WO2018147491A1 - Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method - Google Patents

Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method Download PDF

Info

Publication number
WO2018147491A1
WO2018147491A1 PCT/KR2017/001775 KR2017001775W WO2018147491A1 WO 2018147491 A1 WO2018147491 A1 WO 2018147491A1 KR 2017001775 W KR2017001775 W KR 2017001775W WO 2018147491 A1 WO2018147491 A1 WO 2018147491A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pollution degree
hydraulic oil
piston
port
Prior art date
Application number
PCT/KR2017/001775
Other languages
French (fr)
Korean (ko)
Inventor
주진무
박용식
Original Assignee
대모 엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대모 엔지니어링 주식회사 filed Critical 대모 엔지니어링 주식회사
Publication of WO2018147491A1 publication Critical patent/WO2018147491A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/305Arrangements for breaking-up hard ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1447Pistons; Piston to piston rod assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems

Definitions

  • the present invention relates to a hydraulic breaker, a hydraulic oil monitoring system and a hydraulic oil monitoring method, and more particularly, to a breaker having a cylinder and a piston moved on the cylinder, a hydraulic oil monitoring system and a hydraulic oil monitoring method.
  • a breaker is a device used to crush a rock by hitting a chisel in contact with an object through a reciprocating motion of a piston, and a hydraulic attachment form that is mounted on a heavy equipment vehicle such as an excavator is mainly used in a large construction site. .
  • the conventional breaker has a long stroke mode that increases the stroke distance of the piston so that the impact force is strengthened for hard rock crushing according to the operator's operation, and the shot speed is improved even when sacrificing some impact force for soft rock crushing. It is configured to change the short stroke mode.
  • the piston reciprocating on the cylinder may be scratched on the outer surface when the hydraulic fluid is contaminated due to the inflow of foreign matter, such that the oil film is broken, causing unintentional friction between the piston and the cylinder.
  • Such friction can increase the debris generated from the piston and the cylinder surface, and the vicious cycle can be repeated which worsens the contamination of the working oil.
  • contamination of the hydraulic fluid can have serious consequences on the performance and durability of the piston, such as increased vibration and reduced impact force of the piston.
  • the present invention is to solve the above problems, to detect whether the hydraulic oil of the hydraulic breaker is contaminated, and analyzes the pollution degree information to inform the user according to a predetermined condition or hydraulic breaker, hydraulic oil for controlling the movement of the piston It is to provide a system and a method for monitoring oil.
  • a hydraulic breaker a cylinder having a plurality of hydraulic ports, a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port, the hydraulic pressure connected to the hydraulic port Installed on the line, the pollution degree sensor for detecting pollution degree information including inflow pollution degree for the incoming hydraulic oil and discharge pollution degree for the discharged hydraulic oil and the detected pollution degree information to determine whether or not the hydraulic fluid is contaminated If it is determined that the contamination is a hydraulic breaker including a transmission module for outputting the pollution degree information to the controller for performing a warning operation.
  • a hydraulic oil monitoring system comprising: a pollution degree sensor installed on a hydraulic line connected to the hydraulic port, and configured to detect pollution degree information including an contamination level of an inflow pollution concerning the incoming hydraulic fluid and an emission pollution level of the discharged hydraulic oil;
  • a hydraulic fluid monitoring system may be provided that includes a controller configured to perform a warning operation by determining that the hydraulic fluid is contaminated when the predetermined condition is satisfied based on the pollution degree information.
  • a method for monitoring hydraulic fluid comprising: a chisel hitting an object according to a reciprocating motion of a piston in a cylinder, and a contamination sensor provided on a hydraulic line connected to a hydraulic port provided on the cylinder
  • a hydraulic fluid monitoring method may include providing a pollution degree information regarding hydraulic oil flowing into or out of the furnace, and performing a warning operation when a controller satisfies a predetermined condition based on the detected pollution degree information.
  • the hydraulic fluid monitoring system and the hydraulic fluid monitoring method when the pollution degree information of the hydraulic fluid is sensed and the warning is made to the user according to a predetermined condition when judging based on the detected pollution degree information, By controlling the movement of the, it is effective in maintaining the performance and durability of the hydraulic breaker.
  • the warning for notifying the user may include a degree of contamination of the hydraulic oil, a need for replacement of the hydraulic oil, and whether parts such as a piston are damaged.
  • FIG. 1 is a schematic diagram of construction equipment including a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a hydraulic breaker according to an embodiment of the present invention.
  • 5 and 6 are diagrams illustrating pollution degree information detected by a pollution degree sensor according to an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a hydraulic oil monitoring system according to an embodiment of the present invention.
  • a hydraulic breaker a cylinder having a plurality of hydraulic ports, a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port, the hydraulic pressure connected to the hydraulic port Installed on the line, the pollution degree sensor for detecting pollution degree information including inflow pollution degree for the incoming hydraulic oil and discharge pollution degree for the discharged hydraulic oil and the detected pollution degree information to determine whether or not the hydraulic fluid is contaminated If it is determined that the contamination is a hydraulic breaker including a transmission module for outputting the pollution degree information to the controller for performing a warning operation.
  • the hydraulic port includes a forward port connecting the hydraulic source and the rear chamber of the cylinder for the forward and backward movement of the piston, the forward port, the rear chamber from the hydraulic source during the forward movement of the piston Hydraulic oil is supplied in the direction, hydraulic fluid is discharged from the rear chamber toward the hydraulic source during the backward movement of the piston, and the contamination sensor is disposed on the hydraulic line connected to the forward port, The inflow contamination level of the hydraulic oil flowing in the direction of the rear chamber from the hydraulic source may be sensed, and the discharge pollution degree of the hydraulic fluid discharged from the rear chamber toward the hydraulic source during the backward movement of the piston.
  • the hydraulic port includes a reverse port connecting the hydraulic source and the front chamber of the cylinder for the backward movement of the piston and a discharge port for discharging the hydraulic oil from the front chamber for the forward movement of the piston
  • the sensor is installed on a hydraulic line connected to the reverse port and the hydraulic source and installed on an oil pressure line connected to the inlet contamination sensor and the discharge port to detect the oil contamination level of the hydraulic oil flowing into the front chamber. It may include a discharge pollution sensor for detecting the discharge pollution of the operating oil discharged from the front chamber.
  • the discharge port may include a hydraulic tank port for discharging the hydraulic oil from the front chamber in the direction of the hydraulic tank, the discharge pollution sensor may be installed on the hydraulic line connected to the hydraulic tank port.
  • a hydraulic oil monitoring system comprising: a pollution degree sensor installed on a hydraulic line connected to the hydraulic port, and configured to detect pollution degree information including an contamination level of an inflow pollution concerning the incoming hydraulic fluid and an emission pollution level of the discharged hydraulic oil;
  • the hydraulic oil monitoring system may include a controller configured to perform a warning operation by determining that the hydraulic oil is contaminated.
  • the predetermined condition may be a condition that a contamination value of the pollution degree information is equal to or greater than a predetermined reference contamination value.
  • the predetermined condition may be a condition in which the frequency of the contamination value of the pollution degree information is greater than or equal to a predetermined reference contamination value.
  • the predetermined condition may be a condition in which a difference value between the inflow pollution level of the pollution degree information and the emission pollution degree of the pollution degree information is equal to or greater than a predetermined reference difference value.
  • the inflow pollution degree and the discharge pollution degree may be a pollution degree with respect to the hydraulic oil flowing in and the hydraulic oil discharged when the piston reciprocates once.
  • the controller may further include an output module configured to output a video or audio signal.
  • the hydraulic oil may output a warning message through the output module.
  • the controller may stop the reciprocating motion of the piston when it is determined that the hydraulic oil is contaminated.
  • And-the hydraulic breaker connects the hydraulic source and the rear chamber of the cylinder for the forward movement of the piston or the control valve for discharging the hydraulic oil from the rear chamber of the cylinder for the backward movement and the flow of the hydraulic oil. And further comprising a shutoff valve for selectively blocking the controller.
  • the controller may control the shutoff valve so that the shutoff valve blocks the flow of the hydraulic oil when it is determined that the hydraulic oil is contaminated.
  • And-the shutoff valve selectively shuts off the flow of the hydraulic oil directed to the control valve-the controller is configured to shut off the shutoff valve so that the shutoff valve shuts off the flow of the hydraulic oil when it is determined that the hydraulic oil is contaminated. Can be controlled.
  • the apparatus may further include an output module configured to output an image or an audio, wherein the controller outputs a warning message through the output module when the pollution value of the pollution degree information is greater than or equal to a first reference pollution value, and the pollution value of the pollution degree information.
  • the reciprocating motion of the piston may be stopped when the second reference contamination value is greater than the first reference contamination value.
  • a hydraulic fluid monitoring method may include providing a pollution degree information regarding the discharged hydraulic oil, and performing a warning operation when a controller satisfies a predetermined condition based on the detected pollution degree information.
  • FIG. 1 is a schematic diagram of construction equipment including a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a hydraulic breaker according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a hydraulic breaker according to an embodiment of the present invention.
  • 5 and 6 are diagrams illustrating pollution degree information detected by a pollution degree sensor according to an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a hydraulic oil monitoring system according to an embodiment of the present invention.
  • the height direction may mean the up and down direction with reference to Figures 2, 3 and 4.
  • the construction equipment 100 is equipment for performing a hitting operation on an object.
  • Construction equipment 100 for the blow operation is mainly implemented in the form that the hydraulic breaker 1000 is mounted as an attachment to a heavy-duty vehicle such as an excavator.
  • the hydraulic breaker 1000 is a device that performs an operation of hitting an object.
  • hydraulic breaker 1000 in the present invention is not limited to the above-described examples, it should be understood as a concept encompassing all other types of hitting device that performs a function of hitting the object in addition to the hydraulic breaker.
  • the hydraulic breaker 1000 is generally, but not necessarily, an attachment type mounted to a heavy-duty vehicle, ie, the carrier 120, and may also exist in an independent form from the carrier 120, such as a form directly handled by an operator.
  • the carrier 120 may be largely divided into a driving body 121 and a rotating body 122.
  • the traveling body 121 is mainly provided in a crawler type or a wheel type, and in some cases, may be a crane type or a truck type.
  • the rotating body 122 is mounted on the traveling body 121 to be rotatable about an axis in a direction perpendicular to the ground.
  • the rotating body 122 is provided with a connecting member 123 such as a boom or an arm.
  • the end of the connection member 123 may be detachably attached to the hydraulic breaker 1000 in the form of an attachment or fastened through the coupler 140.
  • the connecting member 123 is mainly two or more members are fastened in a link manner, connected to the cylinder can be bent or stretched by the expansion and contraction of the cylinder, stretching operation and the like.
  • the connection member 123 may position the hydraulic breaker 1000 attached to the end by the operation on the hit.
  • the carrier 120 may apply hydraulic pressure to the hydraulic breaker 1000 so that the mounted hydraulic breaker 1000 may operate, or in addition, the parts of the carrier 120 including the boom or the arm may be hydraulically applied to the coupler 140, or the like.
  • Hydraulic source 160 for supplying the hydraulic tank 160a for storing the operating oil may be installed.
  • a cabin 124 on which the operator boards is provided on the rotating body 122 so that the user can operate the carrier 120 or the hydraulic breaker 1000 by using a manipulation device such as a handle, a lever, or a button in the cabin 124.
  • a manipulation device such as a handle, a lever, or a button in the cabin 124.
  • the hydraulic breaker 1000 may include a mounting bracket 1200, a main body 1400, and a chisel 1600.
  • the main body 1400 is a site for generating the striking force in the hydraulic breaker 1000, and has a cylinder 1430 and a piston 1440 accommodated in the cylinder 1430 therein for the hydraulic oil applied from the hydraulic source 160.
  • the chisel 1600 is a portion for directly hitting the hitting object, and the lower side of the main body 1400 (the piston 1440 in the following description) moves forward (extension) so that its upper end hits the lower end of the piston 1440. It defines downward, and is arrange
  • the mounting bracket 1200 is coupled to the upper end of the main body 1400, and is configured to connect the carrier 120 and the main body 1400.
  • the main components of the main body 1400 may be the cylinder 1430 and the piston 1440.
  • the piston 1440 is provided in a cylindrical shape
  • the cylinder 1430 may be provided in a hollow cylindrical shape so that the piston 1440 is inserted to reciprocate.
  • the inner surface 1437 of the cylinder is provided with various hydraulic ports 1433, 1434, 1435, 1436, and 1438 for supplying hydraulic pressure to the interior of the cylinder 1430 or for discharging the hydraulic pressure from the interior of the cylinder 1430.
  • the piston 1440 includes at least a small diameter portion 1446, a first large diameter portion 1444 positioned above the small diameter portion 1446, and a second large diameter portion 1442 positioned below the small diameter portion 1446. Can be.
  • the piston 1440 acts as a cylinder. It is possible to reciprocate forward and backward within 1430.
  • the front head 1450 and the head cap 1420 may be connected to the lower and upper ends of the cylinder 1430, respectively.
  • the front head 1450 is provided with a chisel pin (not shown) on which the chisel 1600 is placed, and the chisel 1600 is hit by the lower end of the piston 1440 when the piston 1440 is advanced by the chisel pin (not shown). Be placed in the proper position.
  • the front head 1450 includes a dust protector (not shown) for preventing foreign matter from entering the cylinder 1430 when the piston 1440 is reciprocated, or a sound absorbing member (not shown) for reducing the impact sound.
  • a dust protector for preventing foreign matter from entering the cylinder 1430 when the piston 1440 is reciprocated
  • a sound absorbing member (not shown) for reducing the impact sound.
  • the head cap 1420 has a gas chamber (not shown) therein, and the gas chamber may give an appropriate damping effect to the piston 1440 as its volume is compressed when the piston 1440 is retracted.
  • the structure or structure of the hydraulic breaker 1000 described above is only one embodiment of the hydraulic breaker 1000 according to the present invention, and the hydraulic breaker 1000 according to the present invention may be similar to the above-described configuration or structure, although somewhat different. It is to be understood that other striking devices having functions are also included.
  • a piston 1440 is inserted into the cylinder 1430, and a chisel 1600 is disposed below the piston 1440.
  • the piston 1440 may include the small diameter portion 1446, the first large diameter portion 1444 positioned above the small diameter portion 1446, and the second large diameter portion 1442 positioned below the small diameter portion 1446. have.
  • the outer diameter of the first large diameter portion 1444 and the second large diameter portion 1442 may be substantially the same as the inner diameter of the cylinder 1430, and thus, the lower side and the second large portion of the cylinder 1430 may be disposed inside the cylinder 1430.
  • the front chamber 1431 may be formed between the necks 1442, and the rear chamber 1432 may be formed between the upper side of the cylinder 1430 and the first large diameter part 1444.
  • a reverse port 1433 is formed in the front chamber 1431, and the reverse port 1433 may be connected to the hydraulic source 160 through the reverse line 1433a.
  • hydraulic pressure may be applied to the front chamber 1431 by the hydraulic oil flowing from the hydraulic source 160 through the reverse line 1433a to the reverse port 1433.
  • the hydraulic pressure applied to the front chamber 1431 may act on the stepped surface 1442a of the second large diameter portion 1442, and a reverse force may be applied to the piston 1440.
  • a forward port 1434 is formed in the rear chamber 1432, and the forward port 1434 may be connected to the control valve 1460 through the forward line 1434a.
  • the control valve 1460 may be disposed in either one of the forward position 1460-2 or the reverse position 1460-1, and the forward position 1460-2 may move the forward line 1434a to the hydraulic source 160. ), And the forward line 1434a may be connected to the hydraulic tank 160a in the reverse position 1460-1.
  • the hydraulic pressure applied to the rear chamber 1432 acts on the stepped surface 1444a of the first large diameter portion 1444, and a forward force is applied to the piston 1440.
  • the rear chamber 1432 is connected to the hydraulic tank 160a via the forward line 1434a and the control valve 1460, and the forward position ( The hydraulic oil introduced into the rear chamber 1432 in 1460-2 is discharged to the hydraulic tank 160a.
  • the stepped surface 1444a of the first large diameter portion 1444 has an area larger than the stepped surface 1442a of the second large diameter portion 1442 so that the control valve 1460 is positioned at the forward position 1460-2.
  • the forward force may be greater than the backward force so that the piston 1440 may advance.
  • the reciprocating motion of the piston 1440 can be implemented as the control valve 1460 is disposed in the forward position 1460-2 or the backward position 1460-1.
  • the position control of the control valve 1460 may be hydraulic.
  • control valve 1460 may be a hydraulic valve in which the forward position 1460-2 and the reverse position 1460-1 may be selected according to the input hydraulic signal.
  • Both ends of the control valve 1460 may be provided with a forward action surface 1464 and a reverse action surface 1462 respectively connected to the hydraulic line.
  • the forward action surface 1464 may be connected to the forward control line 1464a branched into the long stroke line 1435a and the short stroke line 1434a.
  • Reverse action surface 1462 may be connected to hydraulic source 160 via reverse control line 1462a.
  • the forward acting surface 1464 has an area larger than the backward acting surface 1462, so that when the hydraulic pressure is applied to both acting surfaces, the control valve 1460 may be disposed at the forward position 1460-2. Accordingly, the piston 1440 may move forward.
  • the control valve 1460 may be disposed from the forward position 1460-2 to the reverse position 1460-1, and thus the piston 1440 may reverse.
  • the long stroke line 1435a is connected to the long stroke port 1435 formed in the cylinder 1430.
  • the long stroke port 1435 may be formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected or disconnected from the front chamber 1431 according to the position of the piston 1440.
  • the long stroke port 1435 has a front chamber 1431 when the piston 1440 is advanced so that the second large diameter portion 1442 is on the long stroke port 1435 or located below the long stroke port 1435. The connection with is cut off.
  • the long stroke port 1435 is connected to the front chamber 1431 when the piston 1440 is backward and the second large diameter portion 1442 is positioned above the long stroke port 1435.
  • the hydraulic pressure from the hydraulic source 160 is reverse line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435.
  • the control valve 1460 may be disposed at the forward position 1460-2 by being sequentially applied to the forward action surface 1464 through the long stroke line 1435a and the forward control line 1464a.
  • the short stroke line 1436a may be connected to the short stroke port 1434 formed in the cylinder 1430.
  • the short stroke port 1436 is formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected to or disconnected from the front chamber 1431 according to the position of the piston 1440, and the long stroke It may be formed at a position closer to the reverse port 1433 than to the port 1435.
  • the short stroke port 1434 is in contact with the front chamber 1431 when the piston 1440 is advanced so that the second large diameter portion 1442 is on the short stroke port 1434 or located ahead of the short stroke port 1434.
  • the connection is cut off.
  • the short stroke port 1434 is connected to the front chamber 1431 when the piston 1440 is backward and the second large diameter portion 1442 is located behind the short stroke port 1434.
  • a shift valve 1470 may be provided on the short stroke line 1436a to control a short circuit of the short stroke line 1436a.
  • the shift valve 1470 may be selectively disposed at any one of the long stroke position 1470-1 and the short stroke position 1470-2, and the short stroke line 1436a at the long stroke position 1470-1. ) And the short stroke line 1434a is connected at the short stroke position 1470-2.
  • the long stroke mode and the short stroke mode of the piston 1440 may be determined by the shift valve 1470.
  • the shift valve 1470 is disposed in the short stroke position 1470-2 and the second large diameter portion 1442 is located behind the short stroke port 1434 such that the short stroke port 1434 and the front chamber 1431 are positioned.
  • Hydraulic fluid is connected to the hydraulic source 160, the reverse line 1433a, the reverse port 1433, the front chamber 1431, the short stroke port 1434, the shift valve 1470, and the forward action surface 1464. Can be reached sequentially.
  • the piston 1440 may selectively perform reciprocating motion in the long stroke mode and the short stroke mode according to the position of the shift valve 1470.
  • the shift valve 1470 may automatically switch between the long stroke position 1470-1 and the short stroke position 1470-2 by the controller 180, and the long stroke position may be selected by the user. Switching between 1470-1 and the short stroke position 1470-2 may be performed.
  • the hydraulic fluid from the hydraulic source 160 via the reverse port 1433a along the reverse line 1433a to the front chamber (1431).
  • the hydraulic fluid is discharged from the front chamber 1431 along the short stroke line 1434a.
  • the long stroke port 1435 is opened as the piston 1440 further retracts, the hydraulic oil is discharged from the front chamber 1431 along the long stroke line 1435a.
  • the working oil is discharged along the advance line 1434a via the advance port 1434.
  • the working oil flows into the rear chamber 1432 via the forward port 1434 along the forward line 1434a.
  • the hydraulic oil is discharged along the hydraulic tank line 1438a via the hydraulic tank port 1438.
  • the pollution degree sensor 150 may be provided on a hydraulic line connected to the cylinder to detect the degree of contamination of the working oil flowing into or out of the cylinder to cause the piston to reciprocate.
  • the pollution degree sensor 150 may be provided to the advance line 1434a.
  • the pollution degree sensor 150 may include an inflow pollution degree sensor 150a or 150b and an emission pollution degree sensor 150a, 150c, 150d or 150e.
  • Inflow contamination sensors 150a and 150b may be provided on the inflow line 1433a which is a line into which the hydraulic fluid flows into the cylinder 1430, and the exhaust pollution sensors 150a, 150c, 150d, and 150e may be provided in the cylinder.
  • 1430 is provided to at least one of the long stroke line 1435a, the short stroke line 1436a, and the hydraulic tank line 1438a, which is a line through which the hydraulic oil is discharged to the outside, to detect the degree of contamination of the hydraulic oil flowing through each hydraulic line Can be.
  • the chamber causing the contamination by specifying the position of the pollution degree sensor.
  • the hydraulic breaker 1000 may further include a shutoff valve 1480 for selectively blocking the flow of the hydraulic oil.
  • the shutoff valve 1480 may be installed in a line through which the hydraulic oil is moved, and may selectively allow the flow of the hydraulic oil, or block the flow of the hydraulic oil.
  • the shutoff valve 1480 may allow the flow of the hydraulic oil in the connecting position (1480-2), and may block the flow of the hydraulic oil in the blocking position (1480-1).
  • shutoff valve 1480 is installed on the forward control line 1464a and moves forward from the long stroke port 1435 to the forward action surface 1464 from the hydraulic oil or the short stroke port 1434 to the forward action surface 1464. Allows the flow of hydraulic fluid to be transported to and may be blocked.
  • shutoff valve 1480 is disposed at the shutoff position 1480-1 to block the flow of the hydraulic oil, no hydraulic pressure is applied to the forward action surface 1464, so that the control valve 1460 is moved backward. Cannot be converted from 1) to the advance position 1460-2.
  • hydraulic fluid is not supplied from the hydraulic source 160 to the rear chamber 1432 by the control valve 1460 in the reverse position 1460-1, so that the reciprocating motion of the piston 1440 may be stopped.
  • the installation position of the shutoff valve 1480 is not limited to the above-mentioned position, but may be installed on the reverse line 1433a or may also be installed on the advance line 1434a.
  • Debris may penetrate into the hydraulic fluid passing through the front chamber 1431 and the rear chamber 1432 to generate a reciprocating motion of the piston 1440, during the striking of the hydraulic breaker 1000.
  • the scratch generated on the piston 1440 may cause friction between the inside of the cylinder 1430 and the surface of the piston 1440, which may cause debris to contaminate the hydraulic fluid.
  • the contamination of the hydraulic fluid may increase due to various reasons, such as a failure of the hydraulic oil itself, which is directly connected to the performance and durability of the hydraulic breaker 1000, as described above, and thus needs to be detected and managed.
  • a pollution degree sensor 150 may be provided to detect the pollution level of the working oil.
  • the pollution degree sensor 150 may be provided on the reverse line 1433a to detect inflow contamination information of the hydraulic oil flowing into the front chamber 1431, and the pollution degree information of the hydraulic oil flowing into or discharged into the rear chamber 1432 may be provided. It may be provided on advance line 1434a for sensing. In addition, it may be provided on the short stroke line (1436a), long stroke line (1435a), hydraulic tank line (1438a) in order to detect the discharge pollution degree information of the hydraulic oil discharged out of the front chamber (1431).
  • the pollution degree sensor 150 may be a turbidity sensor using an optical sensor including a light emitting unit for outputting an optical signal and a light receiving unit for receiving the optical signal and outputting a corresponding current flow.
  • an electric conductivity sensor that detects an electric conductivity
  • the present invention is not limited thereto, and any sensor capable of detecting whether or not the oil is contaminated or whether or not a float or debris is present in the oil is contaminated. Can be used).
  • the scattering pattern may vary according to the light source and the particle size. Since the particle size can be derived by analyzing the scattering pattern of the light sensed in the hydraulic fluid, the user can be provided with information on the particle size, if necessary.
  • the user may be provided with information on the particle type by analyzing it.
  • various information such as the cause and region of occurrence of the contamination, a fragment of the piston, and a fragment of the strike target, can be derived.
  • the hydraulic breaker 1000 may be further provided with a transmission module (not shown).
  • the transmission module may be configured to output pollution degree information to the controller 180.
  • the transmission module may be configured to receive the pollution degree information detected by the pollution degree sensor 150 from the pollution degree sensor 150 and transmit the pollution degree information to the controller 180.
  • the transmission module may output the pollution degree information from the pollution degree sensor 150 to the controller 180 through wired communication, and may output the pollution degree information from the pollution degree sensor 150 to the controller 180 through wireless communication.
  • wireless communication of the transmission module may include Bluetooth Low Energy (BTLE) or Zigbee. Since the communication between the pollution degree sensor 150 and the controller 180 does not require a high bandwidth, low power communication such as BTLE or direct rain may be desirable.
  • BTLE Bluetooth Low Energy
  • Zigbee Zigbee
  • the communication method between the controller 180 and the pollution degree sensor 150 is not necessarily limited thereto.
  • the controller 180 may determine whether the hydraulic oil of the piston 1440 is contaminated based on the detected contamination degree information.
  • the controller 180 may perform a warning operation when it is determined that the hydraulic oil is contaminated.
  • the warning for notifying the user may include a degree of contamination of the hydraulic oil determined based on the pollution degree information detected by the pollution degree sensor, a need for replacement of the hydraulic oil, and whether parts such as a piston are damaged.
  • the controller 180 is an electronic circuit that processes and calculates various electronic signals.
  • the controller 180 receives pollution degree information or a signal from the pollution degree sensor 150, and calculates and processes information / data.
  • Other configurations of the breaker 1000 and construction equipment 100 can be controlled.
  • the controller 180 is typically located on the carrier 120, but may also be located on the hydraulic breaker 1000.
  • controller 180 does not necessarily need to be implemented as a single object.
  • controller 180 may be implemented as a plurality of controllers 180 that can communicate with each other.
  • the controller 180 may be distributedly disposed such that a part thereof is installed on the hydraulic breaker 1000 side and the other part is installed on the carrier 120, and the controller 180 is wirelessly distributed between the distributed controllers 180. You can do that by collaborating by performing wired communication.
  • controllers 180 when a plurality of controllers 180 are distributed, some of them simply transmit signals or information to a slave type, and others receive various signals or information to a master type to process / operate and command / It may also take the form of performing control.
  • controller 180 The description of the controller 180 will be described in more detail when describing the oil monitoring system below.
  • the hydraulic oil monitoring system is a system for monitoring the contamination of the hydraulic oil which is the power causing the reciprocating motion of the piston 1440 in the hydraulic breaker 1000 described above.
  • the monitoring system may monitor whether the working oil is contaminated by using the pollution degree information detected by the pollution degree sensor 150 described above. In addition, if the monitoring determines that the working oil is contaminated, a warning operation may be performed.
  • the hydraulic fluid monitoring system may include a pollution degree sensor 150 and a controller 180, and when the controller 180 satisfies a predetermined condition based on the pollution degree information detected from the pollution degree sensor 150, the hydraulic oil may be It may be considered contaminated and a warning action may be taken.
  • the predetermined condition may be a reference condition for determining whether the hydraulic oil is contaminated.
  • the controller 180 may determine that the working oil is contaminated when the degree of contamination information detected from the pollution degree sensor 150 or data calculated / converted based on the degree of contamination information satisfies a predetermined condition. If it is not satisfied, it can be determined that the working oil is in a normal state.
  • the predetermined condition may be set by the user or may be set based on the pollution degree information obtained from the pollution degree sensor 150 in a normal state in which the working oil is not polluted.
  • hydraulic fluid monitoring system may further include an output module 190 for outputting an image or an audio.
  • the module may further include an output module 190.
  • the output module 190 may be implemented as, for example, an image output module that mainly outputs an image or an audio output module that outputs an audio.
  • various output devices for transmitting information to the user may be adopted as the output module 190.
  • the output module 190 may directly output an image or an audio to a user, and may be configured to include a USB port for transmitting an image / audio signal to another device that directly outputs an image or an audio to a user.
  • the output module 190 may be a component capable of outputting an image or an audio and outputting a warning message about the oil contamination to the user.
  • the output module 190 may be installed in the breaker 1000 or may be installed in the carrier 120.
  • the controller 180 may control the output module 190 to output a warning message about the oil contamination to the user through the output module 190.
  • the controller 180 and the output module 190 may enable wired communication or wireless communication.
  • the predetermined condition may be a condition that the contamination value of the pollution degree information is equal to or greater than the predetermined reference contamination values K1 and K2.
  • the hydraulic breaker 1000 may be provided with a first pollution degree sensor 150a on the advance line 1434a.
  • the first pollution degree sensor 150a may detect the contamination level of the hydraulic oil flowing into the rear chamber 1432 during the forward movement of the piston 1440, and may be discharged from the rear chamber 1432 during the backward movement of the piston 1440. The degree of pollution of the discharged oil can be detected.
  • the first pollution degree sensor 150a may be an inflow pollution degree sensor, and at the same time, it may be an emission pollution degree sensor.
  • FIG. 5 illustrates pollution degree information detected by the first pollution degree sensor 150a.
  • Pollution degree information of the hydraulic oil flowing into the rear chamber 1432 while the piston 1440 is advanced is detected at a time interval of 0 to t1, t2 to t3, and t4 to t5, and the rear chamber ( Contamination information of the hydraulic oil discharged from 1432) is detected in the time t1 ⁇ t2, t3 ⁇ t4, t5 ⁇ t6.
  • K1 and K2 are predetermined reference contamination values, and when the detected contamination value is K1 or more as in the sections t1 to t2 and K2 or more in the sections t3 to t4 and t5 to t6, the predetermined condition is satisfied.
  • the controller 180 performs a predetermined operation of notifying the user of pollution degree information.
  • the predetermined condition may be a condition in which the frequency of the contamination value of the hydraulic oil is equal to or greater than the predetermined reference contamination value K1 and K2.
  • the contamination sensor is an optical sensor or an electrical conductivity sensor
  • the turbidity or the electrical conductivity may be temporarily different due to the direction of the fragment, the nonuniformity of impurities, and the like.
  • the piston 1440 detects the degree of contamination of the hydraulic oil introduced or discharged during the reciprocating motion a plurality of times, and compares the number of times that the hydraulic oil is greater than or equal to a predetermined reference contamination value with respect to the total number of piston reciprocating motions.
  • the frequency at which the contamination value is equal to or greater than a predetermined reference contamination value is obtained. Only when the acquired frequency is more than a predetermined reference frequency value, it is determined that the working oil is contaminated, thereby excluding errors and securing a high level of reliability. For example, as shown in FIG. 5, in six sections from 0 to t6, three times when the contamination value is K1 or more, and two times when K2 or more is detected, the predetermined reference frequency value is set to 40%. In this case, since it is equal to or greater than the predetermined reference frequency value for K1, the controller 180 can send a warning message, and since the K2 is less than or equal to the predetermined reference frequency value, the controller 180 does not take any action.
  • the frequency of the contamination value of the hydraulic fluid is more than the predetermined reference contamination value may be a condition of more than the predetermined reference frequency value.
  • the controller 180 may determine that the hydraulic oil is contaminated.
  • the controller 180 when the difference between the contamination value of the incoming hydraulic oil and the contamination value of the discharged hydraulic oil is equal to or more than a predetermined reference difference value DELTA K, the controller 180 notifies the user of the contamination level information as it satisfies a predetermined condition. Perform a predetermined operation.
  • the contamination value of the hydraulic oil flowing in and the pollution value of the hydraulic oil discharged may be pollution values of the hydraulic oil and the hydraulic oil introduced during one continuous backward movement and one forward movement of the piston 1440.
  • the hydraulic breaker 1000 may be provided with a second pollution degree sensor 150b on the reverse line 1433a, and a third pollution degree sensor on the hydraulic tank line 1438a.
  • 150c may be provided on the long stroke line 1435a, the fourth pollution degree sensor 150d, and the fifth pollution degree sensor 150e on the short stroke line 1436a, respectively.
  • the second pollution degree sensor 150b may detect a pollution degree of the working oil flowing into the front chamber 1431 during the backward movement of the piston 1440, and the third pollution degree sensor 150c may detect the contamination during the forward movement of the piston 1440.
  • the degree of contamination of the hydraulic oil discharged from the chamber 1431 can be detected.
  • the fourth pollution degree sensor 150d may detect a degree of contamination of the hydraulic oil discharged from the front chamber 1431 as the long stroke port 1435 is opened.
  • the fifth pollution degree sensor 150e may detect a degree of contamination of the hydraulic oil discharged from the front chamber 1431 as the short stroke port 1434 opens.
  • the pollution degree information of the working oil flowing into the front chamber 1431 detected by the second pollution degree sensor 150b provided on the reverse line 1433a is shown in solid lines, and the emission pollution degree sensor
  • a discharge port-as a whole refers to a port through which the hydraulic oil discharged from the front chamber passes, there may be a short stroke port (1436), a long stroke port 1435, a hydraulic tank port (1438) and the like.
  • the contamination level information of the working oil detected by the third pollution degree sensor 150c, the fourth pollution degree sensor 150d, and the fifth pollution degree sensor 150e provided on the hydraulic line discharged from the front chamber 1431 via a broken line. Illustrated. When used without replacing the hydraulic fluid for a long time as shown in Figure 6 may be gradually increased pollution.
  • K1 and K2 are predetermined reference contamination values, and if the detected contamination value is K1 or K2 or more, the predetermined condition is satisfied, so that the controller 180 performs a predetermined operation of notifying the user of pollution degree information.
  • the controller 180 when the difference between the contamination value of the incoming hydraulic oil and the contamination value of the discharged hydraulic oil is equal to or more than a predetermined reference difference value DELTA K, the controller 180 notifies the user of the contamination level information as it satisfies a predetermined condition. Perform a predetermined operation.
  • the controller 180 determines that the working oil is contaminated based on the pollution degree information detected by the first pollution degree sensor 150a, impurities in the cylinder 1430 or scratches generated on the piston 1440 may be used. Where the inducing factor of the hydraulic oil contamination is located may be specified as the rear chamber (1432). The controller 180 may inform the user of the location of the specified contamination causing factor with a warning message.
  • the controller 180 compares the pollution of the hydraulic oil flowing into the front chamber 1431 from the second pollution degree sensor 150b with the contamination of the hydraulic oil discharged from the front chamber 1431 in the third pollution degree sensor 150c.
  • the front chamber 1431 may be located where the inducing factor of the hydraulic oil contamination, such as an impurity inside the cylinder 1430 or a scratch generated on the piston 1440, is located.
  • the controller 180 may inform the user of the location of the specified contamination causing factor with a warning message.
  • the fourth pollution degree sensor 150d and the fifth pollution degree sensor 150e also detect pollution levels of the hydraulic oil discharged from the front chamber 1431, and according to the function of specifying a chamber in which the cause of the hydraulic oil contamination is located, the third pollution degree The same role as the sensor 150c may be performed.
  • the controller 180 may output a warning message to the user through the output module 190.
  • the controller 180 may stop the reciprocating motion of the piston 1440 when it is determined that the hydraulic fluid is contaminated.
  • the controller 180 may output a warning message to the user through the output module 190 when the pollution value of the pollution degree information is equal to or greater than the first pollution value K1.
  • the reciprocating motion of the piston 1440 may be stopped when the pollution value of the pollution degree information is greater than or equal to the second pollution value K2 greater than the first pollution value K1.
  • the controller 180 may notify the user of the fact through the output module 190 when the degree of contamination of the hydraulic fluid is a warning level, and the piston 1440 without the user's separate operation when the degree of contamination of the hydraulic fluid is more than the warning level. ) The reciprocating motion can be stopped.
  • the controller 180 can prevent damage to the piston 1440 and the cylinder 1430 due to the increase in the degree of contamination of the hydraulic oil of the piston 1440.
  • controller 180 may control the shutoff valve 1480 to block the flow of the hydraulic oil when the shutoff valve 1480 determines that the hydraulic oil is contaminated.
  • the shutoff valve 1480 when the controller 180 does not control the shutoff valve 1480, the shutoff valve 1480 is in a connection position 1480-2, and when the controller 180 controls the shutoff valve 1480.
  • the shutoff valve 1480 may be changed from the connecting position 1480-2 to the blocking position 1480-1.
  • the controller 180 may control the shutoff valve 1480 to be changed from the connection position 1480-2 to the shutoff position 1480-1, and as a result, the shutoff valve 1480 controls the flow of hydraulic oil. You can block.
  • the control valve 1460 is the reverse position 1460-. It is continuously maintained at 1), and as a result, the hydraulic oil of the hydraulic source 160 cannot flow into the rear chamber 1432, so that the reciprocating motion of the piston 1440 may not be implemented.
  • the controller 180 may control the shift valve 1470 to control the reciprocating motion of the piston 1440.
  • the controller 180 may control the piston 1440 to change to a short stroke state by controlling the shift valve 1470 when the piston 1440 determines that the hydraulic oil is contaminated in the long stroke state.
  • the piston 1440 may be stopped by controlling the shutoff valve 1480.
  • the controller 180 may sequentially control the shift valve 1470 and the shutoff valve 1480, so that when the piston 1440 is a long stroke, the controller 180 may sequentially change to a short stroke and stop again at the short stroke.
  • the user may recognize that the hydraulic fluid is contaminated by changing the reciprocating state of the piston 1440 by the control of the controller 180.
  • the warning operation of the controller 180 may mean an operation of outputting a warning message to the user through the output module 190 and / or changing the reciprocating motion state of the piston 1440.
  • the hydraulic oil monitoring method includes a step in which a chisel strikes an object according to the reciprocating motion of the piston 1440 in the cylinder 1430 (S10), and a pollution degree sensor provided on a hydraulic line connected to a hydraulic port provided on the cylinder 1430. Detecting a pollution degree information on the hydraulic fluid flowing into or out of the cylinder 1430 and performing a warning operation when the controller 180 satisfies a predetermined condition based on the detected pollution degree information ( S30) may be included.
  • the controller 180, the pollution degree sensor 150, the shutoff valve 1480, the shift valve 1470 and the output module Wireline communication or wireless communication is possible between 190, and the shutoff valve 1480, the shift valve 1470, and the output module 190 may be controlled by the control of the controller 180.
  • the predetermined reference contamination values K1 and K2, the predetermined reference difference value ⁇ K, and the predetermined reference frequency value may be input by the input unit 195, and the controller 180 is not contaminated with the hydraulic oil. May be calculated and set based on the pollution degree information obtained from the pollution degree sensor 150 at.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

Disclosed is a hydraulic breaker comprising: a cylinder having a plurality of hydraulic ports; a piston reciprocating inside the cylinder by means of a hydraulic pressure of a hydraulic fluid flowing in or discharged through the hydraulic ports; a contamination level sensor provided on hydraulic lines connected to the hydraulic ports and for detecting contamination level information comprising the inflow contamination level with respect to the inflow hydraulic fluid and the discharge contamination level with respect to the discharged hydraulic fluid; and a transmission module for, if the hydraulic fluid is determined for contamination on the basis of the detected contamination level information and is determined to be contaminated, outputting the contamination level information to a controller for performing a warning operation.

Description

유압식 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법Hydraulic breakers, hydraulic monitoring systems and hydraulic monitoring methods
본 발명은 유압식 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법에 관한 것으로서, 더욱 상세하게는 실린더 및 상기 실린더 상에서 이동되는 피스톤을 구비하는 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법에 관한 것이다.The present invention relates to a hydraulic breaker, a hydraulic oil monitoring system and a hydraulic oil monitoring method, and more particularly, to a breaker having a cylinder and a piston moved on the cylinder, a hydraulic oil monitoring system and a hydraulic oil monitoring method.
브레이커(breaker)는 피스톤의 왕복 운동을 통해 대상물에 접촉되는 치즐을 타격하여 암반 등을 파쇄하기 위해 사용되는 장치로, 대형 건설 현장 등에서는 굴삭기 등 중장비 차량에 장착되는 유압식 어태치먼트 형태가 주로 이용되고 있다.A breaker is a device used to crush a rock by hitting a chisel in contact with an object through a reciprocating motion of a piston, and a hydraulic attachment form that is mounted on a heavy equipment vehicle such as an excavator is mainly used in a large construction site. .
암반 파쇄 작업은 건설 기한 등으로 인하여 그 작업 속도가 중요한 요인의 하나로 작용한다. 따라서, 종래의 브레이커는 작업자의 조작에 따라 경암파쇄를 위해 타격력이 강화되도록 피스톤의 스트로크 거리를 길게 하는 롱 스트로크(long stroke) 모드와 연암 파쇄를 위해 다소 간의 타격력을 희생하더라도 타격속도가 향상되는 숏 스트로크 모드(short stroke) 모드를 변경하도록 구성되어 있다.Rock crushing work is one of the important factors due to the construction period, etc. the speed of work. Therefore, the conventional breaker has a long stroke mode that increases the stroke distance of the piston so that the impact force is strengthened for hard rock crushing according to the operator's operation, and the shot speed is improved even when sacrificing some impact force for soft rock crushing. It is configured to change the short stroke mode.
한편, 상기 실린더 상에 왕복 운동하는 피스톤은 이물질의 유입 등으로 인해 작동유가 오염이 되는 경우 외면에 스크래치가 발생될 수 있고, 이로 인해 유막이 깨져 피스톤과 실린더 간의 의도치 않은 마찰이 발생되게 된다. 이러한 마찰에 의해 피스톤과 실린더 표면 상으로부터 발생되는 파편이 증가될 수 있고, 다시 작동유의 오염을 악화시키는 악순환이 반복될 수 있다. 결과적으로, 작동유의 오염으로 인해 피스톤의 진동 증가 및 타격력의 감소 등 피스톤의 성능과 내구성에 심각한 결과를 초래할 수 있다. On the other hand, the piston reciprocating on the cylinder may be scratched on the outer surface when the hydraulic fluid is contaminated due to the inflow of foreign matter, such that the oil film is broken, causing unintentional friction between the piston and the cylinder. Such friction can increase the debris generated from the piston and the cylinder surface, and the vicious cycle can be repeated which worsens the contamination of the working oil. As a result, contamination of the hydraulic fluid can have serious consequences on the performance and durability of the piston, such as increased vibration and reduced impact force of the piston.
본 발명은 상기 문제를 해결하기 위한 것으로서, 유압 브레이커의 작동유의오염 여부를 감지하며, 오염도 정보를 분석하여 소정의 조건에 따라 사용자에게 그 정보를 알려주거나 피스톤의 운동을 제어하는 유압식 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법을 제공하고자 함이다.The present invention is to solve the above problems, to detect whether the hydraulic oil of the hydraulic breaker is contaminated, and analyzes the pollution degree information to inform the user according to a predetermined condition or hydraulic breaker, hydraulic oil for controlling the movement of the piston It is to provide a system and a method for monitoring oil.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-described problem, the objects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings. .
본 발명의 일 양상에 따르면, 유압식 브레이커로서, 복수의 유압 포트가 구비되는 실린더, 상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤, 상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서 및 감지된 상기 오염도 정보에 기초하여 작동유의 오염여부를 판단하고 작동유가 오염된 것으로 판단하는 경우 경고 동작을 수행하는 콘트롤러에 상기 오염도 정보를 출력하는 송신 모듈을 포함하는 유압식 브레이커가 제공될 수 있다.According to an aspect of the present invention, a hydraulic breaker, a cylinder having a plurality of hydraulic ports, a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port, the hydraulic pressure connected to the hydraulic port Installed on the line, the pollution degree sensor for detecting pollution degree information including inflow pollution degree for the incoming hydraulic oil and discharge pollution degree for the discharged hydraulic oil and the detected pollution degree information to determine whether or not the hydraulic fluid is contaminated If it is determined that the contamination is a hydraulic breaker including a transmission module for outputting the pollution degree information to the controller for performing a warning operation.
본 발명의 일 양상에 따르면, 복수의 유압 포트가 구비되는 실린더 및 상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤을 구비하는 유압식 브레이커의 작동유의 오염도를 모니터링하는 작동유 모니터링 시스템에 있어서, 상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서 및 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우 작동유가 오염된 것으로 판단하여 경고 동작을 수행하는 콘트롤러를 포함하는 작동유 모니터링 시스템이 제공될 수 있다.According to an aspect of the present invention, monitoring the contamination of the hydraulic oil of the hydraulic breaker having a cylinder having a plurality of hydraulic ports and a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port A hydraulic oil monitoring system, comprising: a pollution degree sensor installed on a hydraulic line connected to the hydraulic port, and configured to detect pollution degree information including an contamination level of an inflow pollution concerning the incoming hydraulic fluid and an emission pollution level of the discharged hydraulic oil; A hydraulic fluid monitoring system may be provided that includes a controller configured to perform a warning operation by determining that the hydraulic fluid is contaminated when the predetermined condition is satisfied based on the pollution degree information.
본 발명의 일 양상에 따르면, 작동유 모니터링 방법으로서, 실린더 내에서 피스톤의 왕복 운동에 따라 치즐이 대상물을 타격하는 단계, 상기 실린더 상에 제공되는 유압 포트에 연결된 유압 라인 상에 제공되는 오염도 센서가 실린더로 유입 또는 배출되는 작동유에 관한 오염도 정보를 감지하는 단계 및 콘트롤러가 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우 경고 동작을 수행하는 단계를 포함하는 작동유 모니터링 방법이 제공될 수 있다.According to an aspect of the present invention, a method for monitoring hydraulic fluid, comprising: a chisel hitting an object according to a reciprocating motion of a piston in a cylinder, and a contamination sensor provided on a hydraulic line connected to a hydraulic port provided on the cylinder A hydraulic fluid monitoring method may include providing a pollution degree information regarding hydraulic oil flowing into or out of the furnace, and performing a warning operation when a controller satisfies a predetermined condition based on the detected pollution degree information.
본 발명의 과제의 해결 수단이 상술한 해결 수단들로 제한되는 것은 아니며, 언급되지 아니한 해결 수단들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Means for solving the problems of the present invention are not limited to the above-described solutions, and the solutions not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings. Could be.
본 발명의 일 실시예에 따른 유압식 브레이커, 작동유 모니터링 시스템 및 작동유 모니터링 방법에 의하면, 작동유의 오염도 정보를 감지하며, 감지된 오염도 정보에 기초하여 판단할 때 미리 정해진 조건에 따라 사용자에게 경고를 하거나 피스톤의 운동을 제어함으로써, 유압식 브레이커의 성능 및 내구성 유지에 효과가 있다. 상기 사용자에게 알리는 경고는, 작동유의 오염 정도, 이에 따른 작동유의 교체 필요성 및 피스톤 등의 부품 손상 여부를 포함할 수 있다.According to the hydraulic breaker, the hydraulic fluid monitoring system and the hydraulic fluid monitoring method according to an embodiment of the present invention, when the pollution degree information of the hydraulic fluid is sensed and the warning is made to the user according to a predetermined condition when judging based on the detected pollution degree information, By controlling the movement of the, it is effective in maintaining the performance and durability of the hydraulic breaker. The warning for notifying the user may include a degree of contamination of the hydraulic oil, a need for replacement of the hydraulic oil, and whether parts such as a piston are damaged.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-described effects, and effects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings.
도 1은 본 발명의 실시예에 따른 유압식 브레이커를 포함하는 건설 장비의 개략도이다.1 is a schematic diagram of construction equipment including a hydraulic breaker according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 유압식 브레이커의 개략도이다.2 is a schematic view of a hydraulic breaker according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 유압식 브레이커의 분해 사시도이다.3 is an exploded perspective view of a hydraulic breaker according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 유압식 브레이커의 회로도이다.4 is a circuit diagram of a hydraulic breaker according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 실시예에 따라 오염도 센서에서 감지되는 오염도 정보를 도시한 도면이다.5 and 6 are diagrams illustrating pollution degree information detected by a pollution degree sensor according to an exemplary embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 작동유 모니터링 시스템의 개략 구성도이다.7 is a schematic structural diagram of a hydraulic oil monitoring system according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다. Hereinafter, with reference to the drawings will be described in detail a specific embodiment of the present invention. However, the spirit of the present invention is not limited to the embodiments presented, and those skilled in the art who understand the spirit of the present invention may deteriorate other inventions or the present invention by adding, modifying, or deleting other elements within the scope of the same idea. Other embodiments that fall within the scope of the inventive concept may be readily proposed, but they will also be included within the scope of the inventive concept.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.In addition, the components with the same functions within the scope of the same idea shown in the drawings of each embodiment will be described using the same reference numerals.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.In the above description of the configuration and features of the present invention based on the embodiment according to the present invention, the present invention is not limited thereto, and various changes or modifications can be made within the spirit and scope of the present invention. It will be apparent to those skilled in the art that such changes or modifications fall within the scope of the appended claims.
본 발명의 일 양상에 따르면, 유압식 브레이커로서, 복수의 유압 포트가 구비되는 실린더, 상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤, 상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서 및 감지된 상기 오염도 정보에 기초하여 작동유의 오염여부를 판단하고 작동유가 오염된 것으로 판단하는 경우 경고 동작을 수행하는 콘트롤러에 상기 오염도 정보를 출력하는 송신 모듈을 포함하는 유압식 브레이커가 제공될 수 있다.According to an aspect of the present invention, a hydraulic breaker, a cylinder having a plurality of hydraulic ports, a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port, the hydraulic pressure connected to the hydraulic port Installed on the line, the pollution degree sensor for detecting pollution degree information including inflow pollution degree for the incoming hydraulic oil and discharge pollution degree for the discharged hydraulic oil and the detected pollution degree information to determine whether or not the hydraulic fluid is contaminated If it is determined that the contamination is a hydraulic breaker including a transmission module for outputting the pollution degree information to the controller for performing a warning operation.
또, 상기 유압 포트는 상기 피스톤의 전진 및 후진 운동을 위하여 유압 소스와 상기 실린더의 리어 챔버를 연결하는 전진 포트를 포함하고, 상기 전진 포트는, 상기 피스톤의 전진 운동 시 상기 유압 소스로부터 상기 리어 챔버 방향으로 작동유가 공급되고, 상기 피스톤의 후진 운동 시 상기 리어 챔버로부터 상기 유압 소스 방향으로 작동유가 배출되며, 상기 오염도 센서는 상기 전진 포트에 연결되는 유압 라인 상에 배치되어, 상기 피스톤의 전진 운동 시에는 상기 유압 소스로부터 상기 리어 챔버 방향으로 유입되는 작동유의 상기 유입 오염도를 감지하고, 상기 피스톤의 후진 운동 시에는 상기 리어 챔버로부터 상기 유압 소스 방향으로 배출되는 작동유의 상기 배출 오염도를 감지할 수 있다.In addition, the hydraulic port includes a forward port connecting the hydraulic source and the rear chamber of the cylinder for the forward and backward movement of the piston, the forward port, the rear chamber from the hydraulic source during the forward movement of the piston Hydraulic oil is supplied in the direction, hydraulic fluid is discharged from the rear chamber toward the hydraulic source during the backward movement of the piston, and the contamination sensor is disposed on the hydraulic line connected to the forward port, The inflow contamination level of the hydraulic oil flowing in the direction of the rear chamber from the hydraulic source may be sensed, and the discharge pollution degree of the hydraulic fluid discharged from the rear chamber toward the hydraulic source during the backward movement of the piston.
또, 상기 유압 포트는 상기 피스톤의 후진 운동을 위하여 유압 소스와 상기 실린더의 프론트 챔버를 연결하는 후진 포트 및 상기 피스톤의 전진 운동을 위하여 상기 프론트 챔버로부터 작동유를 배출하는 배출 포트를 포함하고, 상기 오염도 센서는, 상기 후진 포트와 상기 유압 소스를 연결하는 유압 라인 상에 설치되어 상기 프론트 챔버로 유입되는 작동유의 상기 유입 오염도를 감지하는 유입 오염도 센서 및 상기 배출 포트에 연결되는 유압 라인 상에 설치되어 상기 프론트 챔버로부터 배출되는 작동유의 상기 배출 오염도를 감지하는 배출 오염도 센서를 포함할 수 있다.In addition, the hydraulic port includes a reverse port connecting the hydraulic source and the front chamber of the cylinder for the backward movement of the piston and a discharge port for discharging the hydraulic oil from the front chamber for the forward movement of the piston, The sensor is installed on a hydraulic line connected to the reverse port and the hydraulic source and installed on an oil pressure line connected to the inlet contamination sensor and the discharge port to detect the oil contamination level of the hydraulic oil flowing into the front chamber. It may include a discharge pollution sensor for detecting the discharge pollution of the operating oil discharged from the front chamber.
또, 상기 배출 포트는 상기 프론트 챔버로부터 유압 탱크 방향으로 작동유를 배출하는 유압탱크 포트를 포함하고, 배출 오염도 센서는 상기 유압탱크 포트에 연결되는 유압 라인 상에 설치될 수 있다.In addition, the discharge port may include a hydraulic tank port for discharging the hydraulic oil from the front chamber in the direction of the hydraulic tank, the discharge pollution sensor may be installed on the hydraulic line connected to the hydraulic tank port.
본 발명의 다른 양상에 따르면, 복수의 유압 포트가 구비되는 실린더 및 상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤을 구비하는 유압식 브레이커의 작동유의 오염도를 모니터링하는 작동유 모니터링 시스템에 있어서, 상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서 및 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우, 상기 작동유가 오염된 것으로 판단하여 경고 동작을 수행하는 콘트롤러를 포함하는 작동유 모니터링 시스템이 제공될 수 있다.According to another aspect of the present invention, the degree of contamination of the hydraulic oil of the hydraulic breaker having a cylinder having a plurality of hydraulic ports and a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port is monitored A hydraulic oil monitoring system, comprising: a pollution degree sensor installed on a hydraulic line connected to the hydraulic port, and configured to detect pollution degree information including an contamination level of an inflow pollution concerning the incoming hydraulic fluid and an emission pollution level of the discharged hydraulic oil; When the predetermined condition is satisfied based on the pollution degree information, the hydraulic oil monitoring system may include a controller configured to perform a warning operation by determining that the hydraulic oil is contaminated.
또, 상기 미리 정해진 조건은 상기 오염도 정보의 오염값이 소정의 기준 오염값 이상인 조건일 수 있다.The predetermined condition may be a condition that a contamination value of the pollution degree information is equal to or greater than a predetermined reference contamination value.
또, 상기 미리 정해진 조건은 상기 오염도 정보의 오염값이 소정의 기준 오염값 이상인 빈도가 소정의 기준빈도 이상인 조건일 수 있다.The predetermined condition may be a condition in which the frequency of the contamination value of the pollution degree information is greater than or equal to a predetermined reference contamination value.
또, 상기 미리 정해진 조건은 상기 오염도 정보의 상기 유입 오염도와 상기 오염도 정보의 상기 배출 오염도의 차이값이 소정의 기준 차이값 이상인 조건일 수 있다.The predetermined condition may be a condition in which a difference value between the inflow pollution level of the pollution degree information and the emission pollution degree of the pollution degree information is equal to or greater than a predetermined reference difference value.
또, 상기 유입 오염도 및 상기 배출 오염도는 상기 피스톤이 1회 왕복 운동할 때, 유입되는 작동유 및 배출되는 작동유에 관한 오염도일 수 있다.In addition, the inflow pollution degree and the discharge pollution degree may be a pollution degree with respect to the hydraulic oil flowing in and the hydraulic oil discharged when the piston reciprocates once.
또, 영상 또는 음성을 출력하는 출력 모듈을 더 포함하고, 상기 콘트롤러는, The controller may further include an output module configured to output a video or audio signal.
작동유가 오염된 것으로 판단하는 경우 상기 출력 모듈을 통해 경고 메시지를 출력할 수 있다.If it is determined that the hydraulic oil is contaminated, it may output a warning message through the output module.
또, 상기 콘트롤러는, 작동유가 오염된 것으로 판단하는 경우 상기 피스톤의 왕복 운동을 정지시킬 수 있다.The controller may stop the reciprocating motion of the piston when it is determined that the hydraulic oil is contaminated.
또, - 상기 유압식 브레이커는, 상기 피스톤의 전진운동을 위하여 유압 소스와 상기 실린더의 리어 챔버를 연결하거나 또는 후진운동을 위하여 상기 실린더의 리어 챔버로부터 상기 작동유를 배출하는 제어 밸브 및 상기 작동유의 흐름을 선택적으로 차단하는 차단 밸브를 더 구비함 - 상기 콘트롤러는, 작동유가 오염된 것으로 판단하는 경우 상기 차단 밸브가 상기 작동유의 흐름을 차단하도록 상기 차단 밸브를 제어할 수 있다.And-the hydraulic breaker connects the hydraulic source and the rear chamber of the cylinder for the forward movement of the piston or the control valve for discharging the hydraulic oil from the rear chamber of the cylinder for the backward movement and the flow of the hydraulic oil. And further comprising a shutoff valve for selectively blocking the controller. The controller may control the shutoff valve so that the shutoff valve blocks the flow of the hydraulic oil when it is determined that the hydraulic oil is contaminated.
또, - 상기 차단 밸브는, 상기 제어 밸브로 향하는 상기 작동유의 흐름을 선택적으로 차단함 - 상기 콘트롤러는, 작동유가 오염된 것으로 판단하는 경우 상기 차단 밸브가 상기 작동유의 흐름을 차단하도록 상기 차단 밸브를 제어할 수 있다.And-the shutoff valve selectively shuts off the flow of the hydraulic oil directed to the control valve-the controller is configured to shut off the shutoff valve so that the shutoff valve shuts off the flow of the hydraulic oil when it is determined that the hydraulic oil is contaminated. Can be controlled.
또, 영상 또는 음성을 출력하는 출력 모듈을 더 포함하고, 상기 콘트롤러는, 상기 오염도 정보의 오염값이 제1 기준 오염값 이상인 경우 상기 출력 모듈을 통해 경고 메시지를 출력하고, 상기 오염도 정보의 오염값이 상기 제1 기준 오염값보다 큰 제2 기준 오염값 이상인 경우 상기 피스톤의 왕복 운동을 정지시킬 수 있다.The apparatus may further include an output module configured to output an image or an audio, wherein the controller outputs a warning message through the output module when the pollution value of the pollution degree information is greater than or equal to a first reference pollution value, and the pollution value of the pollution degree information. The reciprocating motion of the piston may be stopped when the second reference contamination value is greater than the first reference contamination value.
또, 본 발명의 다른 양상에 따르면, 실린더 내에서 피스톤의 왕복 운동에 따라 치즐이 대상물을 타격하는 단계, 상기 실린더 상에 제공되는 유압 포트에 연결된 유압 라인 상에 제공되는 오염도 센서가 실린더로 유입 또는 배출되는 작동유에 관한 오염도 정보를 감지하는 단계, 및 콘트롤러가 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우 경고 동작을 수행하는 단계를 포함하는 작동유 모니터링 방법이 제공될 수 있다.Further, according to another aspect of the invention, the chisel hitting the object in accordance with the reciprocating motion of the piston in the cylinder, the contamination sensor provided on the hydraulic line connected to the hydraulic port provided on the cylinder is introduced into the cylinder or A hydraulic fluid monitoring method may include providing a pollution degree information regarding the discharged hydraulic oil, and performing a warning operation when a controller satisfies a predetermined condition based on the detected pollution degree information.
도 1은 본 발명의 실시예에 따른 유압식 브레이커를 포함하는 건설 장비의 개략도이다.1 is a schematic diagram of construction equipment including a hydraulic breaker according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 유압식 브레이커의 개략도이다.2 is a schematic view of a hydraulic breaker according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 유압식 브레이커의 분해 사시도이다.3 is an exploded perspective view of a hydraulic breaker according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 유압식 브레이커의 회로도이다.4 is a circuit diagram of a hydraulic breaker according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 실시예에 따라 오염도 센서에서 감지되는 오염도 정보를 도시한 도면이다.5 and 6 are diagrams illustrating pollution degree information detected by a pollution degree sensor according to an exemplary embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 작동유 모니터링 시스템의 개략 구성도이다.7 is a schematic structural diagram of a hydraulic oil monitoring system according to an embodiment of the present invention.
첨부된 도면은, 본 발명의 기술적 사상을 명확하게 표현하기 위해, 본 발명의 기술적 사상과 관련성이 떨어지는 구성을 간략히 하거나 또는 생략하였다.In the accompanying drawings, in order to clearly express the technical idea of the present invention, a configuration that is not related to the technical idea of the present invention is simplified or omitted.
우선, 방향에 대한 용어를 정의하자면, 높이 방향은 도2, 도3 및 도4를 기준으로 상하방향을 의미할 수 있다.First, to define a term for the direction, the height direction may mean the up and down direction with reference to Figures 2, 3 and 4.
도 1에 도시한 바와 같이, 일례로, 건설 장비(100)는 대상물에 대한 타격 작업을 수행하는 장비이다. 타격 작업을 위한 건설 장비(100)는 주로 굴삭기 등의 중장비 차량에 유압식 브레이커(1000)가 어태치먼트로 장착되는 형태로 구현된다.As shown in FIG. 1, as an example, the construction equipment 100 is equipment for performing a hitting operation on an object. Construction equipment 100 for the blow operation is mainly implemented in the form that the hydraulic breaker 1000 is mounted as an attachment to a heavy-duty vehicle such as an excavator.
유압식 브레이커(1000)는 대상물을 타격하는 동작을 수행하는 기기이다.The hydraulic breaker 1000 is a device that performs an operation of hitting an object.
물론, 본 발명에서 유압식 브레이커(1000)가 상술한 예로 한정되는 것은 아니며 유압 브레이커 이외에도 대상물을 타격하는 기능을 수행하는 다른 종류의 타격 기기도 모두 포괄하는 개념으로 이해되어야 할 것이다. Of course, the hydraulic breaker 1000 in the present invention is not limited to the above-described examples, it should be understood as a concept encompassing all other types of hitting device that performs a function of hitting the object in addition to the hydraulic breaker.
유압식 브레이커(1000)는 중장비 차량, 즉 캐리어(120)에 장착되는 어태치먼트 타입이 일반적이지만 반드시 그러한 것은 아니며, 작업자가 직접 다루는 형태와 같이 캐리어(120)로부터 독립적인 형태로도 존재할 수도 있다.The hydraulic breaker 1000 is generally, but not necessarily, an attachment type mounted to a heavy-duty vehicle, ie, the carrier 120, and may also exist in an independent form from the carrier 120, such as a form directly handled by an operator.
유압식 브레이커(1000)에 관한 보다 상세한 설명은 후술하기로 한다.More detailed description of the hydraulic breaker 1000 will be described later.
캐리어(120)는 크게 주행체(121)와 회전체(122)로 구분될 수 있다.The carrier 120 may be largely divided into a driving body 121 and a rotating body 122.
주행체(121)는 주로 크롤러 타입이나 휠 타입으로 제공되며 경우에 따라서는 크레인 타입이나 트럭 타입인 것도 가능하다. The traveling body 121 is mainly provided in a crawler type or a wheel type, and in some cases, may be a crane type or a truck type.
회전체(122)는 지면에 대해 수직 방향을 축을 기준으로 회전 가능하게 주행체(121) 상에 얹혀진다.The rotating body 122 is mounted on the traveling body 121 to be rotatable about an axis in a direction perpendicular to the ground.
회전체(122)에는 붐이나 암 등의 연결 부재(123)가 설치된다. 연결 부재(123)의 단부에는 유압식 브레이커(1000)가 어태치먼트 형태로 직접 체결되거나 커플러(140)를 통해 체결되는 식으로 탈부착될 수 있다.The rotating body 122 is provided with a connecting member 123 such as a boom or an arm. The end of the connection member 123 may be detachably attached to the hydraulic breaker 1000 in the form of an attachment or fastened through the coupler 140.
연결 부재(123)는 주로 2개 이상의 부재가 링크 방식으로 체결되며, 실린더와 연결되어 실린더의 신축에 의해 굽혀지거나 또는 펴지는 동작, 신축 동작 등을 수행할 수 있다. 연결 부재(123)는 이러한 동작에 의해 그 단부에 부착된 유압식 브레이커(1000)를 피타격물 상에 위치시킬 수 있다.The connecting member 123 is mainly two or more members are fastened in a link manner, connected to the cylinder can be bent or stretched by the expansion and contraction of the cylinder, stretching operation and the like. The connection member 123 may position the hydraulic breaker 1000 attached to the end by the operation on the hit.
또한, 캐리어(120)에는 장착된 유압식 브레이커(1000)가 동작할 수 있도록 유압식 브레이커(1000)에 유압을 인가하거나 그 밖에도 붐이나 암을 비롯한 캐리어(120)의 각 부위나 커플러(140) 등에 유압을 공급하는 유압 소스(160)와 작동유를 저장하는 유압 탱크(160a)가 설치될 수 있다.In addition, the carrier 120 may apply hydraulic pressure to the hydraulic breaker 1000 so that the mounted hydraulic breaker 1000 may operate, or in addition, the parts of the carrier 120 including the boom or the arm may be hydraulically applied to the coupler 140, or the like. Hydraulic source 160 for supplying the hydraulic tank 160a for storing the operating oil may be installed.
또한, 회전체(122) 상에는 작업자가 탑승하는 캐빈(124)이 마련되어 있어 사용자가 캐빈(124) 내의 핸들이나 레버, 버튼 따위의 조작 설비를 이용해 캐리어(120)나 유압식 브레이커(1000)를 조종할 수 있다.In addition, a cabin 124 on which the operator boards is provided on the rotating body 122 so that the user can operate the carrier 120 or the hydraulic breaker 1000 by using a manipulation device such as a handle, a lever, or a button in the cabin 124. Can be.
이하에서는, 본 발명의 실시예에 따른 유압식 브레이커(1000)에 관하여 도 2 및 도 3을 참조하여 설명한다.Hereinafter, a hydraulic breaker 1000 according to an embodiment of the present invention will be described with reference to FIGS. 2 and 3.
도 2 및 도 3에 도시한 바와 같이, 일례로, 유압식 브레이커(1000)는 마운팅 브라켓(1200), 메인 바디(1400) 및 치즐(1600)을 포함할 수 있다. 메인 바디(1400)는 유압식 브레이커(1000)에서 타격력을 발생시키는 부위로, 그 내부에 실린더(1430)와 실린더(1430)에 수용되는 피스톤(1440)을 가져 유압 소스(160)로부터 인가되는 작동유의 유압에 의해 피스톤(1440)이 왕복 운동함에 따라 타격력을 발생시킨다. 치즐(1600)은 피타격물을 직접 타격하는 부위로, 그 상단이 피스톤(1440)의 하단에 타격되도록 메인 바디(1400)의 하측(이하의 설명에서 피스톤(1440)이 전진(신장)하는 방향을 하방으로 정의하고, 피스톤(1440)이 상측으로 후진(축소)하는 방향을 상방으로 정의함)에 배치된다.2 and 3, as an example, the hydraulic breaker 1000 may include a mounting bracket 1200, a main body 1400, and a chisel 1600. The main body 1400 is a site for generating the striking force in the hydraulic breaker 1000, and has a cylinder 1430 and a piston 1440 accommodated in the cylinder 1430 therein for the hydraulic oil applied from the hydraulic source 160. As the piston 1440 reciprocates by hydraulic pressure, it generates a striking force. The chisel 1600 is a portion for directly hitting the hitting object, and the lower side of the main body 1400 (the piston 1440 in the following description) moves forward (extension) so that its upper end hits the lower end of the piston 1440. It defines downward, and is arrange | positioned in the upward direction defining the direction which the piston 1440 reverses (reduces) upward.
마운팅 브라켓(1200)은 메인 바디(1400)의 상단에 결합되며, 캐리어(120)와 메인 바디(1400)의 연결 역할을 하는 구성이다.The mounting bracket 1200 is coupled to the upper end of the main body 1400, and is configured to connect the carrier 120 and the main body 1400.
메인 바디(1400)의 주요 구성은 실린더(1430)와 피스톤(1440)일 수 있다.The main components of the main body 1400 may be the cylinder 1430 and the piston 1440.
일례로, 피스톤(1440)은 원통 형상으로 제공되며, 실린더(1430)는 피스톤(1440)이 삽입되어 왕복 운동할 수 있도록 중공 원통 형상으로 제공될 수 있다.In one example, the piston 1440 is provided in a cylindrical shape, the cylinder 1430 may be provided in a hollow cylindrical shape so that the piston 1440 is inserted to reciprocate.
실린더의 내면(1437)에는 실린더(1430)의 내부로 유압을 공급하거나 실린더(1430) 내부로부터 유압을 배출하기 위한 각종 유압 포트(1433, 1434, 1435, 1436, 1438)들이 마련되어 있다. The inner surface 1437 of the cylinder is provided with various hydraulic ports 1433, 1434, 1435, 1436, and 1438 for supplying hydraulic pressure to the interior of the cylinder 1430 or for discharging the hydraulic pressure from the interior of the cylinder 1430.
피스톤(1440)은 적어도 소경부(1446), 소경부(1446)의 상측에 위치하는 제1 대경부(1444) 및 소경부(1446)의 하측에 위치하는 제2 대경부(1442)를 구비할 수 있다.The piston 1440 includes at least a small diameter portion 1446, a first large diameter portion 1444 positioned above the small diameter portion 1446, and a second large diameter portion 1442 positioned below the small diameter portion 1446. Can be.
유압 포트를 통해 실린더(1430) 내부로 인가되는 유압이 제1 대경부(1444) 및 제2 대경부(1442)에 의해 형성되는 단차면(1444a, 1442a)에 작용함에 따라 피스톤(1440)이 실린더(1430) 안에서 전후진 왕복 운동을 할 수 있다.As the hydraulic pressure applied to the inside of the cylinder 1430 through the hydraulic port acts on the step surfaces 1444a and 1442a formed by the first large diameter portion 1444 and the second large diameter portion 1442, the piston 1440 acts as a cylinder. It is possible to reciprocate forward and backward within 1430.
따라서, 실린더(1430)에 형성되는 유압 포트나 피스톤(1440)의 단차면(1444a, 1442a)을 적절히 설계함에 따라 단순 피스톤(1440) 왕복뿐만 아니라 피스톤(1440)의 스트로크 거리의 제어도 가능해질 수 있다.Therefore, by properly designing the stepped surfaces 1444a and 1442a of the hydraulic port or the piston 1440 formed in the cylinder 1430, it is possible to control not only the simple piston 1440 but also the stroke distance of the piston 1440. have.
실린더(1430)의 하단과 상단에는 각각 프론트 헤드(1450)와 헤드 캡(1420)이 연결될 수 있다.The front head 1450 and the head cap 1420 may be connected to the lower and upper ends of the cylinder 1430, respectively.
프론트 헤드(1450)에는 치즐(1600)이 걸치는 치즐 핀(미도시)이 마련되며, 치즐(1600)은 치즐 핀(미도시)에 의해 피스톤(1440) 전진 시 피스톤(1440)의 하단에 의해 타격되기 적절한 위치에 배치된다. The front head 1450 is provided with a chisel pin (not shown) on which the chisel 1600 is placed, and the chisel 1600 is hit by the lower end of the piston 1440 when the piston 1440 is advanced by the chisel pin (not shown). Be placed in the proper position.
또한, 프론트 헤드(1450)에는 피스톤(1440)의 왕복 시 외부 이물질이 실린더(1430) 내로 유입되는 것을 방지하기 위한 더스트 프로텍터(미도시)나 타격음을 저감하기 위한 흡음 부재(미도시) 등이 추가로 설치될 수 있다.In addition, the front head 1450 includes a dust protector (not shown) for preventing foreign matter from entering the cylinder 1430 when the piston 1440 is reciprocated, or a sound absorbing member (not shown) for reducing the impact sound. Can be installed as
헤드 캡(1420)은 그 내부에 가스실(미도시)을 가지며, 가스실은 피스톤(1440)의 후퇴 시 그 체적이 압축됨에 따라 피스톤(1440)에 적절한 댐핑 효과를 부여할 수 있다.The head cap 1420 has a gas chamber (not shown) therein, and the gas chamber may give an appropriate damping effect to the piston 1440 as its volume is compressed when the piston 1440 is retracted.
이상에서 설명한 유압식 브레이커(1000)의 구성이나 구조는 본 발명에 따른 유압식 브레이커(1000)의 일 실시예에 불과하며, 본 발명에 따른 유압식 브레이커(1000)에는 상술한 구성이나 구조와 다소 상이하더라도 유사한 기능을 갖는 다른 타격 기기 역시 포함되는 것으로 이해되어야 한다.The structure or structure of the hydraulic breaker 1000 described above is only one embodiment of the hydraulic breaker 1000 according to the present invention, and the hydraulic breaker 1000 according to the present invention may be similar to the above-described configuration or structure, although somewhat different. It is to be understood that other striking devices having functions are also included.
이하에서는, 본 발명의 실시예에 따른 유압식 브레이커(1000)의 회로도에 관하여 도 4를 참조하여 설명한다.Hereinafter, a circuit diagram of a hydraulic breaker 1000 according to an embodiment of the present invention will be described with reference to FIG. 4.
도 4에 도시한 바와 같이, 실린더(1430)에는 피스톤(1440)이 삽입되며 피스톤(1440)의 하측에는 치즐(1600)이 배치된다.As shown in FIG. 4, a piston 1440 is inserted into the cylinder 1430, and a chisel 1600 is disposed below the piston 1440.
피스톤(1440)에는 소경부(1446), 소경부(1446)의 상측에 위치하는 제1 대경부(1444) 및 소경부(1446)의 하측에 위치하는 제2 대경부(1442)가 형성될 수 있다.The piston 1440 may include the small diameter portion 1446, the first large diameter portion 1444 positioned above the small diameter portion 1446, and the second large diameter portion 1442 positioned below the small diameter portion 1446. have.
제1 대경부(1444) 및 제2 대경부(1442)는 외경이 실린더(1430)의 내경과 실질적으로 동일할 수 있으며, 이에 따라 실린더(1430) 내부에는 실린더(1430)의 하측과 제2 대경부(1442) 사이에 프론트 챔버(1431)가 형성될 수 있고, 실린더(1430)의 상측과 제1 대경부(1444) 사이에 리어 챔버(1432)가 형성될 수 있다.The outer diameter of the first large diameter portion 1444 and the second large diameter portion 1442 may be substantially the same as the inner diameter of the cylinder 1430, and thus, the lower side and the second large portion of the cylinder 1430 may be disposed inside the cylinder 1430. The front chamber 1431 may be formed between the necks 1442, and the rear chamber 1432 may be formed between the upper side of the cylinder 1430 and the first large diameter part 1444.
프론트 챔버(1431)에는 후진 포트(1433)가 형성되며, 후진 포트(1433)는 후진 라인(1433a)을 통해 유압 소스(160)와 연결될 수 있다.A reverse port 1433 is formed in the front chamber 1431, and the reverse port 1433 may be connected to the hydraulic source 160 through the reverse line 1433a.
따라서, 프론트 챔버(1431)에는 유압 소스(160)로부터 후진 라인(1433a)을 거쳐 후진 포트(1433)로 유입되는 작동유에 의해 유압이 인가될 수 있다. Accordingly, hydraulic pressure may be applied to the front chamber 1431 by the hydraulic oil flowing from the hydraulic source 160 through the reverse line 1433a to the reverse port 1433.
프론트 챔버(1431)에 인가된 유압은 제2 대경부(1442)의 단차면(1442a)에 작용하게 되고, 피스톤(1440)에 후진력이 인가될 수 있다.The hydraulic pressure applied to the front chamber 1431 may act on the stepped surface 1442a of the second large diameter portion 1442, and a reverse force may be applied to the piston 1440.
리어 챔버(1432)에는 전진 포트(1434)가 형성되며, 전진 포트(1434)는 전진 라인(1434a)을 통해 제어 밸브(1460)와 연결될 수 있다. A forward port 1434 is formed in the rear chamber 1432, and the forward port 1434 may be connected to the control valve 1460 through the forward line 1434a.
제어 밸브(1460)는 전진 위치(1460-2) 또는 후진 위치(1460-1) 중 어느 하나의 위치로 배치될 수 있으며, 전진 위치(1460-2)에서는 전진 라인(1434a)을 유압 소스(160)로 연결하고, 후진 위치(1460-1)에서는 전진 라인(1434a)을 유압 탱크(160a)로 연결할 수 있다.The control valve 1460 may be disposed in either one of the forward position 1460-2 or the reverse position 1460-1, and the forward position 1460-2 may move the forward line 1434a to the hydraulic source 160. ), And the forward line 1434a may be connected to the hydraulic tank 160a in the reverse position 1460-1.
따라서, 제어 밸브(1460)가 전진 위치(1460-2)에 배치되면 리어 챔버(1432)에는 유압 소스(160)로부터 제어 밸브(1460)와 전진 라인(1434a)을 거쳐 전진 포트(1434)로 유입되는 작동유에 의해 유압이 인가될 수 있다. Therefore, when the control valve 1460 is disposed in the forward position 1460-2, the rear chamber 1432 flows into the forward port 1434 from the hydraulic source 160 via the control valve 1460 and the forward line 1434a. Hydraulic pressure may be applied by the working oil to be.
리어 챔버(1432)에 인가되는 유압은 제1 대경부(1444)의 단차면(1444a)에 작용하게 되고, 피스톤(1440)에 전진력이 인가된다.The hydraulic pressure applied to the rear chamber 1432 acts on the stepped surface 1444a of the first large diameter portion 1444, and a forward force is applied to the piston 1440.
또한, 제어 밸브(1460)가 후진 위치(1460-1)에 배치되면, 리어 챔버(1432)는 전진 라인(1434a)과 제어 밸브(1460)를 거쳐 유압 탱크(160a)로 연결되어, 전진 위치(1460-2)에서 리어 챔버(1432)에 유입된 작동유는 유압 탱크(160a)로 배출된다.In addition, when the control valve 1460 is disposed in the reverse position 1460-1, the rear chamber 1432 is connected to the hydraulic tank 160a via the forward line 1434a and the control valve 1460, and the forward position ( The hydraulic oil introduced into the rear chamber 1432 in 1460-2 is discharged to the hydraulic tank 160a.
이러한 구조에서 제1 대경부(1444)의 단차면(1444a)이 제2 대경부(1442)의 단차면(1442a)보다 큰 면적을 가지고 있어 제어 밸브(1460)가 전진 위치(1460-2)에 배치되면 전진력이 후진력보다 커져 피스톤(1440)이 전진할 수 있다.In this structure, the stepped surface 1444a of the first large diameter portion 1444 has an area larger than the stepped surface 1442a of the second large diameter portion 1442 so that the control valve 1460 is positioned at the forward position 1460-2. When placed, the forward force may be greater than the backward force so that the piston 1440 may advance.
반대로 제어 밸브(1460)가 후진 위치(1460-1)에 배치되면 유압 소스(160)로부터 인가되는 유압이 제2 대경부(1442)의 단차면(1442a)에만 작용하게 되어 피스톤(1440)이 후진할 수 있다. On the contrary, when the control valve 1460 is disposed in the reverse position 1460-1, the hydraulic pressure applied from the hydraulic source 160 acts only on the step surface 1442a of the second large diameter portion 1442 so that the piston 1440 moves backward. can do.
결과적으로 제어 밸브(1460)가 전진 위치(1460-2) 또는 후진 위치(1460-1)에 배치됨에 따라 피스톤(1440)의 왕복 운동이 구현될 수 있다.As a result, the reciprocating motion of the piston 1440 can be implemented as the control valve 1460 is disposed in the forward position 1460-2 or the backward position 1460-1.
일례로, 제어 밸브(1460)의 위치 제어는 유압식으로 이루어질 수 있다.In one example, the position control of the control valve 1460 may be hydraulic.
즉, 제어 밸브(1460)는 입력되는 유압 신호에 따라 전진 위치(1460-2)와 후진 위치(1460-1)가 선택될 수 있는 유압 밸브일 수 있다.That is, the control valve 1460 may be a hydraulic valve in which the forward position 1460-2 and the reverse position 1460-1 may be selected according to the input hydraulic signal.
제어 밸브(1460)의 양단에는 각각 유압 라인에 연결되는 전진 작용면(1464)과 후진 작용면(1462)이 마련될 수 있다. Both ends of the control valve 1460 may be provided with a forward action surface 1464 and a reverse action surface 1462 respectively connected to the hydraulic line.
여기서, 전진 작용면(1464)은 롱 스트로크 라인(1435a)과 숏 스트로크 라인(1436a)으로 분기되는 전진 제어 라인(1464a)과 연결될 수 있다. Here, the forward action surface 1464 may be connected to the forward control line 1464a branched into the long stroke line 1435a and the short stroke line 1434a.
후진 작용면(1462)은 후진 제어 라인(1462a)을 통해 유압 소스(160)에 연결될 수 있다. Reverse action surface 1462 may be connected to hydraulic source 160 via reverse control line 1462a.
이러한 구조에서 전진 작용면(1464)이 후진 작용면(1462)보다 큰 면적을 가지고 있어, 양 작용면에 유압이 함께 인가되면 제어 밸브(1460)는 전진 위치(1460-2)로 배치될 수 있으며 이에 따라 피스톤(1440)이 전진할 수 있다. In this structure, the forward acting surface 1464 has an area larger than the backward acting surface 1462, so that when the hydraulic pressure is applied to both acting surfaces, the control valve 1460 may be disposed at the forward position 1460-2. Accordingly, the piston 1440 may move forward.
반대로 유압 소스(160)로부터 인가되는 유압이 후진 작용면(1462)에만 인가되면 제어 밸브(1460)는 전진 위치(1460-2)로부터 후진 위치(1460-1)로 배치될 수 있으며, 이에 따라 피스톤(1440)이 후진할 수 있다.On the contrary, if the hydraulic pressure applied from the hydraulic source 160 is applied only to the reverse action surface 1462, the control valve 1460 may be disposed from the forward position 1460-2 to the reverse position 1460-1, and thus the piston 1440 may reverse.
롱 스트로크 라인(1435a)은 실린더(1430)에 형성되는 롱 스트로크 포트(1435)로 연결된다. 롱 스트로크 포트(1435)는 피스톤(1440)의 위치에 따라 프론트 챔버(1431)와 연결 또는 차단될 수 있도록 실린더(1430)의 전진 포트(1434)와 후진 포트(1433) 사이에 형성될 수 있다.The long stroke line 1435a is connected to the long stroke port 1435 formed in the cylinder 1430. The long stroke port 1435 may be formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected or disconnected from the front chamber 1431 according to the position of the piston 1440.
구체적으로, 롱 스트로크 포트(1435)는 피스톤(1440)이 전진해 제2 대경부(1442)가 롱 스트로크 포트(1435) 상에 있거나 롱 스트로크 포트(1435)보다 하측에 위치하면 프론트 챔버(1431)와의 연결이 차단된다. Specifically, the long stroke port 1435 has a front chamber 1431 when the piston 1440 is advanced so that the second large diameter portion 1442 is on the long stroke port 1435 or located below the long stroke port 1435. The connection with is cut off.
반대로 롱 스트로크 포트(1435)는 피스톤(1440)이 후진해 제2 대경부(1442)가 롱 스트로크 포트(1435)보다 상측에 위치하면 프론트 챔버(1431)와 연결된다.On the contrary, the long stroke port 1435 is connected to the front chamber 1431 when the piston 1440 is backward and the second large diameter portion 1442 is positioned above the long stroke port 1435.
따라서, 롱 스트로크 포트(1435)가 프론트 챔버(1431)와 연결되면, 유압 소스(160)로부터 유압이 후진 라인(1433a), 후진 포트(1433), 프론트 챔버(1431), 롱 스트로크 포트(1435), 롱 스트로크 라인(1435a), 전진 제어 라인(1464a)을 순차적으로 거쳐 전진 작용면(1464)에 인가되어 제어 밸브(1460)가 전진 위치(1460-2)로 배치될 수 있다.Therefore, when the long stroke port 1435 is connected with the front chamber 1431, the hydraulic pressure from the hydraulic source 160 is reverse line 1433a, the reverse port 1433, the front chamber 1431, the long stroke port 1435. The control valve 1460 may be disposed at the forward position 1460-2 by being sequentially applied to the forward action surface 1464 through the long stroke line 1435a and the forward control line 1464a.
숏 스트로크 라인(1436a)은 실린더(1430)에 형성되는 숏 스트로크 포트(1436)로 연결될 수 있다. 숏 스트로크 포트(1436)는 피스톤(1440)의 위치에 따라 프론트 챔버(1431)와 연결 또는 차단될 수 있도록 실린더(1430)의 전진 포트(1434)와 후진 포트(1433) 사이에 형성되되, 롱 스트로크 포트(1435)보다는 후진 포트(1433)에 가까운 위치에 형성될 수 있다.The short stroke line 1436a may be connected to the short stroke port 1434 formed in the cylinder 1430. The short stroke port 1436 is formed between the forward port 1434 and the reverse port 1433 of the cylinder 1430 to be connected to or disconnected from the front chamber 1431 according to the position of the piston 1440, and the long stroke It may be formed at a position closer to the reverse port 1433 than to the port 1435.
구체적으로 숏 스트로크 포트(1436)는 피스톤(1440)이 전진해 제2 대경부(1442)가 숏 스트로크 포트(1436) 상에 있거나 숏 스트로크 포트(1436)보다 전방에 위치하면 프론트 챔버(1431)와의 연결이 차단된다. Specifically, the short stroke port 1434 is in contact with the front chamber 1431 when the piston 1440 is advanced so that the second large diameter portion 1442 is on the short stroke port 1434 or located ahead of the short stroke port 1434. The connection is cut off.
반대로 숏 스트로크 포트(1436)는 피스톤(1440)이 후진해 제2 대경부(1442)가 숏 스트로크 포트(1436)보다 후방에 위치하면 프론트 챔버(1431)와 연결된다.On the contrary, the short stroke port 1434 is connected to the front chamber 1431 when the piston 1440 is backward and the second large diameter portion 1442 is located behind the short stroke port 1434.
여기서, 숏 스트로크 라인(1436a) 상에는 숏 스트로크 라인(1436a)의 단락을 제어하는 변속 밸브(1470)가 설치될 수 있다.Here, a shift valve 1470 may be provided on the short stroke line 1436a to control a short circuit of the short stroke line 1436a.
변속 밸브(1470)는 선택적으로 롱 스트로크 위치(1470-1)와 숏 스트로크 위치(1470-2) 중 어느 하나의 위치로 배치될 수 있으며, 롱 스트로크 위치(1470-1)에서는 숏 스트로크 라인(1436a)을 차단하고 숏 스트로크 위치(1470-2)에서는 숏 스트로크 라인(1436a)을 연결한다.The shift valve 1470 may be selectively disposed at any one of the long stroke position 1470-1 and the short stroke position 1470-2, and the short stroke line 1436a at the long stroke position 1470-1. ) And the short stroke line 1434a is connected at the short stroke position 1470-2.
따라서, 변속 밸브(1470)에 의해 피스톤(1440)의 롱 스트로크 모드 및 숏 스트로크 모드가 결정될 수 있다. Accordingly, the long stroke mode and the short stroke mode of the piston 1440 may be determined by the shift valve 1470.
일례로, 변속 밸브(1470)가 숏 스트로크 위치(1470-2)로 배치되고 제2 대경부(1442)가 숏 스트로크 포트(1436)보다 후방에 위치되어 숏 스트로크 포트(1436)와 프론트 챔버(1431)가 연결된 경우, 작동유는 유압 소스(160), 후진 라인(1433a), 후진 포트(1433), 프론트 챔버(1431), 숏 스트로크 포트(1436), 변속 밸브(1470) 및 전진 작용면(1464)에 순차적으로 도달될 수 있다.In one example, the shift valve 1470 is disposed in the short stroke position 1470-2 and the second large diameter portion 1442 is located behind the short stroke port 1434 such that the short stroke port 1434 and the front chamber 1431 are positioned. Hydraulic fluid is connected to the hydraulic source 160, the reverse line 1433a, the reverse port 1433, the front chamber 1431, the short stroke port 1434, the shift valve 1470, and the forward action surface 1464. Can be reached sequentially.
이러한 구조에 의해 피스톤(1440)은 변속 밸브(1470)의 위치에 따라 선택적으로 롱 스트로크 모드와 숏 스트로크 모드로 왕복 운동을 수행할 수 있다.With this structure, the piston 1440 may selectively perform reciprocating motion in the long stroke mode and the short stroke mode according to the position of the shift valve 1470.
일례로, 변속 밸브(1470)는 콘트롤러(180)에 의해 자동적으로 롱 스트로크 위치(1470-1)와 숏 스트로크 위치(1470-2)간의 전환을 수행할 수도 있으며, 사용자의 선택에 의해 롱 스트로크 위치(1470-1)와 숏 스트로크 위치(1470-2)간의 전환을 수행할 수도 있다.For example, the shift valve 1470 may automatically switch between the long stroke position 1470-1 and the short stroke position 1470-2 by the controller 180, and the long stroke position may be selected by the user. Switching between 1470-1 and the short stroke position 1470-2 may be performed.
피스톤(1440)의 왕복 운동 시 작동유의 흐름을 살펴보면, 일례로, 피스톤(1440)의 후진 운동시, 작동유는 유압 소스(160)로부터 후진 라인(1433a)을 따라 후진 포트(1433)를 거쳐서 프론트 챔버(1431)로 유입된다. 피스톤(1440)이 후진함에 따라 숏 스트로크 포트(1436)가 열리면 작동유는 숏 스트로크 라인(1436a)을 따라 프론트 챔버(1431)로부터 배출된다. 피스톤(1440)이 더 후진함에 따라 롱 스트로크 포트(1435)가 열리면 작동유는 롱 스트로크 라인(1435a)을 따라 프론트 챔버(1431)로부터 배출된다. 한편, 리어 챔버(1432)에서는, 작동유가 전진 포트(1434)를 거쳐서 전진 라인(1434a)을 따라 배출된다.Looking at the flow of the hydraulic fluid during the reciprocating motion of the piston 1440, for example, during the backward movement of the piston 1440, the hydraulic fluid from the hydraulic source 160 via the reverse port 1433a along the reverse line 1433a to the front chamber (1431). When the short stroke port 1434 opens as the piston 1440 retracts, the hydraulic fluid is discharged from the front chamber 1431 along the short stroke line 1434a. When the long stroke port 1435 is opened as the piston 1440 further retracts, the hydraulic oil is discharged from the front chamber 1431 along the long stroke line 1435a. On the other hand, in the rear chamber 1432, the working oil is discharged along the advance line 1434a via the advance port 1434.
피스톤(1440)의 전진 운동시, 작동유는 전진 라인(1434a)을 따라 전진 포트(1434)를 거쳐서 리어 챔버(1432)로 유입된다. 한편, 프론트 챔버(1431)에서는, 작동유가 유압 탱크 포트(1438)를 거쳐서 유압 탱크 라인(1438a)를 따라 배출된다.In the forward movement of the piston 1440, the working oil flows into the rear chamber 1432 via the forward port 1434 along the forward line 1434a. On the other hand, in the front chamber 1431, the hydraulic oil is discharged along the hydraulic tank line 1438a via the hydraulic tank port 1438.
오염도 센서(150)는 피스톤의 왕복 운동을 일으키기 위해 실린더 내부로 유입 또는 실린더 내부로부터 배출되는 작동유의 오염도를 감지하기 위해 실린더와 연결되는 유압 라인 상에 제공될 수 있다.The pollution degree sensor 150 may be provided on a hydraulic line connected to the cylinder to detect the degree of contamination of the working oil flowing into or out of the cylinder to cause the piston to reciprocate.
일례로, 오염도 센서(150)는 전진라인(1434a)에 제공될 수도 있다.In one example, the pollution degree sensor 150 may be provided to the advance line 1434a.
일례로, 오염도 센서(150)는 유입 오염도 센서(150a, 150b) 및 배출 오염도 센서(150a, 150 c, 150 d, 150e)를 포함할 수 있다.For example, the pollution degree sensor 150 may include an inflow pollution degree sensor 150a or 150b and an emission pollution degree sensor 150a, 150c, 150d or 150e.
유입 오염도 센서(150a, 150b)는 실린더(1430) 내부로 작동유가 유입되는 라인인 및 후진 라인(1433a) 상에 제공될 수 있으며, 배출 오염도 센서(150a, 150 c, 150 d, 150e)는 실린더(1430) 외부로 작동유가 배출되는 라인인 롱 스트로크 라인(1435a), 숏 스트로크 라인(1436a), 유압 탱크 라인(1438a)중 적어도 어느 하나에 제공되어, 각 유압 라인을 흐르는 작동유의 오염도를 감지할 수 있다. 여기에서, 작동유가 오염된 것으로 판단되는 경우, 해당 오염도 센서의 위치를 특정함으로써 오염 발생 원인이 되는 챔버를 특정할 수 있다. Inflow contamination sensors 150a and 150b may be provided on the inflow line 1433a which is a line into which the hydraulic fluid flows into the cylinder 1430, and the exhaust pollution sensors 150a, 150c, 150d, and 150e may be provided in the cylinder. 1430 is provided to at least one of the long stroke line 1435a, the short stroke line 1436a, and the hydraulic tank line 1438a, which is a line through which the hydraulic oil is discharged to the outside, to detect the degree of contamination of the hydraulic oil flowing through each hydraulic line Can be. Here, when it is determined that the working oil is contaminated, it is possible to specify the chamber causing the contamination by specifying the position of the pollution degree sensor.
유압식 브레이커(1000)는 작동유의 흐름을 선택적으로 차단하는 차단 밸브(1480)를 더 구비할 수 있다.The hydraulic breaker 1000 may further include a shutoff valve 1480 for selectively blocking the flow of the hydraulic oil.
차단 밸브(1480)는 작동유가 이동되는 라인에 설치될 수 있으며, 선택적으로 작동유의 흐름을 허용할 수도 있고, 작동유의 흐름을 차단할 수도 있다.The shutoff valve 1480 may be installed in a line through which the hydraulic oil is moved, and may selectively allow the flow of the hydraulic oil, or block the flow of the hydraulic oil.
일례로, 차단 밸브(1480)는 연결 위치(1480-2)에서 작동유의 흐름을 허용할 수 있고, 차단 위치(1480-1)에서 작동유의 흐름을 차단할 수 있다.In one example, the shutoff valve 1480 may allow the flow of the hydraulic oil in the connecting position (1480-2), and may block the flow of the hydraulic oil in the blocking position (1480-1).
일례로, 차단 밸브(1480)는 전진 제어 라인(1464a) 상에 설치되어 롱 스트로크 포트(1435)로부터 전진 작용면(1464)으로 이동되는 작동유 또는 숏 스트로크 포트(1436)로부터 전진 작용면(1464)으로 이동되는 작동유의 흐름을 허용할 수도 있고, 차단할 수도 있다.In one example, the shutoff valve 1480 is installed on the forward control line 1464a and moves forward from the long stroke port 1435 to the forward action surface 1464 from the hydraulic oil or the short stroke port 1434 to the forward action surface 1464. Allows the flow of hydraulic fluid to be transported to and may be blocked.
만약, 차단 밸브(1480)가 차단 위치(1480-1)에 배치되어 작동유의 흐름을 차단하는 경우, 전진 작용면(1464)으로 유압이 가해지지 않아, 제어 밸브(1460)는 후진 위치(1460-1)로부터 전진 위치(1460-2)로 변환될 수 없다.If the shutoff valve 1480 is disposed at the shutoff position 1480-1 to block the flow of the hydraulic oil, no hydraulic pressure is applied to the forward action surface 1464, so that the control valve 1460 is moved backward. Cannot be converted from 1) to the advance position 1460-2.
따라서, 리어 챔버(1432)에는 후진 위치(1460-1)에 있는 제어 밸브(1460)에 의해 유압 소스(160)로부터 작동유가 공급되지 않아 피스톤(1440)의 왕복 운동이 정지될 수 있다.Accordingly, hydraulic fluid is not supplied from the hydraulic source 160 to the rear chamber 1432 by the control valve 1460 in the reverse position 1460-1, so that the reciprocating motion of the piston 1440 may be stopped.
차단 밸브(1480)의 설치 위치는 위에서 언급한 위치에만 한정되는 것은 아니며, 일례로, 후진 라인(1433a) 상에 설치될 수도 있고, 전진 라인(1434a) 상에도 설치될 수도 있다.The installation position of the shutoff valve 1480 is not limited to the above-mentioned position, but may be installed on the reverse line 1433a or may also be installed on the advance line 1434a.
이하에서는, 오염도 센서(150)로부터 감지되는 작동유의 오염도 정보를 이용하는 작동유 모니터링 기술에 대해 설명하겠다.Hereinafter, a description will be given of a hydraulic fluid monitoring technology using the pollution degree information of the hydraulic oil detected from the pollution degree sensor 150.
프론트 챔버(1431), 리어 챔버(1432)를 통과하며 피스톤(1440)의 왕복운동을 발생시키는 작동유 속으로, 유압 브레이커(1000)의 타격 과정에서 파편들이 침투되는 일이 발생될 수 있다. 또는, 피스톤(1440) 상에서 발생되는 스크래치에 의해 실린더(1430) 내부와 피스톤(1440) 표면 간 마찰이 발생할 수 있고 이로 인해 파편들이 발생하여 작동유를 오염시키는 일이 발생될 수 있다. 이 외에도 작동유 자체의 불량 등 여러 이유에 기인하여 작동유의 오염도가 증가할 수 있고, 이는 상술한 바와 같이 유압 브레이커(1000)의 성능 및 내구성과 직결되므로, 이를 감지하여 관리할 필요가 있다. Debris may penetrate into the hydraulic fluid passing through the front chamber 1431 and the rear chamber 1432 to generate a reciprocating motion of the piston 1440, during the striking of the hydraulic breaker 1000. Alternatively, the scratch generated on the piston 1440 may cause friction between the inside of the cylinder 1430 and the surface of the piston 1440, which may cause debris to contaminate the hydraulic fluid. In addition, the contamination of the hydraulic fluid may increase due to various reasons, such as a failure of the hydraulic oil itself, which is directly connected to the performance and durability of the hydraulic breaker 1000, as described above, and thus needs to be detected and managed.
일례로, 작동유의 오염도를 감지할 수 있는 오염도 센서(150)가 제공될 수 있다. 오염도 센서(150)은 프론트 챔버(1431) 안으로 유입되는 작동유의 유입 오염도 정보를 감지하기 위해 후진 라인(1433a) 상에 제공될 수 있고, 리어 챔버(1432) 안으로 유입 또는 배출되는 작동유의 오염도 정보를 감지하기 위해 전진 라인(1434a) 상에 제공될 수 있다. 또한, 프론트 챔버(1431) 밖으로 배출되는 작동유의 배출 오염도 정보를 감지하기 위해 숏 스트로크 라인(1436a), 롱 스트로크 라인(1435a), 유압 탱크 라인(1438a) 상에 제공될 수 있다.As an example, a pollution degree sensor 150 may be provided to detect the pollution level of the working oil. The pollution degree sensor 150 may be provided on the reverse line 1433a to detect inflow contamination information of the hydraulic oil flowing into the front chamber 1431, and the pollution degree information of the hydraulic oil flowing into or discharged into the rear chamber 1432 may be provided. It may be provided on advance line 1434a for sensing. In addition, it may be provided on the short stroke line (1436a), long stroke line (1435a), hydraulic tank line (1438a) in order to detect the discharge pollution degree information of the hydraulic oil discharged out of the front chamber (1431).
일례로, 오염도 센서(150)는 광신호를 출력하는 발광부와 상기 광신호를 받아들여 대응되는 전류랑을 출력하는 수광부를 포함하는 광센서를 이용한 탁도 센서일 수 있고, 부유물의 양에 따라 달라지는 전기전도도를 감지하는 전기전도도 센서일 수도 있으나, 반드시 이에 한정되는 것은 아니고, 작동유의 오염 여부 또는 작동유 내의 부유물, 파편 등의 발생 여부 또는 양을 감지할 수 있는 센서라면, 본 발명에서 오염도 센서(150)로 사용될 수 있다.For example, the pollution degree sensor 150 may be a turbidity sensor using an optical sensor including a light emitting unit for outputting an optical signal and a light receiving unit for receiving the optical signal and outputting a corresponding current flow. Although it may be an electric conductivity sensor that detects an electric conductivity, the present invention is not limited thereto, and any sensor capable of detecting whether or not the oil is contaminated or whether or not a float or debris is present in the oil is contaminated. Can be used).
일례로, 광 산란을 이용하는 광센서인 경우, 광원과 입자크기에 따라 산란형태가 달라질 수 있다. 작동유에서 감지되는 광의 산란형태를 분석하여 입자 크기를 도출할 수 있으므로, 필요에 따라서는, 입자 크기에 대한 정보를 사용자에게 제공할 수 있다.For example, in the case of an optical sensor using light scattering, the scattering pattern may vary according to the light source and the particle size. Since the particle size can be derived by analyzing the scattering pattern of the light sensed in the hydraulic fluid, the user can be provided with information on the particle size, if necessary.
일례로, 전기전도도 센서인 경우, 입자의 종류에 따라 전기전도도의 변화가 다양한 패턴을 나타낼 수 있으므로, 이를 분석하여 필요에 따라서는, 입자 종류에 대한 정보를 사용자에게 제공할 수 있다.For example, in the case of an electrical conductivity sensor, since the change in electrical conductivity may show various patterns according to the type of particles, the user may be provided with information on the particle type by analyzing it.
일례로, 작동유의 오염을 일으키는 입자의 종류, 크기를 분석함으로써, 오염이 발생되는 원인 및 발생 지역, 피스톤의 파편인지, 피타격물의 파편인지 등 다양한 정보를 도출할 수 있다.For example, by analyzing the type and size of particles causing contamination of the working oil, various information, such as the cause and region of occurrence of the contamination, a fragment of the piston, and a fragment of the strike target, can be derived.
일례로, 유압식 브레이커(1000)에는 송신 모듈(미 도시)이 더 설치될 수 있다.For example, the hydraulic breaker 1000 may be further provided with a transmission module (not shown).
일례로, 송신 모듈은 콘트롤러(180)에 오염도 정보를 출력하는 구성일 수 있다.In one example, the transmission module may be configured to output pollution degree information to the controller 180.
일례로, 송신 모듈은 오염도 센서(150)로부터 감지된 오염도 정보를 오염도 센서(150)로부터 전달받아 콘트롤러(180)에 전달할 수 있는 구성일 수 있다.For example, the transmission module may be configured to receive the pollution degree information detected by the pollution degree sensor 150 from the pollution degree sensor 150 and transmit the pollution degree information to the controller 180.
일례로, 송신 모듈은 유선 통신으로 오염도 정보를 오염도 센서(150)로부터 콘트롤러(180)에 출력할 수도 있으며, 무선 통신으로 오염도 정보를 오염도 센서(150)로부터 콘트롤러(180)에 출력할 수도 있다.For example, the transmission module may output the pollution degree information from the pollution degree sensor 150 to the controller 180 through wired communication, and may output the pollution degree information from the pollution degree sensor 150 to the controller 180 through wireless communication.
송신 모듈의 무선 통신의 대표적인 예로는 블루투스 로에너지(BTLE, BlueTooth Low Energy)나 직비(Zigbee)를 들 수 있다. 오염도 센서(150)와 콘트롤러(180) 간의 통신이 높은 대역폭을 요구하는 것은 아니므로 BTLE나 직비와 같은 저전력 통신이 바람직할 수 있다. Representative examples of wireless communication of the transmission module may include Bluetooth Low Energy (BTLE) or Zigbee. Since the communication between the pollution degree sensor 150 and the controller 180 does not require a high bandwidth, low power communication such as BTLE or direct rain may be desirable.
그렇다고 하여 본 발명에서 콘트롤러(180)와 오염도 센서(150) 간의 통신 방식이 꼭 이로 한정되는 것은 아니다.However, in the present invention, the communication method between the controller 180 and the pollution degree sensor 150 is not necessarily limited thereto.
콘트롤러(180)는 감지된 오염도 정보에 기초하여 피스톤(1440)의 작동유의 오염 여부를 판단할 수 있다.The controller 180 may determine whether the hydraulic oil of the piston 1440 is contaminated based on the detected contamination degree information.
일례로, 콘트롤러(180)는 작동유가 오염된 것으로 판단하는 경우 경고 동작을 수행할 수 있다. 상기 사용자에게 알리는 경고는, 오염도 센서로부터 감지된 오염도 정보에 기초하여 판단된 작동유의 오염 정도, 이에 따른 작동유의 교체 필요성 및 피스톤 등 부품의 손상 여부를 포함할 수 있다.For example, the controller 180 may perform a warning operation when it is determined that the hydraulic oil is contaminated. The warning for notifying the user may include a degree of contamination of the hydraulic oil determined based on the pollution degree information detected by the pollution degree sensor, a need for replacement of the hydraulic oil, and whether parts such as a piston are damaged.
일례로, 콘트롤러(180)는 각종 전자 신호를 처리하고 연산하는 역할을 수행하는 전자 회로로, 오염도 센서(150)로부터 오염도 정보 또는 신호를 수신하고, 정보/데이터를 연산 처리하며, 전자 신호로 유압식 브레이커(1000) 및 건설 장비(100)의 다른 구성을 제어할 수 있다.For example, the controller 180 is an electronic circuit that processes and calculates various electronic signals. The controller 180 receives pollution degree information or a signal from the pollution degree sensor 150, and calculates and processes information / data. Other configurations of the breaker 1000 and construction equipment 100 can be controlled.
콘트롤러(180)는 통상적으로 캐리어(120)에 위치하지만, 유압식 브레이커(1000)에 위치하는 것도 가능하다. The controller 180 is typically located on the carrier 120, but may also be located on the hydraulic breaker 1000.
또한, 콘트롤러(180)가 반드시 단일 객체로 구현되어야만 하는 것도 아니다. In addition, the controller 180 does not necessarily need to be implemented as a single object.
경우에 따라서 콘트롤러(180)는 서로 통신 가능한 복수의 콘트롤러(180)로 구현될 수 있다.In some cases, the controller 180 may be implemented as a plurality of controllers 180 that can communicate with each other.
예를 들어, 콘트롤러(180)는 그 일부가 유압식 브레이커(1000) 측에 설치되어 있고 다른 일부가 캐리어(120)에 설치되는 등과 같이 분산 배치되어 있을 수 있으며, 분산 배치된 콘트롤러(180) 간에는 무선/유선 통신을 수행하여 협업함으로써 그 기능을 수행할 수 있다. For example, the controller 180 may be distributedly disposed such that a part thereof is installed on the hydraulic breaker 1000 side and the other part is installed on the carrier 120, and the controller 180 is wirelessly distributed between the distributed controllers 180. You can do that by collaborating by performing wired communication.
일례로, 다수의 콘트롤러(180)가 분산 배치되는 경우에는 그 일부는 슬레이브 타입으로 단순히 신호나 정보만을 전달하는 역할을 하고 다른 일부가 마스터 타입으로 각종 신호나 정보를 수신하여 처리/연산 및 명령/제어를 수행하는 방식을 취할 수도 있다.For example, when a plurality of controllers 180 are distributed, some of them simply transmit signals or information to a slave type, and others receive various signals or information to a master type to process / operate and command / It may also take the form of performing control.
콘트롤러(180)에 대한 설명은 아래에서 작동유 모니터링 시스템을 설명할 때, 더욱 자세히 설명하겠다.The description of the controller 180 will be described in more detail when describing the oil monitoring system below.
이하에서는, 작동유 모니터링 시스템에 대해서 자세히 설명하겠다.Hereinafter, the hydraulic oil monitoring system will be described in detail.
작동유 모니터링 시스템은, 상술한 유압식 브레이커(1000)에서 피스톤(1440)의 왕복 운동을 일으키는 동력이 되는 작동유의 오염 여부를 모니터링하는 시스템이다. The hydraulic oil monitoring system is a system for monitoring the contamination of the hydraulic oil which is the power causing the reciprocating motion of the piston 1440 in the hydraulic breaker 1000 described above.
예를 들어, 모니터링 시스템은 상술한 오염도 센서(150)에서 감지된 오염도 정보를 이용하여 작동유의 오염 여부에 관한 모니터링을 수행할 수 있다. 또 모니터링 결과 작동유가 오염된 것으로 판단하는 경우에는 경고 동작 등을 수행할 수도 있다.For example, the monitoring system may monitor whether the working oil is contaminated by using the pollution degree information detected by the pollution degree sensor 150 described above. In addition, if the monitoring determines that the working oil is contaminated, a warning operation may be performed.
여기서, 작동유 모니터링 시스템은 오염도 센서(150) 및 콘트롤러(180)를 포함할 수 있으며, 콘트롤러(180)는 오염도 센서(150)로부터 감지된 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우, 작동유가 오염된 것으로 판단하고 경고 동작을 수행할 수 있다.Here, the hydraulic fluid monitoring system may include a pollution degree sensor 150 and a controller 180, and when the controller 180 satisfies a predetermined condition based on the pollution degree information detected from the pollution degree sensor 150, the hydraulic oil may be It may be considered contaminated and a warning action may be taken.
미리 정해진 조건은 작동유가 오염되었는지 여부를 판단하는 기준조건일 수 있다.The predetermined condition may be a reference condition for determining whether the hydraulic oil is contaminated.
일례로, 콘트롤러(180)는 오염도 센서(150)로부터 감지된 오염도 정보 또는 오염도 정보를 기초로 연산/변환된 데이터가 미리 정해진 조건을 만족하는 경우 작동유가 오염된 것으로 판단할 수 있고, 미리 정해진 조건을 만족하지 않는 경우 작동유가 정상상태인 것으로 판단할 수 있다. For example, the controller 180 may determine that the working oil is contaminated when the degree of contamination information detected from the pollution degree sensor 150 or data calculated / converted based on the degree of contamination information satisfies a predetermined condition. If it is not satisfied, it can be determined that the working oil is in a normal state.
미리 정해진 조건은, 사용자에 의해 설정될 수도 있으며, 작동유가 오염되지 않은 정상적인 상태에서 오염도 센서(150)로부터 획득한 오염도 정보를 기초로 설정될 수도 있다.The predetermined condition may be set by the user or may be set based on the pollution degree information obtained from the pollution degree sensor 150 in a normal state in which the working oil is not polluted.
또한, 작동유 모니터링 시스템은 영상 또는 음성을 출력하는 출력 모듈(190)을 더 포함할 수 있다.In addition, the hydraulic fluid monitoring system may further include an output module 190 for outputting an image or an audio.
출력 모듈(190)을 더 포함할 수 있다. 출력 모듈(190)은 예를 들어 주로 영상을 출력하는 영상 출력 모듈 또는 음성을 출력하는 음성 출력 모듈로 구현될 수 있다. The module may further include an output module 190. The output module 190 may be implemented as, for example, an image output module that mainly outputs an image or an audio output module that outputs an audio.
물론, 둘 이외에 사용자에게 정보를 전달하는 다양한 출력 장치들이 출력 모듈(190)로 채택될 수 있다. Of course, in addition to the two, various output devices for transmitting information to the user may be adopted as the output module 190.
출력 모듈(190)은 사용자에게 영상 또는 음성을 직접 출력할 수도 있으며, 사용자에게 영상 또는 음성을 직접 출력하는 다른 기기에 영상/음성 신호를 전송하는 usb 포트 등을 아우르는 구성일 수 있다.The output module 190 may directly output an image or an audio to a user, and may be configured to include a USB port for transmitting an image / audio signal to another device that directly outputs an image or an audio to a user.
출력 모듈(190)은 영상 또는 음성을 출력하여 사용자에게 작동유 오염에 대한 경고 메시지를 출력할 수 있는 구성일 수 있다.The output module 190 may be a component capable of outputting an image or an audio and outputting a warning message about the oil contamination to the user.
일례로, 출력 모듈(190)은 브레이커(1000)에 설치될 수도 있고, 캐리어(120)에 설치될 수도 있다.For example, the output module 190 may be installed in the breaker 1000 or may be installed in the carrier 120.
일례로, 콘트롤러(180)는 출력 모듈(190)을 통해 사용자에게 작동유 오염에 대한 경고 메시지를 출력하도록 출력 모듈(190)을 제어할 수 있다.In one example, the controller 180 may control the output module 190 to output a warning message about the oil contamination to the user through the output module 190.
콘트롤러(180)와 출력 모듈(190)은 유선 통신 또는 무선 통신이 가능할 수 있다.The controller 180 and the output module 190 may enable wired communication or wireless communication.
여기서, 일례로, 도 5에 도시한 바와 같이, 미리 정해진 조건은 오염도 정보의 오염값이 소정의 기준 오염값(K1, K2) 이상인 조건일 수 있다.Here, as an example, as shown in FIG. 5, the predetermined condition may be a condition that the contamination value of the pollution degree information is equal to or greater than the predetermined reference contamination values K1 and K2.
일례로, 도4에서 도시한 바와 같이, 유압식 브레이커(1000)에는 전진 라인(1434a) 상에 제1 오염도 센서(150a)가 제공될 수 있다.For example, as shown in FIG. 4, the hydraulic breaker 1000 may be provided with a first pollution degree sensor 150a on the advance line 1434a.
제1 오염도 센서(150a) 는 피스톤(1440)의 전진 운동 시 리어 챔버(1432)로 유입되는 작동유의 유입 오염도를 감지할 수 있고, 피스톤(1440)의 후진 운동시 리어 챔버(1432)로부터 배출되는 작동유의 배출 오염도를 감지할 수 있다.The first pollution degree sensor 150a may detect the contamination level of the hydraulic oil flowing into the rear chamber 1432 during the forward movement of the piston 1440, and may be discharged from the rear chamber 1432 during the backward movement of the piston 1440. The degree of pollution of the discharged oil can be detected.
즉, 제1 오염도 센서(150a)는 유입 오염도 센서일 수도 있으며, 동시에 배출 오염도 센서일 수도 있다.That is, the first pollution degree sensor 150a may be an inflow pollution degree sensor, and at the same time, it may be an emission pollution degree sensor.
일례로, 도5에서는 제1 오염도 센서(150a)에서 감지하는 오염도 정보를 도시한다. 여기에서, 오염값이 클수록 작동유의 오염이 많이 진행되었음을 의미한다. 피스톤(1440)이 전진되는 동안 리어 챔버(1432)로 유입되는 작동유의 오염도 정보는 시간 0 ~ t1, t2 ~ t3, t4 ~ t5의 구간에서 감지되며, 피스톤(1440)이 후진하는 동안 리어 챔버(1432)로부터 배출되는 작동유의 오염정보는 시간 t1 ~ t2, t3 ~ t4, t5 ~ t6의 구간에서 감지된다.For example, FIG. 5 illustrates pollution degree information detected by the first pollution degree sensor 150a. Here, the larger the contamination value, the more the contamination of the hydraulic oil has progressed. Pollution degree information of the hydraulic oil flowing into the rear chamber 1432 while the piston 1440 is advanced is detected at a time interval of 0 to t1, t2 to t3, and t4 to t5, and the rear chamber ( Contamination information of the hydraulic oil discharged from 1432) is detected in the time t1 ~ t2, t3 ~ t4, t5 ~ t6.
일례로, K1과 K2는 소정의 기준 오염값이며, 감지된 오염값이 구간 t1 ~ t2에서와 같이 K1 이상인 경우와 구간 t3 ~ t4, t5 ~ t6와 같이 K2이상인 경우, 미리 정해진 조건을 만족하였으므로, 콘트롤러(180)는 오염도 정보를 사용자에게 알리는 소정의 동작을 수행한다. For example, K1 and K2 are predetermined reference contamination values, and when the detected contamination value is K1 or more as in the sections t1 to t2 and K2 or more in the sections t3 to t4 and t5 to t6, the predetermined condition is satisfied. The controller 180 performs a predetermined operation of notifying the user of pollution degree information.
일례로, 미리 정해진 조건은 작동유의 오염값이 소정의 기준 오염값(K1, K2) 이상인 빈도가 소정의 기준 빈도값 이상인 조건일 수 있다.For example, the predetermined condition may be a condition in which the frequency of the contamination value of the hydraulic oil is equal to or greater than the predetermined reference contamination value K1 and K2.
여기에서, 일례로, 오염도 센서가 광학 센서 또는 전기전도도 센서인 경우, 파편의 방향, 불순물의 불균일성 등에 의해 탁도 또는 전기전도도가 일시적으로 큰 차이를 나타낼 수 있다. 이에 따라 작동유의 오염도가 심각하지 않음에도, 일시적으로 소정의 기준 오염값(K1, K2) 이상으로 감지되는 경우가 발생할 수 있다. 이를 방지하기 위해 피스톤(1440)이 복수 회 왕복 운동하는 동안 유입 또는 배출되는 작동유의 오염도를 감지하여, 작동유의 오염값이 소정의 기준 오염값 이상인 횟수를 총 피스톤 왕복운동 횟수에 대해 비교하여 작동유의 오염값이 소정의 기준 오염값 이상인 빈도를 획득한다. 획득된 빈도가 소정의 기준 빈도값 이상인 경우에만 작동유가 오염된 것으로 판단함으로써 오차를 배제하고 높은 수준의 신뢰도를 확보할 수 있다. 예를 들면, 도5에서 도시하듯이, 0에서 t6까지 6개의 구간에서 오염값이 K1 이상인 경우는 3 번, K2 이상인 경우는 2번이 감지된 바, 소정의 기준 빈도값이 40%로 설정된 경우, K1에 대해서 소정의 기준 빈도값 이상이므로, 콘트롤러(180)에 의해 경고 메시지를 보낼 수 있고, K2에 대해서는 소정의 기준 빈도값 이하이므로 콘트롤러(180)는 별다른 조치를 취하지 않는다.Here, as an example, when the contamination sensor is an optical sensor or an electrical conductivity sensor, the turbidity or the electrical conductivity may be temporarily different due to the direction of the fragment, the nonuniformity of impurities, and the like. As a result, even when the degree of contamination of the working oil is not serious, a case where the oil is temporarily detected to be higher than the predetermined reference contamination values K1 and K2 may occur. In order to prevent this, the piston 1440 detects the degree of contamination of the hydraulic oil introduced or discharged during the reciprocating motion a plurality of times, and compares the number of times that the hydraulic oil is greater than or equal to a predetermined reference contamination value with respect to the total number of piston reciprocating motions. The frequency at which the contamination value is equal to or greater than a predetermined reference contamination value is obtained. Only when the acquired frequency is more than a predetermined reference frequency value, it is determined that the working oil is contaminated, thereby excluding errors and securing a high level of reliability. For example, as shown in FIG. 5, in six sections from 0 to t6, three times when the contamination value is K1 or more, and two times when K2 or more is detected, the predetermined reference frequency value is set to 40%. In this case, since it is equal to or greater than the predetermined reference frequency value for K1, the controller 180 can send a warning message, and since the K2 is less than or equal to the predetermined reference frequency value, the controller 180 does not take any action.
또한, 일례로, 소정의 시간내에서 유입 또는 배출되는 작동유의 오염도를 감지하여, 작동유의 오염값이 소정의 기준 오염값 이상인 빈도가 소정의 기준 빈도값 이상인 조건일 수 있다.In addition, as an example, by detecting the contamination level of the hydraulic oil flowing in or out within a predetermined time, the frequency of the contamination value of the hydraulic fluid is more than the predetermined reference contamination value may be a condition of more than the predetermined reference frequency value.
즉, 일례로, 0에서 t6까지의 시간내에서 오염값이 K1 이상인 경우가 3회 이상인 경우 콘트롤러(180)는 작동유가 오염되었다고 판단할 수도 있다.That is, for example, when the contamination value is greater than or equal to K1 within three times from 0 to t6, the controller 180 may determine that the hydraulic oil is contaminated.
일례로, 유입되는 작동유의 오염값과 배출되는 작동유의 오염값의 차이가 소정의 기준 차이값(△K) 이상인 경우, 콘트롤러(180)는 미리 정해진 조건을 만족한 것으로 보아 오염도 정보를 사용자에게 알리는 소정의 동작을 수행한다.For example, when the difference between the contamination value of the incoming hydraulic oil and the contamination value of the discharged hydraulic oil is equal to or more than a predetermined reference difference value DELTA K, the controller 180 notifies the user of the contamination level information as it satisfies a predetermined condition. Perform a predetermined operation.
일례로, 유입되는 작동유의 오염값과 배출되는 작동유의 오염값은 피스톤(1440)의 연속되는 한 번의 후진 운동과 한 번의 전진 운동 시 각각 유입되는 작동유와 배출되는 작동유의 오염값일 수 있다. 이 경우, 한 번의 왕복 운동에 의해 증가하는 오염도를 파악함으로써, 다시 말하면, 어느 한 번의 왕복 운동에 의해 발생되는 불순물의 정도를 특정함으로써, 작동유 모니터링 시스템의 정확성을 높일 수 있다.For example, the contamination value of the hydraulic oil flowing in and the pollution value of the hydraulic oil discharged may be pollution values of the hydraulic oil and the hydraulic oil introduced during one continuous backward movement and one forward movement of the piston 1440. In this case, it is possible to increase the accuracy of the hydraulic oil monitoring system by identifying the degree of contamination increased by one reciprocating motion, that is, specifying the degree of impurities generated by any one reciprocating motion.
또한 일례로, 도 4에서 도시한 바와 같이, 유압식 브레이커(1000)에는 후진 라인(1433a) 상에 제2 오염도 센서(150b)가 제공될 수 있고, 유압 탱크 라인(1438a) 상에 제3 오염도 센서(150c)가, 롱 스트로크 라인(1435a) 상에 제4 오염도 센서(150d), 숏 스트로크 라인(1436a) 상에 제5 오염도 센서(150e), 각각 제공될 수 있다.Also as an example, as shown in FIG. 4, the hydraulic breaker 1000 may be provided with a second pollution degree sensor 150b on the reverse line 1433a, and a third pollution degree sensor on the hydraulic tank line 1438a. 150c may be provided on the long stroke line 1435a, the fourth pollution degree sensor 150d, and the fifth pollution degree sensor 150e on the short stroke line 1436a, respectively.
제2 오염도 센서(150b)는 피스톤(1440)의 후진 운동 시 프론트 챔버(1431)로 유입되는 작동유의 오염도를 감지할 수 있고, 제3 오염도 센서(150c)는 피스톤(1440)의 전진 운동 시 프론트 챔버(1431)로부터 배출되는 작동유의 오염도를 감지할 수 있다.The second pollution degree sensor 150b may detect a pollution degree of the working oil flowing into the front chamber 1431 during the backward movement of the piston 1440, and the third pollution degree sensor 150c may detect the contamination during the forward movement of the piston 1440. The degree of contamination of the hydraulic oil discharged from the chamber 1431 can be detected.
제4 오염도 센서(150d)는 피스톤(1440)이 롱 스트로크 모드에 따라 왕복 운동 하는 경우, 롱 스트로크 포트(1435)가 열림에 따라 프론트 챔버(1431)로부터 배출되는 작동유의 오염도를 감지할 수 있으며, 제5 오염도 센서(150e)는 피스톤(1440)이 숏 스트로크 모드에 따라 왕복 운동 하는 경우, 숏 스트로크 포트(1436)가 열림에 따라 프론트 챔버(1431)로부터 배출되는 작동유의 오염도를 감지할 수 있으며, When the piston 1440 reciprocates according to the long stroke mode, the fourth pollution degree sensor 150d may detect a degree of contamination of the hydraulic oil discharged from the front chamber 1431 as the long stroke port 1435 is opened. When the piston 1440 reciprocates according to the short stroke mode, the fifth pollution degree sensor 150e may detect a degree of contamination of the hydraulic oil discharged from the front chamber 1431 as the short stroke port 1434 opens.
도6에서는, 유입 오염도 센서의 일례로서 후진 라인(1433a) 상에 제공되는 제2 오염도 센서(150b)에서 감지되는 프론트 챔버(1431)로 유입되는 작동유의 오염도 정보를 실선으로 도시하고, 배출 오염도 센서의 일례로서, 배출 포트 - 프론트 챔버에서 배출되는 작동유가 거쳐가는 포트를 통틀어 지칭하는 것으로서, 숏 스트로크 포트(1436), 롱 스트로크 포트(1435), 유압 탱크 포트(1438) 등이 있을 수 있다. - 를 거쳐 프론트 챔버(1431)로부터 배출되는 유압 라인 상에 제공되는 제3 오염도 센서(150c), 제4 오염도 센서(150d), 제5 오염도 센서(150e)에서 감지되는 작동유의 오염도 정보를 파선으로 도시한다. 오랜 시간 동안 작동유의 교체 없이 사용하게 되는 경우 도 6에서 도시한 바와 같이 오염도가 점진적으로 증가할 수 있다. In FIG. 6, as an example of the inflow contamination sensor, the pollution degree information of the working oil flowing into the front chamber 1431 detected by the second pollution degree sensor 150b provided on the reverse line 1433a is shown in solid lines, and the emission pollution degree sensor As an example, a discharge port-as a whole refers to a port through which the hydraulic oil discharged from the front chamber passes, there may be a short stroke port (1436), a long stroke port 1435, a hydraulic tank port (1438) and the like. The contamination level information of the working oil detected by the third pollution degree sensor 150c, the fourth pollution degree sensor 150d, and the fifth pollution degree sensor 150e provided on the hydraulic line discharged from the front chamber 1431 via a broken line. Illustrated. When used without replacing the hydraulic fluid for a long time as shown in Figure 6 may be gradually increased pollution.
일례로, K1과 K2는 소정의 기준 오염값이며, 감지된 오염값이 K1 또는 K2이상인 경우, 미리 정해진 조건을 만족하였으므로, 콘트롤러(180)는 오염도 정보를 사용자에게 알리는 소정의 동작을 수행한다. For example, K1 and K2 are predetermined reference contamination values, and if the detected contamination value is K1 or K2 or more, the predetermined condition is satisfied, so that the controller 180 performs a predetermined operation of notifying the user of pollution degree information.
일례로, 유입되는 작동유의 오염값과 배출되는 작동유의 오염값의 차이가 소정의 기준 차이값(△K) 이상인 경우, 콘트롤러(180)는 미리 정해진 조건을 만족한 것으로 보아 오염도 정보를 사용자에게 알리는 소정의 동작을 수행한다.For example, when the difference between the contamination value of the incoming hydraulic oil and the contamination value of the discharged hydraulic oil is equal to or more than a predetermined reference difference value DELTA K, the controller 180 notifies the user of the contamination level information as it satisfies a predetermined condition. Perform a predetermined operation.
일례로, 제1 오염도 센서(150a)에서 감지된 오염도 정보에 기초하여 콘트롤러(180)가 작동유가 오염된 것으로 판단하는 경우, 실린더(1430) 내부의 불순물 또는 피스톤(1440) 상에 발생된 스크래치 등 작동유 오염의 유발 인자가 위치한 곳은 리어 챔버(1432)인 것으로 특정할 수 있다. 콘트롤러(180)는 특정된 오염 유발 인자의 위치를 사용자에게 경고 메시지와 함께 알릴 수 있다.For example, when the controller 180 determines that the working oil is contaminated based on the pollution degree information detected by the first pollution degree sensor 150a, impurities in the cylinder 1430 or scratches generated on the piston 1440 may be used. Where the inducing factor of the hydraulic oil contamination is located may be specified as the rear chamber (1432). The controller 180 may inform the user of the location of the specified contamination causing factor with a warning message.
일례로, 제2 오염도 센서(150b)에서 프론트 챔버(1431)로 유입되는 작동유의 오염도와 제3 오염도 센서(150c)에서 프론트 챔버(1431)로부터 배출되는 작동유의 오염도를 비교하여 콘트롤러(180)가 작동유가 오염된 것으로 판단하는 경우, 실린더(1430) 내부의 불순물 또는 피스톤(1440) 상에 발생된 스크래치 등 작동유 오염의 유발 인자가 위치한 곳은 프론트 챔버(1431)인 것으로 특정할 수 있다. 콘트롤러(180)는 특정된 오염 유발 인자의 위치를 사용자에게 경고 메시지와 함께 알릴 수 있다. 제4 오염도 센서(150d) 및 제5 오염도 센서(150e)도 프론트 챔버(1431)에서 배출되는 작동유의 오염도를 감지하는 바, 작동유 오염의 유발 인자가 위치하는 챔버를 특정하는 기능에서는, 제3 오염도 센서(150c)와 동일한 역할을 수행할 수 있다.For example, the controller 180 compares the pollution of the hydraulic oil flowing into the front chamber 1431 from the second pollution degree sensor 150b with the contamination of the hydraulic oil discharged from the front chamber 1431 in the third pollution degree sensor 150c. When it is determined that the hydraulic oil is contaminated, the front chamber 1431 may be located where the inducing factor of the hydraulic oil contamination, such as an impurity inside the cylinder 1430 or a scratch generated on the piston 1440, is located. The controller 180 may inform the user of the location of the specified contamination causing factor with a warning message. The fourth pollution degree sensor 150d and the fifth pollution degree sensor 150e also detect pollution levels of the hydraulic oil discharged from the front chamber 1431, and according to the function of specifying a chamber in which the cause of the hydraulic oil contamination is located, the third pollution degree The same role as the sensor 150c may be performed.
여기에서, 콘트롤러(180)는 작동유가 오염된 것으로 판단하는 경우 상기 출력 모듈(190)을 통해 사용자에게 경고 메시지를 출력할 수 있다.In this case, when the controller 180 determines that the working oil is contaminated, the controller 180 may output a warning message to the user through the output module 190.
또한, 일례로, 콘트롤러(180)는 작동유가 오염된 것으로 판단하는 경우 피스톤(1440)의 왕복 운동을 정지시킬 수 있다.In addition, as an example, the controller 180 may stop the reciprocating motion of the piston 1440 when it is determined that the hydraulic fluid is contaminated.
또한, 일례로, 도 5및 도6에 도시한 바와 같이, 콘트롤러(180)는 오염도 정보의 오염값이 제1 오염값(K1) 이상인 경우 출력 모듈(190)을 통해 사용자에게 경고 메시지를 출력할 수 있으며, 오염도 정보의 오염값이 제1 오염값(K1)보다 큰 제2 오염값(K2) 이상인 경우 피스톤(1440)의 왕복 운동을 정지시킬 수 있다.Also, as an example, as shown in FIGS. 5 and 6, the controller 180 may output a warning message to the user through the output module 190 when the pollution value of the pollution degree information is equal to or greater than the first pollution value K1. The reciprocating motion of the piston 1440 may be stopped when the pollution value of the pollution degree information is greater than or equal to the second pollution value K2 greater than the first pollution value K1.
즉, 콘트롤러(180)는, 작동유의 오염 정도가 경고 수준인 경우 출력 모듈(190)을 통해 사용자에게 이러한 사실을 알릴 수 있으며, 작동유의 오염 정도가 경고 수준 이상인 경우 사용자의 별도 조작 없이도 피스톤(1440)의 왕복 운동을 정지시킬 수 있다.That is, the controller 180 may notify the user of the fact through the output module 190 when the degree of contamination of the hydraulic fluid is a warning level, and the piston 1440 without the user's separate operation when the degree of contamination of the hydraulic fluid is more than the warning level. ) The reciprocating motion can be stopped.
그 결과, 콘트롤러(180)는 피스톤(1440)의 작동유의 오염도 증가에 따른 피스톤(1440) 및 실린더(1430)의 파손을 미연에 방지할 수 있다.As a result, the controller 180 can prevent damage to the piston 1440 and the cylinder 1430 due to the increase in the degree of contamination of the hydraulic oil of the piston 1440.
일례로, 콘트롤러(180)는 작동유가 오염된 것으로 판단하는 경우 차단 밸브(1480)가 작동유의 흐름을 차단하도록 차단 밸브(1480)를 제어할 수 있다.For example, the controller 180 may control the shutoff valve 1480 to block the flow of the hydraulic oil when the shutoff valve 1480 determines that the hydraulic oil is contaminated.
일례로, 콘트롤러(180)가 차단 밸브(1480)를 제어하지 않는 경우, 차단 밸브(1480)는 연결 위치(1480-2) 상태에 있으며, 콘트롤러(180)가 차단 밸브(1480)를 제어하는 경우 차단 밸브(1480)는 연결 위치(1480-2)로부터 차단 위치(1480-1)로 변경될 수 있다.For example, when the controller 180 does not control the shutoff valve 1480, the shutoff valve 1480 is in a connection position 1480-2, and when the controller 180 controls the shutoff valve 1480. The shutoff valve 1480 may be changed from the connecting position 1480-2 to the blocking position 1480-1.
즉, 콘트롤러(180)는 차단 밸브(1480)가 연결 위치(1480-2)로부터 차단 위치(1480-1)로 변경될 수 있도록 제어할 수 있으며, 그 결과 차단 밸브(1480)는 작동유의 흐름을 차단할 수 있다.That is, the controller 180 may control the shutoff valve 1480 to be changed from the connection position 1480-2 to the shutoff position 1480-1, and as a result, the shutoff valve 1480 controls the flow of hydraulic oil. You can block.
앞서 설명한 바와 같이, 차단 밸브(1480)가 콘트롤러(180)의 제어에 의해 연결 위치(1480-2)로부터 차단 위치(1480-1)로 변환된 경우, 제어 밸브(1460)는 후진 위치(1460-1)에서 지속적으로 유지되며, 그 결과, 유압 소스(160)의 작동유는 리어 챔버(1432)에 유입될 수 없어 피스톤(1440)의 왕복 운동이 구현되지 않을 수 있다.As described above, when the shutoff valve 1480 is converted from the coupling position 1480-2 to the shutoff position 1480-1 by the control of the controller 180, the control valve 1460 is the reverse position 1460-. It is continuously maintained at 1), and as a result, the hydraulic oil of the hydraulic source 160 cannot flow into the rear chamber 1432, so that the reciprocating motion of the piston 1440 may not be implemented.
일례로, 콘트롤러(180)는 작동유가 오염된 것으로 판단하는 경우 변속 밸브(1470)를 제어하여 피스톤(1440)의 왕복 운동을 제어할 수 있다.For example, when the controller 180 determines that the hydraulic oil is contaminated, the controller 180 may control the shift valve 1470 to control the reciprocating motion of the piston 1440.
일례로, 콘트롤러(180)는, 피스톤(1440)이 롱 스트로크 상태에서 작동유가 오염된 것으로 판단하는 경우 변속 밸브(1470)를 제어하여 피스톤(1440)이 숏 스트로크 상태로 변경되도록 제어할 수 있으며, 피스톤(1440)이 숏 스트로크 상태에서 작동유가 오염된 것으로 판단하는 경우 차단 밸브(1480)를 제어하여 피스톤(1440)을 정지시킬 수 있다.For example, the controller 180 may control the piston 1440 to change to a short stroke state by controlling the shift valve 1470 when the piston 1440 determines that the hydraulic oil is contaminated in the long stroke state. When the piston 1440 determines that the hydraulic fluid is contaminated in the short stroke state, the piston 1440 may be stopped by controlling the shutoff valve 1480.
콘트롤러(180)는 변속 밸브(1470) 및 차단 밸브(1480)를 순차적으로 제어하여, 피스톤(1440)이 롱 스트로크인 경우 순차적으로 숏 스트로크로 변경하고 숏 스트로크에서 다시 정지시킬 수도 있다.The controller 180 may sequentially control the shift valve 1470 and the shutoff valve 1480, so that when the piston 1440 is a long stroke, the controller 180 may sequentially change to a short stroke and stop again at the short stroke.
사용자는 콘트롤러(180)의 제어에 의해 피스톤(1440)의 왕복 운동 상태가 변경됨으로서 작동유가 오염되었음을 인지할 수 있다.The user may recognize that the hydraulic fluid is contaminated by changing the reciprocating state of the piston 1440 by the control of the controller 180.
일례로, 콘트롤러(180)의 경고 동작은 출력 모듈(190)을 통해 사용자에게 경고 메시지를 출력하는 동작 및/또는 피스톤(1440)의 왕복 운동 상태를 변경하는 동작을 의미할 수 있다.For example, the warning operation of the controller 180 may mean an operation of outputting a warning message to the user through the output module 190 and / or changing the reciprocating motion state of the piston 1440.
이하에서는 작동유 모니터링 방법에 대해 설명하겠다.Hereinafter, a description will be given of the hydraulic oil monitoring method.
작동유 모니터링 방법은 실린더(1430) 내에서 피스톤(1440)의 왕복 운동에 따라 치즐이 대상물을 타격하는 단계(S10), 실린더(1430) 상에 제공되는 유압 포트에 연결된 유압 라인 상에 제공되는 오염도 센서(150)가 실린더(1430)로 유입 또는 배출되는 작동유에 관한 오염도 정보를 감지하는 단계 및 콘트롤러(180)가 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우 경고 동작을 수행하는 단계(S30)를 포함할 수 있다.The hydraulic oil monitoring method includes a step in which a chisel strikes an object according to the reciprocating motion of the piston 1440 in the cylinder 1430 (S10), and a pollution degree sensor provided on a hydraulic line connected to a hydraulic port provided on the cylinder 1430. Detecting a pollution degree information on the hydraulic fluid flowing into or out of the cylinder 1430 and performing a warning operation when the controller 180 satisfies a predetermined condition based on the detected pollution degree information ( S30) may be included.
앞서 언급한 바와 같이, 본 발명의 기술적 사상을 구현하기 위해, 도 7에 도시한 바와 같이, 콘트롤러(180)와 오염도 센서(150), 차단 밸브(1480), 변속 밸브(1470) 및 출력 모듈(190) 간은 유선 통신 또는 무선 통신이 가능하며, 콘트롤러(180)의 제어에 의해 차단 밸브(1480), 변속 밸브(1470) 및 출력 모듈(190)은 제어될 수 있다. As mentioned above, in order to implement the technical spirit of the present invention, as shown in FIG. 7, the controller 180, the pollution degree sensor 150, the shutoff valve 1480, the shift valve 1470 and the output module ( Wireline communication or wireless communication is possible between 190, and the shutoff valve 1480, the shift valve 1470, and the output module 190 may be controlled by the control of the controller 180.
또한, 소정의 기준 오염값(K1, K2), 소정의 기준 차이값(ΔK), 소정의 기준 빈도값은 입력부(195)에 의해 입력될 수도 있으며, 콘트롤러(180)가 작동유가 오염되지 않은 상태에서 오염도 센서(150)로부터 획득한 오염도 정보를 기초로 연산하여 설정될 수도 있다.In addition, the predetermined reference contamination values K1 and K2, the predetermined reference difference value ΔK, and the predetermined reference frequency value may be input by the input unit 195, and the controller 180 is not contaminated with the hydraulic oil. May be calculated and set based on the pollution degree information obtained from the pollution degree sensor 150 at.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.In the above description of the configuration and features of the present invention based on the embodiment according to the present invention, the present invention is not limited thereto, and various changes or modifications can be made within the spirit and scope of the present invention. It will be apparent to those skilled in the art that such changes or modifications fall within the scope of the appended claims.

Claims (15)

  1. 복수의 유압 포트가 구비되는 실린더;A cylinder having a plurality of hydraulic ports;
    상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤;A piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port;
    상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서; 및A pollution degree sensor installed on a hydraulic line connected to the hydraulic port and configured to detect pollution degree information including an inflow pollution degree of the incoming hydraulic oil and an emission pollution degree of the discharged hydraulic oil; And
    감지된 상기 오염도 정보에 기초하여 작동유의 오염여부를 판단하고 작동유가 오염된 것으로 판단하는 경우 경고 동작을 수행하는 콘트롤러에 상기 오염도 정보를 출력하는 송신 모듈;을 포함하는,And a transmission module configured to determine whether the operating oil is contaminated based on the detected contamination level information and output the pollution degree information to a controller which performs a warning operation when determining that the operating oil is contaminated.
    유압식 브레이커.Hydraulic breaker.
  2. 제1항에 있어서,The method of claim 1,
    상기 유압 포트는,The hydraulic port,
    상기 피스톤의 전진 및 후진 운동을 위하여 유압 소스와 상기 실린더의 리어 챔버를 연결하는 전진 포트를 포함하고,A forward port connecting the hydraulic source and the rear chamber of the cylinder for forward and backward movement of the piston,
    상기 전진 포트는,The forward port is,
    상기 피스톤의 전진 운동 시 상기 유압 소스로부터 상기 리어 챔버 방향으로 작동유가 공급되고,Hydraulic fluid is supplied from the hydraulic source toward the rear chamber during the forward movement of the piston,
    상기 피스톤의 후진 운동 시 상기 리어 챔버로부터 상기 유압 소스 방향으로 작동유가 배출되며, Hydraulic fluid is discharged from the rear chamber toward the hydraulic source during the backward movement of the piston,
    상기 오염도 센서는,The pollution degree sensor,
    상기 전진 포트에 연결되는 유압 라인 상에 배치되어,Disposed on a hydraulic line connected to the forward port,
    상기 피스톤의 전진 운동 시에는 상기 유압 소스로부터 상기 리어 챔버 방향으로 유입되는 작동유의 상기 유입 오염도를 감지하고, 상기 피스톤의 후진 운동 시에는 상기 리어 챔버로부터 상기 유압 소스 방향으로 배출되는 작동유의 상기 배출 오염도를 감지하는,The inflow contamination level of the hydraulic oil flowing in the direction of the rear chamber from the hydraulic source during the forward movement of the piston, the discharge pollution degree of the hydraulic oil discharged in the direction of the hydraulic source from the rear chamber during the backward movement of the piston Detecting,
    유압식 브레이커.Hydraulic breaker.
  3. 제1항에 있어서,The method of claim 1,
    상기 유압 포트는,The hydraulic port,
    상기 피스톤의 후진 운동을 위하여 유압 소스와 상기 실린더의 프론트 챔버를 연결하는 후진 포트 및 상기 피스톤의 전진 운동을 위하여 상기 프론트 챔버로부터 작동유를 배출하는 배출 포트를 포함하고,A reverse port connecting the hydraulic source and the front chamber of the cylinder for the backward movement of the piston and a discharge port for discharging the hydraulic oil from the front chamber for the forward movement of the piston,
    상기 오염도 센서는, The pollution degree sensor,
    상기 후진 포트와 상기 유압 소스를 연결하는 유압 라인 상에 설치되어 상기 프론트 챔버로 유입되는 작동유의 상기 유입 오염도를 감지하는 유입 오염도 센서 및 상기 배출 포트에 연결되는 유압 라인 상에 설치되어 상기 프론트 챔버로부터 배출되는 작동유의 상기 배출 오염도를 감지하는 배출 오염도 센서를 포함하는,An inlet contamination sensor configured to be installed on a hydraulic line connecting the reverse port and the hydraulic source to detect the inflow contamination of the hydraulic oil flowing into the front chamber and a hydraulic line connected to the discharge port, from the front chamber A discharge pollution degree sensor for detecting the discharge pollution degree of the working oil discharged,
    유압식 브레이커.Hydraulic breaker.
  4. 제3항에 있어서,The method of claim 3,
    상기 배출 포트는,The discharge port,
    상기 프론트 챔버로부터 유압 탱크 방향으로 작동유를 배출하는 유압탱크 포트를 포함하고,A hydraulic tank port for discharging hydraulic oil from the front chamber in a hydraulic tank direction;
    상기 배출 오염도 센서는,The emission pollution degree sensor,
    상기 유압탱크 포트에 연결되는 유압 라인 상에 설치되는,Installed on the hydraulic line connected to the hydraulic tank port,
    유압식 브레이커.Hydraulic breaker.
  5. 복수의 유압 포트가 구비되는 실린더 및 상기 유압 포트를 통해 유입 또는 배출되는 작동유의 유압에 의해 상기 실린더 내에서 왕복 운동하는 피스톤을 구비하는 유압식 브레이커의 작동유의 오염도를 모니터링하는 작동유 모니터링 시스템에 있어서,In a hydraulic oil monitoring system for monitoring the contamination of the hydraulic oil of a hydraulic breaker having a cylinder having a plurality of hydraulic ports and a piston reciprocating in the cylinder by the hydraulic pressure of the hydraulic oil flowing in or out through the hydraulic port,
    상기 유압 포트에 연결된 유압 라인 상에 설치되고, 상기 유입되는 작동유에 관한 유입 오염도 및 상기 배출되는 작동유에 관한 배출 오염도를 포함하는 오염도 정보를 감지하는 오염도 센서; 및A pollution degree sensor installed on a hydraulic line connected to the hydraulic port and configured to detect pollution degree information including an inflow pollution degree of the introduced hydraulic oil and an emission pollution degree of the discharged hydraulic oil; And
    감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우, 상기 작동유가 오염된 것으로 판단하여 경고 동작을 수행하는 콘트롤러;를 포함하는,And a controller configured to perform a warning operation by determining that the hydraulic oil is contaminated when the predetermined condition is satisfied based on the detected pollution degree information.
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  6. 제5항에 있어서,The method of claim 5,
    상기 미리 정해진 조건은,The predetermined condition is
    상기 오염도 정보의 오염값이 소정의 기준 오염값 이상인 조건인,The contamination value of the pollution degree information is a condition that is more than a predetermined reference pollution value,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  7. 제6항에 있어서,The method of claim 6,
    상기 미리 정해진 조건은,The predetermined condition is
    상기 오염도 정보의 오염값이 소정의 기준 오염값 이상인 빈도가 소정의 기준빈도 이상인,The frequency of the contamination value of the pollution degree information is more than a predetermined reference pollution value is more than a predetermined reference frequency,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  8. 제5항에 있어서,The method of claim 5,
    상기 미리 정해진 조건은,The predetermined condition is
    상기 오염도 정보의 상기 유입 오염도와 상기 오염도 정보의 상기 배출 오염도의 차이값이 소정의 기준 차이값 이상인 조건인,Wherein the difference value between the inflow pollution degree of the pollution degree information and the emission pollution degree of the pollution degree information is equal to or greater than a predetermined reference difference value;
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  9. 제8항에 있어서,The method of claim 8,
    상기 유입 오염도 및 상기 배출 오염도는,The inflow pollution degree and the discharge pollution degree,
    상기 피스톤이 1회 왕복 운동할 때, 유입되는 작동유 및 배출되는 작동유에 관한 오염도인,When the piston reciprocates once, it is the degree of contamination with respect to the hydraulic oil flowing in and the hydraulic oil discharged,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  10. 제5항에 있어서,The method of claim 5,
    영상 또는 음성을 출력하는 출력 모듈;을 더 포함하고,An output module for outputting an image or an audio;
    상기 콘트롤러는, The controller,
    작동유가 오염된 것으로 판단하는 경우 상기 출력 모듈을 통해 경고 메시지를 출력하는,If it is determined that the hydraulic fluid is contaminated to output a warning message through the output module,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  11. 제5항에 있어서,The method of claim 5,
    상기 콘트롤러는, The controller,
    작동유가 오염된 것으로 판단하는 경우 상기 피스톤의 왕복 운동을 정지시키는,Stopping the reciprocating motion of the piston when it is determined that the hydraulic oil is contaminated,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  12. 제11항에 있어서,The method of claim 11,
    - 상기 유압식 브레이커는, 상기 피스톤의 전진운동을 위하여 유압 소스와 상기 실린더의 리어 챔버를 연결하거나 또는 후진운동을 위하여 상기 실린더의 리어 챔버로부터 상기 작동유를 배출하는 제어 밸브 및 상기 작동유의 흐름을 선택적으로 차단하는 차단 밸브를 더 구비함 -The hydraulic breaker selectively connects a hydraulic source and the rear chamber of the cylinder for the forward movement of the piston or selectively controls the flow of the hydraulic oil and a control valve for discharging the hydraulic oil from the rear chamber of the cylinder for the backward movement. Also provided with a shutoff valve to shut off-
    상기 콘트롤러는,The controller,
    작동유가 오염된 것으로 판단하는 경우 상기 차단 밸브가 상기 작동유의 흐름을 차단하도록 상기 차단 밸브를 제어하는,When the hydraulic fluid is determined to be contaminated, the shutoff valve controls the shutoff valve to block the flow of the hydraulic oil,
    작동유 모니터링 시스템. Hydraulic oil monitoring system.
  13. 제12항에 있어서,The method of claim 12,
    - 상기 차단 밸브는, 상기 제어 밸브로 향하는 상기 작동유의 흐름을 선택적으로 차단함 - The shutoff valve selectively shuts off the flow of the hydraulic oil to the control valve;
    상기 콘트롤러는,The controller,
    작동유가 오염된 것으로 판단하는 경우 상기 차단 밸브가 상기 작동유의 흐름을 차단하도록 상기 차단 밸브를 제어하는,When the hydraulic fluid is determined to be contaminated, the shutoff valve controls the shutoff valve to block the flow of the hydraulic oil,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  14. 제5항에 있어서,The method of claim 5,
    영상 또는 음성을 출력하는 출력 모듈;을 더 포함하고,An output module for outputting an image or an audio;
    상기 콘트롤러는, The controller,
    상기 오염도 정보의 오염값이 제1 기준 오염값 이상인 경우 상기 출력 모듈을 통해 경고 메시지를 출력하고,Outputting a warning message through the output module when the pollution value of the pollution degree information is equal to or greater than a first reference pollution value,
    상기 오염도 정보의 오염값이 상기 제1 기준 오염값보다 큰 제2 기준 오염값 이상인 경우 상기 피스톤의 왕복 운동을 정지시키는,Stopping the reciprocating motion of the piston when the contamination value of the pollution degree information is greater than or equal to a second reference contamination value greater than the first reference contamination value,
    작동유 모니터링 시스템.Hydraulic oil monitoring system.
  15. 실린더 내에서 피스톤의 왕복 운동에 따라 치즐이 대상물을 타격하는 단계;The chisel hitting the object in accordance with the reciprocating motion of the piston in the cylinder;
    상기 실린더 상에 제공되는 유압 포트에 연결된 유압 라인 상에 제공되는 오염도 센서가 실린더로 유입 또는 배출되는 작동유에 관한 오염도 정보를 감지하는 단계; 및 콘트롤러가 감지된 상기 오염도 정보에 기초하여 미리 정해진 조건을 만족하는 경우 경고 동작을 수행하는 단계;를 포함하는,Detecting contamination information on the hydraulic oil flowing into or out of the cylinder by a pollution sensor provided on a hydraulic line connected to the hydraulic port provided on the cylinder; And performing a warning operation when a controller satisfies a predetermined condition based on the detected pollution degree information.
    작동유 모니터링 방법.How to monitor hydraulic fluid.
PCT/KR2017/001775 2017-02-10 2017-02-17 Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method WO2018147491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170018722A KR101918837B1 (en) 2017-02-10 2017-02-10 A hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method
KR10-2017-0018722 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018147491A1 true WO2018147491A1 (en) 2018-08-16

Family

ID=63106918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001775 WO2018147491A1 (en) 2017-02-10 2017-02-17 Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method

Country Status (2)

Country Link
KR (1) KR101918837B1 (en)
WO (1) WO2018147491A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296595A (en) * 2018-12-06 2019-02-01 武汉理工大学 A kind of full-automatic emergency brake of mining industry hoolivan
CN111968878A (en) * 2020-08-04 2020-11-20 北京中车赛德铁道电气科技有限公司 Pneumatic control device for vacuum circuit breaker actuating mechanism for rail transit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181324B1 (en) * 2019-07-15 2020-11-20 대모 엔지니어링 주식회사 Apparatus and method for early sensing scratch of hydraulic breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117987A (en) * 1992-10-07 1994-04-28 Hitachi Constr Mach Co Ltd Deterioration degree detector for hydraulic oil of hydraulic circuit
JP2001221793A (en) * 2000-02-08 2001-08-17 Hitachi Constr Mach Co Ltd Contaminated condition diagnosis device for hydraulic fluid
KR100499263B1 (en) * 2002-12-26 2005-07-07 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Contamination degree of excavator measuring online system and its method
KR20110038065A (en) * 2008-06-27 2011-04-13 히다찌 겐끼 가부시키가이샤 Device for detecting contamination level of operating oil
JP2013233595A (en) * 2010-08-27 2013-11-21 Teisaku:Kk Fluid pressure hammering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117987A (en) * 1992-10-07 1994-04-28 Hitachi Constr Mach Co Ltd Deterioration degree detector for hydraulic oil of hydraulic circuit
JP2001221793A (en) * 2000-02-08 2001-08-17 Hitachi Constr Mach Co Ltd Contaminated condition diagnosis device for hydraulic fluid
KR100499263B1 (en) * 2002-12-26 2005-07-07 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Contamination degree of excavator measuring online system and its method
KR20110038065A (en) * 2008-06-27 2011-04-13 히다찌 겐끼 가부시키가이샤 Device for detecting contamination level of operating oil
JP2013233595A (en) * 2010-08-27 2013-11-21 Teisaku:Kk Fluid pressure hammering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296595A (en) * 2018-12-06 2019-02-01 武汉理工大学 A kind of full-automatic emergency brake of mining industry hoolivan
CN111968878A (en) * 2020-08-04 2020-11-20 北京中车赛德铁道电气科技有限公司 Pneumatic control device for vacuum circuit breaker actuating mechanism for rail transit

Also Published As

Publication number Publication date
KR20180093189A (en) 2018-08-21
KR101918837B1 (en) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2018021642A1 (en) Hydraulic hammer and construction apparatus comprising same
WO2018147491A1 (en) Hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method
WO2012169676A1 (en) Hydraulic system for construction machinery
WO2018021643A1 (en) Method for monitoring hydraulic hammer, and system performing same
WO2013051741A1 (en) Priority control system for construction machine
WO2019143129A1 (en) Robotic cleaner and control method therefor
WO2014208787A1 (en) Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump
EP3340848A1 (en) Robot cleaner
WO2020159123A1 (en) End effector
WO2014081053A1 (en) Apparatus and method for controlling preferential function of construction machine
WO2018147492A1 (en) Hydraulic breaker, buffer fluid monitoring system and buffer fluid monitoring method
WO2018074735A1 (en) Method for automatic replacement of casing and drill pipe and drilling machine comprising same
WO2016015310A1 (en) Method and device for controlling auto-stop of aircraft, and aircraft
WO2020080769A1 (en) User terminal, cleaning robot including same, and method for controlling cleaning robot
WO2014098284A1 (en) Construction machine with floating function
WO2019022265A1 (en) Hydraulic striking device
WO2022015032A1 (en) Inkjet multi-wavelength curing machine
WO2015152434A1 (en) Control device for confluence flow rate of working device for construction machinery and control method therefor
WO2019194327A1 (en) Wafer storage container
WO2020122310A1 (en) Locking device for supplying chemical, and automatic chemical supply apparatus including same
WO2022010029A1 (en) Robot vacuum
WO2018021641A1 (en) Hydraulic hammer and construction apparatus comprising same
WO2018147490A1 (en) Hydraulic breaker, scratch monitoring system and scratch monitoring method
WO2015160003A1 (en) Drive control device for construction equipment and control method therefor
WO2023234642A1 (en) Boom energy recovery system comprising hydraulic valve assembly for falling prevention of boom cylinder for construction equipment, including energy regeneration function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895592

Country of ref document: EP

Kind code of ref document: A1