WO2018149544A1 - Method for filtration of gases loaded with particles, and filter device for carrying out such a method - Google Patents

Method for filtration of gases loaded with particles, and filter device for carrying out such a method Download PDF

Info

Publication number
WO2018149544A1
WO2018149544A1 PCT/EP2018/000032 EP2018000032W WO2018149544A1 WO 2018149544 A1 WO2018149544 A1 WO 2018149544A1 EP 2018000032 W EP2018000032 W EP 2018000032W WO 2018149544 A1 WO2018149544 A1 WO 2018149544A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filter element
gas outlet
clean gas
filtration
Prior art date
Application number
PCT/EP2018/000032
Other languages
German (de)
French (fr)
Inventor
Viktor Josef Lauer
Jörg Michael Wendels
Daniel Kleemann
Edwin Koch
Jan Weber
Christophe Hainka
Original Assignee
Hydac Fluidcarecenter Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Fluidcarecenter Gmbh filed Critical Hydac Fluidcarecenter Gmbh
Publication of WO2018149544A1 publication Critical patent/WO2018149544A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/77Recycling of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/203Shapes flexible in their geometry, e.g. bendable, adjustable to a certain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • B01D46/522Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material with specific folds, e.g. having different lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/74Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/74Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element
    • B01D46/78Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element involving centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for the filtration of particulate-laden gases, in particular resulting from selective manufacturing processes in a production room flue gases, such as welding smoke of SD printers. Furthermore, the invention relates to a filter device for carrying out such a method.
  • a well-known in the filtration of fluids of a general nature procedure for extending filter life is the regeneration of the filter materials involved.
  • the regeneration is usually carried out in such a way that particles deposited on the upstream side of the filter material of respective filter elements located in the filter housing pass through recirculated, filtered gas Blowing off to be detached.
  • a blower-generating blower for the supply of several nozzles is required. Because of the consequent device-side effort and the high gas consumption, which can be up to 8l / m 2 filter surface per backwash, also high operating costs.
  • the invention has the object to provide a method which allows the filtration of flue gases, as they arise in selective, working with inert gas manufacturing process, in a particularly economical manner.
  • the invention provides a regeneration for the filter element through which the flue gas flows in the filter housing in such a way that the filter element is moved to detach particles deposited on the inflow side of the filter material.
  • no clean gas is returned to the filter housing in order to detach particles as purge gas in the return flow through the filter material by emitting deposited particles by blowing the filter material through clean gas.
  • the movement can be carried out by compressing a collapsible filter element.
  • the compression and return of the filter element to the original shape can be carried out intermittently.
  • the method can be carried out with particular advantage so that the clean gas outlet of the filter housing kept closed from the beginning to the end of the compression of the filter element becomes.
  • a pressure surge arises from the inside to the outside, which acts on the particles in addition to the acceleration forces generated by the movement to detach the particles from the particles.
  • the method according to the invention can also be carried out in such a way that the filter element is rotated during the movement.
  • the centrifugal force generated during the rotation causes an effective separation of the deposited particles.
  • the filter element is separated from the clean gas outlet of the filter housing prior to rotation, so that the filter element is freely rotatable and the housing connection of the filter element does not have to be formed by a rotary bearing.
  • the subject of the invention is also a filter device for the filtration of particulate-laden gases, such as flue gases, which arise in selective production processes, in particular in SD printers, in a production space.
  • the filter device comprises a filter housing having a raw gas inlet and a clean gas outlet and accommodating at least one filter element, the filter material of which separates the raw gas inlet from the clean gas outlet during filtration, a drive being provided by which Filter element is a detachment of deposited on the upstream side of the filter material particles causing movement mediated.
  • a filter element is provided with a collapsible filter material in the form of a kind of bellows, which is closed except for an end connected to the clean gas outlet end, being provided as a drive linear drive for compressing the filter material.
  • the compression of the bellows of the filter material leads to a shaking off of deposited particles.
  • a linear drive for example in the form of a working cylinder, can be provided as drive, which can be actuated for compressing and pulling the bellows into the original shape.
  • centrifugal force can be provided as a drive a rotary drive with a motor through which the filter element for a regeneration process is set in rotation.
  • the arrangement can also be made such that a combination of motor and linear drive is provided as the drive of the filter element.
  • a combination of motor and linear drive is provided as the drive of the filter element.
  • the filter housing more than one filter element can be arranged, which can be collapsed by means of its own linear drive, wherein the filter housing for each filter element has its own clean gas outlet, each with an associated valve. In an advantageous manner, this allows a regeneration process to be carried out on a selected filter element without interrupting the filtration operation.
  • the filter device in which the raw gas inlet of the filter housing is connected to a shielding during operation with welding smoke emitting output of the production space of a 3D printer, may be particularly advantageous the clean gas outlet of the filter housing with the protective gas inlet of the production space in combination.
  • the filter device thereby forms part of the protective gas supply of the relevant 3 D printer.
  • a further filter device arranged downstream of the filter device to be provided as a postfilter in the connection leading to the protective gas inlet. Furthermore, the arrangement can be made so that in the
  • a suction fan is provided which sucks the gas stream for the filtration process through the filter housing of the filter device, as well as a gas cooler is provided to cool back the heated during the previous welding inert gas before re-entering the production room to the desired working temperature.
  • the detached contaminants fall off into the bottom region of the filter housing, which serves as a collecting space from which the retentate can be discharged.
  • FIG. 1 shows, in a highly schematically simplified representation, the production space of a 3D printer with a protective gas cycle shown in a symbolic representation, which is provided with a filter device according to the invention
  • Fig. 2 is a schematically simplified longitudinal section of a first
  • Embodiment of the filter device according to the invention wherein the filtration mode is shown;
  • FIG. 3 a of FIG. 2 corresponding longitudinal section, wherein the
  • Fig. 4 is a schematically simplified longitudinal section of a second
  • Embodiment of the filter device according to the invention wherein the filtration mode is shown; a corresponding longitudinal section of Figure 4, wherein the regeneration mode is shown.
  • a simplified schematic longitudinal section of a second embodiment wherein the filtration mode is shown; a corresponding longitudinal section of Figure 6, wherein the regeneration mode is shown.
  • the invention is illustrated by examples of the use of the filtering device for welding fume-containing protective gas discharged from the space of a 3D printer for metal.
  • Such printers operate on the principle of selective laser sintering (abbreviated: SLS-Ver ears). It is a type of powder pressure, in which powdered, chemically pure metal particles are used, which are applied in layers and then fused with a high-power laser under a protective gas atmosphere. This makes it possible to produce metal objects with very high precision.
  • the resulting welding fume, which together with the protective Gas is discharged from the space of the printer is charged to a very large extent with particles of the metal powder. This leads to a blocking of the filter material after short periods of operation. In order to avoid the labor and cost expenditure for correspondingly frequent filter changes and to enable economical operation, it therefore makes sense to allow longer filter service lives by regeneration.
  • the inventive 3D printer of which only the installation space 2 is schematically indicated in FIG. 1, is therefore associated with a regenerable filter device according to the invention as a prefilter 4.
  • the installation space 2 has, in the manner customary in such printers, a lowerable printing table 6 on which an object 8 is formed by fusing applied powder layers by means of the radiation of a high-power laser 10. This is done under the atmosphere of a protective gas, such as argon, which is supplied to the space 2 via a protective gas inlet 12 and discharged via a protective gas outlet 14. From the output 14, the protective gas, together with the welding fume produced during the printing process, passes as raw gas via a crude gas line 16 to the raw gas inlet 18 of the filter housing of the prefilter 4, which is designated 20 in FIGS.
  • a protective gas such as argon
  • the filtered clean gas passes via a clean gas line 22 to a secondary filter 24, the output of which leads via a suction line 26 to a suction fan 28.
  • the clean gas passes through a gas cooler 30 and a return line 32 to the protective gas inlet 12 of the installation space 2, after the heated by the previous welding gas in the gas cooler 30 is cooled back to the desired operating temperature.
  • a protective gas reservoir 34 and a pressure relief valve 36 are connected.
  • the pressure limiting valve 36 serving as overpressure protection of the protective gas circuit is followed by a filter 38 for gas escaping via the valve 36.
  • FIGS. 2 and 3 show a first embodiment of the filter device according to the invention, which forms the regenerable pre-filter 4 of the system shown in Fig. 1.
  • the raw gas inlet 18 is located near the bottom area 40 of the housing 20, which is closed except for a central passage 42 for a lifting cylinder 44. This extends coaxially to the housing longitudinal axis 46 in the interior 20, wherein the inner end of the lifting cylinder 44 is located approximately one third of the height of the housing 20.
  • On the upper housing cover 48 is coaxially with the axis 46, the clean gas outlet 50, from which a connecting piece 52 extends into the interior of the filter housing 20.
  • a collapsible filter element 54 is provided in the filter housing 20.
  • This has a filter material 56, which has the form of a kind of bellows, which is closed except for the end 58 in FIGS. 2 and 3 above. This open end is attached with a tight connection to the connecting piece 52 of the clean gas outlet 50 so that it is in communication with the interior of the bellows formed by the filter material 56. With its closed, lower end 60 of the bellows with the piston rod 62 of the lifting cylinder 44 is connected.
  • the filter material 56 used is advantageously an air filter medium of class F9, which has an applied PTFE membrane on the upstream side. The membrane ensures that the filter is a surface filter in which the dirt does not penetrate into the depth of the filter material and thus can be easily peeled off.
  • FIG. 2 shows the exemplary embodiment in filtration mode, in which valves, not shown, are open at the raw gas inlet 18 and at the clean gas outlet 50.
  • the raw gas flows from the line 16 through the raw gas inlet 18 and flows through, as indicated in Fig. 2 with non-quantified flow arrows, the filter material 56 of the filter element 54 from the outside into the interior of the bellows, which in Filtrations- Operation, as shown in Fig. 2, in a fully developed form. From the inner cavity of the filter element 54, the cleaned filtrate flows out via the clean gas outlet 50.
  • the lift cylinder 44 is actuated such that the piston rod 62 extends and compresses the collapsible filter element 54, so that the bellows formed from the filter material 56, as shown in Fig. 3, is folded.
  • the acceleration forces acting on rapid movement lead to detachment of accumulated particles, in particular when shaking takes place by intermittent compression and extraction.
  • the detached during the regeneration particles fall off into the bottom portion 40 of the filter housing 20, which serves as a collecting space from which the contaminants are occasionally removed by means of a discharge device 68 (FIG. 1) having a shut-off device 70 and a retentate 72.
  • FIG. 4 and 5 show a further embodiment in which a rotary drive with an electric motor 74 is provided as a drive for the movement in place of the linear drive forming a lifting cylinder 44 whose axis 46 coaxial shaft 76 connected to the lower end cap 78 of a filter element 80 is.
  • This is formed in conventional construction with hollow cylindrical filter material extending from lower end cap 78 to upper end cap 82.
  • a coaxial passage which forms the connection of the inner filter cavity with the clean gas outlet 50 in the regeneration mode shown in Fig. 4.
  • Serving as a rotary drive electric motor 74 is connected to a coaxial to the axis 46 lifting cylinder 84 through which the motor 74 and thus the filter element 80 in the filtration mode (Fig.
  • FIG. 5 illustrates the regeneration mode that takes place at the raw gas inlet 18 and the clean gas outlet 50 when the valves are closed (not shown).
  • the electric motor 74 and thus the filter element 80 are lowered by retracting the lifting cylinder 84, so that the upper end cap 82 of the filter element 80 is released from the connecting piece 52 of the clean gas outlet 50 and the filter element 80 is freely rotatable.
  • the actuated electric motor 74 now sets the filter element 80 in rotation so that particles deposited on the outside by centrifugal force are thrown off and, as in the previous variants, fall off to the bottom region 40 of the filter housing 20 and can be discharged on a case-by-case basis.
  • FIG. 6 and 7 show a third embodiment in which, in correspondence with the first embodiment, a filter element 54 is provided in the form of a collapsible bellows, which is compressible and extendable as in the first embodiment by means of a lifting cylinder 44.
  • a shut-off valve 88 in the form of a plate or poppet valve is provided at the outlet nozzle 86 of the clean gas outlet 50, which can be actuated by an actuator 90 in the closed position or passage position.
  • the valve 88 In the filtration state shown in Fig. 6, the valve 88 is in the on state, so that the filter element 54, as indicated by non-numbered flow arrows, flows through in the same manner, as shown in Fig. 2 for the first example.
  • the shut-off valve 88 is closed.
  • the internal gas volume of the bellows is pressed outward through the filter material 56 in a pressure surge, thereby breaking off the deposited particles.
  • the detached particles fall off into the bottom region 40 of the filter housing 20.
  • FIGS. 8 and 9 show a fourth exemplary embodiment which, like the third exemplary embodiment, provides a shut-off valve 88 on clean gas outlets 50.
  • more than one filter element 54 is arranged, in the example of FIGS. 8 and 9 two filter elements 54, which are each formed by a collapsible bellows.
  • the filter elements 54 can be pressed and pulled together independently of each other by their own linear drive 44.
  • the clean gas outlet 50 of each filter element 54 is connected via its shut-off valve 88 to a common clean gas space 92, at the outlet of which the clean gas line 22 (see FIG.
  • FIG. 8 shows the filtration mode for both filter elements 54, wherein the shut-off valve 88 of both filter elements 54 in the passage position and the filtration takes place at each extended bellows.
  • FIG. 9 shows one filter element 54 with the shut-off valve 88 open in the filtration mode, while the other filter element 54 is in the regeneration mode. The associated shut-off valve 88 is closed and the filter element 54 collapsed to produce the backwash pressure surge. In this way, this embodiment allows a continuous operation by each blocked filter elements 54 are regenerated with continued filtration operation of a respective other filter element 54.

Abstract

A method for filtration of fumes produced in the context of selective production methods in a production chamber (2), such as welding fumes of 3D printers, having the following steps: guiding the fumes from the production chamber (2) to the raw gas inlet (18) of a filter housing (20) which accommodates at least one filter element (54; 80), the filter material (56) of which separates, during a filtration procedure, the raw gas inlet (18) from a clean gas outlet (50); establishing a flow through the filter material (56) and discharging the gas via the clean gas outlet (50) and regenerating the filter element (54; 80) by moving the filter element in order to dislodge particles accumulated on the incident flow side of the filter material (56).

Description

Verfahren zur Filtration von mit Partikeln belasteten Gasen sowie Filtervorrichtung zur Durchführung eines solchen Verfahrens  Process for the filtration of particulate-laden gases and filter device for carrying out such a process
Die Erfindung betrifft ein Verfahren zur Filtration von mit Partikeln belasteten Gasen, insbesondere von bei selektiven Fertigungsverfahren in einem Fertigungsraum entstehenden Rauchgasen, wie Schweißrauch von SD- Druckern. Ferner bezieht sich die Erfindung auf eine Filtervorrichtung für die Durchführung eines derartigen Verfahrens. The invention relates to a method for the filtration of particulate-laden gases, in particular resulting from selective manufacturing processes in a production room flue gases, such as welding smoke of SD printers. Furthermore, the invention relates to a filter device for carrying out such a method.
Die Filtration von mit Partikeln belasteten Gasen erfordert einen beträchtlichen technischen und wirtschaftlichen Aufwand, wenn eine starke Partikelbelastung vorliegt, wie dies bei Rauchgasen sehr häufig der Fall ist. Durch große Mengen von am Filtermaterial des benutzten Filterelements angelagerten Partikeln kommt es zu einem raschen Verblocken, so dass keine ausreichend langen Filterstandzeiten erreichbar sind. Verstärkt treten solche Probleme bei Rauchgasen auf, wie dem bei 3 D-Druckern für Metall entstehenden Schweißrauch. Bei dem selektiven Lasersintern, wie es als SLS- Verfahren (DE 10 2015 01 7 026) bekannt ist, werden pulverförmige, chemisch reine Metallpartikel schichtweise aufgetragen und danach mit einem Hochleistungslaser unter einer Schutzgasatmosphäre verschmolzen. Der bei derartigen, in der Art des Pulverdrucks arbeitenden Verfahren entstehende Schweißrauch, der aus dem eine Schutzgasatmosphäre enthaltenden Bau- räum heraus zur Filtervorrichtung geführt wird, besteht aus Schutzgas mit starker Belastung durch Pulverpartikel. Das hierbei auftretende rasche Zu- setzen des Filtermaterials zwingt zu häufigen Filterwechseln, was den wirtschaftlichen Betrieb betreffender Drucker erschwert. The filtration of particulate-laden gases requires considerable technical and economic effort when there is a high particulate load, as is very often the case with flue gases. Large amounts of particles deposited on the filter material of the filter element used cause a rapid blocking, so that no sufficiently long filter service life can be achieved. Increased occur such problems with flue gases, such as the resulting in 3 D printers for metal welding fume. In the selective laser sintering, as it is known as SLS method (DE 10 2015 01 7 026), powdered, chemically pure metal particles are applied in layers and then fused with a high-power laser under a protective gas atmosphere. The welding fumes produced in such processes, which operate in the manner of powder pressure, are conducted out of the building space containing a protective gas atmosphere to the filter device and consist of protective gas with heavy exposure to powder particles. The rapid access occurring here Setting the filter material forces frequent filter changes, which complicates the economic operation related printers.
Ein bei der Filtration von Fluiden allgemeiner Art bekanntes Vorgehen zur Verlängerung von Filterstandzeiten besteht in der Regenerierung der beteiligten Filtermaterialien. Bei der Filtration von Schweißrauch, wie er bei selektiven, mit Schutzgas arbeitenden Fertigungsverfahren entsteht, wird die Regenerierung üblicherweise in der Weise durchgeführt, dass an der an- strömseitigen Außenseite des Filtermaterials jeweiliger im Filtergehäuse be- findlicher Filterelemente angelagerte Partikel durch rückgeführtes, gefiltertes Gas durch Abblasen abgelöst werden. Im Filtergehäuse ist hierfür ein den Blasdruck erzeugendes Gebläse für die Versorgung mehrerer Blasdüsen erforderlich. Wegen des dadurch bedingten geräteseitigen Aufwandes und des hohen Gasverbrauchs, der pro Rückspülimpuls bis 8l/m2 Filterfläche betragen kann, ergeben sich auch hohe Betriebskosten. A well-known in the filtration of fluids of a general nature procedure for extending filter life is the regeneration of the filter materials involved. In the filtration of welding fumes, as is the case in selective production methods using protective gas, the regeneration is usually carried out in such a way that particles deposited on the upstream side of the filter material of respective filter elements located in the filter housing pass through recirculated, filtered gas Blowing off to be detached. In the filter housing for this purpose a blower-generating blower for the supply of several nozzles is required. Because of the consequent device-side effort and the high gas consumption, which can be up to 8l / m 2 filter surface per backwash, also high operating costs.
Im Hinblick auf diese Problematik stellt sich die Erfindung die Aufgabe, ein Verfahren aufzuzeigen, das die Filtration von Rauchgasen, wie sie bei selektiven, mit Schutzgas arbeitenden Fertigungsverfahren entstehen, auf beson- ders wirtschaftliche Weise ermöglicht. In view of this problem, the invention has the object to provide a method which allows the filtration of flue gases, as they arise in selective, working with inert gas manufacturing process, in a particularly economical manner.
Erfindungsgemäß ist diese Aufgabe durch ein Verfahren gelöst, das die im Patentanspruch 1 angegebenen Schritte aufweist. Wie angegeben, sieht die Erfindung für das im Filtergehäuse vom Rauchgas durchströmte Filterele- ment eine Regenerierung in der Weise vor, dass das Filterelement zur Ablösung von an der Anströmseite des Filtermaterials angelagerten Partikeln bewegt wird. Im Unterschied zur üblichen Regenerierung wird beim erfindungsgemäßen Verfahren kein Reingas in das Filtergehäuse zurückgeführt, um als Spülgas in Rückströmung durch das Filtermaterial Partikel abzulö- sen, indem angelagerte Partikel durch Anblasen des Filtermaterials durch Reingas abgestrahlt werden. Bei der durch Bewegen des Filterelements be- wirkten Ablösung ergibt sich demgegenüber kein Verlust an Spülgas, so dass das erfindungsgemäße Verfahren auch wirtschaftlich und kostengünstig zur Filtration von Schweißrauch bei 3D-Druckern einsetzbar ist, wo verhältnismäßig teure Schutzgase, wie Argon, benutzt werden. According to the invention, this object is achieved by a method having the steps specified in claim 1. As indicated, the invention provides a regeneration for the filter element through which the flue gas flows in the filter housing in such a way that the filter element is moved to detach particles deposited on the inflow side of the filter material. In contrast to the usual regeneration, in the method according to the invention, no clean gas is returned to the filter housing in order to detach particles as purge gas in the return flow through the filter material by emitting deposited particles by blowing the filter material through clean gas. When moving by moving the filter element In contrast, separation does not result in a loss of purge gas, so that the method according to the invention can also be used economically and cost-effectively for the filtration of welding fumes in 3D printers, where comparatively expensive shielding gases, such as argon, are used.
In besonders vorteilhafter Weise kann das Bewegen durch Zusammendrücken eines kollabierbaren Filterelements durchgeführt werden. Um bei dieser Bewegung ein besonders wirksames Abschütteln zu bewirken, kann das Zusammendrücken und ein Rückführen des Filterelements in die Ur- sprungsform intermittierend durchgeführt werden. In a particularly advantageous manner, the movement can be carried out by compressing a collapsible filter element. In order to effect a particularly effective shaking off during this movement, the compression and return of the filter element to the original shape can be carried out intermittently.
Bei Filterelementen mit einem Filtermaterial, das einen die Filtratseite bildenden inneren Filterhohlraum umgibt, der mit dem Reingasausgang des Filtergehäuses verbunden ist, kann das Verfahren mit besonderem Vorteil so durchgeführt werden, dass der Reingasausgang des Filtergehäuses vom Beginn bis zum Ende des Zusammendrückens des Filterelements geschlossen gehalten wird. Dadurch entsteht beim Zusammendrücken im inneren Filterhohlraum ein Druckstoß von innen nach außen, der auf die angelagerten Partikel zusätzlich zu den von der Bewegung erzeugten Beschleunigungs- kräften auf die Partikel ablösend einwirkt. With filter elements having a filter material surrounding a filtrate side forming inner filter cavity, which is connected to the clean gas outlet of the filter housing, the method can be carried out with particular advantage so that the clean gas outlet of the filter housing kept closed from the beginning to the end of the compression of the filter element becomes. As a result, when compressed in the inner filter cavity, a pressure surge arises from the inside to the outside, which acts on the particles in addition to the acceleration forces generated by the movement to detach the particles from the particles.
Mit Vorteil kann das erfindungsgemäße Verfahren auch in der Weise durchgeführt werden, dass das Filterelement bei der Bewegung in Drehung versetzt wird. Die bei der Rotation erzeugte Zentrifugalkraft bewirkt eine effektive Abtrennung der angelagerten Partikel. Advantageously, the method according to the invention can also be carried out in such a way that the filter element is rotated during the movement. The centrifugal force generated during the rotation causes an effective separation of the deposited particles.
Vorteilhafterweise wird das Filterelement vor der Drehung vom Reingasausgang des Filtergehäuses getrennt, so dass das Filterelement frei drehbar ist und der Gehäuseanschluss des Filterelements nicht durch ein Drehlager gebildet sein muss. Gemäß dem Patentanspruch 7 ist Gegenstand der Erfindung auch eine Filtervorrichtung zur Filtration von mit Partikeln belasteten Gasen, wie von Rauchgasen, die bei selektiven Fertigungsverfahren, insbesondere bei SD- Druckern, in einem Fertigungsraum entstehen. Wie im Anspruch 7 angege- ben, weist die erfindungsgemäße Filtervorrichtung ein Filtergehäuse, das einen Rohgaseingang und einen Reingasausgang aufweist und mindestens ein Filterelement aufnimmt, auf, dessen Filtermaterial bei der Filtration den Rohgaseingang vom Reingasausgang trennt, wobei ein Antrieb vorgesehen ist, durch den dem Filterelement eine das Ablösen von an der Anströmseite des Filtermaterials angelagerten Partikeln bewirkende Bewegung vermittelbar ist. Advantageously, the filter element is separated from the clean gas outlet of the filter housing prior to rotation, so that the filter element is freely rotatable and the housing connection of the filter element does not have to be formed by a rotary bearing. According to claim 7, the subject of the invention is also a filter device for the filtration of particulate-laden gases, such as flue gases, which arise in selective production processes, in particular in SD printers, in a production space. As indicated in claim 7, the filter device according to the invention comprises a filter housing having a raw gas inlet and a clean gas outlet and accommodating at least one filter element, the filter material of which separates the raw gas inlet from the clean gas outlet during filtration, a drive being provided by which Filter element is a detachment of deposited on the upstream side of the filter material particles causing movement mediated.
Bei vorteilhaften Ausführungsbeispielen der erfindungsgemäßen Filtervorrichtung ist ein Filterelement mit einem kollabierbaren Filtermaterial in Form einer Art Faltenbalg vorgesehen, der bis auf ein mit dem Reingasausgang verbundenes Ende geschlossen ist, wobei als Antrieb ein Linearantrieb zum Zusammendrücken des Filtermaterials vorgesehen ist. Das Zusammendrücken des Balgs des Filtermaterials führt zu einem Abschütteln angelagerter Partikel. In advantageous embodiments of the filter device according to the invention, a filter element is provided with a collapsible filter material in the form of a kind of bellows, which is closed except for an end connected to the clean gas outlet end, being provided as a drive linear drive for compressing the filter material. The compression of the bellows of the filter material leads to a shaking off of deposited particles.
Bei vorteilhaften Ausführungsbeispielen ist der Reingasausgang des Filtergehäuses mittels eines Ventils freigebbar und sperrbar. Bei geschlossenem Reingasausgang kommt es durch das Zusammendrücken des Balgs des Filtermaterials zu einem Druckstoß, durch den das innere Gasvolumen des Balges als Rückspülgas durch das Filtermaterial nach außen gedrückt wird und Anlagerungen abgesprengt werden. Für das Zusammendrücken kann als Antrieb ein Linearantrieb, beispielsweise in Form eines Arbeitszylinders, vorgesehen sein, der für das Zusammendrücken und das Ausziehen des Balgs in die Ursprungsform betätigbar ist. Für eine Regenerierung durch am Filtermaterial wirkende Zentrifugalkraft kann als Antrieb ein Drehantrieb mit einem Motor vorgesehen sein, durch den das Filterelement für einen Regenerationsvorgang in Drehung versetzbar ist. In advantageous embodiments of the clean gas outlet of the filter housing by means of a valve is releasable and lockable. When the clean gas outlet is closed, the compression of the bellows of the filter material results in a pressure surge, through which the internal gas volume of the bellows is pressed outwards as backwash gas through the filter material and deposits are blasted off. For the compression, a linear drive, for example in the form of a working cylinder, can be provided as drive, which can be actuated for compressing and pulling the bellows into the original shape. For a regeneration by acting on the filter material centrifugal force can be provided as a drive a rotary drive with a motor through which the filter element for a regeneration process is set in rotation.
Mit Vorteil kann die Anordnung auch derart getroffen sein, dass als Antrieb des Filterelements eine Kombination aus Motor und Linearantrieb vorgesehen ist. Durch gleichzeitiges Kollabieren und Drehen ist eine besonders effektive Regenerierung erreichbar. Advantageously, the arrangement can also be made such that a combination of motor and linear drive is provided as the drive of the filter element. By simultaneous collapse and rotation a particularly effective regeneration is achievable.
Im Filtergehäuse können mehr als ein Filterelement angeordnet sein, die mittels je eines eigenen Linearantriebs kollabierbar sind, wobei das Filtergehäuse für jedes Filterelement einen eigenen Reingasausgang mit je einem zugeordneten Ventil aufweist. In vorteilhafter Weise kann dadurch ohne Unterbrechung des Filtrationsbetriebs ein Regeneriervorgang an einem gewählten Filterelement durchgeführt werden. In the filter housing more than one filter element can be arranged, which can be collapsed by means of its own linear drive, wherein the filter housing for each filter element has its own clean gas outlet, each with an associated valve. In an advantageous manner, this allows a regeneration process to be carried out on a selected filter element without interrupting the filtration operation.
Bei Ausführungsbeispielen der Filtervorrichtung, bei denen der Rohgaseingang des Filtergehäuses mit einem im Betrieb Schutzgas mit Schweißrauch abgebenden Ausgang des Fertigungsraums eines 3D-Druckers verbunden ist, kann mit besonderem Vorteil der Reingasausgang des Filtergehäuses mit dem Schutzgaseingang des Fertigungsraums in Verbindung sein. Die Filtervorrichtung bildet dadurch einen Teil der Schutzgasversorgung des betreffenden 3 D-Druckers. In embodiments of the filter device in which the raw gas inlet of the filter housing is connected to a shielding during operation with welding smoke emitting output of the production space of a 3D printer, may be particularly advantageous the clean gas outlet of the filter housing with the protective gas inlet of the production space in combination. The filter device thereby forms part of the protective gas supply of the relevant 3 D printer.
Bei einer derartigen Verwendung kann vorteilhafterweise in der zum Schutzgaseingang führenden Verbindung eine der Filtervorrichtung nachgeschaltete weitere Filtereinrichtung als Nachfilter vorgesehen sein. Ferner kann die Anordnung hierbei so getroffen sein, dass in der zumIn the case of such a use, it is advantageously possible for a further filter device arranged downstream of the filter device to be provided as a postfilter in the connection leading to the protective gas inlet. Furthermore, the arrangement can be made so that in the
Schutzgaseingang führenden Verbindung ein Sauggebläse vorgesehen ist, das den Gasstrom für den Filtrationsvorgang durch das Filtergehäuse der Filtervorrichtung saugt, sowie ein Gaskühler vorgesehen ist, um das beim vorangegangenen Schweißvorgang erhitzte Schutzgas vor dem Wiedereintritt in den Fertigungsraum auf die gewünschte Arbeitstemperatur rückzu- kühlen. Protective gas inlet leading connection a suction fan is provided which sucks the gas stream for the filtration process through the filter housing of the filter device, as well as a gas cooler is provided to cool back the heated during the previous welding inert gas before re-entering the production room to the desired working temperature.
Bei den oben erwähnten Varianten der Regenerierung fallen die abgelösten Verschmutzungen jeweils in den Bodenbereich des Filtergehäuses ab, der als Sammelraum dient, aus dem das Retentat austragbar ist. In the case of the abovementioned variants of the regeneration, the detached contaminants fall off into the bottom region of the filter housing, which serves as a collecting space from which the retentate can be discharged.
Nachstehend ist die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen im Einzelnen erläutert. The invention with reference to embodiments shown in the drawings will be explained in detail.
Es zeigen: Fig. 1 in stark schematisch vereinfachter Darstellung den Fertigungsraum eines 3D-Druckers mit in Symboldarstellung gezeigtem Schutzgaskreislauf, der mit einer erfindungsgemäßen Filtervorrichtung versehen ist; Fig. 2 einen schematisch vereinfachten Längsschnitt eines ersten 1 shows, in a highly schematically simplified representation, the production space of a 3D printer with a protective gas cycle shown in a symbolic representation, which is provided with a filter device according to the invention; Fig. 2 is a schematically simplified longitudinal section of a first
Ausführungsbeispiels der erfindungsgemäßen Filtervorrichtung, wobei der Filtrationsmodus dargestellt ist;  Embodiment of the filter device according to the invention, wherein the filtration mode is shown;
Fig. 3 einen der Fig. 2 entsprechenden Längsschnitt, wobei der Fig. 3 a of FIG. 2 corresponding longitudinal section, wherein the
Regeneriermodus dargestellt ist;  Regeneration mode is shown;
Fig. 4 einen schematisch vereinfachten Längsschnitt eines zweiten Fig. 4 is a schematically simplified longitudinal section of a second
Ausführungsbeispiels der erfindungsgemäßen Filtervorrichtung, wobei der Filtrationsmodus dargestellt ist; einen der Fig. 4 entsprechenden Längsschnitt, wobei der Regeneriermodus dargestellt ist; einen schematisch vereinfachten Längsschnitt eines zweiten Ausführungsbeispiels, wobei der Filtrationsmodus dargestellt ist; einen der Fig. 6 entsprechenden Längsschnitt, wobei der Regeneriermodus dargestellt ist; in der Art einer vereinfachten, skizzenhaften Funktionsdarstellung ein drittes Ausführungsbeispiel mit zwei im Filtergehäuse befindlichen Filterelementen, wobei der Regeneriermodus dargestellt ist; und eine der Fig. 8 entsprechende Darstellung, wobei das eine Filterelement im Filtrationsmodus und das andere Filterelement im Regeneriermodus dargestellt sind. Embodiment of the filter device according to the invention, wherein the filtration mode is shown; a corresponding longitudinal section of Figure 4, wherein the regeneration mode is shown. a simplified schematic longitudinal section of a second embodiment, wherein the filtration mode is shown; a corresponding longitudinal section of Figure 6, wherein the regeneration mode is shown. in the manner of a simplified, sketch-like functional representation of a third embodiment with two filter elements in the filter housing, wherein the regeneration mode is shown; and a representation corresponding to FIG. 8, wherein the one filter element in the filtration mode and the other filter element in the regeneration mode are shown.
Unter Bezug auf die beigefügten Zeichnungen ist die Erfindung an Beispielen der Verwendung der Filtervorrichtung zur Filtration von Schweißrauch enthaltendem Schutzgas erläutert, das aus dem Bauraum eines 3D-Druckers für Metall abgeführt wird. Solche Drucker arbeiten nach dem Prinzip des selektiven Lasersinterns (abgekürzt: SLS-Ver ahren). Dabei handelt es sich um eine Art Pulverdruck, bei dem pulverförmige, chemisch reine Metallpartikel verwendet werden, die schichtweise aufgetragen und danach mit einem Hochleistungslaser unter einer Schutzgasatmosphäre verschmolzen werden. Dadurch lassen sich Metallobjekte mit sehr hoher Präzision herstellen. Der dabei entstehende Schweißrauch, der zusammen mit dem Schutz- gas aus dem Bauraum des Druckers abgeführt wird, ist in sehr starkem Maße mit Partikeln des Metallpulvers belastet. Dies führt zu einem Verblocken des Filtermaterials nach kurzen Betriebszeiten. Um den Arbeits- und Kostenaufwand für entsprechend häufige Filterwechsel zu vermeiden und ei- nen wirtschaftlichen Betrieb zu ermöglichen, ist es daher sinnvoll, längere Filterstandzeiten durch Regenerierung zu ermöglichen. With reference to the accompanying drawings, the invention is illustrated by examples of the use of the filtering device for welding fume-containing protective gas discharged from the space of a 3D printer for metal. Such printers operate on the principle of selective laser sintering (abbreviated: SLS-Ver ears). It is a type of powder pressure, in which powdered, chemically pure metal particles are used, which are applied in layers and then fused with a high-power laser under a protective gas atmosphere. This makes it possible to produce metal objects with very high precision. The resulting welding fume, which together with the protective Gas is discharged from the space of the printer is charged to a very large extent with particles of the metal powder. This leads to a blocking of the filter material after short periods of operation. In order to avoid the labor and cost expenditure for correspondingly frequent filter changes and to enable economical operation, it therefore makes sense to allow longer filter service lives by regeneration.
Dem betreffenden 3D-Drucker, von dem in Fig. 1 lediglich der Bauraum 2 schematisiert angedeutet ist, ist daher eine erfindungsgemäße, regenerierba- re Filtervorrichtung als Vorfilter 4 zugeordnet. Der Bauraum 2 weist in der bei derartigen Druckern üblichen Weise einen absenkbaren Drucktisch 6 auf, auf dem ein Objekt 8 dadurch gebildet wird, dass aufgetragene Pulverschichten mittels der Strahlung eines Hochleistungslasers 10 verschmolzen werden. Dies geschieht unter Atmosphäre eines Schutzgases, wie Argon, das dem Bauraum 2 über einen Schutzgaseingang 12 zugeführt und über einen Schutzgasausgang 14 abgeführt wird. Vom Ausgang 14 gelangt das Schutzgas zusammen mit dem beim Druckvorgang entstandenen Schweißrauch als Rohgas über eine Rohgasleitung 16 zum Rohgaseingang 18 des Filtergehäuses des Vorfilters 4, das in den Fig. 2 bis 5 mit 20 bezeichnet ist. Vom Vorfilter 4 gelangt das gefilterte Reingas über eine Reingasleitung 22 zu einem Nachfilter 24, dessen Ausgang über eine Saugleitung 26 zu einem Sauggebläse 28 führt. Dieses erzeugt einen Unterdruck für den Betrieb der Filter 4 und 24 als Saugfilter. Vom Sauggebläse 28 gelangt das Reingas über einen Gaskühler 30 und eine Rückführleitung 32 zum Schutzgaseingang 12 des Bauraums 2 zurück, nachdem das vom vorausgegangenen Schweißvorgang erhitzte Gas im Gaskühler 30 auf die gewünschte Arbeitstemperatur rückgekühlt ist. An der Rückführleitung 32 sind ein Schutzgas- Vorratsbehälter 34 sowie ein Druckbegrenzungsventil 36 angeschlossen. Dem als Überdrucksicherung des Schutzgaskreislaufs dienenden Druckbegren- zungsventil 36 ist ein Filter 38 für über das Ventil 36 entweichendes Gas nachgeschaltet. Die Fig. 2 und 3 zeigen ein erstes Ausführungsbeispiel der erfindungsgemäßen Filtervorrichtung, die das regenerierbare Vorfilter 4 des in Fig. 1 gezeigten Systems bildet. An dem einen hohlen Kreiszylinder bildenden Fil- tergehäuse 20 befindet sich der Rohgaseingang 18 in der Nähe des Bodenbereichs 40 des Gehäuses 20, der bis auf einen zentralen Durchgang 42 für einen Hubzylinder 44 geschlossen ist. Dieser erstreckt sich koaxial zur Gehäuselängsachse 46 in den Innenraum 20, wobei sich das innere Ende des Hubzylinders 44 auf etwa einem Drittel der Höhe des Gehäuses 20 befin- det. Am oberen Gehäusedeckel 48 befindet sich, zur Achse 46 koaxial, der Reingasausgang 50, von dem sich ein Anschlussstutzen 52 ins Innere des Filtergehäuses 20 erstreckt. Bei dem in Fig. 2 und 3 gezeigten Ausführungsbeispiel ist im Filtergehäuse 20 ein kollabierbares Filterelement 54 vorgesehen. Dieses weist ein Filtermaterial 56 auf, das die Form einer Art Falten- balg besitzt, der mit Ausnahme des in Fig. 2 und 3 obenliegenden Endes 58 geschlossen ist. Dieses offene Ende ist mit dichter Verbindung am Anschlussstutzen 52 des Reingasausgangs 50 angebracht, so dass dieser mit dem Innenraum des vom Filtermaterial 56 gebildeten Balgs in Verbindung ist. Mit seinem geschlossenen, unteren Ende 60 ist der Balg mit der Kolben- stange 62 des Hubzylinders 44 verbunden. Als Filtermaterial 56 kommt mit Vorteil ein Luftfiltermedium der Klasse F9 zum Einsatz, welches anströmsei- tig eine aufgetragene PTFE-Membran besitzt. Die Membran sorgt dafür, dass der Filter ein Oberflächenfilter ist, bei dem der Schmutz nicht in die Tiefe des Filtermaterials eindringen und dadurch leicht abgelöst werden kann. The inventive 3D printer, of which only the installation space 2 is schematically indicated in FIG. 1, is therefore associated with a regenerable filter device according to the invention as a prefilter 4. The installation space 2 has, in the manner customary in such printers, a lowerable printing table 6 on which an object 8 is formed by fusing applied powder layers by means of the radiation of a high-power laser 10. This is done under the atmosphere of a protective gas, such as argon, which is supplied to the space 2 via a protective gas inlet 12 and discharged via a protective gas outlet 14. From the output 14, the protective gas, together with the welding fume produced during the printing process, passes as raw gas via a crude gas line 16 to the raw gas inlet 18 of the filter housing of the prefilter 4, which is designated 20 in FIGS. From the pre-filter 4, the filtered clean gas passes via a clean gas line 22 to a secondary filter 24, the output of which leads via a suction line 26 to a suction fan 28. This creates a negative pressure for the operation of the filters 4 and 24 as a suction filter. From the suction fan 28, the clean gas passes through a gas cooler 30 and a return line 32 to the protective gas inlet 12 of the installation space 2, after the heated by the previous welding gas in the gas cooler 30 is cooled back to the desired operating temperature. At the return line 32, a protective gas reservoir 34 and a pressure relief valve 36 are connected. The pressure limiting valve 36 serving as overpressure protection of the protective gas circuit is followed by a filter 38 for gas escaping via the valve 36. Figs. 2 and 3 show a first embodiment of the filter device according to the invention, which forms the regenerable pre-filter 4 of the system shown in Fig. 1. At the filter housing 20 forming a hollow circular cylinder, the raw gas inlet 18 is located near the bottom area 40 of the housing 20, which is closed except for a central passage 42 for a lifting cylinder 44. This extends coaxially to the housing longitudinal axis 46 in the interior 20, wherein the inner end of the lifting cylinder 44 is located approximately one third of the height of the housing 20. On the upper housing cover 48 is coaxially with the axis 46, the clean gas outlet 50, from which a connecting piece 52 extends into the interior of the filter housing 20. In the embodiment shown in FIGS. 2 and 3, a collapsible filter element 54 is provided in the filter housing 20. This has a filter material 56, which has the form of a kind of bellows, which is closed except for the end 58 in FIGS. 2 and 3 above. This open end is attached with a tight connection to the connecting piece 52 of the clean gas outlet 50 so that it is in communication with the interior of the bellows formed by the filter material 56. With its closed, lower end 60 of the bellows with the piston rod 62 of the lifting cylinder 44 is connected. The filter material 56 used is advantageously an air filter medium of class F9, which has an applied PTFE membrane on the upstream side. The membrane ensures that the filter is a surface filter in which the dirt does not penetrate into the depth of the filter material and thus can be easily peeled off.
Die Fig. 2 zeigt das Ausführungsbeispiel im Filtrationsmodus, bei dem nicht gezeigte Ventile am Rohgaseingang 18 sowie am Reingasausgang 50 geöffnet sind. Beim Filtervorgang strömt das Rohgas von der Leitung 16 her durch den Rohgaseingang 18 ein und durchströmt, wie in Fig. 2 mit nicht bezifferten Strömungspfeilen angedeutet ist, das Filtermaterial 56 des Filterelements 54 von außen her ins Innere des Balges, der beim Filtrations- Vorgang, wie in Fig. 2 gezeigt, in ausgezogener Ursprungsform ist. Vom inneren Hohlraum des Filterelements 54 strömt das abgereinigte Filtrat über den Reingasausgang 50 aus. Zur Durchführung des Regeneriermodus wird der Hubzylinder 44 derart betätigt, dass die Kolbenstange 62 ausfährt und das kollabierbare Filterelement 54 zusammendrückt, so dass der aus dem Filtermaterial 56 gebildete Balg, wie in Fig. 3 gezeigt ist, zusammengefaltet ist. Die bei rascher Bewegung wirkenden Beschleunigungskräfte führen zum Ablösen angelagerter Partikel, insbesondere, wenn durch intermittierendes Zusammendrücken und Ausziehen ein Rütteln stattfindet. Die bei der Regenerierung abgelösten Partikel fallen in den Bodenbereich 40 des Filtergehäuses 20 ab, der als Sammelraum dient, aus dem die Verschmutzungen fallweise mittels einer Austrageinrichtung 68 (Fig. 1 ) entnommen werden, die ein Absperrorgan 70 und einen Retentatbehälter 72 aufweist. Die Fig. 4 und 5 zeigen ein weiteres Ausführungsbeispiel, bei dem als Antrieb für die Bewegung anstelle des einen Linearantrieb bildenden Hubzylinders 44 ein Drehantrieb mit einem Elektromotor 74 vorgesehen ist, dessen zur Achse 46 koaxiale Welle 76 mit der unteren Endkappe 78 eines Filterelements 80 verbunden ist. Dieses ist in konventioneller Bauweise mit hohlzylinderförmigem Filtermaterial ausgebildet, das sich von unterer Endkappe 78 zu oberer Endkappe 82 erstreckt. In dieser befindet sich ein koaxialer Durchgang, der bei dem in Fig. 4 gezeigten Regeneriermodus die Verbindung des inneren Filterhohlraums mit dem Reingasausgang 50 bildet. Der als Drehantrieb dienende Elektromotor 74 ist mit einem zur Achse 46 koaxialen Hubzylinder 84 verbunden, durch den der Motor 74 und damit das Filterelement 80 beim Filtrationsmodus (Fig. 4) derart angehoben ist, dass der Durchgang an der oberen Endkappe 82 in dichter Anlage am Anschlussstutzen 52 des Reingasausgangs 50 ist. Bei stillgesetztem Elektromotor 74 findet bei dieser Position des Filterelements 80 der Filtrationsvorgang bei geöffneten Ventilen am Rohgaseingang 18 und am Reingasausgang 50 statt. Wie mit nicht bezifferten Strömungspfeilen in Fig. 4 gezeigt ist, durch- strömt dabei das über den Eingang 18 eintretende Rohgas das Filterelement 80 von außen nach innen und tritt als Reingas aus dem inneren Filterhohlraum über den Reingasausgang 50 aus. Die Fig. 5 verdeutlicht den Regeneriermodus, der bei geschlossenen (nicht gezeigten) Ventilen am Rohgaseingang 18 und am Reingasausgang 50 stattfindet. Der Elektromotor 74 und damit das Filterelement 80 sind durch Einfahren des Hubzylinders 84 abgesenkt, so dass die obere Endkappe 82 des Filterelements 80 vom Anschlussstutzen 52 des Reingasausgangs 50 frei- kommt und das Filterelement 80 frei drehbar ist. Der betätigte Elektromotor 74 versetzt nun das Filterelement 80 in Drehung, so dass durch Zentrifugalkraft außenseitig angelagerte Partikel abgeschleudert werden und, wie bei den vorherigen Varianten, zum Bodenbereich 40 des Filtergehäuses 20 abfallen und fallweise ausgetragen werden können. FIG. 2 shows the exemplary embodiment in filtration mode, in which valves, not shown, are open at the raw gas inlet 18 and at the clean gas outlet 50. During the filtering process, the raw gas flows from the line 16 through the raw gas inlet 18 and flows through, as indicated in Fig. 2 with non-quantified flow arrows, the filter material 56 of the filter element 54 from the outside into the interior of the bellows, which in Filtrations- Operation, as shown in Fig. 2, in a fully developed form. From the inner cavity of the filter element 54, the cleaned filtrate flows out via the clean gas outlet 50. To carry out the regeneration mode, the lift cylinder 44 is actuated such that the piston rod 62 extends and compresses the collapsible filter element 54, so that the bellows formed from the filter material 56, as shown in Fig. 3, is folded. The acceleration forces acting on rapid movement lead to detachment of accumulated particles, in particular when shaking takes place by intermittent compression and extraction. The detached during the regeneration particles fall off into the bottom portion 40 of the filter housing 20, which serves as a collecting space from which the contaminants are occasionally removed by means of a discharge device 68 (FIG. 1) having a shut-off device 70 and a retentate 72. 4 and 5 show a further embodiment in which a rotary drive with an electric motor 74 is provided as a drive for the movement in place of the linear drive forming a lifting cylinder 44 whose axis 46 coaxial shaft 76 connected to the lower end cap 78 of a filter element 80 is. This is formed in conventional construction with hollow cylindrical filter material extending from lower end cap 78 to upper end cap 82. In this is a coaxial passage which forms the connection of the inner filter cavity with the clean gas outlet 50 in the regeneration mode shown in Fig. 4. Serving as a rotary drive electric motor 74 is connected to a coaxial to the axis 46 lifting cylinder 84 through which the motor 74 and thus the filter element 80 in the filtration mode (Fig. 4) is raised such that the passage at the upper end cap 82 in close contact with Connecting piece 52 of the clean gas outlet 50 is. When the electric motor 74 is stopped, the filtration process takes place with the valves open at the raw gas inlet 18 and at the clean gas outlet 50 in the case of this position of the filter element 80. As shown by non-quantified flow arrows in FIG. 4, In this case, the raw gas entering via the inlet 18 flows from the outside inwards into the filter element 80 and exits the internal filter cavity via the clean gas outlet 50 as clean gas. FIG. 5 illustrates the regeneration mode that takes place at the raw gas inlet 18 and the clean gas outlet 50 when the valves are closed (not shown). The electric motor 74 and thus the filter element 80 are lowered by retracting the lifting cylinder 84, so that the upper end cap 82 of the filter element 80 is released from the connecting piece 52 of the clean gas outlet 50 and the filter element 80 is freely rotatable. The actuated electric motor 74 now sets the filter element 80 in rotation so that particles deposited on the outside by centrifugal force are thrown off and, as in the previous variants, fall off to the bottom region 40 of the filter housing 20 and can be discharged on a case-by-case basis.
Die Fig. 6 und 7 zeigen ein drittes Ausführungsbeispiel, bei dem in Entsprechung zum ersten Ausführungsbeispiel ein Filterelement 54 in Form eines kollabierbaren Balges vorgesehen ist, der wie beim ersten Ausführungsbeispiel mittels eines Hubzylinders 44 zusammendrückbar und ausziehbar ist. Der Unterschied zum ersten Ausführungsbeispiel besteht lediglich darin, dass am Austrittsstutzen 86 des Reingasausgangs 50 ein Absperrventil 88 in Form eines Platten- oder Tellerventils vorgesehen ist, das durch einen Stellantrieb 90 in die Schließstellung oder Durchlassstellung betätigbar ist. Bei dem in Fig. 6 gezeigten Filtrationszustand befindet sich das Ventil 88 im Durchlasszustand, so dass das Filterelement 54, wie es mit nicht bezifferten Strömungspfeilen angegeben ist, in gleicher weise durchströmt ist, wie dies in Fig. 2 für das erste Beispiel gezeigt ist. Für den in Fig. 7 gezeigten Regeneriervorgang ist das Absperrventil 88 geschlossen. Dies führt dazu, dass beim Zusammendrücken des Balges in die in Fig. 7 gezeigte Form das inne- re Gasvolumen des Balgs in einem Druckstoß durch das Filtermaterial 56 nach außen gepresst wird und dabei die angelagerten Partikel absprengt. Wie beim ersten Beispiel von Fig. 2 und 3 fallen die abgelösten Partikel in den Bodenbereich 40 des Filtergehäuses 20 ab. 6 and 7 show a third embodiment in which, in correspondence with the first embodiment, a filter element 54 is provided in the form of a collapsible bellows, which is compressible and extendable as in the first embodiment by means of a lifting cylinder 44. The difference from the first embodiment is merely that a shut-off valve 88 in the form of a plate or poppet valve is provided at the outlet nozzle 86 of the clean gas outlet 50, which can be actuated by an actuator 90 in the closed position or passage position. In the filtration state shown in Fig. 6, the valve 88 is in the on state, so that the filter element 54, as indicated by non-numbered flow arrows, flows through in the same manner, as shown in Fig. 2 for the first example. For the regeneration process shown in Fig. 7, the shut-off valve 88 is closed. As a result, when the bellows are compressed into the shape shown in FIG. 7, the internal gas volume of the bellows is pressed outward through the filter material 56 in a pressure surge, thereby breaking off the deposited particles. As in the first example of FIGS. 2 and 3, the detached particles fall off into the bottom region 40 of the filter housing 20.
Die Fig. 8 und 9 zeigen ein viertes Ausführungsbeispiel, das wie das dritte Ausführungsbeispiel an Reingasausgängen 50 jeweils ein Absperrventil 88 vorsieht. Im Filtergehäuse 20 ist jedoch mehr als ein Filterelement 54 angeordnet, beim Beispiel von Fig. 8 und 9 zwei Filterelemente 54, die je durch einen kollabierbaren Faltenbalg gebildet sind. Die Filterelemente 54 sind voneinander unabhängig durch je einen eigenen Linearantrieb 44 zusam- mendrückbar und ausziehbar. Der Reingasausgang 50 jedes Filterelements 54 ist über sein Absperrventil 88 mit einem gemeinsamen Reingasraum 92 in Verbindung, an dessen Ausgang sich die Reingasleitung 22 (s. Fig. 1) anschließt. Am Bodenbereich 40 des Filtergehäuses 20 befindet sich ein trichterartiger Sammelraum 94 für abgefallene Schmutzpartikel, die sich in ei- nem Retentatbehälter 96 absetzen. FIGS. 8 and 9 show a fourth exemplary embodiment which, like the third exemplary embodiment, provides a shut-off valve 88 on clean gas outlets 50. In the filter housing 20, however, more than one filter element 54 is arranged, in the example of FIGS. 8 and 9 two filter elements 54, which are each formed by a collapsible bellows. The filter elements 54 can be pressed and pulled together independently of each other by their own linear drive 44. The clean gas outlet 50 of each filter element 54 is connected via its shut-off valve 88 to a common clean gas space 92, at the outlet of which the clean gas line 22 (see FIG. At the bottom area 40 of the filter housing 20 there is a funnel-like collecting space 94 for fallen-off dirt particles, which settle in a retentate container 96.
Die Fig. 8 zeigt den Filtrationsmodus für beide Filterelemente 54, wobei das Absperrventil 88 beider Filterelemente 54 in Durchlassstellung ist und die Filtration bei jeweils ausgezogenem Balg stattfindet. Die Fig. 9 zeigt das eine Filterelement 54 mit geöffnetem Absperrventil 88 im Filtrationsmodus, während sich das andere Filterelement 54 im Regeneriermodus befindet. Das zugehörige Absperrventil 88 ist geschlossen und das Filterelement 54 zum Erzeugen des Rückspül-Druckstoßes kollabiert. Dergestalt ermöglicht dieses Ausführungsbeispiel einen Dauerbetrieb, indem jeweils verblockte Filterelemente 54 bei fortgesetztem Filtrationsbetrieb eines jeweils anderen Filterelements 54 regeneriert werden. Fig. 8 shows the filtration mode for both filter elements 54, wherein the shut-off valve 88 of both filter elements 54 in the passage position and the filtration takes place at each extended bellows. FIG. 9 shows one filter element 54 with the shut-off valve 88 open in the filtration mode, while the other filter element 54 is in the regeneration mode. The associated shut-off valve 88 is closed and the filter element 54 collapsed to produce the backwash pressure surge. In this way, this embodiment allows a continuous operation by each blocked filter elements 54 are regenerated with continued filtration operation of a respective other filter element 54.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Filtration von bei selektiven Fertigungsverfahren in einem Fertigungsraum (2) entstehenden Rauchgasen, wie Schweißrauch von 3D-Druckern, mit den Schritten: 1. A method for the filtration of in a production room (2) produced by selective manufacturing processes flue gases, such as welding smoke of 3D printers, with the steps:
Führen des Rauchgases aus dem Fertigungsraum (2) zum Rohgaseingang (18) eines Filtergehäuses (20), das zumindest ein Filterelement (54; 80) aufnimmt, dessen Filtermaterial (56) beim Filtrationsvorgang den Rohgaseingang (18) von einem Reingasausgang (50) trennt;  Guiding the flue gas from the production space (2) to the raw gas inlet (18) of a filter housing (20) which accommodates at least one filter element (54, 80) whose filter material (56) separates the raw gas inlet (18) from a clean gas outlet (50) during the filtration process ;
Durchströmen des Filtermaterials (56) und Abführen des Gases über den Reingasausgang (50) und  Flow through the filter material (56) and discharge of the gas via the clean gas outlet (50) and
- Regenerieren des Filterelements (54; 80), indem dieses zum Ablösen von an der Anströmseite des Filtermaterials (56) angelagerten Partikeln bewegt wird.  - Regenerating the filter element (54; 80) by this is moved to detachment of on the upstream side of the filter material (56) deposited particles.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Bewegen durch Zusammendrücken eines kollabierbaren Filterelements (54) durchgeführt wird. 2. The method according to claim 1, characterized in that the movement is carried out by compressing a collapsible filter element (54).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zusammendrücken und ein Rückführen des Filterelements (54) in die Ursprungsform intermittierend durchgeführt werden. 3. The method according to claim 1 or 2, characterized in that the compression and a return of the filter element (54) are carried out intermittently in the original form.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Reingasausgang (50) des Filtergehäuses (20) vom Beginn bis zum Ende des Zusammendrückens des Filterelements (54) geschlossen gehalten wird. 4. The method according to any one of the preceding claims, characterized in that the clean gas outlet (50) of the filter housing (20) from the beginning to the end of the compression of the filter element (54) is kept closed.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Filterelement (80) bei der Bewegung in Drehung versetzt wird. 5. The method according to any one of the preceding claims, characterized in that the filter element (80) is set in the movement in rotation.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Filterelement (80) vor der Drehung vom Reingasausgang (50) des Filtergehäuses (20) getrennt wird. 6. The method according to any one of the preceding claims, characterized in that the filter element (80) before the rotation of the clean gas outlet (50) of the filter housing (20) is separated.
7. Filtervorrichtung zur Filtration von mit Partikeln belasteten Gasen, wie von Schweißgasen, die bei selektiven Fertigungsverfahren, insbesondere bei 3D-Druckern, in einem Fertigungsraum (2) entstehen, mit einem Filtergehäuse (20), das einen Rohgaseingang (18) und einen Reingasausgang (50) aufweist und mindestens ein Filterelement (54; 80) aufnimmt, dessen Filtermaterial (56) bei der Filtration den Rohgaseingang (18) vom Reingasausgang (50) trennt, und mit einem Antrieb (44; 74), durch den dem Filterelement (54; 80) eine das Ablösen von an der Anströmseite des Filtermaterials (56) angelagerten Partikeln bewirkende Bewegung vermittelbar ist. 7. Filter device for the filtration of particulate-laden gases, such as welding gases produced in selective manufacturing processes, especially in 3D printers, in a production space (2), with a filter housing (20) having a raw gas inlet (18) and a clean gas outlet (50) and receives at least one filter element (54; 80) whose filter material (56) separates the raw gas inlet (18) from the clean gas outlet (50) during filtration, and a drive (44; 74) through which the filter element (54; 54, 80) a detachment of on the upstream side of the filter material (56) deposited particles causing movement can be mediated.
8. Filtervorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass ein Filterelement (54) mit einem kollabierbaren Filtermaterial (56) in Form einer Art Faltenbalg vorgesehen ist, der bis auf ein mit dem Reingasausgang (50) verbundenes Ende (58) geschlossen ist, und dass als Antrieb ein Linearantrieb (44) zum Zusammendrücken des Filtermaterials (56) vorgesehen ist. 8. Filter device according to claim 7, characterized in that a filter element (54) is provided with a collapsible filter material (56) in the form of a kind of bellows, which is closed except for one with the clean gas outlet (50) end (58), and in that a linear drive (44) is provided as drive for compressing the filter material (56).
9. Filtervorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Reingasausgang (50) des Filtergehäuses (20) mittels eines Ventils (88) freigebbar und sperrbar ist. 9. Filter device according to claim 7 or 8, characterized in that the clean gas outlet (50) of the filter housing (20) by means of a valve (88) is releasable and lockable.
10. Filtervorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass als Antrieb ein Drehantrieb mit einem Motor (74) vorgesehen ist, mittels dessen das Filterelement (80) für einen Regenerationsvorgang in Drehung versetzbar ist. 10. Filter device according to one of claims 7 to 9, characterized in that a rotary drive with a motor (74) is provided as drive, by means of which the filter element (80) is set for a regeneration process in rotation.
1 1. Filtervorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass als Antrieb des Filterelements (80) eine Kombination aus Motor (74) und Linearantrieb (84) vorgesehen ist. 1 1. Filter device according to one of claims 7 to 10, characterized in that a combination of motor (74) and linear drive (84) is provided as the drive of the filter element (80).
12. Filtervorrichtung nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass im Filtergehäuse (20) mehr als ein Filterelement (54) angeordnet ist, die mittels je eines eigenen Linearantriebes (44) kollabierbar sind, und dass das Filtergehäuse (20) für jedes Filterelement (54) einen eigenen Reingasausgang (50) mit je einem zugeordneten Ventil (88) aufweist. 12. Filter device according to one of claims 7 to 11, characterized in that in the filter housing (20) more than one filter element (54) is arranged, each by means of a separate linear drive (44) are collapsible, and that the filter housing (20) for each filter element (54) has its own clean gas outlet (50), each with an associated valve (88).
13. Filtervorrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass der Rohgaseingang (18) des Filtergehäuses (20) mit einem im Betrieb Schutzgas mit Schweißrauch abgebenden Ausgang (14) des Fertigungsraums (2) eines 3D-Druckers verbunden ist. 13. Filter device according to one of claims 7 to 12, characterized in that the raw gas inlet (18) of the filter housing (20) is connected to a protective gas during operation with welding smoke emitting output (14) of the production space (2) of a 3D printer.
14. Filtervorrichtung nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass der jeweilige Reingasausgang (50) des Filtergehäuses (20) mit dem Schutzgaseingang (12) des Fertigungsraums (2) des 3 D-Druckers in Verbindung ist. 14. Filter device according to one of claims 7 to 13, characterized in that the respective clean gas outlet (50) of the filter housing (20) with the protective gas inlet (12) of the production space (2) of the 3 D printer is in communication.
15. Filtervorrichtung nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass in der zum Schutzgaseingang (12) führenden Verbindung eine dem Filtergehäuse (20) nachgeschaltete weitere Filtereinrichtung (24) vorgesehen ist. 15. Filter device according to one of claims 7 to 14, characterized in that in the protective gas inlet (12) leading connection a filter housing (20) downstream further filter means (24) is provided.
16. Filtervorrichtung nach einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, dass in der zum Schutzgaseingang (12) führenden Verbindung ein Sauggebläse (28) und ein Gaskühler (30) vorgesehen sind. 16. Filter device according to one of claims 7 to 15, characterized in that in the protective gas inlet (12) leading connection, a suction fan (28) and a gas cooler (30) are provided.
PCT/EP2018/000032 2017-02-14 2018-01-24 Method for filtration of gases loaded with particles, and filter device for carrying out such a method WO2018149544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017001372.1 2017-02-14
DE102017001372.1A DE102017001372A1 (en) 2017-02-14 2017-02-14 Process for the filtration of particulate-laden gases and filter device for carrying out such a process

Publications (1)

Publication Number Publication Date
WO2018149544A1 true WO2018149544A1 (en) 2018-08-23

Family

ID=61094387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/000032 WO2018149544A1 (en) 2017-02-14 2018-01-24 Method for filtration of gases loaded with particles, and filter device for carrying out such a method

Country Status (2)

Country Link
DE (1) DE102017001372A1 (en)
WO (1) WO2018149544A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373025A (en) * 2020-09-10 2021-02-19 扬州工业职业技术学院 Compound 3D printer of many shower nozzles of integration
WO2021105635A1 (en) * 2019-11-28 2021-06-03 Addup Filtration device for an additive manufacturing apparatus
CN113056336A (en) * 2018-11-15 2021-06-29 格布尔.贝克尔有限责任公司 Method and device for operating a metal printing device
CN115228196A (en) * 2022-07-08 2022-10-25 南方电网大数据服务有限公司 Cold and hot air current channel system of totally closed computer lab

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110238398B (en) * 2019-07-01 2022-01-04 广州大学 Lens protection device of SLM type metal 3D printer
DE102019007000B4 (en) 2019-10-09 2022-12-08 Hydac Fluidcarecenter Gmbh filter device
CN111558916A (en) * 2020-05-22 2020-08-21 广州秀思诺家具有限公司 Air compression gun device capable of preventing filter screen from being blocked by blockage during air compression
DE102020116030A1 (en) 2020-06-17 2021-12-23 Eos Gmbh Electro Optical Systems Filter device for an additive manufacturing device
CN114425627A (en) * 2021-12-23 2022-05-03 安徽中科大禹科技有限公司 Alloy treatment method based on plasma immersion ion implantation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598853A5 (en) * 1975-07-29 1978-05-12 Walter Hefel Bag type gas filter
DE102005054483A1 (en) * 2005-11-16 2007-05-31 Petrik, Tim, Dipl.-Ing. Apparatus for separating liquid or solid particles from gas stream, e.g. from machining procedure, comprises porous filter medium to be cleaned or regenerated by rapid rotation
EP2052845A2 (en) * 2004-08-27 2009-04-29 Fockele, Matthias Device for manufacturing parts
DE202014102359U1 (en) * 2014-05-20 2014-06-06 Kirsten Remane Device for filtering fluids
US20150110911A1 (en) * 2013-10-21 2015-04-23 Made In Space, Inc. Nanoparticle Filtering Environmental Control Units
EP3017855A1 (en) * 2014-11-06 2016-05-11 LK Metallwaren GmbH Filter device and method of operation
DE102015017026A1 (en) 2015-12-31 2017-07-06 Hydac Technology Gmbh Method for producing pressure vessels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT245545B (en) 1963-06-21 1966-03-10 Waagner Biro Ag Method and device for cleaning filter bags
CH526327A (en) 1969-12-21 1972-08-15 Hefel Walter Fabric filter - for sepn of dust from air or other gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH598853A5 (en) * 1975-07-29 1978-05-12 Walter Hefel Bag type gas filter
EP2052845A2 (en) * 2004-08-27 2009-04-29 Fockele, Matthias Device for manufacturing parts
DE102005054483A1 (en) * 2005-11-16 2007-05-31 Petrik, Tim, Dipl.-Ing. Apparatus for separating liquid or solid particles from gas stream, e.g. from machining procedure, comprises porous filter medium to be cleaned or regenerated by rapid rotation
US20150110911A1 (en) * 2013-10-21 2015-04-23 Made In Space, Inc. Nanoparticle Filtering Environmental Control Units
DE202014102359U1 (en) * 2014-05-20 2014-06-06 Kirsten Remane Device for filtering fluids
EP3017855A1 (en) * 2014-11-06 2016-05-11 LK Metallwaren GmbH Filter device and method of operation
DE102015017026A1 (en) 2015-12-31 2017-07-06 Hydac Technology Gmbh Method for producing pressure vessels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056336A (en) * 2018-11-15 2021-06-29 格布尔.贝克尔有限责任公司 Method and device for operating a metal printing device
CN113056336B (en) * 2018-11-15 2023-08-08 格布尔.贝克尔有限责任公司 Method and device for operating a metal printing device
WO2021105635A1 (en) * 2019-11-28 2021-06-03 Addup Filtration device for an additive manufacturing apparatus
FR3103712A1 (en) * 2019-11-28 2021-06-04 Addup Filtration device for an additive manufacturing device
CN112373025A (en) * 2020-09-10 2021-02-19 扬州工业职业技术学院 Compound 3D printer of many shower nozzles of integration
CN115228196A (en) * 2022-07-08 2022-10-25 南方电网大数据服务有限公司 Cold and hot air current channel system of totally closed computer lab

Also Published As

Publication number Publication date
DE102017001372A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018149544A1 (en) Method for filtration of gases loaded with particles, and filter device for carrying out such a method
DE102014110940A1 (en) Backwashable air filter
EP3226996B1 (en) Filter device, hydraulic system and backwashing method
CH636533A5 (en) FILTER DEVICE FOR FILTERING POLLUTED AIR AND DUST FIBER.
WO2011000471A1 (en) Filter device and filter element arrangement for use in the filter device
DE102015016446A1 (en) Protective filter device, cabin air filter system and method for cleaning air laden with harmful gases and / or aerosols and / or particulate matter dust
EP2704812A1 (en) Filtering apparatus
DE102016118807A1 (en) Backwashable air filter and vacuum cleaner with a backwashable air filter
EP4065252A1 (en) Method for intermittently cleaning a filter, and filter device for a metal printing device
DE102016119196A1 (en) Vacuum cleaner with a filter element
DE2254490C3 (en) Device for separating waste fibers from an air stream
EP3746208B1 (en) Filter device for filtration of gases loaded with particles
EP3880376B1 (en) Method and apparatus for operating a metal printing device
EP3730024B1 (en) Vacuum cleaner and method for controlling a cleaning process in a vacuum cleaner
WO2021074143A1 (en) Filter device and method for cleaning a filter element of a filter device
DE19542578A1 (en) Backwashable filter device with compressed gas
EP4216784A1 (en) Filter device, and method for cleaning same
DE102017222335A1 (en) Dust collector for separating metal dust and method for operating a dust collector
EP2656897B1 (en) Method and device for filtering particles from gases
EP2446794B1 (en) Filter cleaning system for a vacuum cleaner
DE202018003944U1 (en) Filter device for filtering particulate-laden gases
EP3838371B1 (en) Fluid filter and method to clean a fluid filter
DE102006009965B4 (en) Extraction system for a machining machine
DE102019007000A1 (en) Filter device
DE102022204446A1 (en) Filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18702053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18702053

Country of ref document: EP

Kind code of ref document: A1