WO2018147544A1 - Power conversion device and battery charging system comprising same - Google Patents

Power conversion device and battery charging system comprising same Download PDF

Info

Publication number
WO2018147544A1
WO2018147544A1 PCT/KR2017/014922 KR2017014922W WO2018147544A1 WO 2018147544 A1 WO2018147544 A1 WO 2018147544A1 KR 2017014922 W KR2017014922 W KR 2017014922W WO 2018147544 A1 WO2018147544 A1 WO 2018147544A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
pfc
link
duty ratio
Prior art date
Application number
PCT/KR2017/014922
Other languages
French (fr)
Korean (ko)
Inventor
한상택
박정건
양정모
민병선
박정필
송준우
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Publication of WO2018147544A1 publication Critical patent/WO2018147544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device and a charging system of a battery including the same.
  • Power converters generally include PFC converters and DC-DC converters.
  • the DC-DC converter adjusts the switching frequency and duty ratio as the load changes.
  • switching loss occurs when the switching element included in the DC-DC converter is turned on / off. This switching loss causes a problem of lowering the efficiency of the DC-DC converter.
  • the problem to be solved by the present invention is that the DC-DC converter is always optimal regardless of load by feedback control the PFC converter and drive the DC-DC converter in an open loop with a fixed duty ratio and a fixed switching frequency
  • the present invention provides a power conversion device and a charging system including the same that can be obtained by operating in a high efficiency and high performance.
  • a power converter includes a PFC converter that converts an AC input voltage into a DC voltage, outputs a power factor, and compensates a power factor, a DC link supplied with a DC voltage from the PFC converter, and a DC voltage supplied from the DC link.
  • a DC-DC converter for converting an AC voltage to a DC voltage
  • a controller for controlling the output voltage and the output current of the DC-DC converter by controlling at least one of a switching frequency and a duty ratio of the PFC converter.
  • the PFC converter and the DC-DC converter is characterized in that it comprises a three-level converter.
  • the control unit detects the magnitude of the output voltage and the output current of the DC-DC converter, characterized in that the feedback control of the switching frequency and duty ratio of the PFC converter.
  • the three-level converter included in the DC-DC converter is characterized in that it comprises a resonant LLC converter.
  • the DC-DC converter is operated at a first frequency which is a fixed switching frequency, wherein the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter.
  • the DC-DC converter is characterized in that it is controlled through a PWM signal having a fixed duty ratio to any value of 25% to 50%.
  • the voltage of the DC link is characterized in that it changes in response to the variation of the output voltage of the DC-DC converter.
  • the DC link is characterized in that it comprises a film capacitor.
  • a battery pack including at least one battery cell, and a PFC converter for converting an AC voltage applied from the system to a DC voltage and a power factor compensation, DC voltage from the PFC converter
  • the battery by controlling at least one of a switching frequency and a duty ratio of the DC link receiving a DC link, a DC-DC converter supplied from the DC link to an AC voltage, and converting the DC voltage back to a DC voltage, and the PFC converter.
  • a power conversion device including a control unit for adjusting an output voltage and an output current applied to the pack, wherein the PFC converter and the DC-DC converter include a three level converter.
  • the controller compares a magnitude of an output current applied to the battery pack with a preset reference current to feedback control at least one of a switching frequency and a duty ratio of the PFC converter.
  • the controller compares a voltage applied to the battery pack with a preset reference voltage to feedback control at least one of a switching frequency and a duty ratio of the PFC converter.
  • the three level converter included in the DC-DC converter is a resonant LLC converter.
  • the DC-DC converter is characterized in that the voltage gain is kept constant even if the voltage and current applied to the battery pack is changed.
  • the DC-DC converter operates at a first frequency that is a fixed switching frequency, wherein the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter.
  • the DC-DC converter is controlled through a PWM signal having a fixed duty ratio at any one of 25% to 50%.
  • the voltage of the DC link is characterized in that it changes in response to a change in the voltage applied to the battery.
  • the energy stored in the batteries may be efficiently adjusted by adjusting the magnitude of the discharge end voltage at which the batteries included in the battery pack or the energy storage system terminate the discharge according to the output amount of the battery pack or the energy storage system.
  • FIG. 1 is a diagram schematically illustrating an internal configuration of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a resonant LLC transformer which is part of a DC-DC converter according to an embodiment of the present invention.
  • FIG. 3 shows a graph of the voltage gain of a DC-DC converter.
  • FIG. 4 is a diagram illustrating a DC-DC converter and a PFC converter including a three-level converter by way of example.
  • 5 exemplarily shows a control timing diagram of a PFC converter.
  • FIG. 6 exemplarily shows a control timing diagram of a DC-DC converter.
  • FIG. 7 is a view briefly illustrating an internal configuration of a charging system of a battery according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating an internal configuration of a power conversion apparatus according to an embodiment of the present invention.
  • the power converter 100 includes a PFC converter 110, a DC-DC converter 120, a DC link 140, and a controller 130.
  • the power converter 100 converts the supplied AC voltage into a DC voltage and outputs the DC voltage.
  • the power converter 100 may adjust the magnitude of the DC voltage.
  • the power converter 100 may be a charger that charges the battery pack 20.
  • the power converter 100 may charge the battery by converting it into a voltage required to charge the battery pack 20.
  • the power converter 100 may include at least one converter.
  • the PFC converter 110 may compensate for the power factor of the voltage while converting an AC input voltage into a DC voltage. That is, the PFC converter 110 may increase the power factor by reducing the phase difference between the rectifying configuration and the input current and the input voltage for converting an AC voltage into a DC voltage.
  • the PFC converter 110 is composed of a PFC circuit part for improving the power factor and a DC-DC converter for DC voltage conversion, which is performed by separating the PFC function and the DC-DC conversion function, and thus have a high power factor close to one. Also, the regulation and dynamic characteristics of the output voltage also have excellent advantages.
  • the DC-DC converter 120 may convert an output voltage output from the PFC converter 110 into an AC voltage and convert the converted AC voltage into a DC voltage again.
  • the DC-DC converter 120 supplies the converted DC voltage to a load connected to the power converter 100.
  • the DC-DC converter 120 may be configured as an isolated DC-DC converter 120 including a transformer.
  • the DC-DC converter 120 is implemented in any one of a full bridge, a phase shift full bridge, and a half bridge.
  • the DC link 140 temporarily stores the DC power output from the PFC converter 110 and transfers the stored power to the DC-DC converter 120.
  • the DC link 140 may have one voltage between the PFC converter 110 and the DC-DC converter 120 having different voltage levels.
  • DC link 140 includes a link capacitor.
  • the link capacitor may filter the ripple component of the DC power output from the PFC. For example, when the PFC converter 110 is connected to the grid 10 to receive AC power of 60 Hz, the DC link 140 filters the 60 Hz component of the grid 10 using the link capacitor to form a ripple component. Can be removed.
  • the controller 130 acquires at least one of an output voltage and an output current of the power converter 100 to process data, such as a processor capable of adjusting the switching frequency and duty ratio of the PFC converter 110. It can include any kind of device that can.
  • the 'processor' may refer to a data processing apparatus embedded in hardware having, for example, a circuit physically structured to perform a function represented by code or instructions included in a program.
  • a data processing device embedded in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, and an application-specific integrated device (ASIC) It may include a processing device such as a circuit, a field programmable gate array (FPGA), etc., but the scope of the present invention is not limited thereto.
  • the controller 130 may control power factor control of the PFC converter 110 and output of the power converter 100.
  • the controller 130 may control the output voltage and the output current of the PFC converter 110 after comparing the preset reference current and the reference voltage with at least one of the output current and the output voltage of the power converter 100.
  • the controller 130 controls the switching frequency and the duty ratio of the PFC converter 110 without controlling the switching frequency and the duty ratio of the DC-DC converter 120.
  • the controller 130 detects an output of the power converter 100 and adjusts a frequency and duty ratio of a pulse width modulation (PWM) signal applied to the PFC converter 110 so that the detected value matches a preset target value. do.
  • PWM pulse width modulation
  • the controller 130 may charge the battery pack 20 with a constant current and a constant voltage.
  • the controller 130 may control the switching frequency and the duty ratio of the PFC converter 110 so that the output current output to the battery pack 20 matches the preset reference current.
  • the controller 130 may control at least one of the switching frequency and the duty ratio of the PCF converter so that the output voltage output to the battery pack 20 matches the preset reference voltage.
  • the controller 130 does not control the voltage of the DC link 140 to maintain a predetermined voltage value. That is, the voltage of the DC link 140 is variable depending on the voltage output from the PFC converter 110 and the high frequency component is allowed to flow.
  • the switching frequency and duty ratio of the DC-DC converter 120 are controlled to not adjust the output voltage and the current of the power converter 100.
  • the DC-DC converter 120 has a function of transferring power of the PFC converter 110 to the battery side in an insulated state through open loop control without feedback control according to the output voltage and the output current.
  • FIG. 2 is a diagram schematically illustrating a resonant LLC transformer which is part of a DC-DC converter according to an embodiment of the present invention.
  • 3 shows a graph of the voltage gain of a DC-DC converter.
  • the DC-DC converter 120 includes a resonant LLC transformer 121.
  • the resonant LLC transformer 121 is defined as including a resonant capacitor Cr, a resonant inductor Lr, a magnetized inductor Lm, a transformer Tr, and a second rectifier 123.
  • the structure of the resonant LLC transformer 121 is similar to the LC series resonant converter, with the only difference being the magnetization inductance value.
  • the series resonant converter has a much larger magnetizing inductance than the LC series resonant inductance, but the magnetizing inductance of the resonant LLC transformer 121 is three to eight times larger than the LC series resonant inductance and is usually implemented by introducing a void in the transformer.
  • the resonant LLC transformer 121 has many advantages over the series resonant converter.
  • the resonant LLC transformer 121 has parameter values that change slowly over time.
  • FIG. 3 there is shown a voltage gain graph of DC-DC converter 120 when varying the switching frequency of DC-DC converter 120 including resonant LLC transformer 121.
  • the voltage gain varies according to the increase or decrease of the load. As shown in FIG. 3, the gain has a value of 1 when the switching frequency Fs of the DC-DC converter 120 and the resonance frequency Fr of the resonant LLC transformer 121 are the same.
  • the first region Region 1 and the third region Region 3 are zero voltage switching regions, and the second region Region 2 is a zero current switching region.
  • the voltage gain is changed as the load is changed, and the switching region is shown through the first to third regions (Region 1 to Region 3).
  • the switches included in the DC-DC converter 120 are turned off to cause switching loss. This increases. Therefore, it is necessary to fix the switching frequency Fs of the DC-DC converter 120 to a value corresponding to the resonance frequency Fr, thereby operating the DC-DC converter 120 to minimize switching losses.
  • the DC-DC converter 120 operates at the same switching frequency Fs as the resonance frequency Fr.
  • the controller 130 may feedback-control the PFC converter 110 based on the output current and output voltage of the power converter 100 (or the output current and output voltage of the DC-DC converter 120) to convert the power converter ( The output current and output voltage of 100 can be adjusted.
  • the DC-DC converter 120 operates with the switching frequency Fs fixed at the resonance frequency Fr. In this case, losses of switches of the DC-DC converter 120 may be minimized.
  • the power converter 100 may be connected between the system 10 and the battery pack 20 to charge the battery pack 20.
  • the voltage of the DC link 140 ranges from Vb1 * N1 / N2 to Vb2 * N1 / N2 Will fluctuate in.
  • N1 is the winding ratio of the primary side of the transformer to which the current is applied
  • N2 is the winding ratio of the secondary side of the transformer to which the current is output.
  • the voltage of the DC link 140 is 80V to 120V corresponding to the voltage change of the battery pack 20. Change.
  • the DC link 140 may vary to a higher voltage than when the voltage is maintained at a predetermined value.
  • the DC link 140 rises to a high voltage, it may cause damage to the switching elements included in the PFC converter 110 and the DC-DC converter 120.
  • a switching element of the PFC converter 110 and the DC-DC converter 120 eg, the voltage resistance voltage of the switching element is 110 V
  • the voltage across the DC link 140 changes from 100V to 160V.
  • 160 V the maximum value of the DC link 140 voltage
  • the switching element is higher than the breakdown voltage rated voltage.
  • the switching elements should be composed of switching elements having a high breakdown voltage rating of 160V or more.
  • the power converter 100 configures the DC-DC converter 120 and the PFC converter 110 as a three-level converter, so that the switching is included in the PFC converter 110 and the DC-DC converter 120. Voltages applied to the DC links 140 may be divided and applied to the devices, and a detailed description thereof will be described with reference to FIG. 4.
  • FIG. 4 is a diagram illustrating a DC-DC converter and a PFC converter including a three-level converter by way of example.
  • 5 exemplarily shows a control timing diagram of the PFC converter
  • FIG. 6 exemplarily shows a control timing diagram of the DC-DC converter.
  • the PFC converter 110 and the DC-DC converter 120 include a three level converter.
  • the PFC converter 110 configured as a three-level converter includes two switches, and the DC-DC converter includes four switches. Each switch applies a preset PWM signal to increase the DC voltage. Have a value of 0, and a negative value.
  • the three-level converter is about half the lower harmonic generation and the voltage stress of the switching element compared to the conventional two-level converter, and can significantly reduce the loss in the switching element and the filter circuit.
  • NPC Neutral Point Clamped
  • TNPC T-type Neutral Point Clamped
  • the three-level converter can reduce the circulating current even in the power converter 100 having a wide output voltage range.
  • the three-level converter can reduce the conduction loss when charging the CC mode mainly operating at a low battery voltage.
  • the power converter 100 includes a DC-DC converter 120, a PFC converter 110, and a controller 130.
  • the DC-DC converter 120 includes third to sixth switches SW3 to SW6, third to sixth diodes D3 to D6, and a resonant LLC transformer 121 for switching.
  • the PFC converter 110 includes a first switch SW1, a second switch SW2, a first diode D1, a second diode D2, and a first rectifier 111.
  • the switches SW1 to SW6 included in the PFC converter 110 and the DC-DC converter 120 turn on the switch because the voltage and current change with a constant delay and slope according to the characteristics of the device in the switching operation.
  • a section in which voltage and current are simultaneously applied to the switch occurs. During this period, switching power losses corresponding to the product of voltage and current occur.
  • IGBTs Insulated Gate Bipolar Transistors
  • the three-level converter can perform zero voltage switching to switch in a zero voltage state to enable high frequency switching while reducing switching loss of a power semiconductor device.
  • the three-level converter may cause a voltage of half of the voltage applied to the switching element in the two-level converter to be applied to the switching element.
  • the DC-DC converter 120 is disposed between each of the third switch SW3, the fourth switch SW4, the fifth switch SW5, the sixth switch SW6, and the third to sixth switches SW3 to SW6.
  • a flying capacitor Css connected between the fourth switch SW4 and the fifth switch SW5 for balancing the anti-parallel diodes D3 to D6 and the voltage level output by the switch, respectively.
  • the flying capacitors Css are connected in series and include diodes Dc1 and Dc2 connected in parallel.
  • the DC-DC converter 120 includes third to sixth switches by PWM signals having a switching frequency Fs, which is a first frequency (1 / Ts), and a first duty ratio (D). (SW3 to SW6) are switched.
  • the third to sixth switches SW3 to SW6 may be switched to three modes, that is, (1) the third switch SW3 and the fifth switch SW5 are turned on and the fourth switch ( SW4) and the mode in which the sixth switch SW6 is turned off (2) The mode in which all of the third to sixth switches SW3 to SW6 are turned off (3) The third switch SW3 and the fifth switch SW5 The turn off, the fourth switch SW4 and the sixth switch SW6 are operated in a turned on mode.
  • the first frequency 1 / Ts has the same value as the resonance frequency Fr.
  • the third to sixth switches SW3 to SW6 operate in three modes by the PWM signals, and at a constant rate by the transformer on the secondary side by the current applied to the resonant LLC transformer 121. Increased or decreased current is induced. The induced current is rectified by the second rectifying unit 123 described with reference to FIG. 2, and the ripple is removed through the smoothing filter C1 and output.
  • the DC-DC converter 120 may have a fixed switching frequency (Fs) and a duty ratio (D) when the power converter 100 which has started to operate is stabilized.
  • Fs switching frequency
  • D duty ratio
  • the output of the DC-DC converter 120 is controlled according to the output of the PFC converter 110.
  • the DC-DC converter 120 has a constant voltage gain because the switching frequency Fs having the first period Ts is fixed at the resonance frequency Fr, and after the power conversion device 100 which has started operation is stabilized, It can be operated by fixing one duty ratio (D) to any value between 25% and 50%.
  • the DC-DC converter 120 does not change the switching frequency Fs and the first duty ratio D according to the load variation. That is, the DC-DC converter 120 may operate while maintaining the switching frequency Fs and the first duty ratio D, which are the first frequency 1 / Ts, to minimize the switching loss.
  • the PFC converter 110 controls the turn on / off operations of the first switch SW1 and the second switch SW2 according to the PWM signal of the controller 130.
  • the PWM signal has a second period Ts and a second duty ratio D.
  • the controller 130 sets the first switch SW1 and the second switch SW2 in the first state (1) to turn on the first switch SW1 and to turn off the second switch SW2 (2).
  • the first state is when the second duty ratio D is 0% or more and 50% or less, and the second state is when the second duty ratio D is more than 50% and less than 100%.
  • the switching frequency and duty ratio of the PFC converter 110 vary according to the variation of the load amount.
  • the DC link 140 is divided into a first link capacitor Ck1 and a second link capacitor Ck2.
  • the node to which the first link capacitor Ck1 and the second link capacitor Ck2 are connected is a neutral node (voltage is 0V).
  • the voltage applied to the DC link 140 is divided and applied to each of the first link capacitor Ck1 and the second link capacitor Ck2.
  • a voltage applied to any one of the first link capacitor Ck1 and the second link capacitor Ck2 is applied to each of the switches SW3 to SW6 included in the DC-DC converter 120.
  • the first switch SW1 is connected in parallel with the first link capacitor Ck1
  • the second switch SW2 is connected in parallel with the second link capacitor Ck2.
  • the voltage of the divided DC link 140 is applied to the second switch SW2 and the second switch SW2. For example, half of the voltage applied to the DC link 140 may be applied to the first switch SW1 and the second switch SW2.
  • the voltage of the DC link 140 is variable in response to a change in the output voltage of the power converter 100.
  • the voltage of the DC link 140 may vary and a higher voltage may be applied than when the voltage of the DC link 140 is controlled to have a constant value.
  • the power converter 100 includes a DC-DC converter 120 and a PFC converter 110 including a three-level converter, and a part of the voltage of the DC link 140 may be applied to each switching device. For example, when the maximum voltage applied to the DC link 140 is 160V, a voltage of 80V may be applied to each of the switching elements included in the DC-DC converter 120 and the PFC converter 110. In this case, the switching elements included in the DC-DC converter 120 and the PFC converter 110 may be selected as switching elements having a breakdown voltage rating of greater than 80V.
  • the power converter 100 may configure the DC-DC converter and the PFC converter as a three-level converter to distribute the voltage of the DC link to be applied to each of the switching elements, and to operate the switching elements without damage.
  • FIG. 7 is a view briefly illustrating an internal configuration of a charging system of a battery according to an embodiment of the present invention.
  • the charging system 200 of a battery includes a power converter 100 and a battery pack 20.
  • the charging system 200 of the battery is electrically connected to the system 10 to receive AC power from the system 10.
  • the power converter 100 includes a PFC converter 110, a DC-DC converter 120, and a DC link 140.
  • the PFC converter 110 and the DC-DC converter 120 include a three level converter, and the DC link 140 includes a first link capacitor Ck1 and a second link capacitor Ck2.
  • the system 10 includes a power plant, a substation, a power transmission line, and the like.
  • the system 10 may supply an alternating voltage to the charging system 200 of the battery.
  • the system 10 may provide an alternating voltage with constant voltage value and frequency to the charging system 200 of the battery.
  • the system 10 may be a commercial power source capable of providing an alternating voltage having a voltage value of 220 V and a frequency of 60 Hz.
  • the battery pack 20 may include a battery including at least one battery cell (not shown), a battery manager (not shown), and a charge / discharge switch (not shown).
  • the battery is a portion that stores power and includes at least one battery cell.
  • the battery may include one battery cell, or the battery may include a plurality of battery cells, and the battery cells may be connected in series, connected in parallel, or a combination of series and parallel.
  • the number and connection scheme of the battery cells included in the battery may be determined according to the required output voltage and power storage capacity.
  • the battery cell may include a secondary battery except for a lead acid battery that may be charged.
  • the battery cell may include a nickel-cadmium battery, a nickel metal hydride battery (NiMH), a lithium ion battery, and a lithium polymer battery. have.
  • the charge switch and the discharge switch may be disposed on the high current path of the battery to interrupt the flow of the charge current and the discharge current of the battery.
  • the charge switch and the discharge switch may be turned on / off in accordance with a control signal of the battery manager.
  • Charge and discharge switches may include relays or FET switches.
  • the battery manager acquires information about the battery, such as current, voltage, and temperature of the battery, and analyzes the state of the battery and determines all kinds of devices capable of processing data such as a processor that can determine the need for battery protection. It may include.
  • the 'processor' may refer to a data processing apparatus embedded in hardware having, for example, a circuit physically structured to perform a function represented by code or instructions included in a program.
  • a data processing device embedded in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, and an application-specific integrated device (ASIC) It may include a processing device such as a circuit, a field programmable gate array (FPGA), etc., but the scope of the present invention is not limited thereto.
  • the battery manager detects a current, a voltage, and a temperature of a battery, and obtains a remaining power amount, a lifetime, a state of charge (SOC), etc. based on the detected information. For example, the battery manager may measure the cell voltage and the temperature of the battery cell using the sensors.
  • the controller 130 may receive information about the state of the battery from the battery manager.
  • the controller 130 may stop the operation of the PFC converter 110 and the DC-DC converter 120 to stop charging of the battery pack 20. have.
  • the controller 130 and the battery manager are shown in separate configurations, the controller 130 may be configured to perform a function of the battery manager.
  • the PFC converter 110 may convert an AC voltage provided from the system 10 into a DC voltage.
  • the controller 130 may correct the power factor by controlling the PFC converter 110, and control the switching frequency and the duty ratio of the PWM signal of the PFC converter 110 to output a DC voltage and a DC current output by the PFC converter 110. Can be controlled.
  • the voltage of the DC link 140 may vary in response to a change in the charging voltage of the battery pack 20.
  • the voltage of the DC link 140 is controlled to be a constant value, but in the charging system 200 of the battery according to an embodiment, the DC-DC converter 120 has a constant voltage gain (for example, voltage gain). To maintain this 1), the voltage of the DC link 140 is varied to correspond to the voltage of the battery pack 20.
  • the DC-DC converter 120 changes the DC voltage supplied from the DC link 140 into a high frequency AC voltage and applies it to the primary side of the transformer Tr, and the second rectifying unit 123 on the secondary side of the transformer Tr. To DC voltage.
  • the DC-DC converter 120 includes a three level resonant LLC converter, which is a resonant LLC converter (see FIG. 4) that includes a three level converter.
  • the switching frequency Fs of the DC-DC converter 120 is fixed to a value corresponding to the resonant frequency Fr of the resonant LLC converter.
  • the controller 130 performs feedback control on the switching frequency and duty ratio of the PFC converter 110.
  • the controller 130 switches the PFC converter 110 until the output current of the power converter 100 matches the preset reference current.
  • Correct the frequency and duty ratio That is, the controller 130 detects the output current of the power converter 100 and feedback-controls the switching frequency and duty ratio of the PFC converter 110 such that the detected output current matches the preset reference current.
  • the controller 130 may correspond to the switching frequency and duty ratio of the PFC converter 110 by modifying the load according to the load amount variation (for example, the charging voltage variation of the battery), and the switching frequency of the DC-DC converter 120. (Fs) and duty ratio (D) can be fixed to a predetermined value.
  • the controller 130 may control the PFC converter 110 until the output voltage of the power converter 100 matches the predetermined reference voltage. Correct the switching frequency and duty ratio. Even in this case, the controller 130 may correspond to the switching frequency and duty ratio of the PFC converter 110 by modifying the load according to the load variation, and the DC-DC converter 120 sets the switching frequency Fs to the resonance frequency Fr. ) And the duty ratio (D) of the DC-DC converter 120 may be operated at a fixed value of any one of 25% to 50%.
  • the DC-DC converter 120 may be operated with a switching frequency Fs having a first period Ts fixed and a duty ratio of any one of 25% to 50% duty ratio. have.
  • the DC-DC converter 120 may perform a phase shifter for a predetermined time so that the power converter 100, which starts the charging operation, is soft-started.
  • the phaser shifted DC-DC converter 120 determines a duty ratio that can operate in an optimal state, and is fixed and operated at the determined duty ratio regardless of a load change.
  • the switching frequency (Fs) is a value corresponding to the resonant frequency (Fr) of the DC-DC converter 120.
  • the DC link 140 may include a film capacitor. Since the DC link 140 is not controlled to maintain a fixed voltage, the link capacitors Ck1 and Ck2 included in the DC link 140 do not require high capacitance. Therefore, the link capacitors Ck1 and Ck2 may adopt and use a film capacitor in place of an electrolyte capacitor having a disadvantage of a sharp drop in life due to a temperature increase, thereby achieving a long life of the DC link 140. .
  • the DC-DC converter 120 can be driven in an open loop by using a PWM signal of a fixed frequency (Fs) and a fixed duty ratio (D) without a separate controller, thereby achieving a low price, and is related to the amount of load. High efficiency and high performance can be obtained by always operating in the optimal state.
  • Fs fixed frequency
  • D fixed duty ratio
  • the DC-DC converter 120 and the PFC converter 110 are configured as three-level converters even when the maximum value of the voltage applied to the DC link 140 increases by varying the voltage of the DC link 140.
  • By lowering the voltage applied to the switching element it is possible to operate the charging system 200 of the battery without damaging the switching element without increasing the breakdown voltage rating of the switching elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power conversion device and a battery charging system, according to various embodiments, are disclosed. Disclosed are a power conversion device and a battery charging system comprising the same, the power conversion device comprising: a PFC converter for converting an alternating current input voltage into a direct current voltage and outputting the same, and correcting a power factor; a DC link for receiving a direct current voltage from the PFC converter; a DC-DC converter for converting the direct current voltage received from the DC link into an alternating current voltage and converting the alternating current voltage back into the direct current voltage; and a control unit for adjusting the output voltage and the output current of the DC-DC converter by controlling at least one of the switching frequency and the duty ratio of the PFC converter, wherein the PFC converter and the DC-DC converter comprise a 3-level converter.

Description

전력 변환 장치 및 이를 포함하는 배터리의 충전 시스템Power conversion device and charging system of battery including same
본 발명은 전력 변환 장치 및 이를 포함하는 배터리의 충전 시스템에 관한 것이다.The present invention relates to a power conversion device and a charging system of a battery including the same.
오늘날 사용되는 각종 전자 기기의 내부를 구성하는 각 부품들은 대부분 직류 전압을 요구하기는 하나 그 요구 값이 각각 차이가 나기 때문에, 이들 부품에 공급되는 전압의 레벨을 적절히 변환하는 것은 매우 중요하다. 이에 따라 입력된 일정 전압을 승압 또는 강압시켜 원하는 전압으로 출력시키기 위한 컨버터가 널리 사용되고 있다. 특히, 입력된 직류 전원을 다른 레벨의 직류 전원으로 변환하는 직류-직류 컨버터에는 최근 전력용 반도체 소자의 스위칭 동작을 이용하여 전력의 흐름을 제어하는 방식이 널리 사용됨으로써, 고효율 및 고전력 밀도를 갖는 전력 변환 장치의 구현을 가능하게 하였다.Most of the components constituting the interior of various electronic devices used today require a DC voltage, but since the required values are different from each other, it is very important to properly convert the level of the voltage supplied to these components. Accordingly, converters for outputting a desired voltage by boosting or stepping down a predetermined voltage are widely used. In particular, in the DC-DC converter converting the input DC power to a different level of DC power, a method of controlling the flow of electric power by using a switching operation of a power semiconductor device is widely used, thereby providing high efficiency and high power density. It is possible to implement a conversion device.
전력 변환 장치는 일반적으로 PFC 컨버터 및 DC-DC 컨버터를 포함한다. DC-DC 컨버터는 부하량의 변동에 따라 스위칭 주파수 및 듀티비가 조정된다. 부하량의 변동으로 DC-DC 컨버터가 소정의 스위칭 주파수를 벗어나게 되면, DC-DC 컨버터에 포함된 스위칭 소자가 턴 온/턴 오프될 때에 스위칭 손실이 발생한다. 이러한 스위칭 손실로 DC-DC 컨버터의 효율이 저하되는 문제가 있다.Power converters generally include PFC converters and DC-DC converters. The DC-DC converter adjusts the switching frequency and duty ratio as the load changes. When the DC-DC converter is out of the predetermined switching frequency due to the change in the load amount, switching loss occurs when the switching element included in the DC-DC converter is turned on / off. This switching loss causes a problem of lowering the efficiency of the DC-DC converter.
본 발명이 해결하고자 하는 과제는 PFC 컨버터를 피드백 제어하고 DC-DC 컨버터를 고정된 듀티비 및 고정된 스위칭 주파수로 오픈 루프(Open loop)로 구동시킴으로써 DC-DC 컨버터가 부하에 관계없이 항상 최적 상태로 동작 되도록 함으로써 고효율 및 고성능을 획득할 수 있는 전력 변환 장치 및 이를 포함하는 충전 시스템을 제공하고자 한다.The problem to be solved by the present invention is that the DC-DC converter is always optimal regardless of load by feedback control the PFC converter and drive the DC-DC converter in an open loop with a fixed duty ratio and a fixed switching frequency The present invention provides a power conversion device and a charging system including the same that can be obtained by operating in a high efficiency and high performance.
본 발명의 일 측면에 따른 전력 변환 장치는 교류 입력 전압을 직류 전압으로 변환하여 출력하고, 역률을 보상하는 PFC 컨버터, 상기 PFC 컨버터로부터 직류 전압을 공급받는 DC 링크, 상기 DC 링크로부터 공급 받은 직류 전압을 교류 전압으로 변환하고, 다시 직류 전압으로 변환시키는 DC-DC 컨버터, 및 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 제어하여 상기 DC-DC 컨버터의 출력 전압 및 출력 전류를 조정하는 제어부를 포함하고, 상기 PFC 컨버터 및 DC-DC 컨버터는 3레벨 컨버터를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, a power converter includes a PFC converter that converts an AC input voltage into a DC voltage, outputs a power factor, and compensates a power factor, a DC link supplied with a DC voltage from the PFC converter, and a DC voltage supplied from the DC link. Is a DC-DC converter for converting an AC voltage to a DC voltage, and a controller for controlling the output voltage and the output current of the DC-DC converter by controlling at least one of a switching frequency and a duty ratio of the PFC converter. In addition, the PFC converter and the DC-DC converter is characterized in that it comprises a three-level converter.
전력 변환 장치의 일 예에 따르면, 상기 제어부는 상기 DC-DC 컨버터의 출력 전압 및 출력 전류의 크기를 검출하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비를 피드백 제어하는 것을 특징으로 한다.According to an example of the power converter, the control unit detects the magnitude of the output voltage and the output current of the DC-DC converter, characterized in that the feedback control of the switching frequency and duty ratio of the PFC converter.
전력 변환 장치의 다른 예에 따르면, 상기 DC-DC 컨버터에 포함된 3 레벨 컨버터는 공진 LLC 컨버터를 포함하는 것을 특징으로 한다.According to another example of the power converter, the three-level converter included in the DC-DC converter is characterized in that it comprises a resonant LLC converter.
전력 변환 장치의 다른 예에 따르면, 상기 DC-DC 컨버터는 고정된 스위칭 주파수인 제1 주파수로 동작하고, 상기 제1 주파수는 상기 공진 LLC 컨버터의 공진 주파수와 상응한 값을 갖는 것을 특징으로 한다.According to another example of the power converter, the DC-DC converter is operated at a first frequency which is a fixed switching frequency, wherein the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter.
전력 변환 장치의 다른 예에 따르면, 상기 DC-DC 컨버터는 25% 내지 50% 중 어느 한 값으로 고정된 듀티비를 갖는 PWM 신호를 통해 제어되는 것을 특징으로 한다.According to another example of the power converter, the DC-DC converter is characterized in that it is controlled through a PWM signal having a fixed duty ratio to any value of 25% to 50%.
전력 변환 장치의 다른 예에 따르면, 상기 DC 링크의 전압은 상기 DC-DC 컨버터의 출력 전압의 변동에 대응하여 가변되는 것을 특징으로 한다.According to another example of the power converter, the voltage of the DC link is characterized in that it changes in response to the variation of the output voltage of the DC-DC converter.
전력 변환 장치의 다른 예에 따르면, 상기 DC 링크는 필름 커패시터를 포함하는 것을 특징으로 한다.According to another example of a power converter, the DC link is characterized in that it comprises a film capacitor.
본 발명의 일 측면에 따른 배터리의 충전 시스템은, 적어도 하나의 배터리 셀을 포함하는 배터리 팩, 및 계통으로부터 인가받은 교류 전압을 직류 전압으로 변환하고 역률을 보상하는 PFC 컨버터, 상기 PFC 컨버터로부터 직류 전압을 공급받는 DC 링크, 상기 DC 링크로부터 공급 받은 직류 전압을 교류 전압으로 변환하고, 다시 직류 전압으로 변환시키는 DC-DC 컨버터, 및 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 제어하여 상기 배터리 팩으로 인가되는 출력 전압 및 출력 전류를 조정하는 제어부를 포함하는 전력 변환 장치를 포함하고, 상기 PFC 컨버터 및 DC-DC 컨버터는 3레벨 컨버터를 포함하는 것을 특징으로 한다.Battery charging system according to an aspect of the present invention, a battery pack including at least one battery cell, and a PFC converter for converting an AC voltage applied from the system to a DC voltage and a power factor compensation, DC voltage from the PFC converter The battery by controlling at least one of a switching frequency and a duty ratio of the DC link receiving a DC link, a DC-DC converter supplied from the DC link to an AC voltage, and converting the DC voltage back to a DC voltage, and the PFC converter. And a power conversion device including a control unit for adjusting an output voltage and an output current applied to the pack, wherein the PFC converter and the DC-DC converter include a three level converter.
배터리의 충전 시스템의 일 예에 따르면, 상기 제어부는 상기 배터리 팩으로 인가되는 출력 전류의 크기와 미리 설정된 기준 전류를 비교하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 피드백 제어한다.According to an example of a battery charging system, the controller compares a magnitude of an output current applied to the battery pack with a preset reference current to feedback control at least one of a switching frequency and a duty ratio of the PFC converter.
배터리의 충전 시스템의 다른 예에 따르면, 상기 제어부는 상기 배터리 팩으로 인가되는 전압과 미리 설정된 기준 전압을 비교하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 피드백 제어한다.According to another example of a battery charging system, the controller compares a voltage applied to the battery pack with a preset reference voltage to feedback control at least one of a switching frequency and a duty ratio of the PFC converter.
배터리의 충전 시스템의 다른 예에 따르면, 상기 DC-DC 컨버터에 포함된 3 레벨 컨버터는 공진 LLC 컨버터인 것을 특징으로 한다.According to another example of a battery charging system, the three level converter included in the DC-DC converter is a resonant LLC converter.
배터리의 충전 시스템의 다른 예에 따르면, 상기 DC-DC 컨버터는 상기 배터리 팩으로 인가되는 전압 및 전류가 변화되더라도 전압 이득이 일정하게 유지되는 것을 특징으로 한다.According to another example of the battery charging system, the DC-DC converter is characterized in that the voltage gain is kept constant even if the voltage and current applied to the battery pack is changed.
배터리의 충전 시스템의 다른 예에 따르면, 상기 DC-DC 컨버터는 고정된 스위칭 주파수인 제1 주파수로 동작하고, 상기 제1 주파수는 상기 공진 LLC 컨버터의 공진 주파수와 상응한 값을 갖는 것을 특징으로 한다.According to another example of a charging system of a battery, the DC-DC converter operates at a first frequency that is a fixed switching frequency, wherein the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter. .
배터리의 충전 시스템의 다른 예에 따르면, 상기 DC-DC 컨버터는 25% 내지 50% 중 어느 한 값으로 고정된 듀티비를 갖는 PWM 신호를 통해 제어되는 것을 특징으로 한다.According to another example of a charging system of a battery, the DC-DC converter is controlled through a PWM signal having a fixed duty ratio at any one of 25% to 50%.
배터리의 충전 시스템의 다른 예에 따르면, 상기 DC 링크의 전압은 상기 배터리로 인가되는 전압의 변화에 대응하여 가변되는 것을 특징으로 한다.According to another example of the battery charging system, the voltage of the DC link is characterized in that it changes in response to a change in the voltage applied to the battery.
본 발명의 다양한 실시 예들에 따르면, 배터리 팩 또는 에너지 저장 시스템의 출력량에 따라 배터리 팩 또는 에너지 저장 시스템에 포함된 배터리들이 방전을 종료하는 방전종지전압의 크기를 조정하여, 배터리들이 저장한 에너지를 효율적으로 활용할 수 있다.According to various embodiments of the present disclosure, the energy stored in the batteries may be efficiently adjusted by adjusting the magnitude of the discharge end voltage at which the batteries included in the battery pack or the energy storage system terminate the discharge according to the output amount of the battery pack or the energy storage system. Can be used as
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 내부 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating an internal configuration of a power conversion apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 DC-DC 컨버터의 일부인 공진 LLC 트랜스를 개략적으로 도시한 도면이다.2 is a diagram schematically illustrating a resonant LLC transformer which is part of a DC-DC converter according to an embodiment of the present invention.
도 3은 DC-DC 컨버터의 전압 이득에 대한 그래프를 도시한다.3 shows a graph of the voltage gain of a DC-DC converter.
도 4는 3레벨 컨버터를 포함하는 DC-DC 컨버터와 PFC 컨버터를 예시적으로 도시한 도면이다.4 is a diagram illustrating a DC-DC converter and a PFC converter including a three-level converter by way of example.
도 5는 PFC 컨버터의 제어 타이밍도를 예시적으로 도시한다.5 exemplarily shows a control timing diagram of a PFC converter.
도 6은 DC-DC 컨버터의 제어 타이밍도를 예시적으로 도시한다.6 exemplarily shows a control timing diagram of a DC-DC converter.
도 7은 본 발명의 일 실시예에 따른 배터리의 충전 시스템의 내부 구성을 간략하게 도시한 도면이다.7 is a view briefly illustrating an internal configuration of a charging system of a battery according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 설명되는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 아래에서 제시되는 실시예들로 한정되는 것이 아니라, 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 아래에 제시되는 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Advantages and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments set forth below, but may be embodied in many different forms and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. do. The embodiments set forth below are provided to make the disclosure of the present invention complete, and to fully inform the scope of the invention to those skilled in the art. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
이하, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings, and in the following description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and redundant description thereof will be omitted. Let's do it.
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 내부 구성을 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating an internal configuration of a power conversion apparatus according to an embodiment of the present invention.
도 1을 참조하면, 전력 변환 장치(100)는 PFC 컨버터(110), DC-DC 컨버터(120), DC 링크(140) 및 제어부(130)를 포함한다.Referring to FIG. 1, the power converter 100 includes a PFC converter 110, a DC-DC converter 120, a DC link 140, and a controller 130.
전력 변환 장치(100)는 공급 받은 교류 전압을 직류 전압으로 변환하여 출력하는 장치이다. 전력 변환 장치(100)는 상기 직류 전압의 크기를 조절할 수 있다. 예를 들면, 전력 변환 장치(100)는 배터리 팩(20)을 충전시키는 충전기일 수 있다. 이 경우, 전력 변환 장치(100)는 상기 배터리 팩(20)을 충전하는데 필요한 전압으로 변환하여 배터리를 충전시킬 수 있다. 전력 변환 장치(100)는 적어도 하나의 컨버터를 포함할 수 있다.The power converter 100 converts the supplied AC voltage into a DC voltage and outputs the DC voltage. The power converter 100 may adjust the magnitude of the DC voltage. For example, the power converter 100 may be a charger that charges the battery pack 20. In this case, the power converter 100 may charge the battery by converting it into a voltage required to charge the battery pack 20. The power converter 100 may include at least one converter.
PFC 컨버터(power factor corrector converter, 110)는 교류 입력 전압을 직류 전압으로 변환함과 동시에 전압의 역률을 보상할 수 있다. 즉, PFC 컨버터(110)는 교류 전압을 직류 전압으로 변환하는 정류하는 구성과 입력 전류와 입력 전압의 위상차를 줄여 역률을 증가시킬 수 있다. 구체적으로, PFC 컨버터(110)는 역률 개선을 위한 PFC 회로부와 직류 전압 변환을 위한 DC-DC 변환부로 이루어진 구조로서, 이는 PFC 기능과 DC-DC 변환 기능을 분리하여 수행하므로 거의 1에 가까운 높은 역률을 얻을 수 있으며, 출력전압의 조절(Regulation)과 동적 특성 또한 우수한 장점을 가지고 있다.The PFC converter 110 may compensate for the power factor of the voltage while converting an AC input voltage into a DC voltage. That is, the PFC converter 110 may increase the power factor by reducing the phase difference between the rectifying configuration and the input current and the input voltage for converting an AC voltage into a DC voltage. Specifically, the PFC converter 110 is composed of a PFC circuit part for improving the power factor and a DC-DC converter for DC voltage conversion, which is performed by separating the PFC function and the DC-DC conversion function, and thus have a high power factor close to one. Also, the regulation and dynamic characteristics of the output voltage also have excellent advantages.
DC-DC 컨버터(120)는 PFC 컨버터(110)가 출력하는 출력 전압을 교류 전압으로 전환하고, 전환된 교류 전압을 다시 직류 전압으로 변환할 수 있다. DC-DC 컨버터(120)는 상기 변환된 직류 전압을 전력 변환 장치(100)와 연결된 부하에 공급한다. DC-DC 컨버터(120)는 변압기를 포함하는 절연형 DC-DC 컨버터(120)로 구성될 수 있다. DC-DC 컨버터(120)는 Full bridge, Phase shift full bridge, Half bridge 중 어느 하나의 토폴로지로 구현된다.The DC-DC converter 120 may convert an output voltage output from the PFC converter 110 into an AC voltage and convert the converted AC voltage into a DC voltage again. The DC-DC converter 120 supplies the converted DC voltage to a load connected to the power converter 100. The DC-DC converter 120 may be configured as an isolated DC-DC converter 120 including a transformer. The DC-DC converter 120 is implemented in any one of a full bridge, a phase shift full bridge, and a half bridge.
DC 링크(140)는 PFC 컨버터(110)로부터 출력되는 직류 전원을 일시적으로 저장하고, 저장된 전원을 DC-DC 컨버터(120)에 전달하는 역할을 수행한다. DC 링크(140)는 전압 레벨이 다른 PFC 컨버터(110)와 DC-DC 컨버터(120) 사이를 하나의 전압을 갖도록 할 수 있다. DC 링크(140)는 링크 커패시터를 포함한다. 상기 링크 커패시터는 PFC로부터 출력되는 직류 전원의 리플 성분을 필터링할 수 있다. 예를 들면, PFC 컨버터(110)가 계통(10)과 연결되어 60Hz의 교류 전원을 공급받는 경우, DC 링크(140)는 상기 링크 커패시터를 이용하여 계통(10)의 60Hz 성분을 필터링하여 리플 성분을 제거할 수 있다. The DC link 140 temporarily stores the DC power output from the PFC converter 110 and transfers the stored power to the DC-DC converter 120. The DC link 140 may have one voltage between the PFC converter 110 and the DC-DC converter 120 having different voltage levels. DC link 140 includes a link capacitor. The link capacitor may filter the ripple component of the DC power output from the PFC. For example, when the PFC converter 110 is connected to the grid 10 to receive AC power of 60 Hz, the DC link 140 filters the 60 Hz component of the grid 10 using the link capacitor to form a ripple component. Can be removed.
제어부(130)는 전력 변환 장치(100)의 출력 전압 및 출력 전류 중 적어도 하나를 획득하여 PFC 컨버터(110)의 스위칭 주파수 및 듀티비(Duty)를 조정할 수 있는 프로세서(processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(processor)'는, 예를 들어 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 이와 같이 하드웨어에 내장된 데이터 처리 장치의 일 예로써, 마이크로프로세서(microprocessor), 중앙처리장치(central processing unit: CPU), 프로세서 코어(processor core), 멀티프로세서(multiprocessor), ASIC(application-specific integrated circuit), FPGA(field programmable gate array) 등의 처리 장치를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다.The controller 130 acquires at least one of an output voltage and an output current of the power converter 100 to process data, such as a processor capable of adjusting the switching frequency and duty ratio of the PFC converter 110. It can include any kind of device that can. Here, the 'processor' may refer to a data processing apparatus embedded in hardware having, for example, a circuit physically structured to perform a function represented by code or instructions included in a program. As an example of a data processing device embedded in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, and an application-specific integrated device (ASIC) It may include a processing device such as a circuit, a field programmable gate array (FPGA), etc., but the scope of the present invention is not limited thereto.
제어부(130)는 PFC 컨버터(110)의 역률 제어와, 전력 변환 장치(100)의 출력을 제어할 수 있다. 제어부(130)는 전력 변환 장치(100)의 출력 전류 및 출력 전압 중 적어도 하나와 미리 설정된 기준 전류 및 기준 전압을 비교한 후에 PFC 컨버터(110)의 출력 전압 및 출력 전류를 피드백 제어할 수 있다. 구체적으로, 제어부(130)는 DC-DC 컨버터(120)의 스위칭 주파수 및 듀티비를 제어하지 않고 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 제어한다. 제어부(130)는 전력 변환 장치(100)의 출력을 검출하고, 검출된 값이 미리 설정된 목표 값에 일치하도록 PFC 컨버터(110)에 인가되는 PWM(pulse width modulation) 신호의 주파수 및 듀티비를 조절한다.The controller 130 may control power factor control of the PFC converter 110 and output of the power converter 100. The controller 130 may control the output voltage and the output current of the PFC converter 110 after comparing the preset reference current and the reference voltage with at least one of the output current and the output voltage of the power converter 100. In detail, the controller 130 controls the switching frequency and the duty ratio of the PFC converter 110 without controlling the switching frequency and the duty ratio of the DC-DC converter 120. The controller 130 detects an output of the power converter 100 and adjusts a frequency and duty ratio of a pulse width modulation (PWM) signal applied to the PFC converter 110 so that the detected value matches a preset target value. do.
예를 들면, 전력 변환 장치(100)가 배터리 팩(20)을 충전시키는 충전기인 경우, 제어부(130)는 배터리 팩(20)을 정전류 및 정전압으로 충전시킬 수 있다. 정전류 충전의 경우, 제어부(130)는 배터리 팩(20)으로 출력되는 출력 전류가 상기 미리 설정된 기준 전류와 일치하도록 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 제어할 수 있다. 마찬가지로, 정전압 충전인 경우, 제어부(130)는 배터리 팩(20)으로 출력되는 출력 전압이 미리 설정된 기준 전압과 일치하도록 PCF 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 제어할 수 있다.For example, when the power converter 100 is a charger that charges the battery pack 20, the controller 130 may charge the battery pack 20 with a constant current and a constant voltage. In the case of the constant current charging, the controller 130 may control the switching frequency and the duty ratio of the PFC converter 110 so that the output current output to the battery pack 20 matches the preset reference current. Similarly, in the case of constant voltage charging, the controller 130 may control at least one of the switching frequency and the duty ratio of the PCF converter so that the output voltage output to the battery pack 20 matches the preset reference voltage.
한편, 제어부(130)는 DC 링크(140)의 전압이 소정의 전압 값을 유지하도록 제어하지 않는다. 즉, DC 링크(140)의 전압은 PFC 컨버터(110)가 출력하는 전압에 종속하여 가변되고 고주파수의 성분이 흐르는 것이 허용된다. 또한, DC-DC 컨버터(120)의 스위칭 주파수 및 듀티비를 제어하여 전력 변환 장치(100)의 출력 전압 및 전류를 조절하지 않는다. 이 경우, DC-DC 컨버터(120)는 출력 전압 및 출력 전류에 따라 피드백 제어가 되지 않고 오픈 루프제어를 통해 절연된 상태에서 PFC 컨버터(110)의 전력을 배터리 측으로 전달하는 기능을 갖는다. Meanwhile, the controller 130 does not control the voltage of the DC link 140 to maintain a predetermined voltage value. That is, the voltage of the DC link 140 is variable depending on the voltage output from the PFC converter 110 and the high frequency component is allowed to flow. In addition, the switching frequency and duty ratio of the DC-DC converter 120 are controlled to not adjust the output voltage and the current of the power converter 100. In this case, the DC-DC converter 120 has a function of transferring power of the PFC converter 110 to the battery side in an insulated state through open loop control without feedback control according to the output voltage and the output current.
도 2는 본 발명의 일 실시예에 따른 DC-DC 컨버터의 일부인 공진 LLC 트랜스를 개략적으로 도시한 도면이다. 도 3은 DC-DC 컨버터의 전압 이득에 대한 그래프를 도시한다.2 is a diagram schematically illustrating a resonant LLC transformer which is part of a DC-DC converter according to an embodiment of the present invention. 3 shows a graph of the voltage gain of a DC-DC converter.
도 2를 참조하면, DC-DC 컨버터(120)는 공진 LLC 트랜스(121)를 포함한다. 공진 LLC 트랜스(121)는 공진 커패시터(Cr), 공진 인덕터(Lr), 자화 인덕터(Lm), 변압기(Tr) 및 제2 정류부(123)를 포함한 것으로 정의한다.Referring to FIG. 2, the DC-DC converter 120 includes a resonant LLC transformer 121. The resonant LLC transformer 121 is defined as including a resonant capacitor Cr, a resonant inductor Lr, a magnetized inductor Lm, a transformer Tr, and a second rectifier 123.
공진 LLC 트랜스(121)의 구조는 LC 직렬 공진 컨버터와 유사하며, 유일한 차이점은 자화 인덕턴스 값이다. 직렬 공진 컨버터는 LC 직렬 공진 인덕턴스보다 훨씬 큰 자화 인덕턴스를 갖지만, 공진 LLC 트랜스(121)의 자화 인덕턴스는 LC 직렬공진 인덕턴스에 비해 3~8배의 크기이며, 대개 변압기의 공극을 도입하여 구현한다. 공진 LLC 트랜스(121)는 직렬공진 컨버터에 비해 많은 장점을 갖는다.The structure of the resonant LLC transformer 121 is similar to the LC series resonant converter, with the only difference being the magnetization inductance value. The series resonant converter has a much larger magnetizing inductance than the LC series resonant inductance, but the magnetizing inductance of the resonant LLC transformer 121 is three to eight times larger than the LC series resonant inductance and is usually implemented by introducing a void in the transformer. The resonant LLC transformer 121 has many advantages over the series resonant converter.
즉, 상대적으로 스위칭 주파수를 아주 작게 조절하더라도 민감한 부하변동 등에 대해 적절한 출력 조절을 실현 할 수 있다. 또한, DC-DC 컨버터(120)의 동작 영역에서 영전압스위칭(Zero Voltage Switching :ZVS)이 가능하다. 그리고 모든 반도체 장치의 접합 커패시턴스와 변압기의 자화 인덕턴스 및 누설 인덕턴스를 포함한 모든 필수 기생 요소들이 소프트 스위칭을 얻기 위해 활용될 수 있다. 공진 LLC 트랜스(121)는 시간에 따라 느리게 변하는 파라미터 값들을 갖고 있다.In other words, even if the switching frequency is adjusted very small, proper output regulation can be realized for sensitive load fluctuations. In addition, zero voltage switching (ZVS) is possible in the operating region of the DC-DC converter 120. And all the necessary parasitics, including junction capacitances of all semiconductor devices and magnetizing inductances and leakage inductances of transformers, can be utilized to achieve soft switching. The resonant LLC transformer 121 has parameter values that change slowly over time.
도 3을 참조하면, 공진 LLC 트랜스(121)를 포함하는 DC-DC 컨버터(120)의 스위칭 주파수를 변화할 때 DC-DC 컨버터(120)의 전압 이득 그래프가 도시되어 있다.Referring to FIG. 3, there is shown a voltage gain graph of DC-DC converter 120 when varying the switching frequency of DC-DC converter 120 including resonant LLC transformer 121.
DC-DC 컨버터(120)는 부하의 증감에 따라 전압 이득이 달라진다. 도 3에 도시된 바와 같이 DC-DC 컨버터(120)의 스위칭 주파수(Fs)와 공진 LLC 트랜스(121)의 공진 주파수(Fr)가 동일할 때에 이득은 1의 값을 갖는다.In the DC-DC converter 120, the voltage gain varies according to the increase or decrease of the load. As shown in FIG. 3, the gain has a value of 1 when the switching frequency Fs of the DC-DC converter 120 and the resonance frequency Fr of the resonant LLC transformer 121 are the same.
제1 영역(Region 1) 및 제3 영역(Region 3)은 제로 전압 스위칭 영역이고, 제2 영역(Region 2)은 제로 전류 스위칭 영역이다. DC-DC 컨버터(120)는 부하가 변동함에 따라 전압 이득이 달라지게 되고, 스위칭 영역은 제1 영역 내지 제3 영역(Region 1 내지 Region 3)에 거쳐 나타나게 된다. 특히, 제1 영역(Region 1)에서 동작시 스위칭 주파수(Fs)의 변동 범위가 커져 공진 인덕터(Lr)에 큰 전류가 흐를 때 DC-DC 컨버터(120)에 포함된 스위치들이 턴 오프되어 스위칭 손실이 증가한다. 따라서, DC-DC 컨버터(120)의 스위칭 주파수(Fs)를 공진 주파수(Fr)와 상응한 값에 고정시켜, DC-DC 컨버터(120)를 작동시켜 스위칭 손실을 최소화할 필요가 있다. The first region Region 1 and the third region Region 3 are zero voltage switching regions, and the second region Region 2 is a zero current switching region. In the DC-DC converter 120, the voltage gain is changed as the load is changed, and the switching region is shown through the first to third regions (Region 1 to Region 3). In particular, when a large current flows in the resonant inductor Lr due to a large fluctuation range of the switching frequency Fs during operation in the first region Region 1, the switches included in the DC-DC converter 120 are turned off to cause switching loss. This increases. Therefore, it is necessary to fix the switching frequency Fs of the DC-DC converter 120 to a value corresponding to the resonance frequency Fr, thereby operating the DC-DC converter 120 to minimize switching losses.
일 실시예에 따르면, DC-DC 컨버터(120)는 공진 주파수(Fr)와 동일한 스위칭 주파수(Fs)로 동작한다. 제어부(130)는 전력 변환 장치(100)의 출력 전류 및 출력 전압(또는, DC-DC 컨버터(120)의 출력 전류 및 출력 전압)을 기초로 PFC 컨버터(110)를 피드백 제어하여 전력 변환 장치(100)의 출력 전류 및 출력 전압을 조정할 수 있다. DC-DC 컨버터(120)는 스위칭 주파수(Fs)가 공진 주파수(Fr)로 고정되어 작동된다. 이 경우, DC-DC 컨버터(120)의 스위치들의 손실을 최소화할 수 있다.According to an embodiment, the DC-DC converter 120 operates at the same switching frequency Fs as the resonance frequency Fr. The controller 130 may feedback-control the PFC converter 110 based on the output current and output voltage of the power converter 100 (or the output current and output voltage of the DC-DC converter 120) to convert the power converter ( The output current and output voltage of 100 can be adjusted. The DC-DC converter 120 operates with the switching frequency Fs fixed at the resonance frequency Fr. In this case, losses of switches of the DC-DC converter 120 may be minimized.
일 실시예에 따르면, 전력 변환 장치(100)는 계통(10)과 배터리 팩(20) 사이에 연결되어 배터리 팩(20)을 충전시킬 수 있다. 이 경우, 정전류로 배터리 팩(20)을 충전시키는 경우, 배터리 팩(20)의 전압이 Vb1에서 Vb2로 변동하면, DC 링크(140)의 전압은 Vb1*N1/N2에서 Vb2*N1/N2 범위에서 변동하게 된다. 이 때, N1는 전류가 인가되는 변압기의 1차측의 권선비이고, N2는 전류가 출력되는 변압기의 2차측의 권선비이다. 예를 들면, 배터리 팩(20)의 전압이 40V 내지 60V로 변하고 N1:N2가 2:1인 경우, DC 링크(140)의 전압은 배터리 팩(20)의 전압 변화에 대응하여 80V 내지 120V로 변한다.According to an embodiment, the power converter 100 may be connected between the system 10 and the battery pack 20 to charge the battery pack 20. In this case, when charging the battery pack 20 with a constant current, if the voltage of the battery pack 20 varies from Vb1 to Vb2, the voltage of the DC link 140 ranges from Vb1 * N1 / N2 to Vb2 * N1 / N2 Will fluctuate in. At this time, N1 is the winding ratio of the primary side of the transformer to which the current is applied, and N2 is the winding ratio of the secondary side of the transformer to which the current is output. For example, when the voltage of the battery pack 20 is changed from 40V to 60V and N1: N2 is 2: 1, the voltage of the DC link 140 is 80V to 120V corresponding to the voltage change of the battery pack 20. Change.
이 경우, DC 링크(140)는 소정의 값으로 전압이 유지되는 경우보다 높은 전압까지 변동될 수 있다. DC 링크(140)에 높은 전압까지 상승하면, PFC 컨버터(110) 및 DC-DC 컨버터(120)에 포함된 스위칭 소자에 무리를 주어 손상되게 할 수 있다. 예를 들면, DC 링크의 전압이 100V로 유지되는 경우를 예정하여 PFC 컨버터(110) 및 DC-DC 컨버터(120)의 스위칭 소자(예컨대, 스위칭 소자의 내압 정격 전압은 110V)를 선택되어 있는 경우에 배터리 팩(20)의 전압이 50V 내지 80V로 변하는 경우, DC 링크(140)에 걸리는 전압은 100V에서 160V로 변한다. 이 경우, 상기 DC 링크(140) 전압의 최대값인 160V가 PFC 컨버터(110) 및 DC-DC 컨버터(120)에 포함된 스위치 소자들 각각에 인가되고, 상기 스위칭 소자는 내압 정격 전압보다 높은 전압이 인가되어 소손될 수 있다. 즉, DC 링크(140)의 전압을 일정한 값으로 유지하는 제어를 하지 않는 경우, 상기 스위칭 소자들은 160V 이상의 높은 내압 정격을 갖는 스위칭 소자들로 구성되어야 한다.In this case, the DC link 140 may vary to a higher voltage than when the voltage is maintained at a predetermined value. When the DC link 140 rises to a high voltage, it may cause damage to the switching elements included in the PFC converter 110 and the DC-DC converter 120. For example, when a voltage of the DC link is maintained at 100 V, a switching element of the PFC converter 110 and the DC-DC converter 120 (eg, the voltage resistance voltage of the switching element is 110 V) is selected. When the voltage of the battery pack 20 changes from 50V to 80V, the voltage across the DC link 140 changes from 100V to 160V. In this case, 160 V, the maximum value of the DC link 140 voltage, is applied to each of the switch elements included in the PFC converter 110 and the DC-DC converter 120, and the switching element is higher than the breakdown voltage rated voltage. Can be applied and burned. That is, in the case of not controlling to maintain the voltage of the DC link 140 at a constant value, the switching elements should be composed of switching elements having a high breakdown voltage rating of 160V or more.
일 실시예에 따른 전력 변환 장치(100)는 DC-DC 컨버터(120) 및 PFC 컨버터(110)를 3레벨 컨버터로 구성하여, PFC 컨버터(110) 및 DC-DC 컨버터(120)에 포함된 스위칭 소자들에 DC 링크(140)에 걸리는 전압을 분압하여 인가할 수 있고, 이에 대한 상세한 설명은 도 4를 참조하여 설명한다.The power converter 100 according to an embodiment configures the DC-DC converter 120 and the PFC converter 110 as a three-level converter, so that the switching is included in the PFC converter 110 and the DC-DC converter 120. Voltages applied to the DC links 140 may be divided and applied to the devices, and a detailed description thereof will be described with reference to FIG. 4.
도 4는 3레벨 컨버터를 포함하는 DC-DC 컨버터와 PFC 컨버터를 예시적으로 도시한 도면이다. 도 5는 PFC 컨버터의 제어 타이밍도를 예시적으로 도시하고, 도 6은 DC-DC 컨버터의 제어 타이밍도를 예시적으로 도시한다.4 is a diagram illustrating a DC-DC converter and a PFC converter including a three-level converter by way of example. 5 exemplarily shows a control timing diagram of the PFC converter, and FIG. 6 exemplarily shows a control timing diagram of the DC-DC converter.
도 4를 참조하면, PFC 컨버터(110) 및 DC-DC 컨버터(120)는 3 레벨 컨버터를 포함한다. 도 4에 도시된 연결 구조와 같이 3 레벨 컨버터로 구성된 PFC 컨버터(110)는 2개의 스위치, DC- DC 컨버터는 4개의 스위치를 포함하며, 각 스위치들은 미리 설정된 PWM 신호를 인가하여 직류 전압을 양의 값, 0 및 음의 값을 갖도록 한다. 이 경우, 3 레벨 컨버터는 종전 2 레벨 컨버터에 비해 고조 발생 및 스위칭 소자의 전압 스트레스가 절반 정도 낮아지고, 스위칭 소자 및 필터 회로에서의 손실을 상당 부분 줄일 수 있다. 한편, 3레벨 방식은 스위칭 소자의 구성에 따라 NPC(Neutral Point Clamped) 방식과 TNPC(T-type Neutral Point Clamped) 방식의 2종류가 있다.Referring to FIG. 4, the PFC converter 110 and the DC-DC converter 120 include a three level converter. As shown in FIG. 4, the PFC converter 110 configured as a three-level converter includes two switches, and the DC-DC converter includes four switches. Each switch applies a preset PWM signal to increase the DC voltage. Have a value of 0, and a negative value. In this case, the three-level converter is about half the lower harmonic generation and the voltage stress of the switching element compared to the conventional two-level converter, and can significantly reduce the loss in the switching element and the filter circuit. On the other hand, there are two types of three-level methods, NPC (Neutral Point Clamped) and TNPC (T-type Neutral Point Clamped).
또한, 3레벨 컨버터는 넓은 출력 전압 범위를 갖는 전력 변환 장치(100)에서도 순환전류를 줄일 수 있다. 예를 들면, 전력 변환 장치(100)가 배터리 팩(20)을 충전시키는 경우, 3레벨 컨버터는 주로 낮은 배터리 전압에서 동작하는 CC모드 충전 시 도통 손실을 줄일 수 있다. In addition, the three-level converter can reduce the circulating current even in the power converter 100 having a wide output voltage range. For example, when the power converter 100 charges the battery pack 20, the three-level converter can reduce the conduction loss when charging the CC mode mainly operating at a low battery voltage.
전력 변환 장치(100)는 DC-DC 컨버터(120), PFC 컨버터(110) 및 제어부(130)를 포함한다. DC-DC 컨버터(120)는 스위칭을 하는 제3 스위치 내지 제6 스위치(SW3 내지 SW6), 제3 다이오드 내지 제6 다이오드(D3 내지 D6) 및 공진 LLC 트랜스(121)를 포함한다. PFC 컨버터(110)는 제1 스위치(SW1), 제2 스위치(SW2), 제1 다이오드(D1), 제2 다이오드(D2) 및 제1 정류부(111)를 포함한다.The power converter 100 includes a DC-DC converter 120, a PFC converter 110, and a controller 130. The DC-DC converter 120 includes third to sixth switches SW3 to SW6, third to sixth diodes D3 to D6, and a resonant LLC transformer 121 for switching. The PFC converter 110 includes a first switch SW1, a second switch SW2, a first diode D1, a second diode D2, and a first rectifier 111.
PFC 컨버터(110) 및 DC-DC 컨버터(120)에 포함된 스위치들(SW1 내지 SW6)은 스위칭 동작에서 전압과 전류가 소자의 특성에 따라 일정한 지연과 기울기를 가지고 변화하기 때문에, 스위치를 턴 온 또는 턴 오프시키게 되면 스위치에 전압과 전류가 동시에 가해지는 구간이 발생하게 된다. 이 구간 동안에는 전압과 전류의 곱에 해당하는 스위칭 전력 손실이 발생한다.The switches SW1 to SW6 included in the PFC converter 110 and the DC-DC converter 120 turn on the switch because the voltage and current change with a constant delay and slope according to the characteristics of the device in the switching operation. Alternatively, when turned off, a section in which voltage and current are simultaneously applied to the switch occurs. During this period, switching power losses corresponding to the product of voltage and current occur.
예를 들면, 절연 게이트 바이폴라 트랜지스터(IGBT; Insulated Gate Bipolar Transistor)와 같은 소자는 턴 오프시에 스위치의 양단에 전압이 충분히 가해진 후에도 일정 구간 동안 꼬리 전류(tail current)가 흐르기 때문에 턴 오프시에 스위칭 손실이 발생하게 된다. 그리고, 이러한 스위칭 손실은 소자가 개폐되는 주파수에 비례해서 증가하기 때문에, 소자의 최대 스위칭 주파수를 제한하는 요소가 된다.For example, devices such as Insulated Gate Bipolar Transistors (IGBTs) switch during turn-off because tail current flows for a period of time even after sufficient voltage is applied across the switch at turn-off. Loss occurs. This switching loss increases in proportion to the frequency at which the device is opened and closed, thereby limiting the maximum switching frequency of the device.
3 레벨 컨버터는 전력용 반도체 소자의 스위칭 손실을 줄이면서도 고주파의 스위칭이 가능하도록 영전압 상태에서 스위칭을 하는 영전압 스위칭(zero voltage switching) 할 수 있다. 또한, 3 레벨 컨버터는 2 레벨 컨버터에서 스위칭 소자에 인가되는 전압의 절반의 전압이 스위칭 소자에 인가되도록 할 수 있다.The three-level converter can perform zero voltage switching to switch in a zero voltage state to enable high frequency switching while reducing switching loss of a power semiconductor device. In addition, the three-level converter may cause a voltage of half of the voltage applied to the switching element in the two-level converter to be applied to the switching element.
DC-DC 컨버터(120)는 제3 스위치(SW3), 제4 스위치(SW4), 제5 스위치(SW5) 및 제6 스위치(SW6), 제3 내지 제6 스위치(SW3 내지 SW6) 각각의 사이에 각각 연결된 역병렬 다이오드(D3 내지 D6) 및 스위치에 의해 출력되는 전압 레벨의 균형을 위해 제4 스위치(SW4)와 제5 스위치(SW5) 사이에 연결되는 플라잉 커패시터(flying capacitor; Css), 서로 직렬로 연결되고 플라잉 커패시터(Css)에는 병렬로 연결되는 다이오드(Dc1, Dc2)를 포함한다.The DC-DC converter 120 is disposed between each of the third switch SW3, the fourth switch SW4, the fifth switch SW5, the sixth switch SW6, and the third to sixth switches SW3 to SW6. A flying capacitor Css connected between the fourth switch SW4 and the fifth switch SW5 for balancing the anti-parallel diodes D3 to D6 and the voltage level output by the switch, respectively. The flying capacitors Css are connected in series and include diodes Dc1 and Dc2 connected in parallel.
도 5를 참조하면, DC-DC 컨버터(120)는 제1 주파수(1/Ts)인 스위칭 주파수(Fs) 및 제1 듀티비(D)를 갖는 PWM 신호들에 의해 제3 스위치 내지 제6 스위치(SW3 내지 SW6)가 스위칭 되고 있다. 상기 PWM 신호들은 도시된 바와 같이 제3 스위치 내지 제6 스위치(SW3 내지 SW6)를 3가지 모드, 즉 (1) 제3 스위치(SW3) 및 제5 스위치(SW5)의 턴 온, 제4 스위치(SW4) 및 제6 스위치(SW6)의 턴 오프되는 모드 (2) 제3 스위치 내지 제6 스위치(SW3 내지 SW6) 모두 턴 오프되는 모드 (3) 제3 스위치(SW3) 및 제5 스위치(SW5) 턴 오프, 제4 스위치(SW4) 및 제6 스위치(SW6)는 턴 온되는 모드로 동작된다. 이 때, 제1 주파수(1/Ts)는 공진 주파수(Fr)와 동일한 값을 갖는다.Referring to FIG. 5, the DC-DC converter 120 includes third to sixth switches by PWM signals having a switching frequency Fs, which is a first frequency (1 / Ts), and a first duty ratio (D). (SW3 to SW6) are switched. As shown in the PWM signals, the third to sixth switches SW3 to SW6 may be switched to three modes, that is, (1) the third switch SW3 and the fifth switch SW5 are turned on and the fourth switch ( SW4) and the mode in which the sixth switch SW6 is turned off (2) The mode in which all of the third to sixth switches SW3 to SW6 are turned off (3) The third switch SW3 and the fifth switch SW5 The turn off, the fourth switch SW4 and the sixth switch SW6 are operated in a turned on mode. At this time, the first frequency 1 / Ts has the same value as the resonance frequency Fr.
이와 같이, 제3 스위치 내지 제6 스위치(SW3 내지 SW6)는 상기 PWM 신호들에 의해 3가지 모드로 동작하여, 공진 LLC 트랜스(121)로 인가된 전류에 의해 2차 측에는 변압기에 의해 일정한 비율로 증가 또는 감소된 전류가 유도된다. 유도된 전류는 도 2를 참조하여 설명한 제2 정류부(123)에 의해 정류되고, 평활용 필터(C1)를 통해 리플이 제거되어 출력된다. As such, the third to sixth switches SW3 to SW6 operate in three modes by the PWM signals, and at a constant rate by the transformer on the secondary side by the current applied to the resonant LLC transformer 121. Increased or decreased current is induced. The induced current is rectified by the second rectifying unit 123 described with reference to FIG. 2, and the ripple is removed through the smoothing filter C1 and output.
일 실시예에 따르면, DC-DC 컨버터(120)는, 동작을 시작한 전력 변환 장치(100)가 안정화되면, 고정된 스위칭 주파수(Fs)와 듀티비(D)를 가질 수 있다. 앞서 상술한 바와 같이, DC-DC 컨버터(120)의 출력은 PFC 컨버터(110)의 출력에 따라 제어된다. DC-DC 컨버터(120)는 제1 주기(Ts)를 갖는 스위칭 주파수(Fs)가 공진 주파수(Fr)로 고정되어 일정한 전압 이득을 갖고, 동작을 시작한 전력 변환 장치(100)가 안정화된 후에 제1 듀티비(D)를 25% 내지 50% 사이의 어느 한 값으로 고정하여 동작시킬 수 있다. 이 경우, DC-DC 컨버터(120)는 부하의 변동에 따라 스위칭 주파수(Fs) 및 제1 듀티비(D)가 변경되지 않는다. 즉, DC-DC 컨버터(120)는 스위칭 손실을 최소화할 수 있는 제1 주파수(1/Ts)인 스위칭 주파수(Fs) 및 제1 듀티비(D)를 유지한 상태로 동작할 수 있다.According to an embodiment, the DC-DC converter 120 may have a fixed switching frequency (Fs) and a duty ratio (D) when the power converter 100 which has started to operate is stabilized. As described above, the output of the DC-DC converter 120 is controlled according to the output of the PFC converter 110. The DC-DC converter 120 has a constant voltage gain because the switching frequency Fs having the first period Ts is fixed at the resonance frequency Fr, and after the power conversion device 100 which has started operation is stabilized, It can be operated by fixing one duty ratio (D) to any value between 25% and 50%. In this case, the DC-DC converter 120 does not change the switching frequency Fs and the first duty ratio D according to the load variation. That is, the DC-DC converter 120 may operate while maintaining the switching frequency Fs and the first duty ratio D, which are the first frequency 1 / Ts, to minimize the switching loss.
도 6을 참조하면, PFC 컨버터(110)는 제어부(130)의 PWM 신호에 따라 제1 스위치(SW1) 및 제2 스위치(SW2)들의 턴 온/ 턴 오프 동작이 제어된다. 상기 PWM 신호는 제2 주기(Ts) 및 제2 듀티비(D)를 갖는다. 제어부(130)는 제1 스위치(SW1) 및 제2 스위치(SW2)를 제1 상태에서는 (1) 제1 스위치(SW1)의 턴-온, 제2 스위치(SW2)의 턴-오프 모드 (2) 제1 스위치(SW1) 및 제2 스위치(SW2)의 턴 오프 모드 (3) 제1 스위치(SW1)의 턴-오프, 제2 스위치(SW2)의 턴 온 모드의 3가지 모드를 가지고, 제2 상태에서는 (1) 제1 스위치(SW1)의 턴 온, 제2 스위치(SW2)의 턴 오프 모드 (2) 제1 스위치(SW1) 및 제2 스위치(SW2)의 턴-온 모드 (3) 제1 스위치(SW1)의 턴 오프, 제2 스위치(SW2)의 턴 온 모드의 3가지 모드로 동작한다.Referring to FIG. 6, the PFC converter 110 controls the turn on / off operations of the first switch SW1 and the second switch SW2 according to the PWM signal of the controller 130. The PWM signal has a second period Ts and a second duty ratio D. The controller 130 sets the first switch SW1 and the second switch SW2 in the first state (1) to turn on the first switch SW1 and to turn off the second switch SW2 (2). (3) Turn-off mode of first switch SW1 and second switch SW2 (3) Turn-off mode of first switch SW1 and turn-on mode of second switch SW2 In the second state, (1) the turn-on mode of the first switch SW1, the turn-off mode of the second switch SW2, and (2) the turn-on mode of the first switch SW1 and the second switch SW2 (3) It operates in three modes: turn off of the first switch SW1 and turn-on mode of the second switch SW2.
한편, 상기 제1 상태는 상기 제2 듀티비(D)가 0% 이상 내지 50% 이하인 경우이고, 상기 제2 상태는 상기 제2 듀티비(D)가 50% 초과 내지 100% 미만인 경우이다. PFC 컨버터(110)의 스위칭 주파수 및 듀티비는 부하량의 변동에 따라 가변된다.The first state is when the second duty ratio D is 0% or more and 50% or less, and the second state is when the second duty ratio D is more than 50% and less than 100%. The switching frequency and duty ratio of the PFC converter 110 vary according to the variation of the load amount.
DC 링크(140)는 제1 링크 커패시터(Ck1)와 제2 링크 커패시터(Ck2)로 나눠져 있다. 제1 링크 커패시터(Ck1)와 제2 링크 커패시터(Ck2)가 연결된 노드가 중성 노드(전압이 0V)이다. 이 경우, DC 링크(140)로 인가되는 전압은 분압되어 제1 링크 커패시터(Ck1) 및 제2 링크 커패시터(Ck2) 각각에 인가된다. 이 경우, DC-DC 컨버터(120)에 포함된 스위치들(SW3 내지 SW6) 각각은 제1 링크 커패시터(Ck1) 및 제2 링크 커패시터(Ck2) 중 어느 하나에 인가된 전압이 인가된다.The DC link 140 is divided into a first link capacitor Ck1 and a second link capacitor Ck2. The node to which the first link capacitor Ck1 and the second link capacitor Ck2 are connected is a neutral node (voltage is 0V). In this case, the voltage applied to the DC link 140 is divided and applied to each of the first link capacitor Ck1 and the second link capacitor Ck2. In this case, a voltage applied to any one of the first link capacitor Ck1 and the second link capacitor Ck2 is applied to each of the switches SW3 to SW6 included in the DC-DC converter 120.
또한, PFC 컨버터(110)의 경우에도, 제1 스위치(SW1)는 제1 링크 커패시터(Ck1)와 병렬로 연결되고, 제2 스위치(SW2)는 제2 링크 커패시터(Ck2)와 병렬로 연결되어, 분압된 DC 링크(140)의 전압이 제2 스위치(SW2) 및 제2 스위치(SW2)에 인가된다. 예컨대, DC 링크(140)에 걸리는 전압의 절반이 제1 스위치(SW1) 및 제2 스위치(SW2)에 인가될 수 있다.Also, in the case of the PFC converter 110, the first switch SW1 is connected in parallel with the first link capacitor Ck1, and the second switch SW2 is connected in parallel with the second link capacitor Ck2. The voltage of the divided DC link 140 is applied to the second switch SW2 and the second switch SW2. For example, half of the voltage applied to the DC link 140 may be applied to the first switch SW1 and the second switch SW2.
일 실시예에 따르면, DC 링크(140)의 전압은 전력 변환 장치(100)의 출력 전압의 변화에 대응하여 가변된다. DC 링크(140)의 전압은 가변되어 일정한 값을 갖도록 제어되는 경우보다 높은 전압이 인가될 수 있다. 전력 변환 장치(100)는 3레벨 컨버터를 포함하는 DC-DC 컨버터(120) 및 PFC 컨버터(110)를 포함하여, 각 스위칭 소자에 DC 링크(140)의 전압 중 일부가 인가될 수 있다. 예를 들면, DC 링크(140)에 걸리는 최대 전압이 160V인 경우, DC-DC 컨버터(120) 및 PFC 컨버터(110)에 포함된 스위칭 소자 각각에 80V의 전압이 인가될 수 있다. 이 경우, DC-DC 컨버터(120) 및 PFC 컨버터(110)에 포함된 스위칭 소자는 80V를 초과하는 내압 정격 전압을 가지는 스위칭 소자로 선택하면 된다.According to one embodiment, the voltage of the DC link 140 is variable in response to a change in the output voltage of the power converter 100. The voltage of the DC link 140 may vary and a higher voltage may be applied than when the voltage of the DC link 140 is controlled to have a constant value. The power converter 100 includes a DC-DC converter 120 and a PFC converter 110 including a three-level converter, and a part of the voltage of the DC link 140 may be applied to each switching device. For example, when the maximum voltage applied to the DC link 140 is 160V, a voltage of 80V may be applied to each of the switching elements included in the DC-DC converter 120 and the PFC converter 110. In this case, the switching elements included in the DC-DC converter 120 and the PFC converter 110 may be selected as switching elements having a breakdown voltage rating of greater than 80V.
이로써, 제어부(130)가 DC 링크(140)의 전압을 일정한 값으로 제어하지 않아 DC 링크(140)의 전압의 변동이 커져 DC 링크의 전압이 스위칭 소자의 내압 정격을 초과하는 최대값을 갖더라도, 전력 변환 장치(100)는 DC-DC 컨버터 및 PFC 컨버터를 3레벨 컨버터로 구성하여 DC 링크의 전압을 분배하여 스위칭 소자들 각각에 인가되도록 할 수 있고, 스위칭 소자들을 소손없이 작동시킬 수 있다.As a result, since the controller 130 does not control the voltage of the DC link 140 to a constant value, the voltage of the DC link 140 increases, so that the voltage of the DC link has a maximum value exceeding the breakdown voltage rating of the switching element. The power converter 100 may configure the DC-DC converter and the PFC converter as a three-level converter to distribute the voltage of the DC link to be applied to each of the switching elements, and to operate the switching elements without damage.
도 7은 본 발명의 일 실시예에 따른 배터리의 충전 시스템의 내부 구성을 간략하게 도시한 도면이다.7 is a view briefly illustrating an internal configuration of a charging system of a battery according to an embodiment of the present invention.
도 7을 참조하면, 배터리의 충전 시스템(200)은 전력 변환 장치(100) 및 배터리 팩(20)을 포함한다. 배터리의 충전 시스템(200)은 계통(10)과 전기적으로 연결되어 계통(10)으로부터 교류 전원을 공급받는다.Referring to FIG. 7, the charging system 200 of a battery includes a power converter 100 and a battery pack 20. The charging system 200 of the battery is electrically connected to the system 10 to receive AC power from the system 10.
전력 변환 장치(100)는 PFC 컨버터(110), DC-DC 컨버터(120) 및 DC 링크(140)부를 포함한다. PFC 컨버터(110) 및 DC-DC 컨버터(120)는 3레벨 컨버터를 포함하고, DC 링크(140)는 제1 링크 커패시터(Ck1) 및 제2 링크 커패시터(Ck2)를 포함한다.The power converter 100 includes a PFC converter 110, a DC-DC converter 120, and a DC link 140. The PFC converter 110 and the DC-DC converter 120 include a three level converter, and the DC link 140 includes a first link capacitor Ck1 and a second link capacitor Ck2.
계통(10)은 발전소, 변전소, 송전선 등을 구비한다. 계통(10)은 배터리의 충전 시스템(200)에 교류 전압을 공급할 수 있다. 계통(10)은 전압값과 주파수가 일정하게 유지되는 교류 전압을 배터리의 충전 시스템(200)에 제공할 수 있다. 예를 들면, 계통(10)은 220V의 전압값과 60Hz의 주파수를 갖는 교류 전압을 제공할 수 있는 상용 전원일 수 있다.The system 10 includes a power plant, a substation, a power transmission line, and the like. The system 10 may supply an alternating voltage to the charging system 200 of the battery. The system 10 may provide an alternating voltage with constant voltage value and frequency to the charging system 200 of the battery. For example, the system 10 may be a commercial power source capable of providing an alternating voltage having a voltage value of 220 V and a frequency of 60 Hz.
배터리 팩(20)은 적어도 하나의 배터리 셀(미도시)을 포함하는 배터리(미도시), 배터리 관리부(미도시), 충방전 스위치(미도시)를 포함할 수 있다.The battery pack 20 may include a battery including at least one battery cell (not shown), a battery manager (not shown), and a charge / discharge switch (not shown).
배터리는 전력을 저장하는 부분으로서, 적어도 하나의 배터리 셀을 포함한다. 배터리에 하나의 배터리 셀이 포함되거나, 상기 배터리에는 복수의 배터리 셀들이 포함될 수 있으며, 배터리 셀들은 직렬로 연결되거나, 병렬로 연결되거나, 또는 직렬과 병렬의 조합으로 연결될 수 있다. 배터리에 포함되는 배터리 셀들의 개수 및 연결 방식은 요구되는 출력 전압 및 전력 저장 용량에 따라서 결정될 수 있다.The battery is a portion that stores power and includes at least one battery cell. The battery may include one battery cell, or the battery may include a plurality of battery cells, and the battery cells may be connected in series, connected in parallel, or a combination of series and parallel. The number and connection scheme of the battery cells included in the battery may be determined according to the required output voltage and power storage capacity.
상기 배터리 셀은 충전이 가능한 납 축전지를 제외한 이차 전지를 포함할 수 있다. 예컨대, 배터리 셀은 니켈-카드뮴 전지(nickel-cadmium battery) 니켈-수소 전지(NiMH: nickel metal hydride battery), 리튬-이온 전지(lithium ion battery), 리튬 폴리머 전지(lithium polymer battery)를 포함할 수 있다.The battery cell may include a secondary battery except for a lead acid battery that may be charged. For example, the battery cell may include a nickel-cadmium battery, a nickel metal hydride battery (NiMH), a lithium ion battery, and a lithium polymer battery. have.
충전 스위치 및 방전 스위치는 배터리의 대전류 경로 상에 배치되어 배터리의 충전 전류 및 방전 전류의 흐름을 단속할 수 있다. 충전 스위치 및 방전 스위치는 배터리 관리부의 제어 신호에 따라 턴 온/턴 오프될 수 있다. 충전 스위치 및 방전 스위치는 릴레이나 FET 스위치를 포함할 수 있다.The charge switch and the discharge switch may be disposed on the high current path of the battery to interrupt the flow of the charge current and the discharge current of the battery. The charge switch and the discharge switch may be turned on / off in accordance with a control signal of the battery manager. Charge and discharge switches may include relays or FET switches.
배터리 관리부는 배터리의 전류, 전압 및 온도 등 배터리에 대한 정보를 획득하여 배터리의 상태를 분석 및 배터리의 보호 필요성을 판단할 수 있는 프로세서(processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(processor)'는, 예를 들어 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 이와 같이 하드웨어에 내장된 데이터 처리 장치의 일 예로써, 마이크로프로세서(microprocessor), 중앙처리장치(central processing unit: CPU), 프로세서 코어(processor core), 멀티프로세서(multiprocessor), ASIC(application-specific integrated circuit), FPGA(field programmable gate array) 등의 처리 장치를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다.The battery manager acquires information about the battery, such as current, voltage, and temperature of the battery, and analyzes the state of the battery and determines all kinds of devices capable of processing data such as a processor that can determine the need for battery protection. It may include. Here, the 'processor' may refer to a data processing apparatus embedded in hardware having, for example, a circuit physically structured to perform a function represented by code or instructions included in a program. As an example of a data processing device embedded in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, and an application-specific integrated device (ASIC) It may include a processing device such as a circuit, a field programmable gate array (FPGA), etc., but the scope of the present invention is not limited thereto.
상기 배터리 관리부는 배터리의 전류, 전압, 온도를 감지하고, 상기 감지된 정보에 기초하여 잔여 전력량, 수명, 충전 상태(State of Charge, SOC)등을 얻을 수 있다. 예컨대, 배터리 관리부는 센서들을 이용하여 배터리 셀의 셀 전압 및 온도를 측정할 수 있다.The battery manager detects a current, a voltage, and a temperature of a battery, and obtains a remaining power amount, a lifetime, a state of charge (SOC), etc. based on the detected information. For example, the battery manager may measure the cell voltage and the temperature of the battery cell using the sensors.
일 실시예에 따르면, 제어부(130)는 상기 배터리 관리부로부터 배터리의 상태에 대한 정보를 전달받을 수 있다. 제어부(130)는 배터리 관리부로부터 배터리가 완충 전압에 도달하였다는 사실을 전달받으면, PFC 컨버터(110) 및 DC-DC 컨버터(120)의 작동을 중지하여 배터리 팩(20)의 충전을 중단시킬 수 있다. 한편, 제어부(130)와 배터리 관리부가 별개의 구성으로 도시되어 있으나, 제어부(130)가 배터리 관리부의 기능을 수행하도록 구성될 수도 있다.According to an embodiment, the controller 130 may receive information about the state of the battery from the battery manager. When the controller 130 receives the fact that the battery has reached the buffer voltage from the battery manager, the controller 130 may stop the operation of the PFC converter 110 and the DC-DC converter 120 to stop charging of the battery pack 20. have. Meanwhile, although the controller 130 and the battery manager are shown in separate configurations, the controller 130 may be configured to perform a function of the battery manager.
PFC 컨버터(110)는 상기 계통(10)으로부터 제공 받은 교류 전압을 직류 전압으로 변환할 수 있다. 제어부(130)는 PFC 컨버터(110)를 제어하여 역률을 보정할 수 있고, PFC 컨버터(110)의 스위칭 주파수 및 PWM 신호의 듀티비를 제어하여 PFC 컨버터(110)가 출력하는 직류 전압 및 직류 전류를 제어할 수 있다.The PFC converter 110 may convert an AC voltage provided from the system 10 into a DC voltage. The controller 130 may correct the power factor by controlling the PFC converter 110, and control the switching frequency and the duty ratio of the PWM signal of the PFC converter 110 to output a DC voltage and a DC current output by the PFC converter 110. Can be controlled.
DC 링크(140)의 전압은 배터리 팩(20)의 충전 전압의 변화에 대응하여 가변될 수 있다. 일반적으로 DC 링크(140)의 전압은 일정한 값이 되도록 제어되나, 일 실시예에 따른 배터리의 충전 시스템(200)은 DC-DC 컨버터(120)가 전압 이득이 일정한 값(예를 들면, 전압이득이 1)을 유지하도록 DC 링크(140)의 전압을 배터리 팩(20)의 전압에 대응하도록 가변시킨다.The voltage of the DC link 140 may vary in response to a change in the charging voltage of the battery pack 20. In general, the voltage of the DC link 140 is controlled to be a constant value, but in the charging system 200 of the battery according to an embodiment, the DC-DC converter 120 has a constant voltage gain (for example, voltage gain). To maintain this 1), the voltage of the DC link 140 is varied to correspond to the voltage of the battery pack 20.
DC-DC 컨버터(120)는 DC 링크(140)로부터 공급된 직류 전압을 고주파 교류 전압으로 변경하여 변압기(Tr)의 1차측에 인가하고, 변압기(Tr)의 2차 측에서 제2 정류부(123)를 통해 직류 전압으로 변환한다. DC-DC 컨버터(120)는 3레벨 컨버터를 포함하는 공진 LLC 컨버터(도 4 참조)인 3레벨 공진 LLC 컨버터를 포함한다. DC-DC 컨버터(120)의 스위칭 주파수(Fs)는 공진 LLC 컨버터의 공진 주파수(Fr)와 상응한 값으로 고정된다.The DC-DC converter 120 changes the DC voltage supplied from the DC link 140 into a high frequency AC voltage and applies it to the primary side of the transformer Tr, and the second rectifying unit 123 on the secondary side of the transformer Tr. To DC voltage. The DC-DC converter 120 includes a three level resonant LLC converter, which is a resonant LLC converter (see FIG. 4) that includes a three level converter. The switching frequency Fs of the DC-DC converter 120 is fixed to a value corresponding to the resonant frequency Fr of the resonant LLC converter.
일 실시예에 따르면, 제어부(130)는 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 피드백 제어를 한다. 미리 설정된 기준 전류를 정전류로 배터리 팩(20)을 충전시키는 경우, 제어부(130)는 상기 전력 변환 장치(100)의 출력 전류가 상기 미리 설정된 기준 전류와 일치할 때까지 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 수정한다. 즉, 제어부(130)는 전력 변환 장치(100)의 출력 전류를 검출하고, 검출된 출력 전류가 상기 미리 설정된 기준 전류와 일치되도록 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 피드백 제어한다. 이 경우, 제어부(130)는 부하량 변동(예컨대, 배터리의 충전 전압 변동)에 따라 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 수정으로 대응할 수 있는바, DC-DC 컨버터(120)의 스위칭 주파수(Fs) 및 듀티비(D)를 소정의 값으로 고정시킬 수 있다.According to an embodiment, the controller 130 performs feedback control on the switching frequency and duty ratio of the PFC converter 110. When charging the battery pack 20 with a predetermined reference current as a constant current, the controller 130 switches the PFC converter 110 until the output current of the power converter 100 matches the preset reference current. Correct the frequency and duty ratio. That is, the controller 130 detects the output current of the power converter 100 and feedback-controls the switching frequency and duty ratio of the PFC converter 110 such that the detected output current matches the preset reference current. In this case, the controller 130 may correspond to the switching frequency and duty ratio of the PFC converter 110 by modifying the load according to the load amount variation (for example, the charging voltage variation of the battery), and the switching frequency of the DC-DC converter 120. (Fs) and duty ratio (D) can be fixed to a predetermined value.
또한, 미리 설정된 기준 전압을 정전압으로 배터리 팩(20)을 충전시키는 경우, 제어부(130)는 전력 변환 장치(100)의 출력 전압이 상기 미리 설정된 기준 전압과 일치할 때까지 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 수정한다. 이 경우에도, 제어부(130)는 부하 변동에 따라 PFC 컨버터(110)의 스위칭 주파수 및 듀티비를 수정으로 대응할 수 있는바, DC-DC 컨버터(120)는 스위칭 주파수(Fs)를 공진 주파수(Fr)로 고정되고 DC-DC 컨버터(120)의 듀티비(D)를 25% 내지 50% 중 어느 한 값으로 고정된 상태로 작동할 수 있다.In addition, in the case of charging the battery pack 20 with a predetermined reference voltage at a constant voltage, the controller 130 may control the PFC converter 110 until the output voltage of the power converter 100 matches the predetermined reference voltage. Correct the switching frequency and duty ratio. Even in this case, the controller 130 may correspond to the switching frequency and duty ratio of the PFC converter 110 by modifying the load according to the load variation, and the DC-DC converter 120 sets the switching frequency Fs to the resonance frequency Fr. ) And the duty ratio (D) of the DC-DC converter 120 may be operated at a fixed value of any one of 25% to 50%.
일 실시예에 따르면, DC-DC 컨버터(120)는 제1 주기(Ts)를 갖는 스위칭 주파수(Fs)가 고정되고, 25% 내지 50%의 듀티비 중 어느 하나의 듀티비로 고정되어 작동될 수 있다. DC-DC 컨버터(120)는 충전 동작을 시작하는 전력 변환 장치(100)가 소프트 스타트되기 위해 일정시간 동안 페이져 쉬프트(phase shift)를 할 수 있다. 페이져 쉬피트가 끝난 DC-DC 컨버터(120)는 최적의 상태에서 동작할 수 있는 듀티비를 결정하고, 부하량의 변화에 관계없이 상기 결정된 듀티비로 고정되어 작동된다. 또한, 상기 스위칭 주파수(Fs)는 DC-DC 컨버터(120)의 공진 주파수(Fr)와 상응한 값이다.According to an embodiment, the DC-DC converter 120 may be operated with a switching frequency Fs having a first period Ts fixed and a duty ratio of any one of 25% to 50% duty ratio. have. The DC-DC converter 120 may perform a phase shifter for a predetermined time so that the power converter 100, which starts the charging operation, is soft-started. The phaser shifted DC-DC converter 120 determines a duty ratio that can operate in an optimal state, and is fixed and operated at the determined duty ratio regardless of a load change. In addition, the switching frequency (Fs) is a value corresponding to the resonant frequency (Fr) of the DC-DC converter 120.
일 실시예에 따르면, DC 링크(140)는 필름 커패시터를 포함할 수 있다. DC 링크(140)는 고정된 전압이 유지되도록 제어되지 않으므로, DC 링크(140)에 포함된 링크 커패시터(Ck1, Ck2)는 고용량의 커패시턴스가 요구되지 않는다. 따라서, 링크 커패시터(Ck1, Ck2)는 온도 상승에 따른 수명의 급격한 저하의 단점을 갖는 전해질 커패시터를 대신하여 필름 커패시터를 채택하여 이용할 수 있으며, 이를 통해 DC 링크(140)의 장수명을 달성할 수 있다.According to one embodiment, the DC link 140 may include a film capacitor. Since the DC link 140 is not controlled to maintain a fixed voltage, the link capacitors Ck1 and Ck2 included in the DC link 140 do not require high capacitance. Therefore, the link capacitors Ck1 and Ck2 may adopt and use a film capacitor in place of an electrolyte capacitor having a disadvantage of a sharp drop in life due to a temperature increase, thereby achieving a long life of the DC link 140. .
이로써, DC-DC 컨버터(120)는 별도의 제어기 없이 고정 주파수(Fs) 및 고정 듀티비(D)의 PWM 신호에 의해 오픈 루프(Open loop)로 구동시킴으로써 저가격화를 꾀할 수 있고, 부하량에 관계없이 항상 최적 상태로 동작 되도록 함으로써 고효율 및 고성능을 획득할 수 있다.As a result, the DC-DC converter 120 can be driven in an open loop by using a PWM signal of a fixed frequency (Fs) and a fixed duty ratio (D) without a separate controller, thereby achieving a low price, and is related to the amount of load. High efficiency and high performance can be obtained by always operating in the optimal state.
또한, DC 링크(140)의 전압을 가변 시킴에 따라 DC 링크(140)에 인가되는 전압의 최대값이 크게 상승하더라도, DC-DC 컨버터(120) 및 PFC 컨버터(110)를 3레벨 컨버터로 구성하여 스위칭 소자에 인가되는 전압을 낮출 수 있는바, 스위칭 소자들의 내압 정격을 올리지 않아도 스위칭 소자의 손상 없이 배터리의 충전 시스템(200)을 작동시킬 수 있다.In addition, the DC-DC converter 120 and the PFC converter 110 are configured as three-level converters even when the maximum value of the voltage applied to the DC link 140 increases by varying the voltage of the DC link 140. By lowering the voltage applied to the switching element, it is possible to operate the charging system 200 of the battery without damaging the switching element without increasing the breakdown voltage rating of the switching elements.
본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.The spirit of the present invention should not be limited to the embodiments described above, and all the scope equivalent to or equivalent to the scope of the claims as well as the following claims are within the scope of the spirit of the present invention. I will say.

Claims (15)

  1. 교류 입력 전압을 직류 전압으로 변환하여 출력하고, 역률을 보상하는 PFC 컨버터;A PFC converter converting an AC input voltage into a DC voltage and outputting the same, and compensating for the power factor;
    상기 PFC 컨버터로부터 상기 직류 전압을 공급받는 DC 링크;A DC link supplied with the DC voltage from the PFC converter;
    상기 DC 링크로부터 공급 받은 직류 전압을 교류 전압으로 변환하고, 다시 직류 전압으로 변환시키는 DC-DC 컨버터; 및A DC-DC converter converting a DC voltage supplied from the DC link into an AC voltage and converting the DC voltage into a DC voltage again; And
    상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 제어하여 상기 DC-DC 컨버터의 출력 전압 및 출력 전류를 조정하는 제어부;를 포함하고,And a controller configured to control at least one of a switching frequency and a duty ratio of the PFC converter to adjust an output voltage and an output current of the DC-DC converter.
    상기 PFC 컨버터 및 DC-DC 컨버터는 3레벨 컨버터를 포함하는 것을 특징으로 하는 전력 변환 장치.And the PFC converter and the DC-DC converter include a three level converter.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부는 상기 DC-DC 컨버터의 출력 전압 및 출력 전류의 크기를 검출하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비를 피드백 제어하는 것을 특징으로 하는 전력 변환 장치.And the control unit detects magnitudes of the output voltage and the output current of the DC-DC converter to feedback control the switching frequency and the duty ratio of the PFC converter.
  3. 제2항에 있어서,The method of claim 2,
    상기 DC-DC 컨버터에 포함된 3 레벨 컨버터는 공진 LLC 컨버터를 포함하는 것을 특징으로 하는 전력 변환 장치.And the three level converter included in the DC-DC converter comprises a resonant LLC converter.
  4. 제3항에 있어서,The method of claim 3,
    상기 DC-DC 컨버터는 고정된 스위칭 주파수인 제1 주파수로 동작하고,The DC-DC converter operates at a first frequency that is a fixed switching frequency,
    상기 제1 주파수는 상기 공진 LLC 컨버터의 공진 주파수와 상응한 값을 갖는 것을 특징으로 하는 전력 변환 장치.And the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 DC-DC 컨버터는 25% 내지 50% 중 어느 한 값으로 고정된 듀티비를 갖는 PWM(pulse width modulation) 신호를 통해 제어되는 것을 특징으로 하는 전력 변환 장치.And the DC-DC converter is controlled through a pulse width modulation (PWM) signal having a duty ratio fixed at any one of 25% to 50%.
  6. 제1항에 있어서,The method of claim 1,
    상기 DC 링크의 전압은 상기 DC-DC 컨버터의 출력 전압의 변동에 대응하여 가변되는 것을 특징으로 하는 전력 변환 장치.And the voltage of the DC link varies in response to a change in an output voltage of the DC-DC converter.
  7. 제1항에 있어서,The method of claim 1,
    상기 DC 링크는 필름 커패시터를 포함하는 것을 특징으로 하는 전력 변환 장치.And the DC link comprises a film capacitor.
  8. 적어도 하나의 배터리 셀을 포함하는 배터리 팩; 및A battery pack including at least one battery cell; And
    계통으로부터 인가받은 교류 전압을 직류 전압으로 변환하고 역률을 보상하는 PFC 컨버터, 상기 PFC 컨버터로부터 직류 전압을 공급받는 DC 링크, 상기 DC 링크로부터 공급 받은 직류 전압을 교류 전압으로 변환하고, 다시 직류 전압으로 변환시키는 DC-DC 컨버터, 및 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 제어하여 상기 배터리 팩으로 인가되는 출력 전압 및 출력 전류를 조정하는 제어부를 포함하는 전력 변환 장치;를 포함하고,A PFC converter converting an AC voltage applied from a system into a DC voltage and compensating for a power factor; And a power conversion device including a DC-DC converter for converting and a control unit controlling at least one of a switching frequency and a duty ratio of the PFC converter to adjust an output voltage and an output current applied to the battery pack.
    상기 PFC 컨버터 및 DC-DC 컨버터는 3레벨 컨버터를 포함하는 것을 특징으로 하는 배터리 충전 시스템.The PFC converter and the DC-DC converter includes a three-level converter.
  9. 제8항에 있어서,The method of claim 8,
    상기 제어부는 상기 배터리 팩으로 인가되는 출력 전류의 크기와 미리 설정된 기준 전류를 비교하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 피드백 제어하는 배터리 충전 시스템.And the controller is configured to feedback control at least one of a switching frequency and a duty ratio of the PFC converter by comparing a magnitude of an output current applied to the battery pack with a preset reference current.
  10. 제8항에 있어서,The method of claim 8,
    상기 제어부는 상기 배터리 팩으로 인가되는 전압과 미리 설정된 기준 전압을 비교하여 상기 PFC 컨버터의 스위칭 주파수 및 듀티비 중 적어도 하나를 피드백 제어하는 배터리의 충전 시스템.And the controller is configured to feedback control at least one of a switching frequency and a duty ratio of the PFC converter by comparing a voltage applied to the battery pack with a preset reference voltage.
  11. 제8항에 있어서,The method of claim 8,
    상기 DC-DC 컨버터에 포함된 3 레벨 컨버터는 공진 LLC 컨버터인 것을 특징으로 하는 배터리 충전 시스템.And the three-level converter included in the DC-DC converter is a resonant LLC converter.
  12. 제11항에 있어서,The method of claim 11,
    상기 DC-DC 컨버터는 상기 배터리 팩으로 인가되는 전압 및 전류가 변화되더라도 전압 이득이 일정하게 유지되는 것을 특징으로 하는 배터리 충전 시스템.The DC-DC converter is a battery charging system, characterized in that the voltage gain is kept constant even if the voltage and current applied to the battery pack is changed.
  13. 제12항에 있어서,The method of claim 12,
    상기 DC-DC 컨버터는 고정된 스위칭 주파수인 제1 주파수로 동작하고,The DC-DC converter operates at a first frequency that is a fixed switching frequency,
    상기 제1 주파수는 상기 공진 LLC 컨버터의 공진 주파수와 상응한 값을 갖는 것을 특징으로 하는 배터리 충전 시스템.And the first frequency has a value corresponding to the resonant frequency of the resonant LLC converter.
  14. 제13항에 있어서,The method of claim 13,
    상기 DC-DC 컨버터는 25% 내지 50% 중 어느 한 값으로 고정된 듀티비를 갖는 PWM(pulse width modulation) 신호를 통해 제어되는 것을 특징으로 하는 배터리 충전 시스템.And the DC-DC converter is controlled through a pulse width modulation (PWM) signal having a fixed duty ratio of any of 25% to 50%.
  15. 제8항에 있어서,The method of claim 8,
    상기 DC 링크의 전압은 상기 배터리로 인가되는 전압의 변화에 대응하여 가변되는 것을 특징으로 하는 배터리 충전 시스템.The voltage of the DC link is variable in response to a change in the voltage applied to the battery.
PCT/KR2017/014922 2017-02-08 2017-12-18 Power conversion device and battery charging system comprising same WO2018147544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0017648 2017-02-08
KR1020170017648A KR102380513B1 (en) 2017-02-08 2017-02-08 power conversion device and charging system of battery including the same

Publications (1)

Publication Number Publication Date
WO2018147544A1 true WO2018147544A1 (en) 2018-08-16

Family

ID=63106933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014922 WO2018147544A1 (en) 2017-02-08 2017-12-18 Power conversion device and battery charging system comprising same

Country Status (2)

Country Link
KR (1) KR102380513B1 (en)
WO (1) WO2018147544A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108460A1 (en) 2018-11-26 2020-06-04 Huawei Technologies Co., Ltd. Three-level power conversion system and method
CN113541278A (en) * 2020-04-15 2021-10-22 比亚迪股份有限公司 Charging control method, integrated driving charging device and automobile
US11530828B2 (en) 2017-10-30 2022-12-20 Daikin Industries, Ltd. Concentration estimation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633710B1 (en) * 2020-10-06 2024-02-05 명지대학교 산학협력단 High-efficiency charger and method of driving the same
KR102464445B1 (en) * 2021-08-06 2022-11-04 인천대학교 산학협력단 Battery charging apparatus with improved circuit driving stability
KR102434525B1 (en) * 2022-02-09 2022-08-19 아트에이브이(주) Broadcasting system having output voltage regulator capable of varying output voltage to match external load

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316443A1 (en) * 2008-06-18 2009-12-24 Abb Ag Ac/dc intermediate-circuit converter having a very wide ac input voltage range
US20130320871A1 (en) * 2009-10-01 2013-12-05 Inventronics (Hangzhou),Inc. High efficiency constant current led driver
US20140003095A1 (en) * 2011-03-01 2014-01-02 Rheinisch-Westfalisch-Technische Hochschule Aachen Bidirectional dc-dc converter
JP2015173524A (en) * 2014-03-11 2015-10-01 株式会社デンソー Charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316443A1 (en) * 2008-06-18 2009-12-24 Abb Ag Ac/dc intermediate-circuit converter having a very wide ac input voltage range
US20130320871A1 (en) * 2009-10-01 2013-12-05 Inventronics (Hangzhou),Inc. High efficiency constant current led driver
US20140003095A1 (en) * 2011-03-01 2014-01-02 Rheinisch-Westfalisch-Technische Hochschule Aachen Bidirectional dc-dc converter
JP2015173524A (en) * 2014-03-11 2015-10-01 株式会社デンソー Charger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530828B2 (en) 2017-10-30 2022-12-20 Daikin Industries, Ltd. Concentration estimation device
WO2020108460A1 (en) 2018-11-26 2020-06-04 Huawei Technologies Co., Ltd. Three-level power conversion system and method
EP3881422A4 (en) * 2018-11-26 2022-04-06 Huawei Digital Power Technologies Co., Ltd. Three-level power conversion system and method
CN113541278A (en) * 2020-04-15 2021-10-22 比亚迪股份有限公司 Charging control method, integrated driving charging device and automobile

Also Published As

Publication number Publication date
KR102380513B1 (en) 2022-03-31
KR20180092192A (en) 2018-08-17

Similar Documents

Publication Publication Date Title
WO2018147544A1 (en) Power conversion device and battery charging system comprising same
US5666041A (en) Battery equalization circuit with ramp converter
US5982143A (en) Battery equalization circuit with ramp converter and selective outputs
US9368977B2 (en) Battery equalization circuits for series charging/discharging and controlling methods thereof
US20180337610A1 (en) PWM Controlled Resonant Converter
US20210152080A1 (en) Modular medium voltage fast chargers
JP6019519B2 (en) Battery cell balancing converter
WO2013094871A1 (en) Battery charging device for an electric vehicle
KR20150042375A (en) Switching power supply device and battery charger including the same
KR101720027B1 (en) Apparatus and method for battery cell balancing control
US10536092B1 (en) Symmetric hybrid converters
CN115173717A (en) Solid-state transformer system with input connected in series and output connected in parallel and method for obtaining auxiliary power supply and equalizing input voltage
CN113258642B (en) Electronic terminal charger
CA2784759A1 (en) Groundable dc/dc converter
CN107069914B (en) Rail vehicle charging device and charging control method
US20240235238A9 (en) Energy storage module and energy storage system
CN219181416U (en) Power supply circuit and energy storage device
JP2023177345A (en) Power supply device including cascaded inverter
US20220149721A1 (en) On-board charger for a battery of an electric vehicle
WO2022114575A1 (en) Dc-to-dc converter for charging/discharging battery
CS215272B1 (en) Connection of the current alternator with proper commutation
US11095128B2 (en) Voltage balance correction circuit
KR102703873B1 (en) Fast charger for electric vehicles operable in high-efficiency and method of operating the same
WO2022050491A1 (en) Zero-voltage discharge device
WO2019213673A1 (en) Buck matrix-type rectifier with boost switch, and operation thereof during one-phase loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895849

Country of ref document: EP

Kind code of ref document: A1