WO2018147554A1 - Dehumidification system using membrane installed in building duct - Google Patents

Dehumidification system using membrane installed in building duct Download PDF

Info

Publication number
WO2018147554A1
WO2018147554A1 PCT/KR2017/015721 KR2017015721W WO2018147554A1 WO 2018147554 A1 WO2018147554 A1 WO 2018147554A1 KR 2017015721 W KR2017015721 W KR 2017015721W WO 2018147554 A1 WO2018147554 A1 WO 2018147554A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
duct
dehumidification system
dehumidification
fluid
Prior art date
Application number
PCT/KR2017/015721
Other languages
French (fr)
Korean (ko)
Inventor
박성룡
이형근
강은철
장재철
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170096733A external-priority patent/KR101980284B1/en
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2018147554A1 publication Critical patent/WO2018147554A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit

Definitions

  • the present invention relates to a dehumidification system using a membrane installed inside a duct of a building, and more particularly, a membrane dehumidifier is installed in a duct pipe connected to an indoor space requiring dehumidification, and a fluid is circulated inside the membrane to perform dehumidification. It relates to a dehumidification system using a membrane.
  • indoor air is usually ventilated or a dehumidifier is used, and a dehumidifier is installed to perform indoor dehumidification.
  • the method of ventilating the indoor air is a method of recirculating some of the indoor air and mixing with the outdoor air to supply the indoor air, but there is a limit in lowering the humidity of the indoor air because the water vapor content of the recirculated air is high.
  • the method using the dehumidifying agent is to absorb moisture in the air by using an absorbent such as silica gel that adsorbs water vapor, which has a limitation in that a relatively small amount of water vapor can be removed from an enclosed space.
  • the dehumidification by the existing dehumidifying agent or the hydrophilic coating film is essentially accompanied by a phase change of the condensation process, there is a problem that occurs condensation heating problem occurs at this time.
  • the dehumidification method using a compression type cooling device that is generally used a large capacity dehumidification is possible by condensing and removing moisture in the room air by operating a refrigeration cycle, but there is a problem that consumes a large amount of power consumption, There is a problem of condensation heat
  • the existing dehumidifier requires a large installation space, it is difficult to install it in a building that does not have enough installation space, such as an indoor bathroom or a dressing room, or in various places where a drying space is required, such as a chemical storage room, an ammunition warehouse, or a food drying facility. Has a limitation of space.
  • the present invention has been made in order to solve such a problem, to provide a dehumidification system that does not generate condensation heating and can provide high dehumidification performance and excellent energy efficiency.
  • the present invention does not require a separate space for the installation of the dehumidification, can be installed in the existing building duct pipe, and to provide a dehumidification system that is easy to maintain.
  • the present invention is to provide a flow path structure and system arrangement method that can increase the dehumidification efficiency of the dehumidification system using the membrane installed inside the building duct pipe.
  • the present invention comprises a membrane module formed by arranging the membrane formed in such a way that the fluid flows in a plurality of layers, dehumidifying the fluid supply or discharge to the membrane module through the main inlet and the main outlet
  • the dehumidifying unit is coupled between the divided duct pipe or implemented to easily install a dehumidification system by modifying only a part of the duct pipe inside the duct pipe.
  • the dehumidification system using the membrane of the present invention can be installed in the duct pipe inside the building to dehumidify air containing steam generated in the indoor space.
  • the dehumidifier since the dehumidifier is installed inside the duct pipe, only a part of the duct pipe can be modified to install the dehumidification system easily.
  • the dehumidification system using the membrane of the present invention does not require a separate space for the installation of the dehumidification facility, it is easy to maintain and reuse it has a great effect of cost efficiency.
  • the dehumidification system using the membrane of the present invention has an advantage that the performance of the dehumidification system can be improved by easily adjusting the passage area of the duct pipe and the passage area of the dehumidifying unit.
  • the dehumidification system using the membrane of the present invention has excellent dehumidification performance, high energy efficiency because it does not use power or uses less power during dehumidification, and the user operates a plurality of membrane modules or pressure of fluid flowing on the membrane.
  • By controlling the dehumidification performance can be controlled. This can be achieved through central control, and can be controlled to suit various situations such as high dehumidification or no operation, thereby providing convenience to the user.
  • the dehumidification system using the membrane of the present invention has an advantage that the fluid having a pressure lower than atmospheric pressure traps water vapor, so that the noise is low and no additional heat is generated. This can provide a comfortable environment for the user.
  • FIG. 1 is a perspective view illustrating a form in which a dehumidifying unit of a dehumidifying system using a membrane of the present invention is installed in a duct pipe.
  • FIGS. 2 and 3 are a perspective view and a plan view showing a membrane module of the dehumidification system using the membrane of the present invention.
  • Figure 4 is a conceptual diagram for explaining the operation of the dehumidification system using the membrane of the present invention.
  • FIG. 5 is a conceptual view illustrating a variable flow path structure of the dehumidification system using the membrane of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a modification of the dehumidification system using the membrane of the present invention.
  • FIG. 7 is a perspective view for illustrating a dehumidification system using a membrane having several membrane modules.
  • FIG. 8 is a perspective view for explaining the interior of the dehumidification system using a membrane having a plurality of membrane modules.
  • FIG. 9 is a conceptual view for explaining a modification of the dehumidification system using a membrane having a plurality of membrane modules.
  • FIG. 10 is a conceptual view for explaining the installation form of the dehumidification system using the membrane of the present invention.
  • FIG. 11 is a conceptual view illustrating a modified installation form of the dehumidification system using the present invention membrane.
  • FIG. 12 is a conceptual view illustrating a form in which a dehumidification system using a membrane of the present invention is installed in a dressing room.
  • FIG. 13 and 14 is a conceptual diagram for explaining another embodiment in which the dehumidification system using the membrane of the present invention is installed in the dressing room.
  • the dehumidification system using the membrane of the present invention includes a membrane module 200 in which a membrane 100 formed to flow fluid therein is arranged in a plurality of layers; A main inlet 210 for supplying a fluid to the membrane 100 of the membrane module 200; And a dehumidification part 300 including a main discharge port 220 for discharging the fluid in the membrane 100 collecting the steam, wherein the dehumidification part 300 is coupled between the divided duct pipes or It is formed inside the duct pipe.
  • the membrane 100 has an inlet 110 through which fluid flows so that the fluid flows therein, an outlet 130 through which the fluid is discharged from the membrane 100, and the inlet 110 and an outlet 130. It may be configured to include a suction unit 120 to connect between, and to capture the external water vapor.
  • the membrane module 200 is formed by stacking the membrane 100 spaced apart by a predetermined interval up and down, the effective diameter of the membrane module 200 is 25 to 35% of the effective diameter of the dehumidifying unit 300 Can be set.
  • the suction part 120 is made of a material that can pass water vapor, the fluid introduced from the inlet 110 is formed lower than the external air pressure, the external water vapor may be introduced into the inside.
  • the membrane 100 may be a hollow fiber membrane made of a polymer support, and is formed by coating a hydrophilic material therein in a thickness of 100 nm to 200 nm to increase the selectivity of water vapor in the air.
  • the membrane 100 is formed to have a coating layer of carboxylated TiO 2 nanoparticles in polyamide polymerized by reacting with 3,5-diaminobenzoic acid.
  • the membrane module 200 is an injection valve 31 for controlling the state of the fluid flowing into the main inlet 210 and the discharge valve 32 for controlling the state of the fluid discharged from the main outlet 230 It may be configured to include.
  • the dehumidifying part 300 may include a plurality of membrane modules 200 embedded therein, and the plurality of membrane modules 200 may be disposed along the front and rear directions of the dehumidifying part 300.
  • the duct pipe 10 includes a first duct 11 connected to the indoor and the second duct 12 connected to the outdoor, the dehumidifying unit 300 is coupled to the front surface of the first duct 11.
  • the rear surface may be combined with the second duct 12.
  • the duct pipe 10 further includes a circulation duct 13, one end of which is connected to the second duct 12 and the other end of which is connected to the room, and the air dehumidified in the dehumidifying unit 300 is the circulation duct. It may be formed to re-introduce into the room through the (13).
  • the dehumidifying unit 300 may be provided in plurality, and may be additionally installed on the circulation duct 13.
  • the dehumidification system of the present invention may include a dehumidifying part 300 included in the membrane module 200 to remove water vapor from the air.
  • the dehumidifying unit 300 may be formed on a duct pipe through which indoor air is discharged to the outside, or on a passage through which air is introduced into the room.
  • the dehumidifying unit 300 may include a coupling structure that may be coupled to the duct. In this case, the dehumidifier 300 may be coupled to and installed between the plurality of ducts 11 and 12.
  • Membrane of the present invention is made of a tubular shape so that the fluid, preferably the sweep gas flows therein, the main inlet 210 and the membrane is discharged to the fluid inlet 210 and the membrane module 200 An outlet 230 is formed.
  • the membrane module 200 of the present invention is a state in which one or more membranes 100 are spaced apart by a predetermined interval up and down And a main inlet 210 for introducing fluid into the one or more membranes 100 and a main outlet 230 for collecting the fluid discharged from the one or more membranes 100.
  • the membrane module 200 may be configured to collect water vapor in the air through the inlet 120 of the membrane 100.
  • the membrane 100 of the present invention may be a hollow fiber membrane made of a polymer support, and may be formed by coating a hydrophilic material therein in a thickness of 100 nm to 200 nm to increase the selectivity of water vapor in the air. More preferably, the membrane 100 of the present invention is formed to have a coating layer of carboxylated TiO 2 nanoparticles in a polyamide polymerized by reaction with 3,5-diaminobenzoic acid.
  • the shape of the inner hollow portion of the membrane 100 may be formed in various shapes, including a round tube, a rounded corner triangle, a rounded corner square, a triangle and a square.
  • the membrane 100 may be formed of a very thin film having a thickness of about 0.5 mm to about 1.2 mm through which water vapor may be structurally transmitted, but is not limited thereto.
  • the membrane 100 having the structure as described above the leakage is minimized, and has an effect that the dispersion of the water vapor infiltrated into the membrane 100 evenly.
  • the dehumidification performance of the small volume membrane 100 leads to the advantage that can be made with high efficiency.
  • the membrane module 200 of the present invention is built in a state in which one or more membranes 100 are stacked with a predetermined interval spaced up and down, the membrane 100 forming a layer is the main inlet It comprises an inlet 110 is supplied with the fluid introduced through the 210, the inlet 120 for absorbing the water vapor in the air and the outlet 130 for discharging the fluid inside the membrane 100 to the outside do.
  • the plurality of membranes 100 flow through the respective inlets 110 through the inlet 210 and flow into the membrane 100 of each layer, and the plurality of membranes 100
  • the fluid is collected and discharged through the discharge part 130 to the main discharge port 230.
  • the suction part 120 of the membrane 100 will be further described.
  • the suction part 120 may have an outer diameter formed of a fine membrane using chloroethylene, fluorocarbon polymers, and polyimide.
  • water vapor has a large polarity and a solubility constant is larger than that of a molecule, and the permeation constant is also large, so that water vapor can be separated faster than other components of oxygen and nitrogen.
  • the present invention can separate only the water vapor in the air by allowing the low pressure fluid to flow in the suction unit 120 based on the nature of the water vapor.
  • the effective diameter of the membrane module 200 to represent the area occupied by the membrane 100 in the duct pipe 10 is most preferably 25 to 35% of the effective diameter of the dehumidifying part 300.
  • the effective diameter of the membrane module 200 means the diameter of a circle having the same cross-sectional area as the total cross-sectional area of the membrane 100.
  • the injection valve 31 and the discharge valve 32 are opened to inject gas.
  • the gas injected through the injection valve 31 is preferably formed to be lower than the outside air pressure, it is efficient to have a pressure of about 0.7 to 0.9 compared to the external air pressure.
  • a second step of operating a blowing means such as a fan so that air flows on the duct pipe or passage may include a third step of collecting the water vapor flowing in the duct pipe or the passage using the dehumidification unit 300.
  • the gas may be injected into the membrane 100 in order to exert the water vapor removing function, but the membrane 100 may include any fluid that can flow without being limited to the gas.
  • the pressure of the gas injected through the injection valve 210 is lowered, the amount of dehumidification of the membrane 100 is increased, so that the gas pressure injected into the injection valve 31 is smaller than the preset pressure value. It is preferable.
  • the dehumidification amount of the membrane module 200 does not increase any more when the pressure of the gas and the pressure of the outside are the same. Therefore, the membrane module 200 may be controlled to maintain a constant pressure through the injection valve 31 and the discharge valve (32).
  • FIG. 4 is a conceptual diagram for explaining the operation of the dehumidification system using the membrane of the present invention, the fluid absorbed water vapor discharged through the main outlet 230 is discharged due to the negative pressure formed through the vacuum pump 500 gas-liquid separator Passing the 400 to discharge the water vapor, the dried fluid is introduced into the membrane module 200 through the inlet 210 again.
  • the dehumidification system using the membrane of the present invention can improve the dehumidification performance through the flow path variable structure as shown in FIG.
  • the shear air shaft pipe part 610 may have a front end of the dehumidifying part 300 having the same effective diameter as the duct pipe having a diameter D2 smaller than the effective diameter of the duct pipe. Can be added.
  • the diameter of the front end of the dehumidifying unit 300 is changed to a smaller value, a lower pressure is formed in the dehumidifying unit 300 than in the shear air shaft tube unit 610, and water vapor in the air is introduced through the suction unit 120 of the membrane 100. Better absorption.
  • the rear air shaft tube 610 is added to the rear end of the dehumidifying unit 300 so that the duct pipe has another reduced effective diameter D3, and the front air shaft tube can maximize the suction performance of the membrane 100.
  • the diameter D2 of the part 610 and the diameter D3 of the rear end air shaft pipe part 620 may be variably set.
  • the effective diameter D4 of the dehumidifying unit 300 is larger than the effective diameter D1 of the duct pipe as shown in FIG.
  • the passage can be configured to be enlarged by setting large.
  • the effective diameter of the suction unit 120 of the dehumidifying unit 300 is larger than the effective diameter of the duct pipe, the same pressure difference between the vacuum pump and the duct can reduce the power consumption while maintaining the same dehumidifying performance. have.
  • the pressure is increased to 0.2 bar, it is confirmed that the power consumption of about 20% is reduced.
  • FIG. 7 illustrates a dehumidification system using a membrane in which a plurality of membrane modules 200 are arranged in series in a duct pipe to form a dehumidifying part 300, and in consideration of an installation space and necessary dehumidification performance, a plurality of membrane modules ( 200) will be installed.
  • Each membrane module 200 is provided with a main inlet 310 and a main outlet 320, respectively, it is possible to selectively operate each membrane module 200 as needed.
  • FIG. 8 and 9 are views for explaining the interior of the dehumidification system using the membrane in which the plurality of membrane modules 200 are installed.
  • the suction part 120 of the membrane is disposed in parallel with the air flow direction.
  • the suction part 120 of the membrane may be disposed perpendicular to the air flow direction.
  • FIG. 10 and 11 are conceptual views for explaining the installation form of the dehumidification system using the membrane of the present invention, referring to FIG. 10, the interior of the duct pipe (1) in communication with the interior space (1) basically of the present invention
  • Dehumidifying unit 300 may be installed.
  • the indoor space 1 is a place requiring dehumidification, and generally, a dressing room, a drug storage, an ammunition storage, a food drying facility, or the like may correspond.
  • the indoor space 1 may be used in parallel with a general air conditioner, and may include all places requiring a comfortable environment such as a bedroom.
  • the dehumidifying unit 300 of the present invention may be formed not only on the duct but also on the wall surface of the indoor space 1, and may control the humidity of the air inlet formed in the window and door.
  • a plurality of dehumidifying parts 300 may be arranged. As shown in FIG. 11, one dehumidifying part 300 is disposed on the second duct 12, and the other dehumidifying part 300 is formed. It may be disposed on the circulation duct (13). In this case, the fan is preferably provided on the second duct 12 and the circulation duct 13 so as to enable more smooth circulation.
  • the fluid introduced into the dehumidifying unit 300 has no water vapor or low humidity, but the fluid discharged from the dehumidifying unit 300 has high humidity because the water vapor is collected.
  • a separate secondary loop may be formed to collect water vapor in the fluid phase, and water may be separated from the fluid phase through the secondary loop. The separated water may be discharged to the toilet or the outside.
  • a damper may be formed at an inlet of the circulation duct 13 to control a flow rate of dry air from which water vapor discharged from the dehumidifying unit 300 is removed.
  • the damper may further include a damper control unit for controlling the opening degree of the damper according to the humidity of the indoor space (1).
  • FIG. 12 to 14 is a conceptual diagram for explaining the form that the dehumidification system using the membrane of the present invention is installed in the dressing room.
  • an air vent installed at an upper portion of the dressing room is connected to a pipe duct, and the dehumidifying unit 300 is disposed between the first duct 11 and the second duct 12.
  • the first duct 11 means a portion connected to the indoor space 1
  • the second duct 12 is provided to guide the air to the outdoor or other indoor
  • a ventilator may be formed, and a separate vent means and the second duct 12 may be connected to each other.
  • the dehumidifying unit 300 of the present invention as well as the duct pipe 10 for discharging the air of the indoor space 1 to the outside, the passage 20 is formed to be introduced into the indoor space 1 as shown in FIG. It can be installed on).
  • the ventilator is operated so that the air is discharged to the duct pipe 10, the air may be introduced into the indoor space (1) from another place.
  • the indoor space 1 may also have a high humidity, so the present invention provides a passage 20 through which the air flowing into the indoor space 1 passes. ) Can be installed on the dehumidification.
  • the duct pipe includes a first duct 11 and a second pipe 12, and a circulating duct having one end connected to the second duct 12 and the other end connected to the room ( 13) may be further included.
  • the dehumidifying part 300 collects water vapor of air, and the humidity of the air passing through is increased. Can be lowered. And a part of the air is lowered humidity is introduced into the room again through the circulation duct 13, it is possible to maintain the humidity of the indoor space (1) to a certain level.
  • the air discharged from the indoor space 1 is dehumidified and recycled, and the present invention may be configured to transfer the dehumidified air to another place instead of the same indoor space 1.
  • first duct 12 second duct
  • the dehumidification system using the membrane of the present invention relates to a dehumidifying apparatus for dehumidifying an indoor space, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a dehumidification system using a membrane for dehumidification of a place where a dehydration space is required, in which a dehumidification unit comprising a membrane is installed in a duct pipe or a passage into which air is introduced, wherein the membrane is configured to collect ambient water vapor by being formed of a water vapor permeable film formed to have an atmospheric pressure lower than the ambient atmospheric pressure while a fluid flows therein such that waste of energy can be reduced through a control with easy replacement.

Description

건물 덕트 내부에 설치되는 멤브레인을 이용한 제습시스템Dehumidification system using membrane installed inside building duct
본 발명은 건물의 덕트 내부에 설치되는 멤브레인을 이용한 제습시스템에 관한 것으로, 더욱 상세하게는 제습이 필요한 실내공간과 연결되는 덕트 배관 내부에 멤브레인 제습기를 설치하고 멤브레인 내부로 유체를 순환시켜 제습을 수행하는 멤브레인을 이용한 제습시스템에 관한 것이다.The present invention relates to a dehumidification system using a membrane installed inside a duct of a building, and more particularly, a membrane dehumidifier is installed in a duct pipe connected to an indoor space requiring dehumidification, and a fluid is circulated inside the membrane to perform dehumidification. It relates to a dehumidification system using a membrane.
공기 중의 습도가 높게 되면 부패, 부식, 응결수 현상이 일어나 전기 통신 및 각종 전자 장비 등의 고장이 발생하거나, 악취와 박테리아 등이 발생하여 보관 중인 옷을 상하게 하거나 인체의 건강에 해를 끼치게 된다. If the humidity in the air is high, decay, corrosion, condensation water may occur, causing malfunctions in telecommunications and various electronic equipment, odors and bacteria, etc., which may damage the clothes stored or harm the human health.
이러한 문제를 해결하기 위한 통상 실내 공기를 환기시키거나 제습제를 이용하며, 제습기를 설치하여 실내 제습을 수행하기도 한다. 그러나, 상기 실내 공기를 환기하는 방법은, 실내 공기 중 일부를 재순환시키고 실외 공기와 혼합하여 실내로 공급하는 방식이나, 재순환되는 공기의 수증기 함량이 높으므로 실내 공기의 습도를 낮추는 데 한계가 있다. 또한, 상기 제습제를 이용하는 방법은, 수증기를 흡착하는 실리카겔 등의 흡습제를 이용하는 방식으로 공기 중의 습기를 흡수하는 것이며, 이는 밀폐된 공간에서 비교적 소량의 수증기를 제거할 수 있는 한계가 있다. 또한, 기존 제습제나 친수성 코팅막에 의한 제습은 필수적으로 응축과정의 상변화를 수반하므로, 이 때 발생하는 응축 발열 문제가 발생되는 문제점이 있다. 또한, 일반적으로 사용되는 압축식 냉방장치를 이용한 제습 방식은, 냉동 사이클을 가동하여 실내 공기 중 습기를 응축시켜 제거함으로써 대용량 제습이 가능하나, 소비 동력이 크게 소요되는 문제점이 있으며, 응축 시 발생되는 응축발열의 문제점이 있다In order to solve this problem, indoor air is usually ventilated or a dehumidifier is used, and a dehumidifier is installed to perform indoor dehumidification. However, the method of ventilating the indoor air is a method of recirculating some of the indoor air and mixing with the outdoor air to supply the indoor air, but there is a limit in lowering the humidity of the indoor air because the water vapor content of the recirculated air is high. In addition, the method using the dehumidifying agent is to absorb moisture in the air by using an absorbent such as silica gel that adsorbs water vapor, which has a limitation in that a relatively small amount of water vapor can be removed from an enclosed space. In addition, the dehumidification by the existing dehumidifying agent or the hydrophilic coating film is essentially accompanied by a phase change of the condensation process, there is a problem that occurs condensation heating problem occurs at this time. In addition, the dehumidification method using a compression type cooling device that is generally used, a large capacity dehumidification is possible by condensing and removing moisture in the room air by operating a refrigeration cycle, but there is a problem that consumes a large amount of power consumption, There is a problem of condensation heat
또한, 기존의 제습기는 큰 설치공간이 요구되므로, 실내의 욕실, 드레스룸 등 설치 공간이 충분하지 않은 건물이나, 약품저장고, 탄약고, 음식물 건조시설 등 건조 공간이 요구되는 다양한 장소에 설치되기 어렵다는 설치공간의 한계를 갖는다.In addition, since the existing dehumidifier requires a large installation space, it is difficult to install it in a building that does not have enough installation space, such as an indoor bathroom or a dressing room, or in various places where a drying space is required, such as a chemical storage room, an ammunition warehouse, or a food drying facility. Has a limitation of space.
본 발명은 이와 같은 문제점을 해결하기 위하여 안출된 것으로, 응축발열이 발생하지 않으며 높은 제습성능 및 우수한 에너지효율을 제공할 수 있는 제습시스템을 제공하고자 한다.The present invention has been made in order to solve such a problem, to provide a dehumidification system that does not generate condensation heating and can provide high dehumidification performance and excellent energy efficiency.
또한, 본 발명은 제습설비 설치를 위한 별도의 공간을 필요로 하지 않고, 기존의 건물 덕트 배관 내부에 설치할 수 있으며, 유지보수가 용이한 제습시스템을 제공하고자 한다. In addition, the present invention does not require a separate space for the installation of the dehumidification, can be installed in the existing building duct pipe, and to provide a dehumidification system that is easy to maintain.
또한, 본 발명은 건물 덕트 배관 내부에 설치된 멤브레인을 이용한 제습시스템의 제습 효율을 상승시킬 수 있는 유로 구조와 시스템 배치 방안을 제공하고자 한다.In addition, the present invention is to provide a flow path structure and system arrangement method that can increase the dehumidification efficiency of the dehumidification system using the membrane installed inside the building duct pipe.
상기한 바와 같은 목적을 달성하기 위해 본 발명은 내부에 유체가 흐르도록 형성된 멤브레인을 복수의 층으로 배열하여 멤브레인 모듈을 구성하고, 주유입구 및 주배출구를 통해 멤브레인 모듈에 유체를 공급 또는 배출하도록 제습부를 형성하고, 상기 제습부를 분할된 덕트 배관의 사이에 결합되거나 또는 덕트 배관 내부에 덕트 배관의 일부만 개조하여 손쉽게 제습시스템을 설치할 수 있도록 구현하였다.In order to achieve the object as described above, the present invention comprises a membrane module formed by arranging the membrane formed in such a way that the fluid flows in a plurality of layers, dehumidifying the fluid supply or discharge to the membrane module through the main inlet and the main outlet To form a part, the dehumidifying unit is coupled between the divided duct pipe or implemented to easily install a dehumidification system by modifying only a part of the duct pipe inside the duct pipe.
이와 같은 기술적 해결 방법을 통해, 본 발명의 멤브레인을 이용한 제습시스템은 건물 내부의 덕트 배관에 설치되어 실내공간에서 발생된 수증기를 포함하는 공기를 제습할 수 있다.Through such a technical solution, the dehumidification system using the membrane of the present invention can be installed in the duct pipe inside the building to dehumidify air containing steam generated in the indoor space.
또한, 본 발명의 멤브레인을 이용한 제습시스템은 제습 장치가 덕트 배관 내부에 설치되므로, 덕트 배관의 일부만 개조하여 손쉽게 제습시스템을 설치할 수 있다. In addition, in the dehumidification system using the membrane of the present invention, since the dehumidifier is installed inside the duct pipe, only a part of the duct pipe can be modified to install the dehumidification system easily.
또한, 본 발명의 멤브레인을 이용한 제습시스템은 제습설비 설치를 위해 별도의 공간을 요구하지 않고, 유지보수가 용이하며 재사용이 가능하므로 비용 효율성이라는 큰 효과를 가진다.In addition, the dehumidification system using the membrane of the present invention does not require a separate space for the installation of the dehumidification facility, it is easy to maintain and reuse it has a great effect of cost efficiency.
또한, 본 발명의 멤브레인을 이용한 제습시스템은 덕트 배관의 유로 면적과 제습부의 유로 면적을 쉽게 조절하여 제습시스템의 성능을 향상시킬 수 있다는 장점을 갖는다.In addition, the dehumidification system using the membrane of the present invention has an advantage that the performance of the dehumidification system can be improved by easily adjusting the passage area of the duct pipe and the passage area of the dehumidifying unit.
또한, 본 발명의 멤브레인을 이용한 제습시스템은 제습성능이 우수하고, 제습 시 동력을 사용하지 않거나 적은 동력을 이용하므로 에너지 효율이 높고, 사용자가 복수의 멤브레인모듈을 조작하거나 멤브레인 상에 흐르는 유체의 압력을 조절함으로써 제습성능을 조절할 수 있다. 이는 중앙제어를 통해 이루어질 수 있으며, 고성능의 제습이 필요하거나 미가동 등 여러 상황에 알맞도록 제어할 수 있기에, 사용자에게 편의성을 제공할 수 있다.In addition, the dehumidification system using the membrane of the present invention has excellent dehumidification performance, high energy efficiency because it does not use power or uses less power during dehumidification, and the user operates a plurality of membrane modules or pressure of fluid flowing on the membrane. By controlling the dehumidification performance can be controlled. This can be achieved through central control, and can be controlled to suit various situations such as high dehumidification or no operation, thereby providing convenience to the user.
또한, 본 발명의 멤브레인을 이용한 제습시스템은 대기압보다 낮은 압력을 가진 유체가 수증기를 포집하기 때문에, 소음이 적으며 추가적인 열이 발생하지 않는 장점이 있다. 이는 사용자에게 쾌적한 환경을 제공할 수 있다.In addition, the dehumidification system using the membrane of the present invention has an advantage that the fluid having a pressure lower than atmospheric pressure traps water vapor, so that the noise is low and no additional heat is generated. This can provide a comfortable environment for the user.
도 1은 본 발명의 멤브레인을 이용한 제습시스템의 제습부가 덕트 배관에 설치되는 형태를 설명하기 위한 사시도이다.1 is a perspective view illustrating a form in which a dehumidifying unit of a dehumidifying system using a membrane of the present invention is installed in a duct pipe.
도 2 및 도 3은 본 발명의 멤브레인을 이용한 제습시스템의 멤브레인 모듈을 나타내는 사시도와 평면도이다.2 and 3 are a perspective view and a plan view showing a membrane module of the dehumidification system using the membrane of the present invention.
도 4는 본 발명의 멤브레인을 이용한 제습시스템의 동작을 설명하기 위한 개념도이다.Figure 4 is a conceptual diagram for explaining the operation of the dehumidification system using the membrane of the present invention.
도 5는 본 발명의 멤브레인을 이용한 제습시스템의 유로 가변 구조를 설명하기 위한 개념도이다. 5 is a conceptual view illustrating a variable flow path structure of the dehumidification system using the membrane of the present invention.
도 6은 본 발명의 멤브레인을 이용한 제습시스템의 변형예를 설명하기 위한 개념도이다. 6 is a conceptual diagram illustrating a modification of the dehumidification system using the membrane of the present invention.
도 7은 여러 개의 멤브레인 모듈을 갖는 멤브레인을 이용한 제습시스템을 나타내기 위한 사시도이다. 7 is a perspective view for illustrating a dehumidification system using a membrane having several membrane modules.
도 8은 여러 개의 멤브레인 모듈을 갖는 멤브레인을 이용한 제습시스템의 내부를 설명하기 위한 사시도이다.8 is a perspective view for explaining the interior of the dehumidification system using a membrane having a plurality of membrane modules.
도 9는 도 8은 여러 개의 멤브레인 모듈을 갖는 멤브레인을 이용한 제습시스템의 변형예를 설명하기 위한 개념도이다. FIG. 9 is a conceptual view for explaining a modification of the dehumidification system using a membrane having a plurality of membrane modules.
도 10은 본 발명인 멤브레인을 이용한 제습시스템의 설치 형태를 설명하기 위한 개념도이다. 10 is a conceptual view for explaining the installation form of the dehumidification system using the membrane of the present invention.
도 11은 본 발명인 멤브레인을 이용한 제습시스템의 변형된 설치 형태를 설명하기 위한 개념도이다. 11 is a conceptual view illustrating a modified installation form of the dehumidification system using the present invention membrane.
도 12는 본 발명인 멤브레인을 이용한 제습시스템이 드레스룸에 설치되는 형태를 설명하기 위한 개념도이다. 12 is a conceptual view illustrating a form in which a dehumidification system using a membrane of the present invention is installed in a dressing room.
도 13 및 14는 본 발명인 멤브레인을 이용한 제습시스템이 드레스룸에 설치되는 또 다른 형태를 설명하기 위한 개념도이다.13 and 14 is a conceptual diagram for explaining another embodiment in which the dehumidification system using the membrane of the present invention is installed in the dressing room.
본 발명의 일실시예에 따르면, 본 발명의 멤브레인을 이용한 제습시스템은 내부에 유체가 흐르도록 형성된 멤브레인(100)이 복수의 층으로 배열된 멤브레인 모듈(200); 상기 멤브레인 모듈(200)의 멤브레인(100)에 유체를 공급하기 위한 주유입구(210); 및 증기를 포집한 멤브레인(100) 내부의 유체를 배출하기 위한 주배출구(220)를 포함하는 제습부(300)를 포함하며, 상기 제습부(300)가 분할된 덕트 배관의 사이에 결합되거나 또는 덕트 배관 내부에 배치되어 형성된다.According to an embodiment of the present invention, the dehumidification system using the membrane of the present invention includes a membrane module 200 in which a membrane 100 formed to flow fluid therein is arranged in a plurality of layers; A main inlet 210 for supplying a fluid to the membrane 100 of the membrane module 200; And a dehumidification part 300 including a main discharge port 220 for discharging the fluid in the membrane 100 collecting the steam, wherein the dehumidification part 300 is coupled between the divided duct pipes or It is formed inside the duct pipe.
또한, 상기 멤브레인(100)은 내부에 유체가 흐르도록 유체가 유입되는 유입부(110), 멤브레인(100)으로부터 유체가 배출되는 배출부(130) 및 상기 유입부(110)와 배출부(130) 사이를 연결하며, 외부의 수증기를 포집하는 흡입부(120)를 포함하여 구성될 수 있다.In addition, the membrane 100 has an inlet 110 through which fluid flows so that the fluid flows therein, an outlet 130 through which the fluid is discharged from the membrane 100, and the inlet 110 and an outlet 130. It may be configured to include a suction unit 120 to connect between, and to capture the external water vapor.
또한, 상기 멤브레인 모듈(200)은 멤브레인(100)이 상하로 소정 간격 이격되어 적층되어 형성되고, 상기 멤브레인 모듈(200)의 유효 직경은 상기 제습부(300)의 유효 직경의 25~35%로 설정될 수 있다.In addition, the membrane module 200 is formed by stacking the membrane 100 spaced apart by a predetermined interval up and down, the effective diameter of the membrane module 200 is 25 to 35% of the effective diameter of the dehumidifying unit 300 Can be set.
또한, 상기 흡입부(120)는 수증기가 통과할 수 있는 재질로 이루어지되, 상기 유입부(110)로부터 유입된 유체가 외부기압보다 낮게 형성되어, 외부의 수증기가 내부로 유입될 수 있다.In addition, the suction part 120 is made of a material that can pass water vapor, the fluid introduced from the inlet 110 is formed lower than the external air pressure, the external water vapor may be introduced into the inside.
또한, 상기 멤브레인(100)은 폴리머 재질의 지지체를 중공사막으로 할 수 있으며, 공기 중 수증기의 선택도를 높이기 위해 내부에 친수성 물질을 100nm~200nm 두께로 코팅하여 형성된다.In addition, the membrane 100 may be a hollow fiber membrane made of a polymer support, and is formed by coating a hydrophilic material therein in a thickness of 100 nm to 200 nm to increase the selectivity of water vapor in the air.
또한, 상기 멤브레인(100)은 3,5-diaminobenzoic acid와 반응하여 중합된 폴리아마이드(polyamide)에 carboxylated TiO2 나노 파티클의 코팅층을 갖도록 형성된다.In addition, the membrane 100 is formed to have a coating layer of carboxylated TiO 2 nanoparticles in polyamide polymerized by reacting with 3,5-diaminobenzoic acid.
또한, 상기 멤브레인 모듈(200)은 상기 주유입구(210)으로 유입되는 유체의 상태를 조절하는 주입밸브(31) 및 상기 주배출구(230)에서 배출되는 유체의 상태를 조절하는 배출밸브(32)를 포함하여 구성될 수 있다.In addition, the membrane module 200 is an injection valve 31 for controlling the state of the fluid flowing into the main inlet 210 and the discharge valve 32 for controlling the state of the fluid discharged from the main outlet 230 It may be configured to include.
또한, 상기 제습부(300)는 복수의 멤브레인 모듈(200)이 내부에 내장되며, 상기 복수의 멤브레인 모듈(200)은 상기 제습부(300)의 전후방향을 따라 배치될 수 있다.In addition, the dehumidifying part 300 may include a plurality of membrane modules 200 embedded therein, and the plurality of membrane modules 200 may be disposed along the front and rear directions of the dehumidifying part 300.
또한, 상기 덕트 배관(10)이 실내와 연결된 제1덕트(11) 및 실외와 연결된 제2덕트(12)를 포함하며, 상기 제습부(300)는 전면이 상기 제1덕트(11)와 결합되며, 후면이 상기 제2덕트(12)와 결합될 수 있다.In addition, the duct pipe 10 includes a first duct 11 connected to the indoor and the second duct 12 connected to the outdoor, the dehumidifying unit 300 is coupled to the front surface of the first duct 11. The rear surface may be combined with the second duct 12.
또한, 상기 덕트 배관(10)은 일단이 상기 제2덕트(12)와 연결되되 타단이 실내와 연결된 순환덕트(13)를 더 포함하며, 상기 제습부(300)에서 제습된 공기는 상기 순환덕트(13)를 통해 실내로 재유입되도록 형성될 수 있다.In addition, the duct pipe 10 further includes a circulation duct 13, one end of which is connected to the second duct 12 and the other end of which is connected to the room, and the air dehumidified in the dehumidifying unit 300 is the circulation duct. It may be formed to re-introduce into the room through the (13).
또한, 상기 제습부(300)는 복수로 구비되어, 상기 순환덕트(13) 상에도 추가 설치될 수 있다.In addition, the dehumidifying unit 300 may be provided in plurality, and may be additionally installed on the circulation duct 13.
이하 첨부한 도면들을 참조하여 본 발명의 다양한 실시예에 따른 멤브레인을 이용한 제습시스템을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, a dehumidification system using a membrane according to various embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Therefore, the present invention is not limited to the drawings presented below and may be embodied in other forms. Also, like reference numerals denote like elements throughout the specification.
이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning that is commonly understood by those of ordinary skill in the art to which the present invention belongs, and the gist of the present invention is unnecessary in the following description and the accompanying drawings. Descriptions of well-known functions and configurations that may be blurred are omitted.
도 1은 본 발명의 멤브레인을 이용한 제습시스템의 제습부가 덕트 배관에 설치되는 형태를 설명하기 위한 사시도이다. 도 1을 참조하면, 본 발명의 제습시스템은 멤브레인 모듈(200)이 내부에 포함되어 공기 중의 수증기를 제거하는 제습부(300)를 포함하여 이루어질 수 있다. 상기 제습부(300)는 실내의 공기가 실외로 배출이 되는 덕트 배관이나, 실내로 공기가 유입되는 통로 상에 형성이 될 수 있다. 제습부(300)는 덕트와 결합될 수 있는 결합 구조를 포함할 수 있으며, 이 경우 복수의 덕트(11, 12) 사이에 결합되어 설치된다. 1 is a perspective view illustrating a form in which a dehumidifying unit of a dehumidifying system using a membrane of the present invention is installed in a duct pipe. Referring to FIG. 1, the dehumidification system of the present invention may include a dehumidifying part 300 included in the membrane module 200 to remove water vapor from the air. The dehumidifying unit 300 may be formed on a duct pipe through which indoor air is discharged to the outside, or on a passage through which air is introduced into the room. The dehumidifying unit 300 may include a coupling structure that may be coupled to the duct. In this case, the dehumidifier 300 may be coupled to and installed between the plurality of ducts 11 and 12.
본 발명의 멤브레인은 내부에 유체, 바람직하게는 스윕 가스가 흐르도록 관 형상으로 이루어지며, 멤브레인 모듈(200)로 유체가 유입되는 주유입구(210)와 멤브레인 모듈(200)로 유체가 배출되는 주배출구(230)가 형성된다. Membrane of the present invention is made of a tubular shape so that the fluid, preferably the sweep gas flows therein, the main inlet 210 and the membrane is discharged to the fluid inlet 210 and the membrane module 200 An outlet 230 is formed.
도 2 및 도 3은 본 발명의 멤브레인을 이용한 제습시스템의 멤브레인 모듈을 나타내는 사시도와 평면도로서, 본 발명의 멤브레인 모듈(200)은 하나 이상의 멤브레인(100)이 상하로 소정 간격이 이격되어 적층된 상태로 내장될 수 있으며, 상기 하나 이상의 멤브레인(100)으로 유체를 유입하기 위한 주유입구(210) 및 상기 하나 이상의 멤브레인(100)에서 배출된 유체를 취합하는 주배출구(230)을 포함하여 이루어질 수 있다. 그리고 상기 멤브레인 모듈(200)은 멤브레인(100)의 흡입부(120)를 통해 공기 내의 수증기를 포집할 수 있도록 이루어질 수 있다. 2 and 3 are a perspective view and a plan view showing a membrane module of the dehumidification system using the membrane of the present invention, the membrane module 200 of the present invention is a state in which one or more membranes 100 are spaced apart by a predetermined interval up and down And a main inlet 210 for introducing fluid into the one or more membranes 100 and a main outlet 230 for collecting the fluid discharged from the one or more membranes 100. . In addition, the membrane module 200 may be configured to collect water vapor in the air through the inlet 120 of the membrane 100.
본 발명의 멤브레인(100)은 폴리머 재질의 지지체를 중공사막으로 할 수 있으며, 공기 중 수증기의 선택도를 높이기 위해 내부에 친수성 물질을 100nm~200nm 두께로 코팅하여 형성될 수 있다. 보다 바람직하게는 본 발명의 멤브레인(100)은 3,5-diaminobenzoic acid와 반응하여 중합된 폴리아마이드(polyamide)에 carboxylated TiO2 나노 파티클의 코팅층을 갖도록 형성된다.The membrane 100 of the present invention may be a hollow fiber membrane made of a polymer support, and may be formed by coating a hydrophilic material therein in a thickness of 100 nm to 200 nm to increase the selectivity of water vapor in the air. More preferably, the membrane 100 of the present invention is formed to have a coating layer of carboxylated TiO 2 nanoparticles in a polyamide polymerized by reaction with 3,5-diaminobenzoic acid.
또한 상기 멤브레인(100)의 내부 중공부의 형상은 원형의 관을 포함하여, 모서리가 둥근 삼각형, 모서리가 둥근 사각형, 삼각형 및 사각형 등 다양한 형상으로 형성되는 것 또한 가능하다.In addition, the shape of the inner hollow portion of the membrane 100 may be formed in various shapes, including a round tube, a rounded corner triangle, a rounded corner square, a triangle and a square.
또한, 상기 멤브레인(100)은, 구조적으로 수증기가 투과할 수 있는 두께가 0.5mm~1.2㎜ 정도의 아주 얇은 막으로 형성될 수 있으나, 이에 한정되는 것은 아니다.In addition, the membrane 100 may be formed of a very thin film having a thickness of about 0.5 mm to about 1.2 mm through which water vapor may be structurally transmitted, but is not limited thereto.
그리고 위와 같은 구조를 갖는 상기 멤브레인(100)은, 리크가 최소화 되며, 상기 멤브레인(100)에 침투된 수증기의 분산이 골고루 되도록 하는 효과를 가진다. 또한, 작은 체적의 멤브레인(100)의 제습성능이 고효율로 이루어질 수 있는 장점으로 이어진다. And the membrane 100 having the structure as described above, the leakage is minimized, and has an effect that the dispersion of the water vapor infiltrated into the membrane 100 evenly. In addition, the dehumidification performance of the small volume membrane 100 leads to the advantage that can be made with high efficiency.
도 2 및 도3을 참조하면, 본 발명의 멤브레인 모듈(200)은 하나 이상의 멤브레인(100)이 상하로 소정 간격이 이격되어 적층된 상태로 내장되며, 한 층을 이루는 멤브레인(100)은 주유입구(210)를 통해 유입된 유체가 공급되는 유입부(110), 공기 중의 수증기를 흡수하는 흡입부(120) 및 멤브레인(100) 내부의 유체가 외부로 배출되는 배출부(130)를 포함하여 구성된다. 복수의 멤브레인(100)은 각각의 유입부(110)를 통해 상기 주유입구(210)에서 유입된 유체가 분배되어 각 층의 멤브레인(100) 내부로 유동되며, 복수의 멤브레인(100)은 각각의 배출부(130)를 경유하여 상기 주배출구(230)로 유체가 취합되어 배출된다. 2 and 3, the membrane module 200 of the present invention is built in a state in which one or more membranes 100 are stacked with a predetermined interval spaced up and down, the membrane 100 forming a layer is the main inlet It comprises an inlet 110 is supplied with the fluid introduced through the 210, the inlet 120 for absorbing the water vapor in the air and the outlet 130 for discharging the fluid inside the membrane 100 to the outside do. The plurality of membranes 100 flow through the respective inlets 110 through the inlet 210 and flow into the membrane 100 of each layer, and the plurality of membranes 100 The fluid is collected and discharged through the discharge part 130 to the main discharge port 230.
상기 멤브레인(100)의 흡입부(120)에 대해 부가 설명하면, 상기 흡입부(120)는 클로로에틸렌, 플루오르카본 고분과들과 폴리이미드 등을 이용하여 미세한 막으로 이루어진 외경을 가질 수 있다. 이때 수증기는 큰 극성을 가짐과 더불어 도분자에 비해 용해도 상수가 크며, 투과 상수 또한 크기 때문에 공기 내 다른 성분인 산소, 질소보다 빨리 분리될 수 있다. 본 발명은 이러한 수증기의 성질을 바탕으로 상기 흡입부(120) 내 저압의 유체가 흐르게 하여 공기 내 수증기만을 분리할 수 있다.The suction part 120 of the membrane 100 will be further described. The suction part 120 may have an outer diameter formed of a fine membrane using chloroethylene, fluorocarbon polymers, and polyimide. At this time, water vapor has a large polarity and a solubility constant is larger than that of a molecule, and the permeation constant is also large, so that water vapor can be separated faster than other components of oxygen and nitrogen. The present invention can separate only the water vapor in the air by allowing the low pressure fluid to flow in the suction unit 120 based on the nature of the water vapor.
한편, 멤브레인 모듈(200)이 덕트 배관(10)의 공기 흐름을 차단하기 때문에 덕트 배관(10)에 설치되는 멤브레인 모듈(200)의 전체 유효 면적에 따라 제습 성능 및 소비 전력이 달라지게 되며, 멤브레인 모듈(200)의 유효 면적이 큰 경우에는 제습 성능은 증가하나 소비 전력 또한 증가하게 되고, 멤브레인 모듈(200)의 유효 면적이 작아지는 경우에는 제습 성능이 크게 저하됨을 확인하였다. 이와 관련하여, 상기 멤브레인(100)이 상기 덕트 배관(10)에서 차지하는 면적을 나타내기 위한 멤브레인 모듈(200)의 유효 직경은 제습부(300)의 유효 직경의 25~35%인 것이 가장 바람직하다. 여기서 멤브레인 모듈(200)의 유효 직경이란 멤브레인(100)의 총 단면적과 같은 단면적을 갖는 원의 직경을 의미한다. On the other hand, since the membrane module 200 blocks the air flow of the duct pipe 10, the dehumidification performance and power consumption will vary depending on the total effective area of the membrane module 200 installed in the duct pipe 10, the membrane When the effective area of the module 200 is large, the dehumidification performance is increased, but the power consumption is also increased, and when the effective area of the membrane module 200 is confirmed that the dehumidification performance is significantly reduced. In this regard, the effective diameter of the membrane module 200 to represent the area occupied by the membrane 100 in the duct pipe 10 is most preferably 25 to 35% of the effective diameter of the dehumidifying part 300. . Here, the effective diameter of the membrane module 200 means the diameter of a circle having the same cross-sectional area as the total cross-sectional area of the membrane 100.
본 발명의 덕트 배관에 설치되는 멤브레인을 이용한 제습시스템을 통하여 제습하는 방법에 대해 설명하면, 먼저, 멤브레인 모듈(200)에 가스가 주입되도록 주입밸브(31)와 배출밸브(32)를 여는 제1단계를 포함한다. 즉, 상기 멤브레인 모듈(200) 내에 가스가 주입되도록 하기 위해, 주입밸브(31) 및 배출밸브(32)를 열어, 가스를 주입한다. 이때, 상기 주입밸브(31)를 통해 주입되는 가스는 외부의 공기 압력보다 낮게 형성되는 것이 바람직하며, 외부 기압과 대비하여 0.7 내지 0.9 사이 정도의 압력을 가지는 것이 효율적이다.Referring to the method of dehumidifying through a dehumidification system using a membrane installed in the duct pipe of the present invention, first, opening the injection valve 31 and the discharge valve 32 to inject gas into the membrane module 200; Steps. That is, in order to inject gas into the membrane module 200, the injection valve 31 and the discharge valve 32 are opened to inject gas. At this time, the gas injected through the injection valve 31 is preferably formed to be lower than the outside air pressure, it is efficient to have a pressure of about 0.7 to 0.9 compared to the external air pressure.
이때, 가스가 주입밸브(31)로 주입됨에 따라, 덕트 배관 또는 통로 상에서 공기가 유동하도록 환풍기와 같은 송풍수단을 작동하는 제2단계를 포함한다. 그리고 상기 덕트 배관 또는 통로 상에서 유동하는 공기를 상기 제습부(300)를 이용해 수증기를 포집하는 제3단계를 포함할 수 있다.At this time, as the gas is injected into the injection valve 31, a second step of operating a blowing means such as a fan so that air flows on the duct pipe or passage. And it may include a third step of collecting the water vapor flowing in the duct pipe or the passage using the dehumidification unit 300.
여기서 멤브레인(100)이 수증기 제거 기능을 발휘하기 위해서는 멤브레인(100) 내부로 가스가 주입될 수 있지만, 가스에 한정하지 않으며 흐를 수 있는 모든 유체를 포함될 수 있다. 또한, 상기 주입밸브(210)를 통해 주입되는 가스의 압력이 낮아지면 상기 멤브레인(100)의 제습량은 높아지므로, 상기 주입밸브(31)로 주입되는 가스 압력이 기 설정된 압력값보다 작게 형성되는 것이 바람직하다.Here, the gas may be injected into the membrane 100 in order to exert the water vapor removing function, but the membrane 100 may include any fluid that can flow without being limited to the gas. In addition, if the pressure of the gas injected through the injection valve 210 is lowered, the amount of dehumidification of the membrane 100 is increased, so that the gas pressure injected into the injection valve 31 is smaller than the preset pressure value. It is preferable.
또한, 상기 멤브레인 모듈(200)의 제습량은 가스의 압력과 외부의 압력이 동일하면 더 이상 증가하지 않는다. 따라서 상기 멤브레인 모듈(200)은 주입밸브(31) 및 배출밸브(32)를 통해 압력이 일정하게 유지되도록 제어될 수 있다.In addition, the dehumidification amount of the membrane module 200 does not increase any more when the pressure of the gas and the pressure of the outside are the same. Therefore, the membrane module 200 may be controlled to maintain a constant pressure through the injection valve 31 and the discharge valve (32).
도 4는 본 발명의 멤브레인을 이용한 제습시스템의 동작을 설명하기 위한 개념도로서, 주배출구(230)를 통해 배출된 수증기를 흡수한 유체는 진공 펌프(500)를 통해 형성된 부압으로 인해 배출되어 기액 분리기(400)을 통과하며 수증기를 배출하게 되고, 건조해진 유체는 다시 주유입구(210)를 통해 멤브레인 모듈(200)로 유입된다. 4 is a conceptual diagram for explaining the operation of the dehumidification system using the membrane of the present invention, the fluid absorbed water vapor discharged through the main outlet 230 is discharged due to the negative pressure formed through the vacuum pump 500 gas-liquid separator Passing the 400 to discharge the water vapor, the dried fluid is introduced into the membrane module 200 through the inlet 210 again.
한편, 본 발명의 멤브레인을 이용한 제습시스템은 도 5에서와 같이 유로 가변 구조를 통해 제습 성능을 향상시킬 수 있다. 도 5를 참조하면 덕트 배관의 유효 직경을 D1이라고 하면 덕트 배관과 동일한 유효 직경을 갖는 제습부(300)의 전단이 덕트 배관의 유효 직경 보다 작은 직경(D2)을 갖도록 전단 에어 축관부(610)를 부가할 수 있다. 이와 같이 제습부(300) 전단의 직경을 작게 변경하면 전단 에어 축관부(610)보다 제습부(300)에서 더 낮은 압력이 형성되며 멤브레인(100)의 흡입부(120)를 통해 공기 중의 수증기를 더 잘 흡수할 수 있게 된다. 한편 제습부(300)의 후단에도 덕트 배관이 또 다른 축소된 유효 직경(D3)을 갖도록 후단 에어 축관부(610)를 부가하고, 멤브레인(100)의 흡입 성능을 최대로 할 수 있도록 전단 에어 축관부(610)의 직경(D2)와 후단 에어 축관부(620)의 직경(D3)을 가변 설정 할 수 있다.On the other hand, the dehumidification system using the membrane of the present invention can improve the dehumidification performance through the flow path variable structure as shown in FIG. Referring to FIG. 5, when the effective diameter of the duct pipe is D1, the shear air shaft pipe part 610 may have a front end of the dehumidifying part 300 having the same effective diameter as the duct pipe having a diameter D2 smaller than the effective diameter of the duct pipe. Can be added. As such, when the diameter of the front end of the dehumidifying unit 300 is changed to a smaller value, a lower pressure is formed in the dehumidifying unit 300 than in the shear air shaft tube unit 610, and water vapor in the air is introduced through the suction unit 120 of the membrane 100. Better absorption. On the other hand, the rear air shaft tube 610 is added to the rear end of the dehumidifying unit 300 so that the duct pipe has another reduced effective diameter D3, and the front air shaft tube can maximize the suction performance of the membrane 100. The diameter D2 of the part 610 and the diameter D3 of the rear end air shaft pipe part 620 may be variably set.
유로를 가변하는 또 다른 변형예로서, 제습부(300)의 설치 공간의 여유가 있는 경우에는 도 6에서와 같이 제습부(300)의 유효 직경(D4)를 덕트 배관의 유효 직경(D1) 보다 크게 설정하여 유로가 확장되게 구성할 수 있다. As another modified example of varying the flow path, when there is room in the installation space of the dehumidifying unit 300, the effective diameter D4 of the dehumidifying unit 300 is larger than the effective diameter D1 of the duct pipe as shown in FIG. The passage can be configured to be enlarged by setting large.
제습부(300)의 흡입부(120) 부분의 유효 직경이 덕트 배관의 유효 직경 보다 큰 경우 진공펌프와 덕트 사이의 동일한 압력차에서, 동일한 제습 성능을 유지하면서도 소비전력을 절감시킬 수 있는 효과가 있다. 구체적인 실험 결과 압력이 0.2 bar 상승시키는 경우, 약 20%의 소비전력이 감소됨을 확인하였다.If the effective diameter of the suction unit 120 of the dehumidifying unit 300 is larger than the effective diameter of the duct pipe, the same pressure difference between the vacuum pump and the duct can reduce the power consumption while maintaining the same dehumidifying performance. have. As a result of the specific experiment, when the pressure is increased to 0.2 bar, it is confirmed that the power consumption of about 20% is reduced.
도 7은 복수의 멤브레인 모듈(200)이 덕트 배관에 직렬로 배열되어 제습부(300)를 형성하는 멤브레인을 이용한 제습시스템을 도시하고 있으며, 설치 공간과 필요 제습 성능을 고려하여 복수의 멤브레인 모듈(200)을 설치하게 된다. 각 멤브레인 모듈(200)에는 주유입구(310)와 주배출구(320)가 각각 설치되며, 필요에 따라 각 멤브레인 모듈(200)을 선택적으로 작동시킬 수 있다. FIG. 7 illustrates a dehumidification system using a membrane in which a plurality of membrane modules 200 are arranged in series in a duct pipe to form a dehumidifying part 300, and in consideration of an installation space and necessary dehumidification performance, a plurality of membrane modules ( 200) will be installed. Each membrane module 200 is provided with a main inlet 310 and a main outlet 320, respectively, it is possible to selectively operate each membrane module 200 as needed.
도 8 및 도 9는 복수의 멤브레인 모듈(200)이 설치되는 멤브레인을 이용한 제습시스템의 내부를 설명하기 위한 것으로, 도 8에서와 같이 멤브레인의 흡입부(120)가 공기의 흐름 방향과 평행하게 배치될 수도 있고, 도 9에서와 같이 멤브레인의 흡입부(120)가 공기의 흐름 방향에 수직으로 배치될 수 있다. 8 and 9 are views for explaining the interior of the dehumidification system using the membrane in which the plurality of membrane modules 200 are installed. As shown in FIG. 8, the suction part 120 of the membrane is disposed in parallel with the air flow direction. As shown in FIG. 9, the suction part 120 of the membrane may be disposed perpendicular to the air flow direction.
도 10 및 도 11은 본 발명인 멤브레인을 이용한 제습시스템의 설치 형태를 설명하기 위한 개념도로서, 도 10을 참조하면, 기본적으로 실내공간(1)의 연통된 덕트 배관(1)의 내부에 본 발명의 제습부(300)가 설치될 수 있다. 실내공간(1)은 제습이 필요한 장소로 일반적으로, 드레스룸, 약품저장고, 탄약고, 음식물 건조시설 등이 해당될 수 있다. 그리고 상기 실내공간(1)은 일반적인 공기조화기와 병행하여 함께 사용될 수도 있으며, 침실 등과 같이 쾌적한 환경을 요구하는 장소도 모두 포함될 수 있다. 또한, 본 발명의 제습부(300)는 덕트 뿐만 아니라 실내공간(1)의 벽면에 형성될 수도 있으며, 창호에 형성되어 유입되는 공기 상의 습도를 제어할 수도 있다.10 and 11 are conceptual views for explaining the installation form of the dehumidification system using the membrane of the present invention, referring to FIG. 10, the interior of the duct pipe (1) in communication with the interior space (1) basically of the present invention Dehumidifying unit 300 may be installed. The indoor space 1 is a place requiring dehumidification, and generally, a dressing room, a drug storage, an ammunition storage, a food drying facility, or the like may correspond. The indoor space 1 may be used in parallel with a general air conditioner, and may include all places requiring a comfortable environment such as a bedroom. In addition, the dehumidifying unit 300 of the present invention may be formed not only on the duct but also on the wall surface of the indoor space 1, and may control the humidity of the air inlet formed in the window and door.
다른 실시예로서 제습부(300)가 복수로 배치될 수 있으며, 도 11에서와 같이 하나의 제습부(300)는 제2덕트(12) 상에 배치되고, 다른 하나의 제습부(300)는 순환덕트(13) 상에 배치되어 이루어질 수 있다. 이러한 경우에는 보다 원활한 순환이 가능하도록, 환풍기가 제2덕트(12) 및 순환덕트(13) 상에 각각 구비되는 것이 바람직하다. 그리고 도시하지는 않았지만, 상기 제습부(300)로 유입된 유체는 수증기가 없거나 습도가 낮은 상태이지만, 상기 제습부(300)에서 배출된 유체는 수증기가 포집되었기에 습도가 높은 상태로 이루어진다. 이에 상기 유체 상의 수증기를 포집하는 별도의 2차 루프가 형성될 수 있으며, 이러한 2차 루프를 통해 유체 상의 물이 분리될 수 있다. 이와 같이 분리된 물은 화장실이나 외부로 배출되도록 할 수 있다.In another embodiment, a plurality of dehumidifying parts 300 may be arranged. As shown in FIG. 11, one dehumidifying part 300 is disposed on the second duct 12, and the other dehumidifying part 300 is formed. It may be disposed on the circulation duct (13). In this case, the fan is preferably provided on the second duct 12 and the circulation duct 13 so as to enable more smooth circulation. Although not shown, the fluid introduced into the dehumidifying unit 300 has no water vapor or low humidity, but the fluid discharged from the dehumidifying unit 300 has high humidity because the water vapor is collected. In this way, a separate secondary loop may be formed to collect water vapor in the fluid phase, and water may be separated from the fluid phase through the secondary loop. The separated water may be discharged to the toilet or the outside.
제습부(300)가 덕트 배관(10)과 결합되거나, 내부에 설치되는 경우에는 제습부(300)가 설치된 지점의 덕트 배관(10)이 손쉽게 개방되거나 분해될 수 있도록 이루어져 유지보수가 용이하도록 이루어지게 할 수 있다. 또한 상기 순환덕트(13)의 입구에는 상기 제습부(300)로부터 배출된 수증기가 제거된 건조공기의 유량을 제어하는 댐퍼가 형성될 수 있다. 또한, 상기 댐퍼는 상기 실내공간(1)의 습도에 따라 상기 댐퍼의 개방도를 제어하는 댐퍼제어부를 더 포함할 수 있다.When the dehumidifying unit 300 is coupled to the duct pipe 10 or installed inside, the duct pipe 10 at the point where the dehumidifying unit 300 is installed can be easily opened or disassembled to facilitate maintenance. I can lose it. In addition, a damper may be formed at an inlet of the circulation duct 13 to control a flow rate of dry air from which water vapor discharged from the dehumidifying unit 300 is removed. In addition, the damper may further include a damper control unit for controlling the opening degree of the damper according to the humidity of the indoor space (1).
도 12 내지 14는 본 발명인 멤브레인을 이용한 제습시스템이 드레스룸에 설치되는 형태를 설명하기 위한 개념도이다. 도 12에서와 같이 실내공간(1)이 드레스룸인 경우에는 드레스룸의 상부에 설치되는 환풍구가 배관 덕트로 연결되고, 제1덕트(11) 및 제2덕트(12) 사이에 제습부(300)가 설치되게 된다. 제1덕트(11)는 실내공간(1)과 연결되는 부분을 의미하고, 제2덕트(12)는 실외 또는 다른 실내로 공기를 안내하기 위해 구비되는 것으로, 상기 제2덕트(12) 상에 환풍기가 형성이 될 수도 있으며, 별도의 환풍수단과 상기 제2덕트(12)가 연결되어 이루어질 수 있다. 12 to 14 is a conceptual diagram for explaining the form that the dehumidification system using the membrane of the present invention is installed in the dressing room. As shown in FIG. 12, when the indoor space 1 is a dressing room, an air vent installed at an upper portion of the dressing room is connected to a pipe duct, and the dehumidifying unit 300 is disposed between the first duct 11 and the second duct 12. ) Will be installed. The first duct 11 means a portion connected to the indoor space 1, the second duct 12 is provided to guide the air to the outdoor or other indoor, the second duct 12 A ventilator may be formed, and a separate vent means and the second duct 12 may be connected to each other.
한편, 본 발명의 제습부(300)는 실내공간(1)의 공기를 외부로 배출하는 덕트 배관(10) 뿐만이 아니라, 도 13에서와 같이 상기 실내공간(1)으로 유입되도록 형성되는 통로(20) 상에 설치될 수 있다. 이는 덕트 배관(10)으로 공기가 배출되도록 환풍기가 작동이 되면, 상기 실내공간(1)에는 다른 장소로부터 공기가 유입될 수 있다. 이때 상기 실내공간(1)에 유입되는 공기가 습도가 높은 경우에, 상기 실내공간(1)도 습도가 높아질 수 있기 때문에, 본 발명은 상기 실내공간(1)에 유입되는 공기가 지나는 통로(20) 상에 설치되어 제습이 이루어지도록 할 수 있다. On the other hand, the dehumidifying unit 300 of the present invention, as well as the duct pipe 10 for discharging the air of the indoor space 1 to the outside, the passage 20 is formed to be introduced into the indoor space 1 as shown in FIG. It can be installed on). This is when the ventilator is operated so that the air is discharged to the duct pipe 10, the air may be introduced into the indoor space (1) from another place. In this case, when the air flowing into the indoor space 1 has a high humidity, the indoor space 1 may also have a high humidity, so the present invention provides a passage 20 through which the air flowing into the indoor space 1 passes. ) Can be installed on the dehumidification.
또 다른 변형예로, 도 14에서와 같이 덕트 배관은 제1배관(11) 및 제2배관(12)과 더불어, 일단이 상기 제2덕트(12)와 연결되되 타단이 실내와 연결된 순환덕트(13)를 더 포함하여 이루어질 수 있다. 이를 보다 상세히 설명하자면 상기 실내공간(1)에서 환풍구(2)를 통해 덕트 배관 상에 습도가 높은 공기가 유입이 될 때, 상기 제습부(300)는 공기의 수증기를 포집하여 지나는 공기의 습도가 낮아지도록 할 수 있다. 그리고 습도가 낮아진 공기의 일부는 상기 순환덕트(13)를 통해 다시 실내로 유입되어, 실내공간(1)의 습도가 일정수준 유지되도록 할 수 있다. 도 14에서는 실내공간(1)에서 배출된 공기가 제습되어 재순환된 것을 도시하였으며, 본 발명은 제습된 공기가 같은 실내공간(1)이 아니라 다른 장소로 이송되도록 이루어질 수도 있다. In another modified example, as shown in FIG. 14, the duct pipe includes a first duct 11 and a second pipe 12, and a circulating duct having one end connected to the second duct 12 and the other end connected to the room ( 13) may be further included. To describe this in more detail, when high humidity air flows into the duct pipe through the vent hole 2 in the indoor space 1, the dehumidifying part 300 collects water vapor of air, and the humidity of the air passing through is increased. Can be lowered. And a part of the air is lowered humidity is introduced into the room again through the circulation duct 13, it is possible to maintain the humidity of the indoor space (1) to a certain level. In FIG. 14, the air discharged from the indoor space 1 is dehumidified and recycled, and the present invention may be configured to transfer the dehumidified air to another place instead of the same indoor space 1.
이상 실시예를 통해 구체적인 구성요소 등의 특정 사항들과 한정된 실시예 도면에 의해 본 발명을 설명하였으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 일 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.Although the present invention has been described through specific embodiments such as specific components and limited embodiment drawings through the above embodiments, this is only provided to help a more general understanding of the present invention, and the present invention is limited to the above embodiment. Various modifications and variations can be made by those skilled in the art to which the present invention pertains.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술되는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and all claims having equivalent or equivalent modifications to the claims as well as the following claims are intended to be included in the scope of the spirit of the present invention. will be.
(부호의 설명)(Explanation of the sign)
1 : 실내공간 2 : 환풍구1: indoor space 2: vent
10 : 덕트 배관 10: duct piping
11 : 제1덕트 12 : 제2덕트11: first duct 12: second duct
13 : 순환덕트13: circular duct
20 : 통로20: passage
31 : 주입밸브 32 : 배출밸브31: injection valve 32: discharge valve
100 : 멤브레인100: membrane
110 : 유입부 120 : 흡입부110: inlet 120: suction
130 : 배출부130: discharge part
200 : 멤브레인모듈200: membrane module
210 : 주유입구 230 : 주배출구210: oil inlet 230: main outlet
300 : 제습부300: dehumidifying unit
400 : 기액 분리기400: gas-liquid separator
500 : 진공 펌프500: vacuum pump
610 : 전면 에어 축관기610: Front air tube
620 : 후면 에어 축관기620: rear air tube
본 발명의 멤브레인을 이용한 제습시스템은 실내공간의 제습을 위한 제습장치에 관한 것으로, 산업상 이용가능성이 있다.The dehumidification system using the membrane of the present invention relates to a dehumidifying apparatus for dehumidifying an indoor space, and has industrial applicability.

Claims (11)

  1. 덕트 배관에 설치되는 멤브레인을 이용한 제습시스템에 관한 것으로,The dehumidification system using the membrane installed in the duct pipe,
    상기 제습시스템은 내부에 유체가 흐르도록 형성된 멤브레인(100)이 복수의 층으로 배열된 멤브레인 모듈(200); The dehumidification system includes a membrane module (200) in which a membrane (100) formed to flow fluid therein is arranged in a plurality of layers;
    상기 멤브레인 모듈(200)의 멤브레인(100)에 유체를 공급하기 위한 주유입구(210); 및 A main inlet 210 for supplying a fluid to the membrane 100 of the membrane module 200; And
    수증기를 포집한 멤브레인(100) 내부의 유체를 배출하기 위한 주배출구(220)를 포함하는 제습부(300)를 포함하며,It includes a dehumidifying unit 300 including a main outlet 220 for discharging the fluid inside the membrane 100 trapped water vapor,
    상기 제습부(300)가 분할된 덕트 배관의 사이에 결합되거나 또는 덕트 배관 내부에 배치되어 형성되는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템. The dehumidifying unit 300 is coupled between the divided duct pipes or arranged in the duct pipes, characterized in that formed, dehumidification system using a membrane.
  2. 제1항에 있어서, The method of claim 1,
    상기 멤브레인(100)은 내부에 유체가 흐르도록 유체가 유입되는 유입부(110), 멤브레인(100)으로부터 유체가 배출되는 배출부(130) 및 상기 유입부(110)와 배출부(130) 사이를 연결하며, 외부의 수증기를 포집하는 흡입부(120)를 포함하는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The membrane 100 has an inlet 110 through which fluid flows so that the fluid flows therein, an outlet 130 through which the fluid is discharged from the membrane 100, and between the inlet 110 and the outlet 130. To connect, characterized in that it comprises a suction unit 120 for collecting the external water vapor, dehumidification system using the membrane.
  3. 제2항에 있어서, The method of claim 2,
    상기 멤브레인 모듈(200)은 멤브레인(100)이 상하로 소정 간격 이격되어 적층되어 형성되고, The membrane module 200 is formed by stacking the membrane 100 spaced apart a predetermined interval up and down,
    상기 멤브레인 모듈(200)의 유효 직경은 상기 제습부(300)의 유효 직경의 25~35%인 것을 특징으로 하는, 멤브레인을 이용한 제습시스템. Effective diameter of the membrane module 200 is characterized in that 25 to 35% of the effective diameter of the dehumidifying unit 300, dehumidification system using a membrane.
  4. 제3항에 있어서, The method of claim 3,
    상기 흡입부(120)는 수증기가 통과할 수 있는 재질로 이루어지되, 상기 유입부(110)로부터 유입된 유체가 외부기압보다 낮게 형성되어, 외부의 수증기가 내부로 유입되는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The suction part 120 is made of a material that can pass water vapor, the fluid introduced from the inlet 110 is formed lower than the external air pressure, characterized in that the external water vapor is introduced into the membrane Dehumidification system using.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 멤브레인(100)은 폴리머 재질의 중공사막으로 형성되며, 공기 중 수증기의 선택도를 높이기 위해 내부에 100nm~200nm 두께의 친수성 물질의 코팅층을 갖는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The membrane 100 is formed of a hollow fiber membrane of a polymer material, characterized in that it has a coating layer of a hydrophilic material of 100nm ~ 200nm thickness inside to increase the selectivity of water vapor in the air, dehumidification system using a membrane.
  6. 제5항에 있어서, The method of claim 5,
    상기 멤브레인(100)은 3,5-diaminobenzoic acid와 반응하여 중합된 폴리아마이드(polyamide)에 carboxylated TiO2 나노 파티클의 코팅층을 갖도록 형성되는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The membrane 100 is formed to have a coating layer of carboxylated TiO 2 nanoparticles in a polyamide polymerized by reacting with 3,5-diaminobenzoic acid, dehumidification system using a membrane.
  7. 제3항에 있어서, The method of claim 3,
    상기 멤브레인 모듈(200)은 상기 주유입구(210)으로 유입되는 유체의 상태를 조절하는 주입밸브(31) 및 상기 주배출구(230)에서 배출되는 유체의 상태를 조절하는 배출밸브(32)를 포함하는, 멤브레인을 이용한 제습시스템.The membrane module 200 includes an injection valve 31 for adjusting the state of the fluid flowing into the main inlet 210 and a discharge valve 32 for controlling the state of the fluid discharged from the main outlet 230. Dehumidification system using the membrane.
  8. 제3항에 있어서, The method of claim 3,
    상기 제습부(300)는 복수의 멤브레인 모듈(200)이 내부에 내장되며,The dehumidifying unit 300 has a plurality of membrane modules 200 is embedded therein,
    상기 복수의 멤브레인 모듈(200)은 상기 제습부(300)의 전후방향을 따라 배치되는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The plurality of membrane modules (200) is characterized in that it is disposed along the front and rear direction of the dehumidifying unit 300, dehumidification system using a membrane.
  9. 제1항에 있어서, The method of claim 1,
    상기 덕트 배관(10)은 실내와 연결된 제1덕트(11) 및 실외와 연결된 제2덕트(12)를 포함하며, The duct pipe 10 includes a first duct 11 connected to the indoor and a second duct 12 connected to the outdoor,
    상기 제습부(300)는 전면이 상기 제1덕트(11)와 결합되며, 후면이 상기 제2덕트(12)와 결합되는 것을 특징으로 하는, 멤브레인을 이용한 제습시스템.The dehumidifying unit 300 is a front surface is coupled to the first duct (11), the rear surface is coupled to the second duct (12), dehumidification system using a membrane.
  10. 제9항에 있어서, The method of claim 9,
    상기 덕트 배관(10)은 일단이 상기 제2덕트(12)와 연결되되 타단이 실내와 연결된 순환덕트(13)를 더 포함하며, The duct pipe 10 further includes a circulation duct 13 having one end connected to the second duct 12 and the other end connected to the room.
    상기 제습부(300)에서 제습된 공기는 상기 순환덕트(13)를 통해 실내로 재유입되는 것을 특징으로 하는 멤브레인을 이용한 제습시스템.Air dehumidified in the dehumidification unit 300 is a dehumidification system using a membrane, characterized in that the re-introduction into the room through the circulation duct (13).
  11. 제10항에 있어서, The method of claim 10,
    상기 제습부(300)는 복수로 구비되어, 상기 순환덕트(13) 상에도 추가 설치되는 것을 특징으로 하는 멤브레인을 이용한 제습시스템.The dehumidification unit 300 is provided with a plurality, the dehumidification system using a membrane, characterized in that further installed on the circulation duct (13).
PCT/KR2017/015721 2017-02-13 2017-12-29 Dehumidification system using membrane installed in building duct WO2018147554A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0019676 2017-02-13
KR20170019676 2017-02-13
KR1020170096733A KR101980284B1 (en) 2017-02-13 2017-07-31 Dehumidification system with membrane installed in duct
KR10-2017-0096733 2017-07-31

Publications (1)

Publication Number Publication Date
WO2018147554A1 true WO2018147554A1 (en) 2018-08-16

Family

ID=63107226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015721 WO2018147554A1 (en) 2017-02-13 2017-12-29 Dehumidification system using membrane installed in building duct

Country Status (1)

Country Link
WO (1) WO2018147554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739311A (en) * 2021-08-27 2021-12-03 北京工业大学 Utility tunnel entrance section anti-condensation air supply device and implementation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168716A (en) * 1996-12-27 1997-06-30 Ckd Corp Dehumidifier
JP3057115U (en) * 1998-06-29 1999-03-30 旭硝子エンジニアリング株式会社 Hollow fiber membrane dehumidifier
KR100783784B1 (en) * 2006-06-07 2007-12-07 (주)에어레인 Organic/inorganic composite hollow fiber membrane for dehumidifying module
KR101328447B1 (en) * 2012-06-21 2013-11-14 한국에너지기술연구원 Dehumidifying duct using hollow yarn membrane module
KR20160150414A (en) * 2015-06-22 2016-12-30 코오롱인더스트리 주식회사 Hollow Fiber Membrane Humidifier Module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168716A (en) * 1996-12-27 1997-06-30 Ckd Corp Dehumidifier
JP3057115U (en) * 1998-06-29 1999-03-30 旭硝子エンジニアリング株式会社 Hollow fiber membrane dehumidifier
KR100783784B1 (en) * 2006-06-07 2007-12-07 (주)에어레인 Organic/inorganic composite hollow fiber membrane for dehumidifying module
KR101328447B1 (en) * 2012-06-21 2013-11-14 한국에너지기술연구원 Dehumidifying duct using hollow yarn membrane module
KR20160150414A (en) * 2015-06-22 2016-12-30 코오롱인더스트리 주식회사 Hollow Fiber Membrane Humidifier Module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739311A (en) * 2021-08-27 2021-12-03 北京工业大学 Utility tunnel entrance section anti-condensation air supply device and implementation method
CN113739311B (en) * 2021-08-27 2022-07-19 北京工业大学 Utility tunnel entrance section anti-condensation air supply device and implementation method

Similar Documents

Publication Publication Date Title
WO2013191489A1 (en) Dehumidification duct using hollow fiber membrane module
WO2011002142A1 (en) Ventilation system
CN107771264B (en) Building provided with air treatment system
WO2015163561A1 (en) Method for manufacturing server room cooling apparatus and air conditioning system for data center provided with same
WO2017043806A1 (en) Evaporative cooler and operating method for evaporative cooler
WO2014003317A1 (en) Indoor air ventilation apparatus having humidification function
WO2021085950A2 (en) Window-type heat exchange ventilation device
WO2015102247A1 (en) Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
CN106678966A (en) Low-noise modular air purification system
CN2509491Y (en) Humidity regulator and humidity regulator used in localized space
WO2018147554A1 (en) Dehumidification system using membrane installed in building duct
WO2017213445A1 (en) Server room cooling device and method for operating data center using same
WO2021225305A1 (en) Artificially intelligent air purification system
KR101980284B1 (en) Dehumidification system with membrane installed in duct
WO2023018096A1 (en) Air supply port filtering apparatus capable of improving air quality
CN218721943U (en) Dry humidity control system for clean room
WO2015160159A1 (en) Dehumidifying and cooling apparatus
CN210573450U (en) Temperature and humidity control device for indoor environment purification regulation
WO2016144138A1 (en) Dehumidifying air conditioner
CN211650636U (en) Integrated form operating room clean system
CN211557833U (en) One-level is dampproof device for computer lab
WO2012020907A1 (en) Air handling unit using cooling/dehumidifying heat recovery technology
CN209786489U (en) Anti-condensation ring network multi-interval electrical cabinet
CN110568887A (en) temperature and humidity control device for indoor environment purification regulation
CN213272967U (en) Fresh air dehumidification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896066

Country of ref document: EP

Kind code of ref document: A1