WO2018147369A1 - Exhaust gas cleaning device - Google Patents

Exhaust gas cleaning device Download PDF

Info

Publication number
WO2018147369A1
WO2018147369A1 PCT/JP2018/004392 JP2018004392W WO2018147369A1 WO 2018147369 A1 WO2018147369 A1 WO 2018147369A1 JP 2018004392 W JP2018004392 W JP 2018004392W WO 2018147369 A1 WO2018147369 A1 WO 2018147369A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
metal honeycomb
electrically heated
ammonia
Prior art date
Application number
PCT/JP2018/004392
Other languages
French (fr)
Japanese (ja)
Inventor
岡島 利典
永田 誠
伸宜 奥井
恭平 山口
Original Assignee
エヌ・イーケムキャット株式会社
独立行政法人自動車技術総合機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017066063A external-priority patent/JP6775169B2/en
Application filed by エヌ・イーケムキャット株式会社, 独立行政法人自動車技術総合機構 filed Critical エヌ・イーケムキャット株式会社
Priority to US16/482,310 priority Critical patent/US11047282B2/en
Publication of WO2018147369A1 publication Critical patent/WO2018147369A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying device for purifying exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly, a urea SCR (Selective Catalytic Reduction) system for purifying nitrogen oxide (NOx) contained in exhaust gas of a diesel engine.
  • the present invention relates to an exhaust gas purifying apparatus.
  • a urea SCR system for purifying NOx contained in exhaust gas discharged from an internal combustion engine such as an automobile has been developed.
  • an SCR catalyst that adsorbs ammonia generated by hydrolysis of urea is employed, and NOx is chemically reacted with ammonia on the SCR catalyst to purify into nitrogen and water.
  • Patent Document 1 the generation of deposits on the electric heater is suppressed by starting and stopping the electric heater using a periodic frequency based on the operating state of the exhaust gas treatment apparatus, or the deposit on the electric heater.
  • a control method that eliminates the above and suppresses an increase in back pressure and deterioration in heating efficiency is disclosed.
  • Patent Document 2 discloses a control method for improving fuel efficiency in a urea SCR system including an electric heater.
  • urea injection is not performed under low temperature conditions in which urea does not hydrolyze due to the possibility of injector clogging. For this reason, for example, when starting cold after the engine is stopped, or when starting low load with an exhaust gas temperature of less than 150 ° C in the first half low temperature range of actual driving or WHTC (World-wide Harmonized Transient Cycle) mode (hereinafter referred to as “cold”). A large amount of NOx is discharged at the time of starting.
  • WHTC World-wide Harmonized Transient Cycle
  • an object of the present invention is to provide a novel exhaust gas purification device and the like that can reduce the NOx emission amount generated at the cold start.
  • An electrically heated metal honeycomb that is provided in the exhaust passage downstream of the injection valve and upstream of the SCR catalyst and capable of raising the exhaust gas temperature, and the exhaust gas temperature of the exhaust gas that passes through the electrically heated metal honeycomb
  • the urea injection amount In corresponding to the ammonia amount pre-adsorbed on the catalyst is calculated, and the calculated amount of the urea is supplied from the urea injection valve.
  • a controller that pre-adsorbs ammonia to the electrically heated metal honeycomb and the SCR catalyst, and electrically heats the electrically heated metal honeycomb at a cold start after the exhaust gas temperature falls below 150 ° C;
  • An exhaust gas purification device comprising at least
  • the exhaust gas purifying apparatus includes at least a metal honeycomb and an SCR catalyst supported on the metal honeycomb.
  • the electrically heated metal honeycomb includes at least a metal honeycomb and a jacket-type electric heater mounted on the metal honeycomb and / or a coil-type electric heater partially embedded in the metal honeycomb ( The exhaust gas purifying apparatus according to any one of 1) to (5).
  • the electric heating type metal honeycomb includes at least a metal honeycomb and a heating control unit configured to energize the metal honeycomb and generate heat from the metal honeycomb according to any one of (1) to (6). Exhaust gas purification equipment.
  • the control unit may be any one of the exhaust gas temperature at the ⁇ wearing performs the preheating control for raising the temperature of the exhaust gas temperature when less than the predetermined set temperature T 1 (1) ⁇ (7)
  • the exhaust gas purification apparatus according to 1.
  • the control unit, the flue gas temperature is carried out a pre-heating control for raising the temperature of the electrical heating to the flue gas temperature the electrically heated metal honeycomb If it is less than a predetermined set temperature T 1 of at the ⁇ wear ( The exhaust gas purifying apparatus according to any one of 1) to (8).
  • the control unit reads the maximum ammonia adsorption amount Ad of the electrically heated metal honeycomb and the SCR catalyst at a predetermined set temperature Tg ° C.
  • the exhaust gas purifying apparatus according to any one of (1) to (9), wherein an amount of urea corresponding to 30 to 100% is calculated.
  • a second temperature sensor that detects an exhaust gas temperature of the exhaust gas flowing into the electric heating metal honeycomb is further provided upstream of the electric heating metal honeycomb, and the control unit includes the electric heating metal honeycomb.
  • an exhaust gas purification device or the like that can reduce the amount of NOx emission generated at a cold start.
  • FIG. 4 is an explanatory diagram showing temperature-ammonia adsorption amount profiles of an electrically heated metal honeycomb and an SCR catalyst in the exhaust gas purification apparatus of the present embodiment, and shows a maximum ammonia adsorption amount Ad at a set temperature Tg.
  • It is a flowchart which shows an example of the ammonia preadsorption control in the exhaust gas purification apparatus of this embodiment.
  • It is a flowchart which shows an example of the electric heating control at the time of the cold start in the exhaust gas purification apparatus of this embodiment.
  • FIG. 1 is a schematic diagram showing a system configuration of an exhaust gas purification apparatus 100 of the present embodiment.
  • the exhaust gas purification apparatus 100 is connected to the engine 11, a turbocharger 21 having a compressor 21a and an exhaust turbine 21b, an intercooler IC that cools intake air, an intake passage 31 connected thereto, and the engine 11 and the exhaust turbine 21b.
  • the exhaust passages 41 and 51 through which the exhaust gas discharged from the engine 11 passes, the valve V1 provided in the intake passage 31 for adjusting the amount of intake air to the engine 11, drive control of the engine 11, and the exhaust gas purification device 100 A control unit ECU that performs overall control is provided.
  • the engine 11 used in the present embodiment is a so-called turbocharged diesel engine.
  • the engine 11 includes an intake manifold 12 and an exhaust manifold 13.
  • the intake manifold 12 is connected to the outlet of the compressor 21 a of the turbocharger 21 via the intake passage 31.
  • the exhaust manifold 13 is connected to an inlet of the exhaust turbine 21 b of the turbocharger 21 through an exhaust passage 41.
  • the outlet of the exhaust turbine 21b is connected to the exhaust passage 51, and the exhaust gas from the engine 11 passes through the exhaust passage 41 and is discharged from the exhaust turbine 21b to the exhaust passage 51.
  • the engine 11 of this embodiment is further equipped with an exhaust gas recirculation system. That is, an EGR (Exhaust Gas Recirculation) passage 61 serving as a bypass passage is connected between the intake passage 31 and the exhaust passage 41, and an EGR valve V2 for adjusting a bypass amount is provided in the EGR passage 61. It has been.
  • the exhaust gas temperature can be adjusted by controlling the EGR valve V2 to bypass the EGR passage 61 and returning a part of the exhaust gas to the engine 11.
  • a DOC (Diesel oxidation catalyst) 71 that oxidizes HC and NO contained in the exhaust gas and particulate matter contained in the exhaust gas are collected in order from the upstream side to the downstream side.
  • DPF (Diesel particulate filter) 72, SCR catalyst (Selective Catalytic Reduction) 73 that reduces NOx in exhaust gas using ammonia as a reducing agent, and AMOX (Ammonia) that removes excess ammonia by oxidation oxidation catalyst (ammonia oxidation catalyst) 74 is provided.
  • the exhaust gas purification apparatus 100 of this embodiment is equipped with a urea SCR system 81.
  • the urea SCR system 81 supplies urea into the exhaust passage 51, adsorbs ammonia generated by hydrolysis of urea to the SCR catalyst 73, and causes a chemical reaction with ammonia on the SCR catalyst 73. NOx is selectively reduced.
  • the urea SCR system 81 includes a tank 82 for storing urea water, and a urea injection valve 83 connected to the tank 82 via a urea water supply pipe 82a and a pump P.
  • the urea water in the tank 82 is pumped up by the pump P, supplied to the urea injection valve 83 via the urea water supply pipe 82a, and injected from the urea injection valve 83 into the exhaust passage 51.
  • the urea injection valve 83 is connected to the exhaust passage 51 between the DPF 72 and the SCR catalyst 73.
  • a metal honeycomb 91 is provided in the exhaust passage 51 downstream of the urea injection valve 83 and upstream of the SCR catalyst 73.
  • the metal honeycomb 91 used here is an EHC (Electrically-Heated-Catalyst) in which a SCR catalyst is supported on a metal honeycomb body.
  • the metal honeycomb 91 can be electrically heated under the control of the control unit ECU, and the temperature of the exhaust gas passing through the exhaust passage 51 can be controlled by the heat generation of the metal honeycomb 91.
  • the heat insulation heat insulating material is provided in the outer periphery of the exhaust path 51 over the full length (illustration omitted). The heat insulation and heat insulating material can be appropriately selected from those known in the art and is not particularly limited.
  • a material using cellulose fiber or rock wool is preferably used.
  • the temperature of the exhaust gas due to heat generation of the metal honeycomb 91 can be adjusted with high efficiency. It can be carried out.
  • heating of the electrically heated metal honeycomb 91 is performed by using a jacket-type electric heater attached to the outer periphery of the metal honeycomb main body and a coil-type electric heater attached so as to be partially embedded in the metal honeycomb main body.
  • a heater is used (not shown).
  • These electric heaters are electrically connected to an ECU and an in-vehicle power source (not shown), and the temperature of the metal honeycomb 91 and, in turn, the exhaust gas temperature in the exhaust passage 51 can be controlled by output control of these electric heaters.
  • the urea injected from the urea injection valve 83 into the exhaust passage 51 is hydrolyzed in the exhaust passage 51 to become ammonia.
  • the urea and / or generated ammonia thus injected are adsorbed by the electrically heated metal honeycomb 91 which is EHC and the SCR catalyst 73 on the downstream side thereof.
  • the reactivity of urea hydrolysis can vary depending on the urea water concentration, composition, pH, etc., but can be controlled efficiently by controlling the exhaust gas temperature in the exhaust passage 51. At this time, by controlling the heating of the electric heating-type metal honeycomb 91 described above, it is possible to perform precise control regardless of the operating state of the engine 11.
  • the heating of the metal honeycomb 91 can also be performed by causing the metal honeycomb itself to generate heat directly by energizing the metal honeycomb body.
  • the metal honeycomb is connected to the in-vehicle power source, and the output is controlled by the control unit ECU, thereby controlling the temperature of the metal honeycomb 91 and thus the exhaust gas temperature in the exhaust passage 51.
  • the control unit ECU functions as a heating control unit.
  • the exhaust passage 51 is provided with temperature sensors, NOx sensors, and the like at various locations.
  • the exhaust passage 51 between the DPF 72 and the urea injection valve 83 is provided with a NOx sensor S1 and a temperature sensor S2 that detect the NOx concentration and the exhaust gas temperature of the exhaust gas that has passed through the DPF 72.
  • a temperature sensor S ⁇ b> 3 that detects the exhaust gas temperature of the exhaust gas that passes through the metal honeycomb 91 is provided in the exhaust passage 51 between the metal honeycomb 91 and the SCR catalyst 73.
  • a NOx sensor S4 that detects the NOx concentration of the exhaust gas that has passed through the AMOX 74 is provided in the exhaust passage 51 on the downstream side of the AMOX 74.
  • the control unit ECU performs drive control of the engine 11 and overall control of the exhaust gas purification device 100.
  • the control unit ECU is a computer (not shown) including a CPU (Central Processing Unit) and a storage unit, specifically, a ROM (Read Only Memory, a RAM (Random Access Memory), etc.
  • the control unit The ECU is electrically connected to the urea injection valve 83, the pump P, the electric heater of the electrically heated metal honeycomb 91, the valve V1, the EGR valve V2, and the like, and injects into the exhaust passage 51 from the urea injection valve 83.
  • the urea injection amount In is calculated, control is performed to inject the calculated amount of urea from the urea injection valve 83, and electric heating by the electric heater of the electrically heated metal honeycomb 91 is controlled.
  • the injection of urea from the urea injection valve 83 to the exhaust passage 51 avoids clogging of the injector, clogging of the catalyst, and the like due to adhesion of urea, ammonium nitrate, and reaction products of these with exhaust gas.
  • the temperature of the exhaust gas passing through the exhaust passage 51 is equal to or higher than the temperature at which urea can be hydrolyzed (for example, 150 to 170 ° C. or higher). Therefore, for example, at a cold start after the engine stops, or at a low load start in which the exhaust gas temperature is less than 150 ° C. in actual driving or in the first half low temperature region of the WHTC mode (hereinafter, these are collectively referred to as “cold start”). A large amount of NOx is discharged.
  • an ammonia pre-adsorption control system and a cold start assist heating control system are mounted in order to reduce the NOx emission amount at the cold start. This will be described in detail below.
  • FIG. 2 is a graph showing an example of a temperature-ammonia adsorption amount profile. As shown in FIG. 2, the amount of ammonia adsorbed on the SCR catalyst (including the metal honeycomb 91 and the SCR catalyst 73, which is EHC) is temperature dependent, and the amount of ammonia adsorbed decreases as the temperature increases.
  • the control unit ECU detects the exhaust gas temperature of the exhaust gas passing through the metal honeycomb 91 from the temperature sensor S3 disposed at the same position or downstream of the metal honeycomb 91, and the detected temperature Tg. And the temperature-ammonia adsorption amount profile, the urea injection amount In corresponding to the ammonia amount to be pre-adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is calculated, and the calculated amount of urea is injected from the urea injection valve 83. Then, ammonia is preadsorbed on the metal honeycomb 91 and the SCR catalyst 73.
  • urea water may be injected as it is from the urea injection valve 83, but by attaching a small ceramic heater or the like directly below the urea injection valve 83, the urea water spray injected from the urea injection valve 83 is heated.
  • Urea or ammonia may be supplied to the metal honeycomb 91 and the SCR catalyst 73 after promoting thermal decomposition into ammonia.
  • the pre-adsorption of ammonia here is based on the cold start time when the exhaust gas temperature to be executed below 150 ° C. as a reference, and ammonia is adsorbed in advance on the metal honeycomb 91 and the SCR catalyst 73 at the reference time. Means.
  • the cold start determination is set to be less than 150 ° C., but the set temperature is not particularly limited to this.
  • the cold start determination can be set as appropriate, and is preferably 120 ° C. or lower.
  • the calculation of the urea injection amount In can be performed as follows. For example, the exhaust gas temperature of the exhaust gas passing through the metal honeycomb 91 is detected from the temperature sensor S3, and the ammonia maximum adsorption amount Ad is read based on the detected temperature Tg and the temperature-ammonia adsorption amount profile. An amount of urea corresponding to, for example, 30 to 100%, more preferably 40 to 95%, and still more preferably 50 to 90% of the maximum ammonia adsorption amount Ad is calculated as the injection amount In.
  • the calculation of the injection amount In can be performed by various known methods, and the method is not particularly limited.
  • the method described in the prior art specifically, the engine speed, the fuel injection amount, the intake air amount, the NOx concentration detected from the NOx sensors S1 and S4, and the like are further corrected for temperature. Then, after obtaining the amount of NOx reduced by the SCR catalyst, the amount of ammonia adsorbed on the SCR catalyst 22 is calculated, and the amount of urea corresponding to the shortage of ammonia adsorbed can be calculated. .
  • control unit ECU electrically heats the electrically heated metal honeycomb 91 when the exhaust gas temperature falls below 150 ° C. at the cold start after the ammonia pre-adsorption.
  • the control unit ECU electrically heats the electrically heated metal honeycomb 91 when the exhaust gas temperature falls below 150 ° C. at the cold start after the ammonia pre-adsorption.
  • FIG. 3 is a flowchart showing an example of ammonia pre-adsorption control executed by the control unit ECU in the present embodiment.
  • the control unit ECU detects the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 based on the output value from the temperature sensor S3 (step A1).
  • the control unit ECU determines whether or not the detected temperature Tg (° C.) is within a temperature range not less than a predetermined set temperature T 1 (° C.) and not more than T 2 (° C.) (step A2).
  • the temperature T 1 is set to 170 ° C. and the temperature T 2 is set to 300 ° C., but these set temperatures can be appropriately set and are not particularly limited.
  • the temperature T 1 is preferably in the range of 160 to 220 ° C., more preferably in the range of 170 to 210 ° C.
  • the temperature T 2 is in the range of 240 to 350 ° C. Preferably, it is in the range of 250 to 330 ° C.
  • step A2 If the determination in step A2 is affirmative, the control unit ECU reads the maximum ammonia adsorption amount Ad at the temperature Tg based on the temperature-ammonia adsorption amount profile as described above (step A3). Thereafter, the control unit ECU calculates an injection amount In of urea corresponding to the amount of ammonia preadsorbed on the metal honeycomb 91 and the SCR catalyst 73 based on the maximum ammonia adsorption amount Ad, and the calculated amount of urea is converted into urea. After injecting from the injection valve 83 (step A4) and performing ammonia pre-adsorption, the process is temporarily terminated.
  • step A5 the control unit ECU determines whether the detected temperature Tg is lower than a predetermined set temperature T 1 (° C.) (step A5). If a negative determination is made in step A5, it is determined that the engine 11 is in a medium to high load operating state, and the control unit ECU repeats the processes of steps A1 and A2 again, and a positive determination is made in step A2. Do not pre-adsorb ammonia until
  • step A5 it is determined that the temperature is not suitable for ammonia pre-adsorption, and the control unit ECU performs preliminary heating for increasing the exhaust gas temperature (step A6).
  • the preheating method is not particularly limited, but electric heating of the electrically heated metal honeycomb 91, injection control for executing post injection, after injection or the like for a predetermined time, or controlling the opening degree of the intake valve V It is preferable to perform the flow rate control or the like for reducing the intake air amount.
  • Post-injection and after-injection are sub-injections that are performed after the main injection, which is the main fuel injection.
  • the preheating is preferably performed until the metal honeycomb 91 reaches a temperature suitable for ammonia preadsorption, and is performed, for example, until the temperature falls within a temperature range from the set temperature T 1 (° C.) to T 2 (° C.). preferable.
  • control part ECU performs the process of step A1, A2 again, and when it becomes affirmation determination by step A2, after performing ammonia pre-adsorption (step A3, A4), a process is once performed. finish.
  • ammonia pre-adsorption control in the case where the metal honeycomb 91 and the SCR catalyst 73 are in a fresh state, in other words, the amount of ammonia adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is shown.
  • the ammonia pre-adsorption of the present invention has already been performed, or when the engine 11 has already been driven in a situation where the exhaust gas temperature exceeds the temperature Tg, the original ammonia adsorption of the urea SCR system has already been performed.
  • the injection amount In of urea in the ammonia pre-adsorption of the present invention may be calculated.
  • the temperature Tg of the exhaust gas passing through the metal honeycomb 91 in a state where urea injection from the urea injection valve 83 is stopped is, for example, 400 ° C. or higher, preferably 500 ° C. or higher. If the pretreatment to raise the temperature is performed and the ammonia already adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is removed, the above-described steps A3 and A4 can be performed as they are.
  • the amount of ammonia already adsorbed on the metal honeycomb 91 and the SCR catalyst 73 at the detected temperature Tg is calculated by a conventionally known method, and this amount is subtracted from the above-described maximum ammonia adsorption amount Ad to adsorb the deficient ammonia.
  • the amount of urea corresponding to the shortage of ammonia adsorption amount can be calculated as the urea injection amount In executed in steps A3 and A4.
  • FIG. 4 is a flowchart illustrating an example of the assist heating control at the cold start executed by the control unit ECU in the present embodiment.
  • the term “cold start” includes a cold start after the engine is stopped and a low load start in which the exhaust gas temperature is relatively low in actual driving or in the first half low temperature region of the WHTC mode.
  • the engine 11 is operated in a state where the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 detected based on the output value from the temperature sensor S3 is less than 150 ° C., more preferably 120 ° C. or less. Is a cold start.
  • control unit ECU detects the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 based on the output value from the temperature sensor S3 (step B1). Then, the control unit ECU determines whether or not the detected temperature Tg (° C.) is less than 150 ° C. (step B2).
  • step B3 If the determination in step B2 is affirmative, it is determined that the temperature condition is unfavorable for NOx purification, and the control unit ECU turns on the electric heater and adjusts the output control to electrically heat the metal honeycomb 91, that is, assist heating. (Step B3). By performing the assist heating in this way, the temperature Tg of the exhaust gas that passes through the metal honeycomb 91 is raised, thereby increasing the NOx reduction efficiency by ammonia.
  • the assist heating in step B3 is continued until the temperature Tg detected from the temperature sensor S3 exceeds a predetermined installation temperature T 3 (° C.) (step B4).
  • the control unit ECU turns off the electric heater and stops assist heating (step B4).
  • the process is temporarily terminated.
  • the installation temperature T 3 (° C.) is set to 270 ° C. in this example.
  • the installation temperature T 3 (° C.) may be appropriately set in consideration of the degree of improvement in the NOx purification rate by assist heating and the amount of electricity used for electric heating.
  • the temperature is preferably in the temperature range of 200 to 300 ° C., more preferably in the temperature range of 210 to 280 ° C., and still more preferably in the temperature range of 220 to 270 ° C.
  • step B2 determines whether the detected temperature Tg (° C.) is equal to or higher than a predetermined installation temperature T 4 (° C.) (step B6).
  • step B6 when the detected temperature Tg (° C.) is lower than the predetermined installation temperature T 4 (° C.), it is determined that the temperature condition should be adjusted to be advantageous by NOx purification.
  • the electric heater is turned on, the output control thereof is adjusted, and assist heating of the metal honeycomb 91 is performed (step B3).
  • the set temperature T 4 (° C.) is set to the same temperature as the set temperature T 1 (° C.), that is, 170 ° C., but the set temperature T 4 (° C.) depends on the desired temperature control. Although it can be appropriately set and is not particularly limited, it can be arbitrarily set between 151 and 299 ° C., for example.
  • the control unit ECU temporarily ends the process without turning on the electric heater.
  • the operation control for turning on the electric heater is performed in two stages of steps B2 and B6.
  • multistage control of three or more stages (for example, 3 to 3) is performed.
  • step B6 can be omitted and single-step control with only step B2 can be performed.
  • the operation control for turning off the electric heater is not limited to the one-step control of only step B5, and may be a multi-step control of two or more steps.
  • the set temperature described above may be set as appropriate according to desired temperature control, and is not particularly limited, but preferably satisfies the relationship of T 1 ⁇ T 3 ⁇ T 2 (° C.).
  • desired temperature control for example, an alternator that generates electric power by converting a part of the motive power of the engine 11
  • various batteries such as a nickel metal hydride battery and a lithium ion battery, and the like can be used. Is not particularly limited.
  • the assist heating control is set as compared with the case where the assist heating control at the cold start is not performed (thick line of “no electric heating” in FIG. 5, hereinafter also referred to as “reference example”).
  • T 3 230 ° C.
  • Example 1 Electrical heating to 230 ° C.” thin line, hereinafter also referred to as “Example 1”
  • Example 2 the chain line “electrically heated to 260 ° C.”, hereinafter also referred to as “Example 2”
  • Example 2 has a fast rise in exhaust gas temperature after cold start, and the time to reach 200 ° C. is about 700 seconds to about 350.
  • the assist heating control is set as compared with the case where the assist heating control at the cold start is not performed (thick line of “no electric heating” in FIG. 6, hereinafter also referred to as “reference example”).
  • the exhaust gas temperature rises quickly after a cold start, and the time to reach 200 ° C.
  • Table 1 shows the NOx purification rate in the WHTC mode.
  • a configuration of only the metal honeycomb 91 which is EHC in which the SCR catalyst 73 is omitted can be adopted.
  • the present invention can employ a configuration in which a metal honeycomb 91 that does not carry an SCR catalyst, in other words, a metal honeycomb 91 that is not EHC is disposed. In this case, only the temperature-ammonia adsorption amount profile of the SCR catalyst 73 needs to be stored in the storage unit of the control unit ECU.
  • a configuration in which a plurality of SCR catalysts 73 are arranged on the downstream side of the metal honeycomb 91 may be employed.
  • the temperature-ammonia adsorption amount profiles of the metal honeycomb 91 which is EHC and the plurality of SCR catalysts 73 may be stored in the storage unit of the control unit ECU.
  • the ammonia pre-adsorption control according to the present invention is controlled based on a second temperature sensor (temperature sensor S2) that is provided upstream of the metal honeycomb 91 and detects the exhaust gas temperature of the exhaust gas flowing into the metal honeycomb 91.
  • a second temperature sensor temperature sensor S2
  • the control unit ECU can perform pre-adsorption by injecting urea when the exhaust gas temperature detected by the temperature sensor S2 is 150 ° C. or higher.
  • the exhaust gas temperature detected by the temperature sensor S3 is higher than the exhaust gas temperature detected by the temperature sensor S2. Therefore, the ammonia pre-adsorption control is appropriately performed even if such control is performed. It can be activated.
  • the present invention can be used widely and effectively in various internal combustion engines equipped with a urea SCR system for purifying NOx contained in exhaust gas.

Abstract

Provided are, inter alia, an exhaust gas cleaning device making it possible to reduce the amount of NOx exhaust produced during a cold start. An exhaust gas cleaning device 100 is provided, in an exhaust channel 51, with a urea injection valve 83, a metal honeycomb 91, a temperature sensor S3, and an SCR catalyst 73. The exhaust gas temperature of exhaust gas passing through the metal honeycomb 91 can be elevated by the metal honeycomb 91, which can be heated electrically by control by a control unit ECU, and such temperature is detected by the temperature sensor S3. Ammonia has been adsorbed in advance onto the metal honeycomb 91 and the SCR catalyst 73 on the basis of a temperature–adsorbed ammonia quantity profile which is stored in advance in a storage unit of the control unit ECU. The metal honeycomb 91 is heated electrically during a cold start after the temperature detected by the temperature sensor S3 has fallen below 150°C.

Description

排ガス浄化装置Exhaust gas purification device
 本発明は、自動車等の内燃機関から排出される排ガスを浄化する排ガス浄化装置に関し、特にディーゼルエンジンの排ガス中に含まれる窒素酸化物(NOx)を浄化するための尿素SCR(Selective Catalytic Reduction)システムを備える排ガス浄化装置に関する。 The present invention relates to an exhaust gas purifying device for purifying exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly, a urea SCR (Selective Catalytic Reduction) system for purifying nitrogen oxide (NOx) contained in exhaust gas of a diesel engine. The present invention relates to an exhaust gas purifying apparatus.
 自動車等の内燃機関から排出される排ガス中に含まれるNOxを浄化するための尿素SCRシステムが開発されている。尿素SCRシステムでは、尿素の加水分解により生成するアンモニアを吸着するSCR触媒が採用されており、SCR触媒上でNOxをアンモニアと化学反応させることにより、窒素及び水に浄化している。 A urea SCR system for purifying NOx contained in exhaust gas discharged from an internal combustion engine such as an automobile has been developed. In the urea SCR system, an SCR catalyst that adsorbs ammonia generated by hydrolysis of urea is employed, and NOx is chemically reacted with ammonia on the SCR catalyst to purify into nitrogen and water.
 尿素SCRシステムにおいて、SCR触媒上にアンモニアを吸着させるためには、尿素が加水分解される温度以上になるようにSCR触媒の温度制御を行う必要がある。そのため、SCR触媒の温度を、電気加熱式ヒータや電気加熱式触媒(Electrically Heated Catalyst)等を用いて制御する試みが為されている。 In the urea SCR system, in order to adsorb ammonia on the SCR catalyst, it is necessary to control the temperature of the SCR catalyst so that the temperature is higher than the temperature at which urea is hydrolyzed. For this reason, attempts have been made to control the temperature of the SCR catalyst using an electrically heated heater, an electrically heated catalyst (Electrically Heated Catalyst), or the like.
 例えば、特許文献1には、排ガス処理装置の作動状態に基づいて周期周波数を用いて電気ヒータを起動及び停止させることにより、電気ヒータ上の堆積物の生成を抑止し又は電気ヒータ上の堆積物を取り除き、これにより背圧の上昇や加熱効率の悪化を抑制する制御方法が開示されている。また、特許文献2には、電気ヒータを備える尿素SCRシステムにおいて、燃費効率を向上させる制御方法が開示されている。 For example, in Patent Document 1, the generation of deposits on the electric heater is suppressed by starting and stopping the electric heater using a periodic frequency based on the operating state of the exhaust gas treatment apparatus, or the deposit on the electric heater. A control method that eliminates the above and suppresses an increase in back pressure and deterioration in heating efficiency is disclosed. Patent Document 2 discloses a control method for improving fuel efficiency in a urea SCR system including an electric heater.
特表2015-508864号公報JP-T-2015-508864 国際公開第2013/183153号パンフレットInternational Publication No. 2013/183153
 近年、さらなるNOx排出量の削減が求められている。とりわけ、尿素SCRシステムでは、インジェクター詰まりを起こす可能性がある等の理由により尿素が加水分解しないような低温条件下では尿素噴射を行っていない。そのため、例えばエンジン停止後のコールドスタート時や、実走行或いはWHTC(World-wide Harmonized Transient Cycle)モードの前半低温域における排ガス温度が150℃未満の低負荷スタート時(以下、これらを併せて「コールドスタート時」と称する。)には、多量のNOxが排出されることになる。 In recent years, further reduction of NOx emissions has been demanded. In particular, in the urea SCR system, urea injection is not performed under low temperature conditions in which urea does not hydrolyze due to the possibility of injector clogging. For this reason, for example, when starting cold after the engine is stopped, or when starting low load with an exhaust gas temperature of less than 150 ° C in the first half low temperature range of actual driving or WHTC (World-wide Harmonized Transient Cycle) mode (hereinafter referred to as “cold”). A large amount of NOx is discharged at the time of starting.
 本発明は、上記課題に鑑みてなされたものである。すなわち本発明の目的は、コールドスタート時に発生するNOx排出量を削減可能な、新規な排ガス浄化装置等を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a novel exhaust gas purification device and the like that can reduce the NOx emission amount generated at the cold start.
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、少なくとも電気加熱式メタルハニカムに予め所定量のアンモニアを吸着させておき、コールドスタート時に電気加熱式メタルハニカムを電気加熱することで、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors diligently studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by adsorbing a predetermined amount of ammonia in advance to at least an electrically heated metal honeycomb and electrically heating the electrically heated metal honeycomb at the cold start, thereby completing the present invention. It came.
 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
(1)エンジンの排ガスが通過する排気路と、前記排気路中に尿素を噴射する尿素噴射弁と、前記尿素噴射弁よりも下流側の前記排気路中に設けられたSCR触媒と、前記尿素噴射弁よりも下流側且つ前記SCR触媒よりも上流側の前記排気路中に設けられ、排ガス温度を昇温可能な電気加熱式メタルハニカムと、前記電気加熱式メタルハニカムを通過する排ガスの排ガス温度を検出する温度センサと、前記電気加熱式メタルハニカム及び前記SCR触媒の温度-アンモニア吸着量プロファイルを保存した記憶部と、前記温度-アンモニア吸着量プロファイルに基づいて前記電気加熱式メタルハニカム及び前記SCR触媒に予吸着させるアンモニア量に相当する前記尿素の噴射量Inを算出し、算出された量の前記尿素を前記尿素噴射弁から噴射して前記電気加熱式メタルハニカム及び前記SCR触媒にアンモニアを予吸着させておき、前記排ガス温度が150℃を下回った後のコールドスタート時に前記電気加熱式メタルハニカムを電気加熱する制御部と、を少なくとも備えることを特徴とする、排ガス浄化装置。
That is, the present invention provides various specific modes shown below.
(1) An exhaust passage through which exhaust gas from the engine passes, a urea injection valve for injecting urea into the exhaust passage, an SCR catalyst provided in the exhaust passage downstream of the urea injection valve, and the urea An electrically heated metal honeycomb that is provided in the exhaust passage downstream of the injection valve and upstream of the SCR catalyst and capable of raising the exhaust gas temperature, and the exhaust gas temperature of the exhaust gas that passes through the electrically heated metal honeycomb A temperature sensor for detecting the temperature, a storage unit storing a temperature-ammonia adsorption amount profile of the electrically heated metal honeycomb and the SCR catalyst, and the electrically heated metal honeycomb and the SCR based on the temperature-ammonia adsorption amount profile The urea injection amount In corresponding to the ammonia amount pre-adsorbed on the catalyst is calculated, and the calculated amount of the urea is supplied from the urea injection valve. A controller that pre-adsorbs ammonia to the electrically heated metal honeycomb and the SCR catalyst, and electrically heats the electrically heated metal honeycomb at a cold start after the exhaust gas temperature falls below 150 ° C; An exhaust gas purification device comprising at least
(2)前記制御部は、前記排ガス温度が所定の設定温度T℃以上T℃以下の温度範囲内になるまで前記電気加熱式メタルハニカムを電気加熱する(1)に記載の排ガス浄化装置。
(3)前記制御部は、前記排ガス温度が所定の設定温度T℃を超えた場合に前記電気加熱式メタルハニカムの電気加熱を停止する(1)又は(2)に記載の排ガス浄化装置。
(4)前記設定温度が、T<T≦Tの関係を満たす(3)に記載の排ガス浄化装置。
(2) The exhaust gas purification apparatus according to (1), wherein the control unit electrically heats the electrically heated metal honeycomb until the exhaust gas temperature is within a temperature range of a predetermined set temperature T 1 ° C to T 2 ° C. .
(3) The exhaust gas purification device according to (1) or (2), wherein the control unit stops the electric heating of the electric heating metal honeycomb when the exhaust gas temperature exceeds a predetermined set temperature T 3 ° C.
(4) The exhaust gas purifying apparatus according to (3), wherein the set temperature satisfies a relationship of T 1 <T 3 ≦ T 2 .
(5)前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに担持されたSCR触媒とを少なくとも有する(1)~(4)のいずれか一項に記載の排ガス浄化装置。
(6)前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに装着されたジャケット型の電気ヒータ及び/又は前記メタルハニカムに一部埋設されたコイル型の電気ヒータと、を少なくとも有する(1)~(5)のいずれか一項に記載の排ガス浄化装置。
(7)前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに通電して前記メタルハニカムを発熱させる加熱制御部と、を少なくとも有する(1)~(6)のいずれか一項に記載の排ガス浄化装置。
(5) The exhaust gas purifying apparatus according to any one of (1) to (4), wherein the electrically heated metal honeycomb includes at least a metal honeycomb and an SCR catalyst supported on the metal honeycomb.
(6) The electrically heated metal honeycomb includes at least a metal honeycomb and a jacket-type electric heater mounted on the metal honeycomb and / or a coil-type electric heater partially embedded in the metal honeycomb ( The exhaust gas purifying apparatus according to any one of 1) to (5).
(7) The electric heating type metal honeycomb includes at least a metal honeycomb and a heating control unit configured to energize the metal honeycomb and generate heat from the metal honeycomb according to any one of (1) to (6). Exhaust gas purification equipment.
(8)前記制御部は、前記予吸着時に前記排ガス温度が所定の設定温度T未満の場合に前記排ガス温度を昇温させる予備加熱制御を行う(1)~(7)のいずれか一項に記載の排ガス浄化装置。
(9)前記制御部は、前記予吸着時に前記排ガス温度が所定の設定温度T未満の場合に前記電気加熱式メタルハニカムを電気加熱して前記排ガス温度を昇温させる予備加熱制御を行う(1)~(8)のいずれか一項に記載の排ガス浄化装置。
(10)前記制御部は、前記記憶部から所定の設定温度Tg℃における前記電気加熱式メタルハニカム及び前記SCR触媒のアンモニア最大吸着量Adを読み出し、前記噴射量Inとして前記アンモニア最大吸着量Adの30~100%に相当する量の尿素量を算出する(1)~(9)のいずれか一項に記載の排ガス浄化装置。
(11)前記排気路は、少なくとも前記尿素噴射弁よりも下流側且つ前記SCR触媒よりも上流側において、その外周に断熱保温材が設けられている(1)~(10)のいずれか一項に記載の排ガス浄化装置。
(12)前記電気加熱式メタルハニカムよりも上流側に、前記電気加熱式メタルハニカムに流入する排ガスの排ガス温度を検出する第2温度センサをさらに備え、前記制御部は、前記電気加熱式メタルハニカムを電気加熱している場合に、前記第2温度センサが検出する排ガス温度が150℃以上で前記尿素を噴射して予吸着を行う(1)~(11)のいずれか一項に記載の排ガス浄化装置。
(8) The control unit may be any one of the exhaust gas temperature at the予吸wearing performs the preheating control for raising the temperature of the exhaust gas temperature when less than the predetermined set temperature T 1 (1) ~ (7) The exhaust gas purification apparatus according to 1.
(9) the control unit, the flue gas temperature is carried out a pre-heating control for raising the temperature of the electrical heating to the flue gas temperature the electrically heated metal honeycomb If it is less than a predetermined set temperature T 1 of at the予吸wear ( The exhaust gas purifying apparatus according to any one of 1) to (8).
(10) The control unit reads the maximum ammonia adsorption amount Ad of the electrically heated metal honeycomb and the SCR catalyst at a predetermined set temperature Tg ° C. from the storage unit, and sets the maximum ammonia adsorption amount Ad as the injection amount In. The exhaust gas purifying apparatus according to any one of (1) to (9), wherein an amount of urea corresponding to 30 to 100% is calculated.
(11) Any one of (1) to (10), wherein the exhaust passage is provided with a heat insulating heat insulating material on the outer periphery at least downstream of the urea injection valve and upstream of the SCR catalyst. The exhaust gas purification apparatus according to 1.
(12) A second temperature sensor that detects an exhaust gas temperature of the exhaust gas flowing into the electric heating metal honeycomb is further provided upstream of the electric heating metal honeycomb, and the control unit includes the electric heating metal honeycomb. The exhaust gas according to any one of (1) to (11), wherein when the exhaust gas is electrically heated, pre-adsorption is performed by injecting the urea when the exhaust gas temperature detected by the second temperature sensor is 150 ° C. or higher. Purification equipment.
 本発明によれば、コールドスタート時に発生するNOx排出量を削減可能な排ガス浄化装置等を実現することができる。 According to the present invention, it is possible to realize an exhaust gas purification device or the like that can reduce the amount of NOx emission generated at a cold start.
本実施形態の排ガス浄化装置のシステム構成を示す概略図である。It is the schematic which shows the system configuration | structure of the exhaust gas purification apparatus of this embodiment. 本実施形態の排ガス浄化装置における電気加熱式メタルハニカム及びSCR触媒の温度-アンモニア吸着量プロファイルを示す説明図であり、設定温度Tgにおけるアンモニア最大吸着量Adを示す。FIG. 4 is an explanatory diagram showing temperature-ammonia adsorption amount profiles of an electrically heated metal honeycomb and an SCR catalyst in the exhaust gas purification apparatus of the present embodiment, and shows a maximum ammonia adsorption amount Ad at a set temperature Tg. 本実施形態の排ガス浄化装置におけるアンモニア予吸着制御の一例を示すフローチャートである。It is a flowchart which shows an example of the ammonia preadsorption control in the exhaust gas purification apparatus of this embodiment. 本実施形態の排ガス浄化装置におけるコールドスタート時の電気加熱制御の一例を示すフローチャートである。It is a flowchart which shows an example of the electric heating control at the time of the cold start in the exhaust gas purification apparatus of this embodiment. WHTCモードにおける排ガス温度の変動を示すグラフである(参考例1、例1、及び例2)。It is a graph which shows the fluctuation | variation of the exhaust gas temperature in WHTC mode (reference example 1, example 1, and example 2). WHTCモードにおける排ガス温度の変動を示すグラフである(参考例1、例3、及び例4)。It is a graph which shows the fluctuation | variation of the exhaust gas temperature in WHTC mode (reference example 1, example 3, and example 4).
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その上限値「1」及び下限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to these. In this specification, for example, the description of a numerical range of “1 to 100” includes both the upper limit value “1” and the lower limit value “100”. This also applies to other numerical range notations.
 図1は、本実施形態の排ガス浄化装置100のシステム構成を示す概略図である。排ガス浄化装置100は、エンジン11と、コンプレッサ21a及び排気タービン21bを有するターボチャージャ21と、吸気を冷却するインタークーラICと、これらに接続された吸気路31と、エンジン11及び排気タービン21bに接続されエンジン11から排出される排ガスを通過させる排気路41,51と、吸気路31に設けられエンジン11への吸気量を調整するバルブV1と、エンジン11の駆動制御を行うとともに排ガス浄化装置100の全体制御を行う制御部ECUを備えている。 FIG. 1 is a schematic diagram showing a system configuration of an exhaust gas purification apparatus 100 of the present embodiment. The exhaust gas purification apparatus 100 is connected to the engine 11, a turbocharger 21 having a compressor 21a and an exhaust turbine 21b, an intercooler IC that cools intake air, an intake passage 31 connected thereto, and the engine 11 and the exhaust turbine 21b. The exhaust passages 41 and 51 through which the exhaust gas discharged from the engine 11 passes, the valve V1 provided in the intake passage 31 for adjusting the amount of intake air to the engine 11, drive control of the engine 11, and the exhaust gas purification device 100 A control unit ECU that performs overall control is provided.
 本実施形態で用いるエンジン11は、所謂ターボチャージャ付きのディーゼルエンジンである。エンジン11は、吸気マニホールド12及び排気マニホールド13を備えている。吸気マニホールド12は、吸気路31を介してターボチャージャ21のコンプレッサ21aの出口に連結されている。また、排気マニホールド13は、排気路41を介してターボチャージャ21の排気タービン21bの入口に接続されている。そして、排気タービン21bの出口は、排気路51に接続されており、エンジン11からの排ガスは、排気路41を通って排気タービン21bから排気路に51へと排出される。 The engine 11 used in the present embodiment is a so-called turbocharged diesel engine. The engine 11 includes an intake manifold 12 and an exhaust manifold 13. The intake manifold 12 is connected to the outlet of the compressor 21 a of the turbocharger 21 via the intake passage 31. Further, the exhaust manifold 13 is connected to an inlet of the exhaust turbine 21 b of the turbocharger 21 through an exhaust passage 41. The outlet of the exhaust turbine 21b is connected to the exhaust passage 51, and the exhaust gas from the engine 11 passes through the exhaust passage 41 and is discharged from the exhaust turbine 21b to the exhaust passage 51.
 また、本実施形態のエンジン11は、さらに排ガス還流システムを搭載している。すなわち、吸気路31と排気路41との間には、バイパス通路となるEGR(Exhaust Gas Recirculation)通路61が接続されており、このEGR通路61には、バイパス量を調整するEGRバルブV2が設けられている。そして、このEGRバルブV2を制御してEGR通路61をバイパスして排ガスの一部をエンジン11に戻すことにより、排ガス温度を調整することが可能となっている。 Moreover, the engine 11 of this embodiment is further equipped with an exhaust gas recirculation system. That is, an EGR (Exhaust Gas Recirculation) passage 61 serving as a bypass passage is connected between the intake passage 31 and the exhaust passage 41, and an EGR valve V2 for adjusting a bypass amount is provided in the EGR passage 61. It has been. The exhaust gas temperature can be adjusted by controlling the EGR valve V2 to bypass the EGR passage 61 and returning a part of the exhaust gas to the engine 11.
 排気路51中には、上流側から下流側の順に、排ガス中に含まれるHCやNOを酸化させるDOC(Diesel oxidation catalyst、ディーゼル酸化触媒)71、排ガス中に含まれる粒子状物質を捕集するDPF(Diesel particulate filter、ディーゼルパティキュレートフィルタ)72、アンモニアを還元剤として排ガス中のNOxを還元するSCR触媒(Selective Catalytic Reduction、選択型還元触媒)73、及び余剰のアンモニアを酸化除去するAMOX(Ammonia oxidation catalyst、アンモニア酸化触媒)74が設けられている。 In the exhaust passage 51, a DOC (Diesel oxidation catalyst) 71 that oxidizes HC and NO contained in the exhaust gas and particulate matter contained in the exhaust gas are collected in order from the upstream side to the downstream side. DPF (Diesel particulate filter) 72, SCR catalyst (Selective Catalytic Reduction) 73 that reduces NOx in exhaust gas using ammonia as a reducing agent, and AMOX (Ammonia) that removes excess ammonia by oxidation oxidation catalyst (ammonia oxidation catalyst) 74 is provided.
 また、本実施形態の排ガス浄化装置100は、尿素SCRシステム81を搭載している。この尿素SCRシステム81は、排気路51中に尿素を供給し、尿素の加水分解により生成するアンモニアをSCR触媒73に吸着させ、このSCR触媒73上でアンモニアと化学反応させることにより、排ガス中のNOxを選択的に還元するものである。この尿素SCRシステム81は、尿素水が貯蔵されるタンク82と、尿素水供給管82a及びポンプPを介してタンク82に接続された尿素噴射弁83とを備えている。そして、タンク82中の尿素水は、ポンプPによって汲み上げられ、尿素水供給管82aを経由して尿素噴射弁83へと供給され、この尿素噴射弁83から排気路51中に噴射される。本実施形態において、尿素噴射弁83は、DPF72とSCR触媒73との間の排気路51に接続されている。 In addition, the exhaust gas purification apparatus 100 of this embodiment is equipped with a urea SCR system 81. The urea SCR system 81 supplies urea into the exhaust passage 51, adsorbs ammonia generated by hydrolysis of urea to the SCR catalyst 73, and causes a chemical reaction with ammonia on the SCR catalyst 73. NOx is selectively reduced. The urea SCR system 81 includes a tank 82 for storing urea water, and a urea injection valve 83 connected to the tank 82 via a urea water supply pipe 82a and a pump P. The urea water in the tank 82 is pumped up by the pump P, supplied to the urea injection valve 83 via the urea water supply pipe 82a, and injected from the urea injection valve 83 into the exhaust passage 51. In the present embodiment, the urea injection valve 83 is connected to the exhaust passage 51 between the DPF 72 and the SCR catalyst 73.
 尿素噴射弁83の下流側であってSCR触媒73の上流側の排気路51中には、メタルハニカム91が設けられている。ここで用いているメタルハニカム91は、メタルハニカム本体にSCR触媒が担持されたEHC(Electrically Heated Catalyst)である。このメタルハニカム91は、制御部ECUの制御により電気的に加熱可能になっており、メタルハニカム91の発熱により、排気路51中を通過する排ガスの温度を制御可能になっている。また、本実施形態においては、排気路51の外周には断熱保温材が全長に亘って設けられている(図示省略)。断熱保温材としては、当業界で公知のものから適宜選択して用いることができ、特に限定されないが、例えばセルロースファイバーやロックウール等を用いたものが好適に用いられる。このように少なくとも尿素噴射弁83の下流側であってSCR触媒73の上流側の排気路51の外周に断熱保温材を設けることにより、メタルハニカム91の発熱による排ガスの温度の調整を高効率で行うことができる。 A metal honeycomb 91 is provided in the exhaust passage 51 downstream of the urea injection valve 83 and upstream of the SCR catalyst 73. The metal honeycomb 91 used here is an EHC (Electrically-Heated-Catalyst) in which a SCR catalyst is supported on a metal honeycomb body. The metal honeycomb 91 can be electrically heated under the control of the control unit ECU, and the temperature of the exhaust gas passing through the exhaust passage 51 can be controlled by the heat generation of the metal honeycomb 91. Moreover, in this embodiment, the heat insulation heat insulating material is provided in the outer periphery of the exhaust path 51 over the full length (illustration omitted). The heat insulation and heat insulating material can be appropriately selected from those known in the art and is not particularly limited. For example, a material using cellulose fiber or rock wool is preferably used. As described above, by providing the heat insulating heat insulating material on the outer periphery of the exhaust passage 51 at least downstream of the urea injection valve 83 and upstream of the SCR catalyst 73, the temperature of the exhaust gas due to heat generation of the metal honeycomb 91 can be adjusted with high efficiency. It can be carried out.
 電気加熱式のメタルハニカム91の加熱は、本実施形態では、メタルハニカム本体の外周に装着されるジャケット型の電気ヒータと、メタルハニカム本体内に一部埋設するように装着されたコイル型の電気ヒータで行っている(図示省略)。これらの電気ヒータはECU及び図示しない車載電源に電気的に接続されており、これら電気ヒータの出力制御によりメタルハニカム91の温度、ひいては排気路51中の排ガス温度が制御可能となっている。 In the present embodiment, heating of the electrically heated metal honeycomb 91 is performed by using a jacket-type electric heater attached to the outer periphery of the metal honeycomb main body and a coil-type electric heater attached so as to be partially embedded in the metal honeycomb main body. A heater is used (not shown). These electric heaters are electrically connected to an ECU and an in-vehicle power source (not shown), and the temperature of the metal honeycomb 91 and, in turn, the exhaust gas temperature in the exhaust passage 51 can be controlled by output control of these electric heaters.
 尿素噴射弁83から排気路51中に噴射された尿素は、排気路51中で加水分解してアンモニアとなる。そして、このように噴射された尿素及び/或いは生成したアンモニアは、EHCである電気加熱式のメタルハニカム91及びその下流側のSCR触媒73に吸着される。尿素の加水分解反応は、その反応性は尿素水の濃度、配合組成、pH等によって変動し得るが、排気路51中の排ガス温度を制御することで効率的に制御可能である。このとき、前述した電気加熱式のメタルハニカム91の加熱制御を行うことで、エンジン11の稼動状態を問わずに、緻密な制御を行うことが可能である。 The urea injected from the urea injection valve 83 into the exhaust passage 51 is hydrolyzed in the exhaust passage 51 to become ammonia. The urea and / or generated ammonia thus injected are adsorbed by the electrically heated metal honeycomb 91 which is EHC and the SCR catalyst 73 on the downstream side thereof. The reactivity of urea hydrolysis can vary depending on the urea water concentration, composition, pH, etc., but can be controlled efficiently by controlling the exhaust gas temperature in the exhaust passage 51. At this time, by controlling the heating of the electric heating-type metal honeycomb 91 described above, it is possible to perform precise control regardless of the operating state of the engine 11.
 なお、メタルハニカム91の加熱は、メタルハニカム本体に通電することで、メタルハニカムそのものを直接発熱させることで行うこともできる。この場合、メタルハニカムを車載電源に接続し、制御部ECUにより、その出力制御を行うことで、メタルハニカム91の温度、ひいては排気路51中の排ガス温度が制御となっている。この場合、制御部ECUが、加熱制御部として機能する。 Note that the heating of the metal honeycomb 91 can also be performed by causing the metal honeycomb itself to generate heat directly by energizing the metal honeycomb body. In this case, the metal honeycomb is connected to the in-vehicle power source, and the output is controlled by the control unit ECU, thereby controlling the temperature of the metal honeycomb 91 and thus the exhaust gas temperature in the exhaust passage 51. In this case, the control unit ECU functions as a heating control unit.
 排気路51には、温度センサやNOxセンサ等が各所に設けられている。本実施形態では、DPF72と尿素噴射弁83との間の排気路51には、DPF72を通過した排ガスのNOx濃度及び排ガス温度を検出するNOxセンサS1及び温度センサS2が設けられている。また、メタルハニカム91とSCR触媒73との間の排気路51には、メタルハニカム91を通過する排ガスの排ガス温度を検出する温度センサS3が設けられている。さらに、AMOX74の下流側の排気路51には、AMOX74を通過した排ガスのNOx濃度を検出するNOxセンサS4が設けられている。これらの各種センサは、ECUに電気的に接続されており、排気路51を通過する排ガスの温度やNOx濃度が随時モニタリングされている。 The exhaust passage 51 is provided with temperature sensors, NOx sensors, and the like at various locations. In the present embodiment, the exhaust passage 51 between the DPF 72 and the urea injection valve 83 is provided with a NOx sensor S1 and a temperature sensor S2 that detect the NOx concentration and the exhaust gas temperature of the exhaust gas that has passed through the DPF 72. In addition, a temperature sensor S <b> 3 that detects the exhaust gas temperature of the exhaust gas that passes through the metal honeycomb 91 is provided in the exhaust passage 51 between the metal honeycomb 91 and the SCR catalyst 73. Further, a NOx sensor S4 that detects the NOx concentration of the exhaust gas that has passed through the AMOX 74 is provided in the exhaust passage 51 on the downstream side of the AMOX 74. These various sensors are electrically connected to the ECU, and the temperature and NOx concentration of the exhaust gas passing through the exhaust passage 51 are monitored as needed.
 制御部ECUは、エンジン11の駆動制御及び排ガス浄化装置100の全体制御を行う。制御部ECUは、図示省略するCPU(Central Processing Unit)や記憶部、具体的にはROM(Read Only MemoryやRAM(Random Access Memory)等から構成されるコンピュータである。本実施形態において、制御部ECUは、尿素噴射弁83、ポンプP、電気加熱式のメタルハニカム91の電気ヒータ、バルブV1、EGRバルブV2等と電気的に接続されており、尿素噴射弁83から排気路51内に噴射する尿素の噴射量Inを算出し、算出された量の尿素を尿素噴射弁83から噴射する制御を行うとともに、電気加熱式のメタルハニカム91の電気ヒータによる電気加熱を制御する。 The control unit ECU performs drive control of the engine 11 and overall control of the exhaust gas purification device 100. The control unit ECU is a computer (not shown) including a CPU (Central Processing Unit) and a storage unit, specifically, a ROM (Read Only Memory, a RAM (Random Access Memory), etc. In this embodiment, the control unit The ECU is electrically connected to the urea injection valve 83, the pump P, the electric heater of the electrically heated metal honeycomb 91, the valve V1, the EGR valve V2, and the like, and injects into the exhaust passage 51 from the urea injection valve 83. The urea injection amount In is calculated, control is performed to inject the calculated amount of urea from the urea injection valve 83, and electric heating by the electric heater of the electrically heated metal honeycomb 91 is controlled.
 ここで従来は、尿素噴射弁83から排気路51への尿素の噴射は、尿素、硝酸アンモニウム、さらにはこれらと排ガスとの反応生成物の付着による、インジェクター詰まりや触媒の詰まり等を回避する等の観点から、排気路51を通過する排ガスの温度が尿素の加水分解可能な温度以上(例えば150~170℃以上)の場合に行われている。そのため、例えばエンジン停止後のコールドスタート時や、実走行或いはWHTCモードの前半低温域における排ガス温度が150℃未満の低負荷スタート時(以下、これらを併せて「コールドスタート時」と称する。)には、多量のNOxが排出されることになる。 Here, conventionally, the injection of urea from the urea injection valve 83 to the exhaust passage 51 avoids clogging of the injector, clogging of the catalyst, and the like due to adhesion of urea, ammonium nitrate, and reaction products of these with exhaust gas. From the viewpoint, it is performed when the temperature of the exhaust gas passing through the exhaust passage 51 is equal to or higher than the temperature at which urea can be hydrolyzed (for example, 150 to 170 ° C. or higher). Therefore, for example, at a cold start after the engine stops, or at a low load start in which the exhaust gas temperature is less than 150 ° C. in actual driving or in the first half low temperature region of the WHTC mode (hereinafter, these are collectively referred to as “cold start”). A large amount of NOx is discharged.
 これに対して本実施形態では、このようなコールドスタート時のNOx排出量の削減のために、アンモニア予吸着制御システム、及びコールドスタート時アシスト加熱制御システムが搭載されている。以下、これについて詳述する。 In contrast, in this embodiment, an ammonia pre-adsorption control system and a cold start assist heating control system are mounted in order to reduce the NOx emission amount at the cold start. This will be described in detail below.
 本実施形態の制御部ECUの記憶部には、前述したEHCであるメタルハニカム91及びSCR触媒73の温度-アンモニア吸着量プロファイルが保存されている。図2は、温度-アンモニア吸着量プロファイルの一例を示すグラフである。図2に示すように、SCR触媒(EHCであるメタルハニカム91及びSCR触媒73を含む。)へのアンモニア吸着量には温度依存性があり、高温になる程、アンモニアの吸着量は低下する。 In the storage unit of the control unit ECU of the present embodiment, the temperature-ammonia adsorption amount profiles of the metal honeycomb 91 and the SCR catalyst 73, which are the EHC described above, are stored. FIG. 2 is a graph showing an example of a temperature-ammonia adsorption amount profile. As shown in FIG. 2, the amount of ammonia adsorbed on the SCR catalyst (including the metal honeycomb 91 and the SCR catalyst 73, which is EHC) is temperature dependent, and the amount of ammonia adsorbed decreases as the temperature increases.
 本実施形態において、制御部ECUは、メタルハニカム91を通過する排ガスの排ガス温度を、メタルハニカム91と同位置ないし下流側に配置されている温度センサS3から検出し、このとき検出された温度Tgと温度-アンモニア吸着量プロファイルに基づいて、メタルハニカム91及びSCR触媒73に予吸着させるアンモニア量に相当する尿素の噴射量Inを算出し、算出された量の尿素を尿素噴射弁83から噴射してメタルハニカム91及びSCR触媒73にアンモニアを予吸着させる。ここで、尿素噴射弁83から尿素水をそのまま噴射してもよいが、尿素噴射弁83の直下に小型セラミックヒータ等を取り付けておき、尿素噴射弁83から噴射した尿素水噴霧を加熱することでアンモニアへの熱分解を促進した上で、尿素或いはアンモニアをメタルハニカム91及びSCR触媒73に供給させてもよい。 In the present embodiment, the control unit ECU detects the exhaust gas temperature of the exhaust gas passing through the metal honeycomb 91 from the temperature sensor S3 disposed at the same position or downstream of the metal honeycomb 91, and the detected temperature Tg. And the temperature-ammonia adsorption amount profile, the urea injection amount In corresponding to the ammonia amount to be pre-adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is calculated, and the calculated amount of urea is injected from the urea injection valve 83. Then, ammonia is preadsorbed on the metal honeycomb 91 and the SCR catalyst 73. Here, urea water may be injected as it is from the urea injection valve 83, but by attaching a small ceramic heater or the like directly below the urea injection valve 83, the urea water spray injected from the urea injection valve 83 is heated. Urea or ammonia may be supplied to the metal honeycomb 91 and the SCR catalyst 73 after promoting thermal decomposition into ammonia.
 なお、ここでいうアンモニアの予吸着とは、その後に実行される排ガス温度が150℃を下回るコールドスタート時を基準とし、その基準時にメタルハニカム91及びSCR触媒73にアンモニアが予め吸着されていることを意味する。このようなアンモニア予吸着を行っておくことで、尿素噴射が困難なコールドスタート時におけるアンモニア供給が補われ、コールドスタート時のNOx排出量を削減することができ、その結果、このエンジンン11から排出されるNOxの総量を削減することができる。なお、本実施形態では、コールドスタートの判定は150℃未満と設定しているが、その設定温度はこれに特に限定されない。コールドスタートの判定は、適宜設定することができ、好ましくは120℃以下である。 The pre-adsorption of ammonia here is based on the cold start time when the exhaust gas temperature to be executed below 150 ° C. as a reference, and ammonia is adsorbed in advance on the metal honeycomb 91 and the SCR catalyst 73 at the reference time. Means. By performing such ammonia pre-adsorption, the ammonia supply at the cold start when urea injection is difficult can be supplemented, and the NOx emission amount at the cold start can be reduced. As a result, from this engine 11 The total amount of NOx discharged can be reduced. In this embodiment, the cold start determination is set to be less than 150 ° C., but the set temperature is not particularly limited to this. The cold start determination can be set as appropriate, and is preferably 120 ° C. or lower.
 ここで、尿素の噴射量Inの算出は、以下のようにして行うことができる。例えば、メタルハニカム91を通過する排ガスの排ガス温度を温度センサS3から検出し、このとき検出された温度Tgと温度-アンモニア吸着量プロファイルに基づいて、アンモニア最大吸着量Adを読み出す。そして、このアンモニア最大吸着量Adの例えば30~100%、より好ましくは40~95%、さらに好ましくは50~90%に相当する量の尿素量を、前述した噴射量Inとして算出する。なお、この噴射量Inの算出は、各種公知の方法によって行うことができ、その方法は特に限定されない。例えば、従来技術に記載されている方法、具体的にはエンジン回転数、燃料噴射量、吸入空気量、NOxセンサS1,S4から検出されたNOx濃度等に基づいて、さらには温度補正する等して、SCR触媒で還元されたNOx量を求めた後にSCR触媒22に吸着されたアンモニア量を算出し、不足分のアンモニア吸着量に相当する量の尿素量を算出する方法等で行うこともできる。 Here, the calculation of the urea injection amount In can be performed as follows. For example, the exhaust gas temperature of the exhaust gas passing through the metal honeycomb 91 is detected from the temperature sensor S3, and the ammonia maximum adsorption amount Ad is read based on the detected temperature Tg and the temperature-ammonia adsorption amount profile. An amount of urea corresponding to, for example, 30 to 100%, more preferably 40 to 95%, and still more preferably 50 to 90% of the maximum ammonia adsorption amount Ad is calculated as the injection amount In. The calculation of the injection amount In can be performed by various known methods, and the method is not particularly limited. For example, the method described in the prior art, specifically, the engine speed, the fuel injection amount, the intake air amount, the NOx concentration detected from the NOx sensors S1 and S4, and the like are further corrected for temperature. Then, after obtaining the amount of NOx reduced by the SCR catalyst, the amount of ammonia adsorbed on the SCR catalyst 22 is calculated, and the amount of urea corresponding to the shortage of ammonia adsorbed can be calculated. .
 また、制御部ECUは、アンモニア予吸着後のコールドスタート時に、排ガス温度が150℃を下回る場合には、電気加熱式のメタルハニカム91を電気加熱する。このようなアシスト加熱を行うことで、コールドスタート後の排ガス温度の立ち上がりを急峻にすることができ、排ガス温度を早期に高温にすることができる。しかも、このようにアシスト加熱を行って排ガス温度を早期に高温にすることで、アンモニアによるNOx還元効率が高められ、これによりNOx浄化率を向上させることもできる。 Further, the control unit ECU electrically heats the electrically heated metal honeycomb 91 when the exhaust gas temperature falls below 150 ° C. at the cold start after the ammonia pre-adsorption. By performing such assist heating, the rise of the exhaust gas temperature after a cold start can be made steep, and the exhaust gas temperature can be raised quickly. Moreover, the NOx reduction efficiency by ammonia can be increased by performing the assist heating in this way to quickly raise the exhaust gas temperature, thereby improving the NOx purification rate.
 図3は、本実施形態において、制御部ECUが実行するアンモニア予吸着制御の一例を示すフローチャートである。ここではまず、制御部ECUが、温度センサS3からの出力値に基づいてメタルハニカム91を通過する排ガスの温度Tg(℃)を検出する(ステップA1)。 FIG. 3 is a flowchart showing an example of ammonia pre-adsorption control executed by the control unit ECU in the present embodiment. Here, first, the control unit ECU detects the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 based on the output value from the temperature sensor S3 (step A1).
 次に、制御部ECUは、検出された温度Tg(℃)が所定の設定温度T(℃)以上T(℃)以下の温度範囲内にあるか否かを判定する(ステップA2)。ここで本実施形態において、温度Tは170℃に、温度Tは300℃にそれぞれ設定されているが、これらの設定温度は適宜設定でき、特に限定されない。通常使用環境では、温度Tは160~220℃の範囲内にあることが好ましく、より好ましくは170~210℃の範囲内であり、温度Tは240~350℃の範囲内にあることが好ましく、より好ましくは250~330℃の範囲内にある。 Next, the control unit ECU determines whether or not the detected temperature Tg (° C.) is within a temperature range not less than a predetermined set temperature T 1 (° C.) and not more than T 2 (° C.) (step A2). Here, in the present embodiment, the temperature T 1 is set to 170 ° C. and the temperature T 2 is set to 300 ° C., but these set temperatures can be appropriately set and are not particularly limited. In a normal use environment, the temperature T 1 is preferably in the range of 160 to 220 ° C., more preferably in the range of 170 to 210 ° C., and the temperature T 2 is in the range of 240 to 350 ° C. Preferably, it is in the range of 250 to 330 ° C.
 ステップA2において肯定判定の場合、制御部ECUは、上述したとおり温度-アンモニア吸着量プロファイルに基づいて当該温度Tgにおけるアンモニア最大吸着量Adを読み出す(ステップA3)。その後、制御部ECUは、このアンモニア最大吸着量Adに基づいて、メタルハニカム91及びSCR触媒73に予吸着させるアンモニア量に相当する尿素の噴射量Inを算出し、算出された量の尿素を尿素噴射弁83から噴射して(ステップA4)、アンモニア予吸着を行った後に、処理を一旦終了する。 If the determination in step A2 is affirmative, the control unit ECU reads the maximum ammonia adsorption amount Ad at the temperature Tg based on the temperature-ammonia adsorption amount profile as described above (step A3). Thereafter, the control unit ECU calculates an injection amount In of urea corresponding to the amount of ammonia preadsorbed on the metal honeycomb 91 and the SCR catalyst 73 based on the maximum ammonia adsorption amount Ad, and the calculated amount of urea is converted into urea. After injecting from the injection valve 83 (step A4) and performing ammonia pre-adsorption, the process is temporarily terminated.
 ステップA2において否定判定の場合、制御部ECUは、検出した温度Tgが所定の設定温度T(℃)未満であるか判断する(ステップA5)。このステップA5において否定判定の場合は、エンジン11が中負荷~高負荷の稼動状態にあると判断して、制御部ECUは、再度ステップA1,A2の処理を繰り返し行い、ステップA2で肯定判定となるまでアンモニア予吸着を行わない。 When a negative determination is made in step A2, the control unit ECU determines whether the detected temperature Tg is lower than a predetermined set temperature T 1 (° C.) (step A5). If a negative determination is made in step A5, it is determined that the engine 11 is in a medium to high load operating state, and the control unit ECU repeats the processes of steps A1 and A2 again, and a positive determination is made in step A2. Do not pre-adsorb ammonia until
 一方、ステップA5において肯定判定の場合は、アンモニア予吸着に適さない低温状態にあると判断して、制御部ECUは、排ガス温度を上昇させるための予備加熱を行う(ステップA6)。この予備加熱の方法は、特に限定されないが、電気加熱式のメタルハニカム91の電気加熱、或いは、ポスト噴射やアフター噴射等を所定時間実行する噴射制御や、吸気バルブVの開度を制御して吸気量を減少させる流量制御等により行うことが好ましい。ポスト噴射、アフター噴射とは、主たる燃料噴射であるメイン噴射の後に行われる副噴射である。また、予備加熱は、メタルハニカム91がアンモニア予吸着に適した温度になるまで行うことが好ましく、例えば設定温度T(℃)以上T(℃)以下の温度範囲内となるまで行うことが好ましい。そして、この予備加熱の後に、制御部ECUは、再度ステップA1,A2の処理を行い、ステップA2で肯定判定となった場合にアンモニア予吸着を行った後に(ステップA3,A4)、処理を一旦終了する。 On the other hand, in the case of an affirmative determination in step A5, it is determined that the temperature is not suitable for ammonia pre-adsorption, and the control unit ECU performs preliminary heating for increasing the exhaust gas temperature (step A6). The preheating method is not particularly limited, but electric heating of the electrically heated metal honeycomb 91, injection control for executing post injection, after injection or the like for a predetermined time, or controlling the opening degree of the intake valve V It is preferable to perform the flow rate control or the like for reducing the intake air amount. Post-injection and after-injection are sub-injections that are performed after the main injection, which is the main fuel injection. Further, the preheating is preferably performed until the metal honeycomb 91 reaches a temperature suitable for ammonia preadsorption, and is performed, for example, until the temperature falls within a temperature range from the set temperature T 1 (° C.) to T 2 (° C.). preferable. And after this preheating, control part ECU performs the process of step A1, A2 again, and when it becomes affirmation determination by step A2, after performing ammonia pre-adsorption (step A3, A4), a process is once performed. finish.
 なお、上記説明では、メタルハニカム91及びSCR触媒73がフレッシュ状態、換言すればメタルハニカム91及びSCR触媒73へのアンモニア吸着量がゼロの場合におけるアンモニア予吸着の制御の一例を示した。ここで本発明のアンモニア予吸着を既に実行している場合や、排ガス温度が温度Tgを超える状況でエンジン11が既に駆動されて尿素SCRシステム本来のアンモニア吸着が既に実行されている場合には、メタルハニカム91及びSCR触媒73に既に吸着されているアンモニア量を考慮して、本発明のアンモニア予吸着における尿素の噴射量Inを算出すればよい。 In the above description, an example of ammonia pre-adsorption control in the case where the metal honeycomb 91 and the SCR catalyst 73 are in a fresh state, in other words, the amount of ammonia adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is shown. Here, when the ammonia pre-adsorption of the present invention has already been performed, or when the engine 11 has already been driven in a situation where the exhaust gas temperature exceeds the temperature Tg, the original ammonia adsorption of the urea SCR system has already been performed. In consideration of the amount of ammonia already adsorbed on the metal honeycomb 91 and the SCR catalyst 73, the injection amount In of urea in the ammonia pre-adsorption of the present invention may be calculated.
 例えば、上述したステップA1及びA2を実行する前に、尿素噴射弁83からの尿素の噴射を停止した状態でメタルハニカム91を通過する排ガスの温度Tgを例えば400℃以上、好ましくは500℃以上の高温にする前処理を行い、メタルハニカム91及びSCR触媒73に既に吸着されているアンモニアを除去すれば、上述したステップA3,A4をそのまま実行することができる。或いは、従来既知の方法により、検出温度Tgにおいてメタルハニカム91及びSCR触媒73に既に吸着されているアンモニア量を算出し、上述したアンモニア最大吸着量Adからこの量を減算して不足分のアンモニア吸着量を算出し、この不足分のアンモニア吸着量に相当する量の尿素量を、ステップA3,A4で実行する尿素の噴射量Inとして算出することができる。 For example, before executing steps A1 and A2 described above, the temperature Tg of the exhaust gas passing through the metal honeycomb 91 in a state where urea injection from the urea injection valve 83 is stopped is, for example, 400 ° C. or higher, preferably 500 ° C. or higher. If the pretreatment to raise the temperature is performed and the ammonia already adsorbed on the metal honeycomb 91 and the SCR catalyst 73 is removed, the above-described steps A3 and A4 can be performed as they are. Alternatively, the amount of ammonia already adsorbed on the metal honeycomb 91 and the SCR catalyst 73 at the detected temperature Tg is calculated by a conventionally known method, and this amount is subtracted from the above-described maximum ammonia adsorption amount Ad to adsorb the deficient ammonia. The amount of urea corresponding to the shortage of ammonia adsorption amount can be calculated as the urea injection amount In executed in steps A3 and A4.
 図4は、本実施形態において、制御部ECUが実行するコールドスタート時のアシスト加熱制御の一例を示すフローチャートである。なお、ここではエンジン停止後のコールドスタート時や、実走行或いはWHTCモードの前半低温域における排ガス温度が比較的に低温の低負荷スタート時を含めて、「コールドスタート時」と称する。この一例では、温度センサS3からの出力値に基づいて検出される、メタルハニカム91を通過する排ガスの温度Tg(℃)が150℃未満、より好ましくは120℃以下の状態でのエンジン11の稼動をコールドスタートとしている。 FIG. 4 is a flowchart illustrating an example of the assist heating control at the cold start executed by the control unit ECU in the present embodiment. Here, the term “cold start” includes a cold start after the engine is stopped and a low load start in which the exhaust gas temperature is relatively low in actual driving or in the first half low temperature region of the WHTC mode. In this example, the engine 11 is operated in a state where the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 detected based on the output value from the temperature sensor S3 is less than 150 ° C., more preferably 120 ° C. or less. Is a cold start.
 ここではまず、制御部ECUが、温度センサS3からの出力値に基づいてメタルハニカム91を通過する排ガスの温度Tg(℃)を検出する(ステップB1)。そして、制御部ECUは、検出された温度Tg(℃)が150℃未満であるか否かを判定する(ステップB2)。 Here, first, the control unit ECU detects the temperature Tg (° C.) of the exhaust gas passing through the metal honeycomb 91 based on the output value from the temperature sensor S3 (step B1). Then, the control unit ECU determines whether or not the detected temperature Tg (° C.) is less than 150 ° C. (step B2).
 ステップB2において肯定判定の場合、NOx浄化に不利な温度条件であると判断し、制御部ECUは、電気ヒータをONにし、その出力制御を調整して、メタルハニカム91の電気加熱、すなわちアシスト加熱を行う(ステップB3)。このようにアシスト加熱を行うことで、メタルハニカム91を通過する排ガスの温度Tgが昇温され、これによりアンモニアによるNOx還元効率が高められる。 If the determination in step B2 is affirmative, it is determined that the temperature condition is unfavorable for NOx purification, and the control unit ECU turns on the electric heater and adjusts the output control to electrically heat the metal honeycomb 91, that is, assist heating. (Step B3). By performing the assist heating in this way, the temperature Tg of the exhaust gas that passes through the metal honeycomb 91 is raised, thereby increasing the NOx reduction efficiency by ammonia.
 ステップB3におけるアシスト加熱は、温度センサS3から検出される温度Tgが所定の設置温度T(℃)を超えるまで継続される(ステップB4)。そして、温度センサS3から検出される温度Tgが所定の設置温度T(℃)を超えた場合(ステップB4)、制御部ECUは、電気ヒータをOFFにして、アシスト加熱を停止した後に(ステップB5)、処理を一旦終了する。設置温度T(℃)は、本例では270℃に設定しているが、アシスト加熱によるNOx浄化率の向上の程度、電気加熱に必要な電量使用量を考慮して適宜設定すればよく、特に限定されない。具体的には、200~300℃の温度範囲内とすることが好ましく、より好ましくは210~280℃の温度範囲内であり、さらに好ましくは220~270℃の温度範囲内である。 The assist heating in step B3 is continued until the temperature Tg detected from the temperature sensor S3 exceeds a predetermined installation temperature T 3 (° C.) (step B4). When the temperature Tg detected from the temperature sensor S3 exceeds a predetermined installation temperature T 3 (° C.) (step B4), the control unit ECU turns off the electric heater and stops assist heating (step B4). B5), the process is temporarily terminated. The installation temperature T 3 (° C.) is set to 270 ° C. in this example. However, the installation temperature T 3 (° C.) may be appropriately set in consideration of the degree of improvement in the NOx purification rate by assist heating and the amount of electricity used for electric heating. There is no particular limitation. Specifically, the temperature is preferably in the temperature range of 200 to 300 ° C., more preferably in the temperature range of 210 to 280 ° C., and still more preferably in the temperature range of 220 to 270 ° C.
 一方、ステップB2において否定判定の場合には、制御部ECUは、検出された温度Tg(℃)が所定の設置温度T(℃)以上であるか判断する(ステップB6)。このステップB6において、検出された温度Tg(℃)が所定の設置温度T(℃)未満である場合には、NOx浄化により有利な温度条件に調整すべきと判断し、制御部ECUは、電気ヒータをONにし、その出力制御を調整して、メタルハニカム91のアシスト加熱を行う(ステップB3)。ここで本例では、設定温度T(℃)は設定温度T(℃)と同一温度すなわち170℃に設定されているが、設定温度T(℃)は、所望の温度制御に応じて適宜設定することができ、特に限定されないが、例えば151~299℃の間で任意に設定することができる。一方、このステップB6において肯定判定の場合には、制御部ECUは、電気ヒータをONにすることなく、処理を一旦終了する。 On the other hand, if a negative determination is made in step B2, the control unit ECU determines whether the detected temperature Tg (° C.) is equal to or higher than a predetermined installation temperature T 4 (° C.) (step B6). In this step B6, when the detected temperature Tg (° C.) is lower than the predetermined installation temperature T 4 (° C.), it is determined that the temperature condition should be adjusted to be advantageous by NOx purification. The electric heater is turned on, the output control thereof is adjusted, and assist heating of the metal honeycomb 91 is performed (step B3). Here, in this example, the set temperature T 4 (° C.) is set to the same temperature as the set temperature T 1 (° C.), that is, 170 ° C., but the set temperature T 4 (° C.) depends on the desired temperature control. Although it can be appropriately set and is not particularly limited, it can be arbitrarily set between 151 and 299 ° C., for example. On the other hand, if the determination in step B6 is affirmative, the control unit ECU temporarily ends the process without turning on the electric heater.
 なお、上記の一連の処理において、電気ヒータONのための稼動制御をステップB2及びB6の2段階で行っているが、さらなる精緻な温度制御をするために3段階以上の多段制御(例えば3~10段階制御)にしてもよい。或いは、よりシンプルな温度制御を所望する場合にはステップB6を省略して、ステップB2のみの1段制御にすることもできる。また同様に、電気ヒータOFFのための稼動制御は、ステップB5のみの1段制御に限られず、2段階以上の多段制御にしてもよい。 In the above-described series of processes, the operation control for turning on the electric heater is performed in two stages of steps B2 and B6. In order to perform more precise temperature control, multistage control of three or more stages (for example, 3 to 3) is performed. (10 step control). Alternatively, when simpler temperature control is desired, step B6 can be omitted and single-step control with only step B2 can be performed. Similarly, the operation control for turning off the electric heater is not limited to the one-step control of only step B5, and may be a multi-step control of two or more steps.
 上述した設定温度は、所望の温度制御に応じて適宜設定すればよく、特に限定されないが、T<T≦T(℃)の関係を満たすことが好ましい。このような設定温度にすることで、消費電力を過度に増大させることなく、さらに燃費噴射制御を行う場合には燃費を過度に悪化させることなく、コールドスタート時のNOx排出量の削減を図ることができる。なお、電気ヒータへの供給電力としては、例えばエンジン11の動力の一部を電気エネルギーに変換して発電するオルタネータ、ニッケル水素電池やリチウムイオン電池等の各種バッテリー等を用いることができ、その種類は特に限定されない。 The set temperature described above may be set as appropriate according to desired temperature control, and is not particularly limited, but preferably satisfies the relationship of T 1 <T 3 ≦ T 2 (° C.). By setting to such a set temperature, NOx emissions during cold start can be reduced without excessively increasing power consumption and without excessively degrading fuel consumption when performing fuel injection control. Can do. As the electric power supplied to the electric heater, for example, an alternator that generates electric power by converting a part of the motive power of the engine 11, various batteries such as a nickel metal hydride battery and a lithium ion battery, and the like can be used. Is not particularly limited.
 図5は、WHTCモードにおける排ガス温度の変動を示すグラフである。このグラフは、温度Tgが200℃のときのアンモニア最大吸着量Adの30%を噴射量Inとし、設定温度をT=170℃、設定温度T=300℃、設定温度T=170℃にそれぞれ設定したときの、排ガス温度の温度変化を測定したものである。 FIG. 5 is a graph showing fluctuations in exhaust gas temperature in the WHTC mode. This graph shows that the injection amount In is 30% of the maximum ammonia adsorption amount Ad when the temperature Tg is 200 ° C., the set temperature is T 1 = 170 ° C., the set temperature T 2 = 300 ° C., and the set temperature T 4 = 170 ° C. The temperature change of the exhaust gas temperature is measured when each is set.
 図5から明らかなとおり、コールドスタート時のアシスト加熱制御を行わない場合(図5中の「電気加熱なし」の太線、以下「参考例」とも称する。)に比して、アシスト加熱制御を設定温度T=230℃まで行った場合(図5中、「230℃まで電気加熱」の細線、以下「例1」とも称する。)及びアシスト加熱制御を設定温度T=260℃まで行った場合(図5中、「260℃まで電気加熱」の鎖線、以下「例2」とも称する。)は、コールドスタート後の排ガス温度の立ち上がりが早く、200℃への到達時間が約700秒から約350秒へと半減していることがわかる。そして、例1の設定温度T=230℃までアシスト加熱制御した場合はWHTCモードの前半~中盤(50~900秒)にかけて、例2の設定温度T=260℃までアシスト加熱制御した場合はWHTCモードの前半~後半(50~1500秒)にかけて、アシスト加熱制御による排ガス温度の向上効果が認められた。 As is apparent from FIG. 5, the assist heating control is set as compared with the case where the assist heating control at the cold start is not performed (thick line of “no electric heating” in FIG. 5, hereinafter also referred to as “reference example”). When the temperature T 3 = 230 ° C. (in FIG. 5, “Electrical heating to 230 ° C.” thin line, hereinafter also referred to as “Example 1”) and when the assist heating control is performed up to the set temperature T 3 = 260 ° C. (In FIG. 5, the chain line “electrically heated to 260 ° C.”, hereinafter also referred to as “Example 2”) has a fast rise in exhaust gas temperature after cold start, and the time to reach 200 ° C. is about 700 seconds to about 350. It turns out that it is halved to second. When the assist heating control is performed up to the set temperature T 3 = 230 ° C. in Example 1, the assist heating control is performed up to the set temperature T 3 = 260 ° C. in the first half to the middle stage (50 to 900 seconds) of the WHTC mode. From the first half to the second half (50 to 1500 seconds) of the WHTC mode, an effect of improving the exhaust gas temperature by the assist heating control was recognized.
 図6は、WHTCモードにおける排ガス温度の変動を示すグラフである。このグラフは、温度Tgが200℃のときのアンモニア最大吸着量Adの100%を噴射量Inとし、設定温度をT=170℃、設定温度T=300℃、設定温度T=170℃にそれぞれ設定したときの、排ガス温度の温度変化を測定したものである。 FIG. 6 is a graph showing fluctuations in exhaust gas temperature in the WHTC mode. This graph shows that the injection amount In is 100% of the maximum ammonia adsorption amount Ad when the temperature Tg is 200 ° C., the set temperature is T 1 = 170 ° C., the set temperature T 2 = 300 ° C., and the set temperature T 4 = 170 ° C. The temperature change of the exhaust gas temperature is measured when each is set.
 図6から明らかなとおり、コールドスタート時のアシスト加熱制御を行わない場合(図6中の「電気加熱なし」の太線、以下「参考例」とも称する。)に比して、アシスト加熱制御を設定温度T=230℃まで行った場合(図6中、「230℃まで電気加熱」の細線、以下「例3」とも称する。)及びアシスト加熱制御を設定温度T=260℃まで行った場合(図6中、「260℃まで電気加熱」の鎖線、以下「例4」とも称する。)は、コールドスタート後の排ガス温度の立ち上がりが早く、200℃への到達時間が約700秒から約350秒へと半減していることがわかる。そして、例3の設定温度T=230℃までアシスト加熱制御した場合は、WHTCモードの前半~中盤(50~900秒)にかけて、例4の設定温度T=260℃までアシスト加熱制御した場合はWHTCモードの前半~後半(50~1500秒)にかけて、アシスト加熱制御による排ガス温度の向上効果が認められた。 As is clear from FIG. 6, the assist heating control is set as compared with the case where the assist heating control at the cold start is not performed (thick line of “no electric heating” in FIG. 6, hereinafter also referred to as “reference example”). When the temperature T 3 = 230 ° C. (in FIG. 6, the thin line “electric heating to 230 ° C.”, hereinafter also referred to as “Example 3”) and when the assist heating control is performed up to the set temperature T 3 = 260 ° C. (In FIG. 6, the chain line of “electrically heated to 260 ° C.”, hereinafter also referred to as “Example 4”), the exhaust gas temperature rises quickly after a cold start, and the time to reach 200 ° C. is about 700 seconds to about 350 It turns out that it is halved to second. When the assist heating control is performed up to the set temperature T 3 = 230 ° C. in the example 3, the assist heating control is performed up to the set temperature T 3 = 260 ° C. in the first half to the middle stage (50 to 900 seconds) of the WHTC mode. In the first half to the second half (50 to 1500 seconds) of the WHTC mode, an effect of improving the exhaust gas temperature by the assist heating control was recognized.
 表1に、上記WHTCモードにおけるNOx浄化率を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the NOx purification rate in the WHTC mode.
Figure JPOXMLDOC01-appb-T000001
 表1からも明らかなとおり、本発明のアンモニア予吸着制御を行うことにより、NOx浄化率が明らかに向上していることがわかる。また、本発明のコールドスタート時アシスト加熱制御を行うことにより、NOx浄化率が明らかに向上していることがわかる。これらのことから、本発明のアンモニア予吸着制御、及びコールドスタート時アシスト加熱制御は、それぞれ単独で、NOx浄化率の向上効果があることが認められた。 As is apparent from Table 1, it can be seen that the NOx purification rate is clearly improved by performing the ammonia pre-adsorption control of the present invention. It can also be seen that the NOx purification rate is clearly improved by performing the cold start assist heating control of the present invention. From these facts, it was confirmed that the ammonia pre-adsorption control and the cold start assist heating control according to the present invention are each independently effective in improving the NOx purification rate.
 また、本発明のアンモニア予吸着制御とコールドスタート時アシスト加熱制御とを組み合わせて用いることで、NOx浄化率の向上効果がさらに高められることがわかる。 It can also be seen that the effect of improving the NOx purification rate is further enhanced by using the ammonia pre-adsorption control and the cold start assist heating control of the present invention in combination.
 そして、噴射量Inをアンモニア最大吸着量Adの30%とした、予吸着30%の例1及び2よりも、噴射量Inをアンモニア最大吸着量Adの100%とした、予吸着100%の例3及び4の方が、NOx浄化率がそれぞれ向上していることが認められた。その上さらに、その向上幅を対比してみると、例1と例3の比較よりも、例2と例4の比較の方が大きい。このことから、予吸着が多い程、NOx浄化率の向上幅が大きい、すなわち感度が高いことが判明した。 Then, the pre-adsorption 100% example in which the injection amount In is set to 100% of the ammonia maximum adsorption amount Ad than the examples 1 and 2 in which the injection amount In is 30% of the ammonia maximum adsorption amount Ad and 30% pre-adsorption. It was recognized that the NOx purification rate was improved in 3 and 4 respectively. Furthermore, when comparing the improvement width, the comparison between Example 2 and Example 4 is larger than the comparison between Example 1 and Example 3. From this, it was found that the greater the pre-adsorption, the greater the improvement in the NOx purification rate, that is, the higher the sensitivity.
 以上、本発明の好ましい実施形態について詳述したが、本発明は、上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、任意の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments described above, and is within the scope of the gist of the present invention described in the claims. Can be modified or changed.
 例えば、SCR触媒73を省略したEHCであるメタルハニカム91のみの構成を採用することができる。この場合は、EHCであるメタルハニカム91の温度-アンモニア吸着量プロファイルのみが制御部ECUの記憶部に保存されていればよい。また、本発明は、SCR触媒を担持させていないメタルハニカム91、換言すれば、EHCではないメタルハニカム91を配置した構成を採用することもできる。この場合は、SCR触媒73の温度-アンモニア吸着量プロファイルのみが制御部ECUの記憶部に保存されていればよい。一方、メタルハニカム91の下流側に、SCR触媒73を複数配置した構成を採用することもできる。この場合には、この場合はEHCであるメタルハニカム91と複数のSCR触媒73の温度-アンモニア吸着量プロファイルが制御部ECUの記憶部に保存されていればよい。 For example, a configuration of only the metal honeycomb 91 which is EHC in which the SCR catalyst 73 is omitted can be adopted. In this case, only the temperature-ammonia adsorption amount profile of the metal honeycomb 91 that is EHC needs to be stored in the storage unit of the control unit ECU. In addition, the present invention can employ a configuration in which a metal honeycomb 91 that does not carry an SCR catalyst, in other words, a metal honeycomb 91 that is not EHC is disposed. In this case, only the temperature-ammonia adsorption amount profile of the SCR catalyst 73 needs to be stored in the storage unit of the control unit ECU. On the other hand, a configuration in which a plurality of SCR catalysts 73 are arranged on the downstream side of the metal honeycomb 91 may be employed. In this case, in this case, the temperature-ammonia adsorption amount profiles of the metal honeycomb 91 which is EHC and the plurality of SCR catalysts 73 may be stored in the storage unit of the control unit ECU.
 また、本発明のアンモニア予吸着制御は、メタルハニカム91よりも上流側に設けられ、メタルハニカム91に流入する排ガスの排ガス温度を検出する第2温度センサ(温度センサS2)に基づいて制御することも可能である。具体的には、制御部ECUは、メタルハニカム91を電気加熱している場合に、温度センサS2が検出する排ガス温度が150℃以上で尿素を噴射して予吸着を行うことができる。メタルハニカム91のアシスト加熱を行っている場合、温度センサS3が検出する排ガス温度は温度センサS2が検出する排ガス温度よりも高くなるため、このような制御を行ってもアンモニア予吸着制御を適切に作動させることが可能である。 The ammonia pre-adsorption control according to the present invention is controlled based on a second temperature sensor (temperature sensor S2) that is provided upstream of the metal honeycomb 91 and detects the exhaust gas temperature of the exhaust gas flowing into the metal honeycomb 91. Is also possible. Specifically, when the metal honeycomb 91 is electrically heated, the control unit ECU can perform pre-adsorption by injecting urea when the exhaust gas temperature detected by the temperature sensor S2 is 150 ° C. or higher. When assist heating of the metal honeycomb 91 is performed, the exhaust gas temperature detected by the temperature sensor S3 is higher than the exhaust gas temperature detected by the temperature sensor S2. Therefore, the ammonia pre-adsorption control is appropriately performed even if such control is performed. It can be activated.
 本発明は、排ガス中に含まれるNOxを浄化するための尿素SCRシステムを搭載している各種内燃機関において、広く且つ有効に利用可能である。 The present invention can be used widely and effectively in various internal combustion engines equipped with a urea SCR system for purifying NOx contained in exhaust gas.
 11  エンジン
 21a コンプレッサ
 21b 排気タービン
 21  ターボチャージャ
 31  吸気路
 41  排気路
 51  排気路
 12  吸気マニホールド
 13  排気マニホールド
 61  EGR通路
 71  DOC
 72  DPF
 73  SCR触媒
 74  AMOX
 81  尿素SCRシステム
 82  タンク
 82a 尿素水供給管
 83  尿素噴射弁
 91  メタルハニカム
100  排ガス浄化装置
 ECU 制御部
 IC  インタークーラ
 V1  バルブ
 V2  EGRバルブ
 P   ポンプ
 S1  NOxセンサ
 S2  温度センサ
 S3  温度センサ
 S4  NOxセンサ
 
11 Engine 21a Compressor 21b Exhaust turbine 21 Turbocharger 31 Intake passage 41 Exhaust passage 51 Exhaust passage 12 Intake manifold 13 Exhaust manifold 61 EGR passage 71 DOC
72 DPF
73 SCR catalyst 74 AMOX
81 Urea SCR system 82 Tank 82a Urea water supply pipe 83 Urea injection valve 91 Metal honeycomb 100 Exhaust gas purifier ECU Control unit IC Intercooler V1 valve V2 EGR valve P pump S1 NOx sensor S2 Temperature sensor S3 Temperature sensor S4 NOx sensor

Claims (12)

  1.  エンジンの排ガスが通過する排気路と、
     前記排気路中に尿素を噴射する尿素噴射弁と、
     前記尿素噴射弁よりも下流側の前記排気路中に設けられたSCR触媒と、
     前記尿素噴射弁よりも下流側且つ前記SCR触媒よりも上流側の前記排気路中に設けられ、排ガス温度を昇温可能な電気加熱式メタルハニカムと、
     前記電気加熱式メタルハニカムを通過する排ガスの排ガス温度を検出する温度センサと、
     前記電気加熱式メタルハニカム及び前記SCR触媒の温度-アンモニア吸着量プロファイルを保存した記憶部と、
     前記温度-アンモニア吸着量プロファイルに基づいて前記電気加熱式メタルハニカム及び前記SCR触媒に予吸着させるアンモニア量に相当する前記尿素の噴射量Inを算出し、算出された量の前記尿素を前記尿素噴射弁から噴射して前記電気加熱式メタルハニカム及び前記SCR触媒にアンモニアを予吸着させておき、前記排ガス温度が150℃を下回った後のコールドスタート時に前記電気加熱式メタルハニカムを電気加熱する制御部と、を少なくとも備えることを特徴とする、排ガス浄化装置。
    An exhaust passage through which the exhaust gas of the engine passes,
    A urea injection valve for injecting urea into the exhaust passage;
    An SCR catalyst provided in the exhaust passage downstream of the urea injection valve;
    An electrically heated metal honeycomb that is provided in the exhaust passage downstream from the urea injection valve and upstream from the SCR catalyst, and capable of raising the exhaust gas temperature;
    A temperature sensor for detecting an exhaust gas temperature of exhaust gas passing through the electrically heated metal honeycomb;
    A storage unit storing temperature-ammonia adsorption amount profiles of the electrically heated metal honeycomb and the SCR catalyst;
    Based on the temperature-ammonia adsorption amount profile, the urea injection amount In corresponding to the ammonia amount preadsorbed on the electrically heated metal honeycomb and the SCR catalyst is calculated, and the calculated amount of the urea is injected into the urea injection A controller that pre-adsorbs ammonia to the electrically heated metal honeycomb and the SCR catalyst by injection from a valve, and electrically heats the electrically heated metal honeycomb at a cold start after the exhaust gas temperature falls below 150 ° C. And at least an exhaust gas purification device.
  2.  前記制御部は、前記排ガス温度が所定の設定温度T℃以上T℃以下の温度範囲内になるまで前記電気加熱式メタルハニカムを電気加熱する
    請求項1に記載の排ガス浄化装置。
    The exhaust gas purification device according to claim 1, wherein the control unit electrically heats the electrically heated metal honeycomb until the exhaust gas temperature falls within a temperature range of a predetermined set temperature T 1 ° C or more and T 2 ° C or less.
  3.  前記制御部は、前記排ガス温度が所定の設定温度T℃を超えた場合に前記電気加熱式メタルハニカムの電気加熱を停止する
    請求項1又は2に記載の排ガス浄化装置。
    The exhaust gas purification device according to claim 1 or 2, wherein the control unit stops the electric heating of the electrically heated metal honeycomb when the exhaust gas temperature exceeds a predetermined set temperature T 3 ° C.
  4.  前記設定温度が、T<T≦T(℃)の関係を満たす
    請求項3に記載の排ガス浄化装置。
    The exhaust gas purifying apparatus according to claim 3, wherein the set temperature satisfies a relationship of T 1 <T 3 ≦ T 2 (° C.).
  5.  前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに担持されたSCR触媒とを少なくとも有する
    請求項1~4のいずれか一項に記載の排ガス浄化装置。
    The exhaust gas purifying apparatus according to any one of claims 1 to 4, wherein the electrically heated metal honeycomb includes at least a metal honeycomb and an SCR catalyst supported on the metal honeycomb.
  6.  前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに装着されたジャケット型の電気ヒータ及び/又は前記メタルハニカムに一部埋設されたコイル型の電気ヒータと、を少なくとも有する
    請求項1~5のいずれか一項に記載の排ガス浄化装置。
    The electric heating type metal honeycomb includes at least a metal honeycomb, a jacket type electric heater mounted on the metal honeycomb, and / or a coil type electric heater partially embedded in the metal honeycomb. The exhaust gas purification device according to any one of claims 5 to 6.
  7.  前記電気加熱式メタルハニカムが、メタルハニカムと、前記メタルハニカムに通電して前記メタルハニカムを発熱させる加熱制御部と、を少なくとも有する
    請求項1~6のいずれか一項に記載の排ガス浄化装置。
    The exhaust gas purifying apparatus according to any one of claims 1 to 6, wherein the electrically heated metal honeycomb includes at least a metal honeycomb and a heating control unit that generates electricity by energizing the metal honeycomb.
  8.  前記制御部は、前記予吸着時に前記排ガス温度が所定の設定温度T未満の場合に前記排ガス温度を昇温させる予備加熱制御を行う
    請求項1~7のいずれか一項に記載の排ガス浄化装置。
    Wherein the control unit, the exhaust gas purification according to any one of claims 1 to 7, wherein the exhaust gas temperature at the予吸wearing performs preheating control for raising the temperature of the exhaust gas temperature when less than the predetermined set temperatures T 1 apparatus.
  9.  前記制御部は、前記予吸着時に前記排ガス温度が所定の設定温度T未満の場合に前記電気加熱式メタルハニカムを電気加熱して前記排ガス温度を昇温させる予備加熱制御を行う
    請求項1~8のいずれか一項に記載の排ガス浄化装置。
    Wherein the control unit according to claim 1 wherein the exhaust gas temperature at the予吸wearing performs preheating control for raising the temperature of the electrical heating to the flue gas temperature the electrically heated metal honeycomb If it is less than a predetermined set temperature T 1 ~ The exhaust gas purification apparatus according to any one of claims 8 to 9.
  10.  前記制御部は、前記記憶部から所定の設定温度Tg℃における前記電気加熱式メタルハニカム及び前記SCR触媒のアンモニア最大吸着量Adを読み出し、前記噴射量Inとして前記アンモニア最大吸着量Adの30~100%に相当する量の尿素量を算出する
    請求項1~9のいずれか一項に記載の排ガス浄化装置。
    The control unit reads the ammonia maximum adsorption amount Ad of the electrically heated metal honeycomb and the SCR catalyst at a predetermined set temperature Tg ° C. from the storage unit, and 30 to 100 of the ammonia maximum adsorption amount Ad as the injection amount In The exhaust gas purification apparatus according to any one of claims 1 to 9, wherein an amount of urea corresponding to% is calculated.
  11.  前記排気路は、少なくとも前記尿素噴射弁よりも下流側且つ前記SCR触媒よりも上流側において、その外周に断熱保温材が設けられている
    請求項1~10のいずれか一項に記載の排ガス浄化装置。
    The exhaust gas purification apparatus according to any one of claims 1 to 10, wherein a heat insulation heat insulating material is provided on an outer periphery of the exhaust passage at least downstream of the urea injection valve and upstream of the SCR catalyst. apparatus.
  12.  前記電気加熱式メタルハニカムよりも上流側に、前記電気加熱式メタルハニカムに流入する排ガスの排ガス温度を検出する第2温度センサをさらに備え、
     前記制御部は、前記電気加熱式メタルハニカムを電気加熱している場合に、前記第2温度センサが検出する排ガス温度が150℃以上で前記尿素を噴射して予吸着を行う
    請求項1~11のいずれか一項に記載の排ガス浄化装置。
     
    A second temperature sensor for detecting an exhaust gas temperature of the exhaust gas flowing into the electric heating metal honeycomb further upstream of the electric heating metal honeycomb;
    The controller performs pre-adsorption by injecting the urea at an exhaust gas temperature detected by the second temperature sensor of 150 ° C. or higher when the electrically heated metal honeycomb is electrically heated. The exhaust gas purifying apparatus according to any one of the above.
PCT/JP2018/004392 2017-02-09 2018-02-08 Exhaust gas cleaning device WO2018147369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/482,310 US11047282B2 (en) 2017-02-09 2018-02-08 Exhaust gas purification device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-022372 2017-02-09
JP2017022372 2017-02-09
JP2017066063A JP6775169B2 (en) 2017-02-09 2017-03-29 Exhaust gas purification device
JP2017-066063 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018147369A1 true WO2018147369A1 (en) 2018-08-16

Family

ID=63107587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004392 WO2018147369A1 (en) 2017-02-09 2018-02-08 Exhaust gas cleaning device

Country Status (1)

Country Link
WO (1) WO2018147369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280133A (en) * 2019-07-03 2019-09-27 神华(福建)能源有限责任公司 Spray ammonia control method, device and the SCR system of SCR system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
WO2014045908A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 Exhaust gas purification device
JP3204682U (en) * 2016-03-30 2016-06-09 エヌ・イーケムキャット株式会社 Cold start compatible urea SCR system using bypass flow path
JP2016217301A (en) * 2015-05-25 2016-12-22 日本特殊陶業株式会社 Ammonia generator and ammonia generation control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
WO2014045908A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 Exhaust gas purification device
JP2016217301A (en) * 2015-05-25 2016-12-22 日本特殊陶業株式会社 Ammonia generator and ammonia generation control device
JP3204682U (en) * 2016-03-30 2016-06-09 エヌ・イーケムキャット株式会社 Cold start compatible urea SCR system using bypass flow path

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280133A (en) * 2019-07-03 2019-09-27 神华(福建)能源有限责任公司 Spray ammonia control method, device and the SCR system of SCR system

Similar Documents

Publication Publication Date Title
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
US20100290957A1 (en) Exhaust gas purifying system
JP6859826B2 (en) Plug-in hybrid vehicle
WO2013183153A1 (en) Engine system
JP4521824B2 (en) Exhaust purification device
RU2536742C2 (en) Operation of exhaust gas purification device
JP6775169B2 (en) Exhaust gas purification device
CN110206621B (en) Wide-temperature-window efficient diesel engine post-processing device and control method thereof
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
JP2010121478A (en) Exhaust emission control device and exhaust emission control system for internal combustion engine
RU2652264C2 (en) Method and device for increasing exhaust gas temperature in exhaust system of a turbocharged internal combustion engine
EP2133524B1 (en) Apparatus for purifying exhaust gas in internal combustion engine
JP4702310B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2010065581A (en) Exhaust emission control system of internal combustion engine
CN211819579U (en) Diesel engine and aftertreatment system thereof
JP5861920B2 (en) Exhaust gas purification device for internal combustion engine
CN104583550A (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
EP1550796A1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP5975320B2 (en) Exhaust gas purification device for internal combustion engine
JP2016098682A (en) Internal combustion engine exhaust emission control apparatus
WO2018147369A1 (en) Exhaust gas cleaning device
CN112253299A (en) Engine exhaust NOxPurification system, control method thereof and engine
CN105378243B (en) For the method for running drive device and corresponding drive device
JP2013142309A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752071

Country of ref document: EP

Kind code of ref document: A1