WO2018147520A1 - Interference cancellation apparatus and method robust to frequency offset in wireless communication system - Google Patents

Interference cancellation apparatus and method robust to frequency offset in wireless communication system Download PDF

Info

Publication number
WO2018147520A1
WO2018147520A1 PCT/KR2017/008959 KR2017008959W WO2018147520A1 WO 2018147520 A1 WO2018147520 A1 WO 2018147520A1 KR 2017008959 W KR2017008959 W KR 2017008959W WO 2018147520 A1 WO2018147520 A1 WO 2018147520A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
filter
signal
filter coefficient
communication system
Prior art date
Application number
PCT/KR2017/008959
Other languages
French (fr)
Korean (ko)
Inventor
고영채
임병주
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018147520A1 publication Critical patent/WO2018147520A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to an apparatus and method for canceling interference according to a frequency offset at a receiving end of a wireless communication system.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is widely used as a core technology for 4G mobile communication and wireless LAN systems.
  • OFDM systems are very sensitive to synchronization and have out-of-band channels (OBBs). Due to this problem, OFDM technology is not suitable for the fifth generation network scenarios, such as machine-to-machine (M2M) and vehicle-to-vehicle (V2V).
  • M2M machine-to-machine
  • V2V vehicle-to-vehicle
  • the GFDM method is a block-based filtering multicarrier technique, which is suitable for low latency communication and has a low peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the GFDM scheme has various advantages over OFDM, but there is a problem that interference occurs because the orthogonality between subcarriers is lost by using a non-orthogonal signal.
  • Korean Patent Laid-Open Publication No. 10-2009-0075730 (name of the invention: a method and apparatus for interference cancellation in a wireless communication system) includes a window applied to a signal before the signal is transmitted in a wireless communication system such as an OFDM system.
  • a method for removing interference caused by a function and an apparatus for performing the method are disclosed.
  • Such an interference cancellation apparatus includes a receiver device for receiving a signal to which a window function is applied, and a processing device coupled to the receiver device, the processing device comprising a plurality of coefficients derived from the window function (generally generated in real time or the By retrieving from a storage device coupled to the processing device) and applying the coefficients to the received signal to remove at least some of the interference from the received signal.
  • One embodiment of the present invention relates to an interference canceling apparatus and a method for canceling interference using a reception filter robust to a frequency offset in a wireless communication system.
  • an interference cancellation apparatus based on a frequency offset of a wireless communication system
  • a frequency offset estimator for estimating a carrier frequency offset based on the frequency offset
  • a filter coefficient detector configured to store an optimum filter coefficient calculated in advance for each of a plurality of carrier frequency offsets and to detect an optimum filter coefficient matched to the estimated carrier frequency offset among the previously stored optimal filter coefficients;
  • a reception filter which detects data by demodulating the transmission signal by a demodulation scheme corresponding to the modulation scheme using the detected optimal filter coefficients.
  • a method of canceling interference based on a frequency offset includes: receiving a transmission signal modulated according to a preset modulation scheme; Estimating a carrier frequency offset based on the preamble and pilot of the transmitted signal; Detecting an optimum filter coefficient matched to the estimated carrier frequency offset among the optimal filter coefficients calculated for each of a plurality of carrier frequency offsets stored in advance; And demodulating the transmission signal by a demodulation scheme corresponding to the modulation scheme by using the detected optimum filter coefficient as a reception filter to detect data.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a receiving apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of GFDM data applied to an embodiment of the present invention.
  • FIG. 4 is a graph comparing performance when a reception filter robust to a frequency offset according to an embodiment of the present invention and another conventional reception filter are used.
  • FIG. 5 is a flowchart illustrating a method for canceling interference based on a frequency offset according to an embodiment of the present invention.
  • 1 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • 2 is a block diagram of a receiving apparatus according to an embodiment of the present invention.
  • the wireless communication system 10 is a GFDM communication system.
  • the wireless communication system 10 is not limited to the GFDM communication system, and may be a wireless communication system according to various communication methods such as OFDM communication.
  • the GFDM communication system 10 includes a transmitting device 100 and a receiving device 200.
  • the transmitter 100 transmits the GFDM signal by performing GFDM modulation on the data "d".
  • the GFDM signal is transmitted to the receiving device 200 through a noise channel.
  • the receiving device 200 performs GFDM demodulation on the received GFDM signal to detect detection data (" Outputs ").
  • FIG. 3 is a structural diagram of GFDM data applied to an embodiment of the present invention.
  • the GFDM data consists of blocks of K subcarriers and M subsymbols.
  • the GFDM communication system 10 is characterized by using a filter for each subcarrier in the transmitting device, and when passing through the GFDM modulation filter, an out-of-band channel (OOB) can be reduced and a cyclic prefix (CP) is used. Because of this, the equalization process at the receiving device is simple.
  • OOB out-of-band channel
  • CP cyclic prefix
  • the transmitting apparatus 100 converts the data “d” to be transmitted into parallel data through an S / P encoder.
  • the transmitter 100 modulates the parallel data through the GFDM modulator 110 including the preset filter.
  • the transmission device 100 allows each subcarrier to pass through a predetermined filter.
  • the transmitting device 100 adds a CP to the GFDM modulated GFDM signal, upconverts through digital-analog converting (“D / A”), and transmits the same.
  • the GDFM signal (that is, the transmission signal) transmitted by the transmission apparatus 100 may be represented by Equation 1 below.
  • Equation 1 Is a filter passed for each subcarrier, to be.
  • Equation 1 as described above may be expressed in a matrix form as shown in Equation 2 below.
  • an OFDM communication system 10 may be applied to an OFDM communication system.
  • an OFDM communication system includes an OFDM transmitter for performing data inverse fast fourier transform (IFFT) and a receiver for restoring data by performing a fast fourier transform (FFT) signal from the OFDM transmitter.
  • the transmission apparatus 100 may use a raised cosine filter and a square root raised cosine filter.
  • IFFT Inverse Fast Fourier Transform
  • the receiving device 200 receives the GFDM signal modulated by the GFDM method and down-converts it through analog-digital converting (A / D).
  • the receiver 200 removes the CP from the digitally converted GFDM signal, and removes the CP from the GFDM demodulator 210 through the GFDM demodulator 210 including the preset filter.
  • the reception apparatus 200 converts the GFDM demodulated signal into serial data through a P / S encoder to detect data (" In this case, the filter removes the interference by applying a predetermined optimal coefficient to the GFDM signal.
  • the reception apparatus 200 converts a modulation matrix (") from the transmission apparatus 100 to data" d ".
  • CFO carrier frequency offset
  • the GFDM demodulator 210 of the receiving device 200 estimates the frequency offset of the received GFDM signal and removes interference.
  • the frequency offset estimator 211 estimates a frequency offset generated in a transmission signal based on a preamble and a pilot present at the front of the received data. Since the frequency offset estimation method can use various proposed algorithms, a detailed description thereof will be omitted.
  • filter coefficient detector 212 determines the estimated frequency offset " in a filter codebook in which filter coefficients are calculated and stored. A filter coefficient corresponding to "" is detected.
  • interference is removed from the received GFDM signal through the reception filter 213 to which the detected filter coefficient is applied.
  • the filter coefficient detector 212 calculates and stores filter coefficients for a plurality of frequency offsets.
  • the reception device 200 may use a matched filter as a reception filter as shown in FIG. 2, or may detect data through a minimum mean-squared error filter (MMSE). have.
  • MMSE minimum mean-squared error filter
  • the detected data ( ) Can be expressed as Equation 3 below.
  • Equation 4 the data detected when the MMSE filter is used
  • the GFDM signal in which the frequency offset is generated due to the oscillator and the Doppler effects of the transmitting apparatus 100 and the receiving apparatus 200 may be represented as in Equation 5 below.
  • Means the diagonal matrix Denotes a normalized frequency offset as an interval of the GFDM carrier.
  • the receiver 200 is a filter robust to the frequency offset Is used as a matching filter, and the detected data can be represented by Equation 6 below.
  • Is as, It means a matrix of size. Also as, Is Means a filter shifted with respect to time and frequency.
  • Equation 6 Data detected using a filter strong against such a frequency offset (that is, data shown in Equation 6) can be developed as shown in Equation 7 below.
  • Equation 7 the diagonal component is the signal to be obtained (that is, the actual data) and the remaining part is the interference signal.
  • Equation 7 If the frequency offset is removed, the matrix of Equation 7 is closer to the identity matrix, so that the interference is less, so that the desired signal can be detected. Therefore, since the desired signal (that is, the actual data) can be detected by minimizing the interference, the signal-to-interference ratio (SIR) can be maximized for Equation (7).
  • SIR signal-to-interference ratio
  • Equation 7 since the diagonal component is the desired signal and the remaining portion is the interference signal, the signal-to-interference ratio is calculated by obtaining the power of the diagonal component and the power of the remaining component.
  • the signal-to-interference ratio may be expressed by Equation 8 below.
  • Equation 8 To simplify the Equation 8 Among the properties of, use the property shown in Equation 9 below.
  • Equation 9 Substituting Equation 9 into Equation 9 can be arranged as in Equation 10 below.
  • Is a value related to the received power of the signal transmitted on the k th subcarrier and the m th subsymbol
  • Equation 13 an optimal solution of Equation 13 is calculated.
  • Equation (13) The optimal solution of equation (13) can be obtained by the following equation (14) by Rayleigh-Ritz theorem.
  • Rayleigh-Litz theory is a method of expressing an unknown function as a linear combination of a finite number of basis functions that satisfy a displacement boundary condition, and using the basis function as a weighted function to solve the solution. Weighted residual method
  • Equation 11 the eigenvalue can be calculated. Find the maximum of the eigenvalues and find the corresponding eigenvector Used as. At this time, Hence, the filter coefficient obtained from Equation 14 is used for the reception filter 213.
  • the filter coefficients obtained through Equation 14 are not calculated and used in real time every time the GFDM signal is received, but are calculated and calculated by the filter coefficient detector 212 for each frequency offset, and are generated and stored in the codebook.
  • the filter coefficient detector 212 uses matched filter coefficients among the filter coefficients stored in the codebook according to the frequency offset of the received GFDM signal.
  • FIG. 4 is a graph comparing performance when a reception filter robust to a frequency offset according to an embodiment of the present invention and another conventional reception filter are used.
  • the receiving device may operate as an interference cancellation device for processing a GFDM signal.
  • FIG. 5 is a flowchart illustrating a method for canceling interference based on a frequency offset according to an embodiment of the present invention.
  • the frequency offset for the received signal is estimated (S520).
  • a procedure of analog-digital converting (A / D) the received signal and removing the CP may be performed.
  • the detected filter coefficients are applied to the reception filter to process GFDM demodulation to detect and output data from which the interference is removed from the received signal (S540).
  • the reception filter may be a matching filter or an MMSE filter.
  • the GFDM demodulated signal may be converted into serial data through a P / S encoder and output as detection data.
  • the interference cancellation method robust to the frequency offset of the wireless communication system may be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer-readable media can also include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes a mechanism for computer-readable instructions, data structures, program modules, or other data or other transmission of a modulated data signal such as a carrier wave, and includes any information delivery medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

Provided are an interference cancellation apparatus and an interference cancellation method robust to a frequency offset in a wireless communication system. At this time, the interference cancellation apparatus receives a signal modulated according to a predetermined modulation scheme, estimates a carrier frequency offset on the basis of a preamble and a pilot of the received signal, detects an optimal filter coefficient matched with the estimated carrier frequency offset among optimum filter coefficients calculated for each of a plurality of carrier frequency offsets, and demodulates the received signal with a demodulation scheme corresponding to the modulation scheme by using the detected optimal filter coefficient in a reception filter and thus detects data.

Description

무선 통신 시스템에서 주파수 오프셋에 강인한 간섭 제거 장치 및 방법Apparatus and method for interference cancellation robust to frequency offset in wireless communication system
본 발명은 무선 통신 시스템의 수신단에서 주파수 오프셋에 따른 간섭을 제거하는 장치 및 그 방법에 관한 것이다.The present invention relates to an apparatus and method for canceling interference according to a frequency offset at a receiving end of a wireless communication system.
4세대 이동통신 및 무선랜 시스템 등의 핵심 기술로서 OFDM(Orthogonal Frequency Division Multiplexing) 기술이 널리 사용되고 있다. 그러나 OFDM 시스템은 동기화에 매우 민감하고 대역외 채널(Out-Of-Band channels, OOB)이 큰 단점이 있다. 이러한 문제점으로 인하여 5세대 네트워크 시나리오인 M2M(Machine-to-Machine) 및 V2V(Vehicle-to-Vehicle) 등에서는 OFDM 기술이 적합하지 않다.Orthogonal Frequency Division Multiplexing (OFDM) technology is widely used as a core technology for 4G mobile communication and wireless LAN systems. However, OFDM systems are very sensitive to synchronization and have out-of-band channels (OBBs). Due to this problem, OFDM technology is not suitable for the fifth generation network scenarios, such as machine-to-machine (M2M) and vehicle-to-vehicle (V2V).
이에 따라, OFDM의 단점을 극복하고 5세대 네트워크 시나리오에 적합한 새로운 파형(waveform)을 사용하는 GFDM(Generalized Frequency Division Multiplexing) 통신 기술이 제안되었다. 이러한 GFDM 방식은 블럭 기반 필터링 멀티캐리어 기법으로서, 저지연 통신에 적합하고 첨두전력대평균전력비(Peak-to-AverRage Power, PAPR)가 낮다는 장점이 있다.Accordingly, a generalized frequency division multiplexing (GFDM) communication technique has been proposed that overcomes the shortcomings of OFDM and uses a new waveform suitable for the fifth generation network scenario. The GFDM method is a block-based filtering multicarrier technique, which is suitable for low latency communication and has a low peak-to-average power ratio (PAPR).
GFDM 방식은 OFDM에 비해 여러 가지 장점을 가지지만, 비직교 신호(non-orthogonal signal)을 사용함에 따라 부반송파(subcarrier) 간의 직교성을 잃어버리기 때문에 간섭이 발생할 수밖에 없는 문제가 있다. The GFDM scheme has various advantages over OFDM, but there is a problem that interference occurs because the orthogonality between subcarriers is lost by using a non-orthogonal signal.
이와 관련하여, 대한민국공개특허 제 10-2009-0075730호(발명의 명칭: 무선 통신 시스템에서 간섭 제거를 위한 방법 및 장치)는, 신호가 OFDM 시스템 같은 무선 통신 시스템에서 송신되기 전에 상기 신호에 적용된 윈도우 함수에 의해 발생되는 간섭을 제거하기 위한 방법 및 상기 방법을 수행하기 위한 장치를 개시하고 있다. 이러한 간섭 제거 장치는 윈도우 함수가 적용되는 신호를 수신하는 수신기 장치, 상기 수신기 장치에 결합된 처리 디바이스를 포함하고, 상기 처리 디바이스는 윈도우 함수로부터 유도된 복수의 계수들(실질적으로 실시간으로 생성하거나 상기 처리 디바이스에 결합된 저장 디바이스로부터 검색함으로써)을 얻고, 수신된 신호로부터 적어도 간섭의 일부를 제거하기 위해 상기 수신된 신호에 상기 계수들을 적용한다.In this regard, Korean Patent Laid-Open Publication No. 10-2009-0075730 (name of the invention: a method and apparatus for interference cancellation in a wireless communication system) includes a window applied to a signal before the signal is transmitted in a wireless communication system such as an OFDM system. A method for removing interference caused by a function and an apparatus for performing the method are disclosed. Such an interference cancellation apparatus includes a receiver device for receiving a signal to which a window function is applied, and a processing device coupled to the receiver device, the processing device comprising a plurality of coefficients derived from the window function (generally generated in real time or the By retrieving from a storage device coupled to the processing device) and applying the coefficients to the received signal to remove at least some of the interference from the received signal.
본 발명의 일 실시예는 무선 통신 시스템에서 주파수 오프셋에 강인한 수신 필터를 사용하여 간섭을 제거하는 간섭 제거 장치 및 그 방법에 관한 것이다.One embodiment of the present invention relates to an interference canceling apparatus and a method for canceling interference using a reception filter robust to a frequency offset in a wireless communication system.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problem as described above, and other technical problems may exist.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따른 무선 통신 시스템의 주파수 오프셋에 기초한 간섭 제거 장치는, 기설정된 변조 방식에 따라 변조된 전송 신호를 수신하면, 상기 전송 신호의 프리앰블 및 파일럿에 기초하여 반송파 주파수 오프셋을 추정하는 주파수 오프셋 추정부; 사전에 복수의 반송파 주파수 오프셋 별로 산출된 최적 필터 계수가 저장되어 있고, 상기 기저장된 최적 필터 계수들 중 상기 추정된 반송파 주파수 오프셋에 매칭된 최적 필터 계수를 검출하는 필터 계수 검출부; 및 상기 검출된 최적 필터 계수를 사용하여 상기 전송 신호를 상기 변조 방식에 대응된 복조 방식으로 복조하여 데이터를 검출하는 수신 필터를 포함한다.In order to achieve the above technical problem, an interference cancellation apparatus based on a frequency offset of a wireless communication system according to an aspect of the present invention, when receiving a transmission signal modulated according to a predetermined modulation scheme, preamble and pilot of the transmission signal A frequency offset estimator for estimating a carrier frequency offset based on the frequency offset; A filter coefficient detector configured to store an optimum filter coefficient calculated in advance for each of a plurality of carrier frequency offsets and to detect an optimum filter coefficient matched to the estimated carrier frequency offset among the previously stored optimal filter coefficients; And a reception filter which detects data by demodulating the transmission signal by a demodulation scheme corresponding to the modulation scheme using the detected optimal filter coefficients.
또한 본 발명의 다른 측면에 주파수 오프셋에 기초한 간섭 제거 방법은, 기설정된 변조 방식에 따라 변조된 전송 신호를 수신하는 단계; 상기 전송 신호의 프리앰블 및 파일럿에 기초하여 반송파 주파수 오프셋을 추정하는 단계; 사전에 저장된 복수의 반송파 주파수 오프셋 별로 산출된 최적 필터 계수 중 상기 추정된 반송파 주파수 오프셋에 매칭된 최적 필터 계수를 검출하는 단계; 및 상기 검출된 최적 필터 계수를 수신 필터에 사용하여 상기 전송 신호를 상기 변조 방식에 대응된 복조 방식으로 복조하여 데이터를 검출하는 단계를 포함한다.In another aspect of the present invention, a method of canceling interference based on a frequency offset includes: receiving a transmission signal modulated according to a preset modulation scheme; Estimating a carrier frequency offset based on the preamble and pilot of the transmitted signal; Detecting an optimum filter coefficient matched to the estimated carrier frequency offset among the optimal filter coefficients calculated for each of a plurality of carrier frequency offsets stored in advance; And demodulating the transmission signal by a demodulation scheme corresponding to the modulation scheme by using the detected optimum filter coefficient as a reception filter to detect data.
전술한 본 발명의 과제 해결 수단에 의하면, GFDM 뿐만 아니라 OFDM을 비롯한 다양한 통신 방식을 사용하는 무선 통신 시스템에서 오실레이터 및 도플러 효과로 인해 주파수 오프셋이 발생된 수신 신호의 간섭을 효과적으로 제거할 수 있다.According to the aforementioned problem solving means of the present invention, it is possible to effectively remove the interference of the received signal generated the frequency offset due to the oscillator and the Doppler effect in a wireless communication system using a variety of communication schemes, including GFDM as well as OFDM.
또한, 본 발명의 과제 해결 수단에 의하면, 무선 통신 시스템의 수신단의 기본적인 구조를 변화시키지 않으면서도 주파수 오프셋에 강인한 필터 설계가 가능하다.Further, according to the problem solving means of the present invention, it is possible to design a filter that is robust to the frequency offset without changing the basic structure of the receiving end of the wireless communication system.
도 1은 본 발명의 일 실시예에 따른 무선 통신 시스템의 구성도이다.1 is a block diagram of a wireless communication system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수신 장치의 구성도이다.2 is a block diagram of a receiving apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 적용되는 GFDM 데이터의 구조도이다.3 is a structural diagram of GFDM data applied to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 주파수 오프셋에 강인한 수신 필터와 기존의 다른 수신 필터를 사용한 경우의 성능을 비교한 그래프이다.4 is a graph comparing performance when a reception filter robust to a frequency offset according to an embodiment of the present invention and another conventional reception filter are used.
도 5는 본 발명의 일 실시예에 따른 주파수 오프셋에 기초한 간섭 제거 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method for canceling interference based on a frequency offset according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 또한, 도면을 참고하여 설명하면서, 같은 명칭으로 나타낸 구성일지라도 도면에 따라 도면 번호가 달라질 수 있고, 도면 번호는 설명의 편의를 위해 기재된 것에 불과하고 해당 도면 번호에 의해 각 구성의 개념, 특징, 기능 또는 효과가 제한 해석되는 것은 아니다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in the drawings, and like reference numerals designate like parts throughout the specification. In addition, while describing with reference to the drawings, even if the configuration shown by the same name may be different according to the drawing number, the drawing number is just described for convenience of description and the concept, features, functions of each configuration by the corresponding reference number Or the effects are not to be construed as limiting.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless specifically stated otherwise, one or more other It is to be understood that the present invention does not exclude the possibility of the presence or the addition of features, numbers, steps, operations, components, parts, or combinations thereof.
도 1은 본 발명의 일 실시예에 따른 무선 통신 시스템의 구성도이다. 그리고 도 2는 본 발명의 일 실시예에 따른 수신 장치의 구성도이다.1 is a block diagram of a wireless communication system according to an embodiment of the present invention. 2 is a block diagram of a receiving apparatus according to an embodiment of the present invention.
이하에서는 본 발명의 일 실시예에 따른 무선 통신 시스템(10)이 GFDM 통신 시스템인 것을 설명하도록 한다. 그러나, 무선 통신 시스템(10)은 GFDM 통신 시스템에 한정되지 않으며, OFDM 통신 등의 다양한 통신 방식에 따른 무선 통신 시스템일 수 있다.Hereinafter, to describe that the wireless communication system 10 according to an embodiment of the present invention is a GFDM communication system. However, the wireless communication system 10 is not limited to the GFDM communication system, and may be a wireless communication system according to various communication methods such as OFDM communication.
GFDM 통신 시스템(10)은 송신 장치(100) 및 수신 장치(200)를 포함한다.The GFDM communication system 10 includes a transmitting device 100 and a receiving device 200.
송신 장치(100)는 데이터("d")를 GFDM 변조(GFDM modulation) 처리하여 GFDM 신호를 송신한다. 이러한, GFDM 신호는 노이즈 채널(noise)을 통해 수신 장치(200)로 전송된다. 수신 장치(200)는 수신된 GFDM 신호를 GFDM 복조(GFDM demodulation) 처리하여 검출 데이터("
Figure PCTKR2017008959-appb-I000001
")를 출력한다.
The transmitter 100 transmits the GFDM signal by performing GFDM modulation on the data "d". The GFDM signal is transmitted to the receiving device 200 through a noise channel. The receiving device 200 performs GFDM demodulation on the received GFDM signal to detect detection data ("
Figure PCTKR2017008959-appb-I000001
Outputs ").
GFDM 통신 시스템(10)의 구성에 대해 상세히 설명하기에 앞서, 도 3을 참조하여 GFDM 신호에 대해서 설명하도록 한다.Before describing the configuration of the GFDM communication system 10 in detail, the GFDM signal will be described with reference to FIG. 3.
도 3은 본 발명의 일 실시예에 적용되는 GFDM 데이터의 구조도이다.3 is a structural diagram of GFDM data applied to an embodiment of the present invention.
도 3에 도시한 바와 같이, GFDM 데이터는 K개의 서브캐리어들(subcarriers)와 M개의 서브심볼들(subsymbols)의 블록으로 이루어져 있다. 이때, GFDM 통신 시스템(10)은 송신 장치에서 각 서브캐리어마다 필터를 사용하는 것이 특징이며, 이러한 GFDM 변조용 필터를 통과하면 대역외채널(OOB)을 줄일 수 있고 CP(cyclic prefix)를 이용하기 때문에 수신 장치에서의 등화 과정이 간단하다.As shown in FIG. 3, the GFDM data consists of blocks of K subcarriers and M subsymbols. In this case, the GFDM communication system 10 is characterized by using a filter for each subcarrier in the transmitting device, and when passing through the GFDM modulation filter, an out-of-band channel (OOB) can be reduced and a cyclic prefix (CP) is used. Because of this, the equalization process at the receiving device is simple.
다시 도 1로 돌아가서, 송신 장치(100)는 전송하고자 하는 데이터("d")를 S/P 엔코더(Serial to Parallel encoder)를 통해 병렬 데이터로 컨버팅한다. 그리고 송신 장치(100)는 병렬 데이터를 기설정된 필터가 포함된 GFDM 변조기(110)를 통해 GFDM 변조한다. 이때, 송신 장치(100)는 각 서브캐리어가 기설정된 필터를 통과하도록 한다. 그런 다음 송신 장치(100)는 GFDM 변조된 GFDM 신호에 CP를 추가하고, 디지털-아날로그 컨버팅("D/A")을 통해 업컨버젼한 후 송출한다.1 again, the transmitting apparatus 100 converts the data “d” to be transmitted into parallel data through an S / P encoder. The transmitter 100 modulates the parallel data through the GFDM modulator 110 including the preset filter. At this time, the transmission device 100 allows each subcarrier to pass through a predetermined filter. Then, the transmitting device 100 adds a CP to the GFDM modulated GFDM signal, upconverts through digital-analog converting (“D / A”), and transmits the same.
송신 장치(100)에서 전송하는 GDFM 신호(즉, 전송신호)는 다음의 수학식 1과 같이 나타낼 수 있다.The GDFM signal (that is, the transmission signal) transmitted by the transmission apparatus 100 may be represented by Equation 1 below.
<수학식 1><Equation 1>
Figure PCTKR2017008959-appb-I000002
Figure PCTKR2017008959-appb-I000002
수학식 1에서
Figure PCTKR2017008959-appb-I000003
은 서브캐리어마다 통과되는 필터로서,
Figure PCTKR2017008959-appb-I000004
이다. 즉,
Figure PCTKR2017008959-appb-I000005
는 k번째 서브캐리어와 m번째 서브심볼로 전송하는 데이터에 곱해지는 필터 계수이다. 그리고
Figure PCTKR2017008959-appb-I000006
은 k번째 서브캐리어와 m번째 서브심볼로 전송하는 데이터를 의미한다.
In Equation 1
Figure PCTKR2017008959-appb-I000003
Is a filter passed for each subcarrier,
Figure PCTKR2017008959-appb-I000004
to be. In other words,
Figure PCTKR2017008959-appb-I000005
Is a filter coefficient that is multiplied by the data transmitted to the kth subcarrier and the mth subsymbol. And
Figure PCTKR2017008959-appb-I000006
Denotes data transmitted to the kth subcarrier and the mth subsymbol.
위와 같은 수학식 1은 다음의 수학식 2에서와 같은 행렬 형태로 표현할 수 있다. Equation 1 as described above may be expressed in a matrix form as shown in Equation 2 below.
<수학식 2><Equation 2>
Figure PCTKR2017008959-appb-I000007
Figure PCTKR2017008959-appb-I000007
이때,
Figure PCTKR2017008959-appb-I000008
Figure PCTKR2017008959-appb-I000009
로서
Figure PCTKR2017008959-appb-I000010
크기의 행렬을 의미하며, N은 업샘플링 계수를 의미한다.
At this time,
Figure PCTKR2017008959-appb-I000008
Is
Figure PCTKR2017008959-appb-I000009
as
Figure PCTKR2017008959-appb-I000010
A matrix of magnitudes and N denotes an upsampling coefficient.
참고로, 본 발명의 일 실시예에 따른 GFDM 통신 시스템(10)은 OFDM 통신 시스템에도 적용될 수 있다. 일반적으로 OFDM 통신 시스템은 데이터 심볼을 IFFT(Inverse Fast Fourier Transform) 를 수행하여 송신하는 OFDM 송신기와, OFDM 송신기로부터의 신호를 FFT(Fast Fourier Transform)를 수행하여 데이터를 복원하는 수신기로 구성된다. 본 발명의 일 실시예에 따른 송신 장치(100)는 레이즈드-코사인 필터(raised cosine filter), 스퀘어루트 레이즈드-코사인 필터(square root raised cosine filter)를 사용할 수 있으며, 이때
Figure PCTKR2017008959-appb-I000011
이고 M=1인 경우를 OFDM 통신 시스템이라고 할 수 있다. 즉, 상기 수학식 2에서의
Figure PCTKR2017008959-appb-I000012
행렬이 IFFT(Inverse Fast Fourier Transform) 행렬이 되므로 OFDM의 구조와 같아지며, 따라서 GFDM과 OFDM의 차이는 송신기에서
Figure PCTKR2017008959-appb-I000013
행렬의
Figure PCTKR2017008959-appb-I000014
과 M이 얼마인지에 따라 결정될 수 있다.
For reference, the GFDM communication system 10 according to an embodiment of the present invention may be applied to an OFDM communication system. In general, an OFDM communication system includes an OFDM transmitter for performing data inverse fast fourier transform (IFFT) and a receiver for restoring data by performing a fast fourier transform (FFT) signal from the OFDM transmitter. The transmission apparatus 100 according to an embodiment of the present invention may use a raised cosine filter and a square root raised cosine filter.
Figure PCTKR2017008959-appb-I000011
And M = 1 may be referred to as an OFDM communication system. That is, in Equation 2
Figure PCTKR2017008959-appb-I000012
Since the matrix becomes an Inverse Fast Fourier Transform (IFFT) matrix, it is the same as the structure of OFDM, so the difference between GFDM and OFDM
Figure PCTKR2017008959-appb-I000013
Matrix
Figure PCTKR2017008959-appb-I000014
And how much M is.
수신 장치(200)는 GFDM 방식으로 변조된 GFDM 신호를 수신하여 아날로그-디지털 컨버팅(A/D)을 통해 다운컨버젼한다. 그리고 수신 장치(200)는 디지털 컨버팅된 GFDM 신호에서 CP를 제거하고, CP가 제거된 신호를 기설정된 필터가 포함된 GFDM 복조기(210)를 통해 주파수 오프셋에 따른 간섭을 제거한 후 GFDM 복조한다. 다음으로 수신 장치(200)는 GFDM 복조된 신호를 P/S 엔코더(Parallel to Serial encoder)를 통해 직렬 데이터로 컨버팅하여 검출 데이터("
Figure PCTKR2017008959-appb-I000015
")를 출력한다. 이때, 필터는 GFDM 신호에 기설정된 최적 계수를 적용하여 간섭을 제거한다.
The receiving device 200 receives the GFDM signal modulated by the GFDM method and down-converts it through analog-digital converting (A / D). The receiver 200 removes the CP from the digitally converted GFDM signal, and removes the CP from the GFDM demodulator 210 through the GFDM demodulator 210 including the preset filter. Next, the reception apparatus 200 converts the GFDM demodulated signal into serial data through a P / S encoder to detect data ("
Figure PCTKR2017008959-appb-I000015
In this case, the filter removes the interference by applying a predetermined optimal coefficient to the GFDM signal.
도 2를 참조하면, 수신 장치(200)는 송신 장치(100)로부터 데이터("d")에 변조 행렬 ("
Figure PCTKR2017008959-appb-I000016
")이 곱해진 GFDM 신호를 수신한다. 이때, 수신된 GFDM 신호에는 반송파 주파수 오프셋(Carrier Frequency Offset, CFO) ("
Figure PCTKR2017008959-appb-I000017
")이 발생하고 노이즈가 더해져 있다. 이처럼, 송신 장치(100)로부터의 전송 신호에 주파수 오프셋이 발생하게 되면 성능이 떨어지게 된다.
Referring to FIG. 2, the reception apparatus 200 converts a modulation matrix (") from the transmission apparatus 100 to data" d ".
Figure PCTKR2017008959-appb-I000016
Receives a GFDM signal multiplied by &quot;), wherein the received GFDM signal includes a carrier frequency offset (CFO) (&quot;).
Figure PCTKR2017008959-appb-I000017
Is generated and noise is added. Thus, if a frequency offset occurs in the transmission signal from the transmission apparatus 100, performance will fall.
수신 장치(200)의 GFDM 복조기(210)는 수신된 GFDM 신호의 주파수 오프셋을 추정하고 간섭을 제거한다. 먼저, 주파수 오프셋 추정기(211)는 수신된 데이터의 앞머리에 존재하는 프리앰블 및 파일럿에 기초하여 전송 신호에 발생된 주파수 오프셋을 추정(coarse CFO estimation)한다. 이러한 주파수 오프셋 추정 방법은 기존에 제안된 다양한 추정 알고리즘을 이용할 수 있으므로 상세한 설명은 생략하도록 한다. 그리고 필터 계수 검출기(212)는 필터 계수들이 계산 및 저장되어 있는 필터 코드북(filter codebook)에서 상기 추정된 주파수 오프셋 "
Figure PCTKR2017008959-appb-I000018
"에 해당하는 필터 계수를 검출한다. 다음으로, 상기 검출된 필터 계수가 적용된 수신 필터(213)를 통해 상기 수신된 GFDM 신호로부터 간섭을 제거한다.
The GFDM demodulator 210 of the receiving device 200 estimates the frequency offset of the received GFDM signal and removes interference. First, the frequency offset estimator 211 estimates a frequency offset generated in a transmission signal based on a preamble and a pilot present at the front of the received data. Since the frequency offset estimation method can use various proposed algorithms, a detailed description thereof will be omitted. And filter coefficient detector 212 determines the estimated frequency offset " in a filter codebook in which filter coefficients are calculated and stored.
Figure PCTKR2017008959-appb-I000018
A filter coefficient corresponding to "&quot; is detected. Next, interference is removed from the received GFDM signal through the reception filter 213 to which the detected filter coefficient is applied.
이하에서는, 필터 계수 검출기(212)가 복수의 주파수 오프셋 별 필터 계수를 계산 및 저장하는 과정에 대해서 상세히 설명하도록 한다.Hereinafter, a process in which the filter coefficient detector 212 calculates and stores filter coefficients for a plurality of frequency offsets will be described in detail.
수신 장치(200)는 도 2에 도시한 바와 같이 수신 필터로서 정합필터(Matched Filter)를 사용할 수 있으며, 또는 최소평균제곱오차 필터(Minimum Mean-Squared Error filter, MMSE)를 통하여 데이터를 검출할 수도 있다.The reception device 200 may use a matched filter as a reception filter as shown in FIG. 2, or may detect data through a minimum mean-squared error filter (MMSE). have.
정합필터를 사용한 경우, 검출되는 데이터("
Figure PCTKR2017008959-appb-I000019
")는 다음의 수학식 3과 같이 나타낼 수 있다.
When a matched filter is used, the detected data ("
Figure PCTKR2017008959-appb-I000019
") Can be expressed as Equation 3 below.
<수학식 3><Equation 3>
Figure PCTKR2017008959-appb-I000020
Figure PCTKR2017008959-appb-I000020
이때,
Figure PCTKR2017008959-appb-I000021
Figure PCTKR2017008959-appb-I000022
의 파워를 갖는 노이즈를 의미한다.
At this time,
Figure PCTKR2017008959-appb-I000021
silver
Figure PCTKR2017008959-appb-I000022
Means noise with power of.
참고로, MMSE 필터를 사용한 경우 검출되는 데이터("
Figure PCTKR2017008959-appb-I000023
")는 다음의 수학식 4와 같이 나타낼 수 있다.
For reference, the data detected when the MMSE filter is used ("
Figure PCTKR2017008959-appb-I000023
") Can be expressed as Equation 4 below.
<수학식 4><Equation 4>
Figure PCTKR2017008959-appb-I000024
Figure PCTKR2017008959-appb-I000024
한편, 송신 장치(100) 및 수신 장치(200)의 오실레이터 및 도플러 효과로 인해 주파수 오프셋이 발생된 GFDM 신호는 다음의 수학식 5와 같이 나타낼 수 있다.Meanwhile, the GFDM signal in which the frequency offset is generated due to the oscillator and the Doppler effects of the transmitting apparatus 100 and the receiving apparatus 200 may be represented as in Equation 5 below.
<수학식 5><Equation 5>
Figure PCTKR2017008959-appb-I000025
Figure PCTKR2017008959-appb-I000025
여기서
Figure PCTKR2017008959-appb-I000026
는 주파수 오프셋 행렬로서
Figure PCTKR2017008959-appb-I000027
를 나타낸다. 이때,
Figure PCTKR2017008959-appb-I000028
는 대각행렬(diagonal matrix)을 의미하고,
Figure PCTKR2017008959-appb-I000029
은 GFDM 반송파의 간격으로서 정규화된(normalized) 주파수 오프셋을 의미한다.
here
Figure PCTKR2017008959-appb-I000026
Is the frequency offset matrix
Figure PCTKR2017008959-appb-I000027
Indicates. At this time,
Figure PCTKR2017008959-appb-I000028
Means the diagonal matrix,
Figure PCTKR2017008959-appb-I000029
Denotes a normalized frequency offset as an interval of the GFDM carrier.
정합필터를 사용한 경우, 기존에는 수신 신호에
Figure PCTKR2017008959-appb-I000030
행렬의 허미션 행렬(Hermition matrix)인
Figure PCTKR2017008959-appb-I000031
를 곱해줌으로써 데이터를 검출할 수 있었다.
In the case of using a matched filter, conventionally
Figure PCTKR2017008959-appb-I000030
The Hermition matrix of the matrix
Figure PCTKR2017008959-appb-I000031
The data could be detected by multiplying by.
한편, 본 발명의 일 실시예에 따른 수신 장치(200)는 주파수 오프셋에 강인한 필터
Figure PCTKR2017008959-appb-I000032
을 정합필터로 사용하며, 이를 통해 검출된 데이터는 다음의 수학식 6과 같이 나타낼 수 있다.
On the other hand, the receiver 200 according to an embodiment of the present invention is a filter robust to the frequency offset
Figure PCTKR2017008959-appb-I000032
Is used as a matching filter, and the detected data can be represented by Equation 6 below.
<수학식 6><Equation 6>
Figure PCTKR2017008959-appb-I000033
Figure PCTKR2017008959-appb-I000033
이때,
Figure PCTKR2017008959-appb-I000034
Figure PCTKR2017008959-appb-I000035
로서,
Figure PCTKR2017008959-appb-I000036
크기의 행렬을 의미한다. 또한
Figure PCTKR2017008959-appb-I000037
로서,
Figure PCTKR2017008959-appb-I000038
Figure PCTKR2017008959-appb-I000039
을 시간과 주파수에 대해 시프트(shift)시킨 필터를 의미한다.
At this time,
Figure PCTKR2017008959-appb-I000034
Is
Figure PCTKR2017008959-appb-I000035
as,
Figure PCTKR2017008959-appb-I000036
It means a matrix of size. Also
Figure PCTKR2017008959-appb-I000037
as,
Figure PCTKR2017008959-appb-I000038
Is
Figure PCTKR2017008959-appb-I000039
Means a filter shifted with respect to time and frequency.
이러한 주파수 오프셋에 강한 필터를 사용하여 검출된 데이터(즉, 수학식 6에 나타낸 데이터)는 아래의 수학식 7과 같이 전개할 수 있다.Data detected using a filter strong against such a frequency offset (that is, data shown in Equation 6) can be developed as shown in Equation 7 below.
<수학식 7><Equation 7>
Figure PCTKR2017008959-appb-I000040
Figure PCTKR2017008959-appb-I000040
이러한 수학식 7에서, 대각성분은 얻고자 하는 신호(즉, 실제 데이터)이고 나머지 부분은 간섭 신호이다.In Equation 7, the diagonal component is the signal to be obtained (that is, the actual data) and the remaining part is the interference signal.
만약 주파수 오프셋이 제거될 경우 수학식 7의 행렬은 항등행렬에 가까워져 간섭이 적어지므로 원하는 신호를 검출할 수 있다. 따라서, 간섭을 최소화시킴으로써 원하는 신호(즉, 실제 데이터)를 검출할 수 있으므로, 수학식 7에 대해 신호대간섭비(signal-to-interference ratio, SIR)를 최대화시킬 수 있는
Figure PCTKR2017008959-appb-I000041
를 구한다.
If the frequency offset is removed, the matrix of Equation 7 is closer to the identity matrix, so that the interference is less, so that the desired signal can be detected. Therefore, since the desired signal (that is, the actual data) can be detected by minimizing the interference, the signal-to-interference ratio (SIR) can be maximized for Equation (7).
Figure PCTKR2017008959-appb-I000041
Obtain
즉, 수학식 7에서 대각성분은 원하는 신호이고 나머지 부분은 간섭 신호이므로, 대각 성분의 파워와 나머지 성분의 파워를 구하여 신호대간섭비를 산출한다.That is, in Equation 7, since the diagonal component is the desired signal and the remaining portion is the interference signal, the signal-to-interference ratio is calculated by obtaining the power of the diagonal component and the power of the remaining component.
이때, 신호대간섭비는 아래의 수학식 8과 같이 나타낼 수 있다.In this case, the signal-to-interference ratio may be expressed by Equation 8 below.
<수학식 8><Equation 8>
Figure PCTKR2017008959-appb-I000042
Figure PCTKR2017008959-appb-I000042
수학식8을 좀 더 간단히 정리하기 위해
Figure PCTKR2017008959-appb-I000043
의 성질 중 아래 수학식 9와 같은 성질을 이용한다.
To simplify the Equation 8
Figure PCTKR2017008959-appb-I000043
Among the properties of, use the property shown in Equation 9 below.
<수학식 9><Equation 9>
Figure PCTKR2017008959-appb-I000044
Figure PCTKR2017008959-appb-I000044
위의 수학식 9에서와 같이,
Figure PCTKR2017008959-appb-I000045
는 시간 및 주파수를 시프트 시키지 않은
Figure PCTKR2017008959-appb-I000046
에 시간을 시프트시키는 행렬인
Figure PCTKR2017008959-appb-I000047
및 주파수를 시프트시키는 행렬인
Figure PCTKR2017008959-appb-I000048
를 곱하여 표현할 수 있다.
As in Equation 9 above,
Figure PCTKR2017008959-appb-I000045
Did not shift time and frequency
Figure PCTKR2017008959-appb-I000046
Is a matrix that shifts time
Figure PCTKR2017008959-appb-I000047
And a matrix for shifting frequencies
Figure PCTKR2017008959-appb-I000048
Can be multiplied by
따라서, 수학식 8의
Figure PCTKR2017008959-appb-I000049
에 수학식 9를 대입하면, 다음의 수학식 10과 같이 정리할 수 있다.
Therefore, the expression (8)
Figure PCTKR2017008959-appb-I000049
Substituting Equation 9 into Equation 9 can be arranged as in Equation 10 below.
<수학식 10><Equation 10>
Figure PCTKR2017008959-appb-I000050
Figure PCTKR2017008959-appb-I000050
이때,
Figure PCTKR2017008959-appb-I000051
는 k 번째 서브캐리어 및 m번째 서브심볼로 전송한 신호의 수신 파워에 관련된 값이며,
Figure PCTKR2017008959-appb-I000052
는 데이터를 송신할 경우 데이터의 수신 파워와 주파수 오프셋으로 인해 발생되는 간섭 파워의 합에 관련된 값이다.
At this time,
Figure PCTKR2017008959-appb-I000051
Is a value related to the received power of the signal transmitted on the k th subcarrier and the m th subsymbol,
Figure PCTKR2017008959-appb-I000052
Is a value related to the sum of the interference power generated due to the reception power and the frequency offset of the data when transmitting the data.
수학식 10에서
Figure PCTKR2017008959-appb-I000053
Figure PCTKR2017008959-appb-I000054
는 각각 다음의 수학식 11 및 12와 같이 나타낼 수 있다.
In equation (10)
Figure PCTKR2017008959-appb-I000053
And
Figure PCTKR2017008959-appb-I000054
Can be represented by Equations 11 and 12, respectively.
<수학식 11><Equation 11>
Figure PCTKR2017008959-appb-I000055
Figure PCTKR2017008959-appb-I000055
<수학식 12><Equation 12>
Figure PCTKR2017008959-appb-I000056
Figure PCTKR2017008959-appb-I000056
따라서, 수학식 10의 값을 최대화시킬 수 있는 필터
Figure PCTKR2017008959-appb-I000057
를 사용함으로써, 주파수 오프셋이 발생하는 환경에서 간섭을 최소화하고 시스템의 성능을 향상시킬 수 있다.
Thus, a filter capable of maximizing the value of Equation 10
Figure PCTKR2017008959-appb-I000057
By using, it is possible to minimize interference in the environment where frequency offset occurs and improve the performance of the system.
이를 위해, 수학식 13의 최적해(optimal solution)를 산출한다.To this end, an optimal solution of Equation 13 is calculated.
<수학식 13><Equation 13>
Figure PCTKR2017008959-appb-I000058
Figure PCTKR2017008959-appb-I000058
수학식 13의 최적해는 레일리-리츠 정리(Rayleigh-Ritz theorem)에 의해 다음의 수학식 14와 같이 구할 수 있다. 참고로, 레일리-리츠 이론은, 미지함수를 변위경계조건(displacement boundary condition)을 만족시키는 유한개수의 기저함수의 선형조합으로 표시하고, 기저함수를 가중함수로 사용하여 해를 구하는 법으로서, 일종의 가중잔차법(Weighted residual method)이다The optimal solution of equation (13) can be obtained by the following equation (14) by Rayleigh-Ritz theorem. For reference, Rayleigh-Litz theory is a method of expressing an unknown function as a linear combination of a finite number of basis functions that satisfy a displacement boundary condition, and using the basis function as a weighted function to solve the solution. Weighted residual method
<수학식 14><Equation 14>
Figure PCTKR2017008959-appb-I000059
Figure PCTKR2017008959-appb-I000059
위와 같은 수학식 11 및 12에서
Figure PCTKR2017008959-appb-I000060
Figure PCTKR2017008959-appb-I000061
를 구할 수 있으므로 이를 통해
Figure PCTKR2017008959-appb-I000062
를 계산한 후, 그 고유치(eigenvalue)를 계산할 수 있다. 상기 고유치 중 최댓값을 찾고 그에 대응하는 고유벡터(eigenvector)를
Figure PCTKR2017008959-appb-I000063
로 사용한다. 이때,
Figure PCTKR2017008959-appb-I000064
이므로 수학식 14에서 구한 필터 계수를 수신 필터(213)에 사용한다.
In Equations 11 and 12 above
Figure PCTKR2017008959-appb-I000060
And
Figure PCTKR2017008959-appb-I000061
So you can get
Figure PCTKR2017008959-appb-I000062
After calculating, the eigenvalue can be calculated. Find the maximum of the eigenvalues and find the corresponding eigenvector
Figure PCTKR2017008959-appb-I000063
Used as. At this time,
Figure PCTKR2017008959-appb-I000064
Hence, the filter coefficient obtained from Equation 14 is used for the reception filter 213.
수학식 14를 통해 구해진 필터 계수는 GFDM 신호를 수신할 때마다 실시간으로 계산하여 사용되는 것이 아니라, 필터 계수 검출기(212)에 의해 사전에 주파수 오프셋 별로 계산 값들이 산출되어 코드북으로 생성 및 저장된다. 그리고 필터 계수 검출기(212)는 수신된 GFDM 신호의 주파수 오프셋에 따라 코드북에 저장된 필터 계수 중 매칭된 필터 계수를 사용한다.The filter coefficients obtained through Equation 14 are not calculated and used in real time every time the GFDM signal is received, but are calculated and calculated by the filter coefficient detector 212 for each frequency offset, and are generated and stored in the codebook. The filter coefficient detector 212 uses matched filter coefficients among the filter coefficients stored in the codebook according to the frequency offset of the received GFDM signal.
도 4는 본 발명의 일 실시예에 따른 주파수 오프셋에 강인한 수신 필터와 기존의 다른 수신 필터를 사용한 경우의 성능을 비교한 그래프이다.4 is a graph comparing performance when a reception filter robust to a frequency offset according to an embodiment of the present invention and another conventional reception filter are used.
도 4에서는 OFDM 통신 방식(도 4에서 "OFDM"으로 표시함), GFDM 통신 시스템에서 기존의 정합필터를 사용한 경우(도 4에서 "GFDM(MF 방식)"으로 표시함), GFDM 통신 시스템에서 제로포싱(Zero forcing)을 사용한 경우(도 4에서 "GFDM(ZF 방식)"으로 표시함), 본 발명의 일 실시예에 따른 GFDM 통신 시스템에서 주파수 오프셋에 강인한 수신 필터를 사용한 경우(도 4에서 "본 실시예"로 표시함)의 신호대간섭비를 나타냈다. 도 4에서는 주파수 오프셋 값이 0.2에 최적화된 수신 필터를 나타냈으며, 주파수 오프셋 0.2 구간에서 본 발명의 일 실시예에 따른 수신 필터는 다른 필터들에 비해 탁월한 성능을 나타내는 것을 알 수 있다.In FIG. 4, in the OFDM communication method (indicated by "OFDM" in FIG. 4), when an existing matching filter is used in the GFDM communication system (indicated by "GFDM (MF method)" in FIG. 4), zero in the GFDM communication system. In the case of using forcing (indicated by "GFDM (ZF method)" in FIG. 4), in the case of using a reception filter robust to a frequency offset in the GFDM communication system according to an embodiment of the present invention (" Signal-to-interference ratio). In FIG. 4, a reception filter optimized for a frequency offset value of 0.2 is illustrated, and it can be seen that a reception filter according to an embodiment of the present invention exhibits superior performance compared to other filters in a frequency offset 0.2 section.
이하, 도 5를 참조하여 본 발명의 일 실시예에 따른 주파수 오프셋에 강인한 간섭 제거 장치를 통한 무선 통신 시스템에서의 간섭 제거 방법에 대해서 설명하도록 한다. 본 발명의 실시예에 따른 GFDM 통신 시스템에서 수신 장치는 GFDM 신호를 처리하는 간섭 제거 장치로서 동작할 수 있다.Hereinafter, an interference cancellation method in a wireless communication system through an interference cancellation apparatus robust to a frequency offset according to an embodiment of the present invention will be described with reference to FIG. 5. In the GFDM communication system according to an embodiment of the present invention, the receiving device may operate as an interference cancellation device for processing a GFDM signal.
도 5는 본 발명의 일 실시예에 따른 주파수 오프셋에 기초한 간섭 제거 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method for canceling interference based on a frequency offset according to an embodiment of the present invention.
송신장치가 전송한 GFDM 방식으로 변조된 신호를 수신하면(S510), 수신된 신호에 대한 주파수 오프셋을 추정한다(S520).When receiving a signal modulated by the GFDM scheme transmitted by the transmitter (S510), the frequency offset for the received signal is estimated (S520).
참고로, 수신된 신호에 대한 주파수 오프셋을 추정하기에 앞서, 수신된 신호를 아날로그-디지털 컨버팅(A/D)하고, CP를 제거하는 절차를 수행할 수 있다.For reference, before estimating the frequency offset for the received signal, a procedure of analog-digital converting (A / D) the received signal and removing the CP may be performed.
다음으로, 사전에 계산된 주파수 오프셋 별 필터 계수 중 상기 추정된 주파수 오프셋에 매칭된 필터 계수를 검출한다(S530).Next, a filter coefficient matched to the estimated frequency offset is detected among the previously calculated filter coefficients for each frequency offset (S530).
이때, 사전에 계산된 필터 계수들은 코드북으로 생성 및 저장될 수 있다. 또한, 필터 계수를 산출하는 방법은 앞서 수학식 3 내지 14를 통해 설명하였으므로 상세한 설명은 생략한다.In this case, previously calculated filter coefficients may be generated and stored in a codebook. In addition, since the method for calculating the filter coefficient has been described above through Equations 3 to 14, detailed description thereof will be omitted.
그런 다음, 상기 검출된 필터 계수를 수신 필터에 적용하여 GFDM 복조를 처리하여, 수신된 신호로부터 간섭이 제거된 데이터를 검출하여 출력한다(S540).Thereafter, the detected filter coefficients are applied to the reception filter to process GFDM demodulation to detect and output data from which the interference is removed from the received signal (S540).
이때, 수신 필터는 정합필터 또는 MMSE 필터일 수 있다. 또한, GFDM 복조된 신호를 P/S 엔코더(Parallel to Serial encoder)를 통해 직렬 데이터로 컨버팅하여 검출 데이터로서 출력할 수 있다.In this case, the reception filter may be a matching filter or an MMSE filter. In addition, the GFDM demodulated signal may be converted into serial data through a P / S encoder and output as detection data.
이상에서 설명한 본 발명의 실시예에 따른 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 방법은, 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터 또는 기타 전송에 대한 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.The interference cancellation method robust to the frequency offset of the wireless communication system according to the above-described embodiments of the present invention may be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer. have. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Computer-readable media can also include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes a mechanism for computer-readable instructions, data structures, program modules, or other data or other transmission of a modulated data signal such as a carrier wave, and includes any information delivery medium.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (11)

  1. 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치에 있어서,An interference cancellation apparatus robust to a frequency offset of a wireless communication system,
    기설정된 변조 방식에 따라 변조된 신호를 수신하면, 상기 수신된 신호의 프리앰블 및 파일럿에 기초하여 반송파 주파수 오프셋을 추정하는 주파수 오프셋 추정기;A frequency offset estimator for estimating a carrier frequency offset based on a preamble and a pilot of the received signal when receiving a signal modulated according to a preset modulation scheme;
    사전에 복수의 반송파 주파수 오프셋 별로 산출된 최적 필터 계수가 저장되어 있고, 상기 저장된 최적 필터 계수들 중 상기 추정된 반송파 주파수 오프셋에 매칭된 최적 필터 계수를 검출하는 필터 계수 검출기; 및A filter coefficient detector for storing an optimum filter coefficient calculated in advance for each of a plurality of carrier frequency offsets and detecting an optimum filter coefficient matched to the estimated carrier frequency offset among the stored optimal filter coefficients; And
    상기 검출된 최적 필터 계수를 사용하여 상기 수신된 신호를 상기 변조 방식에 대응된 복조 방식으로 복조하여 데이터를 검출하는 수신 필터를 포함하는, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.And a reception filter which demodulates the received signal by a demodulation scheme corresponding to the modulation scheme using the detected optimum filter coefficients to detect data.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 필터 계수 검출기는, 상기 반송파 주파수 오프셋 별 최적 필터 계수를 코드북으로 생성하여 저장하는, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.And the filter coefficient detector generates and stores an optimum filter coefficient for each carrier frequency offset in a codebook, wherein the filter coefficient detector is robust to a frequency offset of a wireless communication system.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 필터 계수 검출기는,The filter coefficient detector,
    상기 변조 시 적용된 반송파 간격인 정규화된 주파수 오프셋에 대한 대각행렬을 산출하고,Calculating a diagonal matrix for a normalized frequency offset which is a carrier spacing applied during the modulation,
    상기 대각행렬 중 대각성분의 파워와 나머지 성분의 파워에 기초하여 신호대간섭비를 산출하고,Calculating the signal-to-interference ratio based on the power of the diagonal component and the power of the remaining components of the diagonal matrix;
    상기 신호대간섭비를 최대화시키는 필터 계수를 산출하여 상기 최적 필터 계수로서 저장하는, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.And a filter coefficient for maximizing the signal-to-interference ratio is calculated and stored as the optimum filter coefficient.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 필터 계수 검출기는,The filter coefficient detector,
    주파수 오프셋이 발생된 신호
    Figure PCTKR2017008959-appb-I000065
    에 대해 아래 수학식 1에 따라 상기 신호대간섭비(signal-to-interference ratio, SIR)를 산출하고,
    Signal with Frequency Offset
    Figure PCTKR2017008959-appb-I000065
    For the signal-to-interference ratio (SIR) is calculated according to Equation 1 below,
    상기 산출된 신호대간섭비에 기초하여 아래 수학식 2에 따른 레일리-리츠 정리(Rayleigh-Ritz theorem)에 따른 최적해를 산출하되,Based on the calculated signal-to-interference ratio, the optimal solution is calculated according to Rayleigh-Ritz theorem according to Equation 2 below.
    상기 최적해는 상기 최적 필터 계수로서 저장되는 것인, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.And the optimum solution is stored as the optimum filter coefficient.
    <수학식 1><Equation 1>
    Figure PCTKR2017008959-appb-I000066
    Figure PCTKR2017008959-appb-I000066
    <수학식 2><Equation 2>
    Figure PCTKR2017008959-appb-I000067
    Figure PCTKR2017008959-appb-I000067
    (여기서, d는 전송 데이터이고,
    Figure PCTKR2017008959-appb-I000068
    Figure PCTKR2017008959-appb-I000069
    로서
    Figure PCTKR2017008959-appb-I000070
    크기의 변조 행렬이되, gk,m는 전송 데이터에 곱해지는 필터 계수이고, K는 서브캐리어의 개수이고, M은 서브심볼의 개수이고, N은 업샘플링 계수이며,
    Where d is the transmission data,
    Figure PCTKR2017008959-appb-I000068
    Is
    Figure PCTKR2017008959-appb-I000069
    as
    Figure PCTKR2017008959-appb-I000070
    A modulation matrix of magnitude, where g k, m are filter coefficients multiplied by the transmitted data, K is the number of subcarriers, M is the number of subsymbols, N is the upsampling coefficient,
    C는 주파수 오프셋 행렬인
    Figure PCTKR2017008959-appb-I000071
    이되,
    Figure PCTKR2017008959-appb-I000072
    는 대각행렬이고,
    Figure PCTKR2017008959-appb-I000073
    은 반송파 간격인 정규화된 주파수 오프셋이며,
    Figure PCTKR2017008959-appb-I000074
    은 상기 수신 필터인
    Figure PCTKR2017008959-appb-I000075
    을 시간 및 주파수로 시프트시킨 필터로서
    Figure PCTKR2017008959-appb-I000076
    이되,
    Figure PCTKR2017008959-appb-I000077
    는 시간 및 주파수로 시프트 시키지 않은 필터 계수이고,
    Figure PCTKR2017008959-appb-I000078
    은 시간을 시프트시키는 행렬이고,
    Figure PCTKR2017008959-appb-I000079
    는 주파수를 시프트시키는 행렬이며,
    C is the frequency offset matrix
    Figure PCTKR2017008959-appb-I000071
    This,
    Figure PCTKR2017008959-appb-I000072
    Is a diagonal matrix,
    Figure PCTKR2017008959-appb-I000073
    Is the normalized frequency offset, which is the carrier spacing,
    Figure PCTKR2017008959-appb-I000074
    Is the receiving filter
    Figure PCTKR2017008959-appb-I000075
    As a filter shifted in time and frequency
    Figure PCTKR2017008959-appb-I000076
    This,
    Figure PCTKR2017008959-appb-I000077
    Is the filter coefficient not shifted by time and frequency,
    Figure PCTKR2017008959-appb-I000078
    Is a time shift matrix,
    Figure PCTKR2017008959-appb-I000079
    Is a matrix for shifting frequencies,
    Figure PCTKR2017008959-appb-I000080
    이되, U는 k 번째 서브캐리어 및 m 번째 서브심볼로 전송한 신호의 수신 파워에 기초한 값이며, V는 데이터에 대한 수신 파워 및 주파수 오프셋으로 인해 발생되는 간섭 파워의 합에 기초한 값이고,
    Figure PCTKR2017008959-appb-I000080
    Where U is a value based on the received power of the signal transmitted to the k th subcarrier and the m th subsymbol, V is a value based on the sum of the interference power generated due to the received power and the frequency offset for the data,
    Figure PCTKR2017008959-appb-I000081
    이되, 그 최적해는
    Figure PCTKR2017008959-appb-I000082
    행렬의 고유치(eigenvalue) 중 최댓값에 대응하는 고유벡터(eigenvector)이다.)
    Figure PCTKR2017008959-appb-I000081
    But the optimal one
    Figure PCTKR2017008959-appb-I000082
    The eigenvector corresponding to the maximum value of the eigenvalues of the matrix.)
  5. 제 1 항에 있어서,The method of claim 1,
    상기 수신 필터는,The reception filter,
    정합필터(matched filter) 또는 최소평균제곱오차 필터(Minimum Mean-Squared Error filter, MMSE) 중 어느 하나인, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.An interference canceling apparatus robust to frequency offsets in a wireless communication system, which is either a matched filter or a minimum mean-square error filter (MMSE).
  6. 제 1 항에 있어서,The method of claim 1,
    상기 변조 방식은 GFDM(Generalized Frequency Division Multiplexing) 변조인 것인, 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치.The modulation scheme is Generalized Frequency Division Multiplexing (GFDM) modulation, interference cancellation apparatus robust to the frequency offset of the wireless communication system.
  7. 무선 통신 시스템의 주파수 오프셋에 강인한 간섭 제거 장치의 간섭 제거 방법에 있어서,In the interference cancellation method of the interference cancellation apparatus robust to the frequency offset of the wireless communication system,
    기설정된 변조 방식에 따라 변조된 신호를 수신하는 단계;Receiving a signal modulated according to a preset modulation scheme;
    상기 수신된 신호의 프리앰블 및 파일럿에 기초하여 반송파 주파수 오프셋을 추정하는 단계;Estimating a carrier frequency offset based on the preamble and pilot of the received signal;
    사전에 저장된 복수의 반송파 주파수 오프셋 별로 산출된 최적 필터 계수 중 상기 추정된 반송파 주파수 오프셋에 매칭된 최적 필터 계수를 검출하는 단계; 및Detecting an optimum filter coefficient matched to the estimated carrier frequency offset among the optimal filter coefficients calculated for each of a plurality of carrier frequency offsets stored in advance; And
    상기 검출된 최적 필터 계수를 수신 필터에 사용하여 상기 수신된 신호를 상기 변조 방식에 대응된 복조 방식으로 복조하여 데이터를 검출하는 단계를 포함하는, 간섭 제거 방법.And demodulating the received signal by a demodulation scheme corresponding to the modulation scheme by using the detected optimum filter coefficient as a reception filter to detect data.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 복수의 반송파 주파수 오프셋 별로 산출된 최적 필터 계수는 코드북으로 생성되어 저장된 것인, 간섭 제거 방법.The optimal filter coefficients calculated for each of the plurality of carrier frequency offsets are generated and stored in a codebook.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 최적 필터 계수를 검출하는 단계 이전에,Before the step of detecting the optimum filter coefficients,
    상기 변조 시 적용된 반송파 간격인 정규화된 주파수 오프셋에 대한 대각행렬을 산출하는 단계,Calculating a diagonal matrix for a normalized frequency offset which is a carrier spacing applied during the modulation;
    상기 대각행렬 중 대각성분의 파워와 나머지 성분의 파워에 기초하여 신호대간섭비를 산출하는 단계, 및Calculating a signal-to-interference ratio based on the power of the diagonal component and the power of the remaining components of the diagonal matrix, and
    상기 신호대간섭비를 최대화시키는 필터 계수를 산출하여 상기 최적 필터 계수로서 저장하는 단계를 더 포함하는, 간섭 제거 방법.Calculating a filter coefficient for maximizing the signal-to-interference ratio and storing the filter coefficient as the optimum filter coefficient.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 수신 필터는,The reception filter,
    정합필터(matched filter) 또는 최소평균제곱오차 필터(Minimum Mean-Squared Error filter, MMSE) 중 어느 하나인, 간섭 제거 방법.A method of interference cancellation, which is either a matched filter or a Minimum Mean-Squared Error filter (MMSE).
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 변조 방식은 GFDM(Generalized Frequency Division Multiplexing) 변조인 것인, 간섭 제거 방법.The modulation scheme is Generalized Frequency Division Multiplexing (GFDM) modulation.
PCT/KR2017/008959 2017-02-07 2017-08-17 Interference cancellation apparatus and method robust to frequency offset in wireless communication system WO2018147520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0016887 2017-02-07
KR1020170016887A KR101962273B1 (en) 2017-02-07 2017-02-07 Apparatus and method for interference cancellation robust to carrier frequency offset in wireless communication system

Publications (1)

Publication Number Publication Date
WO2018147520A1 true WO2018147520A1 (en) 2018-08-16

Family

ID=63107652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008959 WO2018147520A1 (en) 2017-02-07 2017-08-17 Interference cancellation apparatus and method robust to frequency offset in wireless communication system

Country Status (2)

Country Link
KR (1) KR101962273B1 (en)
WO (1) WO2018147520A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245220A1 (en) * 2004-04-23 2005-11-03 Ntt Docomo, Inc. Signal reception device, signal transmission device, radio communication system, and signal reception method
US20070248172A1 (en) * 2006-04-20 2007-10-25 Mehta Neelesh B System and method for transmitting signals in cooperative base station multi-user MIMO networks
EP2843892A1 (en) * 2013-09-03 2015-03-04 Alcatel Lucent Channel dependent subband pulse shaping for multiuser multicarrier signals
US20160164712A1 (en) * 2014-12-08 2016-06-09 Vodafone Gmbh Orthogonal multicarrier transmission system using conjugate-root offset-qam
US20160373172A1 (en) * 2014-03-07 2016-12-22 Vodafone Gmbh Walsh-hadamard transformed gfdm radio transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842563B1 (en) * 2004-06-05 2008-07-01 삼성전자주식회사 Fbm-based multiple access technique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245220A1 (en) * 2004-04-23 2005-11-03 Ntt Docomo, Inc. Signal reception device, signal transmission device, radio communication system, and signal reception method
US20070248172A1 (en) * 2006-04-20 2007-10-25 Mehta Neelesh B System and method for transmitting signals in cooperative base station multi-user MIMO networks
EP2843892A1 (en) * 2013-09-03 2015-03-04 Alcatel Lucent Channel dependent subband pulse shaping for multiuser multicarrier signals
US20160373172A1 (en) * 2014-03-07 2016-12-22 Vodafone Gmbh Walsh-hadamard transformed gfdm radio transmission
US20160164712A1 (en) * 2014-12-08 2016-06-09 Vodafone Gmbh Orthogonal multicarrier transmission system using conjugate-root offset-qam

Also Published As

Publication number Publication date
KR101962273B1 (en) 2019-07-17
KR20180091550A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
CN103081425B (en) For Carrier frequency offset estimation and the method and apparatus of offset correction of carrier frequency
WO2017131457A1 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
CN108352955B (en) Apparatus and method for generating and using pilot signals
WO2013022270A2 (en) Receiving device of ofdm communication system and method for alleviating phase noise thereof
WO2015093711A1 (en) Lte frame synchronization detection method and apparatus and relay apparatus applying same
WO2009104909A2 (en) Apparatus and method for estimating i/q unbalance parameters in ofdm receiver
WO2016182288A1 (en) Apparatus and mehtod for synchronization signal detection
CN109714289A (en) A kind of frequency deviation estimating method and device of CP-OFDM system
KR102469314B1 (en) Method and apparatus for obtaining channel information in polarization division duplex systems
WO2018088620A1 (en) Method for compensating for distortion of subcarrier by using single-tap equalizer in ofdm system and apparatus therefor
KR20080012442A (en) Apparatus and method for detecting considered frequency and timing offset in multiple antenna system
CN113678416B (en) Cyclic preamble for joint channel and phase noise estimation
WO2012030028A1 (en) Apparatus and method for i/q offset cancellation in sc-fdma system
WO2017061670A1 (en) Method for transmitting feedback information in wireless communication system and device therefor
EP2499797B1 (en) Channel estimation in a multi-user mimo-ofdm system in the presence of user terminal symbol-specific phase offsets
WO2016195328A1 (en) Device and method for detecting filter bank multi carrier wave symbols in wireless communication system
WO2018147520A1 (en) Interference cancellation apparatus and method robust to frequency offset in wireless communication system
WO2016163748A1 (en) Device and method for detecting transmission signal
WO2015131501A1 (en) Method and system for channel estimation for coherent optical communication
JP5342449B2 (en) CFO and DCO distortion amount estimation method, received signal correction method using the same, and receiving apparatus
CN111064524A (en) Polarization-independent frequency offset estimation method and system
JP2012516581A (en) Interference elimination
WO2018066766A1 (en) Method and apparatus for estimating channel in communication system
Abhayawardhana et al. Residual frequency offset correction for coherently modulated OFDM systems in wireless communication
WO2017034291A1 (en) Method and apparatus for estimating frequency offset in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895954

Country of ref document: EP

Kind code of ref document: A1