WO2018147338A1 - Tip seal for scroll compressor - Google Patents

Tip seal for scroll compressor Download PDF

Info

Publication number
WO2018147338A1
WO2018147338A1 PCT/JP2018/004250 JP2018004250W WO2018147338A1 WO 2018147338 A1 WO2018147338 A1 WO 2018147338A1 JP 2018004250 W JP2018004250 W JP 2018004250W WO 2018147338 A1 WO2018147338 A1 WO 2018147338A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
tip seal
seal
groove
spiral
Prior art date
Application number
PCT/JP2018/004250
Other languages
French (fr)
Japanese (ja)
Inventor
石井 卓哉
大地 伊藤
勝史 竹尾
福澤 覚
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017200766A external-priority patent/JP2019074025A/en
Priority claimed from JP2018015577A external-priority patent/JP7000180B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/484,419 priority Critical patent/US11536269B2/en
Publication of WO2018147338A1 publication Critical patent/WO2018147338A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a spiral chip seal used in a scroll compressor (compressor).
  • a fixed scroll and a movable scroll having a spiral wall standing on the substrate surface and a movable scroll are meshed with each other at the spiral wall, and a compression chamber is formed between them.
  • the compression chamber moves to the spiral center side by the action of a movable scroll that revolves around the axis of the fixed scroll, thereby compressing gas or the like.
  • a seal groove is formed along the spiral extension direction on the end surface of the scroll wall of the fixed scroll and the movable scroll which are the scroll members. Contains a chip seal, which is a seal member that contacts an opposing scroll substrate (end plate).
  • Such a chip seal is manufactured in a spiral shape in which a long member having a rectangular cross section is wound into a spiral by, for example, injection molding a predetermined synthetic resin (see Patent Document 1).
  • this type of tip seal 71 is accommodated in a groove 72a of one wrap (spiral wall) 72 with a gap, and a gas is passed between the end plate (scroll substrate) 73 facing the groove 72a. Due to the pressure of 74, it floats from the groove bottom 72b toward the end plate 73.
  • the floated chip seal 71 is in sliding contact with the end plate 73 at a seal surface 71a which is one surface constituting a rectangular cross section, and seals the compression chamber between the spiral walls.
  • the present invention has been made to cope with such problems, and is capable of reducing the frictional force between the scroll member and the tip seal while maintaining the sealing performance, and can contribute to energy saving of the scroll compressor.
  • An object of the present invention is to provide a tip seal.
  • a tip seal for a scroll compressor according to the present invention is a scroll compressor provided with a fixed scroll and a movable scroll as scroll members, for sealing a compression chamber formed between the fixed scroll and the movable scroll.
  • the ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (total area of the recesses + actual sliding area) ⁇ 100) is 5 to 45%.
  • the planar shape of the recess is a substantially rectangular shape along an arc shape or a spiral shape.
  • the depth of the recess is 45% or less of the thickness of the chip seal.
  • a plurality of the recesses are provided on the sliding surface so as to be spaced apart from each other in the length direction from the winding start end portion to the winding end end portion of the spiral of the chip seal. It is 1 to 20% of the developed length of the seal, and a part of the sliding surface is provided between the adjacent concave portions.
  • the area of the planar shape of the recess is substantially the same between the recesses. Further, a plurality of the recesses are provided at equal intervals on the sliding surface.
  • the planar shape of the concave portion is an arc shape, and the arc radius of the concave portion is continuously or gradually increased from the winding start end portion to the winding end end portion of the tip seal spiral.
  • a tip seal for a scroll compressor according to the present invention is a spiral tip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll which are scroll members in a scroll compressor.
  • the groove width of the groove is 1/20 to 2/5 of the width dimension of the chip seal.
  • the groove width increases continuously or stepwise from the winding start end to the winding end of the tip seal spiral.
  • the groove depth of the groove is 35% or less of the thickness of the chip seal.
  • the groove is characterized in that an opening connected to the groove is provided on either the inner peripheral surface or the outer peripheral surface of the spiral.
  • the opening has a concave shape in which the sliding surface is cut out, and a plurality of the openings are provided apart from each other in the length direction from the winding start end to the winding end of the tip seal spiral.
  • the above chip seal is made of synthetic resin.
  • the scroll type compressor chip seal of the present invention is a spiral chip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll as a scroll member, and on a sliding surface with the scroll member, Since the sliding surface has a plurality of recesses partially cut away, the sliding area is reduced and the surface pressure is increased, whereby the frictional force on the sliding surface can be reduced. As a result, the torque at the time of scrolling of the scroll member in the scroll compressor can be reduced, which can contribute to energy saving of the compressor.
  • the plurality of concave portions of the sliding surface are arranged on at least one of the inner peripheral surface and the outer peripheral surface of the spiral, and each concave portion opens on the inner peripheral surface or the outer peripheral surface and penetrates the inner peripheral surface and the outer peripheral surface. Therefore, lubricating oil such as refrigerating machine oil is supplied to the sliding surface while maintaining the sealing performance, and the frictional force on the sliding surface can be further reduced.
  • the planar shape of the recess is a substantially rectangular shape along an arc shape or a spiral shape, the design and arrangement of the recess is facilitated.
  • the depth of the recess is 45% or less of the thickness of the chip seal, it is possible to ensure sufficient sealing performance while providing the recess with the sliding surface partially cut away.
  • a plurality of recesses are provided on the sliding surface, spaced apart from each other in the length direction from the winding start end to the winding end of the tip seal spiral, and the opening length of each recess is the development of the chip seal. Since it is 1 to 20% of the length and a part of the sliding surface is between adjacent recesses, the sliding area is reduced, and the frictional force on the sliding surface can be further reduced.
  • the planar shape of the concave portion is an arc shape, and the arc radius of the concave portion installed increases continuously or stepwise from the winding start end portion to the winding end end portion of the tip seal spiral.
  • the area of the planar shape of the recesses can be made substantially the same between the recesses while making the lengths substantially the same.
  • a tip seal for a scroll compressor according to the present invention is a spiral tip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll as a scroll member, and at least a sliding surface with the scroll member
  • the chip seal there is a groove at the center in the width direction, and the groove is formed over the entire length of the chip seal, so that the sliding area is reduced and the surface pressure is increased. The frictional force can be reduced. As a result, the torque at the time of scrolling of the scroll member in the scroll compressor can be reduced, which can contribute to energy saving of the compressor.
  • channel functions also as a lubrication groove
  • the groove width of the groove is 1/20 to 2/5 of the width dimension of the chip seal, the mechanical strength of the seal can be secured while maintaining the sealing performance. Furthermore, since the groove width increases continuously or stepwise from the winding start end portion to the winding end end portion of the tip seal spiral, while maintaining high sealing performance on the inner peripheral side of the spiral, On the outer peripheral side of the spiral, the sliding area becomes smaller, and the frictional force on the sliding surface can be further reduced.
  • the groove depth of the groove is 35% or less of the thickness of the chip seal, the mechanical strength of the seal is prevented from being lowered and sufficient sealing performance can be ensured.
  • the groove is provided with an opening connected to the groove on one of the inner peripheral surface and the outer peripheral surface of the spiral, lubricating oil is introduced into the groove from the opening while maintaining the sealing performance, and the sliding is performed.
  • the frictional force on the moving surface can be made smaller.
  • the opening has a concave shape with a sliding surface cut out, and a plurality of openings are provided apart in the length direction from the winding start end to the winding end of the tip seal spiral. It is possible to improve the supply performance of the lubricating oil.
  • the chip seal is made of synthetic resin, it has excellent low-friction characteristics and non-aggressiveness to the contact surface of the mating member, contributing to a longer life of the scroll compressor.
  • FIG. 2 is an enlarged view around a recess in FIG. 1. It is sectional drawing of the state which integrated the chip seal in the compressor. It is a top view which shows the other example of the chip seal of 1st Embodiment.
  • FIG. 5 is an enlarged view around a recess in FIG. 4. It is a partial cross section figure of the compression mechanism part of a scroll type compressor. It is a top view which shows an example of the chip seal of 2nd Embodiment. It is sectional drawing of the state which integrated the chip seal in the compressor. It is a figure which shows the cross-sectional shape of a groove
  • FIG. 6 is a partial cross-sectional view of the compression mechanism of the scroll compressor.
  • the scroll compressor includes a fixed scroll 24 having a substrate 24a and a spiral wall 24b upstanding on the surface thereof, and a movable scroll 25 having a substrate 25a and a spiral wall 25b upstanding on the surface thereof. Yes.
  • the fixed scroll 24 and the movable scroll 25 are engaged with each other at the spiral wall boundary 26 in an eccentric state, and a compression chamber 22 is formed between them.
  • the compression chamber 22 moves to the center side of the spiral shape, and compression of gas or the like is performed.
  • Seal grooves 23 are formed on the spiral wall end surfaces of the fixed scroll 24 and the movable scroll 25 along the spiral extension direction.
  • the chip seal 21 of the first embodiment is accommodated in the seal groove 23 and is in sliding contact with the opposing scroll substrate to ensure the sealing property of the compression chamber 22.
  • FIG. 1 is a plan view of the chip seal of the first embodiment as viewed from the sliding surface side with a mating scroll member serving as a seal surface
  • FIG. 2 is a partially enlarged view thereof
  • FIG. It is sectional drawing of the state assembled in the compressor.
  • the chip seal 1 has a spiral shape in which a long member having a substantially rectangular cross section is wound around a spiral. This spiral shape is a shape in which the radius of curvature gradually increases from the winding start end 2 toward the winding end end 3.
  • the sliding surface 5 is a sliding surface with the opposing scroll substrate, and serves as a sealing surface that seals gas in the compression chamber.
  • the chip seal 1 has a plurality of recesses 4 in which the sliding surface 5 is partially cut out on the sliding surface 5 with the scroll member.
  • the plurality of recesses 4 are arranged on the inner peripheral surface 1b of the spiral.
  • the recessed part 4 is good also as a form arrange
  • Each recess opens to the inner peripheral surface 1b or the outer peripheral surface 1a and does not penetrate the inner peripheral surface 1b and the outer peripheral surface 1a.
  • the recesses on the inner peripheral surface 1b are not penetrating the outer peripheral surface 1a, and the recesses on the outer peripheral surface 1a are not penetrating the inner peripheral surface 1b.
  • the recess 4 is not formed as a recess closed within the sliding surface, but the edge of the sliding surface 5 is cut out to form a shape opened to the inner peripheral surface 1b or the outer peripheral surface 1a. Therefore, it is easy to supply the lubricating oil to the sliding surface.
  • the sealing performance can also be ensured by opening the recess 4 only on one of the inner peripheral surface 1b and the outer peripheral surface 1a of the spiral and making the inner peripheral surface 1b and the outer peripheral surface 1a non-penetrating.
  • the ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (the total area of the recesses + the actual sliding area) ⁇ 100) is 5 to 45%, the frictional force on the sliding surface is effective. Can be made smaller.
  • the ratio of the total area of the recesses on the sliding surface is less than 5%, the surface pressure of the sliding surface cannot be increased effectively, and the effect of reducing the frictional force is poor.
  • the ratio of the total area of the recesses on the sliding surface is preferably 7 to 40%, and more preferably 10 to 35%.
  • the actual sliding area is an area obtained by removing the concave portion from the sliding surface.
  • a plurality of recesses 4 are formed on the sliding surface 5 apart from each other in the length direction from the winding start end 2 to the winding end end 3 of the spiral of the chip seal 1 (FIG. 44) installed side by side. Between the adjacent recessed parts 4 is a part of sliding surface 5 (seal surface).
  • the number of the recesses is not particularly limited, and is appropriately set in consideration of the size of each recess. For example, 10 to 50, preferably 30 to 50.
  • the recesses 4 are preferably installed at equal intervals on the sliding surface 5. Thereby, the difference of the frictional force between the seal
  • the opening length of each recess 4 is preferably 1% to 20% of the developed length of the chip seal. 1% to 10% is more preferable, and 1% to 5% is more preferable. A large number can be arranged by reducing the opening length. For example, comparing the case where a small number of long concave portions along the spiral are arranged with the case where a plurality of short concave portions are arranged, the latter is more preferable than the former when the total area of the concave portions is the same. It is preferable because it is easy to suppress deformation and the like and has excellent sealing properties.
  • the developed length of the tip seal is a length obtained by developing a spiral long member, which is the center position in the width W direction of the tip seal (from the inner peripheral surface and the outer peripheral surface, etc. in the plan view of FIG. 1). This is the total length of the center line 1c connecting the distance positions.
  • the opening length of the arc-shaped recess is the maximum length of the arc opening on the inner peripheral surface or outer peripheral surface of the recess (the length along the inner peripheral surface 1b between 4b and 4b in FIG. 2).
  • the planar shape of the recess 4 is an arc.
  • the cross-sectional shape of the recessed part 4 is made into the rectangle. Therefore, the concave portion 4 has a shape in which the planar shape is an arc shape and is formed perpendicularly from the sliding surface 5 to a certain depth. For this reason, the concave portion 4 has the same planar shape at the sliding surface 5 and the planar shape at the deepest portion 4c.
  • the arc radius R (see FIG. 2) and the center position of the arc surface 4a are not particularly limited, but it is preferable to set the recess so that it does not exceed the center position in the width direction of the chip seal.
  • the radius R is preferably R2 mm to R4 mm when the size of the chip seal (substantially outer diameter of the spiral) is 70 mm.
  • the depth d (see FIG. 3) of the recess 4 is preferably 45% or less of the thickness of the chip seal. 30% or less is preferable and 15% or less is more preferable.
  • the thickness T of the chip seal is between the sealing surface, which is a sliding surface, and the anti-sealing surface.
  • the boundary portion 4b between the inner peripheral surface 1b of the spiral and the circular arc surface 4a is preferably R-shaped (for example, R 0.5 mm or less).
  • the area of the planar shape of the recess 4 is preferably substantially the same between the recesses. Thereby, the difference of the frictional force between the seal
  • the tip seal 1 of the first embodiment has a spiral shape, the radius of curvature gradually increases from the winding start end 2 toward the winding end end 3. For this reason, the recessed part 4 cannot be unified by a single circular arc shape, and the area of the planar shape cannot be made the same.
  • the tip seal is installed from the winding start end to the winding end end. It is preferable to increase the arc radius of the recessed portion continuously or stepwise.
  • the concave portion is stepwise divided into three stages: (1) winding start end 2 to X, (2) X to Y, (3) Y to winding end 3. The arc radius is increased.
  • the chip seal 1 is a seal member for sealing a compression chamber formed between a scroll of a fixed scroll that is a scroll member and a spiral wall of a movable scroll in a scroll compressor.
  • the tip seal 1 is accommodated in the seal groove of the spiral wall 7 and is in sliding contact with the opposing scroll substrate 6 to seal the compression chamber.
  • the spiral wall 7 and the scroll substrate 6 are opposed to each other with a gap 8 (opposing distance D).
  • the relationship between the depth d of the recess 4 and the facing distance D of the gap 8 is preferably substantially the same or the depth d of the recess 4 is slightly smaller.
  • the chip seal 1 is accommodated in the seal groove of the spiral wall 7 with a gap, and floats from the bottom of the seal groove toward the scroll substrate 6 due to the pressure of the gas 9 between the tip seal 1 and the opposing scroll substrate 6.
  • the chip seal 1 that has floated is in sliding contact with the scroll substrate 6 at the sliding surface 5 and the seal groove wall 7a of the spiral wall 7 at the outer peripheral surface 1a, and the scroll wall 7 and the scroll of the fixed scroll and the movable scroll as scroll members.
  • the compression chamber between the spiral walls of the substrate 6 is sealed.
  • the chip seal 1 Since the chip seal 1 has a plurality of the above-described recesses 4 on the sliding surface 5, a part of the compression chamber gas 9 can be introduced into the recesses 4. Arrows 9a and 9b in the figure indicate the pressure applied to each surface from the gas 9. Due to the recess 4 with the sliding surface 5 partially cut away, the sliding area itself becomes smaller than that of the conventional product (FIG. 14) without the recess.
  • the chip seal (44 recesses) of this embodiment shown in FIGS. 1 to 3 and the conventional chip seal shown in FIG. 14 have the same dimensions except for the presence or absence of recesses.
  • the actual sliding area is 75 in this embodiment, where the conventional product is 100, and the ratio of the total area of the recesses on the sliding surface (total area of the recesses / (total area of the recesses + actual sliding area) ⁇ 100) Is 25%.
  • the surface pressure applied to the sliding surface increases and the friction coefficient decreases.
  • the frictional force on the sliding surface is reduced.
  • the gas pressure in this embodiment, the gas pressure received by the anti-seal surface of the tip seal 1 is partially offset by the gas pressure introduced into the recess 4.
  • the ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (the total area of the recesses + the actual sliding area) ⁇ 100) is 5 to 45%, and if it exceeds 45%, the surface pressure applied to the sliding surface Is reduced by the gas introduced into the recess 4.
  • FIG. 4 is a plan view of the chip seal of this embodiment as viewed from the sliding surface side with the mating scroll member serving as the seal surface
  • FIG. 5 is a partially enlarged view thereof.
  • the chip seal 11 has a plurality of recesses 14 in which the sliding surface 15 is partially cut out on the sliding surface 15 with the scroll member.
  • the shape of the recess is a substantially rectangular shape along the spiral shape. Both long sides of the rectangle are curved along the spiral shape, and the concave portion is arranged on the inner peripheral surface 11b of the spiral, and one side of the rectangular long side of each concave portion opens on the inner peripheral surface 11b of the spiral. ing.
  • the number of recesses, the opening length of each recess, the depth of the recess, and the like are the same as those of the arc-shaped recess shown in FIG. With respect to the planar shape, it is preferable to set so that the recess does not exceed the center position in the width direction of the chip seal.
  • the concave portion As described above, by designing the concave portion to have a substantially rectangular shape along the arc shape or the spiral shape, the design and arrangement of the concave portion can be facilitated. In particular, when a plurality of concave portions are arranged, the areas are substantially the same. Such design becomes easy. Moreover, although the chip seal having the concave portion on the sliding surface has been described based on the respective drawings, the present embodiment is not limited to this, and the shape of the concave portion is particularly limited to a plurality of concave portions in which the sliding surface is partially cut out.
  • the plurality of recesses are disposed on at least one of the inner peripheral surface and the outer peripheral surface of the spiral, and the individual recesses open to the inner peripheral surface or the outer peripheral surface and do not penetrate the inner peripheral surface and the outer peripheral surface.
  • the depth of the recess may not be a constant depth, but the deepest portion may have an inclined surface that extends to the opening side such as a hemispherical shape or a tapered shape.
  • FIG. 13 is a partial cross-sectional view of the compression mechanism of the scroll compressor.
  • the scroll compressor includes a fixed scroll 64 having a substrate 64a and a spiral wall 64b upstanding on the surface thereof, and a movable scroll 65 having a substrate 65a and a spiral wall 65b upstanding on the surface thereof. Yes.
  • the fixed scroll 64 and the movable scroll 65 are engaged with each other at the spiral wall boundary 66 in an eccentric state, and a compression chamber 62 is formed between them.
  • the compression chamber 62 moves to the center side of the spiral shape, and compression of gas or the like is performed.
  • Seal grooves 63 are formed on the spiral wall end surfaces of the fixed scroll 64 and the movable scroll 65 along the spiral extension direction. Similar to the chip seal of the first embodiment, the chip seal 61 of the second embodiment is accommodated in the seal groove 63 and is in sliding contact with the opposing scroll substrate to ensure the sealing property of the compression chamber 62. .
  • FIG. 7 is a plan view of the chip seal of the second embodiment viewed from the sliding surface side with the mating scroll member serving as the seal surface
  • FIG. 8 is a cross-sectional view of the chip seal incorporated into the compressor.
  • the tip seal 31 is a seal member for sealing a compression chamber formed between a scroll of a fixed scroll and a scroll of a movable scroll in a scroll compressor. As shown in FIG. 7, the tip seal 31 has a spiral shape in which a long member having a substantially rectangular cross section is wound into a spiral. This spiral shape is a shape in which the radius of curvature gradually increases from the winding start end portion 32 toward the winding end end portion 33.
  • the sliding surface 35 is a sliding surface with the opposing scroll substrate and serves as a sealing surface that seals gas in the compression chamber.
  • the tip seal 31 has a groove 40 formed on the sliding surface 35 with the scroll member over substantially the entire length of the tip seal 31.
  • the groove 40 does not open to the inner peripheral surface 31b of the spiral and the outer peripheral surface 31a of the spiral, but is a concave groove closed within the sliding surface.
  • the groove 40 is provided at a substantially central portion of the chip seal 31 in the width W direction.
  • the groove 40 is formed symmetrically about a center line 31 c connecting the center positions in the width W direction of the chip seal 31 (positions equidistant from the inner peripheral surface and the outer peripheral surface).
  • the groove on the sliding surface is provided over almost the entire length of the chip seal.
  • the state over substantially the entire length includes not only the continuous state from the winding start end portion 32 to the winding end end portion 33 of the chip seal but also a discontinuous state.
  • the groove 40 may be one continuous concave groove as shown in FIG. 7 or two or more concave grooves divided in the length direction of the spiral of the chip seal 31.
  • the length of the groove in the length direction of the spiral of the chip seal (the total length of two or more divided concave grooves) ) Is 60% or more of the developed length of the tip seal, more preferably 70% or more, and even more preferably 80% or more.
  • the groove is preferably a single groove having a length of 80% or more with respect to the developed length of the chip seal.
  • the developed length of the tip seal is the length of a spiral-shaped long member developed, and this is the length of the center line 31c in FIG.
  • the cross-sectional shape of the groove is a rectangular square groove in FIG. 8, but is not particularly limited as long as it is a shape capable of holding lubricating oil.
  • Another cross-sectional shape of the groove 40 applied to the chip seal 31 is shown in FIG.
  • the groove an arc-shaped groove shown in FIG. 9A, a V-shaped groove shown in FIG. 9B, a square groove whose both side surfaces are tapered, or the like can be adopted.
  • an arcuate groove or a V groove since the supply of the lubricating oil to the sliding surface 35 is smooth, it is preferable to use an arcuate groove or a V groove.
  • the cross-sectional shapes of these grooves can also be applied to a chip seal 41 and a chip seal 51 described later.
  • the groove depth d of the groove 40 is preferably 35% or less of the thickness of the chip seal, more preferably 30% or less, and further preferably 15% or less.
  • the thickness T of the chip seal is between the sealing surface, which is a sliding surface, and the anti-sealing surface.
  • the tip seal 31 is accommodated in the seal groove of the spiral wall 37 and is in sliding contact with the opposing scroll substrate 36 to seal the compression chamber.
  • the scroll substrate 36 and the spiral wall 37 are scroll members (fixed scroll or movable scroll), and the scroll member provided with the seal groove is the spiral wall 37 and the other scroll member is the scroll substrate 36.
  • the spiral wall 37 and the scroll substrate 36 are opposed to each other with a gap 38 (opposite distance D), and the relationship between the groove depth d and the opposed distance D of the gap 38 is substantially the same, or the groove depth d. Is slightly smaller.
  • the groove width GW (see FIG. 8) of the groove 40 is set to 1/20 to 2/5, and preferably 1/20 to 1/3 of the width dimension of the chip seal.
  • the width dimension W of the chip seal (hereinafter also referred to as the seal width) is the length from the inner peripheral surface to the outer peripheral surface.
  • the actual width of the groove width GW of the groove 40 is required to be 0.1 mm or more. It is not necessary to set the maximum value in actual dimensions. If the groove width GW is less than 1/20 of the seal width or less than 0.1 mm, it is difficult to effectively increase the surface pressure of the chip seal, and the effect of reducing the friction coefficient May not be obtained.
  • the groove width GW is the length in the width direction of the chip seal at the portion opened to the sliding surface 35.
  • the groove width GW in each groove in FIG. 9 is as shown in the figure.
  • the seal width of the tip seal is related to the compressor capacity, but is approximately in the range of 2 mm to 5 mm.
  • the minimum width of the groove is 1/20 of the seal width, and the actual size is 0.1 mm.
  • the minimum groove width is 0.1 mm (1/10 of the seal width) in actual dimensions.
  • the maximum width of the groove is 0.40 mm which is 2/5 of the seal width.
  • the groove width of the groove 40 is constant over substantially the entire length of the chip seal 31.
  • the groove width may be set differently from the winding start end 32 toward the winding end end 33 without making the groove width constant.
  • the groove 50 is divided into two in the length direction of the chip seal.
  • GW1 the groove width of the groove 50a on the inner peripheral side
  • GW2 the groove width of the groove 50b on the outer peripheral side
  • the groove width may be divided into three or more steps, and may be increased stepwise from the winding start end portion toward the winding end end portion.
  • the groove width may be continuously increased.
  • the sliding area itself is smaller than the conventional product without the groove due to the groove provided on the sliding surface.
  • the tip seal of this embodiment shown in FIGS. 7 and 10 and the tip seal of the conventional product (FIG. 14) have the same dimensions except for the presence or absence of grooves.
  • the conventional product is 100
  • the actual sliding area is 65 to 97 in this embodiment
  • the ratio of the total groove area on the sliding surface (groove total area / (groove total area + actual sliding area) ⁇ 100) is 3 to 35%.
  • FIG. 11 is a plan view of a chip seal having a groove and an opening on the sliding surface as viewed from the sliding surface
  • FIG. 12 is a cross-sectional view at the position of the opening when the chip seal is incorporated in a compressor. It is.
  • an opening 60 c connected to the groove 60 is provided on the inner peripheral surface 51 b of the spiral of the chip seal 51.
  • the opening 60 c has a concave shape (concave portion) in which the sliding surface 55 is partially cut out.
  • the groove 60 is in communication with the space outside the seal even when the sliding surface 55 is slid with another member. Therefore, the lubricating oil is always supplied to the groove 60 through the opening 60c, and the frictional force on the sliding surface 55 can be further reduced.
  • a plurality of openings 60c are spaced apart in the length direction from the winding start end portion 52 to the winding end end portion 53 of the spiral of the chip seal 51 (FIG. Pieces) are installed side by side.
  • the number of openings 60c is not particularly limited, but by using a plurality of openings 60c, the lubricating oil can smoothly enter and exit the groove 60.
  • adjacent openings may be provided at equal intervals on the inner peripheral surface, or may be provided at different intervals. In the latter case, in particular, in consideration of the pressure distribution described above, it is preferable that the distance between the adjacent opening portions be widened continuously or stepwise from the winding end portion toward the winding start end portion.
  • the interval is widened from the winding end to the winding start end, and the number of openings on the inner peripheral side is set to the outer peripheral side. The sealing performance is ensured by making it less.
  • the gas pressure on the inner peripheral side is larger than that on the outer peripheral side, it is considered that the lubricating oil can be sufficiently supplied to the groove with a high gas pressure even if the number of openings is small.
  • the planar shape of the opening 60c is rectangular, but the present invention is not limited to this.
  • it is good also as a wedge shape, and it is good also considering the side where the convex is spreading as the internal peripheral surface side 51b.
  • the opening length of the opening 60 c is narrowed from the inner peripheral surface 51 b toward the groove 60, the supply of lubricating oil to the groove 60 can be improved.
  • the opening length may be different between the opening on the inner peripheral side and the opening on the outer peripheral side. For example, by making the opening length of the opening portion on the inner peripheral portion side smaller than the opening length of the opening portion on the outer peripheral portion side, the balance between the sealing property and the supply property of the lubricating oil can be improved.
  • the depth of the opening 60c in the thickness direction of the chip seal 51 is preferably substantially the same as the groove depth d of the groove 60 or slightly larger than the groove depth d. Thereby, the supply property of the lubricating oil to the groove 60 can be improved.
  • the sliding area itself is smaller than the conventional product without the groove due to the groove 60 formed in the sliding surface 55.
  • the chip seal 51 partially introduces the gas 59 in the compression chamber into the groove 60 through the opening 60c.
  • Arrows 59a and 59b in the figure indicate the pressure applied to each surface from the gas 59.
  • the gas pressure received by the anti-seal surface of the tip seal 51 is partially offset by the gas pressure introduced into the groove 60.
  • lubricating oil such as refrigerating machine oil is easily supplied to the sliding surface, the frictional force on the sliding surface can be greatly reduced as compared with the conventional product.
  • the opening 60c is provided on the inner peripheral surface 51b of the spiral, but may be provided on the outer peripheral surface 51a of the spiral.
  • a groove is formed on the sliding surface, but a groove is formed on the anti-seal surface in addition to the sliding surface (seal surface). May be.
  • the chip seal of the present invention shown in the first embodiment and the second embodiment is preferably made of a synthetic resin.
  • a synthetic resin for example, polytetrafluoroethylene resin, polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) ) Synthetic resins such as resins and liquid crystal polymers can be used. It can be set as the resin composition by mix
  • PPS resin, a PEEK resin, or a liquid crystal polymer it can be easily produced by injection molding.
  • the tip seal for the scroll compressor of the present invention can reduce the frictional force between the scroll member and the tip seal while maintaining the sealing performance, and can reduce the torque at the time of scrolling of the scroll member, so that it can be widely applied to the scroll compressor. .

Abstract

Provided is a tip seal for a scroll compressor capable of reducing a frictional force between scroll members and the tip seal and contributing to energy saving of the scroll compressor while maintaining sealing performance. A spiral tip seal 1 for sealing a compression chamber formed between a fixed scroll and a movable scroll in a scroll compressor provided with the fixed scroll and the movable scroll serving as scroll members comprises a sliding surface 5 for the scroll members and a plurality of concave parts 4 partially notched in the sliding surface 5. The plurality of concave parts 4 are arranged on at least one of a spiral inner peripheral surface 1b and a spiral outer peripheral surface 1a. Each of the concave parts 4 opens to the inner peripheral surface 1b or the outer peripheral surface 1a and does not penetrate through the inner peripheral surface 1b and the outer peripheral surface 1a.

Description

スクロール型コンプレッサ用チップシールScroll compressor tip seal
 本発明は、スクロール型コンプレッサ(圧縮機)に用いられる渦巻形状のチップシールに関する。 The present invention relates to a spiral chip seal used in a scroll compressor (compressor).
 スクロール型コンプレッサは、基板とこの基板表面に立設する渦巻壁を有する固定スクロールと可動スクロールが、それぞれ渦巻壁において互いに噛み合わされて、それらの間に圧縮室が形成されている。この圧縮室が固定スクロールの軸線の周りを公転する可動スクロールの作用により渦巻中心側に移動してガスなどの圧縮が行なわれる。ガスなどの圧縮に際して圧縮室の密閉性を確保するために、スクロール部材である固定スクロールと可動スクロールの渦巻壁の端面には、渦巻の延長方向に沿ってシール溝が形成され、この溝内には対向するスクロール基板(鏡板)に接触するシール部材であるチップシールが収容されている。 In a scroll type compressor, a fixed scroll and a movable scroll having a spiral wall standing on the substrate surface and a movable scroll are meshed with each other at the spiral wall, and a compression chamber is formed between them. The compression chamber moves to the spiral center side by the action of a movable scroll that revolves around the axis of the fixed scroll, thereby compressing gas or the like. In order to ensure the tightness of the compression chamber when compressing gas or the like, a seal groove is formed along the spiral extension direction on the end surface of the scroll wall of the fixed scroll and the movable scroll which are the scroll members. Contains a chip seal, which is a seal member that contacts an opposing scroll substrate (end plate).
 このようなチップシールは、例えば所定の合成樹脂を射出成形することにより、断面が矩形状の長尺部材を渦巻に巻いたような渦巻形状に製造されている(特許文献1参照)。図14に示すように、この種のチップシール71は、一方のラップ(渦巻壁)72の溝72a内で隙間をもって収容され、溝72aと対向する鏡板(スクロール基板)73との間で、ガス74の圧力により鏡板73に向かって溝底72bより浮上する。浮上したチップシール71は、断面の矩形を構成する一面であるシール面71aで鏡板73と摺接し、互いの渦巻壁の間の圧縮室をシールしている。 Such a chip seal is manufactured in a spiral shape in which a long member having a rectangular cross section is wound into a spiral by, for example, injection molding a predetermined synthetic resin (see Patent Document 1). As shown in FIG. 14, this type of tip seal 71 is accommodated in a groove 72a of one wrap (spiral wall) 72 with a gap, and a gas is passed between the end plate (scroll substrate) 73 facing the groove 72a. Due to the pressure of 74, it floats from the groove bottom 72b toward the end plate 73. The floated chip seal 71 is in sliding contact with the end plate 73 at a seal surface 71a which is one surface constituting a rectangular cross section, and seals the compression chamber between the spiral walls.
特開2002-322988号公報JP 2002-322988 A
 スクロール型コンプレッサの省エネルギー化のためには、スクロール部材とチップシールの低摩擦化により、スクロール時(運転時)のトルクを低減することが重要である。しかしながら、チップシールの断面が矩形状である場合、スクロール基板との摺動面積が大きく、摺動面での摩擦力が大きくなる。 In order to save energy in the scroll compressor, it is important to reduce the torque during scrolling (during operation) by reducing the friction between the scroll member and the tip seal. However, when the cross section of the chip seal is rectangular, the sliding area with the scroll substrate is large, and the frictional force on the sliding surface is large.
 本発明はこのような問題に対処するためになされたものであり、シール性を維持しつつ、スクロール部材とチップシールとの摩擦力を低減でき、スクロール型コンプレッサの省エネルギー化に寄与できるスクロール型コンプレッサ用チップシールを提供することを目的とする。 The present invention has been made to cope with such problems, and is capable of reducing the frictional force between the scroll member and the tip seal while maintaining the sealing performance, and can contribute to energy saving of the scroll compressor. An object of the present invention is to provide a tip seal.
 本発明のスクロール型コンプレッサ用チップシールは、スクロール部材である固定スクロールと可動スクロールとを備えたスクロール型コンプレッサにおいて、上記固定スクロールと上記可動スクロールとの間に形成される圧縮室をシールするための渦巻形状のチップシールであって、上記チップシールは、上記スクロール部材との摺動面に、該摺動面を部分的に切欠いた複数の凹部を有し、該複数の凹部は渦巻の内周面と外周面の少なくとも一方に配置され、個々の凹部は内周面または外周面に開口するとともに内周面と外周面とを貫通しないことを特徴とする。 A tip seal for a scroll compressor according to the present invention is a scroll compressor provided with a fixed scroll and a movable scroll as scroll members, for sealing a compression chamber formed between the fixed scroll and the movable scroll. A tip seal having a spiral shape, wherein the tip seal has a plurality of recesses in which the sliding surface is partially cut out on a sliding surface with the scroll member, and the plurality of recesses are the inner periphery of the spiral. It arrange | positions at least one of a surface and an outer peripheral surface, and each recessed part is characterized by opening to an inner peripheral surface or an outer peripheral surface, and not penetrating an inner peripheral surface and an outer peripheral surface.
 上記摺動面における上記凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)は、5~45%であることを特徴とする。 The ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (total area of the recesses + actual sliding area) × 100) is 5 to 45%.
 上記凹部の平面形状は、円弧状または渦巻形状に沿った略矩形状であることを特徴とする。 The planar shape of the recess is a substantially rectangular shape along an arc shape or a spiral shape.
 上記凹部の深さはチップシールの厚みの45%以下であることを特徴とする。 The depth of the recess is 45% or less of the thickness of the chip seal.
 上記凹部は、該チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して上記摺動面に複数個設置されており、該凹部それぞれの開口長さは、チップシールの展開長さの1~20%であり、隣り合う上記凹部の間は上記摺動面の一部であることを特徴とする。 A plurality of the recesses are provided on the sliding surface so as to be spaced apart from each other in the length direction from the winding start end portion to the winding end end portion of the spiral of the chip seal. It is 1 to 20% of the developed length of the seal, and a part of the sliding surface is provided between the adjacent concave portions.
 また、上記凹部の平面形状の面積が、凹部間で略同一であることを特徴とする。また、上記凹部は、上記摺動面に等間隔で複数個設置されていることを特徴とする。 Further, the area of the planar shape of the recess is substantially the same between the recesses. Further, a plurality of the recesses are provided at equal intervals on the sliding surface.
 上記凹部の平面形状は円弧状であり、該チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、設置されている上記凹部の円弧半径が連続的または段階的に大きくなることを特徴とする。 The planar shape of the concave portion is an arc shape, and the arc radius of the concave portion is continuously or gradually increased from the winding start end portion to the winding end end portion of the tip seal spiral. Features.
 本発明のスクロール型コンプレッサ用チップシールは、スクロール型コンプレッサにおけるスクロール部材である固定スクロールと可動スクロールとの間に形成される圧縮室をシールするための渦巻形状のチップシールであって、上記チップシールは、少なくとも上記スクロール部材との摺動面において、上記チップシールの幅方向の中央部に溝を有し、該溝が、上記チップシールの略全長にわたり形成されていることを特徴とする。 A tip seal for a scroll compressor according to the present invention is a spiral tip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll which are scroll members in a scroll compressor. Has a groove at the center in the width direction of the chip seal at least on the sliding surface with the scroll member, and the groove is formed over substantially the entire length of the chip seal.
 上記溝の溝幅は、上記チップシールの幅寸法の1/20~2/5であることを特徴とする。 The groove width of the groove is 1/20 to 2/5 of the width dimension of the chip seal.
 上記溝幅が、上記チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、連続的または段階的に大きくなることを特徴とする。 The groove width increases continuously or stepwise from the winding start end to the winding end of the tip seal spiral.
 上記溝の溝深さは、上記チップシールの厚みの35%以下であることを特徴とする。 The groove depth of the groove is 35% or less of the thickness of the chip seal.
 上記溝は、渦巻きの内周面と外周面のいずれか一方に、上記溝と連結する開口部が設けられていることを特徴とする。 The groove is characterized in that an opening connected to the groove is provided on either the inner peripheral surface or the outer peripheral surface of the spiral.
 上記開口部は、上記摺動面を切欠いた凹み形状であり、上記チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して複数個設置されていることを特徴とする。 The opening has a concave shape in which the sliding surface is cut out, and a plurality of the openings are provided apart from each other in the length direction from the winding start end to the winding end of the tip seal spiral. And
 上記チップシールは、合成樹脂製であることを特徴とする。 The above chip seal is made of synthetic resin.
 本発明のスクロール型コンプレッサ用チップシールは、スクロール部材である固定スクロールと可動スクロールの間に形成される圧縮室をシールするための渦巻形状のチップシールであり、スクロール部材との摺動面に、該摺動面を部分的に切欠いた複数の凹部を有するので、摺動面積が小さくなり、面圧が高くなることにより摺動面での摩擦力を小さくできる。この結果、スクロール型コンプレッサにおけるスクロール部材のスクロール時のトルクを低減でき、該コンプレッサの省エネルギー化に寄与できる。また、上記摺動面の複数の凹部が、渦巻の内周面と外周面の少なくとも一方に配置され、個々の凹部は内周面または外周面に開口するとともに内周面と外周面とを貫通しないので、シール性を維持しつつ、摺動面に冷凍機油等の潤滑油が供給され、摺動面での摩擦力をより小さくできる。 The scroll type compressor chip seal of the present invention is a spiral chip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll as a scroll member, and on a sliding surface with the scroll member, Since the sliding surface has a plurality of recesses partially cut away, the sliding area is reduced and the surface pressure is increased, whereby the frictional force on the sliding surface can be reduced. As a result, the torque at the time of scrolling of the scroll member in the scroll compressor can be reduced, which can contribute to energy saving of the compressor. Further, the plurality of concave portions of the sliding surface are arranged on at least one of the inner peripheral surface and the outer peripheral surface of the spiral, and each concave portion opens on the inner peripheral surface or the outer peripheral surface and penetrates the inner peripheral surface and the outer peripheral surface. Therefore, lubricating oil such as refrigerating machine oil is supplied to the sliding surface while maintaining the sealing performance, and the frictional force on the sliding surface can be further reduced.
 摺動面における凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)が、5~45%であるので、摺動面での摩擦力が小さくなるとともに機械強度の低下が抑えられる。 Since the ratio of the total area of the recesses on the sliding surface (total area of the recesses / (total area of the recesses + actual sliding area) × 100) is 5 to 45%, the frictional force on the sliding surface is reduced and the machine A decrease in strength is suppressed.
 凹部の平面形状が、円弧状または渦巻形状に沿った略矩形状であるので、凹部の設計や配置が容易となる。特に、複数配置する場合において、凹部の面積を凹部間で略同一とするような設計が容易となる。 Since the planar shape of the recess is a substantially rectangular shape along an arc shape or a spiral shape, the design and arrangement of the recess is facilitated. In particular, when a plurality of the concave portions are arranged, it is easy to design such that the concave portions have substantially the same area between the concave portions.
 凹部の深さが、チップシールの厚みの45%以下であるので、摺動面を部分的に切欠いた凹部を備えながら、十分なシール性を担保できる。 Since the depth of the recess is 45% or less of the thickness of the chip seal, it is possible to ensure sufficient sealing performance while providing the recess with the sliding surface partially cut away.
 凹部は、チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して摺動面に複数個設置されており、該凹部それぞれの開口長さが、チップシールの展開長さの1~20%であり、隣り合う凹部の間は摺動面の一部であるので、摺動面積が小さくなり、摺動面での摩擦力をより小さくできる。 A plurality of recesses are provided on the sliding surface, spaced apart from each other in the length direction from the winding start end to the winding end of the tip seal spiral, and the opening length of each recess is the development of the chip seal. Since it is 1 to 20% of the length and a part of the sliding surface is between adjacent recesses, the sliding area is reduced, and the frictional force on the sliding surface can be further reduced.
 また、凹部の平面形状の面積が略同一であるので、シール部位間での摩擦力の差が小さくなり、安定したスクロール部材のスクロールが可能となる。また、凹部が、摺動面に等間隔で複数個設置されているので、上記同様、安定したスクロール部材のスクロールが可能となる。 Moreover, since the area of the planar shape of the recess is substantially the same, the difference in frictional force between the seal portions is reduced, and stable scrolling of the scroll member becomes possible. In addition, since a plurality of recesses are provided at equal intervals on the sliding surface, a stable scroll member can be scrolled as described above.
 凹部の平面形状が円弧状であり、チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、設置されている凹部の円弧半径が連続的または段階的に大きくなるので、凹部の開口長さなどをほぼ同等としながら、凹部の平面形状の面積を凹部間で略同一とできる。 The planar shape of the concave portion is an arc shape, and the arc radius of the concave portion installed increases continuously or stepwise from the winding start end portion to the winding end end portion of the tip seal spiral. The area of the planar shape of the recesses can be made substantially the same between the recesses while making the lengths substantially the same.
 本発明のスクロール型コンプレッサ用チップシールは、スクロール部材である固定スクロールと可動スクロールとの間に形成される圧縮室をシールするための渦巻形状のチップシールであり、少なくともスクロール部材との摺動面において、チップシールの幅方向の中央部に溝を有し、該溝がチップシールの略全長にわたり形成されているので、摺動面積が小さくなり、面圧が高くなることにより摺動面での摩擦力を小さくできる。この結果、スクロール型コンプレッサにおけるスクロール部材のスクロール時のトルクを低減でき、該コンプレッサの省エネルギー化に寄与できる。また、上記溝は潤滑溝としても機能するため、摺動面に冷凍機油等の潤滑油を供給することが可能となる。 A tip seal for a scroll compressor according to the present invention is a spiral tip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll as a scroll member, and at least a sliding surface with the scroll member In the chip seal, there is a groove at the center in the width direction, and the groove is formed over the entire length of the chip seal, so that the sliding area is reduced and the surface pressure is increased. The frictional force can be reduced. As a result, the torque at the time of scrolling of the scroll member in the scroll compressor can be reduced, which can contribute to energy saving of the compressor. Moreover, since the said groove | channel functions also as a lubrication groove | channel, it becomes possible to supply lubricating oil, such as refrigerating machine oil, to a sliding surface.
 上記溝の溝幅は、チップシールの幅寸法の1/20~2/5であるので、シール性を維持しつつ、シールの機械強度を確保できる。さらに、上記溝幅が、チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、連続的または段階的に大きくなるので、渦巻きの内周部側では高いシール性を維持しつつ、渦巻きの外周部側では摺動面積がより小さくなり、摺動面での摩擦力を一層低減できる。 Since the groove width of the groove is 1/20 to 2/5 of the width dimension of the chip seal, the mechanical strength of the seal can be secured while maintaining the sealing performance. Furthermore, since the groove width increases continuously or stepwise from the winding start end portion to the winding end end portion of the tip seal spiral, while maintaining high sealing performance on the inner peripheral side of the spiral, On the outer peripheral side of the spiral, the sliding area becomes smaller, and the frictional force on the sliding surface can be further reduced.
 上記溝の溝深さは、チップシールの厚みの35%以下であるので、シールの機械強度の低下を防止し、十分なシール性が担保できる。 Since the groove depth of the groove is 35% or less of the thickness of the chip seal, the mechanical strength of the seal is prevented from being lowered and sufficient sealing performance can be ensured.
 上記溝は、渦巻きの内周面と外周面のいずれか一方に、溝と連結する開口部が設けられているので、シール性を維持しつつ、開口部から溝に潤滑油が導入され、摺動面での摩擦力をより小さくできる。さらに、開口部は、摺動面を切欠いた凹み形状であり、チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して複数個設置されているので、溝内への潤滑油の供給性を高めることができる。 Since the groove is provided with an opening connected to the groove on one of the inner peripheral surface and the outer peripheral surface of the spiral, lubricating oil is introduced into the groove from the opening while maintaining the sealing performance, and the sliding is performed. The frictional force on the moving surface can be made smaller. In addition, the opening has a concave shape with a sliding surface cut out, and a plurality of openings are provided apart in the length direction from the winding start end to the winding end of the tip seal spiral. It is possible to improve the supply performance of the lubricating oil.
 チップシールは合成樹脂製であるので、低摩擦特性と相手部材の接触面への非攻撃性に優れ、スクロール型コンプレッサの高寿命化に貢献できる。 Since the chip seal is made of synthetic resin, it has excellent low-friction characteristics and non-aggressiveness to the contact surface of the mating member, contributing to a longer life of the scroll compressor.
第1実施形態のチップシールの一例を示す平面図である。It is a top view which shows an example of the chip seal of 1st Embodiment. 図1における凹部周囲の拡大図である。FIG. 2 is an enlarged view around a recess in FIG. 1. チップシールをコンプレッサに組み込んだ状態の断面図である。It is sectional drawing of the state which integrated the chip seal in the compressor. 第1実施形態のチップシールの他の例を示す平面図である。It is a top view which shows the other example of the chip seal of 1st Embodiment. 図4における凹部周囲の拡大図である。FIG. 5 is an enlarged view around a recess in FIG. 4. スクロール型コンプレッサの圧縮機構部の一部断面図である。It is a partial cross section figure of the compression mechanism part of a scroll type compressor. 第2実施形態のチップシールの一例を示す平面図である。It is a top view which shows an example of the chip seal of 2nd Embodiment. チップシールをコンプレッサに組み込んだ状態の断面図である。It is sectional drawing of the state which integrated the chip seal in the compressor. 溝の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a groove | channel. 第2実施形態のチップシールの他の例を示す平面図である。It is a top view which shows the other example of the chip seal of 2nd Embodiment. 第2実施形態のチップシールの他の例を示す平面図である。It is a top view which shows the other example of the chip seal of 2nd Embodiment. チップシールをコンプレッサに組み込んだ状態の断面図である。It is sectional drawing of the state which integrated the chip seal in the compressor. スクロール型コンプレッサの圧縮機構部の一部断面図である。It is a partial cross section figure of the compression mechanism part of a scroll type compressor. 従来のチップシールをコンプレッサに組み込んだ状態の断面図である。It is sectional drawing of the state which integrated the conventional chip seal in the compressor.
(第1実施形態)
 第1実施形態のチップシールを適用するスクロール型コンプレッサの圧縮機構部の構造の一例を図6に基づいて説明する。図6は、スクロール型コンプレッサの圧縮機構部の一部断面図である。図6に示すように、スクロール型コンプレッサは、基板24aとその表面に直立する渦巻壁24bを有する固定スクロール24と、基板25aとその表面に直立する渦巻壁25bを有する可動スクロール25とを備えている。固定スクロール24と可動スクロール25が、渦巻壁境界26において相互に偏心状態にかみ合わされて、それらの間に圧縮室22が形成されている。可動スクロール25が固定スクロール24の軸線の周りで公転することにより、圧縮室22が渦巻形状の中心側に移動してガスなどの圧縮が行なわれる。固定スクロール24と可動スクロール25の渦巻壁端面に、渦巻の延長方向に沿ったシール溝23が形成されている。第1実施形態のチップシール21は、シール溝23内に収容され、対向するスクロール基板と摺接して、圧縮室22の密閉性を確保するものである。
(First embodiment)
An example of the structure of the compression mechanism of the scroll compressor to which the chip seal of the first embodiment is applied will be described with reference to FIG. FIG. 6 is a partial cross-sectional view of the compression mechanism of the scroll compressor. As shown in FIG. 6, the scroll compressor includes a fixed scroll 24 having a substrate 24a and a spiral wall 24b upstanding on the surface thereof, and a movable scroll 25 having a substrate 25a and a spiral wall 25b upstanding on the surface thereof. Yes. The fixed scroll 24 and the movable scroll 25 are engaged with each other at the spiral wall boundary 26 in an eccentric state, and a compression chamber 22 is formed between them. When the movable scroll 25 revolves around the axis of the fixed scroll 24, the compression chamber 22 moves to the center side of the spiral shape, and compression of gas or the like is performed. Seal grooves 23 are formed on the spiral wall end surfaces of the fixed scroll 24 and the movable scroll 25 along the spiral extension direction. The chip seal 21 of the first embodiment is accommodated in the seal groove 23 and is in sliding contact with the opposing scroll substrate to ensure the sealing property of the compression chamber 22.
 第1実施形態のスクロール型コンプレッサ用チップシールの一例を図1~図3に基づいて説明する。図1は第1実施形態のチップシールをシール面となる相手スクロール部材との摺動面側から見た平面図であり、図2はその一部拡大図であり、図3はこのチップシールをコンプレッサに組み込んだ状態の断面図である。図1に示すように、チップシール1は、断面が略矩形状の長尺部材を渦巻に巻いたような渦巻形状を有する。この渦巻形状は、巻き始め端部2から巻き終わり端部3に向けて徐々に曲率半径が大きくなる形状である。摺動面5が、対向するスクロール基板との摺動面であり、圧縮室内のガスなどをシールするシール面となる。 An example of the scroll compressor tip seal of the first embodiment will be described with reference to FIGS. FIG. 1 is a plan view of the chip seal of the first embodiment as viewed from the sliding surface side with a mating scroll member serving as a seal surface, FIG. 2 is a partially enlarged view thereof, and FIG. It is sectional drawing of the state assembled in the compressor. As shown in FIG. 1, the chip seal 1 has a spiral shape in which a long member having a substantially rectangular cross section is wound around a spiral. This spiral shape is a shape in which the radius of curvature gradually increases from the winding start end 2 toward the winding end end 3. The sliding surface 5 is a sliding surface with the opposing scroll substrate, and serves as a sealing surface that seals gas in the compression chamber.
 チップシール1は、スクロール部材との摺動面5に、この摺動面5を部分的に切欠いた複数の凹部4を有する。複数の凹部4は、渦巻の内周面1bに配置している。なお、凹部4は、外周面1aに配置する形態としてもよく、内周面1bと外周面1aの両方に配置する形態としてもよい。個々の凹部は内周面1bまたは外周面1aに開口するとともに内周面1bと外周面1aとを貫通しない。つまり、複数の凹部4が形成されたチップシール1において、内周面1bの凹部は外周面1aに非貫通であり、外周面1aの凹部は内周面1bに非貫通である。凹部4を摺動面内で閉じた凹部とせずに、摺動面5の縁部を切り欠いて内周面1bまたは外周面1aに開口させた形状とすることで、該凹部に冷凍機油等の潤滑油を導入でき、摺動面への潤滑油の供給が容易になる。また、凹部4を、渦巻の内周面1bと外周面1aのいずれか一方にのみ開口させ、内周面1bと外周面1aとを非貫通とすることで、シール性も担保できる。 The chip seal 1 has a plurality of recesses 4 in which the sliding surface 5 is partially cut out on the sliding surface 5 with the scroll member. The plurality of recesses 4 are arranged on the inner peripheral surface 1b of the spiral. In addition, the recessed part 4 is good also as a form arrange | positioned in the outer peripheral surface 1a, and good also as a form arrange | positioned in both the internal peripheral surface 1b and the outer peripheral surface 1a. Each recess opens to the inner peripheral surface 1b or the outer peripheral surface 1a and does not penetrate the inner peripheral surface 1b and the outer peripheral surface 1a. That is, in the chip seal 1 in which the plurality of recesses 4 are formed, the recesses on the inner peripheral surface 1b are not penetrating the outer peripheral surface 1a, and the recesses on the outer peripheral surface 1a are not penetrating the inner peripheral surface 1b. The recess 4 is not formed as a recess closed within the sliding surface, but the edge of the sliding surface 5 is cut out to form a shape opened to the inner peripheral surface 1b or the outer peripheral surface 1a. Therefore, it is easy to supply the lubricating oil to the sliding surface. Moreover, the sealing performance can also be ensured by opening the recess 4 only on one of the inner peripheral surface 1b and the outer peripheral surface 1a of the spiral and making the inner peripheral surface 1b and the outer peripheral surface 1a non-penetrating.
 また、摺動面における凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)が、5~45%であるので、摺動面での摩擦力が効果的に小さくできる。摺動面における凹部の総面積の割合が5%より少ない場合は、摺動面の面圧を効果的に高くすることができず、摩擦力の低減効果が乏しい。また、45%より多くなると凹部からのガス圧が高くなり、反シール面からのガス圧が相殺されて、摺動面の面圧が低下する結果となるため、摩擦力の低減効果が乏しくなる。なお、摺動面における凹部の総面積の割合は、好ましくは7~40%であり、さらに好ましくは10~35%である。なお、実摺動面積は、摺動面から凹部を除いた面積である。 In addition, since the ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (the total area of the recesses + the actual sliding area) × 100) is 5 to 45%, the frictional force on the sliding surface is effective. Can be made smaller. When the ratio of the total area of the recesses on the sliding surface is less than 5%, the surface pressure of the sliding surface cannot be increased effectively, and the effect of reducing the frictional force is poor. On the other hand, if it exceeds 45%, the gas pressure from the concave portion becomes high, the gas pressure from the anti-seal surface is offset, and the surface pressure of the sliding surface decreases, resulting in a poor effect of reducing the frictional force. . Note that the ratio of the total area of the recesses on the sliding surface is preferably 7 to 40%, and more preferably 10 to 35%. The actual sliding area is an area obtained by removing the concave portion from the sliding surface.
 また、図1に示す形態では、凹部4は、チップシール1の渦巻の巻き始め端部2から巻き終わり端部3までの長さ方向に離間して摺動面5に複数個(図1は44個)並べて設置されている。隣り合う凹部4の間は摺動面5(シール面)の一部である。凹部の個数は、特に限定されず、各々の凹部の大きさを考慮して適宜設定する。例えば、10個~50個、好ましくは30個~50個とする。凹部4は、摺動面5において等間隔で設置することが好ましい。これにより、シール部位間での摩擦力の差が小さくなり、安定したスクロール部材のスクロールが可能となる。 Further, in the form shown in FIG. 1, a plurality of recesses 4 are formed on the sliding surface 5 apart from each other in the length direction from the winding start end 2 to the winding end end 3 of the spiral of the chip seal 1 (FIG. 44) installed side by side. Between the adjacent recessed parts 4 is a part of sliding surface 5 (seal surface). The number of the recesses is not particularly limited, and is appropriately set in consideration of the size of each recess. For example, 10 to 50, preferably 30 to 50. The recesses 4 are preferably installed at equal intervals on the sliding surface 5. Thereby, the difference of the frictional force between the seal | sticker parts becomes small, and the scroll of the stable scroll member is attained.
 各々の凹部4の開口長さは、チップシールの展開長さの1%~20%が好ましい。1%~10%がより好ましく、1%~5%がさらに好ましい。開口長さを小さくすることで、個数を多く配置できる。例えば、渦巻きに沿った長い凹部を少ない個数で配置する場合と、短い凹部を複数配置する場合とを比較すると、凹部総面積が同一である場合にも前者よりも後者の方が、チップシールの変形などを抑制しやすく、シール性に優れるため好ましい。なお、チップシールの展開長さとは、渦巻形状の長尺部材を展開した長さであり、これは図1の平面図においてチップシールの幅W方向の中央位置(内周面および外周面から等距離の位置)を結んだ中央線1cの全長である。また、円弧状の凹部の開口長さとは、凹部の内周面または外周面に開口する円弧の最大長さ(図2では4b-4b間の内周面1bに沿った長さ)である。 The opening length of each recess 4 is preferably 1% to 20% of the developed length of the chip seal. 1% to 10% is more preferable, and 1% to 5% is more preferable. A large number can be arranged by reducing the opening length. For example, comparing the case where a small number of long concave portions along the spiral are arranged with the case where a plurality of short concave portions are arranged, the latter is more preferable than the former when the total area of the concave portions is the same. It is preferable because it is easy to suppress deformation and the like and has excellent sealing properties. Note that the developed length of the tip seal is a length obtained by developing a spiral long member, which is the center position in the width W direction of the tip seal (from the inner peripheral surface and the outer peripheral surface, etc. in the plan view of FIG. 1). This is the total length of the center line 1c connecting the distance positions. In addition, the opening length of the arc-shaped recess is the maximum length of the arc opening on the inner peripheral surface or outer peripheral surface of the recess (the length along the inner peripheral surface 1b between 4b and 4b in FIG. 2).
 図2に示すように、凹部4の平面形状は、円弧状とされている。また、図3に示すように、凹部4の断面形状は矩形とされている。よって、この凹部4は、平面形状を円弧状とし、摺動面5から垂直に一定深さまで形成された形状を有する。このため、この凹部4は、摺動面5での平面形状と、最深部4cでの平面形状が同じである。円弧面4aの円弧半径R(図2参照)とその中心位置は、特に限定されないが、凹部がチップシールの幅方向の中央位置を超えない位置となるように設定することが好ましい。例えば、半径Rは、チップシールのサイズ(渦巻の略外径)が70mmである場合において、R2mm~R4mmとすることが好ましい。中央位置を超えないように複数の凹部を設けることで、高いシール性を維持できる。 As shown in FIG. 2, the planar shape of the recess 4 is an arc. Moreover, as shown in FIG. 3, the cross-sectional shape of the recessed part 4 is made into the rectangle. Therefore, the concave portion 4 has a shape in which the planar shape is an arc shape and is formed perpendicularly from the sliding surface 5 to a certain depth. For this reason, the concave portion 4 has the same planar shape at the sliding surface 5 and the planar shape at the deepest portion 4c. The arc radius R (see FIG. 2) and the center position of the arc surface 4a are not particularly limited, but it is preferable to set the recess so that it does not exceed the center position in the width direction of the chip seal. For example, the radius R is preferably R2 mm to R4 mm when the size of the chip seal (substantially outer diameter of the spiral) is 70 mm. By providing a plurality of recesses so as not to exceed the center position, high sealing performance can be maintained.
 凹部4の深さd(図3参照)は、チップシールの厚みの45%以下であることが好ましい。30%以下が好ましく、15%以下がより好ましい。なお、チップシールの厚みTは、摺動面であるシール面から反シール面までの間である。凹部4の深さをチップシールの厚みの45%以下とすることで、チップシールの剛性を維持し、摩耗が進行しても適度に摺動面での摩擦力を低減できる。これにより、摺動面を部分的に切欠いた凹部を設けて摩擦力を低減しつつ、十分なシール性を担保できる。 The depth d (see FIG. 3) of the recess 4 is preferably 45% or less of the thickness of the chip seal. 30% or less is preferable and 15% or less is more preferable. Note that the thickness T of the chip seal is between the sealing surface, which is a sliding surface, and the anti-sealing surface. By setting the depth of the recess 4 to 45% or less of the thickness of the chip seal, the rigidity of the chip seal can be maintained, and the frictional force on the sliding surface can be appropriately reduced even when wear progresses. As a result, it is possible to secure a sufficient sealing performance while providing a concave portion in which the sliding surface is partially cut to reduce the frictional force.
 また、図2中の拡大図に示すように、渦巻の内周面1bと円弧面4aとの境界部4bは、R形状(例えばR0.5mm以下)とすることが好ましい。このようなR形状を設けることで、内周面とシール溝とが摺接する際に、境界部のエッジをなくすことができ、また、凹部に冷凍機油等の潤滑油を導入しやすくなるので、安定した潤滑状態を維持し、チップシールの局部変形を抑制できる。 Further, as shown in the enlarged view in FIG. 2, the boundary portion 4b between the inner peripheral surface 1b of the spiral and the circular arc surface 4a is preferably R-shaped (for example, R 0.5 mm or less). By providing such an R shape, when the inner peripheral surface and the seal groove are in sliding contact, the edge of the boundary portion can be eliminated, and it becomes easier to introduce lubricating oil such as refrigerating machine oil into the recess, A stable lubrication state can be maintained and local deformation of the tip seal can be suppressed.
 凹部4の平面形状の面積は、凹部間で略同一であることが好ましい。これにより、シール部位間での摩擦力の差が小さくなり、安定したスクロール部材のスクロールが可能となる。ここで、図1に示すように、第1実施形態のチップシール1は渦巻形状であるため、巻き始め端部2から巻き終わり端部3に向けて徐々に曲率半径が大きくなる形状である。このため、凹部4を単一の円弧形状で統一して、その平面形状の面積を同一とすることはできない。よって、凹部の開口長さなどをほぼ同等としながら、凹部の平面形状の面積を凹部間で略同一とすべく、チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、設置されている凹部の円弧半径を連続的または段階的に大きくすることが好ましい。図1に示す形態では、(1)巻き始め端部2からXまで、(2)XからYまで、(3)Yから巻き終わり端部3まで、の3段階に分けて、段階的に凹部の円弧半径を大きくしている。 The area of the planar shape of the recess 4 is preferably substantially the same between the recesses. Thereby, the difference of the frictional force between the seal | sticker parts becomes small, and the scroll of the stable scroll member is attained. Here, as shown in FIG. 1, since the tip seal 1 of the first embodiment has a spiral shape, the radius of curvature gradually increases from the winding start end 2 toward the winding end end 3. For this reason, the recessed part 4 cannot be unified by a single circular arc shape, and the area of the planar shape cannot be made the same. Therefore, in order to make the planar shape area of the recesses substantially the same between the recesses while making the opening lengths of the recesses substantially the same, the tip seal is installed from the winding start end to the winding end end. It is preferable to increase the arc radius of the recessed portion continuously or stepwise. In the form shown in FIG. 1, the concave portion is stepwise divided into three stages: (1) winding start end 2 to X, (2) X to Y, (3) Y to winding end 3. The arc radius is increased.
 チップシール1は、スクロール型コンプレッサにおいて、スクロール部材である固定スクロールと可動スクロールの渦巻壁間に形成された圧縮室をシールするためのシール部材である。図3に示すように、チップシール1は、渦巻壁7のシール溝内に収容され、対向するスクロール基板6と摺接して、圧縮室を密閉している。渦巻壁7とスクロール基板6とは隙間8(対向距離D)を有して対向している。凹部4の深さdと、隙間8の対向距離Dとの関係は、略同一か、凹部4の深さdが僅かに小さい程度が好ましい。チップシール1は、渦巻壁7のシール溝内で隙間をもって収容され、対向するスクロール基板6との間で、ガス9の圧力によりスクロール基板6に向かってシール溝底より浮上する。浮上したチップシール1は、摺動面5でスクロール基板6と、外周面1aで渦巻壁7のシール溝壁7aと摺接し、スクロール部材である固定スクロールと可動スクロールのそれぞれの渦巻壁7とスクロール基板6の渦巻壁間の圧縮室をシールしている。 The chip seal 1 is a seal member for sealing a compression chamber formed between a scroll of a fixed scroll that is a scroll member and a spiral wall of a movable scroll in a scroll compressor. As shown in FIG. 3, the tip seal 1 is accommodated in the seal groove of the spiral wall 7 and is in sliding contact with the opposing scroll substrate 6 to seal the compression chamber. The spiral wall 7 and the scroll substrate 6 are opposed to each other with a gap 8 (opposing distance D). The relationship between the depth d of the recess 4 and the facing distance D of the gap 8 is preferably substantially the same or the depth d of the recess 4 is slightly smaller. The chip seal 1 is accommodated in the seal groove of the spiral wall 7 with a gap, and floats from the bottom of the seal groove toward the scroll substrate 6 due to the pressure of the gas 9 between the tip seal 1 and the opposing scroll substrate 6. The chip seal 1 that has floated is in sliding contact with the scroll substrate 6 at the sliding surface 5 and the seal groove wall 7a of the spiral wall 7 at the outer peripheral surface 1a, and the scroll wall 7 and the scroll of the fixed scroll and the movable scroll as scroll members. The compression chamber between the spiral walls of the substrate 6 is sealed.
 チップシール1は、摺動面5に上述の凹部4を複数有するので、この凹部4に圧縮室のガス9を一部導入できる。図中の矢印9aと9bは、ガス9から各面に受ける圧力を示したものである。摺動面5を部分的に切欠いた凹部4により、凹部のない従来品(図14)よりも摺動面積自体が小さくなる。図1~図3に示す本形態のチップシール(凹部44個)と、図14に示す従来品のチップシールとは、凹部の有無以外は同寸法である。この場合、実摺動面積は、従来品を100とすると、本形態では75となり、摺動面における凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)は、25%である。実摺動面積が少なくなることで摺動面にかかる面圧が高くなり摩擦係数が小さくなる。その結果、摺動面の摩擦力が小さくなる。また、上記ガスの圧力として示すように、本形態では、チップシール1の反シール面が受けるガス圧は、凹部4に導入されたガス圧により一部相殺される。しかし、冷凍機油等の潤滑油が摺動面に供給され易くなるため、従来品と比較して摺動面での摩擦力を大きく低減できる。摺動面における凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)は、5~45%であり、45%より多くなると、摺動面にかかる面圧が凹部4に導入されたガスにより低下する結果となる。 Since the chip seal 1 has a plurality of the above-described recesses 4 on the sliding surface 5, a part of the compression chamber gas 9 can be introduced into the recesses 4. Arrows 9a and 9b in the figure indicate the pressure applied to each surface from the gas 9. Due to the recess 4 with the sliding surface 5 partially cut away, the sliding area itself becomes smaller than that of the conventional product (FIG. 14) without the recess. The chip seal (44 recesses) of this embodiment shown in FIGS. 1 to 3 and the conventional chip seal shown in FIG. 14 have the same dimensions except for the presence or absence of recesses. In this case, the actual sliding area is 75 in this embodiment, where the conventional product is 100, and the ratio of the total area of the recesses on the sliding surface (total area of the recesses / (total area of the recesses + actual sliding area) × 100) Is 25%. By reducing the actual sliding area, the surface pressure applied to the sliding surface increases and the friction coefficient decreases. As a result, the frictional force on the sliding surface is reduced. Further, as shown as the gas pressure, in this embodiment, the gas pressure received by the anti-seal surface of the tip seal 1 is partially offset by the gas pressure introduced into the recess 4. However, since lubricating oil such as refrigerating machine oil is easily supplied to the sliding surface, the frictional force on the sliding surface can be greatly reduced as compared with the conventional product. The ratio of the total area of the recesses on the sliding surface (the total area of the recesses / (the total area of the recesses + the actual sliding area) × 100) is 5 to 45%, and if it exceeds 45%, the surface pressure applied to the sliding surface Is reduced by the gas introduced into the recess 4.
 第1実施形態のスクロール型コンプレッサ用チップシールの他の例を図4と図5に基づいて説明する。図4は本形態のチップシールをシール面となる相手スクロール部材との摺動面側から見た平面図であり、図5はその一部拡大図である。図4および図5に示すように、チップシール11は、スクロール部材との摺動面15に、この摺動面15を部分的に切欠いた複数の凹部14を有する。この凹部の形状が、渦巻形状に沿った略矩形状である。矩形の両長辺が渦巻形状に沿った曲線とされており、該凹部は、渦巻の内周面11bに配置され、個々の凹部の矩形長辺の一方側が渦巻の内周面11bに開口している。 Another example of the scroll compressor tip seal of the first embodiment will be described with reference to FIGS. FIG. 4 is a plan view of the chip seal of this embodiment as viewed from the sliding surface side with the mating scroll member serving as the seal surface, and FIG. 5 is a partially enlarged view thereof. As shown in FIGS. 4 and 5, the chip seal 11 has a plurality of recesses 14 in which the sliding surface 15 is partially cut out on the sliding surface 15 with the scroll member. The shape of the recess is a substantially rectangular shape along the spiral shape. Both long sides of the rectangle are curved along the spiral shape, and the concave portion is arranged on the inner peripheral surface 11b of the spiral, and one side of the rectangular long side of each concave portion opens on the inner peripheral surface 11b of the spiral. ing.
 凹部の個数、各々の凹部の開口長さ、凹部の深さなどは、図2に示す円弧状の凹部と同様である。平面形状に関して、凹部がチップシールの幅方向の中央位置を超えない位置となるように設定することが好ましい。 The number of recesses, the opening length of each recess, the depth of the recess, and the like are the same as those of the arc-shaped recess shown in FIG. With respect to the planar shape, it is preferable to set so that the recess does not exceed the center position in the width direction of the chip seal.
 以上のように、凹部の平面形状を円弧状または渦巻形状に沿った略矩形状とすることで、凹部の設計や配置が容易となり、特に凹部を複数配置する場合において、面積を略同一とするような設計が容易となる。また、各図に基づき、摺動面に凹部を有するチップシールを説明したが、本形態はこれに限定されず、特に凹部の形状に関しては、摺動面を部分的に切欠いた複数の凹部であって、該複数の凹部は渦巻の内周面と外周面の少なくとも一方に配置され、個々の凹部は内周面または外周面に開口するとともに内周面と外周面とを貫通しないのであれば、任意の形状とできる。例えば、凹部の深さを一定深さとせずに、最深部の形状を半球状やテーパ状のような開口側に広がる傾斜面としてもよい。 As described above, by designing the concave portion to have a substantially rectangular shape along the arc shape or the spiral shape, the design and arrangement of the concave portion can be facilitated. In particular, when a plurality of concave portions are arranged, the areas are substantially the same. Such design becomes easy. Moreover, although the chip seal having the concave portion on the sliding surface has been described based on the respective drawings, the present embodiment is not limited to this, and the shape of the concave portion is particularly limited to a plurality of concave portions in which the sliding surface is partially cut out. If the plurality of recesses are disposed on at least one of the inner peripheral surface and the outer peripheral surface of the spiral, and the individual recesses open to the inner peripheral surface or the outer peripheral surface and do not penetrate the inner peripheral surface and the outer peripheral surface. , Can be any shape. For example, the depth of the recess may not be a constant depth, but the deepest portion may have an inclined surface that extends to the opening side such as a hemispherical shape or a tapered shape.
(第2実施形態)
 次に、第2実施形態のチップシールを適用するスクロール型コンプレッサの圧縮機構部の構造の一例を図13に基づいて説明する。図13は、スクロール型コンプレッサの圧縮機構部の一部断面図である。図13に示すように、スクロール型コンプレッサは、基板64aとその表面に直立する渦巻壁64bを有する固定スクロール64と、基板65aとその表面に直立する渦巻壁65bを有する可動スクロール65とを備えている。固定スクロール64と可動スクロール65が、渦巻壁境界66において相互に偏心状態にかみ合わされて、それらの間に圧縮室62が形成されている。可動スクロール65が固定スクロール64の軸線の周りで公転することにより、圧縮室62が渦巻形状の中心側に移動してガスなどの圧縮が行なわれる。固定スクロール64と可動スクロール65の渦巻壁端面に、渦巻の延長方向に沿ったシール溝63が形成されている。第2実施形態のチップシール61は、第1実施形態のチップシールと同様に、シール溝63内に収容され、対向するスクロール基板と摺接して、圧縮室62の密閉性を確保するものである。
(Second Embodiment)
Next, an example of the structure of the compression mechanism of the scroll compressor to which the chip seal of the second embodiment is applied will be described with reference to FIG. FIG. 13 is a partial cross-sectional view of the compression mechanism of the scroll compressor. As shown in FIG. 13, the scroll compressor includes a fixed scroll 64 having a substrate 64a and a spiral wall 64b upstanding on the surface thereof, and a movable scroll 65 having a substrate 65a and a spiral wall 65b upstanding on the surface thereof. Yes. The fixed scroll 64 and the movable scroll 65 are engaged with each other at the spiral wall boundary 66 in an eccentric state, and a compression chamber 62 is formed between them. When the movable scroll 65 revolves around the axis of the fixed scroll 64, the compression chamber 62 moves to the center side of the spiral shape, and compression of gas or the like is performed. Seal grooves 63 are formed on the spiral wall end surfaces of the fixed scroll 64 and the movable scroll 65 along the spiral extension direction. Similar to the chip seal of the first embodiment, the chip seal 61 of the second embodiment is accommodated in the seal groove 63 and is in sliding contact with the opposing scroll substrate to ensure the sealing property of the compression chamber 62. .
 第2実施形態のスクロール型コンプレッサ用チップシールの一例を図7、図8に基づいて説明する。図7は第2実施形態のチップシールをシール面となる相手スクロール部材との摺動面側から見た平面図であり、図8はこのチップシールをコンプレッサに組み込んだ状態の断面図である。チップシール31は、スクロール型コンプレッサにおいて、スクロール部材である固定スクロールと可動スクロールの渦巻壁間に形成された圧縮室をシールするためのシール部材である。図7に示すように、チップシール31は、断面が略矩形状の長尺部材を渦巻に巻いたような渦巻形状を有する。この渦巻形状は、巻き始め端部32から巻き終わり端部33に向けて徐々に曲率半径が大きくなる形状である。摺動面35が、対向するスクロール基板との摺動面であり、圧縮室内のガスなどをシールするシール面となる。 An example of the scroll-type compressor chip seal of the second embodiment will be described with reference to FIGS. FIG. 7 is a plan view of the chip seal of the second embodiment viewed from the sliding surface side with the mating scroll member serving as the seal surface, and FIG. 8 is a cross-sectional view of the chip seal incorporated into the compressor. The tip seal 31 is a seal member for sealing a compression chamber formed between a scroll of a fixed scroll and a scroll of a movable scroll in a scroll compressor. As shown in FIG. 7, the tip seal 31 has a spiral shape in which a long member having a substantially rectangular cross section is wound into a spiral. This spiral shape is a shape in which the radius of curvature gradually increases from the winding start end portion 32 toward the winding end end portion 33. The sliding surface 35 is a sliding surface with the opposing scroll substrate and serves as a sealing surface that seals gas in the compression chamber.
 図7において、チップシール31は、スクロール部材との摺動面35に、チップシール31の略全長にわたり溝40が形成されている。溝40は、渦巻の内周面31bと渦巻の外周面31aに開口しておらず、摺動面内で閉じた凹溝となっている。また、溝40は、チップシール31の幅W方向の略中央部に設けられている。図7では、溝40はチップシール31の幅W方向の中央位置(内周面および外周面から等距離の位置)を結んだ中央線31cを中心に対称に形成されている。このように摺動面35に溝40を設けることで、摺動面積を低減するとともに、該溝内に潤滑油を保持させ、潤滑性を担保することができる。 7, the tip seal 31 has a groove 40 formed on the sliding surface 35 with the scroll member over substantially the entire length of the tip seal 31. The groove 40 does not open to the inner peripheral surface 31b of the spiral and the outer peripheral surface 31a of the spiral, but is a concave groove closed within the sliding surface. Further, the groove 40 is provided at a substantially central portion of the chip seal 31 in the width W direction. In FIG. 7, the groove 40 is formed symmetrically about a center line 31 c connecting the center positions in the width W direction of the chip seal 31 (positions equidistant from the inner peripheral surface and the outer peripheral surface). By providing the groove 40 on the sliding surface 35 in this way, the sliding area can be reduced and lubricating oil can be held in the groove to ensure lubricity.
 摺動面の溝は、チップシールの略全長にわたり設けられている。第2実施形態において、略全長にわたる状態は、チップシールの巻き始め端部32から巻き終わり端部33までの連続した状態だけをいうのではなく、不連続の状態も含む。例えば、図7に示すように、摺動面35の巻き始め端部32側と巻き終わり端部33側にそれぞれ、溝40が形成されていない部分があってもよい。また、溝40は、図7のように1本の連続した凹溝でもよく、チップシール31の渦巻の長さ方向で分割された2本以上の凹溝でもよい。 The groove on the sliding surface is provided over almost the entire length of the chip seal. In the second embodiment, the state over substantially the entire length includes not only the continuous state from the winding start end portion 32 to the winding end end portion 33 of the chip seal but also a discontinuous state. For example, as shown in FIG. 7, there may be portions where the groove 40 is not formed on the winding start end 32 side and the winding end end 33 side of the sliding surface 35. Further, the groove 40 may be one continuous concave groove as shown in FIG. 7 or two or more concave grooves divided in the length direction of the spiral of the chip seal 31.
 第2実施形態において、溝はチップシールの略全長にわたり形成されるので、チップシールの渦巻の長さ方向における溝の長さ(分割された2本以上の凹溝にあってはその合計長さ)は、チップシールの展開長さに対して60%以上の長さであり、より好ましくは70%以上の長さであり、さらに好ましくは80%以上の長さである。特に、溝としては、チップシールの展開長さに対して80%以上の長さを有する一本の凹溝であることが好ましい。なお、チップシールの展開長さとは、渦巻形状の長尺部材を展開した長さであり、これは図7における中央線31cの長さである。 In the second embodiment, since the groove is formed over substantially the entire length of the chip seal, the length of the groove in the length direction of the spiral of the chip seal (the total length of two or more divided concave grooves) ) Is 60% or more of the developed length of the tip seal, more preferably 70% or more, and even more preferably 80% or more. In particular, the groove is preferably a single groove having a length of 80% or more with respect to the developed length of the chip seal. Note that the developed length of the tip seal is the length of a spiral-shaped long member developed, and this is the length of the center line 31c in FIG.
 溝の断面形状は、図8では矩形状の角溝となっているが、潤滑油を保持することが可能な形状であれば、特に限定されない。チップシール31に適用した溝40のその他の断面形状を図9に示す。例えば、溝としては、図9(a)の円弧状の溝、図9(b)のV溝、図9(c)の両側面がテーパ状の角溝などを採用することができる。これらの中でも、摺動面35への潤滑油の供給がスムーズであることから、円弧状の溝やV溝とすることが好ましい。なお、これら溝の断面形状は、後述するチップシール41やチップシール51にも適用できる。 The cross-sectional shape of the groove is a rectangular square groove in FIG. 8, but is not particularly limited as long as it is a shape capable of holding lubricating oil. Another cross-sectional shape of the groove 40 applied to the chip seal 31 is shown in FIG. For example, as the groove, an arc-shaped groove shown in FIG. 9A, a V-shaped groove shown in FIG. 9B, a square groove whose both side surfaces are tapered, or the like can be adopted. Among these, since the supply of the lubricating oil to the sliding surface 35 is smooth, it is preferable to use an arcuate groove or a V groove. Note that the cross-sectional shapes of these grooves can also be applied to a chip seal 41 and a chip seal 51 described later.
 図8において、溝40の溝深さdは、チップシールの厚みの35%以下であることが好ましく、30%以下であることがより好ましく、15%以下であることがさらに好ましい。なお、チップシールの厚みTは、摺動面であるシール面から反シール面までの間である。溝深さdをチップシールの厚みの35%以下とすることで、チップシールの剛性を維持し、摩耗が進行しても、適度に摺動面での摩擦力を低減でき、さらにシール面の変形が起こることなくシール性が保たれる。これにより、摩擦力を低減しつつ、十分なシール性を担保できる。なお、溝深さdは、溝40において摺動面35からの最大深さをいう。例えば、図9の各溝における溝深さdは図に示すとおりである。 In FIG. 8, the groove depth d of the groove 40 is preferably 35% or less of the thickness of the chip seal, more preferably 30% or less, and further preferably 15% or less. Note that the thickness T of the chip seal is between the sealing surface, which is a sliding surface, and the anti-sealing surface. By setting the groove depth d to 35% or less of the thickness of the chip seal, the rigidity of the chip seal is maintained, and even if wear progresses, the frictional force on the sliding surface can be appropriately reduced. Sealability is maintained without deformation. Thereby, sufficient sealing performance can be secured while reducing the frictional force. The groove depth d refers to the maximum depth from the sliding surface 35 in the groove 40. For example, the groove depth d in each groove in FIG. 9 is as shown in the figure.
 図8に示すように、チップシール31は、渦巻壁37のシール溝内に収容され、対向するスクロール基板36と摺接して、圧縮室を密閉している。図8においては、スクロール基板36と渦巻壁37はスクロール部材(固定スクロールまたは可動スクロール)であり、シール溝を設けてある方のスクロール部材を渦巻壁37とし、他方のスクロール部材をスクロール基板36としている。渦巻壁37とスクロール基板36とは隙間38(対向距離D)を有して対向しており、溝深さdと、隙間38の対向距離Dとの関係は、略同一か、溝深さdが僅かに小さい程度が好ましい。 As shown in FIG. 8, the tip seal 31 is accommodated in the seal groove of the spiral wall 37 and is in sliding contact with the opposing scroll substrate 36 to seal the compression chamber. In FIG. 8, the scroll substrate 36 and the spiral wall 37 are scroll members (fixed scroll or movable scroll), and the scroll member provided with the seal groove is the spiral wall 37 and the other scroll member is the scroll substrate 36. Yes. The spiral wall 37 and the scroll substrate 36 are opposed to each other with a gap 38 (opposite distance D), and the relationship between the groove depth d and the opposed distance D of the gap 38 is substantially the same, or the groove depth d. Is slightly smaller.
 溝40の溝幅GW(図8参照)は、チップシールの幅寸法の1/20~2/5に設定され、好ましくは1/20~1/3に設定されている。チップシールの幅寸法W(以下、シール幅とも言う)とは、内周面から外周面までの間の長さである。また、溝40の溝幅GWは、実寸としては0.1mm以上が必要である。なお、実寸法での最大値は設定不要である。溝幅GWがシール幅の1/20未満であるか、または、0.1mm未満である場合には、チップシールの面圧を効果的に高くすることが困難であり、摩擦係数の低下効果が得られないおそれがある。一方、溝幅GWの最大幅をシール幅の2/5までとすることで、シール性と機械強度を確保している。なお、溝幅GWは、摺動面35に対して開口した部分のチップシールの幅方向における長さであり、例えば、図9の各溝における溝幅GWは図に示すとおりである。 The groove width GW (see FIG. 8) of the groove 40 is set to 1/20 to 2/5, and preferably 1/20 to 1/3 of the width dimension of the chip seal. The width dimension W of the chip seal (hereinafter also referred to as the seal width) is the length from the inner peripheral surface to the outer peripheral surface. Further, the actual width of the groove width GW of the groove 40 is required to be 0.1 mm or more. It is not necessary to set the maximum value in actual dimensions. If the groove width GW is less than 1/20 of the seal width or less than 0.1 mm, it is difficult to effectively increase the surface pressure of the chip seal, and the effect of reducing the friction coefficient May not be obtained. On the other hand, the seal width and the mechanical strength are ensured by setting the maximum width of the groove width GW to 2/5 of the seal width. The groove width GW is the length in the width direction of the chip seal at the portion opened to the sliding surface 35. For example, the groove width GW in each groove in FIG. 9 is as shown in the figure.
 チップシールのシール幅は、コンプレッサの容量に関係するが、おおよそ2mm~5mmの範囲である。例えば、シール幅が2mmである場合は、溝の最小幅はシール幅の1/20であり、実寸法では0.1mmとなる。また、シール幅が1mmである場合は、溝の最小幅は実寸法では0.1mm(シール幅の1/10)となる。なおこの場合の、溝の最大幅はシール幅の2/5の0.40mmである。 シ ー ル The seal width of the tip seal is related to the compressor capacity, but is approximately in the range of 2 mm to 5 mm. For example, when the seal width is 2 mm, the minimum width of the groove is 1/20 of the seal width, and the actual size is 0.1 mm. When the seal width is 1 mm, the minimum groove width is 0.1 mm (1/10 of the seal width) in actual dimensions. In this case, the maximum width of the groove is 0.40 mm which is 2/5 of the seal width.
 ここで、図7では、溝40の溝幅はチップシール31の略全長にわたり一定となっている。例えば、溝幅を一定とせずに、巻き始め端部32から巻き終わり端部33に向かって、異なるように設定してもよい。この場合、圧縮されるガスの圧力分布を考慮して溝幅を異なるように設定することが好ましい。スクロール型コンプレッサは、渦巻の外周部側から内周部側(中心側)に向かって、徐々にガスを圧縮していくため、圧縮されるガスの圧力は、内周部側の方が、外周部側よりも高くなっている。例えば、外周部側では、吸入管(図示は省略する)から吸入されたガスはほとんど圧縮されていない状態にあるため、チップシールによって隔てられる高圧側と低圧側との圧力差はそれほど大きくない。そのため、外周部側では、チップシールにそれほど高いシール性を与えなくても、圧縮するのに十分なシール機能を発揮することができると考えられる。一方、内周部側では、高圧側と低圧側との圧力差が大きいため、チップシールに高いシール性が求められると考えられる。 Here, in FIG. 7, the groove width of the groove 40 is constant over substantially the entire length of the chip seal 31. For example, the groove width may be set differently from the winding start end 32 toward the winding end end 33 without making the groove width constant. In this case, it is preferable to set the groove width to be different in consideration of the pressure distribution of the compressed gas. Since the scroll compressor gradually compresses gas from the outer peripheral side of the spiral toward the inner peripheral side (center side), the pressure of the compressed gas is higher on the inner peripheral side. It is higher than the club side. For example, since the gas sucked from the suction pipe (not shown) is hardly compressed on the outer peripheral side, the pressure difference between the high pressure side and the low pressure side separated by the tip seal is not so large. Therefore, on the outer peripheral side, it is considered that a sealing function sufficient for compression can be exhibited without giving the chip seal so high sealing performance. On the other hand, since the pressure difference between the high pressure side and the low pressure side is large on the inner peripheral side, it is considered that high sealing performance is required for the chip seal.
 上記の圧力分布を考慮すると、溝幅が異なるように溝を設ける構成では、渦巻の巻き始め端部から巻き終わり端部に向けて、溝幅を連続的または段階的に大きくすることが好ましい。例えば、図10のチップシール41において、溝50は、チップシールの長さ方向で2分割されて構成されている。この場合、内周部側の溝50aの溝幅をGW1とし、外周部側の溝50bの溝幅をGW2とすると、GW1よりもGW2の方が大きくなっている。この構成とすることで、略全長にわたる溝を設けて摺動面積を低減しつつ、さらに、外周部側では溝幅をより大きくすることで摺動面積をより低減し、内周部側では溝幅を比較的小さくすることで、高いシール性を確保することができる。 In consideration of the above pressure distribution, in the configuration in which the grooves are provided so that the groove widths are different, it is preferable to increase the groove width continuously or stepwise from the winding start end to the winding end. For example, in the chip seal 41 of FIG. 10, the groove 50 is divided into two in the length direction of the chip seal. In this case, when the groove width of the groove 50a on the inner peripheral side is GW1, and the groove width of the groove 50b on the outer peripheral side is GW2, GW2 is larger than GW1. By adopting this configuration, while reducing the sliding area by providing a groove over almost the entire length, the sliding area is further reduced by increasing the groove width on the outer peripheral side, and the groove on the inner peripheral side. By making the width relatively small, high sealing performance can be secured.
 その他の構成としては、1本の溝において、溝幅を3段階以上に分け、巻き始め端部から巻き終わり端部に向けて段階的に大きくする構成としてもよい。また、溝幅を連続的に大きくする構成としてもよい。 As another configuration, in one groove, the groove width may be divided into three or more steps, and may be increased stepwise from the winding start end portion toward the winding end end portion. Alternatively, the groove width may be continuously increased.
 以上のように、第2実施形態のチップシールでは、摺動面に設けられた溝により、溝のない従来品よりも摺動面積自体が小さくなる。図7や図10に示す本形態のチップシールと、従来品(図14)のチップシールとは、溝の有無以外は同寸法である。この場合、実摺動面積は、従来品を100とすると、本形態では65~97となり、摺動面における溝の総面積の割合(溝総面積/(溝総面積+実摺動面積)×100)は、3~35%である。実摺動面積が少なくなることで摺動面にかかる面圧が高くなり摩擦係数が小さくなる。その結果、摺動面の摩擦力が小さくなる。 As described above, in the chip seal of the second embodiment, the sliding area itself is smaller than the conventional product without the groove due to the groove provided on the sliding surface. The tip seal of this embodiment shown in FIGS. 7 and 10 and the tip seal of the conventional product (FIG. 14) have the same dimensions except for the presence or absence of grooves. In this case, when the conventional product is 100, the actual sliding area is 65 to 97 in this embodiment, and the ratio of the total groove area on the sliding surface (groove total area / (groove total area + actual sliding area) × 100) is 3 to 35%. By reducing the actual sliding area, the surface pressure applied to the sliding surface increases and the friction coefficient decreases. As a result, the frictional force on the sliding surface is reduced.
 第2実施形態のスクロール型コンプレッサ用チップシールの他の例を図11に基づいて説明する。図11は、摺動面に溝と開口部を有するチップシールを摺動面側から見た平面図であり、図12はこのチップシールをコンプレッサに組み込んだ状態の、開口部の位置における断面図である。図11に示すように、チップシール51の渦巻の内周面51bには、溝60と連結する開口部60cが設けられている。図11において、開口部60cは、摺動面55を部分的に切欠いた凹み形状(凹部)となっている。このように溝60と連結する開口部60cを設けることで、摺動面55が他部材と摺動した状態であっても、溝60は、シール外の空間と連通した状態となる。そのため、開口部60cを介して潤滑油が溝60に常に供給され、摺動面55における摩擦力をより小さくすることができる。 Another example of the scroll compressor tip seal of the second embodiment will be described with reference to FIG. FIG. 11 is a plan view of a chip seal having a groove and an opening on the sliding surface as viewed from the sliding surface, and FIG. 12 is a cross-sectional view at the position of the opening when the chip seal is incorporated in a compressor. It is. As shown in FIG. 11, an opening 60 c connected to the groove 60 is provided on the inner peripheral surface 51 b of the spiral of the chip seal 51. In FIG. 11, the opening 60 c has a concave shape (concave portion) in which the sliding surface 55 is partially cut out. By providing the opening 60c connected to the groove 60 in this manner, the groove 60 is in communication with the space outside the seal even when the sliding surface 55 is slid with another member. Therefore, the lubricating oil is always supplied to the groove 60 through the opening 60c, and the frictional force on the sliding surface 55 can be further reduced.
 図11に示す形態では、開口部60cは、チップシール51の渦巻の巻き始め端部52から巻き終わり端部53までの長さ方向に離間して内周面51bに複数個(図11は6個)並べて設置されている。開口部60cの個数は特に限定されないが、複数とすることで、溝60における潤滑油の出入りが円滑に行われる。 In the form shown in FIG. 11, a plurality of openings 60c are spaced apart in the length direction from the winding start end portion 52 to the winding end end portion 53 of the spiral of the chip seal 51 (FIG. Pieces) are installed side by side. The number of openings 60c is not particularly limited, but by using a plurality of openings 60c, the lubricating oil can smoothly enter and exit the groove 60.
 複数の開口部を設ける構成では、内周面において、隣り合う開口部がすべて等間隔となるように設けてもよく、また、異なる間隔となるように設けてもよい。後者の場合、特に、上記の圧力分布を考慮して、巻き終わり端部から巻き始め端部に向かって、隣り合う開口部の間隔が連続的または段階的に広くなるように設けることが好ましい。上記のとおり、チップシールの内周部側は高いシール性が求められるため、巻き終わり端部から巻き始め端部に向かって間隔を広くし、内周部側の開口部の数を外周部側よりも少なくすることで、シール性を担保している。一方、内周部側は、外周部側に比べてガスの圧力が大きくなるため、開口部が少なくても、高いガス圧によって潤滑油を溝へ十分供給できると考えられる。 In the configuration in which a plurality of openings are provided, adjacent openings may be provided at equal intervals on the inner peripheral surface, or may be provided at different intervals. In the latter case, in particular, in consideration of the pressure distribution described above, it is preferable that the distance between the adjacent opening portions be widened continuously or stepwise from the winding end portion toward the winding start end portion. As described above, since the inner peripheral side of the chip seal is required to have high sealing performance, the interval is widened from the winding end to the winding start end, and the number of openings on the inner peripheral side is set to the outer peripheral side. The sealing performance is ensured by making it less. On the other hand, since the gas pressure on the inner peripheral side is larger than that on the outer peripheral side, it is considered that the lubricating oil can be sufficiently supplied to the groove with a high gas pressure even if the number of openings is small.
 また、図11に示す形態では、開口部60cの平面形状を矩形状としているが、これに限定されない。例えば、くさび状とし、その凸の広がっている側を内周面側51bとしてもよい。つまりこの場合、内周面51bから溝60に向けて、開口部60cの開口長さが狭まる形状となるため、溝60への潤滑油の供給性を高めることができる。またその他に、内周部側の開口部と外周部側の開口部とで開口長さが異なる形態としてもよい。例えば、内周部側の開口部の開口長さを外周部側の開口部の開口長さよりも小さくすることで、シール性と潤滑油の供給性のバランスを良好にすることができる。 In the form shown in FIG. 11, the planar shape of the opening 60c is rectangular, but the present invention is not limited to this. For example, it is good also as a wedge shape, and it is good also considering the side where the convex is spreading as the internal peripheral surface side 51b. In other words, in this case, since the opening length of the opening 60 c is narrowed from the inner peripheral surface 51 b toward the groove 60, the supply of lubricating oil to the groove 60 can be improved. In addition, the opening length may be different between the opening on the inner peripheral side and the opening on the outer peripheral side. For example, by making the opening length of the opening portion on the inner peripheral portion side smaller than the opening length of the opening portion on the outer peripheral portion side, the balance between the sealing property and the supply property of the lubricating oil can be improved.
 チップシール51の厚み方向における開口部60cの深さ(図12参照)は、溝60の溝深さdと略同一か、溝深さdが僅かに大きい程度が好ましい。これにより、溝60への潤滑油の供給性を良好にすることができる。 The depth of the opening 60c in the thickness direction of the chip seal 51 (see FIG. 12) is preferably substantially the same as the groove depth d of the groove 60 or slightly larger than the groove depth d. Thereby, the supply property of the lubricating oil to the groove 60 can be improved.
 チップシール51の構成においても、摺動面55に形成された溝60により、溝のない従来品よりも摺動面積自体が小さくなる。また、図12に示すように、開口部60cを設けたことで、チップシール51は、開口部60cを介して溝60に圧縮室のガス59が一部導入される。図中の矢印59aと59bは、ガス59から各面に受ける圧力を示したものである。このように、チップシール51の反シール面が受けるガス圧は、溝60に導入されたガス圧により一部相殺される。しかし、冷凍機油等の潤滑油が摺動面に供給され易くなるため、従来品と比較して摺動面での摩擦力を大きく低減できる。 Also in the configuration of the chip seal 51, the sliding area itself is smaller than the conventional product without the groove due to the groove 60 formed in the sliding surface 55. Further, as shown in FIG. 12, by providing the opening 60c, the chip seal 51 partially introduces the gas 59 in the compression chamber into the groove 60 through the opening 60c. Arrows 59a and 59b in the figure indicate the pressure applied to each surface from the gas 59. Thus, the gas pressure received by the anti-seal surface of the tip seal 51 is partially offset by the gas pressure introduced into the groove 60. However, since lubricating oil such as refrigerating machine oil is easily supplied to the sliding surface, the frictional force on the sliding surface can be greatly reduced as compared with the conventional product.
 なお、図11および図12の形態では、開口部60cを渦巻の内周面51bに設けたが、渦巻の外周面51aに設けてもよい。 11 and 12, the opening 60c is provided on the inner peripheral surface 51b of the spiral, but may be provided on the outer peripheral surface 51a of the spiral.
 図7、図10、図11に示した第2実施形態のチップシールでは、摺動面に溝が形成されているが、摺動面(シール面)に加えて、反シール面に溝が形成されていてもよい。 In the chip seal of the second embodiment shown in FIGS. 7, 10, and 11, a groove is formed on the sliding surface, but a groove is formed on the anti-seal surface in addition to the sliding surface (seal surface). May be.
 上記第1実施形態および第2実施形態で示した本発明のチップシールは、合成樹脂製とすることが好ましく、例えば、ポリテトラフルオロエチレン樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、液晶ポリマーなどの合成樹脂が使用できる。これらの合成樹脂に、炭素繊維、ウィスカなどの繊維状充填材、テトラフルオロエチレン樹脂粉末などの固体潤滑剤などが配合された樹脂組成物とすることができる。PPS樹脂、PEEK樹脂、液晶ポリマーを用いることで射出成形により容易に製造することができる。 The chip seal of the present invention shown in the first embodiment and the second embodiment is preferably made of a synthetic resin. For example, polytetrafluoroethylene resin, polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) ) Synthetic resins such as resins and liquid crystal polymers can be used. It can be set as the resin composition by mix | blending solid lubricants, such as fibrous fillers, such as carbon fiber and a whisker, tetrafluoroethylene resin powder, etc. with these synthetic resins. By using a PPS resin, a PEEK resin, or a liquid crystal polymer, it can be easily produced by injection molding.
 本発明のスクロール型コンプレッサ用チップシールは、シール性を維持しつつ、スクロール部材とチップシールとの摩擦力を低減でき、スクロール部材のスクロール時のトルクを低減できるので、スクロール型コンプレッサに広く適用できる。 The tip seal for the scroll compressor of the present invention can reduce the frictional force between the scroll member and the tip seal while maintaining the sealing performance, and can reduce the torque at the time of scrolling of the scroll member, so that it can be widely applied to the scroll compressor. .
  1、11、31、41、51 チップシール
  2、12、32、42、52 渦巻の巻き始め端部
  3、13、33、43、53 渦巻の巻き終わり端部
  4、14 凹部
  5、15、35、45、55 摺動面
  6、36、56 スクロール基板
  7、37、57 渦巻壁
  8、38、58 隙間
  9、39、59 ガス
  21、61 チップシール
  22、62 圧縮室
  23、63 シール溝
  24、64 固定スクロール
  25、65 可動スクロール
  26、66 渦巻壁境界
  40、50、60 溝
 
 
1, 11, 31, 41, 51 Tip seal 2, 12, 32, 42, 52 Spiral winding start end 3, 13, 33, 43, 53 Swirl end winding end 4, 14 Recess 5, 15, 35 , 45, 55 Sliding surface 6, 36, 56 Scroll substrate 7, 37, 57 Spiral wall 8, 38, 58 Gap 9, 39, 59 Gas 21, 61 Tip seal 22, 62 Compression chamber 23, 63 Seal groove 24, 64 Fixed scroll 25, 65 Movable scroll 26, 66 Spiral wall boundary 40, 50, 60 Groove

Claims (15)

  1.  スクロール部材である固定スクロールと可動スクロールとを備えたスクロール型コンプレッサにおいて、前記固定スクロールと前記可動スクロールとの間に形成される圧縮室をシールするための渦巻形状のチップシールであって、
     前記チップシールは、前記スクロール部材との摺動面に、該摺動面を部分的に切欠いた複数の凹部を有し、該複数の凹部は渦巻の内周面と外周面の少なくとも一方に配置され、個々の凹部は内周面または外周面に開口するとともに内周面と外周面とを貫通しないことを特徴とするスクロール型コンプレッサ用チップシール。
    In a scroll compressor including a fixed scroll and a movable scroll that are scroll members, a spiral chip seal for sealing a compression chamber formed between the fixed scroll and the movable scroll,
    The tip seal has a plurality of recesses in which the sliding surface is partially cut out on a sliding surface with the scroll member, and the plurality of recesses are arranged on at least one of an inner peripheral surface and an outer peripheral surface of the spiral. Each of the recesses opens to the inner peripheral surface or the outer peripheral surface and does not penetrate the inner peripheral surface and the outer peripheral surface.
  2.  前記摺動面における前記凹部の総面積の割合(凹部総面積/(凹部総面積+実摺動面積)×100)は、5~45%であることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。 The scroll type according to claim 1, wherein the ratio of the total area of the recesses on the sliding surface (total area of the recesses / (total area of the recesses + actual sliding area) x 100) is 5 to 45%. Compressor tip seal.
  3.  前記凹部の平面形状は、円弧状または渦巻形状に沿った略矩形状であることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。 2. The scroll-type compressor chip seal according to claim 1, wherein a planar shape of the concave portion is an arc shape or a substantially rectangular shape along a spiral shape.
  4.  前記凹部の深さは、該チップシールの厚みの45%以下であることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。 2. The tip seal for a scroll compressor according to claim 1, wherein the depth of the recess is 45% or less of the thickness of the tip seal.
  5.  前記凹部は、該チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して前記摺動面に複数個設置されており、該凹部それぞれの開口長さは、チップシールの展開長さの1~20%であり、
     隣り合う前記凹部の間は前記摺動面の一部であることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。
    A plurality of the recesses are provided on the sliding surface so as to be spaced apart from each other in the length direction from the winding start end portion to the winding end end portion of the spiral of the chip seal. 1-20% of the unfolded length of the seal,
    2. The scroll-type compressor tip seal according to claim 1, wherein a space between adjacent recesses is a part of the sliding surface.
  6.  前記凹部の平面形状の面積が、凹部間で略同一であることを特徴とする請求項5記載のスクロール型コンプレッサ用チップシール。 6. The scroll-type compressor tip seal according to claim 5, wherein the area of the planar shape of the recess is substantially the same between the recesses.
  7.  前記凹部は、前記摺動面に等間隔で複数個設置されていることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。 The scroll-type compressor tip seal according to claim 1, wherein a plurality of the recesses are provided at equal intervals on the sliding surface.
  8.  前記凹部の平面形状は円弧状であり、該チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、設置されている前記凹部の円弧半径が連続的または段階的に大きくなることを特徴とする請求項3記載のスクロール型コンプレッサ用チップシール。 The planar shape of the concave portion is an arc shape, and the arc radius of the concave portion is continuously or stepwise increased from the winding start end portion of the tip seal spiral toward the winding end end portion. 4. A tip seal for a scroll compressor according to claim 3.
  9.  スクロール型コンプレッサにおけるスクロール部材である固定スクロールと可動スクロールとの間に形成される圧縮室をシールするための渦巻形状のチップシールであって、
     前記チップシールは、少なくとも前記スクロール部材との摺動面において、前記チップシールの幅方向の中央部に溝を有し、該溝が、前記チップシールの略全長にわたり形成されていることを特徴とするスクロール型コンプレッサ用チップシール。
    A spiral chip seal for sealing a compression chamber formed between a fixed scroll and a movable scroll which are scroll members in a scroll compressor,
    The tip seal has a groove at the center in the width direction of the tip seal at least on the sliding surface with the scroll member, and the groove is formed over substantially the entire length of the tip seal. Scroll type compressor tip seal.
  10.  前記溝の溝幅は、前記チップシールの幅寸法の1/20~2/5であることを特徴とする請求項9記載のスクロール型コンプレッサ用チップシール。 10. The scroll-type compressor tip seal according to claim 9, wherein the groove width of the groove is 1/20 to 2/5 of the width dimension of the tip seal.
  11.  前記溝幅が、前記チップシールの渦巻の巻き始め端部から巻き終わり端部に向けて、連続的または段階的に大きくなることを特徴とする請求項10記載のスクロール型コンプレッサ用チップシール。 11. The scroll type compressor tip seal according to claim 10, wherein the groove width increases continuously or stepwise from a winding start end portion to a winding end end portion of the tip seal spiral.
  12.  前記溝の溝深さは、前記チップシールの厚みの35%以下であることを特徴とする請求項9記載のスクロール型コンプレッサ用チップシール。 10. The tip seal for a scroll compressor according to claim 9, wherein a groove depth of the groove is 35% or less of a thickness of the tip seal.
  13.  前記溝は、渦巻きの内周面と外周面のいずれか一方に、前記溝と連結する開口部が設けられていることを特徴とする請求項9記載のスクロール型コンプレッサ用チップシール。 10. The scroll compressor tip seal according to claim 9, wherein the groove is provided with an opening connected to the groove on either the inner peripheral surface or the outer peripheral surface of the spiral.
  14.  前記開口部は、前記摺動面を切欠いた凹み形状であり、前記チップシールの渦巻の巻き始め端部から巻き終わり端部までの長さ方向に離間して複数個設置されていることを特徴とする請求項13記載のスクロール型コンプレッサ用チップシール。 The opening has a concave shape in which the sliding surface is cut out, and a plurality of the openings are provided apart from each other in the length direction from the winding start end to the winding end of the tip seal spiral. A tip seal for a scroll compressor according to claim 13.
  15.  前記チップシールは、合成樹脂製であることを特徴とする請求項1記載のスクロール型コンプレッサ用チップシール。 2. The tip seal for a scroll compressor according to claim 1, wherein the tip seal is made of a synthetic resin.
PCT/JP2018/004250 2017-02-07 2018-02-07 Tip seal for scroll compressor WO2018147338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/484,419 US11536269B2 (en) 2017-02-07 2018-02-07 Tip seal for scroll compressor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017020699 2017-02-07
JP2017-020699 2017-02-07
JP2017200766A JP2019074025A (en) 2017-10-17 2017-10-17 Tip seal for scroll compressor
JP2017-200766 2017-10-17
JP2018-015577 2018-01-31
JP2018015577A JP7000180B2 (en) 2017-02-07 2018-01-31 Tip seal for scroll compressor

Publications (1)

Publication Number Publication Date
WO2018147338A1 true WO2018147338A1 (en) 2018-08-16

Family

ID=63108137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004250 WO2018147338A1 (en) 2017-02-07 2018-02-07 Tip seal for scroll compressor

Country Status (1)

Country Link
WO (1) WO2018147338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867941A (en) * 2020-07-09 2022-08-05 株式会社日立产机系统 Scroll gas machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388985A (en) * 1989-08-31 1991-04-15 Daikin Ind Ltd Scroll type fluid machine
JPH06288361A (en) * 1993-04-07 1994-10-11 Hitachi Ltd Scroll compressor
JPH0727060A (en) * 1993-07-07 1995-01-27 Mitsubishi Electric Corp Scroll compressor
JPH1047266A (en) * 1996-08-07 1998-02-17 Tokico Ltd Scroll fluid machinery
JP2003065266A (en) * 2001-08-30 2003-03-05 Hokuetsu Kogyo Co Ltd Oil free scroll fluid machine
US20160131136A1 (en) * 2014-11-07 2016-05-12 Trane International Inc. Tip seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388985A (en) * 1989-08-31 1991-04-15 Daikin Ind Ltd Scroll type fluid machine
JPH06288361A (en) * 1993-04-07 1994-10-11 Hitachi Ltd Scroll compressor
JPH0727060A (en) * 1993-07-07 1995-01-27 Mitsubishi Electric Corp Scroll compressor
JPH1047266A (en) * 1996-08-07 1998-02-17 Tokico Ltd Scroll fluid machinery
JP2003065266A (en) * 2001-08-30 2003-03-05 Hokuetsu Kogyo Co Ltd Oil free scroll fluid machine
US20160131136A1 (en) * 2014-11-07 2016-05-12 Trane International Inc. Tip seal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867941A (en) * 2020-07-09 2022-08-05 株式会社日立产机系统 Scroll gas machine
JP7329148B2 (en) 2020-07-09 2023-08-17 株式会社日立産機システム scroll gas machine
CN114867941B (en) * 2020-07-09 2024-03-26 株式会社日立产机系统 Scroll type fluid machine
EP4180666A4 (en) * 2020-07-09 2024-04-03 Hitachi Industry Equipment Systems Co Ltd Scroll-type gas machine

Similar Documents

Publication Publication Date Title
US11536269B2 (en) Tip seal for scroll compressor
US10634254B2 (en) Seal ring
JP5352007B2 (en) Seal ring
US6585501B2 (en) Scroll compressor sealing
JP3422747B2 (en) Scroll fluid machine
CN112088267B (en) Sealing ring
JPWO2013094657A1 (en) Seal ring
US9074688B2 (en) Rotary shaft seal
WO2019155945A1 (en) Seal ring
KR20060048832A (en) Scroll compressor
WO2018147338A1 (en) Tip seal for scroll compressor
CN110418890B (en) Tip seal and scroll fluid machine using the same
WO2023207536A1 (en) Fixed scroll applied to scroll compressor, and scroll compressor
JP2018128014A (en) Chip seal for scroll type compressor
CN217813953U (en) Scroll compressor and cross slip ring and matching component for scroll compressor
JP2019074025A (en) Tip seal for scroll compressor
WO2023286559A1 (en) Annular sealing member for scroll compressor
JPH0696961B2 (en) Scroll fluid machinery
EP3420195B1 (en) Scroll pump tip sealing
US11614169B2 (en) Seal ring
CN110145465B (en) Scroll sealing device of scroll compressor, scroll compressor and air conditioner
EP1223343A2 (en) Scroll compressor
CN109538476A (en) A kind of sealing structure and screw compressor of screw compressor
CN217813922U (en) Pump body structure of scroll compressor and compressor
EP4310296A2 (en) Scroll compressor and oldham ring and mating component for scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751520

Country of ref document: EP

Kind code of ref document: A1