4, 83, 56, 79, 37, 27, 109, 92, 52, 96, 177, 141, 188, 155, 38, 156, 169, 136, 81, 137, 112, 95, 93, 106, 149, 138, 15, 39, 170, 146, 103, 184, 43, 5, 9, 189, 34, 19, 63, 90, 36, 23, 78, 100, 75, 162, 42, 161, 119, 64, 65, 152, 62, 173, 104, 88, 118, 48, 44, 40, 60, 102, 61, 74, 99, 53, 10, 6, 172, 186, 163, 134, 14, 148, 3, 26, 1, 157, 150, 25, 123, 115, 116, 57, 175, 127, 82, 117, 114, 160, 164, 153, 176, 76, 13, 181, 68, 128, 0, 183, 49, 22, 166, 17, 191, 135, 165, 72, 158, 130, 154, 167, 66, 2, 147, 69, 58, 98, 97, 143, 32, 29, 179, 113, 80, 182, 129, 126, 171, 121, 187
 の並びにインターリーブされる。
 図161は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第42の例を示す図である。
 図161のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 148, 32, 94, 31, 146, 15, 41, 7, 79, 58, 52, 167, 154, 4, 161, 38, 64, 127, 131, 78, 34, 125, 171, 173, 133, 122, 50, 95, 129, 57, 71, 37, 137, 69, 82, 107, 26, 10, 140, 156, 47, 178, 163, 117, 139, 174, 143, 138, 111, 11, 166, 43, 141, 114, 45, 39, 177, 103, 96, 123, 63, 23, 18, 20, 187, 27, 66, 130, 65, 142, 5, 135, 113, 90, 121, 54, 190, 134, 153, 147, 92, 157, 3, 97, 102, 106, 172, 91, 46, 89, 56, 184, 115, 99, 62, 93, 100, 88, 152, 109, 124, 182, 70, 74, 159, 165, 60, 183, 185, 164, 175, 108, 176, 2, 118, 72, 151, 0, 51, 33, 28, 80, 14, 128, 179, 84, 77, 42, 55, 160, 119, 110, 86, 22, 101, 13, 170, 36, 104, 189, 191, 169, 112, 12, 29, 30, 162, 136, 24, 68, 9, 81, 120, 145, 180, 144, 73, 21, 44, 1, 16, 67, 19, 158, 188, 181, 61, 35, 8, 53, 168, 150, 105, 59, 87, 6, 126, 75, 85, 17, 83, 98, 48, 132, 40, 76, 49, 25, 149, 186, 155, 116
 の並びにインターリーブされる。
 図162は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第43の例を示す図である。
 図162のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 161, 38, 41, 138, 20, 24, 14, 35, 32, 179, 68, 97, 94, 142, 43, 53, 22, 28, 44, 81, 148, 187, 169, 89, 115, 144, 75, 40, 31, 152, 30, 124, 80, 135, 160, 8, 129, 147, 60, 112, 171, 0, 133, 100, 156, 180, 77, 110, 151, 69, 95, 25, 117, 127, 154, 64, 146, 143, 29, 168, 177, 183, 126, 10, 26, 3, 50, 92, 164, 163, 11, 109, 21, 37, 84, 122, 49, 71, 52, 15, 88, 149, 86, 61, 90, 155, 162, 9, 153, 67, 119, 189, 82, 131, 190, 4, 46, 118, 47, 178, 59, 150, 186, 123, 18, 79, 57, 120, 70, 62, 137, 23, 185, 167, 175, 16, 134, 73, 139, 166, 55, 165, 116, 76, 99, 182, 78, 93, 141, 33, 176, 101, 130, 58, 12, 17, 132, 45, 102, 7, 19, 145, 54, 91, 113, 36, 27, 114, 174, 39, 83, 140, 191, 74, 56, 87, 48, 158, 121, 159, 136, 63, 181, 34, 173, 103, 42, 125, 104, 107, 96, 65, 1, 13, 157, 184, 170, 105, 188, 108, 6, 2, 98, 72, 5, 66, 128, 106, 172, 111, 85, 51
 の並びにインターリーブされる。
 図163は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第44の例を示す図である。
 図163のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 57, 73, 173, 63, 179, 186, 148, 181, 160, 163, 4, 109, 137, 99, 118, 15, 5, 115, 44, 153, 185, 40, 12, 169, 2, 37, 188, 97, 65, 67, 117, 90, 66, 135, 154, 159, 146, 86, 61, 182, 59, 83, 91, 175, 58, 138, 93, 43, 98, 22, 152, 96, 45, 120, 180, 10, 116, 170, 162, 68, 3, 13, 41, 131, 21, 172, 55, 24, 1, 79, 106, 189, 52, 184, 112, 53, 136, 166, 29, 62, 107, 128, 71, 111, 187, 161, 101, 49, 155, 28, 94, 70, 48, 0, 33, 157, 151, 25, 89, 88, 114, 134, 75, 87, 142, 6, 27, 64, 69, 19, 150, 38, 35, 130, 127, 76, 102, 123, 158, 129, 133, 110, 141, 95, 7, 126, 85, 108, 174, 190, 165, 156, 171, 54, 17, 121, 103, 14, 36, 105, 82, 8, 178, 51, 23, 84, 167, 30, 100, 42, 72, 149, 92, 77, 104, 183, 39, 125, 80, 143, 144, 56, 119, 16, 132, 139, 191, 50, 164, 122, 46, 140, 31, 176, 60, 26, 32, 11, 177, 124, 74, 145, 20, 34, 18, 81, 168, 9, 78, 113, 147, 47
 の並びにインターリーブされる。
 図164は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第45の例を示す図である。
 図164のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 89, 123, 13, 47, 178, 159, 1, 190, 53, 12, 57, 109, 115, 19, 36, 143, 82, 96, 163, 66, 154, 173, 49, 65, 131, 2, 78, 15, 155, 90, 38, 130, 63, 188, 138, 184, 166, 102, 139, 28, 50, 186, 17, 20, 112, 41, 11, 8, 59, 79, 45, 162, 146, 40, 43, 129, 119, 18, 157, 37, 126, 124, 110, 191, 85, 165, 60, 142, 135, 74, 187, 179, 141, 164, 34, 69, 26, 33, 113, 120, 95, 169, 30, 0, 175, 70, 91, 104, 140, 25, 132, 23, 105, 158, 171, 6, 121, 56, 22, 127, 54, 68, 107, 133, 84, 81, 150, 99, 73, 185, 67, 29, 151, 87, 10, 167, 148, 72, 147, 5, 31, 125, 145, 4, 52, 44, 134, 83, 46, 75, 152, 62, 7, 86, 172, 180, 111, 61, 9, 58, 14, 116, 92, 170, 93, 77, 88, 42, 21, 106, 97, 144, 182, 108, 55, 94, 122, 114, 153, 64, 24, 80, 117, 3, 177, 149, 76, 128, 136, 39, 181, 160, 103, 174, 156, 27, 183, 16, 137, 101, 161, 176, 35, 118, 98, 168, 48, 100, 71, 189, 32, 51
 の並びにインターリーブされる。
 図165は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第46の例を示す図である。
 図165のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 116, 157, 105, 191, 110, 149, 0, 186, 88, 165, 141, 179, 160, 121, 35, 170, 97, 7, 181, 31, 130, 123, 184, 34, 101, 167, 68, 135, 18, 91, 159, 81, 53, 36, 164, 139, 61, 162, 79, 4, 176, 127, 42, 148, 147, 150, 55, 109, 132, 124, 9, 66, 14, 128, 134, 27, 29, 59, 153, 22, 120, 13, 187, 112, 69, 163, 11, 70, 58, 15, 25, 102, 188, 182, 156, 20, 17, 10, 32, 76, 5, 28, 46, 166, 140, 143, 65, 63, 107, 119, 87, 145, 62, 108, 189, 114, 71, 78, 122, 93, 37, 12, 137, 118, 56, 67, 98, 113, 173, 169, 39, 51, 177, 1, 84, 40, 158, 2, 144, 73, 43, 82, 92, 16, 133, 129, 99, 86, 57, 47, 183, 171, 131, 33, 26, 168, 155, 178, 175, 64, 52, 100, 142, 90, 8, 106, 45, 19, 24, 80, 146, 136, 125, 95, 172, 104, 154, 138, 6, 85, 94, 74, 151, 44, 174, 115, 185, 89, 23, 190, 111, 72, 180, 54, 77, 75, 117, 126, 49, 103, 48, 60, 83, 3, 21, 50, 161, 30, 96, 152, 41, 38
 の並びにインターリーブされる。
 図166は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第47の例を示す図である。
 図166のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 115, 167, 98, 128, 174, 73, 109, 79, 40, 6, 190, 113, 158, 56, 183, 61, 134, 13, 32, 133, 173, 1, 76, 151, 147, 70, 155, 77, 51, 150, 146, 12, 186, 33, 74, 171, 53, 11, 17, 68, 136, 9, 181, 91, 125, 161, 42, 124, 72, 96, 101, 81, 84, 107, 63, 55, 65, 5, 163, 157, 135, 18, 130, 120, 87, 85, 47, 187, 3, 46, 49, 112, 159, 188, 169, 127, 78, 25, 83, 45, 143, 182, 59, 36, 19, 110, 39, 43, 35, 15, 90, 180, 82, 145, 48, 34, 144, 178, 177, 86, 27, 103, 94, 62, 170, 57, 154, 166, 54, 164, 20, 185, 29, 2, 16, 60, 37, 75, 10, 162, 116, 92, 71, 106, 105, 175, 44, 108, 50, 26, 7, 176, 38, 99, 4, 122, 52, 66, 0, 140, 184, 24, 80, 97, 23, 114, 30, 126, 148, 64, 119, 165, 137, 123, 95, 111, 160, 8, 153, 149, 172, 121, 129, 28, 104, 156, 100, 189, 14, 138, 88, 118, 139, 93, 191, 31, 131, 179, 152, 89, 22, 41, 168, 117, 21, 69, 132, 102, 58, 67, 142, 141
 の並びにインターリーブされる。
 図167は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第48の例を示す図である。
 図167のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 31, 178, 143, 125, 159, 168, 34, 127, 158, 157, 21, 124, 153, 162, 59, 156, 165, 40, 108, 43, 98, 119, 33, 13, 175, 166, 117, 25, 63, 111, 74, 1, 38, 169, 131, 100, 164, 0, 171, 101, 151, 113, 20, 185, 17, 86, 146, 11, 12, 19, 145, 85, 3, 80, 133, 93, 10, 72, 152, 172, 140, 45, 115, 79, 161, 39, 99, 5, 37, 110, 155, 170, 123, 70, 52, 81, 65, 160, 132, 103, 9, 88, 15, 130, 71, 129, 177, 128, 121, 150, 36, 35, 163, 83, 142, 105, 48, 64, 82, 46, 148, 138, 147, 149, 27, 56, 47, 50, 42, 54, 182, 23, 97, 89, 167, 141, 75, 32, 118, 44, 96, 66, 73, 190, 181, 191, 92, 53, 87, 176, 102, 144, 28, 134, 77, 184, 189, 67, 187, 174, 49, 94, 68, 18, 186, 26, 120, 62, 136, 24, 4, 16, 61, 179, 106, 95, 135, 41, 173, 154, 78, 2, 22, 139, 76, 58, 90, 137, 114, 126, 51, 84, 14, 91, 183, 180, 112, 122, 30, 29, 69, 107, 116, 55, 8, 104, 6, 60, 57, 7, 109, 188
 の並びにインターリーブされる。
 図168は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第49の例を示す図である。
 図168のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 36, 20, 126, 165, 181, 59, 90, 186, 191, 120, 182, 170, 171, 137, 62, 84, 146, 106, 64, 129, 56, 136, 57, 108, 190, 74, 70, 10, 68, 139, 35, 104, 63, 16, 19, 66, 1, 15, 61, 97, 172, 72, 26, 141, 80, 151, 138, 156, 46, 82, 95, 142, 77, 76, 17, 102, 92, 60, 148, 99, 140, 2, 78, 145, 29, 174, 32, 103, 3, 133, 163, 23, 150, 155, 44, 185, 65, 134, 184, 11, 38, 119, 117, 167, 79, 5, 130, 94, 33, 157, 154, 109, 30, 31, 160, 96, 49, 178, 110, 128, 166, 7, 162, 48, 34, 55, 22, 143, 149, 121, 89, 114, 176, 107, 67, 73, 51, 53, 132, 83, 158, 69, 153, 180, 188, 101, 37, 179, 111, 71, 147, 189, 124, 43, 86, 98, 91, 45, 135, 168, 183, 42, 27, 81, 152, 164, 58, 100, 25, 4, 13, 144, 112, 122, 159, 187, 52, 85, 50, 9, 87, 127, 169, 173, 14, 93, 116, 175, 177, 24, 40, 0, 28, 12, 161, 105, 41, 75, 123, 39, 125, 18, 54, 6, 131, 118, 115, 88, 8, 113, 21, 47
 の並びにインターリーブされる。
 図169は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第50の例を示す図である。
 図169のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 12, 183, 40, 66, 35, 155, 137, 58, 108, 93, 47, 78, 56, 122, 51, 114, 10, 164, 148, 190, 53, 76, 75, 11, 46, 2, 174, 146, 119, 170, 98, 22, 116, 28, 67, 63, 59, 154, 94, 105, 187, 9, 97, 166, 19, 125, 189, 185, 178, 115, 123, 150, 60, 77, 86, 69, 26, 145, 143, 134, 124, 111, 162, 141, 80, 34, 138, 130, 45, 33, 127, 37, 91, 84, 102, 13, 16, 172, 61, 182, 57, 55, 101, 142, 117, 87, 131, 188, 191, 113, 39, 54, 74, 72, 29, 48, 161, 139, 151, 180, 1, 160, 103, 173, 15, 52, 186, 133, 71, 132, 31, 135, 70, 81, 24, 112, 6, 175, 96, 3, 79, 156, 109, 8, 153, 90, 177, 49, 99, 128, 21, 7, 158, 89, 92, 126, 32, 121, 100, 88, 163, 136, 20, 83, 17, 42, 95, 129, 118, 43, 157, 50, 5, 179, 140, 147, 62, 38, 176, 149, 159, 44, 106, 152, 65, 14, 168, 184, 0, 107, 167, 36, 73, 110, 165, 120, 104, 23, 25, 82, 27, 41, 181, 169, 85, 144, 4, 18, 171, 30, 68, 64
 の並びにインターリーブされる。
 図170は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第51の例を示す図である。
 図170のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 140, 166, 22, 87, 107, 121, 66, 80, 85, 109, 45, 13, 144, 63, 0, 52, 131, 122, 135, 173, 105, 98, 117, 168, 8, 123, 157, 93, 129, 37, 119, 143, 40, 59, 162, 21, 79, 102, 34, 36, 32, 41, 177, 48, 83, 94, 191, 78, 101, 155, 160, 189, 77, 57, 11, 148, 124, 65, 187, 110, 100, 114, 67, 150, 82, 156, 43, 5, 1, 126, 46, 167, 149, 72, 31, 161, 23, 113, 137, 132, 35, 76, 26, 61, 141, 15, 4, 25, 17, 182, 92, 29, 27, 73, 170, 53, 64, 127, 112, 171, 56, 106, 186, 183, 95, 165, 10, 103, 74, 84, 116, 20, 185, 6, 133, 147, 75, 62, 14, 142, 44, 181, 146, 164, 128, 9, 60, 50, 91, 88, 97, 145, 28, 7, 118, 99, 115, 39, 125, 136, 180, 179, 96, 175, 3, 47, 158, 172, 154, 138, 176, 33, 81, 134, 120, 174, 151, 49, 30, 108, 68, 38, 153, 2, 69, 111, 54, 130, 71, 24, 58, 178, 19, 42, 51, 190, 89, 16, 90, 169, 70, 18, 86, 184, 12, 188, 163, 55, 139, 104, 152, 159
 の並びにインターリーブされる。
 図171は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第52の例を示す図である。
 図171のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 128, 120, 91, 121, 189, 30, 127, 35, 76, 26, 144, 45, 178, 93, 14, 31, 123, 155, 19, 28, 152, 174, 177, 168, 56, 169, 95, 7, 96, 133, 136, 146, 172, 187, 90, 44, 98, 150, 40, 20, 104, 191, 37, 61, 42, 43, 27, 159, 163, 100, 164, 151, 111, 102, 165, 132, 138, 180, 22, 70, 184, 62, 167, 134, 60, 160, 175, 157, 153, 77, 87, 185, 116, 115, 176, 78, 5, 39, 88, 33, 126, 13, 71, 188, 171, 135, 21, 16, 143, 51, 99, 182, 85, 129, 162, 66, 0, 55, 73, 117, 75, 181, 179, 53, 170, 1, 125, 69, 80, 83, 57, 38, 103, 109, 137, 63, 74, 9, 15, 118, 67, 2, 113, 124, 114, 6, 154, 141, 50, 149, 4, 46, 8, 130, 94, 34, 23, 54, 145, 81, 58, 82, 139, 156, 108, 140, 166, 36, 183, 110, 101, 161, 84, 119, 92, 3, 142, 186, 158, 173, 147, 49, 10, 32, 65, 89, 86, 131, 18, 47, 107, 79, 72, 25, 68, 122, 29, 11, 41, 190, 59, 52, 97, 148, 12, 24, 105, 17, 106, 48, 64, 112
 の並びにインターリーブされる。
 図172は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第53の例を示す図である。
 図172のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 36, 180, 61, 100, 163, 168, 14, 24, 105, 104, 131, 56, 40, 73, 165, 157, 126, 47, 160, 181, 166, 161, 1, 81, 58, 182, 189, 177, 85, 17, 13, 46, 171, 149, 91, 79, 109, 133, 164, 125, 52, 77, 118, 186, 107, 150, 135, 33, 130, 87, 167, 158, 23, 83, 152, 114, 68, 12, 132, 178, 106, 184, 176, 72, 31, 53, 21, 110, 76, 146, 4, 18, 113, 65, 34, 179, 111, 185, 84, 144, 27, 39, 151, 50, 69, 30, 169, 175, 9, 42, 54, 43, 90, 22, 139, 129, 170, 115, 45, 140, 67, 25, 155, 82, 102, 29, 188, 108, 15, 80, 128, 48, 0, 64, 141, 93, 191, 190, 174, 32, 35, 119, 159, 41, 55, 162, 49, 59, 88, 156, 123, 136, 28, 60, 26, 16, 89, 147, 92, 98, 38, 20, 173, 71, 44, 94, 5, 7, 99, 75, 122, 120, 66, 121, 112, 62, 8, 137, 142, 103, 116, 117, 37, 63, 70, 86, 10, 74, 95, 11, 134, 154, 51, 101, 127, 183, 57, 97, 78, 148, 6, 172, 3, 138, 145, 153, 143, 19, 2, 96, 187, 124
 の並びにインターリーブされる。
 図173は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第54の例を示す図である。
 図173のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 92, 83, 138, 67, 27, 88, 13, 26, 73, 16, 187, 18, 76, 28, 79, 130, 91, 58, 140, 38, 6, 43, 17, 168, 141, 96, 70, 147, 112, 164, 97, 161, 139, 65, 78, 95, 146, 3, 32, 158, 24, 0, 94, 120, 176, 128, 59, 81, 21, 102, 190, 8, 114, 113, 29, 45, 103, 56, 54, 173, 177, 12, 174, 108, 169, 148, 123, 129, 150, 77, 157, 184, 61, 127, 121, 156, 104, 111, 68, 160, 107, 117, 124, 84, 35, 10, 90, 106, 144, 66, 64, 15, 46, 125, 44, 37, 20, 135, 53, 71, 152, 183, 162, 50, 167, 11, 142, 149, 131, 191, 166, 31, 185, 134, 19, 178, 52, 188, 2, 75, 110, 145, 41, 159, 136, 100, 9, 62, 60, 34, 116, 23, 42, 105, 40, 118, 186, 4, 5, 182, 170, 87, 1, 22, 55, 126, 63, 14, 25, 153, 98, 49, 33, 69, 179, 171, 93, 36, 133, 57, 151, 82, 72, 163, 86, 47, 119, 48, 99, 30, 189, 115, 165, 101, 80, 175, 132, 89, 39, 181, 85, 51, 154, 137, 7, 180, 155, 74, 109, 122, 172, 143
 の並びにインターリーブされる。
 図174は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第55の例を示す図である。
 図174のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 52, 117, 42, 131, 45, 120, 44, 63, 91, 0, 33, 176, 95, 36, 134, 170, 148, 32, 130, 20, 124, 51, 152, 96, 92, 90, 184, 103, 53, 14, 110, 80, 107, 145, 181, 137, 61, 149, 114, 126, 136, 161, 58, 162, 88, 8, 171, 178, 174, 94, 118, 19, 35, 1, 191, 115, 23, 10, 150, 67, 46, 56, 172, 129, 109, 98, 89, 68, 101, 121, 78, 182, 12, 173, 128, 77, 168, 156, 186, 165, 39, 187, 5, 158, 104, 2, 49, 154, 59, 82, 65, 30, 127, 17, 113, 164, 179, 34, 69, 189, 123, 147, 183, 21, 163, 143, 57, 100, 28, 185, 25, 140, 13, 66, 141, 62, 47, 54, 169, 106, 38, 86, 116, 151, 41, 4, 75, 108, 85, 153, 72, 125, 22, 135, 50, 70, 74, 11, 76, 138, 132, 55, 167, 40, 144, 31, 142, 37, 29, 99, 83, 26, 119, 64, 27, 9, 15, 97, 73, 133, 79, 190, 111, 43, 48, 102, 7, 139, 84, 24, 112, 177, 16, 180, 175, 81, 3, 60, 18, 188, 93, 105, 157, 87, 166, 159, 155, 122, 146, 6, 160, 71
 の並びにインターリーブされる。
 図175は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第56の例を示す図である。
 図175のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 60, 117, 182, 104, 53, 26, 11, 121, 71, 32, 179, 34, 38, 145, 166, 65, 137, 7, 124, 58, 90, 29, 144, 116, 91, 88, 98, 161, 83, 177, 85, 154, 146, 178, 123, 76, 75, 3, 64, 151, 99, 118, 57, 106, 16, 61, 162, 19, 12, 94, 39, 93, 92, 73, 82, 138, 108, 139, 130, 163, 152, 159, 168, 189, 102, 134, 101, 66, 4, 171, 170, 188, 107, 23, 180, 35, 175, 18, 89, 181, 17, 97, 62, 56, 52, 128, 40, 25, 191, 74, 95, 143, 5, 8, 1, 132, 133, 135, 184, 33, 37, 45, 127, 122, 136, 190, 158, 72, 77, 114, 46, 55, 105, 78, 183, 103, 22, 20, 24, 155, 86, 63, 79, 164, 13, 174, 2, 14, 47, 126, 84, 165, 59, 142, 87, 153, 112, 43, 156, 50, 6, 0, 81, 51, 21, 9, 148, 111, 147, 48, 31, 36, 129, 167, 150, 70, 42, 15, 110, 119, 109, 125, 80, 27, 131, 49, 140, 187, 96, 120, 100, 141, 160, 186, 185, 68, 69, 28, 176, 169, 44, 173, 149, 54, 115, 113, 67, 10, 157, 41, 30, 172
 の並びにインターリーブされる。
 図176は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第57の例を示す図である。
 図176のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 7, 156, 171, 76, 165, 68, 5, 72, 86, 57, 42, 98, 162, 130, 88, 31, 63, 170, 92, 100, 145, 146, 117, 62, 123, 55, 22, 138, 75, 99, 177, 83, 135, 190, 79, 84, 182, 140, 136, 0, 108, 77, 8, 154, 73, 37, 147, 14, 10, 128, 111, 168, 38, 159, 125, 32, 120, 132, 148, 27, 69, 96, 127, 103, 34, 110, 161, 41, 18, 35, 142, 116, 28, 121, 91, 112, 51, 178, 139, 95, 155, 20, 78, 33, 133, 29, 9, 54, 24, 176, 122, 3, 102, 56, 181, 175, 174, 81, 166, 30, 26, 43, 113, 137, 150, 89, 179, 70, 11, 2, 118, 183, 13, 50, 46, 12, 49, 40, 172, 17, 47, 65, 16, 74, 141, 129, 101, 48, 87, 187, 167, 134, 158, 15, 44, 53, 93, 152, 23, 126, 52, 97, 189, 36, 115, 169, 64, 25, 58, 82, 1, 45, 39, 191, 144, 173, 6, 60, 85, 149, 163, 21, 90, 4, 80, 105, 164, 180, 61, 114, 188, 151, 185, 94, 124, 104, 106, 119, 107, 160, 67, 71, 19, 131, 186, 153, 157, 66, 143, 184, 109, 59
 の並びにインターリーブされる。
 図177は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第58の例を示す図である。
 図177のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 134, 124, 102, 133, 161, 34, 18, 17, 119, 172, 43, 25, 130, 84, 46, 167, 23, 100, 31, 121, 30, 15, 99, 127, 62, 20, 143, 103, 139, 171, 13, 42, 1, 26, 76, 159, 27, 82, 48, 146, 22, 156, 188, 69, 86, 177, 129, 160, 33, 67, 176, 148, 168, 158, 169, 0, 155, 118, 154, 110, 96, 191, 4, 36, 39, 56, 112, 14, 145, 182, 3, 88, 126, 91, 105, 174, 128, 157, 125, 74, 116, 61, 52, 187, 117, 98, 73, 95, 92, 181, 111, 65, 63, 152, 163, 147, 66, 178, 87, 179, 64, 93, 144, 83, 140, 8, 78, 2, 131, 115, 123, 47, 94, 186, 28, 68, 21, 135, 37, 151, 11, 104, 77, 81, 35, 71, 162, 97, 41, 58, 190, 101, 153, 85, 166, 7, 173, 44, 29, 10, 49, 54, 150, 32, 50, 51, 45, 183, 107, 113, 137, 80, 79, 175, 142, 141, 138, 40, 122, 75, 120, 53, 59, 60, 184, 5, 38, 6, 164, 189, 24, 16, 72, 19, 109, 106, 114, 108, 185, 165, 149, 9, 57, 170, 12, 90, 180, 89, 132, 136, 55, 70
 の並びにインターリーブされる。
 図178は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第59の例を示す図である。
 図178のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 18, 161, 152, 30, 91, 138, 83, 88, 127, 54, 33, 46, 125, 120, 122, 169, 51, 150, 100, 52, 95, 186, 149, 81, 11, 53, 164, 130, 19, 176, 93, 107, 29, 86, 124, 65, 75, 71, 74, 68, 44, 82, 59, 104, 118, 103, 131, 101, 8, 96, 97, 119, 166, 77, 50, 34, 158, 21, 184, 24, 165, 171, 142, 36, 181, 45, 90, 175, 99, 13, 37, 10, 140, 3, 69, 16, 133, 172, 173, 27, 132, 79, 76, 111, 123, 7, 94, 70, 116, 174, 15, 156, 187, 110, 84, 185, 14, 72, 159, 143, 78, 135, 17, 12, 139, 67, 58, 151, 177, 73, 154, 145, 179, 25, 108, 148, 137, 85, 147, 61, 20, 89, 155, 183, 134, 128, 191, 26, 121, 126, 0, 141, 112, 62, 114, 48, 182, 146, 115, 64, 113, 189, 31, 1, 39, 168, 2, 43, 163, 188, 35, 129, 153, 66, 23, 40, 6, 5, 98, 56, 9, 63, 180, 157, 167, 162, 60, 42, 49, 28, 22, 80, 87, 92, 160, 55, 136, 170, 106, 117, 178, 32, 38, 105, 102, 41, 57, 109, 144, 47, 190, 4
 の並びにインターリーブされる。
 図179は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第60の例を示す図である。
 図179のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 172, 48, 104, 60, 184, 162, 86, 185, 11, 132, 155, 50, 146, 178, 5, 28, 133, 169, 106, 90, 174, 95, 42, 10, 78, 177, 21, 112, 54, 153, 136, 12, 115, 108, 92, 152, 180, 151, 13, 62, 25, 51, 191, 84, 167, 139, 96, 111, 130, 150, 7, 143, 144, 117, 124, 27, 38, 72, 6, 128, 36, 39, 26, 156, 32, 127, 181, 122, 52, 131, 68, 140, 173, 182, 154, 190, 137, 61, 2, 138, 43, 110, 29, 116, 176, 30, 57, 189, 14, 4, 65, 80, 33, 75, 135, 20, 103, 98, 56, 179, 129, 105, 113, 71, 160, 85, 55, 0, 166, 59, 183, 142, 19, 22, 63, 125, 165, 88, 87, 93, 168, 77, 45, 69, 175, 100, 145, 31, 91, 141, 114, 157, 119, 16, 1, 34, 15, 147, 46, 188, 70, 74, 109, 126, 18, 64, 89, 134, 9, 161, 158, 44, 3, 47, 148, 187, 81, 164, 121, 35, 23, 24, 159, 82, 40, 94, 67, 163, 170, 58, 97, 8, 83, 53, 118, 149, 73, 107, 123, 79, 41, 99, 186, 101, 49, 120, 66, 76, 17, 171, 102, 37
 の並びにインターリーブされる。
 図180は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第61の例を示す図である。
 図180のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 16, 133, 14, 114, 145, 191, 53, 80, 166, 68, 21, 184, 73, 165, 147, 89, 180, 55, 135, 94, 189, 78, 103, 115, 72, 24, 105, 188, 84, 148, 85, 32, 1, 131, 34, 134, 41, 167, 81, 54, 142, 141, 75, 155, 122, 140, 13, 17, 8, 23, 61, 49, 51, 74, 181, 162, 143, 42, 71, 123, 161, 177, 110, 149, 126, 0, 63, 178, 35, 175, 186, 52, 43, 139, 112, 10, 40, 150, 182, 164, 64, 83, 174, 38, 47, 30, 2, 116, 25, 128, 160, 144, 99, 5, 187, 176, 82, 60, 18, 185, 104, 169, 39, 183, 137, 22, 109, 96, 151, 46, 33, 29, 65, 132, 95, 31, 136, 159, 170, 168, 67, 79, 93, 111, 90, 97, 113, 92, 76, 58, 127, 26, 27, 156, 3, 6, 28, 77, 125, 173, 98, 138, 172, 86, 45, 118, 171, 62, 179, 100, 19, 163, 50, 57, 56, 36, 102, 121, 117, 154, 119, 66, 20, 91, 130, 69, 44, 70, 153, 152, 158, 88, 108, 12, 59, 4, 11, 120, 87, 101, 37, 129, 146, 9, 106, 48, 7, 15, 124, 190, 107, 157
 の並びにインターリーブされる。
 図181は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第62の例を示す図である。
 図181のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 97, 121, 122, 73, 108, 167, 75, 156, 64, 49, 29, 18, 110, 171, 8, 27, 54, 41, 164, 15, 129, 157, 130, 111, 112, 120, 152, 12, 13, 101, 31, 69, 180, 143, 78, 125, 79, 172, 40, 116, 58, 71, 126, 55, 35, 191, 185, 159, 44, 86, 3, 80, 88, 145, 98, 144, 0, 62, 38, 150, 166, 114, 139, 60, 149, 10, 72, 155, 181, 26, 85, 128, 19, 25, 4, 170, 94, 175, 136, 117, 135, 102, 21, 89, 140, 138, 100, 33, 142, 74, 133, 56, 124, 17, 77, 65, 119, 59, 182, 105, 99, 158, 24, 96, 70, 83, 23, 81, 132, 7, 141, 61, 57, 82, 115, 162, 186, 103, 43, 148, 47, 176, 113, 151, 50, 184, 165, 109, 189, 90, 32, 20, 46, 127, 153, 161, 106, 11, 67, 36, 9, 28, 174, 160, 16, 93, 95, 6, 131, 66, 39, 14, 91, 163, 68, 48, 123, 137, 52, 5, 183, 76, 179, 22, 34, 147, 107, 168, 146, 42, 173, 53, 190, 104, 51, 118, 45, 30, 178, 134, 169, 37, 187, 177, 1, 2, 154, 87, 63, 92, 188, 84
 の並びにインターリーブされる。
 図182は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第63の例を示す図である。
 図182のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 47, 85, 118, 136, 166, 98, 72, 163, 63, 116, 162, 169, 114, 124, 144, 110, 46, 152, 104, 88, 99, 106, 181, 109, 3, 10, 172, 107, 33, 100, 191, 75, 157, 79, 52, 128, 6, 12, 139, 30, 68, 111, 83, 5, 119, 1, 97, 56, 38, 117, 78, 80, 155, 141, 185, 20, 161, 123, 28, 180, 77, 50, 29, 64, 41, 121, 53, 36, 48, 127, 44, 22, 35, 165, 59, 147, 187, 153, 89, 154, 18, 55, 90, 69, 19, 148, 129, 188, 24, 8, 102, 151, 11, 74, 105, 81, 92, 70, 101, 7, 132, 120, 112, 145, 57, 96, 42, 45, 91, 71, 149, 164, 51, 130, 95, 140, 178, 9, 135, 34, 175, 21, 32, 25, 67, 17, 61, 58, 134, 43, 122, 2, 16, 183, 54, 86, 4, 39, 60, 184, 171, 94, 179, 13, 115, 49, 143, 158, 168, 159, 87, 73, 156, 15, 93, 125, 126, 131, 40, 66, 138, 76, 173, 65, 27, 170, 186, 182, 103, 108, 82, 37, 174, 167, 142, 26, 160, 84, 62, 190, 176, 31, 150, 189, 113, 137, 14, 23, 0, 146, 177, 133
 の並びにインターリーブされる。
 図183は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第64の例を示す図である。
 図183のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 97, 39, 99, 33, 10, 6, 189, 179, 130, 172, 76, 185, 131, 40, 176, 159, 8, 17, 167, 116, 16, 160, 5, 174, 27, 115, 43, 41, 136, 175, 153, 144, 106, 29, 105, 84, 67, 35, 152, 191, 72, 56, 83, 168, 12, 184, 65, 146, 104, 80, 98, 79, 51, 26, 64, 137, 181, 165, 52, 129, 186, 48, 128, 154, 58, 141, 77, 187, 94, 109, 81, 119, 82, 38, 18, 188, 143, 170, 147, 2, 162, 95, 21, 11, 74, 151, 19, 59, 1, 138, 145, 7, 177, 30, 42, 44, 28, 20, 91, 14, 4, 70, 110, 31, 37, 61, 55, 85, 15, 183, 171, 96, 103, 101, 112, 161, 54, 178, 78, 87, 126, 57, 180, 88, 92, 113, 73, 90, 117, 93, 89, 122, 62, 25, 158, 148, 118, 45, 123, 60, 107, 173, 114, 166, 120, 13, 23, 139, 86, 135, 164, 47, 124, 149, 150, 46, 157, 100, 142, 0, 71, 50, 49, 36, 9, 127, 156, 75, 34, 163, 125, 190, 182, 155, 66, 69, 140, 32, 169, 132, 53, 68, 102, 63, 133, 111, 22, 134, 108, 3, 24, 121
 の並びにインターリーブされる。
 図184は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第65の例を示す図である。
 図184のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 35, 75, 166, 145, 143, 184, 62, 96, 54, 63, 157, 103, 32, 43, 126, 187, 144, 91, 78, 44, 39, 109, 185, 102, 10, 68, 29, 42, 149, 83, 133, 94, 130, 27, 171, 19, 51, 165, 148, 28, 36, 33, 173, 136, 87, 82, 100, 49, 120, 152, 161, 162, 147, 71, 137, 57, 8, 53, 132, 151, 163, 123, 47, 92, 90, 60, 99, 79, 59, 108, 115, 72, 0, 12, 140, 160, 61, 180, 74, 37, 86, 117, 191, 101, 52, 15, 80, 156, 127, 81, 131, 141, 142, 31, 95, 4, 73, 64, 16, 18, 146, 70, 181, 7, 89, 124, 77, 67, 116, 21, 34, 41, 105, 113, 97, 2, 6, 55, 17, 65, 38, 48, 158, 159, 179, 5, 30, 183, 170, 135, 125, 20, 106, 186, 182, 188, 114, 1, 14, 3, 134, 178, 189, 167, 40, 119, 22, 190, 58, 23, 155, 138, 98, 84, 11, 110, 88, 46, 177, 175, 25, 150, 118, 121, 129, 168, 13, 128, 104, 69, 112, 169, 9, 45, 174, 93, 26, 56, 76, 50, 154, 139, 66, 85, 153, 107, 111, 172, 176, 164, 24, 122
 の並びにインターリーブされる。
 図185は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第66の例を示す図である。
 図185のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 138, 38, 106, 76, 172, 27, 150, 95, 44, 187, 64, 18, 28, 98, 180, 101, 149, 146, 126, 26, 93, 178, 186, 70, 104, 131, 19, 45, 102, 122, 152, 66, 63, 173, 9, 55, 25, 1, 154, 85, 5, 51, 43, 82, 86, 151, 148, 48, 190, 179, 62, 60, 94, 174, 142, 39, 169, 170, 47, 125, 33, 128, 162, 2, 129, 57, 79, 118, 114, 69, 78, 167, 11, 136, 99, 155, 90, 21, 119, 10, 52, 91, 115, 185, 6, 110, 88, 96, 181, 143, 0, 160, 124, 130, 183, 71, 121, 182, 68, 191, 3, 32, 40, 189, 41, 156, 35, 159, 58, 89, 29, 67, 17, 109, 30, 111, 12, 46, 65, 177, 53, 77, 74, 56, 184, 15, 141, 135, 54, 163, 14, 145, 139, 134, 59, 147, 87, 107, 7, 61, 36, 113, 103, 188, 24, 165, 137, 22, 42, 49, 83, 73, 50, 161, 20, 166, 127, 157, 108, 171, 37, 72, 176, 112, 123, 144, 34, 175, 168, 117, 80, 81, 8, 31, 133, 92, 164, 132, 97, 158, 84, 100, 140, 16, 105, 23, 75, 13, 153, 116, 4, 120
 の並びにインターリーブされる。
 図186は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第67の例を示す図である。
 図186のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 37, 136, 161, 62, 163, 129, 160, 73, 76, 66, 34, 162, 122, 5, 87, 94, 50, 105, 132, 32, 121, 47, 74, 189, 110, 45, 75, 175, 17, 29, 108, 191, 1, 153, 20, 113, 61, 42, 51, 2, 165, 124, 43, 186, 40, 86, 168, 180, 155, 16, 93, 26, 166, 119, 159, 56, 12, 44, 46, 143, 49, 25, 176, 158, 92, 147, 54, 172, 182, 64, 157, 112, 38, 39, 11, 6, 127, 48, 151, 82, 4, 36, 183, 88, 126, 117, 111, 188, 138, 65, 70, 170, 133, 137, 146, 128, 114, 148, 141, 125, 10, 41, 116, 33, 99, 81, 187, 130, 131, 107, 60, 90, 173, 13, 71, 15, 106, 3, 149, 154, 181, 174, 190, 27, 177, 18, 21, 22, 83, 91, 150, 14, 96, 53, 0, 145, 67, 68, 144, 184, 59, 23, 118, 115, 135, 55, 134, 102, 8, 169, 85, 156, 97, 63, 104, 95, 52, 98, 139, 24, 78, 179, 19, 28, 69, 58, 109, 57, 164, 31, 84, 140, 103, 77, 123, 171, 72, 79, 152, 35, 80, 7, 185, 167, 9, 100, 142, 89, 30, 120, 178, 101
 の並びにインターリーブされる。
 図187は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第68の例を示す図である。
 図187のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 148, 189, 3, 121, 80, 135, 7, 96, 46, 109, 190, 111, 118, 23, 5, 149, 19, 140, 106, 36, 161, 71, 6, 176, 160, 76, 8, 168, 171, 173, 40, 37, 25, 50, 164, 108, 139, 31, 127, 142, 163, 177, 24, 20, 157, 83, 116, 42, 73, 69, 88, 184, 147, 136, 187, 49, 45, 35, 170, 62, 63, 181, 117, 123, 122, 72, 55, 53, 133, 159, 94, 175, 179, 158, 97, 93, 13, 130, 144, 81, 68, 2, 64, 155, 119, 43, 143, 1, 112, 18, 146, 172, 132, 191, 134, 61, 138, 9, 178, 103, 15, 47, 154, 17, 152, 153, 107, 115, 39, 166, 33, 104, 56, 52, 60, 131, 141, 78, 186, 162, 54, 0, 85, 12, 86, 77, 126, 34, 180, 10, 87, 38, 4, 26, 79, 27, 98, 66, 75, 67, 110, 101, 128, 16, 22, 28, 151, 21, 99, 74, 11, 100, 65, 58, 150, 145, 14, 59, 102, 51, 48, 113, 92, 167, 188, 174, 156, 114, 82, 125, 124, 70, 137, 90, 30, 44, 57, 105, 95, 165, 29, 89, 41, 169, 120, 91, 32, 183, 129, 182, 185, 84
 の並びにインターリーブされる。
 図188は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第69の例を示す図である。
 図188のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 67, 20, 9, 75, 143, 94, 144, 122, 56, 88, 180, 72, 102, 100, 113, 157, 170, 59, 128, 162, 26, 38, 61, 156, 115, 117, 190, 77, 22, 74, 119, 12, 8, 179, 182, 85, 188, 191, 154, 41, 58, 142, 186, 107, 73, 189, 15, 130, 127, 160, 55, 19, 45, 137, 124, 133, 146, 43, 60, 183, 153, 177, 123, 181, 95, 49, 140, 4, 51, 3, 21, 164, 83, 187, 148, 11, 168, 149, 92, 65, 30, 90, 23, 116, 57, 161, 125, 175, 129, 126, 97, 14, 96, 66, 37, 178, 64, 173, 184, 80, 101, 34, 81, 131, 76, 147, 47, 135, 111, 121, 44, 68, 98, 48, 120, 40, 87, 176, 104, 106, 28, 163, 52, 1, 152, 79, 42, 139, 16, 2, 71, 7, 109, 114, 112, 54, 62, 169, 35, 150, 171, 110, 50, 108, 105, 69, 118, 84, 39, 132, 63, 31, 18, 134, 103, 185, 6, 145, 24, 70, 36, 29, 5, 93, 99, 33, 82, 89, 167, 174, 27, 165, 91, 138, 155, 32, 159, 141, 136, 151, 25, 158, 86, 17, 13, 172, 53, 10, 46, 166, 0, 78
 の並びにインターリーブされる。
 図189は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第70の例を示す図である。
 図189のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 84, 126, 45, 76, 121, 91, 52, 162, 79, 187, 134, 108, 47, 16, 72, 119, 43, 107, 98, 135, 147, 110, 0, 60, 4, 61, 117, 24, 167, 65, 40, 55, 73, 112, 85, 35, 156, 95, 137, 171, 9, 11, 54, 131, 138, 157, 152, 111, 183, 161, 41, 69, 21, 94, 113, 8, 153, 39, 57, 143, 86, 12, 188, 184, 15, 30, 118, 136, 64, 169, 148, 22, 6, 68, 168, 78, 105, 101, 190, 3, 59, 124, 170, 62, 87, 46, 28, 29, 186, 2, 25, 177, 140, 53, 154, 37, 18, 189, 93, 114, 33, 1, 158, 122, 103, 5, 104, 80, 166, 34, 106, 51, 10, 180, 139, 125, 178, 100, 13, 70, 142, 185, 159, 50, 66, 102, 150, 127, 160, 92, 81, 173, 115, 144, 145, 128, 74, 88, 20, 116, 179, 96, 17, 155, 175, 75, 165, 7, 191, 149, 44, 23, 99, 48, 163, 42, 63, 164, 90, 120, 27, 31, 14, 19, 32, 174, 26, 67, 89, 97, 56, 146, 82, 133, 129, 109, 71, 58, 130, 182, 123, 176, 49, 36, 181, 38, 141, 151, 83, 77, 172, 132
 の並びにインターリーブされる。
 図190は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第71の例を示す図である。
 図190のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 30, 127, 60, 115, 80, 50, 150, 39, 176, 171, 47, 104, 70, 33, 56, 3, 10, 26, 19, 149, 153, 141, 98, 46, 64, 71, 130, 107, 94, 16, 164, 169, 57, 168, 126, 157, 133, 12, 154, 135, 35, 53, 40, 183, 28, 1, 160, 67, 163, 134, 181, 59, 99, 186, 86, 36, 178, 152, 48, 117, 44, 14, 66, 172, 17, 31, 182, 166, 187, 55, 62, 143, 69, 77, 9, 113, 158, 91, 189, 84, 151, 74, 45, 97, 122, 114, 75, 41, 162, 90, 110, 106, 116, 131, 129, 188, 92, 11, 147, 108, 20, 159, 146, 51, 29, 109, 89, 6, 96, 155, 43, 111, 138, 85, 119, 5, 22, 105, 170, 4, 15, 148, 145, 63, 0, 156, 81, 68, 13, 137, 79, 103, 2, 179, 38, 180, 132, 123, 144, 167, 140, 174, 49, 37, 82, 128, 101, 21, 124, 177, 121, 8, 23, 136, 42, 27, 139, 72, 185, 18, 65, 161, 7, 125, 88, 34, 73, 184, 52, 190, 120, 102, 100, 87, 95, 118, 83, 112, 175, 78, 58, 24, 165, 54, 61, 25, 191, 76, 142, 93, 173, 32
 の並びにインターリーブされる。
 図191は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第72の例を示す図である。
 図191のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
 の並びにインターリーブされる。
 図192は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第73の例を示す図である。
 図192のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
 の並びにインターリーブされる。
 図193は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第74の例を示す図である。
 図193のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
 の並びにインターリーブされる。
 図194は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第75の例を示す図である。
 図194のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
 の並びにインターリーブされる。
 図195は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第76の例を示す図である。
 図195のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
 の並びにインターリーブされる。
 図196は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第77の例を示す図である。
 図196のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
 の並びにインターリーブされる。
 図197は、符号長Nが69120ビットのLDPC符号に対するGWパターンの第78の例を示す図である。
 図197のGWパターンによれば、69120ビットのLDPC符号のビットグループ0ないし191の並びが、ビットグループ
 93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
 の並びにインターリーブされる。
 以上の、符号長Nが69120ビットのLDPC符号に対するGWパターンの第1ないし第45の例は、符号長Nが69120ビットの、任意の符号化率rのLDPC符号、任意の変調方式、及び、任意のコンスタレーションの組み合わせのいずれにも適用することができる。
 但し、グループワイズインターリーブについては、適用するGWパターンを、LDPC符号の符号長N、LDPC符号の符号化率r、変調方式、及び、コンスタレーションの組み合わせごとに設定することで、各組み合わせについて、エラーレートをより改善することができる。
 図120のGWパターンは、例えば、図30の(検査行列初期値テーブルに対応する)N=69120,r=2/16のLDPC符号(符号長Nが69120で、符号化率rが2/16のLDPC符号)、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図121のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図122のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図123のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図124のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図125のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図126のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図127のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図128のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図129のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図130のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図131のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図132のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、QPSK、及び、図96及び図97のQPSK-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図133のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図134のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図135のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図136のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図137のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図138のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、16QAM、及び、図98及び図99の16QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図139のGWパターンは、例えば、図30のN=69120,r=2/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図140のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図141のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図142のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図143のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図144のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図145のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、64QAM、及び、図100及び図101の64QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図146のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図147のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図148のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図149のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図150のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図151のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、256QAM、及び、図102及び図103の256QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図152のGWパターンは、例えば、図30のN=69120,r=2/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図153のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図154のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図155のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図156のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図157のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図158のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、1024QAM、及び、図104及び図105の1024QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図159のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図160のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図161のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図162のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図163のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図164のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、4096QAM、及び、図106及び図107の4096QAM-UCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図165のGWパターンは、例えば、図30のN=69120,r=2/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図166のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図167のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図168のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図169のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図170のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図171のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、16QAM、及び、図108の16QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図172のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図173のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図174のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図175のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図176のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図177のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、64QAM、及び、図109の64QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図178のGWパターンは、例えば、図30のN=69120,r=2/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図179のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図180のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図181のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図182のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図183のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図184のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、256QAM、及び、図110及び図111の256QAM-2D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図185のGWパターンは、例えば、図31及び図32のN=69120,r=3/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図186のGWパターンは、例えば、図34及び図35のN=69120,r=5/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図187のGWパターンは、例えば、図38及び図39のN=69120,r=7/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図188のGWパターンは、例えば、図50ないし図52のN=69120,r=9/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図189のGWパターンは、例えば、図62ないし図64のN=69120,r=11/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図190のGWパターンは、例えば、図74ないし図76のN=69120,r=13/16のLDPC符号、1024QAM、及び、図112及び図113の1024QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図191のGWパターンは、例えば、図30のN=69120,r=2/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図192のGWパターンは、例えば、図33のN=69120,r=4/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図193のGWパターンは、例えば、図36及び図37のN=69120,r=6/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図194のGWパターンは、例えば、図46及び図47のN=69120,r=8/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図195のGWパターンは、例えば、図56ないし図58のN=69120,r=10/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図196のGWパターンは、例えば、図68ないし図70のN=69120,r=12/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 図197のGWパターンは、例えば、図80ないし図82のN=69120,r=14/16のLDPC符号、4096QAM、及び、図114ないし図116の4096QAM-1D-NUCの組み合わせに適用することにより、特に、良好なエラーレートを達成することができる。
 <受信装置12の構成例>
 図198は、図7の受信装置12の構成例を示すブロック図である。
 OFDM処理部(OFDM operation)151は、送信装置11(図7)からのOFDM信号を受信し、そのOFDM信号の信号処理を行う。OFDM処理部151が信号処理を行うことにより得られるデータは、フレーム管理部(Frame Management)152に供給される。
 フレーム管理部152は、OFDM処理部151から供給されるデータで構成されるフレームの処理(フレーム解釈)を行い、その結果得られる対象データの信号と、制御データの信号とを、周波数デインターリーバ(Frequency Deinterleaver)161と153とに、それぞれ供給する。
 周波数デインターリーバ153は、フレーム管理部152からのデータについて、シンボル単位での周波数デインターリーブを行い、デマッパ(Demapper)154に供給する。
 デマッパ154は、周波数デインターリーバ153からのデータ(コンスタレーション上のデータ)を、送信装置11側で行われる直交変調で定められる信号点の配置(コンスタレーション)に基づいてデマッピング(信号点配置復号)して直交復調し、その結果得られるデータ(LDPC符号(の尤度))を、LDPCデコーダ(LDPC decoder)155に供給する。
 LDPCデコーダ155は、デマッパ154からのLDPC符号のLDPC復号を行い、その結果得られるLDPC対象データ(ここでは、BCH符号)を、BCHデコーダ(BCH decoder)156に供給する。
 BCHデコーダ156は、LDPCデコーダ155からのLDPC対象データのBCH復号を行い、その結果得られる制御データ(シグナリング)を出力する。
 一方、周波数デインターリーバ161は、フレーム管理部152からのデータについて、シンボル単位での周波数デインターリーブを行い、SISO/MISOデコーダ(SISO/MISO decoder)162に供給する。
 SISO/MISOデコーダ162は、周波数デインターリーバ161からのデータの時空間復号を行い、時間デインターリーバ(Time Deinterleaver)163に供給する。
 時間デインターリーバ163は、SISO/MISOデコーダ162からのデータについて、シンボル単位での時間デインターリーブを行い、デマッパ(Demapper)164に供給する。
 デマッパ164は、時間デインターリーバ163からのデータ(コンスタレーション上のデータ)を、送信装置11側で行われる直交変調で定められる信号点の配置(コンスタレーション)に基づいてデマッピング(信号点配置復号)して直交復調し、その結果得られるデータを、ビットデインターリーバ(Bit Deinterleaver)165に供給する。
 ビットデインターリーバ165は、デマッパ164からのデータのビットデインターリーブを行い、そのビットデインターリーブ後のデータであるLDPC符号(の尤度)を、LDPCデコーダ166に供給する。
 LDPCデコーダ166は、ビットデインターリーバ165からのLDPC符号のLDPC復号を行い、その結果得られるLDPC対象データ(ここでは、BCH符号)を、BCHデコーダ167に供給する。
 BCHデコーダ167は、LDPCデコーダ155からのLDPC対象データのBCH復号を行い、その結果得られるデータを、BBデスクランブラ(BB DeScrambler)168に供給する。
 BBデスクランブラ168は、BCHデコーダ167からのデータに、BBデスクランブルを施し、その結果得られるデータを、ヌル削除部(Null Deletion)169に供給する。
 ヌル削除部169は、BBデスクランブラ168からのデータから、図8のパダー112で挿入されたNullを削除し、デマルチプレクサ(Demultiplexer)170に供給する。
 デマルチプレクサ170は、ヌル削除部169からのデータに多重化されている1以上のストリーム(対象データ)それぞれを分離し、必要な処理を施して、アウトプットストリーム(Output stream)として出力する。
 なお、受信装置12は、図198に図示したブロックの一部を設けずに構成することができる。すなわち、例えば、送信装置11(図8)を、時間インターリーバ118、SISO/MISOエンコーダ119、周波数インターリーバ120、及び、周波数インターリーバ124を設けずに構成する場合には、受信装置12は、送信装置11の時間インターリーバ118、SISO/MISOエンコーダ119、周波数インターリーバ120、及び、周波数インターリーバ124にそれぞれ対応するブロックである時間デインターリーバ163、SISO/MISOデコーダ162、周波数デインターリーバ161、及び、周波数デインターリーバ153を設けずに構成することができる。
 <ビットデインターリーバ165の構成例>
 図199は、図198のビットデインターリーバ165の構成例を示すブロック図である。
 ビットデインターリーバ165は、ブロックデインターリーバ54、及びグループワイズデインターリーバ55から構成され、デマッパ164(図198)からのデータであるシンボルのシンボルビットの(ビット)デインターリーブを行う。
 すなわち、ブロックデインターリーバ54は、デマッパ164からのシンボルのシンボルビットを対象として、図9のブロックインターリーバ25が行うブロックインターリーブに対応するブロックデインターリーブ(ブロックインターリーブの逆の処理)、すなわち、ブロックインターリーブによって並び替えられたLDPC符号の符号ビット(の尤度)の位置を元の位置に戻すブロックデインターリーブを行い、その結果得られるLDPC符号を、グループワイズデインターリーバ55に供給する。
 グループワイズデインターリーバ55は、ブロックデインターリーバ54からのLDPC符号を対象として、図9のグループワイズインターリーバ24が行うグループワイズインターリーブに対応するグループワイズデインターリーブ(グループワイズインターリーブの逆の処理)、すなわち、例えば、図119で説明したグループワイズインターリーブによってビットグループ単位で並びが変更されたLDPC符号の符号ビットを、ビットグループ単位で並び替えることにより、元の並びに戻すグループワイズデインターリーブを行う。
 ここで、デマッパ164から、ビットデインターリーバ165に供給されるLDPC符号に、パリティインターリーブ、グループワイズインターリーブ、及びブロックインターリーブが施されている場合、ビットデインターリーバ165では、パリティインターリーブに対応するパリティデインターリーブ(パリティインターリーブの逆の処理、すなわち、パリティインターリーブによって並びが変更されたLDPC符号の符号ビットを、元の並びに戻すパリティデインターリーブ)、ブロックインターリーブに対応するブロックデインターリーブ、及び、グループワイズインターリーブに対応するグループワイズデインターリーブのすべてを行うことができる。
 但し、図199のビットデインターリーバ165では、ブロックインターリーブに対応するブロックデインターリーブを行うブロックデインターリーバ54、及び、グループワイズインターリーブに対応するグループワイズデインターリーブを行うグループワイズデインターリーバ55は、設けられているが、パリティインターリーブに対応するパリティデインターリーブを行うブロックは、設けられておらず、パリティデインターリーブは、行われない。
 したがって、ビットデインターリーバ165(のグループワイズデインターリーバ55)から、LDPCデコーダ166には、ブロックデインターリーブ、及び、グループワイズデインターリーブが行われ、かつ、パリティデインターリーブが行われていないLDPC符号が供給される。
 LDPCデコーダ166は、ビットデインターリーバ165からのLDPC符号のLDPC復号を、図8のLDPCエンコーダ115がLDPC符号化に用いたタイプB方式の検査行列Hに対して、パリティインターリーブに相当する列置換を少なくとも行って得られる変換検査行列や、タイプA方式の検査行列(図27)に行置換を行って得られる変換検査行列(図29)を用いて行い、その結果得られるデータを、LDPC対象データの復号結果として出力する。
 図200は、図199のデマッパ164、ビットデインターリーバ165、及び、LDPCデコーダ166が行う処理を説明するフローチャートである。
 ステップS111において、デマッパ164は、時間デインターリーバ163からのデータ(信号点にマッピングされたコンスタレーション上のデータ)をデマッピングして直交復調し、ビットデインターリーバ165に供給して、処理は、ステップS112に進む。
 ステップS112では、ビットデインターリーバ165は、デマッパ164からのデータのデインターリーブ(ビットデインターリーブ)を行って、処理は、ステップS113に進む。
 すなわち、ステップS112では、ビットデインターリーバ165において、ブロックデインターリーバ54が、デマッパ164からのデータ(シンボル)を対象として、ブロックデインターリーブを行い、その結果得られるLDPC符号の符号ビットを、グループワイズデインターリーバ55に供給する。
 グループワイズデインターリーバ55は、ブロックデインターリーバ54からのLDPC符号を対象として、グループワイズデインターリーブを行い、その結果得られるLDPC符号(の尤度)を、LDPCデコーダ166に供給する。
 ステップS113では、LDPCデコーダ166が、グループワイズデインターリーバ55からのLDPC符号のLDPC復号を、図8のLDPCエンコーダ115がLDPC符号化に用いた検査行列Hを用いて行い、すなわち、例えば、検査行列Hから得られる変換検査行列を用いて行い、その結果得られるデータを、LDPC対象データの復号結果として、BCHデコーダ167に出力する。
 なお、図199でも、図9の場合と同様に、説明の便宜のため、ブロックデインターリーブを行うブロックデインターリーバ54と、グループワイズデインターリーブを行うグループワイズデインターリーバ55とを、別個に構成するようにしたが、ブロックデインターリーバ54とグループワイズデインターリーバ55とは、一体的に構成することができる。
 また、送信装置11において、グループワイズインターリーブを行わない場合には、受信装置12は、グループワイズデインターリーブを行うグループワイズデインターリーバ55を設けずに構成することができる。
 <LDPC復号>
 図198のLDPCデコーダ166で行われるLDPC復号について、さらに説明する。
 図198のLDPCデコーダ166では、上述したように、グループワイズデインターリーバ55からの、ブロックデインターリーブ、及び、グループワイズデインターリーブが行われ、かつ、パリティデインターリーブが行われていないLDPC符号のLDPC復号が、図8のLDPCエンコーダ115がLDPC符号化に用いたタイプB方式の検査行列Hに対して、パリティインターリーブに相当する列置換を少なくとも行って得られる変換検査行列や、タイプA方式の検査行列(図27)に行置換を行って得られる変換検査行列(図29)を用いて行われる。
 ここで、LDPC復号を、変換検査行列を用いて行うことで、回路規模を抑制しつつ、動作周波数を十分実現可能な範囲に抑えることが可能となるLDPC復号が先に提案されている(例えば、特許第4224777号を参照)。
 そこで、まず、図201ないし図204を参照して、先に提案されている、変換検査行列を用いたLDPC復号について説明する。
 図201は、符号長Nが90で、符号化率が2/3のLDPC符号の検査行列Hの例を示す図である。
 なお、図201では(後述する図202及び図203においても同様)、0を、ピリオド(.)で表現している。
 図201の検査行列Hでは、パリティ行列が階段構造になっている。
 図202は、図201の検査行列Hに、式(11)の行置換と、式(12)の列置換を施して得られる検査行列H'を示す図である。
 行置換:6s+t+1行目→5t+s+1行目
                     ・・・(11)
 列置換:6x+y+61列目→5y+x+61列目
                     ・・・(12)
 但し、式(11)及び(12)において、s,t,x,yは、それぞれ、0≦s<5,0≦t<6,0≦x<5,0≦t<6の範囲の整数である。
 式(11)の行置換によれば、6で割って余りが1になる1,7,13,19,25行目を、それぞれ、1,2,3,4,5行目に、6で割って余りが2になる2,8,14,20,26行目を、それぞれ、6,7,8,9,10行目に、という具合に置換が行われる。
 また、式(12)の列置換によれば、61列目以降(パリティ行列)に対して、6で割って余りが1になる61,67,73,79,85列目を、それぞれ、61,62,63,64,65列目に、6で割って余りが2になる62,68,74,80,86列目を、それぞれ、66,67,68,69,70列目に、という具合に置換が行われる。
 このようにして、図201の検査行列Hに対して、行と列の置換を行って得られた行列(matrix)が、図202の検査行列H'である。
 ここで、検査行列Hの行置換を行っても、LDPC符号の符号ビットの並びには影響しない。
 また、式(12)の列置換は、上述の、K+qx+y+1番目の符号ビットを、K+Py+x+1番目の符号ビットの位置にインターリーブするパリティインターリーブの、情報長Kを60と、ユニットサイズPを5と、パリティ長M(ここでは、30)の約数q(=M/P)を6と、それぞれしたときのパリティインターリーブに相当する。
 したがって、図202の検査行列H'は、図201の検査行列(以下、適宜、元の検査行列という)Hの、K+qx+y+1番目の列を、K+Py+x+1番目の列に置換する列置換を、少なくとも行って得られる変換検査行列である。
 図202の変換検査行列H'に対して、図201の元の検査行列HのLDPC符号に、式(12)と同一の置換を行ったものを乗じると、0ベクトルが出力される。すなわち、元の検査行列HのLDPC符号(1符号語)としての行ベクトルcに、式(12)の列置換を施して得られる行ベクトルをc'と表すこととすると、検査行列の性質から、HcTは、0ベクトルとなるから、H'c'Tも、当然、0ベクトルとなる。
 以上から、図202の変換検査行列H'は、元の検査行列HのLDPC符号cに、式(12)の列置換を行って得られるLDPC符号c'の検査行列になっている。
 したがって、元の検査行列HのLDPC符号cに、式(12)の列置換を行い、その列置換後のLDPC符号c'を、図202の変換検査行列H'を用いて復号(LDPC復号)し、その復号結果に、式(12)の列置換の逆置換を施すことで、元の検査行列HのLDPC符号を、その検査行列Hを用いて復号する場合と同様の復号結果を得ることができる。
 図203は、5×5の行列の単位に間隔を空けた、図202の変換検査行列H'を示す図である。
 図203においては、変換検査行列H'は、ユニットサイズPである5×5(=P×P)の単位行列、その単位行列の1のうち1個以上が0になった行列(以下、適宜、準単位行列という)、単位行列または準単位行列をサイクリックシフト(cyclic shift)した行列(以下、適宜、シフト行列という)、単位行列、準単位行列、またはシフト行列のうちの2以上の和(以下、適宜、和行列という)、5×5の0行列の組合わせで表されている。
 図203の変換検査行列H'は、5×5の単位行列、準単位行列、シフト行列、和行列、0行列で構成されているということができる。そこで、変換検査行列H'を構成する、これらの5×5の行列(単位行列、準単位行列、シフト行列、和行列、0行列)を、以下、適宜、構成行列という。
 P×Pの構成行列で表される検査行列のLDPC符号の復号には、チェックノード演算、及びバリアブルノード演算を、P個同時に行うアーキテクチャ(architecture)を用いることができる。
 図204は、そのような復号を行う復号装置の構成例を示すブロック図である。
 すなわち、図204は、図201の元の検査行列Hに対して、少なくとも、式(12)の列置換を行って得られる図203の変換検査行列H'を用いて、LDPC符号の復号を行う復号装置の構成例を示している。
 図204の復号装置は、6つのFIFO3001ないし3006からなる枝データ格納用メモリ300、FIFO3001ないし3006を選択するセレクタ301、チェックノード計算部302、2つのサイクリックシフト回路303及び308、18個のFIFO3041ないし30418からなる枝データ格納用メモリ304、FIFO3041ないし30418を選択するセレクタ305、受信データを格納する受信データ用メモリ306、バリアブルノード計算部307、復号語計算部309、受信データ並べ替え部310、復号データ並べ替え部311からなる。
 まず、枝データ格納用メモリ300と304へのデータの格納方法について説明する。
 枝データ格納用メモリ300は、図203の変換検査行列H'の行数30を構成行列の行数(ユニットサイズP)5で除算した数である6つのFIFO3001ないし3006から構成されている。FIFO300y(y=1,2,・・・,6)は、複数の段数の記憶領域からなり、各段の記憶領域については、構成行列の行数及び列数(ユニットサイズP)である5つの枝に対応するメッセージを同時に読み出すこと、及び、書き込むことができるようになっている。また、FIFO300yの記憶領域の段数は、図203の変換検査行列の行方向の1の数(ハミング重み)の最大数である9になっている。
 FIFO3001には、図203の変換検査行列H'の第1行目から第5行目までの1の位置に対応するデータ(バリアブルノードからのメッセージvi)が、各行共に横方向に詰めた形に(0を無視した形で)格納される。すなわち、第j行第i列を、(j,i)と表すこととすると、FIFO3001の第1段の記憶領域には、変換検査行列H'の(1,1)から(5,5)の5×5の単位行列の1の位置に対応するデータが格納される。第2段の記憶領域には、変換検査行列H'の(1,21)から(5,25)のシフト行列(5×5の単位行列を右方向に3つだけサイクリックシフトしたシフト行列)の1の位置に対応するデータが格納される。第3から第8段の記憶領域も同様に、変換検査行列H'と対応付けてデータが格納される。そして、第9段の記憶領域には、変換検査行列H'の(1,86)から(5,90)のシフト行列(5×5の単位行列のうちの1行目の1を0に置き換えて1つだけ左にサイクリックシフトしたシフト行列)の1の位置に対応するデータが格納される。
 FIFO3002には、図203の変換検査行列H'の第6行目から第10行目までの1の位置に対応するデータが格納される。すなわち、FIFO3002の第1段の記憶領域には、変換検査行列H'の(6,1)から(10,5)の和行列(5×5の単位行列を右に1つだけサイクリックシフトした第1のシフト行列と、右に2つだけサイクリックシフトした第2のシフト行列の和である和行列)を構成する第1のシフト行列の1の位置に対応するデータが格納される。また、第2段の記憶領域には、変換検査行列H'の(6,1)から(10,5)の和行列を構成する第2のシフト行列の1の位置に対応するデータが格納される。
 すなわち、重みが2以上の構成行列については、その構成行列を、重みが1であるP×Pの単位行列、単位行列の要素の1のうち1個以上が0になった準単位行列、又は単位行列もしくは準単位行列をサイクリックシフトしたシフト行列のうちの複数の和の形で表現したときの、その重みが1の単位行列、準単位行列、又はシフト行列の1の位置に対応するデータ(単位行列、準単位行列、又はシフト行列に属する枝に対応するメッセージ)は、同一アドレス(FIFO3001ないし3006のうちの同一のFIFO)に格納される。
 以下、第3から第9段の記憶領域についても、変換検査行列H'に対応付けてデータが格納される。
 FIFO3003ないし3006も同様に変換検査行列H'に対応付けてデータを格納する。
 枝データ格納用メモリ304は、変換検査行列H'の列数90を、構成行列の列数(ユニットサイズP)である5で割った18個のFIFO3041ないし30418から構成されている。FIFO304x(x=1,2,・・・,18)は、複数の段数の記憶領域からなり、各段の記憶領域については、構成行列の行数及び列数(ユニットサイズP)である5つの枝に対応するメッセージを同時に読み出すこと、及び、書き込むことができるようになっている。
 FIFO3041には、図203の変換検査行列H'の第1列目から第5列目までの1の位置に対応するデータ(チェックノードからのメッセージuj)が、各列共に縦方向に詰めた形に(0を無視した形で)格納される。すなわち、FIFO3041の第1段の記憶領域には、変換検査行列H'の(1,1)から(5,5)の5×5の単位行列の1の位置に対応するデータが格納される。第2段の記憶領域には、変換検査行列H'の(6,1)から(10,5)の和行列(5×5の単位行列を右に1つだけサイクリックシフトした第1のシフト行列と、右に2つだけサイクリックシフトした第2のシフト行列との和である和行列)を構成する第1のシフト行列の1の位置に対応するデータが格納される。また、第3段の記憶領域には、変換検査行列H'の(6,1)から(10,5)の和行列を構成する第2のシフト行列の1の位置に対応するデータが格納される。
 すなわち、重みが2以上の構成行列については、その構成行列を、重みが1であるP×Pの単位行列、単位行列の要素の1のうち1個以上が0になった準単位行列、又は単位行列もしくは準単位行列をサイクリックシフトしたシフト行列のうちの複数の和の形で表現したときの、その重みが1の単位行列、準単位行列、又はシフト行列の1の位置に対応するデータ(単位行列、準単位行列、又はシフト行列に属する枝に対応するメッセージ)は、同一アドレス(FIFO3041ないし30418のうちの同一のFIFO)に格納される。
 以下、第4及び第5段の記憶領域についても、変換検査行列H'に対応付けて、データが格納される。このFIFO3041の記憶領域の段数は、変換検査行列H'の第1列から第5列における行方向の1の数(ハミング重み)の最大数である5になっている。
 FIFO3042と3043も同様に変換検査行列H'に対応付けてデータを格納し、それぞれの長さ(段数)は、5である。FIFO3044ないし30412も同様に、変換検査行列H'に対応付けてデータを格納し、それぞれの長さは3である。FIFO30413ないし30418も同様に、変換検査行列H'に対応付けてデータを格納し、それぞれの長さは2である。
 次に、図204の復号装置の動作について説明する。
 枝データ格納用メモリ300は、6つのFIFO3001ないし3006からなり、前段のサイクリックシフト回路308から供給される5つのメッセージD311が、図203の変換検査行列H'のどの行に属するかの情報(Matrixデータ)D312に従って、データを格納するFIFOを、FIFO3001ないし3006の中から選び、選んだFIFOに5つのメッセージD311をまとめて順番に格納していく。また、枝データ格納用メモリ300は、データを読み出す際には、FIFO3001から5つのメッセージD3001を順番に読み出し、次段のセレクタ301に供給する。枝データ格納用メモリ300は、FIFO3001からのメッセージの読み出しの終了後、FIFO3002ないし3006からも、順番に、メッセージを読み出し、セレクタ301に供給する。
 セレクタ301は、セレクト信号D301に従って、FIFO3001ないし3006のうちの、現在データが読み出されているFIFOからの5つのメッセージを選択し、メッセージD302として、チェックノード計算部302に供給する。
 チェックノード計算部302は、5つのチェックノード計算器3021ないし3025からなり、セレクタ301を通して供給されるメッセージD302(D3021ないしD3025)(式(7)のメッセージvi)を用いて、式(7)に従ってチェックノード演算を行い、そのチェックノード演算の結果得られる5つのメッセージD303(D3031ないしD3035)(式(7)のメッセージuj)をサイクリックシフト回路303に供給する。
 サイクリックシフト回路303は、チェックノード計算部302で求められた5つのメッセージD3031ないしD3035を、対応する枝が変換検査行列H'において元となる単位行列(又は準単位行列)を幾つサイクリックシフトしたものであるかの情報(Matrixデータ)D305を元にサイクリックシフトし、その結果をメッセージD304として、枝データ格納用メモリ304に供給する。
 枝データ格納用メモリ304は、18個のFIFO3041ないし30418からなり、前段のサイクリックシフト回路303から供給される5つのメッセージD304が変換検査行列H'のどの行に属するかの情報D305に従って、データを格納するFIFOを、FIFO3041ないし30418の中から選び、選んだFIFOに5つのメッセージD304をまとめて順番に格納していく。また、枝データ格納用メモリ304は、データを読み出す際には、FIFO3041から5つのメッセージD3061を順番に読み出し、次段のセレクタ305に供給する。枝データ格納用メモリ304は、FIFO3041からのデータの読み出しの終了後、FIFO3042ないし30418からも、順番に、メッセージを読み出し、セレクタ305に供給する。
 セレクタ305は、セレクト信号D307に従って、FIFO3041ないし30418のうちの、現在データが読み出されているFIFOからの5つのメッセージを選択し、メッセージD308として、バリアブルノード計算部307と復号語計算部309に供給する。
 一方、受信データ並べ替え部310は、通信路13を通して受信した、図201の検査行列Hに対応するLDPC符号D313を、式(12)の列置換を行うことにより並べ替え、受信データD314として、受信データ用メモリ306に供給する。受信データ用メモリ306は、受信データ並べ替え部310から供給される受信データD314から、受信LLR(対数尤度比)を計算して記憶し、その受信LLRを5個ずつまとめて受信値D309として、バリアブルノード計算部307と復号語計算部309に供給する。
 バリアブルノード計算部307は、5つのバリアブルノード計算器3071ないし3075からなり、セレクタ305を通して供給されるメッセージD308(D3081ないしD3085)(式(1)のメッセージuj)と、受信データ用メモリ306から供給される5つの受信値D309(式(1)の受信値u0i)を用いて、式(1)に従ってバリアブルノード演算を行い、その演算の結果得られるメッセージD310(D3101ないしD3105)(式(1)のメッセージvi)を、サイクリックシフト回路308に供給する。
 サイクリックシフト回路308は、バリアブルノード計算部307で計算されたメッセージD3101ないしD3105を、対応する枝が変換検査行列H'において元となる単位行列(又は準単位行列)を幾つサイクリックシフトしたものであるかの情報を元にサイクリックシフトし、その結果をメッセージD311として、枝データ格納用メモリ300に供給する。
 以上の動作を1巡することで、LDPC符号の1回の復号(バリアブルノード演算及びチェックノード演算)を行うことができる。図204の復号装置は、所定の回数だけLDPC符号を復号した後、復号語計算部309及び復号データ並べ替え部311において、最終的な復号結果を求めて出力する。
 すなわち、復号語計算部309は、5つの復号語計算器3091ないし3095からなり、セレクタ305が出力する5つのメッセージD308(D3081ないしD3085)(式(5)のメッセージuj)と、受信データ用メモリ306から供給される5つの受信値D309(式(5)の受信値u0i)を用い、複数回の復号の最終段として、式(5)に基づいて、復号結果(復号語)を計算して、その結果得られる復号データD315を、復号データ並べ替え部311に供給する。
 復号データ並べ替え部311は、復号語計算部309から供給される復号データD315を対象に、式(12)の列置換の逆置換を行うことにより、その順序を並べ替え、最終的な復号結果D316として出力する。
 以上のように、検査行列(元の検査行列)に対して、行置換と列置換のうちの一方又は両方を施し、P×Pの単位行列、その要素の1のうち1個以上が0になった準単位行列、単位行列もしくは準単位行列をサイクリックシフトしたシフト行列、単位行列、準単位行列、もしくはシフト行列の複数の和である和行列、P×Pの0行列の組合せ、つまり、構成行列の組み合わせで表すことができる検査行列(変換検査行列)に変換することで、LDPC符号の復号を、チェックノード演算とバリアブルノード演算を、検査行列の行数や列数より小さい数のP個同時に行うアーキテクチャを採用することが可能となる。ノード演算(チェックノード演算とバリアブルノード演算)を、検査行列の行数や列数より小さい数のP個同時に行うアーキテクチャを採用する場合、ノード演算を、検査行列の行数や列数に等しい数だけ同時に行う場合に比較して、動作周波数を実現可能な範囲に抑えて、多数の繰り返し復号を行うことができる。
 図198の受信装置12を構成するLDPCデコーダ166は、例えば、図204の復号装置と同様に、チェックノード演算とバリアブルノード演算をP個同時に行うことで、LDPC復号を行うようになっている。
 すなわち、いま、説明を簡単にするために、図8の送信装置11を構成するLDPCエンコーダ115が出力するLDPC符号の検査行列が、例えば、図201に示した、パリティ行列が階段構造になっている検査行列Hであるとすると、送信装置11のパリティインターリーバ23では、K+qx+y+1番目の符号ビットを、K+Py+x+1番目の符号ビットの位置にインターリーブするパリティインターリーブが、情報長Kを60に、ユニットサイズPを5に、パリティ長Mの約数q(=M/P)を6に、それぞれ設定して行われる。
 このパリティインターリーブは、上述したように、式(12)の列置換に相当するから、LDPCデコーダ166では、式(12)の列置換を行う必要がない。
 このため、図198の受信装置12では、上述したように、グループワイズデインターリーバ55から、LDPCデコーダ166に対して、パリティデインターリーブが行われていないLDPC符号、つまり、式(12)の列置換が行われた状態のLDPC符号が供給され、LDPCデコーダ166では、式(12)の列置換を行わないことを除けば、図204の復号装置と同様の処理が行われる。
 すなわち、図205は、図198のLDPCデコーダ166の構成例を示す図である。
 図205において、LDPCデコーダ166は、図204の受信データ並べ替え部310が設けられていないことを除けば、図204の復号装置と同様に構成されており、式(12)の列置換が行われないことを除いて、図204の復号装置と同様の処理を行うため、その説明は省略する。
 以上のように、LDPCデコーダ166は、受信データ並べ替え部310を設けずに構成することができるので、図204の復号装置よりも、規模を削減することができる。
 なお、図201ないし図205では、説明を簡単にするために、LDPC符号の符号長Nを90と、情報長Kを60と、ユニットサイズ(構成行列の行数及び列数)Pを5と、パリティ長Mの約数q(=M/P)を6と、それぞれしたが、符号長N、情報長K、ユニットサイズP、及び約数q(=M/P)のそれぞれは、上述した値に限定されるものではない。
 すなわち、図8の送信装置11において、LDPCエンコーダ115が出力するのは、例えば、符号長Nを64800や、16200、69120等と、情報長KをN-Pq(=N-M)と、ユニットサイズPを360と、約数qをM/Pと、それぞれするLDPC符号であるが、図205のLDPCデコーダ166は、そのようなLDPC符号を対象として、チェックノード演算とバリアブルノード演算をP個同時に行うことで、LDPC復号を行う場合に適用可能である。
 また、LDPCデコーダ166でのLDPC符号の復号後、その復号結果のパリティの部分が不要であり、復号結果の情報ビットだけを出力する場合には、復号データ並べ替え部311なしで、LDPCデコーダ166を構成することができる。
 <ブロックデインターリーバ54の構成例>
 図206は、図199のブロックデインターリーバ54で行われるブロックデインターリーブを説明する図である。
 ブロックデインターリーブでは、図117で説明したブロックインターリーバ25のブロックインターリーブと逆の処理が行われることで、LDPC符号の符号ビットの並びが元の並びに戻される(復元される)。
 すなわち、ブロックデインターリーブでは、例えば、ブロックインターリーブと同様に、シンボルのビット数mに等しいm個のカラムに対して、LDPC符号を書き込んで読み出すことにより、LDPC符号の符号ビットの並びが元の並びに戻される。
 但し、ブロックデインターリーブでは、LDPC符号の書き込みは、ブロックインターリーブにおいてLDPC符号を読み出す順に行われる。さらに、ブロックデインターリーブでは、LDPC符号の読み出しは、ブロックインターリーブにおいてLDPC符号を書き込む順に行われる。
 すなわち、LDPC符号のパート1については、図206に示すように、m個すべてのカラムの1行目から、ロウ方向に、mビットのシンボル単位になっているLDPC符号のパート1が書き込まれる。すなわち、mビットのシンボルとなっているLDPC符号の符号ビットが、ロウ方向に書き込まれる。
 mビット単位でのパート1の書き込みは、m個のカラムの下の行に向かって順次行われ、パート1の書き込みが終了すると、図206に示すように、カラムの1番目のカラムユニットの上から下方向に、パート1を読み出すことが、左から右方向のカラムに向かって行われる。
 右端のカラムまでの読み出しが終了すると、図206に示すように、左端のカラムに戻り、カラムの2番目のカラムユニットの上から下方向にパート1を読み出すことが、左から右方向のカラムに向かって行われ、以下、同様にして、1符号語のLDPC符号のパート1の読み出しが行われる。
 1符号語のLDPC符号のパート1の読み出しが終了すると、mビットのシンボル単位になっているパート2については、そのmビットのシンボル単位が、パート1の後に順次連結され、これにより、シンボル単位のLDPC符号は、元の1符号語のLDPC符号(ブロックインターリーブ前のLDCP符号)の符号ビットの並びに戻される。
 <ビットデインターリーバ165の他の構成例>
 図207は、図198のビットデインターリーバ165の他の構成例を示すブロック図である。
 なお、図中、図199の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 すなわち、図207のビットデインターリーバ165は、パリティデインターリーバ1011が新たに設けられている他は、図199の場合と同様に構成されている。
 図207では、ビットデインターリーバ165は、ブロックデインターリーバ54、グループワイズデインターリーバ55、及び、パリティデインターリーバ1011から構成され、デマッパ164からのLDPC符号の符号ビットのビットデインターリーブを行う。
 すなわち、ブロックデインターリーバ54は、デマッパ164からのLDPC符号を対象として、送信装置11のブロックインターリーバ25が行うブロックインターリーブに対応するブロックデインターリーブ(ブロックインターリーブの逆の処理)、すなわち、ブロックインターリーブによって入れ替えられた符号ビットの位置を元の位置に戻すブロックデインターリーブを行い、その結果得られるLDPC符号を、グループワイズデインターリーバ55に供給する。
 グループワイズデインターリーバ55は、ブロックデインターリーバ54からのLDPC符号を対象として、送信装置11のグループワイズインターリーバ24が行う並び替え処理としてのグループワイズインターリーブに対応するグループワイズデインターリーブを行う。
 グループワイズデインターリーブの結果得られるLDPC符号は、グループワイズデインターリーバ55からパリティデインターリーバ1011に供給される。
 パリティデインターリーバ1011は、グループワイズデインターリーバ55でのグループワイズデインターリーブ後の符号ビットを対象として、送信装置11のパリティインターリーバ23が行うパリティインターリーブに対応するパリティデインターリーブ(パリティインターリーブの逆の処理)、すなわち、パリティインターリーブによって並びが変更されたLDPC符号の符号ビットを、元の並びに戻すパリティデインターリーブを行う。
 パリティデインターリーブの結果得られるLDPC符号は、パリティデインターリーバ1011からLDPCデコーダ166に供給される。
 したがって、図207のビットデインターリーバ165では、LDPCデコーダ166には、ブロックデインターリーブ、グループワイズデインターリーブ、及び、パリティデインターリーブが行われたLDPC符号、すなわち、検査行列Hに従ったLDPC符号化によって得られるLDPC符号が供給される。
 LDPCデコーダ166は、ビットデインターリーバ165からのLDPC符号のLDPC復号を、送信装置11のLDPCエンコーダ115がLDPC符号化に用いた検査行列Hを用いて行う。
 すなわち、LDPCデコーダ166は、タイプB方式については、ビットデインターリーバ165からのLDPC符号のLDPC復号を、送信装置11のLDPCエンコーダ115がLDPC符号化に用いた(タイプB方式の)検査行列Hそのものを用いて、又は、その検査行列Hに対して、パリティインターリーブに相当する列置換を少なくとも行って得られる変換検査行列を用いて行う。また、LDPCデコーダ166は、タイプA方式については、ビットデインターリーバ165からのLDPC符号のLDPC復号を、送信装置11のLDPCエンコーダ115がLDPC符号化に用いた(タイプA方式の)検査行列(図27)に列置換を施して得られる検査行列(図28)、又は、LDPC符号化に用いた検査行列(図27)に行置換を施して得られる変換検査行列(図29)を用いて行う。
 ここで、図207では、ビットデインターリーバ165(のパリティデインターリーバ1011)からLDPCデコーダ166に対して、検査行列Hに従ったLDPC符号化によって得られるLDPC符号が供給されるため、そのLDPC符号のLDPC復号を、送信装置11のLDPCエンコーダ115がLDPC符号化に用いたタイプB方式の検査行列Hそのもの、又は、LDPC符号化に用いたタイプA方式の検査行列(図27)に列置換を施して得られる検査行列(図28)を用いて行う場合には、LDPCデコーダ166は、例えば、メッセージ(チェックノードメッセージ、バリバブルノードメッセージ)の演算を1個のノードずつ順次行うフルシリアルデコーディング(full serial decoding)方式によるLDPC復号を行う復号装置や、メッセージの演算をすべてのノードについて同時(並列)に行うフルパラレルデコーディング(full parallel decoding)方式によるLDPC復号を行う復号装置で構成することができる。
 また、LDPCデコーダ166において、LDPC符号のLDPC復号を、送信装置11のLDPCエンコーダ115がLDPC符号化に用いたタイプB方式の検査行列Hに対して、パリティインターリーブに相当する列置換を少なくとも行って得られる変換検査行列、又は、LDPC符号化に用いたタイプA方式の検査行列(図27)に行置換を施して得られる変換検査行列(図29)を用いて行う場合には、LDPCデコーダ166は、チェックノード演算、及びバリアブルノード演算を、P(又はPの1以外の約数)個同時に行うアーキテクチャの復号装置であって、変換検査行列を得るための列置換(パリティインターリーブ)と同様の列置換を、LDPC符号に施すことにより、そのLDPC符号の符号ビットを並び替える受信データ並べ替え部310を有する復号装置(図204)で構成することができる。
 なお、図207では、説明の便宜のため、ブロックデインターリーブを行うブロックデインターリーバ54、グループワイズデインターリーブを行うグループワイズデインターリーバ55、及び、パリティデインターリーブを行うパリティデインターリーバ1011それぞれを、別個に構成するようにしたが、ブロックデインターリーバ54、グループワイズデインターリーバ55、及び、パリティデインターリーバ1011の2以上は、送信装置11のパリティインターリーバ23、グループワイズインターリーバ24、及び、ブロックインターリーバ25と同様に、一体的に構成することができる。
 <受信システムの構成例>
 図208は、受信装置12を適用可能な受信システムの第1の構成例を示すブロック図である。
 図208において、受信システムは、取得部1101、伝送路復号処理部1102、及び、情報源復号処理部1103から構成される。
 取得部1101は、番組の画像データや音声データ等のLDPC対象データを、少なくともLDPC符号化することで得られるLDPC符号を含む信号を、例えば、地上ディジタル放送、衛星ディジタル放送、CATV網、インターネットその他のネットワーク等の、図示せぬ伝送路(通信路)を介して取得し、伝送路復号処理部1102に供給する。
 ここで、取得部1101が取得する信号が、例えば、放送局から、地上波や、衛星波、CATV(Cable Television)網等を介して放送されてくる場合には、取得部1101は、チューナやSTB(Set Top Box)等で構成される。また、取得部1101が取得する信号が、例えば、webサーバから、IPTV(Internet Protocol Television)のようにマルチキャストで送信されてくる場合には、取得部1101は、例えば、NIC(Network Interface Card)等のネットワークI/F(Inter face)で構成される。
 伝送路復号処理部1102は、受信装置12に相当する。伝送路復号処理部1102は、取得部1101が伝送路を介して取得した信号に対して、伝送路で生じる誤りを訂正する処理を少なくとも含む伝送路復号処理を施し、その結果得られる信号を、情報源復号処理部1103に供給する。
 すなわち、取得部1101が伝送路を介して取得した信号は、伝送路で生じる誤りを訂正するための誤り訂正符号化を、少なくとも行うことで得られた信号であり、伝送路復号処理部1102は、そのような信号に対して、例えば、誤り訂正処理等の伝送路復号処理を施す。
 ここで、誤り訂正符号化としては、例えば、LDPC符号化や、BCH符号化等がある。ここでは、誤り訂正符号化として、少なくとも、LDPC符号化が行われている。
 また、伝送路復号処理には、変調信号の復調等が含まれることがある。
 情報源復号処理部1103は、伝送路復号処理が施された信号に対して、圧縮された情報を元の情報に伸張する処理を少なくとも含む情報源復号処理を施す。
 すなわち、取得部1101が伝送路を介して取得した信号には、情報としての画像や音声等のデータ量を少なくするために、情報を圧縮する圧縮符号化が施されていることがあり、その場合、情報源復号処理部1103は、伝送路復号処理が施された信号に対して、圧縮された情報を元の情報に伸張する処理(伸張処理)等の情報源復号処理を施す。
 なお、取得部1101が伝送路を介して取得した信号に、圧縮符号化が施されていない場合には、情報源復号処理部1103では、圧縮された情報を元の情報に伸張する処理は行われない。
 ここで、伸張処理としては、例えば、MPEGデコード等がある。また、伝送路復号処理には、伸張処理の他、デスクランブル等が含まれることがある。
 以上のように構成される受信システムでは、取得部1101において、例えば、画像や音声等のデータに対して、MPEG符号化等の圧縮符号化が施され、さらに、LDPC符号化等の誤り訂正符号化が施された信号が、伝送路を介して取得され、伝送路復号処理部1102に供給される。
 伝送路復号処理部1102では、取得部1101からの信号に対して、例えば、受信装置12が行うのと同様の処理等が、伝送路復号処理として施され、その結果得られる信号が、情報源復号処理部1103に供給される。
 情報源復号処理部1103では、伝送路復号処理部1102からの信号に対して、MPEGデコード等の情報源復号処理が施され、その結果得られる画像、又は音声が出力される。
 以上のような図208の受信システムは、例えば、ディジタル放送としてのテレビジョン放送を受信するテレビチューナ等に適用することができる。
 なお、取得部1101、伝送路復号処理部1102、及び、情報源復号処理部1103は、それぞれ、1つの独立した装置(ハードウェア(IC(Integrated Circuit)等)、又はソフトウエアモジュール)として構成することが可能である。
 また、取得部1101、伝送路復号処理部1102、及び、情報源復号処理部1103については、取得部1101と伝送路復号処理部1102とのセットや、伝送路復号処理部1102と情報源復号処理部1103とのセット、取得部1101、伝送路復号処理部1102、及び、情報源復号処理部1103のセットを、1つの独立した装置として構成することが可能である。
 図209は、受信装置12を適用可能な受信システムの第2の構成例を示すブロック図である。
 なお、図中、図208の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図209の受信システムは、取得部1101、伝送路復号処理部1102、及び、情報源復号処理部1103を有する点で、図208の場合と共通し、出力部1111が新たに設けられている点で、図208の場合と相違する。
 出力部1111は、例えば、画像を表示する表示装置や、音声を出力するスピーカであり、情報源復号処理部1103から出力される信号としての画像や音声等を出力する。すなわち、出力部1111は、画像を表示し、あるいは、音声を出力する。
 以上のような図209の受信システムは、例えば、ディジタル放送としてのテレビジョン放送を受信するTV(テレビジョン受像機)や、ラジオ放送を受信するラジオ受信機等に適用することができる。
 なお、取得部1101において取得された信号に、圧縮符号化が施されていない場合には、伝送路復号処理部1102が出力する信号が、出力部1111に供給される。
 図210は、受信装置12を適用可能な受信システムの第3の構成例を示すブロック図である。
 なお、図中、図208の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図210の受信システムは、取得部1101、及び、伝送路復号処理部1102を有する点で、図208の場合と共通する。
 但し、図210の受信システムは、情報源復号処理部1103が設けられておらず、記録部1121が新たに設けられている点で、図208の場合と相違する。
 記録部1121は、伝送路復号処理部1102が出力する信号(例えば、MPEGのTSのTSパケット)を、光ディスクや、ハードディスク(磁気ディスク)、フラッシュメモリ等の記録(記憶)媒体に記録する(記憶させる)。
 以上のような図210の受信システムは、テレビジョン放送を録画するレコーダ等に適用することができる。
 なお、図210において、受信システムは、情報源復号処理部1103を設けて構成し、情報源復号処理部1103で、情報源復号処理が施された後の信号、すなわち、デコードによって得られる画像や音声を、記録部1121で記録することができる。
 <コンピュータの一実施の形態>
 次に、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 そこで、図211は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示している。
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク705やROM703に予め記録しておくことができる。
 あるいはまた、プログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリなどのリムーバブル記録媒体711に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体711は、いわゆるパッケージソフトウエアとして提供することができる。
 なお、プログラムは、上述したようなリムーバブル記録媒体711からコンピュータにインストールする他、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送し、コンピュータでは、そのようにして転送されてくるプログラムを、通信部708で受信し、内蔵するハードディスク705にインストールすることができる。
 コンピュータは、CPU(Central Processing Unit)702を内蔵している。CPU702には、バス701を介して、入出力インタフェース710が接続されており、CPU702は、入出力インタフェース710を介して、ユーザによって、キーボードや、マウス、マイク等で構成される入力部707が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)703に格納されているプログラムを実行する。あるいは、また、CPU702は、ハードディスク705に格納されているプログラム、衛星若しくはネットワークから転送され、通信部708で受信されてハードディスク705にインストールされたプログラム、又はドライブ709に装着されたリムーバブル記録媒体711から読み出されてハードディスク705にインストールされたプログラムを、RAM(Random Access Memory)704にロードして実行する。これにより、CPU702は、上述したフローチャートに従った処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU702は、その処理結果を、必要に応じて、例えば、入出力インタフェース710を介して、LCD(Liquid Crystal Display)やスピーカ等で構成される出力部706から出力、あるいは、通信部708から送信、さらには、ハードディスク705に記録等させる。
 ここで、本明細書において、コンピュータに各種の処理を行わせるためのプログラムを記述する処理ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むものである。
 また、プログラムは、1つのコンピュータにより処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、上述した新LDPC符号(の検査行列初期値テーブル)やGWパターンは、衛星回線や、地上波、ケーブル(有線回線)、その他の通信路13(図7)について用いることができる。さらに、新LDPC符号やGWパターンは、ディジタル放送以外のデータ伝送にも用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 送信装置, 12 受信装置, 23 パリティインターリーバ, 24 グループワイズインターリーバ, 25 ブロックインターリーバ, 54 ブロックデインターリーバ, 55 グループワイズデインターリーバ, 111 モードアダプテーション/マルチプレクサ, 112 パダー, 113 BBスクランブラ, 114 BCHエンコーダ, 115 LDPCエンコーダ, 116 ビットインターリーバ, 117 マッパ, 118 時間インターリーバ, 119 SISO/MISOエンコーダ, 120 周波数インターリーバ, 121 BCHエンコーダ, 122 LDPCエンコーダ, 123 マッパ, 124 周波数インターリーバ, 131 フレームビルダ/リソースアロケーション部 132 OFDM生成部, 151 OFDM処理部, 152 フレーム管理部, 153 周波数デインターリーバ, 154 デマッパ, 155 LDPCデコーダ, 156 BCHデコーダ, 161 周波数デインターリーバ, 162 SISO/MISOデコーダ, 163 時間デインターリーバ, 164 デマッパ, 165 ビットデインターリーバ, 166 LDPCデコーダ, 167 BCHデコーダ, 168 BBデスクランブラ, 169 ヌル削除部, 170 デマルチプレクサ, 300 枝データ格納用メモリ, 301 セレクタ, 302 チェックノード計算部, 303 サイクリックシフト回路, 304 枝データ格納用メモリ, 305 セレクタ, 306 受信データ用メモリ, 307 バリアブルノード計算部, 308 サイクリックシフト回路, 309 復号語計算部, 310 受信データ並べ替え部, 311 復号データ並べ替え部, 601 符号化処理部, 602 記憶部, 611 符号化率設定部, 612 初期値テーブル読み出し部, 613 検査行列生成部, 614 情報ビット読み出し部, 615 符号化パリティ演算部, 616 制御部, 701 バス, 702 CPU, 703 ROM, 704 RAM, 705 ハードディスク, 706 出力部, 707 入力部, 708 通信部, 709 ドライブ, 710 入出力インタフェース, 711, リムーバブル記録媒体, 1001 逆入れ替え部, 1002 メモリ, 1011 パリティデインターリーバ, 1101 取得部, 1102 伝送路復号処理部, 1103 情報源復号処理部, 1111 出力部, 1121 記録部

Claims (14)

  1.  符号長Nが69120ビットであり、符号化率rが2/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     1617 1754 1768 2501 6874 12486 12872 16244 18612 19698 21649 30954 33221 33723 34495 37587 38542 41510 42268 52159 59780
     206 610 991 2665 4994 5681 12371 17343 25547 26291 26678 27791 27828 32437 33153 35429 39943 45246 46732 53342 60451
     119 682 963 3339 6794 7021 7295 8856 8942 10842 11318 14050 14474 27281 28637 29963 37861 42536 43865 48803 59969
     175 201 355 5418 7990 10567 10642 12987 16685 18463 21861 24307 25274 27515 39631 40166 43058 47429 55512 55519 59426
     117 839 1043 1960 6896 19146 24022 26586 29342 29906 33129 33647 33883 34113 34550 38720 40247 45651 51156 53053 56614
     135 236 257 7505 9412 12642 19752 20201 26010 28967 31146 37156 44685 45667 50066 51283 54365 55475 56501 58763 59121
     109 840 1573 5523 19968 23924 24644 27064 29410 31276 31526 32173 38175 43570 43722 46655 46660 48353 54025 57319 59818
     522 1236 1573 6563 11625 13846 17570 19547 22579 22584 29338 30497 33124 33152 35407 36364 37726 41426 53800 57130
     504 1330 1481 13809 15761 20050 26339 27418 29630 32073 33762 34354 36966 43315 47773 47998 48824 50535 53437 55345
     348 1244 1492 9626 9655 15638 22727 22971 28357 28841 31523 37543 41100 42372 48983 50354 51434 54574 55031 58193
     742 1223 1459 20477 21731 23163 23587 30829 31144 32186 32235 32593 34130 40829 42217 42294 42753 44058 49940 51993
     841 860 1534 5878 7083 7113 9658 10508 12871 12964 14023 21055 22680 23927 32701 35168 40986 42139 50708 55350
     657 1018 1690 6454 7645 7698 8657 9615 16462 18030 19850 19857 33265 33552 42208 44424 48965 52762 55439 58299
     14 511 1376 2586 6797 9409 9599 10784 13076 18509 27363 27667 30262 34043 37043 38143 40246 53811 58872 59250
     315 883 1487 2067 7537 8749 10785 11820 15702 20232 22850 23540 30247 41182 44884 50601 52140 55970 57879 58514
     256 1442 1534 2342 9734 10789 15334 15356 20334 20433 22923 23521 29391 30553 35406 35643 35701 37968 39541 58097
     260 1238 1557 14167 15271 18046 20588 23444 25820 26660 30619 31625 33258 38554 40401 46471 53589 54904 56455 60016
     591 885 1463 3411 14043 17083 17372 23029 23365 24691 25527 26389 28621 29999 40343 40359 40394 45685 46209 54887
     1119 1411 1664 7879 17732 27000 28506 32237 32445 34100 34926 36470 42848 43126 44117 48780 49519 49592 51901 56580
     147 1333 1560 6045 11526 14867 15647 19496 26626 27600 28044 30446 35920 37523 42907 42974 46452 52480 57061 60152
     304 591 680 5557 6948 13550 19689 19697 22417 23237 25813 31836 32736 36321 36493 36671 46756 53311 59230 59248
     586 777 1018 2393 2817 4057 8068 10632 12430 13193 16433 17344 24526 24902 27693 39301 39776 42300 45215 52149
     684 1425 1732 2436 4279 7375 8493 10023 14908 20703 25656 25757 27251 27316 33211 35741 38872 42908 55079 58753
     962 981 1773 2814 3799 6243 8163 12655 21226 31370 32506 35372 36697 47037 49095 55400 57506 58743 59678 60422
     6229 6484 8795 8981 13576 28622 35526 36922 37284 42155 43443 44080 44446 46649 50824 52987 59033
     2742 5176 10231 10336 16729 17273 18474 25875 28227 34891 39826 42595 48600 52542 53023 53372 57331
     3512 4163 4725 8375 8585 19795 22844 28615 28649 29481 41484 41657 53255 54222 54229 57258 57647
     3358 5239 9423 10858 15636 17937 20678 22427 31220 37069 38770 42079 47256 52442 55152 56964 59169
     2243 10090 12309 15437 19426 23065 24872 36192 36336 36949 41387 49915 50155 54338 54422 56561 57984
     である
     送信方法。
  2.  符号長Nが69120ビットであり、符号化率rが2/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     166, 161, 43, 77, 177, 54, 162, 185, 127, 62, 6, 64, 30, 12, 27, 89, 130, 116, 190, 28, 38, 135, 149, 164, 48, 173, 175, 71, 132, 68, 5, 111, 158, 24, 59, 26, 145, 118, 51, 37, 178, 69, 189, 163, 133, 98, 53, 29, 169, 188, 17, 180, 155, 73, 45, 22, 107, 104, 76, 143, 70, 88, 99, 124, 126, 34, 80, 10, 168, 66, 72, 123, 63, 140, 176, 49, 65, 50, 52, 122, 4, 181, 121, 57, 18, 101, 42, 179, 100, 157, 165, 106, 156, 95, 170, 174, 117, 109, 102, 186, 148, 3, 134, 96, 67, 150, 151, 153, 11, 83, 1, 105, 25, 144, 8, 108, 84, 78, 97, 141, 60, 16, 112, 7, 82, 93, 46, 137, 35, 103, 61, 113, 129, 20, 119, 92, 31, 154, 115, 56, 44, 90, 14, 131, 160, 2, 36, 21, 23, 110, 152, 187, 0, 184, 41, 183, 120, 146, 47, 114, 32, 81, 75, 39, 91, 136, 167, 172, 58, 147, 125, 86, 138, 94, 33, 79, 159, 87, 55, 171, 85, 182, 191, 9, 19, 74, 13, 142, 40, 139, 15, 128
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     1617 1754 1768 2501 6874 12486 12872 16244 18612 19698 21649 30954 33221 33723 34495 37587 38542 41510 42268 52159 59780
     206 610 991 2665 4994 5681 12371 17343 25547 26291 26678 27791 27828 32437 33153 35429 39943 45246 46732 53342 60451
     119 682 963 3339 6794 7021 7295 8856 8942 10842 11318 14050 14474 27281 28637 29963 37861 42536 43865 48803 59969
     175 201 355 5418 7990 10567 10642 12987 16685 18463 21861 24307 25274 27515 39631 40166 43058 47429 55512 55519 59426
     117 839 1043 1960 6896 19146 24022 26586 29342 29906 33129 33647 33883 34113 34550 38720 40247 45651 51156 53053 56614
     135 236 257 7505 9412 12642 19752 20201 26010 28967 31146 37156 44685 45667 50066 51283 54365 55475 56501 58763 59121
     109 840 1573 5523 19968 23924 24644 27064 29410 31276 31526 32173 38175 43570 43722 46655 46660 48353 54025 57319 59818
     522 1236 1573 6563 11625 13846 17570 19547 22579 22584 29338 30497 33124 33152 35407 36364 37726 41426 53800 57130
     504 1330 1481 13809 15761 20050 26339 27418 29630 32073 33762 34354 36966 43315 47773 47998 48824 50535 53437 55345
     348 1244 1492 9626 9655 15638 22727 22971 28357 28841 31523 37543 41100 42372 48983 50354 51434 54574 55031 58193
     742 1223 1459 20477 21731 23163 23587 30829 31144 32186 32235 32593 34130 40829 42217 42294 42753 44058 49940 51993
     841 860 1534 5878 7083 7113 9658 10508 12871 12964 14023 21055 22680 23927 32701 35168 40986 42139 50708 55350
     657 1018 1690 6454 7645 7698 8657 9615 16462 18030 19850 19857 33265 33552 42208 44424 48965 52762 55439 58299
     14 511 1376 2586 6797 9409 9599 10784 13076 18509 27363 27667 30262 34043 37043 38143 40246 53811 58872 59250
     315 883 1487 2067 7537 8749 10785 11820 15702 20232 22850 23540 30247 41182 44884 50601 52140 55970 57879 58514
     256 1442 1534 2342 9734 10789 15334 15356 20334 20433 22923 23521 29391 30553 35406 35643 35701 37968 39541 58097
     260 1238 1557 14167 15271 18046 20588 23444 25820 26660 30619 31625 33258 38554 40401 46471 53589 54904 56455 60016
     591 885 1463 3411 14043 17083 17372 23029 23365 24691 25527 26389 28621 29999 40343 40359 40394 45685 46209 54887
     1119 1411 1664 7879 17732 27000 28506 32237 32445 34100 34926 36470 42848 43126 44117 48780 49519 49592 51901 56580
     147 1333 1560 6045 11526 14867 15647 19496 26626 27600 28044 30446 35920 37523 42907 42974 46452 52480 57061 60152
     304 591 680 5557 6948 13550 19689 19697 22417 23237 25813 31836 32736 36321 36493 36671 46756 53311 59230 59248
     586 777 1018 2393 2817 4057 8068 10632 12430 13193 16433 17344 24526 24902 27693 39301 39776 42300 45215 52149
     684 1425 1732 2436 4279 7375 8493 10023 14908 20703 25656 25757 27251 27316 33211 35741 38872 42908 55079 58753
     962 981 1773 2814 3799 6243 8163 12655 21226 31370 32506 35372 36697 47037 49095 55400 57506 58743 59678 60422
     6229 6484 8795 8981 13576 28622 35526 36922 37284 42155 43443 44080 44446 46649 50824 52987 59033
     2742 5176 10231 10336 16729 17273 18474 25875 28227 34891 39826 42595 48600 52542 53023 53372 57331
     3512 4163 4725 8375 8585 19795 22844 28615 28649 29481 41484 41657 53255 54222 54229 57258 57647
     3358 5239 9423 10858 15636 17937 20678 22427 31220 37069 38770 42079 47256 52442 55152 56964 59169
     2243 10090 12309 15437 19426 23065 24872 36192 36336 36949 41387 49915 50155 54338 54422 56561 57984
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  3.  符号長Nが69120ビットであり、符号化率rが4/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     561 825 1718 4745 7515 13041 13466 18039 19065 21821 32596 32708 35323 36399 36450 41124 43036 43218 43363 44875 49948
     56 102 1779 2427 5381 8768 15336 26473 35717 38748 39066 45002 50720
     694 1150 1533 2177 5801 6610 7601 16657 18949 33472 47746 49581 50668
     90 1122 1472 2085 2593 4986 8200 9175 15502 44084 46057 48546 50487
     521 619 708 6915 8978 14211 17426 23058 23463 27440 29822 33443 42871
     449 912 1471 8058 9344 11928 20533 20600 20737 26557 26970 27616 33791
     355 700 1528 6478 9588 10790 20992 33122 34283 41295 43439 46249 47763
     997 1543 1679 5874 7973 7975 11113 28275 28812 29864 35070 36864 50676
     85 326 1392 4186 10855 11005 12913 19263 22984 31733 33787 37567 48173
     986 1144 1508 19864 28918 29117 33609 36452 47975 48432 48842 49274 51533
     437 1190 1413 3814 6695 17541 22060 25845 28431 37453 38912 44170 49231
     327 1171 1204 6952 11880 16469 25058 28956 31523 36770 40189 43422 46481
     123 605 619 8118 8455 19550 20529 21762 21950 28485 30946 34755 34765
     113 896 971 6400 27059 33383 34537 35827 38796 40582 42594 43098 48525
     162 854 1015 2938 10659 12085 13040 32772 33023 35878 49674 51060 51333
     100 452 1703 1932 4208 5127 12086 14549 16084 17890 20870 41364 48498
     1569 1633 1666 12957 18611 22499 38418 38719 42135 46815 48274 50947 51387
     119 691 1190 2457 3865 7468 12512 30782 31811 33508 36586 41789 47426
     867 1117 1666 4376 13263 13466 33524 37440 38136 39800 41454 41620 42510
     378 900 1754 16303 25369 27103 28360 30958 35316 44165 46682 47016 50004
     1321 1549 1570 16276 17284 19431 23482 23920 27386 27517 46253 48617 50118
     37 383 1418 15792 22551 28843 36532 36718 38805 39226 45671 47712 51769
     150 787 1441 17828 19396 21576 21805 24048 31868 32891 42486 43020 45492
     1095 1214 1744 2445 5773 10209 11526 29604 30121 36526 45786 47376 49366
     412 448 1281 11164 14501 15538 15773 23305 31960 32721 40744 45731 50269
     183 626 837 4491 12237 13705 15177 15973 21266 25374 41232 44147 50529
     618 1550 1594 5474 9260 16552 18122 26061 30420 30922 32661 34390 43236
     135 496 757 9327 15659 20738 24327 26688 29063 38993 46155 49532 50001
     64 126 1714 5561 8921 11300 12688 14454 16857 19585 20528 24107 27252
     528 687 1730 9735 11737 16396 19200 33712 34271 38241 42027 44471 45581
     69 646 1447 8603 19706 22153 22398 23840 24638 27254 29107 30368 41419
     673 845 1285 9100 11064 14804 15425 17357 27248 31223 32410 35444 48018
     124 1531 1677 3672 3673 3786 8886 9557 10003 11053 13053 22458 25413
     102 1154 1758 5721 6034 14567 17772 28670 33380 34284 35356 47480 48123
     48 351 760 2078 9797 22956 26120 34119 39658 41039 45237 47861 49022
     254 445 841 6835 18340 19021 20053 22874 32639 36679 42004 45696 49530
     16 802 903 6218 16206 22068 23049 28201 30377 33947 44358 44739 49303
     153 1542 1629 7992 29900 34931 36927 38651 39981 41085 41327 50185 51484
     525 1291 1765 9425 20271 31229 37444 38996 39145 41711 43188 45203 51255
     2 244 1648 12321 14991 17426 18456 20126 29915 32581 38880 39516 49013
     23 452 705 9414 11862 13764 18179 35458 37892 40471 46041 46494 48746
     509 1201 1328 8921 9867 10947 19476 22693 32636 34301 38356 39238 51797
     246 249 1390 12438 13266 24060 33628 37130 42923 43298 43709 43721 45413
     117 257 748 9419 9461 11350 12790 16724 33147 34168 34683 37884 42699
     619 646 740 7468 7604 8152 16296 19120 27614 27748 40170 40289 49366
     914 1360 1716 10817 17672 18919 26146 29631 40903 46716 49502 51576 51657
     68 702 1552 10431 10925 12856 24516 26440 30834 31179 32277 35019 44108
     588 880 1524 6641 9453 9653 13679 14488 20714 25865 42217 42637 48312
     6380 12240 12558 12816 21460 24206 26129 28555 41616 51767
     8889 16221 21629 23476 33954 40572 43494 44666 44885 49813
     16938 17727 17913 18898 21754 32515 35686 36920 39898 43560
     9170 11747 14681 22874 24537 24685 26989 28947 33592 34621
     2427 10241 29649 30522 37700 37789 41656 44020 49801 51268
     である
     送信方法。
  4.  符号長Nが69120ビットであり、符号化率rが4/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     191, 38, 101, 9, 62, 79, 127, 18, 51, 6, 95, 114, 35, 123, 31, 99, 133, 81, 136, 106, 5, 130, 159, 124, 146, 41, 110, 150, 185, 8, 158, 178, 119, 171, 121, 129, 164, 168, 111, 52, 177, 190, 85, 179, 142, 174, 46, 61, 176, 23, 163, 49, 28, 86, 2, 143, 120, 166, 13, 87, 27, 39, 115, 131, 92, 117, 187, 56, 11, 180, 118, 30, 149, 60, 71, 44, 103, 140, 48, 162, 125, 122, 126, 29, 153, 77, 72, 4, 7, 165, 25, 89, 26, 68, 20, 12, 141, 37, 139, 15, 36, 82, 21, 137, 80, 3, 57, 128, 42, 43, 47, 93, 147, 70, 50, 170, 54, 96, 17, 152, 24, 172, 10, 22, 45, 169, 83, 69, 134, 78, 64, 183, 76, 189, 184, 112, 109, 33, 88, 32, 105, 175, 94, 53, 1, 90, 66, 100, 19, 108, 104, 113, 58, 40, 144, 97, 138, 154, 148, 157, 67, 145, 102, 132, 173, 84, 167, 0, 98, 182, 156, 63, 135, 14, 181, 73, 75, 65, 161, 116, 186, 55, 34, 151, 91, 160, 107, 16, 188, 74, 155, 59
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     561 825 1718 4745 7515 13041 13466 18039 19065 21821 32596 32708 35323 36399 36450 41124 43036 43218 43363 44875 49948
     56 102 1779 2427 5381 8768 15336 26473 35717 38748 39066 45002 50720
     694 1150 1533 2177 5801 6610 7601 16657 18949 33472 47746 49581 50668
     90 1122 1472 2085 2593 4986 8200 9175 15502 44084 46057 48546 50487
     521 619 708 6915 8978 14211 17426 23058 23463 27440 29822 33443 42871
     449 912 1471 8058 9344 11928 20533 20600 20737 26557 26970 27616 33791
     355 700 1528 6478 9588 10790 20992 33122 34283 41295 43439 46249 47763
     997 1543 1679 5874 7973 7975 11113 28275 28812 29864 35070 36864 50676
     85 326 1392 4186 10855 11005 12913 19263 22984 31733 33787 37567 48173
     986 1144 1508 19864 28918 29117 33609 36452 47975 48432 48842 49274 51533
     437 1190 1413 3814 6695 17541 22060 25845 28431 37453 38912 44170 49231
     327 1171 1204 6952 11880 16469 25058 28956 31523 36770 40189 43422 46481
     123 605 619 8118 8455 19550 20529 21762 21950 28485 30946 34755 34765
     113 896 971 6400 27059 33383 34537 35827 38796 40582 42594 43098 48525
     162 854 1015 2938 10659 12085 13040 32772 33023 35878 49674 51060 51333
     100 452 1703 1932 4208 5127 12086 14549 16084 17890 20870 41364 48498
     1569 1633 1666 12957 18611 22499 38418 38719 42135 46815 48274 50947 51387
     119 691 1190 2457 3865 7468 12512 30782 31811 33508 36586 41789 47426
     867 1117 1666 4376 13263 13466 33524 37440 38136 39800 41454 41620 42510
     378 900 1754 16303 25369 27103 28360 30958 35316 44165 46682 47016 50004
     1321 1549 1570 16276 17284 19431 23482 23920 27386 27517 46253 48617 50118
     37 383 1418 15792 22551 28843 36532 36718 38805 39226 45671 47712 51769
     150 787 1441 17828 19396 21576 21805 24048 31868 32891 42486 43020 45492
     1095 1214 1744 2445 5773 10209 11526 29604 30121 36526 45786 47376 49366
     412 448 1281 11164 14501 15538 15773 23305 31960 32721 40744 45731 50269
     183 626 837 4491 12237 13705 15177 15973 21266 25374 41232 44147 50529
     618 1550 1594 5474 9260 16552 18122 26061 30420 30922 32661 34390 43236
     135 496 757 9327 15659 20738 24327 26688 29063 38993 46155 49532 50001
     64 126 1714 5561 8921 11300 12688 14454 16857 19585 20528 24107 27252
     528 687 1730 9735 11737 16396 19200 33712 34271 38241 42027 44471 45581
     69 646 1447 8603 19706 22153 22398 23840 24638 27254 29107 30368 41419
     673 845 1285 9100 11064 14804 15425 17357 27248 31223 32410 35444 48018
     124 1531 1677 3672 3673 3786 8886 9557 10003 11053 13053 22458 25413
     102 1154 1758 5721 6034 14567 17772 28670 33380 34284 35356 47480 48123
     48 351 760 2078 9797 22956 26120 34119 39658 41039 45237 47861 49022
     254 445 841 6835 18340 19021 20053 22874 32639 36679 42004 45696 49530
     16 802 903 6218 16206 22068 23049 28201 30377 33947 44358 44739 49303
     153 1542 1629 7992 29900 34931 36927 38651 39981 41085 41327 50185 51484
     525 1291 1765 9425 20271 31229 37444 38996 39145 41711 43188 45203 51255
     2 244 1648 12321 14991 17426 18456 20126 29915 32581 38880 39516 49013
     23 452 705 9414 11862 13764 18179 35458 37892 40471 46041 46494 48746
     509 1201 1328 8921 9867 10947 19476 22693 32636 34301 38356 39238 51797
     246 249 1390 12438 13266 24060 33628 37130 42923 43298 43709 43721 45413
     117 257 748 9419 9461 11350 12790 16724 33147 34168 34683 37884 42699
     619 646 740 7468 7604 8152 16296 19120 27614 27748 40170 40289 49366
     914 1360 1716 10817 17672 18919 26146 29631 40903 46716 49502 51576 51657
     68 702 1552 10431 10925 12856 24516 26440 30834 31179 32277 35019 44108
     588 880 1524 6641 9453 9653 13679 14488 20714 25865 42217 42637 48312
     6380 12240 12558 12816 21460 24206 26129 28555 41616 51767
     8889 16221 21629 23476 33954 40572 43494 44666 44885 49813
     16938 17727 17913 18898 21754 32515 35686 36920 39898 43560
     9170 11747 14681 22874 24537 24685 26989 28947 33592 34621
     2427 10241 29649 30522 37700 37789 41656 44020 49801 51268
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  5.  符号長Nが69120ビットであり、符号化率rが6/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     608 1394 3635 14404 15203 19848 22161 23175 26651 31945 41227
     481 570 11088 11673 11866 17145 17247 17564 21607 25992 31286
     1207 1257 1870 8472 8855 10511 15656 17064 22720 28352 30914
     1171 1585 6218 7621 10121 11374 13184 22714 27207 27959 38572
     244 548 2073 4937 7509 11840 12850 18762 25618 27902 37150
     15 1352 7060 7886 8151 10574 14172 15258 24838 30827 35337
     1009 1651 13300 13958 26240 29983 32340 40743 41553 42475 42873
     638 1405 5544 6797 10001 14934 24766 35758 40719 41787 42342
     1467 1481 3202 11324 14048 15217 17608 22544 26736 32073 33405
     1274 1343 3576 4166 8712 10756 21175 26866 37021 40341 42064
     1232 1590 4409 8705 13307 28481 30893 36031 36780 37697 39149
     189 1678 9943 10774 11765 25520 26133 27351 27353 40664 41534
     125 1421 5009 9365 12792 15933 16231 25975 27076 27997 32429
     1361 1764 5376 11071 14456 16324 20318 26168 28445 30392 34235
     1017 1303 3312 6738 7813 18149 25506 29032 36789 38742 43116
     463 967 10876 13874 14303 16789 21656 26555 38738 39195 40668
     630 1104 3029 3165 5157 12880 14175 16498 35121 38917 40944
     716 1054 10011 11739 16913 19396 20892 23370 24392 27614 38467
     1081 1238 2872 10259 13618 16943 17363 23570 29721 32411 38969
     775 1002 2978 9202 16618 22697 30716 31750 36517 37294 40454
     25 497 10687 13308 15302 17525 17539 21865 22279 24516 26992
     781 878 6426 8551 12328 21375 27626 28192 29731 35423 35606
     729 1734 3479 6850 14347 14776 21998 33617 34690 38597 38704
     122 1378 1660 7448 7659 11900 13039 13796 19908
     504 716 1551 5655 6245 8365 9825 16627 29100
     88 900 1057 2620 16729 17278 17444 26106 26587
     30 1697 1736 8718 11664 20885 27043 42569 42913
     293 634 1188 4005 5266 6205 26756 30207 37757
     254 755 1187 4631 13433 25055 28354 28583 30446
     316 1381 1522 3131 4340 27284 28246 28282 43174
     84 293 645 2148 7925 13104 25010 36836 39033
     982 1486 1660 4287 5335 18350 26913 30774 31280
     418 1028 1039 3334 4577 6553 7011 17259 31922
     1324 1361 1690 5991 7740 16880 18479 25713 31823
     735 1322 1727 8629 14655 15815 16762 23263 36859
     19 928 1561 11161 12894 14226 21331 41128 41883
     327 940 1004 13616 15894 31400 34106 34443 37957
     576 953 1226 2122 4900 5002 10248 25476 30787
     249 632 1240 5432 23019 29225 31719 36658 41360
     980 1154 1783 4351 10245 23347 27442 28328 38555
     581 863 1552 5057 7572 14544 20482 29482 31672
     4 502 1450 4883 5176 6824 10430 32680 39581
     81 761 1558 2269 5391 13213 24184 25523 39429
     1085 1163 1244 7694 9125 17387 22223 26343 37933
     204 1127 1483 18302 19939 20576 31599 32619 42911
     345 387 591 8727 18080 20628 32251 34562 42821
     957 1126 1133 4099 12272 15595 20906 23606 34564
     409 1310 1335 2761 11952 26853 27941 29262 31647
     329 818 1527 3890 5238 8742 15586 28739 43015
     231 1158 1677 4314 15937 17526 18391 22963 39232
     34 275 526 2975 4742 16109 17346 29145 37673
     497 735 1261 7468 8769 17342 19763 32646 33497
     879 1233 1633 11612 22941 23723 31969 35571 39510
     886 954 1355 5532 8283 26965 29267 30820 40402
     356 1199 1452 8833 14845 21722 23840 26539 27970
     553 1570 1732 8249 16820 23181 23234 30754 40399
     457 1304 1698 2774 11357 32906 34484 38700 41799
     456 579 1155 23844 27261 29172 30980 35000 40984
     301 1290 1782 6798 9735 23655 31040 35554 36366
     228 483 561 12346 16698 32688 34518 38648 41677
     35 184 997 4915 7077 9878 16772 26263 27270
     181 193 1255 7548 17103 34511 36590 38107 42065
     697 1024 1541 2164 15638 20061 32499 32667 32732
     654 968 1632 3215 4901 6286 12414 13963 29636
     89 150 450 5771 10863 29809 36886 37914 42983
     517 1046 1153 5458 18093 25579 31084 37779 42050
     345 914 1372 4548 6720 13678 13755 15422 41938
     301 518 1107 3603 6076 9265 19580 41645 42621
     155 1013 1441 10166 10545 22042 30084 33026 34505
     899 1308 1766 22228 24520 24589 30833 32126 37147
     177 230 349 6309 9642 25713 30455 34964 40524
     802 1364 1703 3573 17317 20364 22849 24265 24925
     3952 10609 11011 16296 31430 39995 40207 41606 42424
     16548 19896 22579 23043 23126 24141 34331 34959 37990
     12197 15244 22990 23110 25507 30011 37681 38902 39432
     2292 11871 15562 22304 33059 35126 39158 41206 41866
     3497 7847 11510 16212 19408 26780 27967 33953 34451
     である
     送信方法。
  6.  符号長Nが69120ビットであり、符号化率rが6/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     100, 152, 16, 39, 26, 58, 60, 6, 126, 7, 59, 75, 62, 47, 27, 113, 41, 115, 169, 30, 95, 189, 138, 136, 70, 140, 149, 187, 177, 141, 125, 171, 178, 134, 15, 154, 131, 183, 46, 35, 44, 11, 51, 170, 112, 20, 161, 159, 101, 52, 181, 71, 28, 128, 3, 167, 156, 123, 18, 139, 102, 13, 19, 37, 90, 105, 92, 135, 185, 121, 50, 158, 29, 104, 155, 12, 184, 93, 166, 14, 133, 146, 24, 191, 188, 116, 109, 89, 65, 45, 25, 21, 1, 76, 151, 180, 33, 124, 91, 107, 119, 5, 132, 118, 111, 96, 143, 150, 173, 108, 2, 122, 22, 148, 130, 142, 147, 67, 97, 103, 36, 63, 40, 117, 55, 68, 137, 144, 94, 83, 56, 79, 175, 0, 182, 114, 85, 86, 9, 10, 74, 106, 17, 190, 4, 34, 84, 98, 38, 88, 64, 78, 145, 77, 163, 42, 120, 69, 164, 48, 23, 129, 160, 81, 127, 82, 53, 72, 179, 31, 66, 32, 168, 110, 73, 186, 157, 172, 49, 165, 176, 80, 61, 174, 153, 162, 54, 99, 57, 87, 8, 43
     の並びにインターリーブし、
     前記検査行列は、
      所定値M1と、前記LDPC符号の情報長K=N×rとで表されるM1行K列の、前記検査行列の左上のA行列と、
      M1行M1列の、前記A行列の右に隣接する階段構造のB行列と、
      M1行N-K-M1列の、前記B行列の右に隣接するゼロ行列であるZ行列と、
      N-K-M1行K+M1列の、前記A行列及び前記B行列の下に隣接するC行列と、
      N-K-M1行N-K-M1列の、前記C行列の右に隣接する単位行列であるD行列と
     を含み、
     前記所定値M1は、1800であり、
     前記A行列及びC行列は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記A行列及びC行列の1の要素の位置を360列ごとに表すテーブルであって、
     608 1394 3635 14404 15203 19848 22161 23175 26651 31945 41227
     481 570 11088 11673 11866 17145 17247 17564 21607 25992 31286
     1207 1257 1870 8472 8855 10511 15656 17064 22720 28352 30914
     1171 1585 6218 7621 10121 11374 13184 22714 27207 27959 38572
     244 548 2073 4937 7509 11840 12850 18762 25618 27902 37150
     15 1352 7060 7886 8151 10574 14172 15258 24838 30827 35337
     1009 1651 13300 13958 26240 29983 32340 40743 41553 42475 42873
     638 1405 5544 6797 10001 14934 24766 35758 40719 41787 42342
     1467 1481 3202 11324 14048 15217 17608 22544 26736 32073 33405
     1274 1343 3576 4166 8712 10756 21175 26866 37021 40341 42064
     1232 1590 4409 8705 13307 28481 30893 36031 36780 37697 39149
     189 1678 9943 10774 11765 25520 26133 27351 27353 40664 41534
     125 1421 5009 9365 12792 15933 16231 25975 27076 27997 32429
     1361 1764 5376 11071 14456 16324 20318 26168 28445 30392 34235
     1017 1303 3312 6738 7813 18149 25506 29032 36789 38742 43116
     463 967 10876 13874 14303 16789 21656 26555 38738 39195 40668
     630 1104 3029 3165 5157 12880 14175 16498 35121 38917 40944
     716 1054 10011 11739 16913 19396 20892 23370 24392 27614 38467
     1081 1238 2872 10259 13618 16943 17363 23570 29721 32411 38969
     775 1002 2978 9202 16618 22697 30716 31750 36517 37294 40454
     25 497 10687 13308 15302 17525 17539 21865 22279 24516 26992
     781 878 6426 8551 12328 21375 27626 28192 29731 35423 35606
     729 1734 3479 6850 14347 14776 21998 33617 34690 38597 38704
     122 1378 1660 7448 7659 11900 13039 13796 19908
     504 716 1551 5655 6245 8365 9825 16627 29100
     88 900 1057 2620 16729 17278 17444 26106 26587
     30 1697 1736 8718 11664 20885 27043 42569 42913
     293 634 1188 4005 5266 6205 26756 30207 37757
     254 755 1187 4631 13433 25055 28354 28583 30446
     316 1381 1522 3131 4340 27284 28246 28282 43174
     84 293 645 2148 7925 13104 25010 36836 39033
     982 1486 1660 4287 5335 18350 26913 30774 31280
     418 1028 1039 3334 4577 6553 7011 17259 31922
     1324 1361 1690 5991 7740 16880 18479 25713 31823
     735 1322 1727 8629 14655 15815 16762 23263 36859
     19 928 1561 11161 12894 14226 21331 41128 41883
     327 940 1004 13616 15894 31400 34106 34443 37957
     576 953 1226 2122 4900 5002 10248 25476 30787
     249 632 1240 5432 23019 29225 31719 36658 41360
     980 1154 1783 4351 10245 23347 27442 28328 38555
     581 863 1552 5057 7572 14544 20482 29482 31672
     4 502 1450 4883 5176 6824 10430 32680 39581
     81 761 1558 2269 5391 13213 24184 25523 39429
     1085 1163 1244 7694 9125 17387 22223 26343 37933
     204 1127 1483 18302 19939 20576 31599 32619 42911
     345 387 591 8727 18080 20628 32251 34562 42821
     957 1126 1133 4099 12272 15595 20906 23606 34564
     409 1310 1335 2761 11952 26853 27941 29262 31647
     329 818 1527 3890 5238 8742 15586 28739 43015
     231 1158 1677 4314 15937 17526 18391 22963 39232
     34 275 526 2975 4742 16109 17346 29145 37673
     497 735 1261 7468 8769 17342 19763 32646 33497
     879 1233 1633 11612 22941 23723 31969 35571 39510
     886 954 1355 5532 8283 26965 29267 30820 40402
     356 1199 1452 8833 14845 21722 23840 26539 27970
     553 1570 1732 8249 16820 23181 23234 30754 40399
     457 1304 1698 2774 11357 32906 34484 38700 41799
     456 579 1155 23844 27261 29172 30980 35000 40984
     301 1290 1782 6798 9735 23655 31040 35554 36366
     228 483 561 12346 16698 32688 34518 38648 41677
     35 184 997 4915 7077 9878 16772 26263 27270
     181 193 1255 7548 17103 34511 36590 38107 42065
     697 1024 1541 2164 15638 20061 32499 32667 32732
     654 968 1632 3215 4901 6286 12414 13963 29636
     89 150 450 5771 10863 29809 36886 37914 42983
     517 1046 1153 5458 18093 25579 31084 37779 42050
     345 914 1372 4548 6720 13678 13755 15422 41938
     301 518 1107 3603 6076 9265 19580 41645 42621
     155 1013 1441 10166 10545 22042 30084 33026 34505
     899 1308 1766 22228 24520 24589 30833 32126 37147
     177 230 349 6309 9642 25713 30455 34964 40524
     802 1364 1703 3573 17317 20364 22849 24265 24925
     3952 10609 11011 16296 31430 39995 40207 41606 42424
     16548 19896 22579 23043 23126 24141 34331 34959 37990
     12197 15244 22990 23110 25507 30011 37681 38902 39432
     2292 11871 15562 22304 33059 35126 39158 41206 41866
     3497 7847 11510 16212 19408 26780 27967 33953 34451
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  7.  符号長Nが69120ビットであり、符号化率rが8/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     1850 4176 4190 7294 8168 8405 9258 9710 13440 16304 16600 18184 18834 19899 22513 25068 26659 27137 27232 29186 29667 30549 31428 33634
     2477 2543 5094 8081 9573 10269 11276 11439 13016 13327 16717 18042 19362 19721 20089 20425 20503 21396 24677 24722 28703 32486 32759 33630
     1930 2158 2315 2683 3818 4883 5252 5505 8760 9580 11867 13117 14566 15639 17273 18820 21069 24945 25667 26785 30678 31271 33003 33244
     1279 1491 2038 2347 2432 4336 4905 6588 7507 7666 8775 9172 10405 12249 12270 12373 12936 13046 13364 15130 17597 22855 27548 32895
     620 1897 3775 5552 6799 7621 10167 10172 10615 11367 12093 13241 15426 16623 19467 19792 22069 22370 24472 24594 25205 25954 27800 29422
     582 1618 4673 5809 6318 6883 8051 12335 12409 13176 14078 15206 17580 18624 18876 19079 20786 21177 25894 26395 27377 27757 30167 31971
     1157 2189 4160 4480 5055 8961 9171 9444 10533 11581 12904 14256 14620 15773 16232 17598 19756 21134 21443 22559 23258 25137 25555 28150
     987 1258 1269 2394 4859 5642 5705 6093 6408 7734 8804 10657 11946 16132 20267 25402 26505 26548 27060 29767 29780 31915 31966 33590
     1010 1363 1626 5283 6356 10961 12418 14332 14362 16288 16303 16592 17096 20115 20285 20478 21774 22165 22425 23198 25048 25596 31540 32841
     895 2743 2912 4971 8803 11183 14500 14617 14638 16776 17901 18622 20244 20845 22214 25676 26161 26281 29978 30392 30922 31542 32038 32443
     188 260 411 2823 5512 5645 10019 11856 12671 14273 14673 16091 16169 22333 22934 22945 23542 26503 27159 27279 28277 30114 31626 32722
     357 516 3530 4317 8587 9491 10348 11330 13446 14533 15423 17003 17217 19127 20088 20750 21767 22386 24021 27749 29008 29376 30329 32940
     2909 3036 4875 9967 10632 12069 12410 14004 14628 15605 15852 18231 18657 19705 20620 22241 29575 29656 31246 32190 32781 33489 33842 34492
     4242 5461 5577 7662 11130 13663 17240 17773 18339 19400 22905 24219 25464 25890 26359 27121 27318 27840 30800 32587 32924 33427 33940 34058
     421 2222 3457 5257 5600 10147 12754 17380 18854 20333 20345 20752 24578 25196 25638 25725 25822 27610 28006 28563 29632 29973 29991 34166
     41 207 1043 4650 5387 6826 7261 8687 9092 10775 11446 12596 16613 19463 20923 24155 24927 25384 26064 27377 28094 32578 32639 34115
     1050 5731 15820 16281 26130 29314
     5980 6161 14479 22181 22537 32924
     7828 9134 11297 17143 25449 29674
     8299 10457 14486 21548 22510 32039
     1527 7792 10424 19166 29302 29768
     5823 13974 21254 21506 25658 29491
     6285 9873 12846 14474 17005 29377
     1740 4929 8285 20994 32271 34522
     12862 16827 22427 23369 27051 30378
     4787 10372 10408 12091 20349 26162
     6659 22752 24697 28261 28917 32536
     6788 15367 21778 28916 30324 33927
     7181 12373 21912 24703 28680 34045
     2238 4945 14336 19270 29574 33459
     10283 15311 17440 24599 24867 28293
     324 5264 5375 6581 24348 30288
     3112 7656 23825
     21624 22318 22633
     5284 19790 22758
     2700 4039 12576
     17028 17520 19579
     11914 17834 33989
     2199 5502 7184
     22 20701 26497
     5551 27014 32876
     4019 26547 28521
     7580 10016 33855
     4328 11674 34018
     8491 9956 10029
     6167 11267 24914
     5317 9049 29657
     20717 28724 33012
     16841 21647 31096
     11931 16278 20287
     9402 10557 11008
     11826 15349 34420
     14369 17031 20597
     19164 27947 29775
     15537 18796 33662
     5404 21027 26757
     6269 12671 24309
     8601 29048 29262
     10099 20323 21457
     15952 17074 30434
     7597 20987 33095
     11298 24182 29217
     12055 16250 16971
     5350 9354 31390
     8168 14168 18570
     5448 13141 32381
     3921 21113 28176
     8756 19895 27917
     9391 16617 25586
     3357 18527 34238
     2378 16840 28948
     7470 27466 32928
     8366 19376 30916
     3116 7267 18016
     15309 18445 21799
     4731 23773 34546
     260 4898 5180
     8897 22266 29587
     2539 23717 33142
     19233 28750 29724
     9937 15384 16599
     10234 17089 26776
     8869 9425 13658
     6197 24086 31929
     9237 20931 27785
     10403 13822 16734
     20038 21196 26868
     13170 27813 28875
     1110 20329 24508
     11844 22662 28987
     2891 2918 14512
     15707 27399 34135
     8687 20019 26178
     6847 8903 16307
     23737 23775 27776
     17388 27970 31983
     である
     送信方法。
  8.  符号長Nが69120ビットであり、符号化率rが8/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     21, 5, 2, 24, 12, 28, 52, 118, 129, 3, 122, 149, 105, 16, 136, 99, 133, 171, 84, 79, 59, 62, 155, 78, 134, 20, 1, 51, 22, 161, 173, 46, 172, 162, 55, 148, 70, 57, 121, 86, 131, 114, 31, 72, 104, 120, 164, 127, 83, 179, 187, 7, 108, 40, 73, 144, 48, 68, 60, 190, 135, 61, 116, 106, 19, 35, 143, 180, 102, 76, 182, 117, 93, 191, 165, 23, 80, 146, 153, 42, 53, 139, 124, 64, 167, 96, 138, 132, 158, 90, 110, 82, 39, 175, 170, 66, 145, 94, 119, 130, 98, 63, 87, 32, 160, 34, 151, 77, 95, 109, 56, 113, 147, 50, 38, 15, 156, 11, 169, 185, 183, 92, 186, 107, 10, 101, 33, 4, 150, 41, 81, 89, 166, 0, 30, 54, 168, 26, 140, 74, 100, 9, 111, 126, 43, 112, 25, 88, 44, 189, 37, 178, 141, 49, 13, 29, 8, 69, 154, 45, 97, 47, 36, 75, 137, 6, 115, 188, 85, 174, 17, 142, 18, 91, 163, 157, 177, 103, 125, 71, 14, 181, 65, 184, 176, 159, 128, 152, 58, 27, 123, 67
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     1850 4176 4190 7294 8168 8405 9258 9710 13440 16304 16600 18184 18834 19899 22513 25068 26659 27137 27232 29186 29667 30549 31428 33634
     2477 2543 5094 8081 9573 10269 11276 11439 13016 13327 16717 18042 19362 19721 20089 20425 20503 21396 24677 24722 28703 32486 32759 33630
     1930 2158 2315 2683 3818 4883 5252 5505 8760 9580 11867 13117 14566 15639 17273 18820 21069 24945 25667 26785 30678 31271 33003 33244
     1279 1491 2038 2347 2432 4336 4905 6588 7507 7666 8775 9172 10405 12249 12270 12373 12936 13046 13364 15130 17597 22855 27548 32895
     620 1897 3775 5552 6799 7621 10167 10172 10615 11367 12093 13241 15426 16623 19467 19792 22069 22370 24472 24594 25205 25954 27800 29422
     582 1618 4673 5809 6318 6883 8051 12335 12409 13176 14078 15206 17580 18624 18876 19079 20786 21177 25894 26395 27377 27757 30167 31971
     1157 2189 4160 4480 5055 8961 9171 9444 10533 11581 12904 14256 14620 15773 16232 17598 19756 21134 21443 22559 23258 25137 25555 28150
     987 1258 1269 2394 4859 5642 5705 6093 6408 7734 8804 10657 11946 16132 20267 25402 26505 26548 27060 29767 29780 31915 31966 33590
     1010 1363 1626 5283 6356 10961 12418 14332 14362 16288 16303 16592 17096 20115 20285 20478 21774 22165 22425 23198 25048 25596 31540 32841
     895 2743 2912 4971 8803 11183 14500 14617 14638 16776 17901 18622 20244 20845 22214 25676 26161 26281 29978 30392 30922 31542 32038 32443
     188 260 411 2823 5512 5645 10019 11856 12671 14273 14673 16091 16169 22333 22934 22945 23542 26503 27159 27279 28277 30114 31626 32722
     357 516 3530 4317 8587 9491 10348 11330 13446 14533 15423 17003 17217 19127 20088 20750 21767 22386 24021 27749 29008 29376 30329 32940
     2909 3036 4875 9967 10632 12069 12410 14004 14628 15605 15852 18231 18657 19705 20620 22241 29575 29656 31246 32190 32781 33489 33842 34492
     4242 5461 5577 7662 11130 13663 17240 17773 18339 19400 22905 24219 25464 25890 26359 27121 27318 27840 30800 32587 32924 33427 33940 34058
     421 2222 3457 5257 5600 10147 12754 17380 18854 20333 20345 20752 24578 25196 25638 25725 25822 27610 28006 28563 29632 29973 29991 34166
     41 207 1043 4650 5387 6826 7261 8687 9092 10775 11446 12596 16613 19463 20923 24155 24927 25384 26064 27377 28094 32578 32639 34115
     1050 5731 15820 16281 26130 29314
     5980 6161 14479 22181 22537 32924
     7828 9134 11297 17143 25449 29674
     8299 10457 14486 21548 22510 32039
     1527 7792 10424 19166 29302 29768
     5823 13974 21254 21506 25658 29491
     6285 9873 12846 14474 17005 29377
     1740 4929 8285 20994 32271 34522
     12862 16827 22427 23369 27051 30378
     4787 10372 10408 12091 20349 26162
     6659 22752 24697 28261 28917 32536
     6788 15367 21778 28916 30324 33927
     7181 12373 21912 24703 28680 34045
     2238 4945 14336 19270 29574 33459
     10283 15311 17440 24599 24867 28293
     324 5264 5375 6581 24348 30288
     3112 7656 23825
     21624 22318 22633
     5284 19790 22758
     2700 4039 12576
     17028 17520 19579
     11914 17834 33989
     2199 5502 7184
     22 20701 26497
     5551 27014 32876
     4019 26547 28521
     7580 10016 33855
     4328 11674 34018
     8491 9956 10029
     6167 11267 24914
     5317 9049 29657
     20717 28724 33012
     16841 21647 31096
     11931 16278 20287
     9402 10557 11008
     11826 15349 34420
     14369 17031 20597
     19164 27947 29775
     15537 18796 33662
     5404 21027 26757
     6269 12671 24309
     8601 29048 29262
     10099 20323 21457
     15952 17074 30434
     7597 20987 33095
     11298 24182 29217
     12055 16250 16971
     5350 9354 31390
     8168 14168 18570
     5448 13141 32381
     3921 21113 28176
     8756 19895 27917
     9391 16617 25586
     3357 18527 34238
     2378 16840 28948
     7470 27466 32928
     8366 19376 30916
     3116 7267 18016
     15309 18445 21799
     4731 23773 34546
     260 4898 5180
     8897 22266 29587
     2539 23717 33142
     19233 28750 29724
     9937 15384 16599
     10234 17089 26776
     8869 9425 13658
     6197 24086 31929
     9237 20931 27785
     10403 13822 16734
     20038 21196 26868
     13170 27813 28875
     1110 20329 24508
     11844 22662 28987
     2891 2918 14512
     15707 27399 34135
     8687 20019 26178
     6847 8903 16307
     23737 23775 27776
     17388 27970 31983
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  9.  符号長Nが69120ビットであり、符号化率rが10/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     200 588 3305 4771 6288 8400 11092 11126 14245 14255 17022 17190 19241 20350 20451 21069 25243
     80 2914 4126 5426 6129 7790 9546 12909 14660 17357 18278 19612 21168 22367 23314 24801 24907
     1216 2713 4897 6540 7016 7787 8321 9717 9934 12295 18749 20344 21386 21682 21735 24205 24825
     6784 8163 8691 8743 10045 10319 10767 11141 11756 12004 12463 13407 14682 15458 20771 21060 22914
     463 1260 1897 2128 2908 5157 7851 14177 16187 17463 18212 18221 19212 21864 24198 25318 25450
     794 835 1163 4551 4597 5792 6092 7809 8576 8862 10986 12164 13053 14459 15978 23829 25072
     144 4258 4342 7326 8165 9627 11432 12552 17582 17621 18145 19201 19372 19718 21036 25147 25774
     617 2639 2749 2898 3414 4305 4802 6183 8551 9850 13679 20759 22501 24244 24331 24631 25587
     1622 2258 4257 6069 10343 10642 11003 12520 13993 17086 18236 18522 24679 25361 25371 25595
     1826 3926 5021 5905 6192 6839 7678 9136 9188 9716 10986 11191 12551 14648 16169 16234
     2175 2396 2473 8548 9753 12115 12208 13469 15438 16985 19350 20424 21357 22819 22830 25671
     265 397 6675 7152 8074 13030 13161 13336 15843 16917 17930 18014 18660 19218 22236 24940
     5744 6883 7780 7839 8485 10016 10548 12131 12158 16211 16793 18749 20570 21757 22255 24489
     2082 4768 7025 8803 10237 10932 13885 14266 14370 14982 16411 18443 18773 19570 21420 23311
     1040 1376 2823 2998 3789 6636 7755 9819 13705 13868 14176 16202 16247 24943 25196 25489
     223 1967 3289 4541 7420 9881 11086 12868 13550 14760 15434 18287 19098 20909 22905 25887
     1906 2049 2147 2756 2845 4773 8337 8832 9363 12375 13651 16366 17546 20486 21624 22664
     1619 1955 2393 3078 3208 3593 5246 8565 10956 11335 11865 14837 15006 15544 18820 22687
     2086 3409 3586 4269 6587 8650 10165 11241 15624 16728 17814 18392 18667 19859 21132 25339
     382 1160 1912 3700 3783 12069 14672 16842 18053 19626 20724 21244 21792 22679 23873 24517
     1217 1486 5139 6774 7413 10622 11571 11697 13406 13487 20713 22436 22610 22806 23522 23632
     1225 2927 6221 6247 8197 9322 11826 11948 12230 13899 15820 16791 17444 23155 24543 24650
     1056 2975 6018 7698 7736 7940 11870 12964 17498 17577 19541 20124 20705 22693 23151 25627
     658 790 1559 3683 6060 9059 12347 12990 13095 16317 17801 18816 20050 20979 23584 25472
     1133 3343 6895 7146 7261 8340 9115 11248 14543 16030 16291 17972 22369 22479 24388 25280
     1907 4021 8277 17631
     7807 8063 10076 24958
     5455 8638 13801 18832
     15525 24030 24978
     7854 21083 21197
     8416 15614 24639
     9382 13998 24091
     1244 19468 24804
     5100 14187 21263
     12267 18441 22757
     185 23294 23412
     5136 24218 25509
     6159 12323 19472
     7490 9770 19813
     1457 2204 4186
     14200 15609 18700
     4544 6337 17759
     3697 13810 14537
     10853 16611 23001
     504 12709 23116
     1338 21523 22880
     1098 8530 23846
     13699 19776 25783
     3299 3629 16222
     1821 2402 12416
     11177 20793 24292
     21580 24038 24094
     11769 13819 13950
     5388 9428 13527
     20320 23996 24752
     2923 14906 18768
     911 10059 17607
     1535 3090 22968
     3398 8243 12265
     9801 10001 20184
     11839 15703 16757
     1834 13797 14101
     4469 11503 14694
     4047 8684 23737
     15682 21342 21898
     7345 8077 22245
     4108 20676 24406
     8787 19625 22194
     8536 15518 20879
     3339 15738 19592
     2916 13483 23680
     3853 12107 18338
     16962 21265 25429
     10181 18667 25563
     2867 21873 23535
     8601 19728 23807
     4484 17647 22060
     6457 17641 23777
     17432 18680 20224
     3046 14453 19429
     807 2064 12639
     17630 20286 21847
     13703 13720 24044
     8382 9588 10339
     18818 23311 24714
     5397 13213 24988
     4077 9348 21707
     10628 15352 21292
     1075 7625 18287
     5771 20506 20926
     13545 18180 21566
     12022 19203 25134
     86 12306 20066
     7797 10752 15305
     2986 4186 9128
     9099 17285 24986
     3530 17904 21836
     2283 20216 25272
     22562 24667 25143
     1673 3837 5198
     4188 13181 22061
     17800 20341 22591
     3466 4433 24958
     145 7746 23940
     4718 15618 19372
     2735 11877 13719
     3560 6483 10536
     4167 7567 8558
     4511 5862 16331
     3268 6965 25578
     5552 20627 24489
     1425 2331 4414
     3352 12606 19595
     4653 8383 20029
     9163 22097 24174
     7324 16151 20228
     280 4353 25404
     5173 7657 25604
     6910 13531 22225
     18274 19994 21778
     である
     送信方法。
  10.  符号長Nが69120ビットであり、符号化率rが10/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     113, 23, 166, 150, 133, 130, 38, 18, 71, 115, 111, 44, 135, 11, 98, 96, 67, 114, 112, 87, 146, 119, 28, 86, 120, 49, 175, 14, 30, 144, 53, 165, 162, 128, 108, 39, 116, 158, 62, 110, 83, 93, 118, 80, 88, 173, 157, 102, 177, 132, 174, 59, 106, 34, 64, 22, 4, 29, 97, 155, 109, 9, 107, 92, 36, 24, 161, 50, 21, 137, 17, 43, 58, 124, 31, 37, 172, 100, 178, 129, 79, 160, 167, 32, 181, 154, 7, 183, 90, 54, 68, 191, 156, 104, 147, 10, 65, 81, 134, 169, 142, 57, 171, 78, 48, 47, 5, 40, 46, 51, 151, 77, 1, 72, 164, 152, 70, 141, 2, 89, 13, 182, 85, 52, 41, 66, 75, 63, 185, 148, 179, 138, 61, 73, 180, 189, 76, 84, 8, 27, 184, 105, 42, 69, 153, 188, 19, 131, 121, 26, 159, 45, 16, 186, 25, 176, 82, 103, 163, 99, 101, 122, 187, 20, 136, 126, 168, 145, 6, 91, 55, 117, 35, 56, 143, 140, 190, 125, 127, 74, 95, 94, 12, 149, 33, 0, 139, 3, 123, 170, 15, 60
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     200 588 3305 4771 6288 8400 11092 11126 14245 14255 17022 17190 19241 20350 20451 21069 25243
     80 2914 4126 5426 6129 7790 9546 12909 14660 17357 18278 19612 21168 22367 23314 24801 24907
     1216 2713 4897 6540 7016 7787 8321 9717 9934 12295 18749 20344 21386 21682 21735 24205 24825
     6784 8163 8691 8743 10045 10319 10767 11141 11756 12004 12463 13407 14682 15458 20771 21060 22914
     463 1260 1897 2128 2908 5157 7851 14177 16187 17463 18212 18221 19212 21864 24198 25318 25450
     794 835 1163 4551 4597 5792 6092 7809 8576 8862 10986 12164 13053 14459 15978 23829 25072
     144 4258 4342 7326 8165 9627 11432 12552 17582 17621 18145 19201 19372 19718 21036 25147 25774
     617 2639 2749 2898 3414 4305 4802 6183 8551 9850 13679 20759 22501 24244 24331 24631 25587
     1622 2258 4257 6069 10343 10642 11003 12520 13993 17086 18236 18522 24679 25361 25371 25595
     1826 3926 5021 5905 6192 6839 7678 9136 9188 9716 10986 11191 12551 14648 16169 16234
     2175 2396 2473 8548 9753 12115 12208 13469 15438 16985 19350 20424 21357 22819 22830 25671
     265 397 6675 7152 8074 13030 13161 13336 15843 16917 17930 18014 18660 19218 22236 24940
     5744 6883 7780 7839 8485 10016 10548 12131 12158 16211 16793 18749 20570 21757 22255 24489
     2082 4768 7025 8803 10237 10932 13885 14266 14370 14982 16411 18443 18773 19570 21420 23311
     1040 1376 2823 2998 3789 6636 7755 9819 13705 13868 14176 16202 16247 24943 25196 25489
     223 1967 3289 4541 7420 9881 11086 12868 13550 14760 15434 18287 19098 20909 22905 25887
     1906 2049 2147 2756 2845 4773 8337 8832 9363 12375 13651 16366 17546 20486 21624 22664
     1619 1955 2393 3078 3208 3593 5246 8565 10956 11335 11865 14837 15006 15544 18820 22687
     2086 3409 3586 4269 6587 8650 10165 11241 15624 16728 17814 18392 18667 19859 21132 25339
     382 1160 1912 3700 3783 12069 14672 16842 18053 19626 20724 21244 21792 22679 23873 24517
     1217 1486 5139 6774 7413 10622 11571 11697 13406 13487 20713 22436 22610 22806 23522 23632
     1225 2927 6221 6247 8197 9322 11826 11948 12230 13899 15820 16791 17444 23155 24543 24650
     1056 2975 6018 7698 7736 7940 11870 12964 17498 17577 19541 20124 20705 22693 23151 25627
     658 790 1559 3683 6060 9059 12347 12990 13095 16317 17801 18816 20050 20979 23584 25472
     1133 3343 6895 7146 7261 8340 9115 11248 14543 16030 16291 17972 22369 22479 24388 25280
     1907 4021 8277 17631
     7807 8063 10076 24958
     5455 8638 13801 18832
     15525 24030 24978
     7854 21083 21197
     8416 15614 24639
     9382 13998 24091
     1244 19468 24804
     5100 14187 21263
     12267 18441 22757
     185 23294 23412
     5136 24218 25509
     6159 12323 19472
     7490 9770 19813
     1457 2204 4186
     14200 15609 18700
     4544 6337 17759
     3697 13810 14537
     10853 16611 23001
     504 12709 23116
     1338 21523 22880
     1098 8530 23846
     13699 19776 25783
     3299 3629 16222
     1821 2402 12416
     11177 20793 24292
     21580 24038 24094
     11769 13819 13950
     5388 9428 13527
     20320 23996 24752
     2923 14906 18768
     911 10059 17607
     1535 3090 22968
     3398 8243 12265
     9801 10001 20184
     11839 15703 16757
     1834 13797 14101
     4469 11503 14694
     4047 8684 23737
     15682 21342 21898
     7345 8077 22245
     4108 20676 24406
     8787 19625 22194
     8536 15518 20879
     3339 15738 19592
     2916 13483 23680
     3853 12107 18338
     16962 21265 25429
     10181 18667 25563
     2867 21873 23535
     8601 19728 23807
     4484 17647 22060
     6457 17641 23777
     17432 18680 20224
     3046 14453 19429
     807 2064 12639
     17630 20286 21847
     13703 13720 24044
     8382 9588 10339
     18818 23311 24714
     5397 13213 24988
     4077 9348 21707
     10628 15352 21292
     1075 7625 18287
     5771 20506 20926
     13545 18180 21566
     12022 19203 25134
     86 12306 20066
     7797 10752 15305
     2986 4186 9128
     9099 17285 24986
     3530 17904 21836
     2283 20216 25272
     22562 24667 25143
     1673 3837 5198
     4188 13181 22061
     17800 20341 22591
     3466 4433 24958
     145 7746 23940
     4718 15618 19372
     2735 11877 13719
     3560 6483 10536
     4167 7567 8558
     4511 5862 16331
     3268 6965 25578
     5552 20627 24489
     1425 2331 4414
     3352 12606 19595
     4653 8383 20029
     9163 22097 24174
     7324 16151 20228
     280 4353 25404
     5173 7657 25604
     6910 13531 22225
     18274 19994 21778
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  11.  符号長Nが69120ビットであり、符号化率rが12/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     1507 1536 2244 4721 6374 7839 11001 12684 13196 13602 14245 14383 14398 16182 17248
     623 696 1186 1370 4409 5237 5911 8278 9539 12139 12810 13422 15525 16232 16252
     530 1953 3745 5512 6676 9069 9433 10683 11530 12263 12519 14931 15326 15581 16208
     273 685 3132 5872 6388 7149 7316 7367 9041 11102 11211 12059 15189 15973 16435
     814 1297 1896 6018 7801 8810 9701 9992 10314 13618 13771 14934 15198 16340 16742
     58 803 2553 3967 6032 8374 9168 10047 10073 10909 12701 12748 13543 14111 17043
     1082 1577 2108 2344 5035 5051 10038 10356 12156 12308 13815 15453 15830 16305 17234
     1882 3731 5182 5554 6330 6605 7126 10195 10508 12151 12191 12241 12288 13755 16472
     85 604 1278 3768 4831 6820 9471 10773 10873 12785 12973 13623 14562 14697 16811
     928 1864 6027 7023 7644 8279 8580 9221 9417 9883 12032 12483 12734 14335 15842
     2104 2752 4530 4820 5662 9197 9464 9972 10057 11079 12408 13005 13684 15507 16295
     82 752 3374 4026 7265 8112 12236 12434 12460 13110 13495 15110 15299 15359 17221
     1137 1411 1546 1614 1835 6053 6151 8618 9059 14057 14941 15670 16321 16965
     447 1960 2369 2861 3047 3508 4077 4358 4370 5806 12517 13658 14371 14749
     420 981 1657 2313 3353 4699 5094 5184 10076 10530 11521 13040 15960 16853
     3572 3851 3870 5218 6400 6780 9167 9603 10328 10543 12892 13722 16910 16929
     203 2588 4522 4692 5399 6840 7417 8896 9045 9188 10390 12507 12615 16386
     543 1262 2536 4358 7658 7714 9392 11079 12283 12694 14734 16195 16317 16751
     905 1059 3393 4347 4554 4758 5568 8652 9991 10717 10975 11146 12824 16373
     1229 2308 4876 5329 5424 5906 6227 6667 7141 7697 12055 12969 13582 16638
     697 1864 2560 4190 5097 5288 6565 9150 9282 9519 10727 12492 13292 16924
     363 3152 3715 3722 4582 5050 8399 9413 9851 10305 12116 13471 15318 16018
     338 2342 2404 4733 6189 6792 7251 7921 8509 8579 8729 11921 12900 15546
     1630 1867 2018 3038 3202 6364 7648 8692 9496 9705 10433 13508 14583 16341
     1041 2754 3015 3427 3512 4351 5174 6539 8100 8639 9912 11911 12666 14187
     1134 1619 4758 5545 6842 7045 8421 10373 10390 12672 13484 15178 16697 16727
     589 652 1174 2157 3951 4733 5278 5859 7619 9488 11665 12335 15516 16024
     1457 1832 2525 3690 5093 6000 6276 7974 8652 9759 10434 15025 15267 16448
     932 3328 3349 3511 4776 6266 6711 7761 8674 9748 11167 12134 12942 14354
     1939 1979 3141 4238 6715 7148 7673 12025 12455 14829 14989 15081 16491 17242
     1363 2451
     1953 10230
     6218 7655
     9302 15856
     10461 10503
     9005 16075
     878 14223 15181
     3535 5327 14405
     8116 8396 9828
     2864 6306 14832
     24 11009 16377
     7064 11014 16139
     4318 8353 14997
     583 5626 10217
     11196 13669 16585
     6123 7518 9304
     2258 8250 12082
     7564 14195 15236
     10104 10233 13778
     2044 7801 11705
     10906 11443 13227
     1592 7853 14796
     3054 8887 13077
     6486 7003 9238
     424 9055 13390
     618 4077 11120
     11159 13405 16070
     2927 8689 17210
     723 5842 12062
     4817 9269 10820
     208 6947 12903
     2987 10116 11520
     3522 6321 15637
     148 3087 12764
     262 1613 14121
     7236 10798 11759
     3193 4958 11292
     7537 12439 15202
     8000 9580 17269
     9665 9691 15654
     5946 14246 16040
     4283 8145 10944
     1082 1829 11267
     1272 6119 13182
     20 11943 14128
     4591 8403 16530
     2212 13724 13933
     2079 10365 14633
     1269 11307 16370
     2467 4744 10714
     6256 7915 9724
     8799 11433 16880
     459 6799 10102
     3795 6930 13350
     1295 13018 14967
     3542 7310 10974
     6905 15080 16105
     2673 3143 12349
     4698 4801 14770
     7512 15844 15965
     3276 4069 10099
     1893 4676 6679
     1985 7244 10163
     6333 12760 12912
     852 5954 11771
     6958 9242 10613
     5651 10089 12309
     4124 7455 13224
     503 6787 10720
     10594 12717 14007
     4501 5311 8067
     4507 5620 13932
     9133 11025 13866
     5021 16201 16217
     6166 7438 17185
     1324 5671 11586
     2266 6335 7716
     512 9515 11595
     869 6096 13886
     10049 12536 14474
     470 8286 8306
     1268 5478 6424
     8178 8817 14506
     11460 15128 16761
     6364 10121 16806
     9347 15211 16915
     1587 3591 15546
     17 4132 17071
     1677 8810 15764
     3862 7633 13685
     3855 11931 12792
     2652 13909 17080
     5581 13919 16126
     7129 8976 11152
     6662 7845 13424
     9751 9965 13847
     3662 9308 9534
     4283 7474 7682
     2418 8774 13433
     508 3864 6859
     12098 13920 15326
     1129 3271 16892
     5072 8819 10323
     4749 4984 6390
     212 13603 14893
     4966 8895 9320
     1012 3677 5711
     6654 9969 15178
     4596 5147 5905
     1541 4149 15594
     8005 8604 15147
     2519 10882 11961
     190 8417 13600
     3543 4639 14618
     である
     送信方法。
  12.  符号長Nが69120ビットであり、符号化率rが12/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     131, 148, 141, 17, 53, 138, 45, 97, 112, 111, 77, 184, 129, 135, 27, 122, 2, 123, 156, 128, 80, 116, 40, 89, 84, 41, 105, 42, 39, 187, 145, 18, 54, 44, 183, 57, 136, 13, 65, 162, 51, 178, 59, 104, 163, 70, 87, 152, 94, 126, 23, 169, 9, 179, 177, 139, 130, 38, 35, 20, 86, 180, 48, 108, 47, 133, 167, 75, 168, 25, 67, 185, 91, 165, 157, 158, 110, 127, 82, 58, 50, 64, 76, 31, 159, 8, 79, 78, 146, 71, 69, 3, 36, 155, 160, 21, 29, 49, 28, 150, 81, 154, 149, 182, 24, 30, 72, 109, 173, 33, 113, 43, 55, 189, 132, 176, 120, 172, 166, 143, 90, 125, 7, 5, 66, 12, 98, 83, 10, 62, 11, 175, 85, 0, 63, 181, 188, 74, 171, 117, 106, 61, 153, 174, 147, 93, 190, 34, 142, 100, 6, 1, 140, 191, 161, 19, 151, 14, 73, 99, 121, 119, 92, 95, 115, 118, 186, 60, 144, 22, 32, 52, 164, 15, 88, 46, 114, 101, 124, 26, 96, 4, 107, 103, 16, 37, 102, 56, 170, 68, 134, 137
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     1507 1536 2244 4721 6374 7839 11001 12684 13196 13602 14245 14383 14398 16182 17248
     623 696 1186 1370 4409 5237 5911 8278 9539 12139 12810 13422 15525 16232 16252
     530 1953 3745 5512 6676 9069 9433 10683 11530 12263 12519 14931 15326 15581 16208
     273 685 3132 5872 6388 7149 7316 7367 9041 11102 11211 12059 15189 15973 16435
     814 1297 1896 6018 7801 8810 9701 9992 10314 13618 13771 14934 15198 16340 16742
     58 803 2553 3967 6032 8374 9168 10047 10073 10909 12701 12748 13543 14111 17043
     1082 1577 2108 2344 5035 5051 10038 10356 12156 12308 13815 15453 15830 16305 17234
     1882 3731 5182 5554 6330 6605 7126 10195 10508 12151 12191 12241 12288 13755 16472
     85 604 1278 3768 4831 6820 9471 10773 10873 12785 12973 13623 14562 14697 16811
     928 1864 6027 7023 7644 8279 8580 9221 9417 9883 12032 12483 12734 14335 15842
     2104 2752 4530 4820 5662 9197 9464 9972 10057 11079 12408 13005 13684 15507 16295
     82 752 3374 4026 7265 8112 12236 12434 12460 13110 13495 15110 15299 15359 17221
     1137 1411 1546 1614 1835 6053 6151 8618 9059 14057 14941 15670 16321 16965
     447 1960 2369 2861 3047 3508 4077 4358 4370 5806 12517 13658 14371 14749
     420 981 1657 2313 3353 4699 5094 5184 10076 10530 11521 13040 15960 16853
     3572 3851 3870 5218 6400 6780 9167 9603 10328 10543 12892 13722 16910 16929
     203 2588 4522 4692 5399 6840 7417 8896 9045 9188 10390 12507 12615 16386
     543 1262 2536 4358 7658 7714 9392 11079 12283 12694 14734 16195 16317 16751
     905 1059 3393 4347 4554 4758 5568 8652 9991 10717 10975 11146 12824 16373
     1229 2308 4876 5329 5424 5906 6227 6667 7141 7697 12055 12969 13582 16638
     697 1864 2560 4190 5097 5288 6565 9150 9282 9519 10727 12492 13292 16924
     363 3152 3715 3722 4582 5050 8399 9413 9851 10305 12116 13471 15318 16018
     338 2342 2404 4733 6189 6792 7251 7921 8509 8579 8729 11921 12900 15546
     1630 1867 2018 3038 3202 6364 7648 8692 9496 9705 10433 13508 14583 16341
     1041 2754 3015 3427 3512 4351 5174 6539 8100 8639 9912 11911 12666 14187
     1134 1619 4758 5545 6842 7045 8421 10373 10390 12672 13484 15178 16697 16727
     589 652 1174 2157 3951 4733 5278 5859 7619 9488 11665 12335 15516 16024
     1457 1832 2525 3690 5093 6000 6276 7974 8652 9759 10434 15025 15267 16448
     932 3328 3349 3511 4776 6266 6711 7761 8674 9748 11167 12134 12942 14354
     1939 1979 3141 4238 6715 7148 7673 12025 12455 14829 14989 15081 16491 17242
     1363 2451
     1953 10230
     6218 7655
     9302 15856
     10461 10503
     9005 16075
     878 14223 15181
     3535 5327 14405
     8116 8396 9828
     2864 6306 14832
     24 11009 16377
     7064 11014 16139
     4318 8353 14997
     583 5626 10217
     11196 13669 16585
     6123 7518 9304
     2258 8250 12082
     7564 14195 15236
     10104 10233 13778
     2044 7801 11705
     10906 11443 13227
     1592 7853 14796
     3054 8887 13077
     6486 7003 9238
     424 9055 13390
     618 4077 11120
     11159 13405 16070
     2927 8689 17210
     723 5842 12062
     4817 9269 10820
     208 6947 12903
     2987 10116 11520
     3522 6321 15637
     148 3087 12764
     262 1613 14121
     7236 10798 11759
     3193 4958 11292
     7537 12439 15202
     8000 9580 17269
     9665 9691 15654
     5946 14246 16040
     4283 8145 10944
     1082 1829 11267
     1272 6119 13182
     20 11943 14128
     4591 8403 16530
     2212 13724 13933
     2079 10365 14633
     1269 11307 16370
     2467 4744 10714
     6256 7915 9724
     8799 11433 16880
     459 6799 10102
     3795 6930 13350
     1295 13018 14967
     3542 7310 10974
     6905 15080 16105
     2673 3143 12349
     4698 4801 14770
     7512 15844 15965
     3276 4069 10099
     1893 4676 6679
     1985 7244 10163
     6333 12760 12912
     852 5954 11771
     6958 9242 10613
     5651 10089 12309
     4124 7455 13224
     503 6787 10720
     10594 12717 14007
     4501 5311 8067
     4507 5620 13932
     9133 11025 13866
     5021 16201 16217
     6166 7438 17185
     1324 5671 11586
     2266 6335 7716
     512 9515 11595
     869 6096 13886
     10049 12536 14474
     470 8286 8306
     1268 5478 6424
     8178 8817 14506
     11460 15128 16761
     6364 10121 16806
     9347 15211 16915
     1587 3591 15546
     17 4132 17071
     1677 8810 15764
     3862 7633 13685
     3855 11931 12792
     2652 13909 17080
     5581 13919 16126
     7129 8976 11152
     6662 7845 13424
     9751 9965 13847
     3662 9308 9534
     4283 7474 7682
     2418 8774 13433
     508 3864 6859
     12098 13920 15326
     1129 3271 16892
     5072 8819 10323
     4749 4984 6390
     212 13603 14893
     4966 8895 9320
     1012 3677 5711
     6654 9969 15178
     4596 5147 5905
     1541 4149 15594
     8005 8604 15147
     2519 10882 11961
     190 8417 13600
     3543 4639 14618
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
  13.  符号長Nが69120ビットであり、符号化率rが14/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化ステップと、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブステップと、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピングステップと
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     387 648 945 3023 3889 4856 5002 5167 6868 7477 7590 8165 8354
     42 406 1279 1968 3016 4196 4599 4996 5019 6350 6785 7051 8529
     534 784 1034 1160 2530 5033 5171 5469 6167 6372 6913 7718 8621
     944 2506 2806 3149 3559 5101 6076 6083 6092 6147 6866 7908 8155
     308 1869 1888 2569 3297 4742 5232 5442 6135 6814 7284 8238 8405
     34 464 667 899 2421 3425 5382 6258 6373 6399 6489 7367 7922
     2276 3014 3525 3829 4135 4276 4611 4733 4738 4956 6025 7152 8155
     1047 1370 2406 2819 4600 4991 5017 5590 6199 6483 6556 6834 7760
     66 380 2033 3698 4068 6096 6223 6238 6757 7541 7641 7677 8595
     562 697 782 808 921 1703 3032 4300 7027 7481 7839 8160 8526
     236 962 1557 2023 2135 2190 2892 3072 4523 6254 6838 7209 7381
     196 1167 1179 1426 1675 1763 2345 2560 2613 5024 5761 6522 7973
     512 822 1778 1924 2610 3445 4570 4805 5263 5299 8439 8448 8464
     1923 2270 3204 3698 4456 4522 4601 5161 5207 6260 6310 6441 6851
     104 281 622 1276 2172 2334 2731 3417 3854 4698 8095 8195 8333
     451 528 1269 2169 2274 2393 3853 5002 5543 6121 6351 7364 8139
     1685 2675 2790 2953 3103 3560 4336 5372 5495 5568 6429 6492 8206
     604 1190 1279 2427 2714 3283 3312 3855 4566 6045 6664 6788 8317
     338 917 1873 2102 2561 2655 4635 4765 5370 6249 6724 7668 8456
     184 1166 1583 1859 2376 2521 3093 4181 4713 4926 5146 6070 8004
     175 1227 2367 3402 3628 3982 4265 4282 4355 5972 6434 7280 7765
     801 922 1029 1531 1606 3170 3824 4358 4732 4849 5225 6759 8183
     509 1507 1704 1765 2183 2574 3271 4050 4299 4964 5968 6324 7091
     567 795 1376 2390 2767 3424 5195 6355 6726 7607 8346 8352
     308 1060 1973 2364 2937 3526 4221 4745 5185 5845 6146 7762
     323 590 732 917 2636 3008 3792 3990 4322 4893 5211 8014
     471 1249 1674 1841 2567 3124 3130 4885 5575 7521 7648 8227
     1582 1669 1772 2386 3340 3387 3881 4322 6018 6055 6488 7177
     976 1003 2127 3575 3816 6225 7404 7499 7542 8237 8421 8630
     675 961 1957 3825 3858 4646 5248 5801 5940 6533 7040 8037
     79 639 1363 1436 1763 2570 3874 4876 6870 6886 7104 8399
     20 297 1330 2264 3287 3534 4441 4746 6569 6971 6976 8179
     482 1125 1589 2892 3759 3871 4635 6038 6214 6796 6816 7621
     1127 3336 3867 3929 4269 4794 5054 5842 6471 6547 7039 8560
     217 1521
     1983 8283
     3731 4402
     208 6703
     242 4988
     4170 5038
     4108 8035
     3301 8543
     3168 8249
     5028 5838
     3470 8597
     2901 5264
     2505 4505
     934 5117
     1712 5819
     3165 7273
     3274 6115
     4576 6330 7327
     5380 6732 8439
     2474 3723 7782
     384 2783 5846
     1453 4436 6625
     3220 4261 4835
     163 3117 7554
     502 2119 4059
     2200 4263 4930
     2378 6294 7713
     743 5501 6809
     1364 6062 7808
     4680 6468 7895
     3469 3602 7304
     1609 5386 5647
     267 2921 3206
     2565 3020 6269
     1651 5224 5718
     1128 5058 8579
     286 3396 7660
     1497 5171 6519
     1894 6349 7924
     1306 7744 8083
     3096 3438 3836
     2556 7409 8570
     3273 4245 7935
     1633 2023 3125
     584 4914 6062
     2015 2915 3435
     1457 6366 6461
     23 3576 8132
     5322 6300 6520
     5715 7113 7822
     2044 5053 6607
     63 5432 7850
     5353 6355 8637
     346 590 2648
     4780 5997 6991
     2556 2583 6537
     661 2497 8350
     7610 8307 8441
     671 860 5986
     1133 3158 5891
     4360 5802 6547
     4782 5688 6955
     447 5030 6268
     1501 5163 7232
     1133 2743 3214
     959 4100 7554
     5712 7643 8385
     1442 3180 8008
     697 3078 8421
     137 922 5123
     597 2879 6340
     824 2071 7882
     1827 4411 5941
     3846 5970 6398
     1561 1580 7668
     4335 6936 8042
     4504 5309 6737
     1846 3273 3333
     272 4885 6718
     1835 4761 6931
     2141 3760 5129
     3975 5012 6504
     1258 2822 6030
     242 4947 7668
     559 6100 8425
     1655 1962 4401
     2369 2476 2765
     114 156 3195
     1651 4154 4448
     4669 6064 7317
     4988 5567 6697
     2963 5578 5679
     2064 2286 7790
     289 4639 7582
     1258 4312 5340
     2428 4219 7268
     1752 2321 6806
     118 7302 8603
     4170 4280 4445
     2207 5067 7257
     2 55 7413
     1141 4791 7149
     3407 5649 8075
     2773 3198 3720
     6970 7222 8633
     2498 4764 5281
     1048 2093 5031
     2500 2851 8396
     1694 3795 6666
     2565 3343 4688
     4228 4374 5947
     2267 6745 7172
     175 2662 3926
     90 1517 6056
     4069 5439 7648
     1679 3394 4707
     2136 4553 8265
     482 2100 2302
     3306 3729 8063
     5263 7710 8240
     1001 1335 4500
     576 6736 7250
     181 3601 3755
     5899 7515 7714
     1181 5332 7197
     542 1150 1196
     1386 2156 5873
     656 3019 3213
     263 1117 5957
     4495 5904 6462
     2547 2786 4215
     4954 5848 6225
     940 4478 7633
     2124 3347 7069
     である
     送信方法。
  14.  符号長Nが69120ビットであり、符号化率rが14/16のLDPC符号の検査行列に基づき、LDPC符号化を行う符号化部と、
     前記LDPC符号を、360ビットのビットグループ単位でインターリーブするグループワイズインターリーブを行うグループワイズインターリーブ部と、
     前記LDPC符号を、12ビット単位で、4096QAMの1D-NUC(Non-Uniform Constellation)の4096個の信号点のうちのいずれかにマッピングするマッピング部と
     を備え、
     前記グループワイズインターリーブでは、前記LDPC符号の先頭からi+1番目のビットグループを、ビットグループiとして、前記69120ビットのLDPC符号のビットグループ0ないし191の並びを、ビットグループ
     93, 61, 37, 170, 63, 60, 135, 5, 158, 47, 65, 179, 76, 182, 72, 20, 104, 7, 181, 11, 117, 152, 184, 172, 143, 92, 109, 177, 191, 119, 132, 1, 98, 10, 148, 35, 126, 9, 18, 70, 190, 38, 66, 54, 62, 122, 100, 3, 2, 189, 144, 153, 165, 14, 154, 44, 161, 113, 147, 12, 90, 167, 112, 34, 39, 139, 142, 41, 159, 149, 82, 131, 88, 106, 138, 105, 55, 163, 71, 168, 80, 96, 108, 40, 50, 25, 114, 79, 103, 141, 151, 69, 74, 110, 36, 24, 67, 145, 26, 8, 56, 180, 13, 17, 134, 28, 129, 185, 85, 121, 137, 136, 68, 86, 188, 0, 124, 120, 127, 32, 94, 83, 133, 97, 31, 58, 33, 57, 166, 162, 183, 186, 81, 111, 19, 107, 155, 42, 84, 6, 43, 130, 48, 123, 64, 78, 53, 173, 95, 75, 45, 174, 178, 160, 15, 187, 102, 23, 150, 156, 101, 99, 91, 157, 128, 175, 59, 125, 22, 46, 115, 164, 52, 16, 21, 30, 176, 146, 51, 116, 87, 140, 77, 73, 89, 169, 4, 171, 27, 49, 29, 118
     の並びにインターリーブし、
     前記LDPC符号は、情報ビットとパリティビットを含み、
     前記検査行列は、前記情報ビットに対応する情報行列部及び前記パリティビットに対応するパリティ行列部を含み、
     前記情報行列部は、検査行列初期値テーブルによって表され、
     前記検査行列初期値テーブルは、前記情報行列部の1の要素の位置を360列ごとに表すテーブルであって、
     387 648 945 3023 3889 4856 5002 5167 6868 7477 7590 8165 8354
     42 406 1279 1968 3016 4196 4599 4996 5019 6350 6785 7051 8529
     534 784 1034 1160 2530 5033 5171 5469 6167 6372 6913 7718 8621
     944 2506 2806 3149 3559 5101 6076 6083 6092 6147 6866 7908 8155
     308 1869 1888 2569 3297 4742 5232 5442 6135 6814 7284 8238 8405
     34 464 667 899 2421 3425 5382 6258 6373 6399 6489 7367 7922
     2276 3014 3525 3829 4135 4276 4611 4733 4738 4956 6025 7152 8155
     1047 1370 2406 2819 4600 4991 5017 5590 6199 6483 6556 6834 7760
     66 380 2033 3698 4068 6096 6223 6238 6757 7541 7641 7677 8595
     562 697 782 808 921 1703 3032 4300 7027 7481 7839 8160 8526
     236 962 1557 2023 2135 2190 2892 3072 4523 6254 6838 7209 7381
     196 1167 1179 1426 1675 1763 2345 2560 2613 5024 5761 6522 7973
     512 822 1778 1924 2610 3445 4570 4805 5263 5299 8439 8448 8464
     1923 2270 3204 3698 4456 4522 4601 5161 5207 6260 6310 6441 6851
     104 281 622 1276 2172 2334 2731 3417 3854 4698 8095 8195 8333
     451 528 1269 2169 2274 2393 3853 5002 5543 6121 6351 7364 8139
     1685 2675 2790 2953 3103 3560 4336 5372 5495 5568 6429 6492 8206
     604 1190 1279 2427 2714 3283 3312 3855 4566 6045 6664 6788 8317
     338 917 1873 2102 2561 2655 4635 4765 5370 6249 6724 7668 8456
     184 1166 1583 1859 2376 2521 3093 4181 4713 4926 5146 6070 8004
     175 1227 2367 3402 3628 3982 4265 4282 4355 5972 6434 7280 7765
     801 922 1029 1531 1606 3170 3824 4358 4732 4849 5225 6759 8183
     509 1507 1704 1765 2183 2574 3271 4050 4299 4964 5968 6324 7091
     567 795 1376 2390 2767 3424 5195 6355 6726 7607 8346 8352
     308 1060 1973 2364 2937 3526 4221 4745 5185 5845 6146 7762
     323 590 732 917 2636 3008 3792 3990 4322 4893 5211 8014
     471 1249 1674 1841 2567 3124 3130 4885 5575 7521 7648 8227
     1582 1669 1772 2386 3340 3387 3881 4322 6018 6055 6488 7177
     976 1003 2127 3575 3816 6225 7404 7499 7542 8237 8421 8630
     675 961 1957 3825 3858 4646 5248 5801 5940 6533 7040 8037
     79 639 1363 1436 1763 2570 3874 4876 6870 6886 7104 8399
     20 297 1330 2264 3287 3534 4441 4746 6569 6971 6976 8179
     482 1125 1589 2892 3759 3871 4635 6038 6214 6796 6816 7621
     1127 3336 3867 3929 4269 4794 5054 5842 6471 6547 7039 8560
     217 1521
     1983 8283
     3731 4402
     208 6703
     242 4988
     4170 5038
     4108 8035
     3301 8543
     3168 8249
     5028 5838
     3470 8597
     2901 5264
     2505 4505
     934 5117
     1712 5819
     3165 7273
     3274 6115
     4576 6330 7327
     5380 6732 8439
     2474 3723 7782
     384 2783 5846
     1453 4436 6625
     3220 4261 4835
     163 3117 7554
     502 2119 4059
     2200 4263 4930
     2378 6294 7713
     743 5501 6809
     1364 6062 7808
     4680 6468 7895
     3469 3602 7304
     1609 5386 5647
     267 2921 3206
     2565 3020 6269
     1651 5224 5718
     1128 5058 8579
     286 3396 7660
     1497 5171 6519
     1894 6349 7924
     1306 7744 8083
     3096 3438 3836
     2556 7409 8570
     3273 4245 7935
     1633 2023 3125
     584 4914 6062
     2015 2915 3435
     1457 6366 6461
     23 3576 8132
     5322 6300 6520
     5715 7113 7822
     2044 5053 6607
     63 5432 7850
     5353 6355 8637
     346 590 2648
     4780 5997 6991
     2556 2583 6537
     661 2497 8350
     7610 8307 8441
     671 860 5986
     1133 3158 5891
     4360 5802 6547
     4782 5688 6955
     447 5030 6268
     1501 5163 7232
     1133 2743 3214
     959 4100 7554
     5712 7643 8385
     1442 3180 8008
     697 3078 8421
     137 922 5123
     597 2879 6340
     824 2071 7882
     1827 4411 5941
     3846 5970 6398
     1561 1580 7668
     4335 6936 8042
     4504 5309 6737
     1846 3273 3333
     272 4885 6718
     1835 4761 6931
     2141 3760 5129
     3975 5012 6504
     1258 2822 6030
     242 4947 7668
     559 6100 8425
     1655 1962 4401
     2369 2476 2765
     114 156 3195
     1651 4154 4448
     4669 6064 7317
     4988 5567 6697
     2963 5578 5679
     2064 2286 7790
     289 4639 7582
     1258 4312 5340
     2428 4219 7268
     1752 2321 6806
     118 7302 8603
     4170 4280 4445
     2207 5067 7257
     2 55 7413
     1141 4791 7149
     3407 5649 8075
     2773 3198 3720
     6970 7222 8633
     2498 4764 5281
     1048 2093 5031
     2500 2851 8396
     1694 3795 6666
     2565 3343 4688
     4228 4374 5947
     2267 6745 7172
     175 2662 3926
     90 1517 6056
     4069 5439 7648
     1679 3394 4707
     2136 4553 8265
     482 2100 2302
     3306 3729 8063
     5263 7710 8240
     1001 1335 4500
     576 6736 7250
     181 3601 3755
     5899 7515 7714
     1181 5332 7197
     542 1150 1196
     1386 2156 5873
     656 3019 3213
     263 1117 5957
     4495 5904 6462
     2547 2786 4215
     4954 5848 6225
     940 4478 7633
     2124 3347 7069
     である
     送信装置
     から送信されてくるデータから得られる、グループワイズインターリーブ後の前記LDPC符号の並びを元の並びに戻すグループワイズデインターリーブ部を備える
     受信装置。
PCT/JP2018/003901 2017-02-20 2018-02-06 送信方法、及び、受信装置 WO2018150939A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/475,557 US10965323B2 (en) 2017-02-20 2018-02-06 Transmission method and reception device
EP18755111.4A EP3584942B1 (en) 2017-02-20 2018-02-06 Bit interleaving for ldpc codes of length 69120 and rate 2/16 in combination with 4096qam
BR112019016763-3A BR112019016763A2 (pt) 2017-02-20 2018-02-06 Método de transmissão, e, dispositivo de recepção.
KR1020197023316A KR102474717B1 (ko) 2017-02-20 2018-02-06 송신 방법, 및 수신 장치
PH12019501862A PH12019501862A1 (en) 2017-02-20 2019-08-13 Transmission method and reception device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-028568 2017-02-20
JP2017028568 2017-02-20
JP2017-056767 2017-03-23
JP2017056767A JP6895053B2 (ja) 2017-02-20 2017-03-23 送信装置、送信方法、受信装置、及び、受信方法

Publications (1)

Publication Number Publication Date
WO2018150939A1 true WO2018150939A1 (ja) 2018-08-23

Family

ID=63170236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003901 WO2018150939A1 (ja) 2017-02-20 2018-02-06 送信方法、及び、受信装置

Country Status (2)

Country Link
JP (1) JP7251679B2 (ja)
WO (1) WO2018150939A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224777B2 (ja) 2003-05-13 2009-02-18 ソニー株式会社 復号方法および復号装置、並びにプログラム
JP2015130602A (ja) * 2014-01-08 2015-07-16 ソニー株式会社 データ処理装置及びデータ処理方法
WO2015178216A1 (ja) * 2014-05-21 2015-11-26 ソニー株式会社 データ処理装置、及び、データ処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425110B2 (en) * 2014-02-19 2019-09-24 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof
US20160204804A1 (en) * 2015-01-13 2016-07-14 Sony Corporation Data processing apparatus and method
JP6885029B2 (ja) * 2016-11-18 2021-06-09 ソニーグループ株式会社 送信装置、及び、送信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224777B2 (ja) 2003-05-13 2009-02-18 ソニー株式会社 復号方法および復号装置、並びにプログラム
JP2015130602A (ja) * 2014-01-08 2015-07-16 ソニー株式会社 データ処理装置及びデータ処理方法
WO2015178216A1 (ja) * 2014-05-21 2015-11-26 ソニー株式会社 データ処理装置、及び、データ処理方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATSC STANDARD: PHYSICAL LAYER PROTOCOL (A/322, 7 September 2016 (2016-09-07)
H. JINA. KHANDEKARR. J. MCELIECE: "Irregular Repeat-Accumulate Codes", PROCEEDINGS OF 2ND INTERNATIONAL SYMPOSIUM ON TURBO CODES AND RELATED TOPICS, September 2000 (2000-09-01), pages 1 - 8
JTC: "igital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)", ETSI EN 302 755 V1.3.1, November 2011 (2011-11-01), pages 1 - 189, XP055535790, Retrieved from the Internet <URL:https://www.etsi.org/deliver/etsi_en/302700_302799/302755/01.03.01_40/en_302755v010301o.pdf> *
KYUNG-JOONG KIM ET AL.: "Low-Density Parity-Check Codes for ATSC", IEEE TRANSACTIONS ON BROADCASTING, vol. 62, no. 1, March 2016 (2016-03-01), pages 189 - 196, XP011601490 *
S. Y. CHUNGG. D. FORNEYT. J. RICHARDSONR. URBANKE: "On the Design of Low-Density Parity-Check Codes within 0 . 0045 dB of the Shannon Limit", IEEE COMMUNICATIONS LEGGERS, vol. 5, no. 2, February 2001 (2001-02-01)

Also Published As

Publication number Publication date
JP2022093665A (ja) 2022-06-23
JP7251679B2 (ja) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2018092617A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2015178216A1 (ja) データ処理装置、及び、データ処理方法
WO2015178213A1 (ja) データ処理装置、及び、データ処理方法
WO2018092616A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2018092613A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2018143007A1 (ja) 送信方法、及び、受信装置
WO2015178212A1 (ja) データ処理装置、及び、データ処理方法
WO2018092614A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2018092618A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2018092615A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2015178211A1 (ja) データ処理装置、及び、データ処理方法
WO2015141489A1 (ja) データ処理装置、及び、データ処理方法
JP2021132405A (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2018143011A1 (ja) 送信方法、及び、受信装置
WO2018143008A1 (ja) 送信方法、及び、受信装置
JP6903979B2 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2015178210A1 (ja) データ処理装置、及び、データ処理方法
JP2019016852A (ja) 送信方法、及び、受信装置
WO2018143009A1 (ja) 送信方法、及び、受信装置
JP2019041160A (ja) 送信方法、及び、受信装置
JP2021141605A (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2015141488A1 (ja) データ処理装置、及び、データ処理方法
WO2018150938A1 (ja) 送信方法、及び、受信装置
WO2018150935A1 (ja) 送信方法、及び、受信装置
JP6895052B2 (ja) 送信装置、送信方法、受信装置、及び、受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18755111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023316

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016763

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018755111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112019016763

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190813