WO2018150671A1 - Water-repellent insulator - Google Patents

Water-repellent insulator Download PDF

Info

Publication number
WO2018150671A1
WO2018150671A1 PCT/JP2017/042052 JP2017042052W WO2018150671A1 WO 2018150671 A1 WO2018150671 A1 WO 2018150671A1 JP 2017042052 W JP2017042052 W JP 2017042052W WO 2018150671 A1 WO2018150671 A1 WO 2018150671A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
insulator
repellent
electron
glaze layer
Prior art date
Application number
PCT/JP2017/042052
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2018150671A1 publication Critical patent/WO2018150671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/50Insulators or insulating bodies characterised by their form with surfaces specially treated for preserving insulating properties, e.g. for protection against moisture, dirt, or the like

Definitions

  • the present invention relates to a water-repellent insulator made of porcelain with improved antifouling properties.
  • “garbage” includes a garment tube.
  • the insulator and insulator tube surfaces are covered with ice and snow, and as above, the electrical insulation characteristics deteriorate, and the ice and snow that has landed and snowed fall down to the structure directly below. In some cases, damage may occur, such as damage, noise at the time of falling, or contact with a person and suffering damage.
  • Patent Document 1 the insulator surface is periodically washed to remove the contaminated material.
  • an insulator cleaning device can be installed at a substation or the like, but it is difficult to clean the insulator on the transmission line tower.
  • Patent Document 2 a fluororesin, a silicone resin, or the like is applied to the surface of the insulator to prevent fouling from adhering.
  • these organic substances are inevitably deteriorated due to ultraviolet rays, and there is a problem in the durability of the effect.
  • a process of further applying a resin or the like to the surface of the completed insulator and drying it is necessary the process is complicated and the cost is increased.
  • an object of the present invention is to provide a water-repellent insulator that can solve the above-mentioned problems of the prior art and can maintain a semi-permanently excellent electrical insulation characteristic and non-icing and snow characteristic without performing insulator cleaning. It is.
  • the water-repellent insulator of the present invention made to solve the above-mentioned problems is characterized in that a water-repellent glaze layer is formed on the surface of a porcelain insulator body.
  • the water repellent glaze layer is preferably a glaze layer containing a charge transfer catalyst, and the charge transfer catalyst comprises an electron donating element, an electron accepting element, and an electron donating element to an electron.
  • the charge transfer catalyst comprises an electron donating element, an electron accepting element, and an electron donating element to an electron.
  • the composite oxide crystal is preferable.
  • the water-repellent glaze layer can be formed in an annular shape on the surface of the hydrophilic glaze layer applied to the surface of the porcelain insulator body.
  • the insulator body is a hanging insulator, and the water repellent glaze layer may be formed in a ring shape on the back surface thereof, or the water repellent glaze layer may be formed in a ring shape on the upper surface thereof. it can.
  • the insulator body is a long insulator, and the water-repellent glaze layer is formed on the entire surface. In any case, it is desirable to form the water repellent glaze layer in an annular shape with a width of 50% or more of the surface leakage distance of the insulator.
  • the water-repellent insulator of the present invention has a water-repellent glaze layer formed on the surface of a porcelain insulator body. Therefore, the water-repellent insulator is excellent in water repellency on the surface, resulting in fine water droplets dispersed even when rainwater or condensation adheres. A continuous fouling film is not formed. For this reason, even if it does not perform an insulator washing
  • the water-repellent glaze layer in an annular shape, so that, for example, there is a water-repellent layer on the way wherever leakage current passes from the cap to the pin of the suspension, so that the electrical insulation characteristics can be maintained. it can.
  • the water-repellent glaze layer does not deteriorate unlike organic materials such as silicone rubber, has a semi-permanent lifetime, and can be applied in the same process as before, making the manufacturing process complicated. I don't have to.
  • 1 is a cross-sectional view showing a suspension garment according to a first embodiment of the present invention. It is sectional drawing which shows the modification of 1st Embodiment. It is sectional drawing which shows the other modification of 1st Embodiment. It is sectional drawing which shows the long stem insulator which is the 2nd Embodiment of this invention. It is a photograph which shows the surface state of the sample 0 in a water repellency test. It is a photograph which shows the surface state of the sample 1 in a water repellency test. It is a photograph which shows the surface state of the sample 2 in a water repellency test. It is a photograph which shows the surface state of the sample 3 in a water repellency test.
  • FIG. 1 is a cross-sectional view showing a suspended insulator according to the first embodiment.
  • Reference numeral 1 denotes a porcelain insulator body.
  • the suspension insulator body 1 includes a plurality of annular ribs 2 on the back surface.
  • a cap fitting 4 is fixed to the head 3 formed at the center of the upper surface with cement 5.
  • a pin fitting 6 is fixed with cement 5 at the center of the back surface.
  • a water repellent glaze layer 7 is formed over the entire surface of the insulator body 1.
  • glazes are applied to porcelain insulators, but as described above, conventional glazes are hydrophilic glazes.
  • a water-repellent glaze is used in the present invention.
  • the water-repellent glaze layer 7 is formed in an annular shape between the cap metal fitting 4 and the pin metal fitting 6 so that the leakage current flows through any path between the cap metal fitting 4 and the pin metal fitting 6.
  • the water-repellent glaze layer 7 is interposed between them.
  • the water-repellent glaze layer 7 includes a charge transfer catalyst in the glaze layer.
  • the charge transfer catalyst is a catalyst made of a composite oxide that undergoes an oxidation reaction and / or a reduction reaction by charge transfer in the catalyst, and is patented as Japanese Patent No. 3514702.
  • a cathode and an anode are formed in the form of long-distance polarization in one crystal structure, and reduction is performed at the cathode and oxidation is performed at the anode.
  • the crystal structure is a perovskite type, an electron donating element, an electron carrier element that promotes the movement of electrons from the electron donating element to the electron accepting element, a reducing center element that performs a reduction reaction by the electrons transferred to the electron accepting element, It consists of a complex oxide crystal with an oxidation center element that undergoes an oxidation reaction by holes of an electron donating element generated by electron transfer.
  • an oxidation activator and a reduction activator are included.
  • the electron donating element is molybdenum or tungsten
  • the electron accepting element is aluminum
  • the electron carrier element is zirconium
  • the reducing center element is palladium
  • the oxidation center element is platinum
  • the oxidation activator is lithium.
  • the reduction activator is an oxide of yttrium.
  • the water repellent glaze layer 7 is obtained.
  • the contact angle when water droplets were dropped on the water repellent glaze layer 7 was 100 ° or more, and it was confirmed that the contact angle of the usual insulator glaze was 50 ° or less, but the water repellency was excellent. . For this reason, even when rainwater or dew condensation adheres to the water-repellent glaze layer 7, it only becomes fine dispersed water droplets, and a continuous fouling film as in the prior art is not formed.
  • the insulating properties are maintained at a level comparable to clean conditions.
  • the thickness of the glaze layer in the insulator is about 400 ⁇ m.
  • the charge transfer catalyst described above has a small specific gravity, so it collects on the surface of the molten glaze, decomposes the fouling material and exhibits a self-cleaning effect. Excellent water repellency.
  • the water-repellent glaze layer 7 can be formed on the surface of the insulator body 1 in the same process as before.
  • the water-repellent glaze layer 7 can be formed by spraying a glaze containing a charge transfer catalyst after spraying and firing a normal glaze for ordinary insulators and baking it again. In this case, firing is required twice.
  • the porcelain constituting the insulator body 1 and the normal hydrophilic insulator glaze have a good balance of compressibility, the water-repellent glaze layer 7 is cracked during firing. There is an advantage that can be prevented from entering.
  • the water-repellent glaze layer 7 is formed on the entire surface of the suspension insulator body 1 and the back surface.
  • the electrical insulation characteristics of the insulator without maintaining the insulator cleaning are maintained at a level comparable to the cleaning condition.
  • the water-repellent glaze layer 7 does not deteriorate unlike an organic substance and has an advantage of having a semi-permanent lifetime.
  • the water-repellent glaze layer 7 can be formed only on the upper surface of the hanging insulator body 1.
  • the part where the contaminated material is likely to adhere is the surface above the back surface. Therefore, if a continuous fouling film is prevented from being formed on this surface, the electrical insulation characteristics are prevented from deteriorating. be able to.
  • the water-repellent glaze layer 7 can also be formed only on the back surface of the suspension insulator main body 1 on which the annular rib 2 is formed.
  • the surface leakage distance of the suspension is larger on the back surface with the ribs 2 than on the smooth surface. Therefore, if a water-repellent glaze layer 7 is formed on the back surface side to prevent a continuous fouling film from being formed, It is possible to prevent the deterioration of the insulation characteristics more reliably.
  • the cost can be reduced as compared with the case where the water-repellent glaze layer 7 is formed on the entire surface as shown in FIG. Can be achieved.
  • the width of the water repellent glaze layer 7 is narrowed, the effect of the present invention is reduced. Therefore, the width of the water repellent glaze layer 7 is preferably 50% or more of the surface leakage distance of the insulator. In any case, the water repellent glaze layer 7 is formed in a ring shape.
  • the insulator is a hanging insulator, but the shape of the insulator is not limited to this, and for example, as in the second embodiment shown in FIG.
  • the water-repellent glaze layer 7 can also be formed.
  • the water-repellent glaze layer 7 is formed on both the front and back surfaces of a large number of shades 9.
  • the water-repellent glaze layer 7 is formed only on the upper surface or only on the lower surface. Also good.
  • the present invention can be applied to various insulators such as a pin insulator, a line post insulator, an insulator tube, and a bushing.
  • insulators such as a pin insulator, a line post insulator, an insulator tube, and a bushing.
  • glass made of tempered glass can be applied to the surface of insects.
  • the test procedure is as follows. First, four types of water-repellent glazes were prepared by adding the above-described charge transfer catalyst in the ratios shown in Table 1 to the glazes for porcelain insulators used in the past (average). Mixing was sufficiently performed using a homogenizer. The mixing ratio of the charge transfer catalyst was 4 parts by mass, 8 parts by mass, and 16 parts by mass with respect to 100 parts by mass of the glaze for the insulator.
  • a flat test piece (size: 125 ⁇ 36 ⁇ 11 mm, unfired) made of a porcelain raw material having the same composition as the porcelain insulator was prepared, and the above-described four types of glaze were applied to the surface.
  • the glazing was performed by dipping the test piece into the glaze for 10 seconds, and the thickness was about 0.45 mm.
  • a sample (sample No. 0) in which a silicone rubber film conventionally used for insulators was formed on the surface of the test piece was also prepared.
  • the glaze no Further, glaze No. 2 and glaze no. Samples with spray coating of the glaze of No. 4 were prepared. 5 and sample no. It was set to 6. Thereafter, each sample was peeled off and fired at 1300 ° C. in a baking furnace.
  • each fired sample is a simulation of the insulator surface.
  • Water in which abrasive powder was dispersed was sprayed on the surface of each sample, and the water repellency was visually observed.
  • the abrasive powder is used to make it easy to visually observe water droplets and a water film on the sample surface, and does not affect water repellency.
  • Table 2 The surface states of Sample 0 to Sample 6 are shown in the photographs in FIGS.
  • the effect of improving the fouling withstand voltage according to the present invention can be confirmed by performing an artificial fouling AC voltage test based on JEC-0201-1988 “AC voltage insulation test” and using a test method in fixed mist. Since polymer insulators using silicone rubbers having a higher resistance to fouling than porcelain insulators when evaluated in this test method, even in the case of water repellent insulators having the same level of water repellency, the same high fouling is obtained. It can be expected to show a withstand voltage characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulators (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides a highly durable water-repellent insulator that is obtained by forming a water-repellent glaze layer 7 on the surface of an insulator body 1 made of porcelain. This water-repellent glaze layer 7 contains therein a charge-transfer-type catalyst. The charge-transfer-type catalyst preferably comprises a composite oxide crystal formed of: an electron-donating element; an electron-receiving element; an electron-carrying element which promotes electron transfer from the electron-donating element to the electron-receiving element; a reduction central element which performs reduction reaction using the electron transferred to the electron-receiving element; and an oxidation central element which performs oxidation reaction using an electron hole formed as a result of the transfer of the electron.

Description

撥水性がいしWater repellent insulator
 本発明は、耐汚損特性を向上させた磁器製の撥水性がいしに関するものである。なお本明細書において、「がいし」にはがい管も含まれるものとする。 The present invention relates to a water-repellent insulator made of porcelain with improved antifouling properties. In this specification, “garbage” includes a garment tube.
 電気絶縁用途で、送電線や配電線、変電用機器に用いられる磁器製のがいし・がい管の表面は、親水性の釉薬で覆われている。がいしは通常屋外で用いられるため、汚損物の付着が避けられず、雨水や結露などにより表面が湿潤すると、がいし表面に連続した汚損被膜が形成され、電気絶縁特性が低下することとなる。汚損物に塩分が含まれる場合には、この傾向が更に著しくなり、清浄条件に比べてがいしの電気絶縁特性が1/10以下になることがある。 ∙ Surfaces of porcelain insulators and insulators used in electrical insulation applications for power transmission lines, distribution lines, and transformer equipment are covered with hydrophilic glaze. Since insulators are usually used outdoors, adhesion of pollutants is unavoidable, and when the surface is wet due to rain water or condensation, a continuous fouling film is formed on the insulator surface, and the electrical insulation characteristics deteriorate. This tendency becomes more pronounced when the contaminated material contains salt, and the electrical insulation characteristics of the insulator may be 1/10 or less compared to the clean condition.
 豪雪地域で使用される場合には、がいし・がい管表面が氷雪に覆われ、上述と同様に電気絶縁特性が低下したり、着氷・冠雪した氷雪が落下し、直下の構造物への損傷、落下時の騒音、人物に接触し損害を被るなどの被害を受ける場合もある。 When used in heavy snowfall areas, the insulator and insulator tube surfaces are covered with ice and snow, and as above, the electrical insulation characteristics deteriorate, and the ice and snow that has landed and snowed fall down to the structure directly below. In some cases, damage may occur, such as damage, noise at the time of falling, or contact with a person and suffering damage.
 このように電気絶縁特性が低下すると、がいし表面において局部アーク放電が発生し、騒音を発したり、電波障害を招くなど、付近の住民からクレームを受ける恐れがある。またさらに汚損が進行すると、がいし全面がフラッシオーバして絶縁機能が失われてしまい、電力供給に支障をきたす可能性もある。 If the electrical insulation characteristics deteriorate in this way, local arc discharge may occur on the insulator surface, which may cause noise or cause radio interference, resulting in complaints from nearby residents. Further, when the contamination progresses, the insulator is flushed over and the insulation function is lost, which may hinder the power supply.
 そこで従来から特許文献1に示すように、がいし表面を定期的に洗浄して汚損物を洗い落とすことが行われている。しかし変電所などにはがいし洗浄装置を設置することができるが、送電線鉄塔上のがいしについては洗浄作業は困難である。 Therefore, conventionally, as shown in Patent Document 1, the insulator surface is periodically washed to remove the contaminated material. However, an insulator cleaning device can be installed at a substation or the like, but it is difficult to clean the insulator on the transmission line tower.
 特に豪雪地帯において、がいし・がい管に着氷・冠雪が著しい場合には、鉄塔アーム、機器上に上り、あるいは高所作業車などを用いて、着氷雪がいし・がい管類について、劣悪な環境下での除去作業をともない、その作業コストは甚大になる。 Especially in heavy snowfall areas, when icing and snowfall are marked on the insulators and insulator pipes, the environment is poor with respect to the icy snow insulators and insulator pipes by using a tower arm, climbing on equipment, or using an aerial work vehicle. With the removal work below, the work cost is enormous.
 また特許文献2に示すように、がいしの表面にフッ素樹脂やシリコーン樹脂等を塗布して汚損物の付着を防止することも行われている。しかし、これらの有機物は紫外線により次第に劣化することが避けられず、効果の永続性に問題がある。しかも完成したがいしの表面にさらに樹脂等を塗布し、乾燥する工程が必要であるから、工程が煩雑でコストアップを招くこととなる。 Also, as shown in Patent Document 2, a fluororesin, a silicone resin, or the like is applied to the surface of the insulator to prevent fouling from adhering. However, these organic substances are inevitably deteriorated due to ultraviolet rays, and there is a problem in the durability of the effect. Moreover, since a process of further applying a resin or the like to the surface of the completed insulator and drying it is necessary, the process is complicated and the cost is increased.
特開2011-233393号公報JP 2011-233393 A 特開昭8-148049号公報JP-A-8-148049
 したがって本発明の目的は上記した従来技術の問題点を解決し、がいし洗浄を行わなくても半永久的に優れた電気絶縁特性および難着氷雪特性を維持することができる撥水性がいしを提供することである。 Accordingly, an object of the present invention is to provide a water-repellent insulator that can solve the above-mentioned problems of the prior art and can maintain a semi-permanently excellent electrical insulation characteristic and non-icing and snow characteristic without performing insulator cleaning. It is.
 上記の課題を解決するためになされた本発明の撥水性がいしは、磁器製のがいし本体の表面に、撥水性釉薬層を形成したことを特徴とするものである。 The water-repellent insulator of the present invention made to solve the above-mentioned problems is characterized in that a water-repellent glaze layer is formed on the surface of a porcelain insulator body.
 なお、前記撥水性釉薬層が、釉薬層中に電荷移動型触媒を含有させたものであることが好ましく、前記電荷移動型触媒が、電子供与元素と、電子受容元素と、電子供与元素から電子受容元素への電子の移動を促進する電子キャリア元素と、電子受容元素に移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなることが好ましい。 The water repellent glaze layer is preferably a glaze layer containing a charge transfer catalyst, and the charge transfer catalyst comprises an electron donating element, an electron accepting element, and an electron donating element to an electron. An electron carrier element that promotes electron transfer to the acceptor element, a reduction center element that performs a reduction reaction by electrons transferred to the electron acceptor element, and an oxidation center element that performs an oxidation reaction by holes generated by the electron transfer The composite oxide crystal is preferable.
 なお、前記撥水性釉薬層を、磁器製のがいし本体の表面に施釉された親水性釉薬層の表面に環状に形成することができる。好ましい実施形態においては、がいし本体が懸垂がいしであり、前記撥水性釉薬層をその裏側の表面に環状に形成したり、前記撥水性釉薬層をその上側の表面に環状に形成したりすることができる。他の実施形態においては、がいし本体が長幹がいしであり、前記撥水性釉薬層をその表面全体に形成した。いずれの場合にも、前記撥水性釉薬層を、がいしの表面漏洩距離の50%以上の幅で環状に形成することが望ましい。 The water-repellent glaze layer can be formed in an annular shape on the surface of the hydrophilic glaze layer applied to the surface of the porcelain insulator body. In a preferred embodiment, the insulator body is a hanging insulator, and the water repellent glaze layer may be formed in a ring shape on the back surface thereof, or the water repellent glaze layer may be formed in a ring shape on the upper surface thereof. it can. In another embodiment, the insulator body is a long insulator, and the water-repellent glaze layer is formed on the entire surface. In any case, it is desirable to form the water repellent glaze layer in an annular shape with a width of 50% or more of the surface leakage distance of the insulator.
 本発明の撥水性がいしは、磁器製のがいし本体の表面に撥水性釉薬層を形成したものであるから表面の撥水性に優れ、雨水や結露などが付着した場合にも分散した微小な水滴となり、連続した汚損被膜が形成されることがない。このため、がいし洗浄を行わなくてもがいしの電気絶縁特性は、清浄条件と遜色ないレベルに維持される。更には、撥水性釉薬表面は、着氷雪しにくく、除去作業を簡素化できる。撥水性釉薬層環状に形成することが好ましく、これにより例えば懸垂がいしのキャップからピンまで漏洩電流がどこを通っても必ず途中に撥水層があることになり、電気絶縁特性を維持することができる。 The water-repellent insulator of the present invention has a water-repellent glaze layer formed on the surface of a porcelain insulator body. Therefore, the water-repellent insulator is excellent in water repellency on the surface, resulting in fine water droplets dispersed even when rainwater or condensation adheres. A continuous fouling film is not formed. For this reason, even if it does not perform an insulator washing | cleaning, the electrical insulation characteristic of an insulator is maintained on the level comparable with a clean condition. Furthermore, the surface of the water-repellent glaze is less likely to icy and snow, and the removal operation can be simplified. It is preferable to form the water-repellent glaze layer in an annular shape, so that, for example, there is a water-repellent layer on the way wherever leakage current passes from the cap to the pin of the suspension, so that the electrical insulation characteristics can be maintained. it can.
 しかも撥水性釉薬層はシリコーンゴム等の有機物とは異なり劣化することがなく、半永久的な寿命を備えたものであるうえ、従来と同様の工程で施釉することができるので、製造工程が煩雑化することもない。 In addition, the water-repellent glaze layer does not deteriorate unlike organic materials such as silicone rubber, has a semi-permanent lifetime, and can be applied in the same process as before, making the manufacturing process complicated. I don't have to.
本発明の第1の実施形態である懸垂がいしを示す断面図である。1 is a cross-sectional view showing a suspension garment according to a first embodiment of the present invention. 第1の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 1st Embodiment. 第1の実施形態の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of 1st Embodiment. 本発明の第2の実施形態である長幹がいしを示す断面図である。It is sectional drawing which shows the long stem insulator which is the 2nd Embodiment of this invention. 撥水性試験におけるサンプル0の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 0 in a water repellency test. 撥水性試験におけるサンプル1の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 1 in a water repellency test. 撥水性試験におけるサンプル2の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 2 in a water repellency test. 撥水性試験におけるサンプル3の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 3 in a water repellency test. 撥水性試験におけるサンプル4の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 4 in a water repellency test. 撥水性試験におけるサンプル5の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 5 in a water repellency test. 撥水性試験におけるサンプル6の表面状態を示す写真である。It is a photograph which shows the surface state of the sample 6 in a water repellency test.
 以下に本発明の好ましい実施形態を説明する。
 図1は第1の実施形態の懸垂がいしを示す断面図であり、1は磁器製のがいし本体である。懸垂がいしのがいし本体1は裏面に複数の環状のリブ2を備えている。上面中央に形成された頭部3にはキャップ金具4がセメント5により固定されている。また裏面の中央にはピン金具6がセメント5により固定されている。ピン金具6を下側の懸垂がいしのキャップ金具4に接続することにより、多数の懸垂がいしを直列に連結して使用されるものである。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view showing a suspended insulator according to the first embodiment. Reference numeral 1 denotes a porcelain insulator body. The suspension insulator body 1 includes a plurality of annular ribs 2 on the back surface. A cap fitting 4 is fixed to the head 3 formed at the center of the upper surface with cement 5. A pin fitting 6 is fixed with cement 5 at the center of the back surface. By connecting the pin bracket 6 to the cap bracket 4 of the lower suspension insulator, a large number of suspension insulators are connected in series.
 図1に示すように、がいし本体1の表面には撥水性釉薬層7が全面にわたり形成されている。従来から磁器製のがいしには釉薬が施釉されているが、前記したように従来の釉薬は親水性の釉薬である。これに対して本発明では撥水性釉薬が用いられる。なお、この撥水性釉薬層7は懸垂がいしのキャップ金具4とピン金具6の間に環状に形成され、漏洩電流がキャップ金具4とピン金具6の間のどの経路を流れる場合にも、必ず途中に撥水性釉薬層7が介在するようにしておく。 As shown in FIG. 1, a water repellent glaze layer 7 is formed over the entire surface of the insulator body 1. Conventionally, glazes are applied to porcelain insulators, but as described above, conventional glazes are hydrophilic glazes. On the other hand, a water-repellent glaze is used in the present invention. The water-repellent glaze layer 7 is formed in an annular shape between the cap metal fitting 4 and the pin metal fitting 6 so that the leakage current flows through any path between the cap metal fitting 4 and the pin metal fitting 6. The water-repellent glaze layer 7 is interposed between them.
 撥水性釉薬層7は、釉薬層中に電荷移動型触媒を含有させたものである。電荷移動型触媒は触媒内での電荷移動により酸化反応及び/または還元反応を行う複合酸化物からなる触媒であり、特許第3514702号として特許されている。 The water-repellent glaze layer 7 includes a charge transfer catalyst in the glaze layer. The charge transfer catalyst is a catalyst made of a composite oxide that undergoes an oxidation reaction and / or a reduction reaction by charge transfer in the catalyst, and is patented as Japanese Patent No. 3514702.
 具体的には、1つの結晶構造の中に陰極と陽極とを長距離分極の形で形成し、陰極で還元、陽極で酸化を行わせるものである。結晶構造はペロブスカイト型であり、電子供与元素と、電子供与元素から電子受容元素への電子の移動を促進する電子キャリア元素と、電子受容元素へ移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなる。さらにこのほか、酸化活性化剤と、還元活性化剤とを含む。 Specifically, a cathode and an anode are formed in the form of long-distance polarization in one crystal structure, and reduction is performed at the cathode and oxidation is performed at the anode. The crystal structure is a perovskite type, an electron donating element, an electron carrier element that promotes the movement of electrons from the electron donating element to the electron accepting element, a reducing center element that performs a reduction reaction by the electrons transferred to the electron accepting element, It consists of a complex oxide crystal with an oxidation center element that undergoes an oxidation reaction by holes of an electron donating element generated by electron transfer. In addition, an oxidation activator and a reduction activator are included.
 前記した電子供与元素はモリブデンまたはタングステンであり、電子受容元素はアルミニウムであり、電子キャリア元素はジルコニウムであり、還元中心元素はパラジウムであり、酸化中心元素は白金であり、酸化活性化剤はリチウム酸化物であり、還元活性化剤はイットリウムの酸化物である。 The electron donating element is molybdenum or tungsten, the electron accepting element is aluminum, the electron carrier element is zirconium, the reducing center element is palladium, the oxidation center element is platinum, and the oxidation activator is lithium. The reduction activator is an oxide of yttrium.
 上記した電荷移動型触媒によれば、外部から近づいた塩基性の汚れは酸化中心元素の位置(酸化反応点)で酸化分解され、外部から近づいた酸性の汚れは還元中心元素の位置(還元反応点)で還元分解される。 According to the charge transfer catalyst described above, basic dirt approaching from the outside is oxidatively decomposed at the position of the oxidation center element (oxidation reaction point), and acidic dirt approaching from the outside is located at the position of the reduction center element (reduction reaction). Point).
 上記のような電荷移動型触媒を3μm以下に粉砕し、従来から用いられているがいし用の釉薬中に4~10質量%混合して定法で施釉焼成すれば、撥水性釉薬層7が得られる。この撥水性釉薬層7に水滴を滴下したときの接触角は100°以上であり、通常のがいし用釉薬の接触角が50°以下であるのに対して、撥水性に優れることが確認された。このため撥水性釉薬層7に雨水や結露などが付着した場合にも、分散した微小な水滴となるだけであり、従来のような連続した汚損被膜が形成されることがないから、がいしの電気絶縁特性は、清浄条件と遜色ないレベルに維持される。 When the charge transfer catalyst as described above is pulverized to 3 μm or less, mixed with 4 to 10% by mass in a conventionally used glaze, and glazed and fired by a conventional method, the water repellent glaze layer 7 is obtained. . The contact angle when water droplets were dropped on the water repellent glaze layer 7 was 100 ° or more, and it was confirmed that the contact angle of the usual insulator glaze was 50 ° or less, but the water repellency was excellent. . For this reason, even when rainwater or dew condensation adheres to the water-repellent glaze layer 7, it only becomes fine dispersed water droplets, and a continuous fouling film as in the prior art is not formed. The insulating properties are maintained at a level comparable to clean conditions.
 がいしにおける釉薬層の厚さは400μm程度であるが、上記した電荷移動型触媒は比重が小さいので溶融した釉薬の表面に集まり、汚損物を分解してセルフクリーニング効果を発揮するとともに、上記したように優れた撥水性を示す。 The thickness of the glaze layer in the insulator is about 400 μm. However, the charge transfer catalyst described above has a small specific gravity, so it collects on the surface of the molten glaze, decomposes the fouling material and exhibits a self-cleaning effect. Excellent water repellency.
 このように通常のがいし用釉薬に電荷移動型触媒を混合して施釉焼成すれば、従来と同様の工程でがいし本体1の表面に撥水性釉薬層7を形成することができる。また、通常のがいし用の親水性釉薬が施釉焼成された上から、電荷移動型触媒を含有させた釉薬をスプレーし、再度焼成して撥水性釉薬層7を形成することもできる。この場合には2度の焼成が必要となるが、がいし本体1を構成する磁器と通常の親水性のがいし用釉薬とは圧縮率のバランスがよいため、焼成時に撥水性釉薬層7にクラックが入ることを防止できる利点がある。 Thus, if a charge transfer type catalyst is mixed with a normal insulator glaze and glazed and fired, the water-repellent glaze layer 7 can be formed on the surface of the insulator body 1 in the same process as before. Alternatively, the water-repellent glaze layer 7 can be formed by spraying a glaze containing a charge transfer catalyst after spraying and firing a normal glaze for ordinary insulators and baking it again. In this case, firing is required twice. However, since the porcelain constituting the insulator body 1 and the normal hydrophilic insulator glaze have a good balance of compressibility, the water-repellent glaze layer 7 is cracked during firing. There is an advantage that can be prevented from entering.
 図1に示す第1の実施形態では、懸垂がいしのがいし本体1の表面及び裏面の全体に撥水性釉薬層7を形成した。この結果、汚損被膜の形成が完全に防止できるので、がいし洗浄を行わなくてもがいしの電気絶縁特性は、清浄条件と遜色ないレベルに維持される。更に、着氷雪しにくく、除去作業を簡素化できる。しかも撥水性釉薬層7は有機物とは異なり劣化することがなく、半永久的な寿命を備える利点がある。 In the first embodiment shown in FIG. 1, the water-repellent glaze layer 7 is formed on the entire surface of the suspension insulator body 1 and the back surface. As a result, since the formation of the fouling film can be completely prevented, the electrical insulation characteristics of the insulator without maintaining the insulator cleaning are maintained at a level comparable to the cleaning condition. Furthermore, it is difficult for icing and snowing, and the removal operation can be simplified. Moreover, the water-repellent glaze layer 7 does not deteriorate unlike an organic substance and has an advantage of having a semi-permanent lifetime.
 しかし図2に示す変形例のように、懸垂がいしのがいし本体1の上側の表面のみに撥水性釉薬層7を形成することもできる。懸垂がいしの場合には、汚損物が付着し易い部位は裏面よりも上側の表面であるから、この表面に連続した汚損被膜が形成されることを防止すれば、電気絶縁特性の低下を防止することができる。 However, as in the modification shown in FIG. 2, the water-repellent glaze layer 7 can be formed only on the upper surface of the hanging insulator body 1. In the case of a suspended insulator, the part where the contaminated material is likely to adhere is the surface above the back surface. Therefore, if a continuous fouling film is prevented from being formed on this surface, the electrical insulation characteristics are prevented from deteriorating. be able to.
 また図3に示す他の変形例のように、懸垂がいしのがいし本体1の環状のリブ2が形成された裏面のみに撥水性釉薬層7を形成することもできる。懸垂がいしの表面漏洩距離は平滑な表面よりもリブ2のある裏面の方が大きいので、裏面側に撥水性釉薬層7を形成して連続した汚損被膜が形成されることを防止すれば、電気絶縁特性の低下をより確実に防止することができる。 3, the water-repellent glaze layer 7 can also be formed only on the back surface of the suspension insulator main body 1 on which the annular rib 2 is formed. The surface leakage distance of the suspension is larger on the back surface with the ribs 2 than on the smooth surface. Therefore, if a water-repellent glaze layer 7 is formed on the back surface side to prevent a continuous fouling film from being formed, It is possible to prevent the deterioration of the insulation characteristics more reliably.
 図2、図3の変形例のように、部分的に撥水性釉薬層7を形成するようにすれば、図1に示すように全面に撥水性釉薬層7を形成する場合よりも、コストダウンを図ることができる。しかし撥水性釉薬層7の幅が狭くなると本発明の効果が低下するため、撥水性釉薬層7の幅はがいしの表面漏洩距離の50%以上とすることが好ましい。いずれの場合にも、撥水性釉薬層7は環状に形成するものとする。 If the water-repellent glaze layer 7 is partially formed as in the modified examples of FIGS. 2 and 3, the cost can be reduced as compared with the case where the water-repellent glaze layer 7 is formed on the entire surface as shown in FIG. Can be achieved. However, if the width of the water repellent glaze layer 7 is narrowed, the effect of the present invention is reduced. Therefore, the width of the water repellent glaze layer 7 is preferably 50% or more of the surface leakage distance of the insulator. In any case, the water repellent glaze layer 7 is formed in a ring shape.
 上記した実施形態ではがいしは懸垂がいしであったが、がいしの形状はこれに限定されるものではなく、例えば図4に示す第2の実施形態のように、長幹がいしのがいし本体8の表面に、撥水性釉薬層7を形成することもできる。図4では多数の笠9の表裏両面に撥水性釉薬層7を形成したが、前記した実施形態と同様に、上側の表面のみ、あるいは下側の表面のみに撥水性釉薬層7を形成してもよい。 In the above-described embodiment, the insulator is a hanging insulator, but the shape of the insulator is not limited to this, and for example, as in the second embodiment shown in FIG. In addition, the water-repellent glaze layer 7 can also be formed. In FIG. 4, the water-repellent glaze layer 7 is formed on both the front and back surfaces of a large number of shades 9. However, as in the above-described embodiment, the water-repellent glaze layer 7 is formed only on the upper surface or only on the lower surface. Also good.
 このほか、ピンがいし、ラインポストがいし、がい管、ブッシングなど、本発明は様々ながいしに適用することができる。加えて、強化ガラスで作られたガラスがいし類の表面にも適用が可能である。 In addition, the present invention can be applied to various insulators such as a pin insulator, a line post insulator, an insulator tube, and a bushing. In addition, glass made of tempered glass can be applied to the surface of insects.
 以下に、本発明で使用する撥水性釉薬の撥水性評価試験の結果を示す。試験の手順は次の通りである。
 まず、従来から使用されている磁器がいし用の釉薬(並釉)に、前記した電荷移動型触媒を表1に示す比率で加えて、4種類の撥水性釉薬を調製した。混合はホモジナイザーを用いて十分に行った。電荷移動型触媒の混合率は、がいし用の釉薬100質量部に対して外配で、4質量部、8質量部、16質量部とした。
Below, the result of the water-repellent evaluation test of the water-repellent glaze used by this invention is shown. The test procedure is as follows.
First, four types of water-repellent glazes were prepared by adding the above-described charge transfer catalyst in the ratios shown in Table 1 to the glazes for porcelain insulators used in the past (average). Mixing was sufficiently performed using a homogenizer. The mixing ratio of the charge transfer catalyst was 4 parts by mass, 8 parts by mass, and 16 parts by mass with respect to 100 parts by mass of the glaze for the insulator.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 次に、磁器がいしと同一組成の磁器原料からなる平板状のテストピース(サイズ:125×36×11mm、未焼成)を作成し、その表面に上記した4種類の釉薬を施釉した。施釉は、テストピースを釉薬中に10秒間ディッピングする方法で行い、釉厚は約0.45mmであった。また、比較のために、テストピースの表面に、従来からがいしに用いられているシリコーンゴムの皮膜を形成したサンプル(サンプルNo.0)も作成した。このほか、上記した釉薬No.1(並釉)を施釉した表面にさらに、釉薬No.2と釉薬No.4の釉薬をスプレー塗布したサンプルを作成し、これらをサンプルNo.5とサンプルNo.6とした。その後に各サンプルをがいし焼成炉で1300℃で焼成した。 Next, a flat test piece (size: 125 × 36 × 11 mm, unfired) made of a porcelain raw material having the same composition as the porcelain insulator was prepared, and the above-described four types of glaze were applied to the surface. The glazing was performed by dipping the test piece into the glaze for 10 seconds, and the thickness was about 0.45 mm. For comparison, a sample (sample No. 0) in which a silicone rubber film conventionally used for insulators was formed on the surface of the test piece was also prepared. In addition, the glaze no. Further, glaze No. 2 and glaze no. Samples with spray coating of the glaze of No. 4 were prepared. 5 and sample no. It was set to 6. Thereafter, each sample was peeled off and fired at 1300 ° C. in a baking furnace.
 焼成された各サンプルの表面はがいし表面を模擬したものである。砥の粉を分散させた水を各サンプルの表面に噴霧し、撥水性を目視観察した。砥の粉は、サンプル表面の水滴や水膜を目視し易くするために用いられるものであり、撥水性に影響するものではない。その結果を表2に示す。またサンプル0からサンプル6の表面状態を、図5-図11の写真に示した。 The surface of each fired sample is a simulation of the insulator surface. Water in which abrasive powder was dispersed was sprayed on the surface of each sample, and the water repellency was visually observed. The abrasive powder is used to make it easy to visually observe water droplets and a water film on the sample surface, and does not affect water repellency. The results are shown in Table 2. The surface states of Sample 0 to Sample 6 are shown in the photographs in FIGS.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 この撥水性評価試験の結果、本発明に用いた撥水性釉薬は、従来のシリコーンゴムと同等以上の優れた撥水性を示すことが確認された。この撥水性評価試験は平板状のテストピースを用いて行ったが、がいし表面においても同一の結果が得られることはいうまでもない。 As a result of this water repellency evaluation test, it was confirmed that the water repellant glaze used in the present invention showed excellent water repellency equivalent to or better than that of conventional silicone rubber. This water repellency evaluation test was performed using a flat test piece, but it goes without saying that the same result can be obtained even on the surface of the insulator.
 なお、本発明の汚損耐電圧向上の効果は、JEC-0201-1988「交流電圧絶縁試験」に基づいて人工汚損交流電圧試験を行い、定印霧中試験法により確認することができ、表面撥水性を有するシリコーンゴムを用いたポリマーがいしは、本試験法で評価した場合、磁器がいしに比べ高い汚損耐電圧を有することから、同程度の撥水性を有する撥水がいしの場合でも、同様に高い汚損耐電圧特性を示すことが期待できる。 The effect of improving the fouling withstand voltage according to the present invention can be confirmed by performing an artificial fouling AC voltage test based on JEC-0201-1988 “AC voltage insulation test” and using a test method in fixed mist. Since polymer insulators using silicone rubbers having a higher resistance to fouling than porcelain insulators when evaluated in this test method, even in the case of water repellent insulators having the same level of water repellency, the same high fouling is obtained. It can be expected to show a withstand voltage characteristic.
 1 がいし本体
 2 リブ
 3 頭部
 4 キャップ金具
 5 セメント
 6 ピン金具
 7 撥水性釉薬層
 8 がいし本体
 9 笠
 
DESCRIPTION OF SYMBOLS 1 insulator main body 2 rib 3 head 4 cap metal fitting 5 cement 6 pin metal fitting 7 water repellent glaze layer 8 insulator main body 9 cap

Claims (8)

  1.  磁器製のがいし本体の表面に、撥水性釉薬層を形成したことを特徴とする撥水性がいし。 A water-repellent insulator characterized in that a water-repellent glaze layer is formed on the surface of a porcelain insulator body.
  2.  前記撥水性釉薬層が、釉薬層中に電荷移動型触媒を含有させたものであることを特徴とする請求項1に記載の撥水性がいし。 The water-repellent insulator according to claim 1, wherein the water-repellent glaze layer contains a charge transfer catalyst in the glaze layer.
  3.  前記電荷移動型触媒が、電子供与元素と、電子受容元素と、電子供与元素から電子受容元素への電子の移動を促進する電子キャリア元素と、電子受容元素に移動した電子により還元反応を行う還元中心元素と、電子の移動により生じた正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなることを特徴とする請求項2に記載の撥水性がいし。 Reduction in which the charge transfer catalyst performs a reduction reaction with an electron donating element, an electron accepting element, an electron carrier element that promotes electron transfer from the electron donating element to the electron accepting element, and electrons transferred to the electron accepting element. The water repellency insulator according to claim 2, comprising a composite oxide crystal of a central element and an oxidation central element that undergoes an oxidation reaction by holes generated by electron movement.
  4.  前記撥水性釉薬層を、磁器製のがいし本体の表面に施釉された親水性釉薬層の表面に環状に形成したことを特徴とする請求項1~3のいずれかに記載の撥水性がいし。 4. The water repellent insulator according to claim 1, wherein the water repellent glaze layer is formed in an annular shape on the surface of a hydrophilic glaze layer applied to the surface of a porcelain insulator body.
  5.  がいし本体が懸垂がいしであり、前記撥水性釉薬層をその裏側の表面に環状に形成したことを特徴とする請求項1~4のいずれかに記載の撥水性がいし。 The water-repellent insulator according to any one of claims 1 to 4, wherein the insulator body is a suspended insulator, and the water-repellent glaze layer is formed in an annular shape on the back surface thereof.
  6.  がいし本体が懸垂がいしであり、前記撥水性釉薬層をその上側の表面に環状に形成したことを特徴とする請求項1~4のいずれかに記載の撥水性がいし。 The water repellent insulator according to any one of claims 1 to 4, wherein the insulator body is a suspended insulator, and the water repellent glaze layer is formed in an annular shape on the upper surface thereof.
  7.  がいし本体が長幹がいしであり、前記撥水性釉薬層をその表面全体に環状に形成したことを特徴とする請求項1~4のいずれかに記載の撥水性がいし。 The water repellent insulator according to any one of claims 1 to 4, wherein a main body of the insulator is a long insulator, and the water repellent glaze layer is formed in an annular shape on the entire surface.
  8.  前記撥水性釉薬層を、がいしの表面漏洩距離の50%以上の幅で環状に形成したことを特徴とする請求項1~7のいずれかに記載の撥水性がいし。 The water repellent insulator according to any one of claims 1 to 7, wherein the water repellent glaze layer is formed in an annular shape with a width of 50% or more of the surface leakage distance of the insulator.
PCT/JP2017/042052 2017-02-15 2017-11-22 Water-repellent insulator WO2018150671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025648A JP2020080203A (en) 2017-02-15 2017-02-15 Water-repellent insulator
JP2017-025648 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018150671A1 true WO2018150671A1 (en) 2018-08-23

Family

ID=63169267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042052 WO2018150671A1 (en) 2017-02-15 2017-11-22 Water-repellent insulator

Country Status (2)

Country Link
JP (1) JP2020080203A (en)
WO (1) WO2018150671A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169009A (en) * 1990-11-01 1992-06-17 Chubu Electric Power Co Inc Water-repellent insulator
JPH04171615A (en) * 1990-11-02 1992-06-18 Chubu Electric Power Co Inc Insulator
JPH04171616A (en) * 1990-11-02 1992-06-18 Chubu Electric Power Co Inc Insulator and manufacture thereof
JPH07272576A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Water-repelling insulator
JP2002001121A (en) * 2000-06-23 2002-01-08 Fuairatsuku Internatl Kk Charge transfer type catalyst, oxidation reduction functional material using the catalyst and material containing charge transfer type catalyst
WO2008143068A1 (en) * 2007-05-14 2008-11-27 Kazufumi Ogawa Icing and snow accretion preventive insulator, electric wire, and antenna, method for manufacturing them, and transmission line tower using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169009A (en) * 1990-11-01 1992-06-17 Chubu Electric Power Co Inc Water-repellent insulator
JPH04171615A (en) * 1990-11-02 1992-06-18 Chubu Electric Power Co Inc Insulator
JPH04171616A (en) * 1990-11-02 1992-06-18 Chubu Electric Power Co Inc Insulator and manufacture thereof
JPH07272576A (en) * 1994-03-28 1995-10-20 Ngk Insulators Ltd Water-repelling insulator
JP2002001121A (en) * 2000-06-23 2002-01-08 Fuairatsuku Internatl Kk Charge transfer type catalyst, oxidation reduction functional material using the catalyst and material containing charge transfer type catalyst
WO2008143068A1 (en) * 2007-05-14 2008-11-27 Kazufumi Ogawa Icing and snow accretion preventive insulator, electric wire, and antenna, method for manufacturing them, and transmission line tower using them

Also Published As

Publication number Publication date
JP2020080203A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
CN101707103A (en) Coating method for wire or electrical insulator with teflon coating
CN104134499B (en) A kind of composite high voltage insulator
CN207781295U (en) A kind of ceramic insulator for high voltage
CN109952279B (en) Glaze for ceramic products
CN106118464A (en) A kind of long-acting and anti-fouling flashing coating
WO2018150671A1 (en) Water-repellent insulator
JP2002522877A (en) Insulator
CN205900204U (en) Extension creep distance type suspension porcelain insulator
Castaño et al. Ceramic insulators coated with titanium dioxide films: Properties and self-cleaning performance
JP5414431B2 (en) Anti-fouling insulator
RU119162U1 (en) ELECTRICAL INSULATION CONSTRUCTION WITH HYDROPHOBIC COATING OF DIFFERENT THICKNESS
CN210956304U (en) Insulator with good wear-resisting effect
US1987683A (en) Insulator
RU118466U1 (en) ELECTRIC INSULATION CONSTRUCTION WITH DIFFERENT HYDROPHOBIC COATING
KR20220119042A (en) Compositions for Coating Overhead Conductors
JP2008210651A (en) Insulator surface coating material
Goudie Silicones for outdoor insulator maintenance
Ullrich et al. Surface characterization of new and aged semiconducting glazes
CN110415906B (en) Self-cleaning type nanometer glaze porcelain umbrella-shaped insulator for coastal area
Liu et al. Flashover performance of porcelain post insulator with full-clad booster shed
CN108806899A (en) A kind of method and apparatus of enforced insulator anti-fouling flashover performance
RU88196U1 (en) CLASS 210 LINEAR SUSPENDING INSULATOR
JPH04171615A (en) Insulator
RU119163U1 (en) ELECTRIC INSULATION CONSTRUCTION WITH A PREVIOUS HYDROPHOBIC COATING
KR101414812B1 (en) Polymer insulator for electric railway comprising hydrophobic layer by sputtering and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP