WO2018149262A1 - 一种动态小区覆盖的方法、装置和系统 - Google Patents

一种动态小区覆盖的方法、装置和系统 Download PDF

Info

Publication number
WO2018149262A1
WO2018149262A1 PCT/CN2018/072879 CN2018072879W WO2018149262A1 WO 2018149262 A1 WO2018149262 A1 WO 2018149262A1 CN 2018072879 W CN2018072879 W CN 2018072879W WO 2018149262 A1 WO2018149262 A1 WO 2018149262A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay compensation
data
delay
radius
compensation
Prior art date
Application number
PCT/CN2018/072879
Other languages
English (en)
French (fr)
Inventor
王雯芳
谭伟
闫鹏周
池海祥
袁泉
池柏祥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018149262A1 publication Critical patent/WO2018149262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This application relates to, but is not limited to, the field of wireless communication technology.
  • the random access technology is an important technology for receiver access control in the communication system.
  • the receiver completes the uplink timing synchronization correction and user power through the random access procedure. Adjustments and requests for user resource requirements.
  • the uplink random access preamble of the LTE system uses a cyclic shift sequence of a ZC (Zadoff-Chu) sequence, and the random access preamble is derived based on the ZC sequence by selecting different cyclic shifts.
  • the random access subframe is composed of three parts, which are a cyclic prefix part, a preamble sequence part, and a guard interval part.
  • the LTE system supports five formats, namely format 0-4, each format corresponding to different cell coverage.
  • the cell coverage radius is determined by the cyclic shift of the random access subframe and the guard interval.
  • the antenna height is high, in some application scenarios, such as when the antenna is built at the seaside, the antenna setting is affected by the natural environment, which will greatly reduce the effectiveness of the antenna coverage area.
  • This document provides a method, apparatus, and system for dynamic cell coverage to implement a method for properly configuring cell coverage.
  • a method for dynamic cell coverage comprising:
  • corresponding processing on the data after the delay compensation includes one or more of receiving processing and transmitting processing
  • the performing delay compensation on one or more of the received data and the sent data includes:
  • the radio remote unit performs delay compensation on one or more of the received data and the transmitted data.
  • the performing delay compensation on one or more of the received data and the sent data includes:
  • the baseband processing unit performs delay compensation on one or more of the received data and the transmitted data.
  • the performing delay compensation on one or more of the received data and the sent data includes:
  • the radio remote unit and the baseband processing unit perform delay compensation on one or more of the received data and the transmitted data.
  • a device for dynamic cell coverage comprising:
  • the inner ring radius delay determining unit (410) is configured to: determine a delay value to be adjusted according to the inner ring cell radius of the supported ring cover;
  • the inner ring radius delay compensation unit (420) is configured to: determine the delay value to be adjusted according to the inner ring radius delay determining unit (410), in the time domain pair receiving data and sending data One or more delay compensation;
  • the general processing unit (430) is configured to: perform corresponding processing on the data after delay compensation of the inner ring radius delay compensation unit (420), where the corresponding processing includes one of receiving processing and sending processing. Or multiple.
  • the inner loop radius delay compensation unit (420) performs delay compensation, and includes: performing delay compensation on one or more of receiving data and transmitting data in the radio remote unit.
  • the inner ring radius delay compensation unit (420) performs time delay compensation, including: performing delay compensation on one or more of the received data and the transmitted data in the baseband processing unit.
  • the inner loop radius delay compensation unit (420) performs delay compensation, including: performing delay compensation on one or more of receiving data and transmitting data in the radio remote unit and the baseband processing unit. .
  • a system for dynamic cell coverage comprising: at least one processor, and a memory coupled to the at least one processor;
  • the processor is configured to: determine a delay value to be adjusted according to the radius of the inner ring cell of the supported ring coverage; according to the delay value to be adjusted, one of the received data and the sent data in the time domain
  • the item or multiples perform delay compensation; the delay-compensated data is processed correspondingly, and the corresponding processing includes one or more of receiving processing and transmitting processing.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the method of dynamic cell coverage as described in any of the above.
  • the method, device and system for dynamic cell coverage provided by the embodiments of the present invention can dynamically adjust the radius of the inner ring cell of the ring-covered cell according to the actual environment, and the radius difference between the ring-covered outer ring and the inner ring cell can reach a circular coverage.
  • the maximum range supported by the time; and the device provided by the embodiment of the present invention only adds the inner ring radius delay determining unit and the inner ring radius delay compensation unit. After the delay compensation, the original circular coverage of the base station can be completely processed. Reuse, easy to implement.
  • the embodiment of the present invention can only perform uplink delay compensation, and can only perform downlink delay compensation, and can also perform uplink and downlink delay compensation simultaneously; the advantage of simultaneous uplink and downlink compensation is that the uplink and downlink respectively share a part of delay compensation. Work can effectively alleviate the pressure of unilateral compensation on system delay processing capability.
  • 1 is a schematic diagram of a ring cell coverage
  • FIG. 2 is a flowchart of a method for dynamic cell coverage according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for dynamic cell coverage according to an embodiment of the present invention.
  • the maximum support radius of the random access preamble is 100 km of cell coverage.
  • the coverage radius be R
  • the antenna vertical plane half power angle be A
  • the antenna inclination angle be B
  • the antenna height is hundreds of meters.
  • the antenna can be hung by the buildings or mountains at the seaside, but at this time the community will cover a part of the sea surface, resulting in a narrow coverage of the sea surface.
  • FIG. 1 is a schematic diagram of a ring cell coverage
  • the base station covers all areas with a radius of R 2 according to the original coverage mode, and the coverage radius is large. If the radius of the cell supported by the random access preamble in the LTE system is not exceeded, Then a large part of the coverage is on land, and the coverage on the sea is small. Therefore, the coverage area is divided into two parts, the inner ring with radius R1 is covered by one base station, the ring part with radius R1 to R2 is covered by another base station, and the radius of R1 to R2 can reach the random access preamble support in LTE system.
  • the maximum radius, the radius of the inner ring R1 can be dynamically adjusted according to actual requirements.
  • FIG. 2 is a flowchart of a method for dynamic cell coverage according to an embodiment of the present invention.
  • the method for dynamic cell coverage provided by the embodiment of the present invention may include the following steps, that is, S110-S130:
  • the base station determines a delay value to be adjusted according to the radius of the inner ring cell of the supported ring coverage.
  • the radius of the inner ring covered by the FFT frequency division duplex mode (FDD) ring cell is R1 m
  • the outer ring radius is R 2 m
  • the ring area is the real coverage of the cell.
  • the one-way delay value corresponding to the radius R1 of the inner ring is:
  • the base station can dynamically adjust the inner ring cell radius of the ring coverage cell according to the actual environment, and the radius difference between the ring coverage outer ring and the inner ring cell can reach the maximum range supported by the circular coverage.
  • the base station performs time delay compensation on one or more of the received data and the sent data according to the delay value to be adjusted.
  • the base station may perform delay compensation on both the received data and the transmitted data on the radio remote unit (RRU) side.
  • the delay value of the RRU for receiving data compensation is: n* ⁇ t, which is equivalent to delay receiving when receiving data; the delay value of RRU for transmitting data compensation is: (2-n)* ⁇ t, which is equivalent to transmitting in advance when transmitting data. Where 0 ⁇ n ⁇ 2.
  • the base station performs corresponding processing on the data after the delay compensation, where the corresponding processing includes one or more of receiving processing and sending processing.
  • the original circular coverage of the base station is processed in the same manner, and can be completely reused.
  • the detection process of the random access preamble signal is not changed by the base station, and the Time Advance Command (Time Advance Command) in the random access response message (RAR) is called:
  • the TAC is independent of whether the RRU performs delay compensation and is not affected by the RRU delay compensation; the processing of the other uplink and downlink channels by the base station is also unaffected by the RRU delay compensation.
  • the embodiment of the present invention further provides a method for dynamic cell coverage.
  • the method for dynamic cell coverage provided by the embodiment of the present invention may include the following steps:
  • Step 201 is the same as S110 in the embodiment shown in FIG. 2;
  • Step 202 is similar to S120 in the embodiment shown in FIG. 2; the difference is that the base station only performs delay compensation on the RRU side for receiving data or transmitting data, and the delay compensation value is 2* ⁇ t.
  • Step 203 is the same as S130 in the embodiment shown in FIG. 2;
  • the embodiment of the present invention further provides a method for dynamic cell coverage.
  • the method for dynamic cell coverage provided by the embodiment of the present invention may include the following steps:
  • Step 301 is the same as S110 in the embodiment shown in FIG. 2;
  • Step 302 is similar to S120 in the embodiment shown in FIG. 2; the difference is that the base station is in-phase quadrature (referred to as: IQ) on the side of the Baseband Processing Unit (BBU).
  • IQ in-phase quadrature
  • BBU Baseband Processing Unit
  • the platform only performs delay compensation on receiving data or transmitting data, and the delay compensation value is 2* ⁇ t;
  • Step 303 is the same as S130 in the embodiment shown in FIG. 2.
  • the manner of delay compensation for one or more of the received data and the transmitted data is not limited to the above enumerated cases.
  • the data may be received and sent on the BBU side.
  • the data is compensated for by the delay. It is also possible to delay the received data or the transmitted data on the RRU side and the BBU side, and delay compensation for both the received data and the transmitted data on the RRU side and the BBU side.
  • FIG. 3 is a schematic structural diagram of an apparatus for dynamic cell coverage according to an embodiment of the present invention.
  • the apparatus for dynamic cell coverage provided by the embodiment of the present invention may include: determining an inner ring radius delay Unit 410, inner ring radius delay compensation unit 420, and general purpose processing unit 430.
  • the inner ring radius delay determining unit 410 is configured to: determine a delay value to be adjusted according to the inner ring cell radius of the supported ring coverage;
  • the inner ring radius delay compensation unit 420 is configured to delay the one or more of the received data and the transmitted data in the time domain according to the delay value to be adjusted determined by the inner ring radius delay determining unit 410. make up;
  • the general processing unit 430 is configured to perform corresponding processing on the data after the delay compensation by the inner ring radius delay compensation unit 420, and the corresponding processing includes one or more of receiving processing and transmitting processing.
  • the implementation of the delay compensation by the inner ring radius delay compensation unit (420) may include: one or more of receiving data and transmitting data in the radio remote unit Perform delay compensation.
  • the implementation of the delay compensation by the inner ring radius delay compensation unit (420) may further include: one or more of receiving data and transmitting data in the baseband processing unit. Perform delay compensation.
  • the implementation of the delay compensation by the inner ring radius delay compensation unit (420) may further include: in the radio frequency remote unit and the baseband processing unit, in receiving data and transmitting data.
  • One or more delay compensation may further include: in the radio frequency remote unit and the baseband processing unit, in receiving data and transmitting data.
  • the embodiment of the present invention further provides a system for dynamic cell coverage.
  • the system for dynamic cell coverage provided by the embodiment of the present invention may include: at least one processor, and a memory coupled to the at least one processor.
  • the processor in the embodiment of the present invention is configured to: determine a delay value to be adjusted according to the radius of the inner ring cell of the supported ring coverage; according to the delay value to be adjusted, in the time domain to receive data and send data One or more delay compensations are performed; the data after the delay compensation is processed correspondingly, and the corresponding processing includes one or more of receiving processing and transmitting processing.
  • the method, device and system for dynamic cell coverage provided by the embodiments of the present invention can dynamically adjust the radius of the inner ring cell of the ring-covered cell according to the actual environment, and the radius difference between the ring-covered outer ring and the inner ring cell can reach a circular coverage.
  • the maximum range supported by the time; and the device provided by the embodiment of the present invention only adds the inner ring radius delay determining unit and the inner ring radius delay compensation unit. After the delay compensation, the original circular coverage of the base station can be completely processed. Reuse, easy to implement.
  • the embodiment of the present invention can only perform uplink delay compensation, and can only perform downlink delay compensation, and can also perform uplink and downlink delay compensation simultaneously; the advantage of simultaneous uplink and downlink compensation is that the uplink and downlink respectively share a part of delay compensation. Work can effectively alleviate the pressure of unilateral compensation on system delay processing capability.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which can implement the dynamics provided by any of the embodiments shown in FIG. 2 when executed by the processor.
  • Cell coverage method The embodiment of the computer readable storage medium provided by the embodiment of the present invention is substantially the same as the method for the dynamic cell coverage provided by the foregoing embodiment of the present invention, and details are not described herein.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules, or other data. , removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the radius of the inner ring cell of the ring-covered cell is dynamically adjusted according to the actual environment, and the maximum radius difference between the ring-covered outer ring and the inner ring cell can reach the maximum range supported by the circular cover; and the implementation of the present invention
  • the device provided by the example only adds the inner ring radius delay determining unit and the inner ring radius delay compensation unit. After the delay compensation, the original circular coverage processing mode of the base station can be completely reused and is easy to implement.
  • the embodiment of the present invention can only perform uplink delay compensation, and can only perform downlink delay compensation, and can also perform uplink and downlink delay compensation simultaneously; the advantage of simultaneous uplink and downlink compensation is that the uplink and downlink respectively share a part of delay compensation. Work can effectively alleviate the pressure of unilateral compensation on system delay processing capability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种动态小区覆盖的方法、装置和系统,其中,该动态小区覆盖的方法包括:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;根据待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;对时延补偿后的数据进行接收处理和发送处理中的一种或多种处理。

Description

一种动态小区覆盖的方法、装置和系统 技术领域
本申请涉及但不限于无线通信技术领域。
背景技术
在长期演进(Long Term Evolution,简称为:LTE)系统中,随机接入技术是通信系统中接收机接入控制的一项重要技术,接收机通过随机接入过程完成上行定时同步校正、用户功率调整和用户资源需求的申请。
LTE系统的上行随机接入前导使用的是ZC(Zadoff-Chu)序列的循环移位序列,随机接入前导码是基于ZC序列通过选取不同的循环移位衍生的。随机接入子帧由三部分组成,分别是循环前缀部分、前导序列部分和保护间隔部分。
小区覆盖半径越大,信号传输时延越大。因此根据小区覆盖的不同,所要求的循环前缀长度不同、前导序列和保护间隔长度也不同。LTE系统支持五种格式,分别是格式0-4,每种格式对应不同的小区覆盖。小区覆盖半径由随机接入子帧的循环移位和保护间隔共同决定。
若天线高度较高,在一些应用场景中,例如当天线建立在海边时,天线设置受自然环境的影响,会使天线覆盖区域的有效性大打折扣。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种动态小区覆盖的方法、装置和系统,以实现一种合理配置小区覆盖的方式。
一种动态小区覆盖的方法,该方法包括:
根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
根据所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
对时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项;
可选地,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
在射频拉远单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
在基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
在射频拉远单元和基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
一种动态小区覆盖的装置,包括:
内环半径时延确定单元(410),设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
内环半径时延补偿单元(420),设置为:根据所述内环半径时延确定单元(410)确定出的所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
通用处理单元(430),设置为:对所述内环半径时延补偿单元(420)进行时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
可选地,所述的内环半径时延补偿单元(420)进行时延补偿,包括:在射频拉远单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,所述的内环半径时延补偿单元(420)进行时延补偿,包括: 在基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,所述的内环半径时延补偿单元(420)进行时延补偿,包括:在射频拉远单元和基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
一种动态小区覆盖的系统,包括:至少一个处理器,以及与所述至少一个处理器耦合的存储器;
所述的处理器,设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;根据所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;对时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如上述任一项所述的动态小区覆盖的方法。
本发明实施例提供的动态小区覆盖的方法、装置和系统,能够根据实际环境情况动态调整环形覆盖小区的内环小区半径,并且环形覆盖外环与内环小区半径差最大范围可达到圆形覆盖时支持的最大范围;并且,本发明实施例提供的装置仅增加了内环半径时延确定单元和内环半径时延补偿单元,时延补偿后,基站原有圆形覆盖的处理方式可以完全复用,易于实现。另外,本发明实施例可以仅做上行时延补偿、也可以仅做下行时延补偿、还可以同时进行上下行时延补偿;上下行同时补偿的好处在于上下行各自分担了一部分时延补偿的工作,可以有效缓解仅单边补偿对系统时延处理能力的压力。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一种环形小区覆盖的示意图;
图2为本发明实施例提供的一种动态小区覆盖的方法的流程图;
图3为本发明实施例提供的一种动态小区覆盖的装置的结构示意图。
详述
下文中将结合附图对本发明的实施方式进行详细说明。
在附图的流程图示出的步骤可以在诸根据一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
LTE系统中随机接入前导最大支持半径是100公里的小区覆盖。设覆盖半径为R,天线垂直平面半功率角为A,天线倾角为B,则可以计算出天线高度H为H=R*tan(B-A/2),由此可以推出当小区覆盖半径是100公里时,天线高度为上百米。而当天线位于海边时,如果要在沙滩上建这么高的站非常困难,此时可以借助海边的建筑物或者山进行天线挂高,但是此时小区会覆盖海面一部分,导致海面实际覆盖缩小。
因此可以考虑将覆盖分为两部分,由两个基站来进行控制。如图1所示,为一种环形小区覆盖的示意图,基站按照原来的覆盖方式覆盖半径为R2的所有区域,覆盖半径很大,如果不超过LTE系统中随机接入前导最大支持的小区半径,那么有很大一部分覆盖都在陆地,而海面上的覆盖很小。因此将覆盖区域分为两部分,半径为R1的内环由一个基站覆盖,半径为R1到R2的环形部分由另一个基站覆盖,R1到R2的半径可以达到LTE系统中随机接入前导支持的最大半径,内环R1的半径可以根据实际要求动态调整。
如图2所示,为本发明实施例提供的一种动态小区覆盖的方法的流程图,本发明实施例提供的动态小区覆盖的方法可以包括如下步骤,即S110~S130:
S110、基站根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
如图1所示,LTE频域分集双工模式(Frequency Division Duplex,简称为:FDD)环形小区覆盖的内环半径大小为R1米,外环半径为R2米,环形区域内是小区真实覆盖的区域,则内环半径R1对应的单向时延值为:
Δt=R1/3*10 8秒。
在本发明实施例中,基站能够根据实际环境情况动态调整环形覆盖小区 的内环小区半径,并且环形覆盖外环与内环小区半径差最大范围可达到圆形覆盖时支持的最大范围。
S120、基站根据待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
可选地,在本发明实施例中,基站可以在射频拉远单元(Radio Remote Unit,简称为:RRU)侧对接收数据和发送数据都进行时延补偿。RRU对接收数据补偿的时延值为:n*Δt,相当于接收数据时延迟接收;RRU对发送数据补偿的时延值为:(2-n)*Δt,相当于发送数据时提前发送。其中,0<n<2。
S130、基站对时延补偿后的数据进行相应的处理,该相应的处理包括接收处理和发送处理中的一项或多项。
在本发明实施例中,对时延补偿后的数据进行处理时,与基站原有圆形覆盖的处理方式相同,可以完全复用。LTE FDD系统中,基站对随机接入前导信号的检测流程不变,且下发的随机接入响应(Random Access Response Message,简称为:RAR)中的时间提前命令(Time Advance Command,简称为:TAC)与RRU是否进行时延补偿无关,不受RRU时延补偿的影响;基站对其他上行和下行信道的处理也不受RRU时延补偿的影响。
参考图2所示流程,本发明实施例还提供一种动态小区覆盖的方法,本发明实施例提供的动态小区覆盖的方法可以包括如下步骤:
步骤201与图2所示实施例中的S110相同;
步骤202与图2所示实施例中的S120类似;不同之处在于基站在RRU侧仅对接收数据或发送数据进行时延补偿,且时延补偿值为2*Δt。
步骤203与图2所示实施例中的S130相同;
参考图2所示流程,本发明实施例还提供一种动态小区覆盖的方法,本发明实施例提供的动态小区覆盖的方法可以包括如下步骤:
步骤301与图2所示实施例中的S110相同;
步骤302与图2所示实施例中的S120类似;不同之处在于基站在基带处理单元(Building Base band Unit,简称为:BBU)侧的同相正交(In-phase Quadrature,简称为:IQ)平台仅对接收数据或发送数据进行时延补偿,且时延补偿值为2*Δt;
步骤303与图2所示实施例中的S130相同。
需要说明的是,本发明实施例不限制对接收数据和发送数据中的一项或多项进行时延补偿的方式仅为上述列举的中情况,例如,也可以在BBU侧对接收数据和发送数据都进行时延补偿,还可以在RRU侧和BBU侧仅对接收数据或发送数据进行时延补偿,还可以在RRU侧和BBU侧对接收数据和发送数据都进行时延补偿。
如图3所示,为本发明实施例提供的一种动态小区覆盖的装置的结构示意图,如图3所示,本发明实施例提供的动态小区覆盖的装置可以包括:内环半径时延确定单元410、内环半径时延补偿单元420、通用处理单元430。
其中,内环半径时延确定单元410,设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
内环半径时延补偿单元420,设置为:根据内环半径时延确定单元410确定出的待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
通用处理单元430,设置为:对内环半径时延补偿单元420进行时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
可选地,在本发明实施例中,内环半径时延补偿单元(420)进行时延补偿的实现方式,可以包括:在射频拉远单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,在本发明实施例中,内环半径时延补偿单元(420)进行时延补偿的实现方式,还可以包括:在基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
可选地,在本发明实施例中,内环半径时延补偿单元(420)进行时延补偿的实现方式,还可以包括:在射频拉远单元和基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
本发明实施例还提供一种动态小区覆盖的系统,本发明实施例提供的动态小区覆盖的系统可以包括:至少一个处理器,以及与至少一个处理器耦合的存储器。
本发明实施例中的处理器,设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;根据待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;对时延补偿后的数据进行相应的处理,该相应的处理包括接收处理和发送处理中的一项或多项。
本发明实施例提供的动态小区覆盖的方法、装置和系统,能够根据实际环境情况动态调整环形覆盖小区的内环小区半径,并且环形覆盖外环与内环小区半径差最大范围可达到圆形覆盖时支持的最大范围;并且,本发明实施例提供的装置仅增加了内环半径时延确定单元和内环半径时延补偿单元,时延补偿后,基站原有圆形覆盖的处理方式可以完全复用,易于实现。另外,本发明实施例可以仅做上行时延补偿、也可以仅做下行时延补偿、还可以同时进行上下行时延补偿;上下行同时补偿的好处在于上下行各自分担了一部分时延补偿的工作,可以有效缓解仅单边补偿对系统时延处理能力的压力。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被处理器执行时可以实现图2所示任一实施例提供的动态小区覆盖的方法。本发明实施例提供的计算机可读存储介质的实施方式与本发明上述实施例提供的动态小区覆盖的方法基本相同,在此不做赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的 划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述仅为本发明的可选实施例和可选实施方式而已,并不用于限制本发明实施例的保护范围,对于本领域的普通技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。
工业实用性
本发明实施例中,根据实际环境情况动态调整环形覆盖小区的内环小区半径,并且环形覆盖外环与内环小区半径差最大范围可达到圆形覆盖时支持的最大范围;并且,本发明实施例提供的装置仅增加了内环半径时延确定单元和内环半径时延补偿单元,时延补偿后,基站原有圆形覆盖的处理方式可以完全复用,易于实现。另外,本发明实施例可以仅做上行时延补偿、也可以仅做下行时延补偿、还可以同时进行上下行时延补偿;上下行同时补偿的好处在于上下行各自分担了一部分时延补偿的工作,可以有效缓解仅单边补偿对系统时延处理能力的压力。

Claims (10)

  1. 一种动态小区覆盖的方法,包括:
    根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
    根据所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
    对时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
  2. 根据权利要求1所述的方法,其中,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
    在射频拉远单元对接收数据和发送数据中的一项或多项进行时延补偿。
  3. 根据权利要求1所述的方法,其中,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
    在基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
  4. 根据权利要求1所述的方法,其中,所述对接收数据和发送数据中的一项或多项进行时延补偿,包括:
    在射频拉远单元和基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
  5. 一种动态小区覆盖的装置,包括:
    内环半径时延确定单元(410),设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;
    内环半径时延补偿单元(420),设置为:根据所述内环半径时延确定单元(410)确定出的所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;
    通用处理单元(430),设置为:对所述内环半径时延补偿单元(420)进行时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
  6. 根据权利要求5所述的装置,其中,
    所述的内环半径时延补偿单元(420)进行时延补偿,包括:在射频拉远单元对接收数据和发送数据中的一项或多项进行时延补偿。
  7. 根据权利要求5所述的装置,其中,
    所述的内环半径时延补偿单元(420)进行时延补偿,包括:在基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
  8. 根据权利要求5所述的装置,其中,
    所述的内环半径时延补偿单元(420)进行时延补偿,包括:在射频拉远单元和基带处理单元对接收数据和发送数据中的一项或多项进行时延补偿。
  9. 一种动态小区覆盖的系统,包括:至少一个处理器,以及与所述至少一个处理器耦合的存储器;
    所述的处理器,设置为:根据所支持的环形覆盖的内环小区半径确定待调整的时延值;根据所述待调整的时延值,在时域对接收数据和发送数据中的一项或多项进行时延补偿;对时延补偿后的数据进行相应的处理,所述相应的处理包括接收处理和发送处理中的一项或多项。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1~4中任一项所述的动态小区覆盖的方法。
PCT/CN2018/072879 2017-02-15 2018-01-16 一种动态小区覆盖的方法、装置和系统 WO2018149262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710081705.4A CN108430064A (zh) 2017-02-15 2017-02-15 一种动态小区覆盖的方法、装置和系统
CN201710081705.4 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018149262A1 true WO2018149262A1 (zh) 2018-08-23

Family

ID=63155476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072879 WO2018149262A1 (zh) 2017-02-15 2018-01-16 一种动态小区覆盖的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN108430064A (zh)
WO (1) WO2018149262A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160787A1 (en) * 2001-03-13 2002-10-31 Lucent Technologies Inc. Communications system and related method for determining a position of a mobile station
CN102273284A (zh) * 2009-11-20 2011-12-07 高通股份有限公司 用于促进上行链路同步的方法和装置
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103843383A (zh) * 2013-06-28 2014-06-04 华为技术有限公司 远距离覆盖方法及基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI280807B (en) * 2003-02-19 2007-05-01 Sk Telecom Co Ltd Method and system for optimizing location-based service by adjusting maximum antenna range
CN101262270A (zh) * 2008-04-02 2008-09-10 深圳国人通信有限公司 一种在基站系统中实现数字拉远的方法及其装置
CN101848465A (zh) * 2010-04-13 2010-09-29 南京邮电大学 第四代通信系统网络架构设计及无线资源管理方法
CN103312413B (zh) * 2012-03-14 2016-04-20 普天信息技术研究院有限公司 Lte基站光纤时延补偿的数据缓存方法、系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160787A1 (en) * 2001-03-13 2002-10-31 Lucent Technologies Inc. Communications system and related method for determining a position of a mobile station
CN102273284A (zh) * 2009-11-20 2011-12-07 高通股份有限公司 用于促进上行链路同步的方法和装置
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103843383A (zh) * 2013-06-28 2014-06-04 华为技术有限公司 远距离覆盖方法及基站

Also Published As

Publication number Publication date
CN108430064A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN107079529B (zh) 终端装置、基站装置、通信方法以及集成电路
US10098079B2 (en) Power control of device-to-device synchronization signal
KR101642896B1 (ko) TA(Timing Advance) 그룹의 결정
JP6795489B2 (ja) 端末装置、基地局装置、および通信方法
US20140050213A1 (en) Methods and apparatus for timing synchronization during a wireless uplink random access procedure
CN111511030B (zh) 频率调整方法、装置及设备
WO2016120949A1 (en) Systems and methods for accommodating specific user equipments
US11997633B2 (en) Timing adjustments for data transmission in wireless systems
CN106576316B (zh) 终端装置、基站装置、通信方法以及集成电路
US20180279361A1 (en) Apparatus and method for performing initial access in wireless communication system
JP2012244425A (ja) 移動通信方法
CN116671031A (zh) 配置极化类型
KR20220108042A (ko) 단말 장치, 기지국 장치 및 통신 방법
US20140269579A1 (en) Method and apparatus for controlling transmission power of a prach
US11147114B2 (en) Method of handling dual connectivity and related communication device
WO2018149262A1 (zh) 一种动态小区覆盖的方法、装置和系统
EP2807873A1 (en) User equipment, network node and method for applying power scaling to uplink transmissions
TW201717695A (zh) 處理非存取層控制程序的裝置及方法
CN114175777A (zh) 通信方法、设备及其计算机可读介质
US12004233B2 (en) Method and apparatus for random access in NTN
US20220124834A1 (en) Method and apparatus for random access in ntn
JP2018061098A (ja) 基地局装置、端末装置、無線通信システム及び周波数調整方法
WO2016179833A1 (zh) Ue、网络节点及确定小区下行信号的发射方式的方法
WO2014206479A1 (en) Method for transmitting signals in the downlink of a cellular wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753706

Country of ref document: EP

Kind code of ref document: A1