WO2018150893A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2018150893A1
WO2018150893A1 PCT/JP2018/003424 JP2018003424W WO2018150893A1 WO 2018150893 A1 WO2018150893 A1 WO 2018150893A1 JP 2018003424 W JP2018003424 W JP 2018003424W WO 2018150893 A1 WO2018150893 A1 WO 2018150893A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
solar cell
conversion unit
tab wiring
black
Prior art date
Application number
PCT/JP2018/003424
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 栗副
善光 生駒
剛士 植田
元彦 杉山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018568103A priority Critical patent/JPWO2018150893A1/en
Publication of WO2018150893A1 publication Critical patent/WO2018150893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell module has, as a basic configuration, a first substrate made of a resin or the like, a first resin layer, a photoelectric conversion unit, a second resin layer, a second substrate made of a resin or the like, In this order. That is, the photoelectric conversion unit is protected by covering the front and back surfaces of the photoelectric conversion unit with the first substrate and the first resin layer, and the second resin layer and the second substrate.
  • a plurality of solar cells are arranged in a matrix, and adjacent solar cells are electrically connected by tab wiring (see, for example, Patent Document 1). In this manner, the photoelectric conversion unit electrically connects the plurality of photovoltaic cells with the plurality of tab wirings, and increases the output voltage, for example.
  • the tab wiring is made of metal
  • the tab wiring is made of copper
  • the resin layer is made of ethylene vinyl acetate and the tab wiring is made of copper
  • the copper ions promote the decomposition of ethylene vinyl acetate.
  • the resin layer becomes yellowish.
  • it causes a decrease in transparency and a decrease in power generation efficiency.
  • Such a problem is remarkable when the 1st board
  • the tab wiring has a metallic luster
  • the incident light on the tab wiring is specularly reflected. Therefore, sunlight incident on the solar cell module is reflected by the tab wiring. Therefore, for example, when a solar cell module is installed, a person who passes nearby may feel dazzling due to sunlight reflected on the solar cell module.
  • the tab wiring is a metal color
  • the solar battery cell is black, and the two are different in color, so that the tab wiring is conspicuous and there is no sense of unity.
  • the present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the solar cell module which can suppress the fall of the power generation efficiency resulting from the fall of the transparency of the resin layer which covers a photoelectric conversion part, and reflection of sunlight.
  • the solar cell module includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising.
  • the surface protection substrate is made of a resin, and the photoelectric conversion unit has a plurality of solar cells and tab wiring that electrically connects the plurality of solar cells.
  • regulated by the CIE1976 color system is 40 or less is formed on the surface of the tab wiring.
  • the solar cell module includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising.
  • the surface protection substrate is made of a resin, and the photoelectric conversion unit has a plurality of solar cells and tab wiring that electrically connects the plurality of solar cells.
  • the black-type film of L * (SCE) whose difference with L * (SCE) prescribed
  • the solar cell module includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising.
  • the photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells, and the surface of the tab wiring has L * (SCE) defined by the CIE1976 color system. ) Is 40 or less.
  • a solar cell module includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising.
  • the photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells.
  • the black-type film of L * (SCE) whose difference with L * (SCE) prescribed
  • FIG. 1 is a top view showing a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solar cell module shown in FIG.
  • FIG. 3 is a cross-sectional view showing a connection state between the solar battery cell and the tab wiring.
  • FIG. 4 is a cross-sectional view of a tab wiring on which a black film is formed.
  • 5A is a top view
  • FIG. 5B is a front view
  • FIG. 5C is a bottom view of the tab wiring in the state shown in FIG. 2.
  • FIG. 6 is a (a) top view, (b) front view, and (c) bottom view of the tab wiring before being connected to the solar battery cell.
  • FIG. 7 is a diagram schematically showing a manufacturing process of a tab wiring having a substantially rectangular cross section.
  • FIG. 8 is a diagram schematically showing a manufacturing process of a tab wiring having a circular cross section.
  • FIG. 1 is a top view showing a solar cell module 100 according to the present embodiment.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG.
  • the negative direction is defined in the direction opposite to the arrow.
  • the main plane arranged on the positive side of the z-axis is the “light receiving surface (surface)”.
  • the main plane disposed on the negative direction side of the z-axis is the “back surface”.
  • the “light receiving surface (front surface)” means a surface on which light is mainly incident, and the “back surface” may mean a surface opposite to the light receiving surface.
  • the positive direction side of the z-axis may be referred to as “light-receiving surface side”
  • the negative direction side of the z-axis may be referred to as “back surface side”.
  • the first member and the second member may be provided in direct contact unless otherwise specified. There may also be other members between the second member. “Upper” in the above description may be on the positive side of the z axis or on the negative side of the z axis. Furthermore, “substantially” indicates that they are different within the error range, that is, substantially the same.
  • the solar cell module 100 includes a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG.
  • a plurality of finger electrodes extending in the x-axis direction parallel to each other and extending in the y-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10.
  • a plurality of, for example, two bus bar electrodes are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • four solar cells 10 are arranged in the x-axis direction, and five solar cells 10 are arranged in the y-axis direction.
  • the number of the photovoltaic cells 10 arranged in the x-axis direction and the number of the photovoltaic cells 10 arranged in the y-axis direction are not limited to these.
  • the five solar cells 10 arranged side by side in the y-axis direction are connected in series by the tab wiring 12 to form one solar cell string 16.
  • the solar cell string 16 indicates a combination of a plurality of solar cells 10 and a plurality of tab wires 12.
  • the tab wiring 12 electrically connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. That is, the adjacent solar cells 10 are electrically connected to each other by the tab wiring 12.
  • the tab wiring 12 is an elongated metal foil, and a black film is formed as will be described later. Resin is used for connection between the tab wiring 12 and the bus bar electrode. This resin may be either conductive or non-conductive. In the latter case, the tab wiring 12 and the bus bar electrode are electrically connected by direct contact. The tab wiring 12 and the bus bar electrode may be connected by using solder instead of resin.
  • connection wires 14 extend in the x-axis direction on the positive and negative sides of the y-axis of the solar cell string 16, and the connection wires 14 electrically connect two adjacent solar cell strings 16. Connecting.
  • the solar cell module of the present embodiment includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion unit and the resin layer. And comprising.
  • a photoelectric conversion part has a some photovoltaic cell and tab wiring which connects a plurality of photovoltaic cells electrically.
  • L * (SCE) defined by the CIE 1976 color system is 40 or less, and a * and b * are preferably a * of ⁇ 10 to 20, and b * of ⁇ 20 to Ten black coatings are formed.
  • L * (SCE) means the lightness L * measured by the SCE method, which is a method for measuring the color by removing regular reflection light. In the following description, the values are based on the SCE method unless otherwise indicated.
  • the solar cell module of the present embodiment includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer.
  • a photoelectric conversion part has a some photovoltaic cell and tab wiring which connects a plurality of photovoltaic cells electrically. Further, on the surface of the tab wiring, a black film of L * (SCE) having a difference of 10 or less from L * (SCE) defined by the CIE1976 color system on the surface of the solar battery cell is formed.
  • Each of the combination of the solar battery cell 10 and the tab wiring 12 and the solar battery string 16 may be a “photoelectric conversion unit”, and the combination of the plurality of solar battery strings 16 and the connection wiring 14 is a “photoelectric conversion unit”. May be.
  • a frame (not shown) may be attached to the edge portion of the solar cell module 100. The frame protects the edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
  • FIG. 2 is a cross-sectional view showing the solar cell module 100.
  • the solar cell module 100 includes a solar cell 10, a tab wire 12, a connection wire 14, a solar cell string 16, a surface protection substrate 20, a resin layer 24, a resin layer 26, and a back surface protection substrate 28.
  • the upper side in FIG. 2 corresponds to the back surface side, and the lower side corresponds to the light receiving surface side.
  • the surface protection substrate 20 protects the surface of the solar cell module 100 and is made of resin.
  • a polycarbonate resin having translucency is used.
  • substrate 20 is formed in the rectangular plate shape of thickness 1mm, it is not limited to this.
  • the transparent resin constituting the surface protection substrate 20 examples include polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and polystyrene (PS). ), At least one selected from the group consisting of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the surface protection substrate 20 may include a hard coat layer made of acrylic urethane or the like on the surface.
  • the surface protective substrate 20 or the hard coat layer may contain an ultraviolet absorber, a gloss adjusting agent, and an antireflection component.
  • the resin layer 24 is disposed on the negative side of the z-axis of the surface protection substrate 20.
  • a thermoplastic resin such as a resin film such as EVA, PVB (polyvinyl butyral), or polyimide is used.
  • a thermosetting resin may be used.
  • EVA is used.
  • the resin layer 24 is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the surface protection substrate 20.
  • the solar cell string 16 is formed by connecting a plurality of solar cells 10 arranged in the y-axis direction by the tab wiring 12.
  • the connection wiring 14 is connected to the positive side end and the negative side end of the y axis of the solar cell string 16.
  • Such connection wiring 14 and solar cell string 16 are arranged on the negative side of the z-axis of the resin layer 24.
  • Each of the plurality of solar cells 10 is formed in a flat plate shape having a light receiving surface and a back surface.
  • the resin layer 26 is disposed on the negative direction side of the z-axis of the connection wiring 14, the solar cell string 16, and the resin layer 24. Therefore, the connection wiring 14 and the solar cell string 16 are sealed by the resin layer 24 and the resin layer 26. Specifically, the light receiving surface of the solar battery cell 10 is disposed so as to contact the resin layer 24, and the back surface of the solar battery cell 10 is disposed so as to contact the resin layer 26.
  • the resin layer 26 may be formed of the same material as the resin layer 24, or may be formed of a material different from that of the resin layer 24.
  • the back surface protection substrate 28 is disposed on the negative direction side of the z axis of the resin layer 26.
  • the back surface protection substrate 28 protects the back surface side of the solar cell module 100 as a back sheet.
  • fiber reinforced plastic As the material constituting the back protective substrate 28, glass, fiber reinforced plastic (FRP), polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), polystyrene ( At least one selected from the group consisting of PS), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN) can be used.
  • the fiber reinforced plastic (FRP) include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), and aramid fiber reinforced plastic (AFRP).
  • glass epoxy etc. are mentioned as a glass fiber reinforced plastic (GFRP).
  • the material forming the back protective substrate 28 preferably contains at least one selected from the group consisting of fiber reinforced plastic (FRP), polymethyl methacrylate (PMMA), and polyether ether ketone (PEEK).
  • the back surface protection substrate 28 is preferably made of a fiber reinforced resin such as a fiber reinforced plastic in order to sufficiently secure the strength.
  • the fiber-reinforced plastic may be a UD (UniDirection) material in which fibers are arranged in one direction, or may be a woven material woven by fibers that intersect each other. When the UD material is used for the back surface protection substrate 28, it is difficult to expand and contract in the fiber direction.
  • substrate 28 is formed with the carbon fiber reinforced plastics.
  • the main layer may contain titanium oxide or the like to improve the reflectance. Also, the surface may be plated.
  • the thickness of the back surface protection substrate 28 is not particularly limited, it is preferably 0.01 mm or more and 10 mm or less, more preferably 0.05 mm or more and 5.0 mm or less, and 0.07 mm or more and 1.0 mm or less. More preferably. In particular, in the case of fiber reinforced plastic, it is preferable that the diameter of one fiber is the lower limit of thickness.
  • a predetermined black film is formed on the surface of the tab wiring of the solar cell module of the present embodiment.
  • the tab wiring will be described in detail.
  • the tab wiring is formed of metal wiring (for example, copper, silver, gold).
  • metal wiring for example, copper, silver, gold.
  • the metal ions from this metal wiring are provided for buffering, especially on the light incident side, after long-term use. If it diffuses into the resin layer and its transparency is lowered, the power generation efficiency may be reduced. Further, since the tab wiring has a metallic luster, there is a problem that sunlight is specularly reflected as it is, and the reflected light makes a person feel dazzling. Therefore, in the present embodiment, a black film is formed on the surface of the tab wiring to suppress the diffusion of metal ions and the reflection of sunlight as described above.
  • L * (SCE) defined by the CIE 1976 color system is 40 or less, and a * and b * are preferably a * of ⁇ 10 to 20, and b * of ⁇ 20 to 10. It is a black film.
  • the second aspect is the black color film of L * is defined by CIE1976 colorimetric system of the solar cell surface (SCE) difference is 10 or less in the L * (SCE) with.
  • SCE solar cell surface
  • the black coating formed on the surface of the tab wiring eliminates the specular reflection on the surface of the tab wiring and suppresses the reflection of sunlight. Therefore, the resident near the house where the solar cell module of this embodiment is arranged does not feel dazzling due to the reflection of sunlight.
  • the tab wiring Since both the solar battery cell and the tab wiring are black, the tab wiring does not stand out and a sense of unity in appearance can be obtained.
  • the black film of the first embodiment has an L * (SCE) defined by the CIE 1976 color system of 40 or less, a * and b * are preferably a * of ⁇ 10 to 20, and b * of ⁇ 20 to 10 black coatings.
  • “black” includes not only black but also dark blue or green.
  • L * exceeds 40, the reflection of sunlight cannot be suppressed.
  • the black coating of the first aspect preferably has an L * (SCE) of 30 or less from the viewpoint of preventing reflection of sunlight and making the tab wiring inconspicuous, and a * is 0 to 15 and b * is ⁇ 10. More preferably, it is ⁇ 5.
  • the black coating of the second aspect is a black coating of L * (SCE) having a difference of 15 or less from L * (SCE) defined by the CIE 1976 color system on the solar cell surface.
  • L * (SCE) L * defined by the CIE 1976 color system on the solar cell surface.
  • the solar cell L * (SCE) is usually about 0-30. Therefore, the difference in L * (SCE) defined by the CIE1976 color system on the surface of both the solar battery cell and the black coating is defined as 15 or less. When the difference exceeds 10, reflection of sunlight is not suppressed, and tab wiring becomes conspicuous.
  • the difference of L * (SCE) is preferably 10 or less.
  • the black film is not particularly limited as long as it is a material from which a black film having the above L * a * b * value or L * value can be obtained.
  • Examples thereof include a coating made of a black material such as black chrome, black chrome, black nickel, or black alumite, and a resin coating using a black pigment.
  • the surface of the tab wiring has a region where no black film is formed on at least the surface on the solar cell side.
  • the surface of the tab wiring 12 on the solar battery cell 10 side is connected to the solar battery cell 10 via the silver electrode 34. Therefore, it is preferable not to form a black film in the adhesion region between the tab wiring 12 and the silver electrode 34 in order to ensure sufficient adhesion.
  • the tab wiring 12 is formed with the black coating 30 from the upper surface to the side surface, and is not formed with the black coating 30 in the vicinity of the adhesion region with the silver electrode 34.
  • An uncoated region 36 is provided.
  • the area of the region where the black coating 30 is formed on the surface of the tab wiring 12 is configured to be larger than the area of the region where the black coating 30 is not formed (the coating non-forming region 36). It is preferable to do. By adopting such a configuration, the area directly contacting the resin layer on the side surface of the tab wiring 12 is reduced, and diffusion of metal ions into the resin layer can be sufficiently suppressed.
  • the tab wiring 12 and the silver electrode 34 are bonded by the conductive connection body 32.
  • the conductive connection body 32 for example, a conductive adhesive paste, a conductive adhesive film, an anisotropic conductive adhesive, solder plating, or the like can be used.
  • FIG. 5 is a (A) top view, (B) front view, and (C) bottom view of one tab wiring 12 in FIG.
  • the black film 30 and the film non-formation region 36 are alternately formed on the front and back of the tab wiring 12. That is, in order to directly connect the plurality of solar cells 10, the tab wiring 12 is alternately connected to the upper surface of the solar cell 10 and then to the lower surface of the adjacent solar cell 10. Therefore, the black coating 30 and the coating non-formation region 36 are alternately formed on the upper and lower surfaces of the tab wiring 12.
  • the film thickness of the black coating is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 10 ⁇ m, from the viewpoint of preventing diffusion of metal ions in the tab wiring into the resin layer.
  • FIG. 8 shows a manufacturing process of a tab wiring having a circular cross section.
  • (A) to (D) in FIG. 8 are the same as the steps (A) to (D) in FIG.
  • the black coating 30 is formed on the surface of the tab wiring 12. Therefore, it is possible to suppress the metal ions from the tab wiring 12 from diffusing into the resin layers 24 and 26 provided for buffering the solar battery cell 10, particularly the resin layer 24 on the light incident side. As a result, a decrease in transparency of the resin layers 24 and 26 is suppressed, and a decrease in power generation efficiency can be suppressed.
  • the solar battery cell 10 appears to be black because it absorbs visible light (converts it into electricity), but when the black coating 30 is formed on the surface of the tab wiring 12, the solar battery 10 and the tab wiring 12 have the same color. It becomes. Therefore, the tab wiring 12 is not conspicuous, and the sense of unity in appearance as the solar cell module 100 is also increased.
  • the surface of the tab wiring 12 acts as a reflecting surface and reflects sunlight.
  • the black coating 30 is formed on the surface of the tab wiring 12
  • the temperature is slightly increased and expanded because the light is absorbed.
  • the behavior is similar to the behavior in which the solar cell 10 expands as the temperature rises, and thus leads to the reduction of stress at the connection point between the solar cell 10 and the tab wiring 12. Also in that respect, the solar cell module 100 is stabilized in the long term.
  • the solar cell module 100 is manufactured by laminating the solar cell string 16 with the surface protection substrate 20, the resin layer 24, the resin layer 26, and the back surface protection substrate 28.
  • the surface protection substrate 20, the resin sheet constituting the resin layer 24, the strings of the solar battery cells 10, the resin sheet constituting the resin layer 26, and the back surface protection substrate 28 are sequentially laminated on the heater.
  • This laminated body is heated to about 150 ° C. in a vacuum state, for example. Thereafter, heating is continued while pressing each component member on the heater side under atmospheric pressure to crosslink the resin component of the resin sheet.
  • Example 1 (Production of tab wiring) As shown in FIG. 5, a black coating was formed by applying black nickel plating to a predetermined position on the front and back sides of a foil-like wiring made of copper.
  • L * (SCE) defined by the CIE 1976 color system of this black film is 7.9, a * is 1.0, b * Was -1.1.
  • Adjacent solar cells were connected to each other by using the tab wiring obtained as described above for a plurality of solar cells arranged in a matrix.
  • L * of the photovoltaic cell was 19 when measured similarly to the black film of the tab wiring.
  • the difference between L * of the black coating of the tab wiring and L * of the solar battery cell was 11.1.
  • a resin layer (layer thickness: 500 ⁇ m) made of an ethylene-vinyl acetate copolymer by a vacuum laminator on both sides of the photoelectric conversion part obtained as described above, and a surface protection substrate and a back protection substrate made of resin on both sides
  • the laminate obtained by arranging was heated to 150 ° C. in a vacuum state. Thereafter, heating was continued while pressing each component member on the heater side under atmospheric pressure to crosslink the resin component of the resin layer.
  • the solar cell module of Example 1 was obtained as described above.
  • Example 1 A solar cell module was produced in the same manner as in Example 1 except that the black film was not formed on the tab wiring.
  • the surface protection substrate 20 may be made of glass.
  • a solar cell module capable of suppressing a decrease in power generation efficiency due to a decrease in transparency of a resin layer covering a photoelectric conversion unit and a reflection of sunlight.
  • Solar cell (photoelectric conversion part) 12 Tab wiring 14 Connection wiring 16 Solar cell string (photoelectric conversion part) DESCRIPTION OF SYMBOLS 20 Surface protective substrate 24 Resin layer 26 Resin layer 28 Back surface protective substrate 30 Black-type coating film 32 Conductive connection body 34 Silver electrode 36 Film non-formation area 40 Mask 100 Solar cell module

Abstract

A solar cell module is provided with a photoelectric conversion unit, resin layers (24, 26) covering at least one surface side of the photoelectric conversion unit, and a surface protective substrate (20) and a rear surface protective substrate (28) between which the photoelectric conversion unit and the resin layers (24, 26) are sandwiched. The surface protective substrate (20) comprises a resin. The photoelectric conversion unit comprises a plurality of solar cells (10) and tab wiring (12) for electrically connecting the plurality of solar cells (10) with each other. A black coating (30) in which L*(SCE) as defined by the CIE 1976 color space is 40 or less is formed on the surface of the tab wiring (12).

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 太陽電池モジュールは、基本的な構成として、樹脂等からなる第1の基板と、第1の樹脂層と、光電変換部と、第2の樹脂層と、樹脂等からなる第2の基板と、をこの順に備えた構成になっている。つまり、光電変換部の表裏面を、第1の基板及び第1の樹脂層と、第2の樹脂層及び第2の基板とで覆うことで、光電変換部の保護を図っている。このような構成において、光電変換部においては、複数の太陽電池セルがマトリックス状に配列され、隣接する太陽電池セル同士はタブ配線によって電気的に接続される(例えば、特許文献1参照)。そして、このように、光電変換部は複数の太陽電池セル同士を複数のタブ配線によって電気的に接続し、例えば出力電圧を高めるようにしている。 The solar cell module has, as a basic configuration, a first substrate made of a resin or the like, a first resin layer, a photoelectric conversion unit, a second resin layer, a second substrate made of a resin or the like, In this order. That is, the photoelectric conversion unit is protected by covering the front and back surfaces of the photoelectric conversion unit with the first substrate and the first resin layer, and the second resin layer and the second substrate. In such a configuration, in the photoelectric conversion unit, a plurality of solar cells are arranged in a matrix, and adjacent solar cells are electrically connected by tab wiring (see, for example, Patent Document 1). In this manner, the photoelectric conversion unit electrically connects the plurality of photovoltaic cells with the plurality of tab wirings, and increases the output voltage, for example.
特開2012-134210号公報JP 2012-134210 A
 しかしながら、タブ配線は金属からなるため、上記構成によると、太陽電池モジュールを長期間使用した場合、タブ配線の構成金属を由来とする金属イオンが第1、第2の樹脂層に拡散することがある。その結果、樹脂層の透明度が低下し、太陽電池セルに到達する光量が減少し、発電効率を低下させてしまうという問題があった。そのため、例えば、樹脂層がエチレン酢酸ビニルからなり、タブ配線が銅からなる場合、タブ配線を由来とする銅イオンが樹脂層に拡散したとき、銅イオンがエチレン酢酸ビニルの分解を促進する。その結果、樹脂層が黄色みを帯びることとなる。ひいては、透明度の低下及び発電効率の低下を引き起こす。このような課題は、太陽電池モジュールの第1の基板が樹脂により形成されている場合には、顕著である。 However, since the tab wiring is made of metal, according to the above configuration, when the solar cell module is used for a long time, metal ions derived from the constituent metal of the tab wiring may diffuse into the first and second resin layers. is there. As a result, there is a problem that the transparency of the resin layer is lowered, the amount of light reaching the solar battery cell is reduced, and the power generation efficiency is lowered. Therefore, for example, when the resin layer is made of ethylene vinyl acetate and the tab wiring is made of copper, when copper ions originating from the tab wiring diffuse into the resin layer, the copper ions promote the decomposition of ethylene vinyl acetate. As a result, the resin layer becomes yellowish. As a result, it causes a decrease in transparency and a decrease in power generation efficiency. Such a problem is remarkable when the 1st board | substrate of a solar cell module is formed with resin.
 一方、タブ配線は金属光沢を有するため、タブ配線への入射光は鏡面反射する。従って、太陽電池モジュールに入射した太陽光はタブ配線により反射することとなる。そのため、例えば、太陽電池モジュールが設置されたとき、太陽電池モジュールを反射した太陽光により近くを通行する人が眩しさを感じることがあった。また、タブ配線は金属色であり、太陽電池セルは黒色であり、両者は色が異なるため、タブ配線が目立つといった一体感のない見栄えとなっていた。 On the other hand, since the tab wiring has a metallic luster, the incident light on the tab wiring is specularly reflected. Therefore, sunlight incident on the solar cell module is reflected by the tab wiring. Therefore, for example, when a solar cell module is installed, a person who passes nearby may feel dazzling due to sunlight reflected on the solar cell module. Further, the tab wiring is a metal color, the solar battery cell is black, and the two are different in color, so that the tab wiring is conspicuous and there is no sense of unity.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、光電変換部を覆う樹脂層の透明度の低下に起因する発電効率の低下、及び太陽光の反射を抑制することができる太陽電池モジュールを提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the solar cell module which can suppress the fall of the power generation efficiency resulting from the fall of the transparency of the resin layer which covers a photoelectric conversion part, and reflection of sunlight.
 本発明の第1の態様に係る太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。表面保護基板は樹脂からなり、光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有する。そして、タブ配線の表面に、CIE1976表色系で規定されるL(SCE)が40以下、の黒色系被膜が形成されている。 The solar cell module according to the first aspect of the present invention includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising. The surface protection substrate is made of a resin, and the photoelectric conversion unit has a plurality of solar cells and tab wiring that electrically connects the plurality of solar cells. And the black-type film whose L * (SCE) prescribed | regulated by the CIE1976 color system is 40 or less is formed on the surface of the tab wiring.
 本発明の第2の態様に係る太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。表面保護基板は樹脂からなり、光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有する。そして、タブ配線の表面に、太陽電池セル表面のCIE1976表色系で規定されるL(SCE)との差が15以下のL(SCE)の黒色系被膜が形成されている。 The solar cell module according to the second aspect of the present invention includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising. The surface protection substrate is made of a resin, and the photoelectric conversion unit has a plurality of solar cells and tab wiring that electrically connects the plurality of solar cells. And the black-type film of L * (SCE) whose difference with L * (SCE) prescribed | regulated by the CIE1976 colorimetric system of the photovoltaic cell surface is 15 or less is formed on the surface of the tab wiring.
 本発明の第3の態様に係る太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有し、タブ配線の表面に、CIE1976表色系で規定されるL(SCE)が40以下の黒色系被膜が形成されている。 The solar cell module according to the third aspect of the present invention includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising. The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells, and the surface of the tab wiring has L * (SCE) defined by the CIE1976 color system. ) Is 40 or less.
 本発明の第4の態様に係る太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有する。そして、タブ配線の表面に、前記太陽電池セル表面のCIE1976表色系で規定されるL(SCE)との差が10以下のL(SCE)の黒色系被膜が形成されている。 A solar cell module according to a fourth aspect of the present invention includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. And comprising. The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells. And the black-type film of L * (SCE) whose difference with L * (SCE) prescribed | regulated by the CIE1976 colorimetric system of the said photovoltaic cell surface is 10 or less is formed in the surface of a tab wiring.
図1は、本発明の一実施形態に係る太陽電池モジュールを示す上面図である。FIG. 1 is a top view showing a solar cell module according to an embodiment of the present invention. 図2は、図1に示す太陽電池モジュールの断面図である。FIG. 2 is a cross-sectional view of the solar cell module shown in FIG. 図3は、太陽電池セルとタブ配線との接続状態を示す断面図である。FIG. 3 is a cross-sectional view showing a connection state between the solar battery cell and the tab wiring. 図4は、黒色系被膜が形成されたタブ配線の断面図である。FIG. 4 is a cross-sectional view of a tab wiring on which a black film is formed. 図5は、図2に示す状態のタブ配線の(A)上面図、(B)正面図、(C)下面図である。5A is a top view, FIG. 5B is a front view, and FIG. 5C is a bottom view of the tab wiring in the state shown in FIG. 2. 図6は、太陽電池セルに接続する前のタブ配線の(a)上面図、(b)正面図、(c)下面図である。FIG. 6 is a (a) top view, (b) front view, and (c) bottom view of the tab wiring before being connected to the solar battery cell. 図7は、断面が略矩形状のタブ配線の製造工程を模式的に示す図である。FIG. 7 is a diagram schematically showing a manufacturing process of a tab wiring having a substantially rectangular cross section. 図8は、断面が円形のタブ配線の製造工程を模式的に示す図である。FIG. 8 is a diagram schematically showing a manufacturing process of a tab wiring having a circular cross section.
 以下、図面を参照して本実施形態に係る太陽電池モジュールについて説明する。図1は、本実施形態に係る太陽電池モジュール100を示す上面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が「受光面(表面)」であり、z軸の負方向側に配置される主平面が「裏面」である。なお、「受光面(表面)」とは光が主に入射する面を意味し、「裏面」とは受光面と反対側の面を意味することもある。また、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶこともある。 Hereinafter, the solar cell module according to the present embodiment will be described with reference to the drawings. FIG. 1 is a top view showing a solar cell module 100 according to the present embodiment. As shown in FIG. 1, a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined. The x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100. The z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100. Further, the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow. Of the two main surfaces forming the solar cell module 100 and parallel to the xy plane, the main plane arranged on the positive side of the z-axis is the “light receiving surface (surface)”. The main plane disposed on the negative direction side of the z-axis is the “back surface”. The “light receiving surface (front surface)” means a surface on which light is mainly incident, and the “back surface” may mean a surface opposite to the light receiving surface. Further, the positive direction side of the z-axis may be referred to as “light-receiving surface side”, and the negative direction side of the z-axis may be referred to as “back surface side”.
 また、「第1の部材上に第2の部材を設ける」等の記載では、特に限定しない限り、第1の部材および第2の部材が直接接触して設けられてもよく、第1の部材および第2の部材の間に他の部材が存在してもよい。上記の記載における「上」とは、z軸の正方向側であってもよく、z軸の負方向側であってもよい。さらに、「略」は、誤差の範囲で異なっていること、つまり実質的に同一であることを示す。 In addition, in the description such as “providing the second member on the first member”, the first member and the second member may be provided in direct contact unless otherwise specified. There may also be other members between the second member. “Upper” in the above description may be on the positive side of the z axis or on the negative side of the z axis. Furthermore, “substantially” indicates that they are different within the error range, that is, substantially the same.
 太陽電池モジュール100は、複数の太陽電池セル10、複数のタブ配線12、複数の接続配線14を含む。複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶系シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は、特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。 The solar cell module 100 includes a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power. The solar battery cell 10 is made of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP). The structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG. 1, a plurality of finger electrodes extending in the x-axis direction parallel to each other and extending in the y-axis direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar cell 10. A plurality of, for example, two bus bar electrodes are provided. The bus bar electrode connects each of the plurality of finger electrodes.
 複数の太陽電池セル10は、x-y平面上にマトリクス状に配列される。ここでは、x軸方向に4つの太陽電池セル10が並べられ、y軸方向に5つの太陽電池セル10が並べられる。なお、x軸方向に並べられる太陽電池セル10の数と、y軸方向に並べられる太陽電池セル10の数は、これらに限定されない。y軸方向に並んで配置される5つの太陽電池セル10は、タブ配線12によって直列に接続され、1つの太陽電池ストリング16が形成される。さらに、前述のごとく、x軸方向に4つの太陽電池セル10が並べられるので、y軸方向に延びた太陽電池ストリング16がx軸方向に4つ平行に並べられる。なお、太陽電池ストリング16は、複数の太陽電池セル10と複数のタブ配線12との組合せを示す。 The plurality of solar cells 10 are arranged in a matrix on the xy plane. Here, four solar cells 10 are arranged in the x-axis direction, and five solar cells 10 are arranged in the y-axis direction. In addition, the number of the photovoltaic cells 10 arranged in the x-axis direction and the number of the photovoltaic cells 10 arranged in the y-axis direction are not limited to these. The five solar cells 10 arranged side by side in the y-axis direction are connected in series by the tab wiring 12 to form one solar cell string 16. Furthermore, as described above, since the four solar cells 10 are arranged in the x-axis direction, four solar cell strings 16 extending in the y-axis direction are arranged in parallel in the x-axis direction. Note that the solar cell string 16 indicates a combination of a plurality of solar cells 10 and a plurality of tab wires 12.
 太陽電池ストリング16を形成するために、タブ配線12は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを電気的に接続する。すなわち、隣接した太陽電池セル10は互いにタブ配線12で電気的に接続されている。タブ配線12は、細長い金属箔であり、後述するように黒色系被膜が形成されている。また、タブ配線12とバスバー電極との接続には樹脂が使用される。この樹脂は導電性、非導電性いずれでもよい。後者の場合はタブ配線12とバスバー電極とを直接接触させることで電気的に接続される。また、タブ配線12とバスバー電極との接続は、樹脂ではなくハンダを用いてもよい。 In order to form the solar cell string 16, the tab wiring 12 electrically connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. That is, the adjacent solar cells 10 are electrically connected to each other by the tab wiring 12. The tab wiring 12 is an elongated metal foil, and a black film is formed as will be described later. Resin is used for connection between the tab wiring 12 and the bus bar electrode. This resin may be either conductive or non-conductive. In the latter case, the tab wiring 12 and the bus bar electrode are electrically connected by direct contact. The tab wiring 12 and the bus bar electrode may be connected by using solder instead of resin.
 さらに、太陽電池ストリング16のy軸の正方向側と負方向側において、複数の接続配線14がx軸方向に延びており、接続配線14は、隣接した2つの太陽電池ストリング16を電気的に接続する。 Further, a plurality of connection wires 14 extend in the x-axis direction on the positive and negative sides of the y-axis of the solar cell string 16, and the connection wires 14 electrically connect two adjacent solar cell strings 16. Connecting.
 以上の構成において、本実施形態の太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。そして、光電変換部は、複数の太陽電池セルと、複数の太陽電池セル同士を電気的に接続するタブ配線とを有する。さらに、タブ配線の表面に、CIE1976表色系で規定されるL(SCE)が40以下であり、a、bは、好ましくはaが-10~20、bが-20~10の黒色系被膜が形成されている。
 ここで、L(SCE)とは、正反射光を除去して色を測る方法であるSCE方式により測定した明度Lを意味する。以下において、特に示さない場合もSCE方式による数値である。
In the above configuration, the solar cell module of the present embodiment includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion unit and the resin layer. And comprising. And a photoelectric conversion part has a some photovoltaic cell and tab wiring which connects a plurality of photovoltaic cells electrically. Further, on the surface of the tab wiring, L * (SCE) defined by the CIE 1976 color system is 40 or less, and a * and b * are preferably a * of −10 to 20, and b * of −20 to Ten black coatings are formed.
Here, L * (SCE) means the lightness L * measured by the SCE method, which is a method for measuring the color by removing regular reflection light. In the following description, the values are based on the SCE method unless otherwise indicated.
 また、本実施形態の太陽電池モジュールは、光電変換部と、光電変換部の少なくとも一方の面側を覆う樹脂層と、光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備える。そして、光電変換部は、複数の太陽電池セルと、複数の太陽電池セル同士を電気的に接続するタブ配線とを有する。さらに、タブ配線の表面に、前記太陽電池セル表面のCIE1976表色系で規定されるL(SCE)との差が10以下のL(SCE)の黒色系被膜が形成されている。 Further, the solar cell module of the present embodiment includes a photoelectric conversion unit, a resin layer covering at least one surface side of the photoelectric conversion unit, a surface protection substrate and a back surface protection substrate sandwiching the photoelectric conversion unit and the resin layer. Prepare. And a photoelectric conversion part has a some photovoltaic cell and tab wiring which connects a plurality of photovoltaic cells electrically. Further, on the surface of the tab wiring, a black film of L * (SCE) having a difference of 10 or less from L * (SCE) defined by the CIE1976 color system on the surface of the solar battery cell is formed.
 太陽電池セル10及びタブ配線12の組合せ、太陽電池ストリング16のそれぞれが「光電変換部」であってもよく、複数の太陽電池ストリング16と接続配線14との組合せが「光電変換部」であってもよい。なお、太陽電池モジュール100の端縁部には、図示しないフレームが取り付けられてもよい。フレームは、太陽電池モジュール100の端縁部を保護するとともに、太陽電池モジュール100を屋根等に設置する際に利用される。 Each of the combination of the solar battery cell 10 and the tab wiring 12 and the solar battery string 16 may be a “photoelectric conversion unit”, and the combination of the plurality of solar battery strings 16 and the connection wiring 14 is a “photoelectric conversion unit”. May be. Note that a frame (not shown) may be attached to the edge portion of the solar cell module 100. The frame protects the edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
 図2は太陽電池モジュール100を示す断面図である。太陽電池モジュール100は、太陽電池セル10、タブ配線12、接続配線14、太陽電池ストリング16、表面保護基板20、樹脂層24、樹脂層26、裏面保護基板28を含む。図2の上側が裏面側に相当し、下側が受光面側に相当する。 FIG. 2 is a cross-sectional view showing the solar cell module 100. The solar cell module 100 includes a solar cell 10, a tab wire 12, a connection wire 14, a solar cell string 16, a surface protection substrate 20, a resin layer 24, a resin layer 26, and a back surface protection substrate 28. The upper side in FIG. 2 corresponds to the back surface side, and the lower side corresponds to the light receiving surface side.
 表面保護基板20は、太陽電池モジュール100の表面を保護するものであり、樹脂からなる。例えば、透光性を有するポリカーボネート樹脂が使用される。また、表面保護基板20は、厚さ1mmの矩形板状に形成されるが、これに限定されない。 The surface protection substrate 20 protects the surface of the solar cell module 100 and is made of resin. For example, a polycarbonate resin having translucency is used. Moreover, although the surface protection board | substrate 20 is formed in the rectangular plate shape of thickness 1mm, it is not limited to this.
 表面保護基板20を構成する透明樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選択される少なくとも1つを用いることができる。これらの中でも、基板20としては、ポリカーボネート(PC)を用いることが好ましい。ポリカーボネート(PC)は、耐衝撃性および透光性に優れ、太陽電池モジュール100の表面を保護するのに適しているからである。また、表面保護基板20は、その表面にアクリルウレタンなどで構成されるハードコート層を含んでもよい。さらに、表面保護基板20又はハードコート層などに紫外線吸収剤や艶調整剤、反射防止成分を含んでもよい。 Examples of the transparent resin constituting the surface protection substrate 20 include polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and polystyrene (PS). ), At least one selected from the group consisting of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Among these, it is preferable to use polycarbonate (PC) as the substrate 20. This is because polycarbonate (PC) is excellent in impact resistance and translucency and is suitable for protecting the surface of the solar cell module 100. Further, the surface protection substrate 20 may include a hard coat layer made of acrylic urethane or the like on the surface. Furthermore, the surface protective substrate 20 or the hard coat layer may contain an ultraviolet absorber, a gloss adjusting agent, and an antireflection component.
 樹脂層24は、表面保護基板20のz軸の負方向側に配置される。樹脂層24として、例えば、EVA、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。ここでは、特にEVAが使用されるとする。樹脂層24は、透光性を有するとともに、表面保護基板20におけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。 The resin layer 24 is disposed on the negative side of the z-axis of the surface protection substrate 20. As the resin layer 24, for example, a thermoplastic resin such as a resin film such as EVA, PVB (polyvinyl butyral), or polyimide is used. A thermosetting resin may be used. Here, especially EVA is used. The resin layer 24 is formed of a rectangular sheet material having translucency and having a surface having substantially the same dimensions as the xy plane of the surface protection substrate 20.
 太陽電池ストリング16は、上述のように、y軸方向に並んだ複数の太陽電池セル10が、タブ配線12によって接続されることによって形成される。また、太陽電池ストリング16のy軸の正方向側端と負方向側端に、接続配線14が接続される。このような接続配線14、太陽電池ストリング16は、樹脂層24のz軸の負方向側に配置される。また、複数の太陽電池セル10のそれぞれは、受光面および裏面を有する平板状に形成される。 As described above, the solar cell string 16 is formed by connecting a plurality of solar cells 10 arranged in the y-axis direction by the tab wiring 12. The connection wiring 14 is connected to the positive side end and the negative side end of the y axis of the solar cell string 16. Such connection wiring 14 and solar cell string 16 are arranged on the negative side of the z-axis of the resin layer 24. Each of the plurality of solar cells 10 is formed in a flat plate shape having a light receiving surface and a back surface.
 樹脂層26は、接続配線14、太陽電池ストリング16と樹脂層24のz軸の負方向側に配置される。そのため、接続配線14、太陽電池ストリング16は、樹脂層24と樹脂層26とによって密封される。具体的には、太陽電池セル10の受光面が樹脂層24と接するように配置され、太陽電池セル10の裏面が樹脂層26と接するように配置される。
樹脂層26は、樹脂層24と同一の材料で形成されてもよく、樹脂層24と異なった材料で形成されてもよい。
The resin layer 26 is disposed on the negative direction side of the z-axis of the connection wiring 14, the solar cell string 16, and the resin layer 24. Therefore, the connection wiring 14 and the solar cell string 16 are sealed by the resin layer 24 and the resin layer 26. Specifically, the light receiving surface of the solar battery cell 10 is disposed so as to contact the resin layer 24, and the back surface of the solar battery cell 10 is disposed so as to contact the resin layer 26.
The resin layer 26 may be formed of the same material as the resin layer 24, or may be formed of a material different from that of the resin layer 24.
 裏面保護基板28は、樹脂層26のz軸の負方向側に配置される。裏面保護基板28は、バックシートとして太陽電池モジュール100の裏面側を保護する。 The back surface protection substrate 28 is disposed on the negative direction side of the z axis of the resin layer 26. The back surface protection substrate 28 protects the back surface side of the solar cell module 100 as a back sheet.
 裏面保護基板28を構成する材料としては、ガラス、繊維強化プラスチック(FRP)、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選択される少なくとも1つを用いることができる。繊維強化プラスチック(FRP)としては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)などが挙げられる。なお、ガラス繊維強化プラスチック(GFRP)としては、ガラスエポキシなどが挙げられる。裏面保護基板28を形成する材料は、繊維強化プラスチック(FRP)、ポリメチルメタクリレート(PMMA)及びポリエーテルエーテルケトン(PEEK)からなる群より選択される少なくとも1つを含有することが好ましい。裏面保護基板28は、その強度を十分に確保するため、繊維強化プラスチックなど繊維強化樹脂からなることが好ましい。また、繊維強化プラスチックは、繊維が一方向に並んだUD(UniDirection)材であってもよく、それぞれ交差する繊維によって織られた織物材であってもよい。裏面保護基板28にUD材を用いる場合、繊維方向に膨張収縮しにくいため、UD材を配置する方向によっては太陽電池セル10の破損やタブ配線12の切断を抑制することができる。なお、たわみが生じにくく、軽量であるため、裏面保護基板28は炭素繊維強化プラスチックにより形成されていることが好ましい。さらに、裏面での発電の効率を上げるために、本層に酸化チタンなどを含有し反射率を向上させてもよい。また、表面にメッキ処理をしてもよい As the material constituting the back protective substrate 28, glass, fiber reinforced plastic (FRP), polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), polystyrene ( At least one selected from the group consisting of PS), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN) can be used. Examples of the fiber reinforced plastic (FRP) include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), and aramid fiber reinforced plastic (AFRP). In addition, glass epoxy etc. are mentioned as a glass fiber reinforced plastic (GFRP). The material forming the back protective substrate 28 preferably contains at least one selected from the group consisting of fiber reinforced plastic (FRP), polymethyl methacrylate (PMMA), and polyether ether ketone (PEEK). The back surface protection substrate 28 is preferably made of a fiber reinforced resin such as a fiber reinforced plastic in order to sufficiently secure the strength. Further, the fiber-reinforced plastic may be a UD (UniDirection) material in which fibers are arranged in one direction, or may be a woven material woven by fibers that intersect each other. When the UD material is used for the back surface protection substrate 28, it is difficult to expand and contract in the fiber direction. Therefore, depending on the direction in which the UD material is arranged, damage to the solar battery cell 10 and cutting of the tab wiring 12 can be suppressed. In addition, since it is hard to produce bending and it is lightweight, it is preferable that the back surface protection board | substrate 28 is formed with the carbon fiber reinforced plastics. Further, in order to increase the efficiency of power generation on the back surface, the main layer may contain titanium oxide or the like to improve the reflectance. Also, the surface may be plated.
 裏面保護基板28の厚みは、特に限定されないが、0.01mm以上10mm以下であることが好ましく、0.05mm以上5.0mm以下であることがより好ましく、0.07mm以上1.0mm以下であることがさらに好ましい。特に、繊維強化プラスチックの場合は、繊維1本の直径が厚みの下限値であることが好ましい。裏面保護基板28の厚みをこのような範囲とすることによって、裏面保護基板28のたわみを抑制し、太陽電池モジュール100をより軽量化することができる。 Although the thickness of the back surface protection substrate 28 is not particularly limited, it is preferably 0.01 mm or more and 10 mm or less, more preferably 0.05 mm or more and 5.0 mm or less, and 0.07 mm or more and 1.0 mm or less. More preferably. In particular, in the case of fiber reinforced plastic, it is preferable that the diameter of one fiber is the lower limit of thickness. By setting the thickness of the back surface protection substrate 28 in such a range, the deflection of the back surface protection substrate 28 can be suppressed, and the solar cell module 100 can be further reduced in weight.
 以上の構成において、本実施形態の太陽電池モジュールのタブ配線の表面には、所定の黒色系被膜が形成されている。以下、当該タブ配線について詳述する。 In the above configuration, a predetermined black film is formed on the surface of the tab wiring of the solar cell module of the present embodiment. Hereinafter, the tab wiring will be described in detail.
 タブ配線は金属配線(例えば銅、銀、金)によって形成されており、既述の通り、長期間使用により、この金属配線からの金属イオンが、緩衝用に設けた樹脂層、特に光入射側の樹脂層に拡散し、その透明度を低下させると発電効率を低下させてしまう虞がある。また、タブ配線は金属光沢を有することから、そのままでは太陽光が鏡面反射し、その反射光により人に眩しさを感じさせてしまうなどの問題がある。そこで、本実施形態においては、タブ配線の表面に黒色系被膜を形成し、上記のような金属イオンの拡散及び太陽光の反射を抑えている。 The tab wiring is formed of metal wiring (for example, copper, silver, gold). As described above, the metal ions from this metal wiring are provided for buffering, especially on the light incident side, after long-term use. If it diffuses into the resin layer and its transparency is lowered, the power generation efficiency may be reduced. Further, since the tab wiring has a metallic luster, there is a problem that sunlight is specularly reflected as it is, and the reflected light makes a person feel dazzling. Therefore, in the present embodiment, a black film is formed on the surface of the tab wiring to suppress the diffusion of metal ions and the reflection of sunlight as described above.
 本実施形態において、タブ配線の表面に形成される黒色系被膜は2つの態様がある。第1の態様は、CIE1976表色系で規定されるL(SCE)が40以下であり、a、bは、好ましくはaが-10~20、bが-20~10の黒色系被膜である。第2の態様は、太陽電池セル表面のCIE1976表色系で規定されるL(SCE)との差が10以下のL(SCE)の黒色系被膜である。いずれの態様においても、以下の効果を奏する。(1)タブ配線の表面に形成される黒色系被膜により、タブ配線の金属を由来とする金属イオンの樹脂層中への拡散がブロックされる。ひいては、金属イオンの拡散に起因する樹脂層の着色が抑制され、樹脂層の透明度の低下を抑えることができる。その結果、発電効率の低下を抑制することができる。(2)タブ配線の表面に形成された黒色系被膜により、タブ配線の表面の鏡面反射がなくなり、太陽光の反射が抑えられる。従って、本実施形態の太陽電池モジュールが配置された住宅の近隣住人が太陽光の反射による眩しさを感じることはない。(3)太陽電池セルもタブ配線も黒色系の色であることから、タブ配線が目立つことがなく外観上の一体感が得られる。 In the present embodiment, there are two modes for the black film formed on the surface of the tab wiring. In the first aspect, L * (SCE) defined by the CIE 1976 color system is 40 or less, and a * and b * are preferably a * of −10 to 20, and b * of −20 to 10. It is a black film. The second aspect is the black color film of L * is defined by CIE1976 colorimetric system of the solar cell surface (SCE) difference is 10 or less in the L * (SCE) with. In any aspect, the following effects are produced. (1) The diffusion of metal ions derived from the metal of the tab wiring into the resin layer is blocked by the black film formed on the surface of the tab wiring. As a result, coloring of the resin layer due to diffusion of metal ions is suppressed, and a decrease in transparency of the resin layer can be suppressed. As a result, a decrease in power generation efficiency can be suppressed. (2) The black coating formed on the surface of the tab wiring eliminates the specular reflection on the surface of the tab wiring and suppresses the reflection of sunlight. Therefore, the resident near the house where the solar cell module of this embodiment is arranged does not feel dazzling due to the reflection of sunlight. (3) Since both the solar battery cell and the tab wiring are black, the tab wiring does not stand out and a sense of unity in appearance can be obtained.
 第1の態様の黒色系被膜は、CIE1976表色系で規定されるL(SCE)が40以下、a、bは、好ましくはaが-10~20、bが-20~10の黒色系被膜である。つまり、「黒色系」とは、黒色のみならず、青色系又は緑色系の濃い色をも含む。特に、Lが40を超えると太陽光の反射が抑えらない。第1の態様の黒色系被膜は、太陽光の反射防止及びタブ配線を目立ちにくくする観点からL(SCE)が30以下であることが好ましく、aが0~15、bが-10~5であることがより好ましい。 The black film of the first embodiment has an L * (SCE) defined by the CIE 1976 color system of 40 or less, a * and b * are preferably a * of −10 to 20, and b * of −20 to 10 black coatings. In other words, “black” includes not only black but also dark blue or green. In particular, if L * exceeds 40, the reflection of sunlight cannot be suppressed. The black coating of the first aspect preferably has an L * (SCE) of 30 or less from the viewpoint of preventing reflection of sunlight and making the tab wiring inconspicuous, and a * is 0 to 15 and b * is −10. More preferably, it is ˜5.
 第2の態様の黒色系被膜は、太陽電池セル表面のCIE1976表色系で規定されるL(SCE)との差が15以下のL(SCE)の黒色系被膜である。太陽電池セル表面の色は黒色系であるが、黒色系被膜の表面が太陽電池セル表面と同程度の黒色系であれば、太陽光の反射を抑えることができるし、タブ配線も目立たなくなる。太陽電池セルのL(SCE)は通常0~30程度である。そこで、太陽電池セル及び黒色系被膜の両者の表面におけるCIE1976表色系で規定されるL(SCE)の差を15以下と規定している。当該差が、10を超えると、太陽光の反射が抑えらないし、タブ配線が目立つようになってしまう。当該L(SCE)の差は、10以下が好ましい。 The black coating of the second aspect is a black coating of L * (SCE) having a difference of 15 or less from L * (SCE) defined by the CIE 1976 color system on the solar cell surface. Although the color of the surface of the solar battery cell is black, the reflection of sunlight can be suppressed and the tab wiring becomes inconspicuous if the surface of the black film is black as much as the surface of the solar battery cell. The solar cell L * (SCE) is usually about 0-30. Therefore, the difference in L * (SCE) defined by the CIE1976 color system on the surface of both the solar battery cell and the black coating is defined as 15 or less. When the difference exceeds 10, reflection of sunlight is not suppressed, and tab wiring becomes conspicuous. The difference of L * (SCE) is preferably 10 or less.
 以下の内容は、第1及び第2の態様の黒色系被膜双方に共通する内容である。 The following content is common to both the black and white coatings of the first and second aspects.
 黒色系被膜としては、上記のようなL値又はL値の黒色系の膜が得られる材料であれば特に限定はない。例えば、黒色系クロム、黒色系クロメート、黒色系ニッケル、又は黒色系アルマイトなどの黒色系材料のめっきよりなる被膜、黒色顔料を用いた樹脂コーティングが挙げられる。中でも、黒色系クロム、黒色系クロメート、黒色系ニッケル、及び黒色系アルマイトからなる群より選択される少なくとも1つよりなることが好ましい。これらの材料を選択することにより、上記のようなL値又はL値の黒色系被膜が得られる。 The black film is not particularly limited as long as it is a material from which a black film having the above L * a * b * value or L * value can be obtained. Examples thereof include a coating made of a black material such as black chrome, black chrome, black nickel, or black alumite, and a resin coating using a black pigment. Especially, it is preferable to consist of at least 1 selected from the group which consists of black-type chromium, black-type chromate, black-type nickel, and black-type alumite. By selecting these materials, a black film having the above L * a * b * value or L * value can be obtained.
 また、タブ配線の表面において、少なくとも太陽電池セル側の面には黒色系被膜が形成されていない領域を有することが好ましい。図3に示すように、タブ配線12の太陽電池セル10側の面は、銀電極34を介して太陽電池セル10と接続される。そのため、タブ配線12と銀電極34との接着領域には、十分な接着性を確保するため黒色系被膜を形成しないことが好ましい。 Moreover, it is preferable that the surface of the tab wiring has a region where no black film is formed on at least the surface on the solar cell side. As shown in FIG. 3, the surface of the tab wiring 12 on the solar battery cell 10 side is connected to the solar battery cell 10 via the silver electrode 34. Therefore, it is preferable not to form a black film in the adhesion region between the tab wiring 12 and the silver electrode 34 in order to ensure sufficient adhesion.
 また、図4に示すように、タブ配線12には、その上面から側面に亘って黒色系被膜30が形成されるとともに、銀電極34との接着領域近傍において黒色系被膜30が形成されていない被膜非形成領域36を有する。このように、タブ配線12の表面において、黒色系被膜30が形成された領域の面積が、黒色系被膜30が形成されていない領域(被膜非形成領域36)の面積よりも大きくなるように構成することが好ましい。そのような構成とすることにより、タブ配線12の側面において樹脂層と直接接触する領域が少なくなり、樹脂層への金属イオンの拡散を十分に抑制することができる。なお、図3においては、タブ配線12と銀電極34との接着は導電性接続体32により行っている。導電性接続体32としては、例えば、導電性接着ペースト、導電性接着フィルム、異方導電性接着剤、半田めっきなどを用いることができる。 Further, as shown in FIG. 4, the tab wiring 12 is formed with the black coating 30 from the upper surface to the side surface, and is not formed with the black coating 30 in the vicinity of the adhesion region with the silver electrode 34. An uncoated region 36 is provided. As described above, the area of the region where the black coating 30 is formed on the surface of the tab wiring 12 is configured to be larger than the area of the region where the black coating 30 is not formed (the coating non-forming region 36). It is preferable to do. By adopting such a configuration, the area directly contacting the resin layer on the side surface of the tab wiring 12 is reduced, and diffusion of metal ions into the resin layer can be sufficiently suppressed. In FIG. 3, the tab wiring 12 and the silver electrode 34 are bonded by the conductive connection body 32. As the conductive connection body 32, for example, a conductive adhesive paste, a conductive adhesive film, an anisotropic conductive adhesive, solder plating, or the like can be used.
 図5は、図2における1本のタブ配線12の(A)上面図、(B)正面図、及び(C)下面図である。図5に示すように、タブ配線12の表裏において交互に黒色系被膜30、被膜非形成領域36が形成されていることが分かる。つまり、複数の太陽電池セル10を直接接続するためには、タブ配線12が太陽電池セル10の上面、次いで隣の太陽電池セル10の下面に交互に接続される。そのため、黒色系被膜30及び被膜非形成領域36がタブ配線12の上下面に交互に形成される。 FIG. 5 is a (A) top view, (B) front view, and (C) bottom view of one tab wiring 12 in FIG. As shown in FIG. 5, it can be seen that the black film 30 and the film non-formation region 36 are alternately formed on the front and back of the tab wiring 12. That is, in order to directly connect the plurality of solar cells 10, the tab wiring 12 is alternately connected to the upper surface of the solar cell 10 and then to the lower surface of the adjacent solar cell 10. Therefore, the black coating 30 and the coating non-formation region 36 are alternately formed on the upper and lower surfaces of the tab wiring 12.
 以上の黒色系被膜の膜厚は、タブ配線の金属イオンの樹脂層への拡散を防止する観点から0.01~100μmとするが好ましく、0.1~10μmとすることがより好ましい。 The film thickness of the black coating is preferably from 0.01 to 100 μm, more preferably from 0.1 to 10 μm, from the viewpoint of preventing diffusion of metal ions in the tab wiring into the resin layer.
 一方、タブ配線12を多数製造する場合、以下のようにして行うと効率的である。すなわち、図6に示すように、製造しようとするタブ配線の数本分の長さの配線を用意し、その表裏面に黒色系被膜30と被膜非形成領域36とが交互に配されるように黒色系被膜30を形成し、最後に所定の部位で切断してタブ配線を得る。具体的には、図7に示すように、まずタブ配線12の元となる長い配線を用意する(図7(A))。次に、被膜非形成領域36としようとする部分にマスク40を設け(図7(B))、この状態で、メッキにより黒色系被膜30を形成する(図7(C))。最後に、マスク40を除去し(図7(D))、図5に示す状態となるように切断すれば、図4に示す黒色系被膜30と被膜非形成領域36とを有するタブ配線12が完成する。 On the other hand, when many tab wirings 12 are manufactured, it is efficient to carry out as follows. That is, as shown in FIG. 6, wires having a length corresponding to the number of tab wires to be manufactured are prepared, and the black coating 30 and the coating non-formation regions 36 are alternately arranged on the front and back surfaces thereof. Then, a black coating 30 is formed, and finally cut at a predetermined portion to obtain a tab wiring. Specifically, as shown in FIG. 7, first, a long wiring that is the basis of the tab wiring 12 is prepared (FIG. 7A). Next, a mask 40 is provided in a portion intended to be a non-coating region 36 (FIG. 7B), and in this state, a black coating 30 is formed by plating (FIG. 7C). Finally, the mask 40 is removed (FIG. 7D), and the tab wiring 12 having the black coating 30 and the non-coating region 36 shown in FIG. Complete.
 また、上記のように、マスクを用いて黒色系被膜を形成すると、マスクを除去したときに、黒色系被膜の端部が突出するようになる(図4参照)。この状態で、太陽電池セル上の銀電極にタブ配線を接着すると、接着に使用した導電性接続体が黒色系被膜の端部と容易に接合され、Cuイオンの樹脂層への拡散を抑制することができる。また、そのような構成とするため、タブ配線の断面形状は、円形、矩形状であっても角部を除去した形状、又は丸みを帯びた形状であることが好ましい。図8に、断面が円形のタブ配線の製造工程を示す。図8における(A)~(D)は、上記図7の(A)~(D)の工程と同様である。 Also, as described above, when a black film is formed using a mask, the end of the black film protrudes when the mask is removed (see FIG. 4). In this state, when the tab wiring is bonded to the silver electrode on the solar battery cell, the conductive connector used for bonding is easily joined to the end of the black film, and the diffusion of Cu ions to the resin layer is suppressed. be able to. In order to obtain such a configuration, it is preferable that the cross-sectional shape of the tab wiring is a circular shape or a rectangular shape with a corner removed or a rounded shape. FIG. 8 shows a manufacturing process of a tab wiring having a circular cross section. (A) to (D) in FIG. 8 are the same as the steps (A) to (D) in FIG.
 以上のように、本実施形態の太陽電池モジュールにおいては、タブ配線12の表面に、黒色系被膜30を形成している。そのため、タブ配線12からの金属イオンが、太陽電池セル10の緩衝用に設けた樹脂層24、26、特に光入射側の樹脂層24に拡散するのを抑制することができる。その結果、樹脂層24、26の透明度低下が抑制され、発電効率の低下を抑制することができる。 As described above, in the solar cell module of the present embodiment, the black coating 30 is formed on the surface of the tab wiring 12. Therefore, it is possible to suppress the metal ions from the tab wiring 12 from diffusing into the resin layers 24 and 26 provided for buffering the solar battery cell 10, particularly the resin layer 24 on the light incident side. As a result, a decrease in transparency of the resin layers 24 and 26 is suppressed, and a decrease in power generation efficiency can be suppressed.
 また、太陽電池セル10は、可視光を吸収(電気に変換)するため黒色系に見えるが、タブ配線12の表面に黒色系被膜30を形成すると、太陽電池セル10もタブ配線12も同系色となる。そのため、タブ配線12が目立つことなく、太陽電池モジュール100としての外観上の一体感が増すことにもなる。 The solar battery cell 10 appears to be black because it absorbs visible light (converts it into electricity), but when the black coating 30 is formed on the surface of the tab wiring 12, the solar battery 10 and the tab wiring 12 have the same color. It becomes. Therefore, the tab wiring 12 is not conspicuous, and the sense of unity in appearance as the solar cell module 100 is also increased.
 また、タブ配線12の表面に黒色系被膜30を形成しない場合、既述の通り、タブ配線12表面が反射面として作用し、太陽光を反射する。これに対して、タブ配線12の表面に黒色系被膜30を形成すると、光を吸収するため、温度が若干上昇し、膨張することになる。その挙動は、太陽電池セル10が温度上昇して膨張する挙動と同様の挙動となるので、太陽電池セル10とタブ配線12との接続点におけるストレスを軽減することにもつながる。その点においても、太陽電池モジュール100は長期的に安定化する。 Further, when the black coating 30 is not formed on the surface of the tab wiring 12, as described above, the surface of the tab wiring 12 acts as a reflecting surface and reflects sunlight. On the other hand, when the black coating 30 is formed on the surface of the tab wiring 12, the temperature is slightly increased and expanded because the light is absorbed. The behavior is similar to the behavior in which the solar cell 10 expands as the temperature rises, and thus leads to the reduction of stress at the connection point between the solar cell 10 and the tab wiring 12. Also in that respect, the solar cell module 100 is stabilized in the long term.
 次に、太陽電池モジュール100の製造方法を説明する。
 太陽電池モジュール100は、太陽電池ストリング16を、表面保護基板20、樹脂層24、樹脂層26、裏面保護基板28をラミネートすることにより製造される。ラミネート装置では、例えばヒーター上に、表面保護基板20、樹脂層24を構成する樹脂シート、太陽電池セル10のストリング、樹脂層26を構成する樹脂シート、裏面保護基板28が順に積層される。この積層体は、例えば真空状態で150℃程度に加熱される。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続し、樹脂シートの樹脂成分を架橋させる。
Next, a method for manufacturing the solar cell module 100 will be described.
The solar cell module 100 is manufactured by laminating the solar cell string 16 with the surface protection substrate 20, the resin layer 24, the resin layer 26, and the back surface protection substrate 28. In the laminating apparatus, for example, the surface protection substrate 20, the resin sheet constituting the resin layer 24, the strings of the solar battery cells 10, the resin sheet constituting the resin layer 26, and the back surface protection substrate 28 are sequentially laminated on the heater. This laminated body is heated to about 150 ° C. in a vacuum state, for example. Thereafter, heating is continued while pressing each component member on the heater side under atmospheric pressure to crosslink the resin component of the resin sheet.
 以下、実施例により本実施形態を更に詳しく説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these.
[実施例1]
(タブ配線の作製)
 銅からなる箔状の配線に、図5に示すように、表裏の所定の位置に黒色系ニッケルめっき施すことにより黒色系被膜を形成した。コニカミノルタ製の分光測色計CM-600dを用いて測定したところ、この黒色系被膜のCIE1976表色系で規定されるL(SCE)は7.9、aは1.0、bは-1.1であった。
[Example 1]
(Production of tab wiring)
As shown in FIG. 5, a black coating was formed by applying black nickel plating to a predetermined position on the front and back sides of a foil-like wiring made of copper. When measured using a spectrocolorimeter CM-600d manufactured by Konica Minolta, L * (SCE) defined by the CIE 1976 color system of this black film is 7.9, a * is 1.0, b * Was -1.1.
(光電変換部の作製)
 マトリックス状に配列された複数の太陽電池セルに対して、上記のようにした得たタブ配線を用いて、隣接する太陽電池セル同士を接続した。なお、太陽電池セルのLは、タブ配線の黒色系被膜と同様に測定したところ19であった。つまり、タブ配線の黒色系被膜のLと太陽電池セルのLとの差は11.1であった。
(Production of photoelectric conversion part)
Adjacent solar cells were connected to each other by using the tab wiring obtained as described above for a plurality of solar cells arranged in a matrix. In addition, L * of the photovoltaic cell was 19 when measured similarly to the black film of the tab wiring. In other words, the difference between L * of the black coating of the tab wiring and L * of the solar battery cell was 11.1.
(太陽電池モジュールの組立)
 上記のようにして得た光電変換部の両面側に、真空ラミネーターによりエチレン酢酸ビニル共重合体からなる樹脂層(層厚:500μm)および、その両面側に樹脂からなる表面保護基板および裏面保護基板を配して得た積層体を真空状態で150℃に加熱した。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続し、樹脂層の樹脂成分を架橋させた。以上のようにして、実施例1の太陽電池モジュールを得た。
(Assembly of solar cell module)
A resin layer (layer thickness: 500 μm) made of an ethylene-vinyl acetate copolymer by a vacuum laminator on both sides of the photoelectric conversion part obtained as described above, and a surface protection substrate and a back protection substrate made of resin on both sides The laminate obtained by arranging was heated to 150 ° C. in a vacuum state. Thereafter, heating was continued while pressing each component member on the heater side under atmospheric pressure to crosslink the resin component of the resin layer. The solar cell module of Example 1 was obtained as described above.
[比較例1]
 タブ配線に対して黒色系被膜を形成しなかったこと以外は実施例1と同様にして太陽電池モジュールを作製した。
[Comparative Example 1]
A solar cell module was produced in the same manner as in Example 1 except that the black film was not formed on the tab wiring.
<評価>
1.変色
 各実施例・比較例で作製した太陽電池モジュールをJISC8917の耐熱性試験を行い、タブ上の樹脂の変色を目視で評価した。変色が見られたものを×、見られなかったものを○として評価した
2.太陽光の反射
 太陽電池モジュールに対して様々な角度から太陽光を入射させ、太陽光が反射するか否かを目視した。そして、太陽光の反射がほとんどなかったものを○、太陽光の反射により眩しさを感じたものを×として評価した。
3.外観
 太陽電池モジュールの表面からタブ配線を視認できるか否か評価した。タブ配線がほとんど視認できないものを○、容易に視認できたものを×として評価した。
<Evaluation>
1. Discoloration The solar cell module produced in each Example / Comparative Example was subjected to a heat resistance test of JISC8917, and the discoloration of the resin on the tab was visually evaluated. 1. Evaluation was made with x indicating discoloration and ◯ indicating no discoloration. Reflection of sunlight Sunlight was incident on the solar cell module from various angles, and whether or not sunlight was reflected was visually observed. Then, the case where there was almost no reflection of sunlight was evaluated as ◯, and the case where glare was felt due to the reflection of sunlight was evaluated as ×.
3. Appearance It was evaluated whether or not the tab wiring was visible from the surface of the solar cell module. The case where the tab wiring was hardly visible was evaluated as ○, and the case where the tab wiring was easily visible was evaluated as ×.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~5においては、いずれの評価においても優れた結果が得られた。これに対して、比較例1においては、すべての評価において実施例よりも劣っていた。以上の実施例及び比較例の比較から、タブ配線に黒色系被膜を形成することにより、金属イオンの樹脂層への拡散及び太陽光の反射が抑制されること、並びにタブ配線が視認できず外観上の一体感が得られたことが分かる。 From Table 1, in Examples 1 to 5, excellent results were obtained in any evaluation. In contrast, Comparative Example 1 was inferior to the Examples in all evaluations. From the comparison of the above examples and comparative examples, by forming a black coating on the tab wiring, diffusion of metal ions to the resin layer and reflection of sunlight are suppressed, and the tab wiring cannot be visually recognized. It can be seen that the above sense of unity was obtained.
 なお、表面保護基板20は、ガラスからなるものであってもよい。 The surface protection substrate 20 may be made of glass.
 特願2017-027903(出願日:2017年2月17日)及び特願2017-210598号(出願日:2017年10月31日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-027903 (application date: February 17, 2017) and Japanese Patent Application No. 2017-210598 (application date: October 31, 2017) are incorporated herein by reference.
 本発明によれば、光電変換部を覆う樹脂層の透明度の低下に起因する発電効率の低下、及び太陽光の反射を抑制することができる太陽電池モジュールを提供することができる。 According to the present invention, it is possible to provide a solar cell module capable of suppressing a decrease in power generation efficiency due to a decrease in transparency of a resin layer covering a photoelectric conversion unit and a reflection of sunlight.
 10  太陽電池セル(光電変換部)
 12  タブ配線
 14  接続配線
 16  太陽電池ストリング(光電変換部)
 20  表面保護基板
 24  樹脂層
 26  樹脂層
 28  裏面保護基板
 30  黒色系被膜
 32  導電性接続体
 34  銀電極
 36  被膜非形成領域
 40  マスク
 100 太陽電池モジュール
10 Solar cell (photoelectric conversion part)
12 Tab wiring 14 Connection wiring 16 Solar cell string (photoelectric conversion part)
DESCRIPTION OF SYMBOLS 20 Surface protective substrate 24 Resin layer 26 Resin layer 28 Back surface protective substrate 30 Black-type coating film 32 Conductive connection body 34 Silver electrode 36 Film non-formation area 40 Mask 100 Solar cell module

Claims (7)

  1.  光電変換部と、
     前記光電変換部の少なくとも一方の面側を覆う樹脂層と、
     前記光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備え、
     前記表面保護基板は樹脂からなり、
     前記光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有し、
     前記タブ配線の表面に、CIE1976表色系で規定されるL (SCE)が40以下の黒色系被膜が形成されている太陽電池モジュール。
    A photoelectric conversion unit;
    A resin layer covering at least one surface side of the photoelectric conversion unit;
    A surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion part and the resin layer,
    The surface protection substrate is made of resin,
    The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells,
    A solar cell module in which a black film having an L * (SCE) defined by the CIE1976 color system of 40 or less is formed on the surface of the tab wiring.
  2.  光電変換部と、
     前記光電変換部の少なくとも一方の面側を覆う樹脂層と、
     前記光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備え、
     前記表面保護基板は樹脂からなり、
     前記光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有し、
     前記タブ配線の表面に、前記太陽電池セル表面のCIE1976表色系で規定されるL (SCE)との差が15以下のL (SCE)の黒色系被膜が形成されている太陽電池モジュール。
    A photoelectric conversion unit;
    A resin layer covering at least one surface side of the photoelectric conversion unit;
    A surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion part and the resin layer,
    The surface protection substrate is made of resin,
    The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells,
    On the surface of the tub wiring, solar cell module blackish film is formed of defined by CIE1976 colorimetric system of the solar cell surface L * (SCE) difference is 15 or less in the L * a (SCE) .
  3.  前記タブ配線の表面において、少なくとも前記太陽電池セル側の面には前記黒色系被膜が形成されていない領域を有する請求項1又は2に記載の太陽電池モジュール。 3. The solar cell module according to claim 1, wherein the surface of the tab wiring has a region where the black film is not formed on at least the surface on the solar cell side.
  4.  前記タブ配線の表面において、前記黒色系被膜が形成された領域の面積が、前記黒色系被膜が形成されていない領域の面積よりも大きい請求項3に記載の太陽電池モジュール。 4. The solar cell module according to claim 3, wherein an area of the region where the black coating is formed on the surface of the tab wiring is larger than an area of the region where the black coating is not formed.
  5.  前記黒色系被膜が、黒色系クロム、黒色系クロメート、黒色系ニッケル、及び黒色系アルマイトからなる群より選択される少なくとも1つによって形成された被膜である請求項1~4のいずれか1項に記載の太陽電池モジュール。 The black film according to any one of claims 1 to 4, wherein the black film is a film formed of at least one selected from the group consisting of black chromium, black chromate, black nickel, and black alumite. The solar cell module described.
  6.  光電変換部と、
     前記光電変換部の少なくとも一方の面側を覆う樹脂層と、
     前記光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備え、
     前記光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有し、
     前記タブ配線の表面に、CIE1976表色系で規定されるL (SCE)が40以下の黒色系被膜が形成されている太陽電池モジュール。
    A photoelectric conversion unit;
    A resin layer covering at least one surface side of the photoelectric conversion unit;
    A surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion part and the resin layer,
    The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells,
    A solar cell module in which a black film having an L * (SCE) defined by the CIE1976 color system of 40 or less is formed on the surface of the tab wiring.
  7.  光電変換部と、
     前記光電変換部の少なくとも一方の面側を覆う樹脂層と、
     前記光電変換部及び樹脂層を挟持する表面保護基板と裏面保護基板と、を備え、
     前記光電変換部は、複数の太陽電池セルと、該複数の太陽電池セル同士を電気的に接続するタブ配線とを有し、
     前記タブ配線の表面に、前記太陽電池セル表面のCIE1976表色系で規定されるL (SCE)との差が15以下のL (SCE)の黒色系被膜が形成されている太陽電池モジュール。
    A photoelectric conversion unit;
    A resin layer covering at least one surface side of the photoelectric conversion unit;
    A surface protection substrate and a back surface protection substrate that sandwich the photoelectric conversion part and the resin layer,
    The photoelectric conversion unit includes a plurality of solar cells and a tab wiring that electrically connects the plurality of solar cells,
    On the surface of the tub wiring, solar cell module blackish film is formed of defined by CIE1976 colorimetric system of the solar cell surface L * (SCE) difference is 15 or less in the L * a (SCE) .
PCT/JP2018/003424 2017-02-17 2018-02-01 Solar cell module WO2018150893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568103A JPWO2018150893A1 (en) 2017-02-17 2018-02-01 Solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017027903 2017-02-17
JP2017-027903 2017-02-17
JP2017210598 2017-10-31
JP2017-210598 2017-10-31

Publications (1)

Publication Number Publication Date
WO2018150893A1 true WO2018150893A1 (en) 2018-08-23

Family

ID=63169262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003424 WO2018150893A1 (en) 2017-02-17 2018-02-01 Solar cell module

Country Status (2)

Country Link
JP (1) JPWO2018150893A1 (en)
WO (1) WO2018150893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429143A (en) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 A kind of electrode, photovoltaic cell and photovoltaic cell component for photovoltaic cell
TWI686053B (en) * 2018-11-26 2020-02-21 財團法人工業技術研究院 Solar cell panel and solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312089A (en) * 1995-05-18 1996-11-26 Fuji Electric Corp Res & Dev Ltd Roof material for solar power generation
JPH1093125A (en) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd Solar cell module
WO2013143753A1 (en) * 2012-03-28 2013-10-03 Robert Bosch Gmbh Solar module and method for producing it
JP2014017529A (en) * 2001-06-29 2014-01-30 Sharp Corp Solar cell module and method of manufacturing the same
JP2015126133A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Sealing sheet with double-sided separator, and method of manufacturing semiconductor device
JP2017034260A (en) * 2015-08-05 2017-02-09 エルジー エレクトロニクス インコーポレイティド Ribbon for solar cell panel, method of manufacturing the same, and solar cell panel
JP2017098503A (en) * 2015-11-27 2017-06-01 日立金属株式会社 Lead wire for solar battery and solar battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312089A (en) * 1995-05-18 1996-11-26 Fuji Electric Corp Res & Dev Ltd Roof material for solar power generation
JPH1093125A (en) * 1996-09-13 1998-04-10 Sanyo Electric Co Ltd Solar cell module
JP2014017529A (en) * 2001-06-29 2014-01-30 Sharp Corp Solar cell module and method of manufacturing the same
WO2013143753A1 (en) * 2012-03-28 2013-10-03 Robert Bosch Gmbh Solar module and method for producing it
JP2015126133A (en) * 2013-12-26 2015-07-06 日東電工株式会社 Sealing sheet with double-sided separator, and method of manufacturing semiconductor device
JP2017034260A (en) * 2015-08-05 2017-02-09 エルジー エレクトロニクス インコーポレイティド Ribbon for solar cell panel, method of manufacturing the same, and solar cell panel
JP2017098503A (en) * 2015-11-27 2017-06-01 日立金属株式会社 Lead wire for solar battery and solar battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686053B (en) * 2018-11-26 2020-02-21 財團法人工業技術研究院 Solar cell panel and solar cell module
CN110429143A (en) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 A kind of electrode, photovoltaic cell and photovoltaic cell component for photovoltaic cell

Also Published As

Publication number Publication date
JPWO2018150893A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US20140106497A1 (en) Solar cell module with sealing members
EP2833416B1 (en) Back contact solar cell module
WO2011036802A1 (en) Solar cell module manufacturing method and precursor for solar cell module
WO2014050087A1 (en) Solar cell module, and production method for solar cell module
TWI605606B (en) Solar battery module
US20190280136A1 (en) Solar cell module
CN106133920B (en) Solar module with aligned packages
WO2014109282A1 (en) Solar cell module
WO2018150893A1 (en) Solar cell module
US11049987B2 (en) Solar module and method of manufacturing the same
US9306081B2 (en) Solar cell module
JP6587191B2 (en) Solar cell module and method for manufacturing solar cell module
WO2018150794A1 (en) Solar cell module
JP2019041090A (en) Solar cell module
JPWO2018055863A1 (en) Wiring material for solar cell and solar cell module
CN111630666B (en) Connection member group for solar cell unit, and solar cell string and solar cell module using the connection member group
WO2018150887A1 (en) Solar cell module and interconnector for solar cell modules
JP6655828B2 (en) Solar cell module
JP2020088133A (en) Solar cell module
WO2020031574A1 (en) Solar cell module
TWI419342B (en) Package interface structure of solar photovoltaic module and method of manufacturing the same
WO2019065606A1 (en) Solar cell module
CN217387177U (en) Light photovoltaic module
JP2013012589A (en) Solar cell module
WO2019087801A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754369

Country of ref document: EP

Kind code of ref document: A1