WO2018147266A1 - Dispersant composition for hydraulic composition - Google Patents

Dispersant composition for hydraulic composition Download PDF

Info

Publication number
WO2018147266A1
WO2018147266A1 PCT/JP2018/003997 JP2018003997W WO2018147266A1 WO 2018147266 A1 WO2018147266 A1 WO 2018147266A1 JP 2018003997 W JP2018003997 W JP 2018003997W WO 2018147266 A1 WO2018147266 A1 WO 2018147266A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
component
hydraulic
less
mass
Prior art date
Application number
PCT/JP2018/003997
Other languages
French (fr)
Japanese (ja)
Inventor
田中駿也
下田政朗
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2018147266A1 publication Critical patent/WO2018147266A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/08Fats; Fatty oils; Ester type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/10Carbohydrates or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • C09K17/44Inorganic compounds mixed with organic active ingredients, e.g. accelerators the inorganic compound being cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts
    • C09K17/50Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts the organic compound being of natural origin, e.g. cellulose derivatives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ

Definitions

  • the present invention relates to a dispersant composition for a hydraulic composition and a grout method or a fluidized earth method.
  • One of the foundation pile construction methods for constructing foundation piles is a pre-boring root hardening method. This is because the soil is excavated to a predetermined depth (support layer) with the auger while injecting the drilling fluid, then the root hardening fluid is injected into the excavation tip, and then the pile circumference fixing fluid is injected while pulling up the auger, Is built in this excavation hole, fixed in the root-setting liquid by press-fitting or light hitting, and the pile and the ground are integrated by hardening the root-setting liquid and the pile circumference fixing liquid.
  • the pre-boring root hardening method is also called a cement milk method because cement milk is generally used as a root hardening liquid or a pile circumference fixing liquid.
  • the soil cement which mixed excavated soil and cement milk may be used as a pile circumference fixing liquid.
  • the additive for hydraulic compositions excellent in the deviscousness of the hydraulic composition containing clay is contained at a ratio of 80.
  • JP-A-2-48450 discloses a cement admixture containing a predetermined water-insoluble polymer and / or a predetermined water-insoluble metal complex and a water-soluble polymer having a hydroxyl group in a predetermined ratio. Has been.
  • the present invention relates to a dispersant for a hydraulic composition that can maintain the fluidity of a hydraulic composition that is a kneaded product of hydraulic powder such as cement milk and can suppress the thickening of soil cement.
  • a composition is provided.
  • the present invention includes a polymer compound (A) having a monomer unit containing an aromatic ring (hereinafter referred to as “component (A)”), a polymer having a monomer unit having a carboxylic acid group (B) [hereinafter referred to as “component (B)”. And a sugar composition (C) having a molecular weight of 1,000 or less (hereinafter referred to as component (C)).
  • component (A) a polymer compound having a monomer unit containing an aromatic ring
  • component (B) a polymer having a monomer unit having a carboxylic acid group
  • component (C) having a molecular weight of 1,000 or less
  • the present invention also relates to a grout method or a fluidized earth method using the dispersant composition for a hydraulic composition of the present invention.
  • the present invention also relates to a ground improvement method in which the hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention is stirred and mixed with the ground.
  • the present invention also relates to a method for producing a hydraulic composition in which water, hydraulic powder, component (A), component (B), and component (C) are mixed.
  • a dispersant composition for a hydraulic composition capable of maintaining the fluidity of cement milk and suppressing the thickening of soil cement.
  • a polymer having a monomer unit having a carboxylic acid group such as sodium polyacrylate, imparts a negative charge by adsorbing to clay particles, and exhibits dispersibility by electrostatic repulsion. It is considered a thing.
  • sugar compounds such as saccharose can impart a set retarding property to cement. Because of these effects, the polymer or sugar compound is used as an additive for soil cement.
  • sodium polyacrylate also acts on cement, and when it is added in a large amount, false condensation (gelation) occurs in a hydraulic composition such as cement milk.
  • Some polymer compounds having a monomer unit containing an aromatic ring are used as a dispersant in a hydraulic composition, but in the present invention, in combination with the component (B) and the component (C), This has the unexpected effect of maintaining both the fluidity of cement milk and the suppression of thickening of soil cement.
  • the component (A) is a polymer compound having a monomer unit containing an aromatic ring.
  • the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a triazine ring.
  • the monomer unit containing an aromatic ring include one or more monomer units selected from a monomer unit containing a benzene ring, a monomer unit containing a naphthalene ring, and a monomer unit containing a triazine ring.
  • the component (A) preferably has a weight average molecular weight of 1,000 or more and 100,000 or less. This molecular weight measurement method varies depending on the polymer compound.
  • the content of the monomer unit containing an aromatic ring in the total monomer units of the component (A) is preferably 50 mol% or more, more preferably from the viewpoint of suppression of cement milk thickening and the suppression of thickening of soil cement. Is 51 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the “monomer unit” means a “repeating unit” in the polymer compound.
  • a “repeat unit” such as the following formula is called a monomer unit.
  • n represents the number of repeating units.
  • the content of the monomer unit having a carboxylic acid group in the total monomer units of the component (A) is preferably less than 50 mol% from the viewpoint of suppressing the increase in cement milk viscosity and suppressing the increase in viscosity of the soil cement. More preferably, it is less than 40 mol%, More preferably, it is less than 30 mol%, More preferably, it is less than 20 mol%, More preferably, it is less than 10 mol%.
  • the component (A) is preferably a polymer compound having a monomer unit containing a naphthalene ring from the viewpoint of suppressing false condensation.
  • naphthalenesulfonic acid formaldehyde condensate or a salt thereof is more preferable.
  • the naphthalenesulfonic acid formaldehyde condensate or a salt thereof is a condensate of naphthalenesulfonic acid and formaldehyde or a salt thereof.
  • naphthalenesulfonic acid formaldehyde condensate may be used as a monomer, for example, methyl naphthalene, ethyl naphthalene, butyl naphthalene, hydroxy naphthalene, naphthalene carboxylic acid, anthracene, phenol, cresol, creosote oil, tar, melamine, as long as the performance is not impaired. It may be co-condensed with an aromatic compound capable of co-condensing with naphthalenesulfonic acid, such as urea, sulfanilic acid and / or derivatives thereof.
  • an aromatic compound capable of co-condensing with naphthalenesulfonic acid such as urea, sulfanilic acid and / or derivatives thereof.
  • Naphthalene sulfonic acid formaldehyde condensate or salt thereof may be, for example, Mighty 150, Demol N, Demol RN, Demol MS, Demol SN-B, Demol SS-L (all manufactured by Kao Corporation), Cellflow 120, Labelin FD-40 Commercial products such as Labelin FM-45 (both manufactured by Daiichi Kogyo Co., Ltd.) can be used.
  • the naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 100,000 or less, more preferably 80,000 or less, and still more preferably 50,000 or less, from the viewpoint of suppressing thickening of cement milk. More preferably, it is 30,000 or less, More preferably, it is 20,000 or less, More preferably, it is 15,000 or less.
  • the naphthalenesulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 1,000 or more, more preferably 3,000 or more, still more preferably 4,000 or more, from the viewpoint of improving cement dispersibility. More preferably, it is 5,000 or more.
  • the naphthalene sulfonic acid formaldehyde condensate may be in the acid state or neutralized.
  • the molecular weight of naphthalenesulfonic acid formaldehyde condensate or a salt thereof can be measured using gel permeation chromatography (GPC) under the following conditions.
  • polystyrene sulfonate conversion monodisperse sodium polystyrene sulfonate: molecular weight, 206, 1,800, 4,000, 8,000, 18,000, 35,000, 88,000, 780,000
  • Detector Tosoh Corporation UV-8020
  • Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate or a salt thereof include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 95 ° C.
  • the neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per naphthalenesulfonic acid and unreacted sulfuric acid.
  • the water-insoluble matter which arises by neutralization can be removed, and preferably the separation by filtration is mentioned as the method.
  • an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained.
  • This aqueous solution can be used as it is as the aqueous solution of the component (A).
  • the aqueous solution can be dried and powdered to obtain a powdery salt of naphthalenesulfonic acid formaldehyde condensate, which can be used as the powdery component (A). Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.
  • the lignin sulfonic acid or a salt thereof is a lignin that is partially sulfonated with sulfurous acid or a salt thereof or a salt thereof.
  • the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and amine salts, and alkali metal salts such as sodium salts and potassium salts are preferable.
  • alkali metal salts such as sodium salts and potassium salts are preferable.
  • purified the reducing saccharides contained in these by ultrafiltration is preferable from the hardening delay reduced.
  • Lignin sulfonic acid or a salt thereof is a polymer compound obtained by derivatizing lignin extracted from wood. Lignin sulfonic acid or a salt thereof is known as a dispersant for a hydraulic composition containing hydraulic powder such as cement or gypsum.
  • Lignin sulfonic acid or a salt thereof may contain a decomposition product of lignin, a by-product upon sulfonation, or the like as long as performance is not impaired.
  • lignin sulfonic acid or a salt thereof for example, commercially available products such as Master Pozoris # 70, Master Pozoris # 72 manufactured by BASF, Sun Extract 252 manufactured by Nippon Paper Industries Co., Ltd., Plastocrete NC manufactured by Nihon Sika Co., Ltd. are used. be able to.
  • a melamine sulfonic acid formaldehyde condensate or a salt thereof is obtained by reacting N-methylol melamine obtained by reacting melamine with formaldehyde to react bisulfite to sulfomethylate a part of methylol group, and then add an acid to form methylol group.
  • N-methylol melamine obtained by reacting melamine with formaldehyde to react bisulfite to sulfomethylate a part of methylol group, and then add an acid to form methylol group.
  • Is a known compound obtained by dehydrating and condensing to formaldehyde condensate and neutralizing with alkali see, for example, Japanese Patent Publication No. Sho 63-37058).
  • alkali examples include hydroxides of alkali metals or alkaline earth metals, ammonia, mono, di, trialkyl (2 to 8 carbon atoms) amine, mono, di, trialkanol (2 to 8 carbon atoms) amine, and the like. be able to.
  • the molecular weight of the melamine sulfonic acid formaldehyde condensate is preferably 1,000 or more, more preferably 3,000 or more, still more preferably 5,000 or more, and preferably 100,000 or less, more preferably 50,000 or less, More preferably, it is 20,000 or less (gel permeation chromatography method, converted to polystyrene sulfonic acid).
  • the component (B) is a polymer having a monomer unit having a carboxylic acid group.
  • “monomer unit” means “repeating unit” in the polymer.
  • a “repeating unit” represented by the following formula is called a monomer unit.
  • m represents the number of repeating units.
  • Examples of the monomer having a carboxylic acid group include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid.
  • Examples of the component (B) include polyacrylic acid, polymethacrylic acid, acrylic acid / maleic acid copolymers, and salts thereof.
  • Examples of the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and alkyl ammonium salts.
  • the component (B) is preferably polyacrylic acid or a salt thereof, and more preferably a polymer selected from a sodium salt of polyacrylic acid and an ammonium salt of polyacrylic acid.
  • the polymer of the component (B) can have a degree of neutralization of 0% to 75%. That is, the component (B) may be an unneutralized or partially neutralized polymer. In the case of a partially neutralized polymer, the degree of neutralization is preferably 10% or more, more preferably 20% or more, and preferably 60% or less, more preferably 40% or less.
  • the content of the monomer unit having a carboxylic acid group in the total monomer units of the component (B) is preferably 50 mol% or more from the viewpoint of suppressing the increase in the viscosity of cement milk and suppressing the increase in the viscosity of the soil cement. More preferably, it is 51 mol% or more, More preferably, it is 60 mol% or more, More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more.
  • the polymer of component (B) can be produced by a known method. Moreover, it is available as a commercial item. Specific examples of commercially available products include the Poise Series (Kao Corporation), Aquaric L Series (Nippon Shokubai Co., Ltd.), Aquaric H Series (Nihon Shokubai Co., Ltd.), Jurimer Series (Toagosei Co., Ltd.), Aron Series (Toa Gosei Co., Ltd.).
  • the weight average molecular weight of the component (B) is preferably 2,000 or more, more preferably 4,000 or more, still more preferably 6,000 or more, and preferably 1,000,000 or less, more preferably 100,000. Hereinafter, it is more preferably 50,000 or less.
  • Component (C) is a sugar compound having a molecular weight of 1,000 or less.
  • the component (C) is preferably a saccharide compound having a molecular weight of 700 or less, more preferably 500 or less.
  • the component (C) is preferably one or more sugar compounds selected from monosaccharides, disaccharides and trisaccharides.
  • Examples of the sugar compound as component (C) include one or more compounds selected from sugars and sugar alcohols.
  • Examples of the saccharide include monosaccharides such as glucose, fructose, galactose, and mannose, disaccharides such as saccharose, and trisaccharides.
  • the saccharide is preferably a compound selected from monosaccharides and disaccharides, more preferably disaccharides.
  • examples of the sugar alcohol include sorbitol.
  • Component (C) is preferably one or more compounds selected from saccharose, glucose, maltose, and lactose, more preferably one or more compounds selected from saccharose, glucose, maltose, and lactose, and from sucrose and glucose.
  • One or more selected compounds are more preferred, and sucrose is even more preferred.
  • the dispersant composition for hydraulic composition of the present invention preferably contains sucrose as the component (C).
  • the dispersant composition for hydraulic composition of the present invention has a total content of (A) component, (B) component and (C) component of 100% by mass (
  • the component A) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 60% by mass or less, more preferably 40% by mass or less, still more preferably 20% by mass. % Or less.
  • the dispersant composition for a hydraulic composition of the present invention has a total content of the component (A), the component (B) and the component (C) as 100% by mass (
  • the component B) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass. % Or less.
  • the dispersant composition for a hydraulic composition according to the present invention has the component (C) as the total content of the component (A), the component (B), and the component (C) as 100% by mass from the viewpoint of curing delay. , Preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and preferably 60% by mass or less, more preferably 45% by mass or less, still more preferably 30% by mass or less. .
  • the dispersant composition for a hydraulic composition according to the present invention is a total of component (A), component (B), and component (C), preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably. Is 30% by mass or more, and preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less.
  • This composition is, for example, a concentrated system or a concentrated system used by diluting the dispersant composition of the present invention when the concentrations of the components (A), (B) and (C) are relatively high. Of the dispersant composition of the present invention.
  • the dispersant composition for a hydraulic composition of the present invention comprises (A) component, (B) component, and (C) component in total, preferably 0.5% by mass or more, more preferably 1% by mass. More preferably, it is 1.5% by mass or more, and preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • This composition is used when the concentration of the component (A), the component (B) and the component (C) in the composition, such as a dilute composition or kneaded water, is relatively low. The dilution of the agent composition is shown.
  • the mass ratio of the component (A) to the component (B) is (A) / (B), preferably 0, from the viewpoint of suppressing the thickening of the soil cement. 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, and preferably 1.5 or less, more preferably 1 or less, still more preferably 0.5 or less.
  • the mass ratio of the component (B) to the component (C) is (B) / (C), preferably 0, from the viewpoint of suppressing the thickening of the soil cement. 0.5 or more, more preferably 1 or more, further preferably 1.5 or more, and preferably 10 or less, more preferably 6 or less, still more preferably 4 or less, still more preferably 2.5 or less.
  • the dispersant composition for a hydraulic composition of the present invention preferably has a pH at 22 ° C. of 7.5 or less from the viewpoint of suppressing false setting of cement milk.
  • the pH is more preferably 7 or less, still more preferably 6.9 or less, and is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and even more preferably 5 or more.
  • the pH is the pH of the composition itself.
  • the pH is such that the total content of the component (A), the component (B), and the component (C) is 1 % By mass to 50% by mass, preferably 1% by mass to 30% by mass, more preferably 1% by mass to 10% by mass, more preferably 1% by mass to 5% by mass, and even more preferably 1% by mass or more. It is the pH of the liquid composition obtained by diluting with water to 3% by mass or less, more preferably 2% by mass. In the case where there is a range in the total content, the pH may be at least in any mass% of the range.
  • the dispersant composition for hydraulic composition of the present invention is used at a pH of 7.5 or less from the viewpoint of suppressing false setting of cement milk.
  • the pH containing water is 7.5 or less.
  • the liquid composition is preferably used for the preparation of a hydraulic composition.
  • the pH is more preferably 7 or less, still more preferably 6.9 or less, and is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and even more preferably 5 or more.
  • the dispersant composition for hydraulic composition of the present invention is used as kneaded water diluted with water.
  • the pH of the kneaded water is preferably 7.5 or less at 22 ° C.
  • the pH of the kneaded water is usually 7.5 or less at 22 ° C.
  • water, (A) component, (B) component and (C) component are contained, and the total content of (A) component, (B) component and (C) component is preferably 0.5. % By mass or more, more preferably 1% by mass or more, further preferably 1.5% by mass or more, and preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, and still more preferably. Is 2% by mass or less, and the pH at 22 ° C.
  • the pH can be adjusted to the above range by adjusting the liquidity of the dispersant composition for a hydraulic composition as a stock solution with an acid.
  • the acid is an acid other than the component (A) and the component (B).
  • the acid here has a molecular weight relatively smaller than that of the component (A) or the component (B).
  • the acid is preferably an acid having a molecular weight of less than 1,000.
  • an organic acid or an inorganic acid can be used, and an acid that hardly affects the hydration of the hydraulic powder is preferable.
  • Preferred acids are acids selected from organic acids other than oxycarboxylic acids and inorganic acids.
  • the organic acid preferably has a carboxylic acid group, and more preferably an organic acid having 1 to 5 carboxylic acid groups per molecule from the viewpoint of preventing cement gelation.
  • Examples of the organic acid include organic acids selected from citric acid, gluconic acid, tartaric acid, acetic acid, and formic acid.
  • the inorganic acid include inorganic acids selected from sulfuric acid, hydrochloric acid, and nitric acid.
  • the dispersant composition for hydraulic composition of the present invention has a pH at 22 ° C. of preferably 7.5 or less, even if the amount of the dispersant composition for hydraulic composition of the present invention is increased,
  • the false condensation (gelation) of the hydraulic composition can be suppressed. It is believed that the false setting (gelation) of the hydraulic composition is caused by early abnormal hydration.
  • the pH of the kneaded water is preferably adjusted to 7.5 or less to advantageously achieve both the fluidity of cement milk and the suppression of thickening of the soil cement. it can.
  • the amount of component (A) and component (B) added to the hydraulic powder is large, or when the working environment is high temperature (slurry temperature 25 ° C. or higher), the fluidity of cement milk tends to decrease. In such a case, the fluidity
  • the dispersant composition for a hydraulic composition of the present invention preferably contains an antifoaming agent (D) [hereinafter referred to as component (D)] from the viewpoint of strength development.
  • component (D) is preferably polysiloxane, polyoxyethylene polyoxypropylene, polypropylene oxide and derivatives thereof (polyoxypropylene, polyoxypropylene glyceryl ether, etc.), acetylene glycol and derivatives thereof (from the viewpoint of defoaming properties) Acetylene glycol, alkylene oxide adducts of acetylene glycol, etc.), polyoxyalkylene fatty acid esters, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylamides, trialkyl phosphates, alkylamines, and alcohols. It is a compound of this. More preferably, these compounds are compounds insoluble in water.
  • Polysiloxane includes polysiloxane, dimethylpolysiloxane, polyhydroxymethylsiloxane and the like.
  • polyoxyethylene polyoxypropylene examples include polyoxyethylene polyoxypropylene random polymer, polypropylene oxide-polyethylene oxide-polypropylene oxide block polymer, and the like. From the viewpoint of defoaming properties, these weight average molecular weights are preferably 2,000 or more and 100,000 or less.
  • Polypropylene oxide and its derivatives include polyoxypropylene glyceryl ether, polyoxypropylene and the like.
  • the weight average molecular weight of these polypropylene oxide portions is preferably 2,000 or more and 100,000 or less from the viewpoint of defoaming properties.
  • acetylene glycol and its derivatives examples include acetylenol E00, acetylenol E13 (all are Kawaken Fine Chemical Co., Ltd.), DYNOL (registered trademark) 604, SURFYNOL (registered trademark) 440, SURFYNOL (registered trademark) 104, and SURFYNOL (registered trademark). 2502, SURFYNOL (registered trademark) 420, SURFYNOL (registered trademark) DF-75 (all of which are Air Products and Chemicals).
  • the acetylene glycol derivative include an alkylene oxide adduct of acetylene glycol. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less.
  • the alkylene oxide is preferably propylene oxide.
  • polyoxyalkylene fatty acid esters examples include alkylene oxide adducts of fatty acids having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide preferably contains propylene oxide.
  • polyoxyalkylene alkyl ethers examples include alkylene oxide adducts of alcohols having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide is preferably propylene oxide. Specific examples include polypropylene glycol lauryl ether, polypropylene glycol myristyl ether, and mixtures thereof.
  • polyoxyalkylene alkylamides examples include alkylene oxide adducts of amides of fatty acids having 8 to 22 carbon atoms and amines such as monoethanolamine and diethanolamine. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide is preferably propylene oxide.
  • trialkyl phosphate examples include tributyl phosphate and triisobutyl phosphate.
  • the alkyl group preferably has 1 to 5 carbon atoms.
  • alkylamine examples include monoalkylamine, dialkylamine, and trialkylamine. From the viewpoint of poor water solubility and antifoaming properties, monomethylalkylamines having an alkyl group with 8 to 18 carbon atoms and dimethylalkylamines with an alkyl group having 8 to 18 carbon atoms are preferred.
  • Alkylamines include caprylamine (octylamine), laurylamine, stearylamine, coconutamine, distearylamine, dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, dimethylbehenylamine, dimethylcoconutamine, dimethylmyristylamine , Dimethyl palmitylamine, dimethyl stearylamine, dilauryl monomethylamine, beef tallow amine, and trioctylamine.
  • the alcohol examples include alcohols having 4 to 22 carbon atoms, preferably monohydric alcohols having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the alcohol has preferably 6 to 18 carbon atoms.
  • antifoaming agents include SAGTEX DSA (trademark) as polysiloxane, and polypropylene glycol lauryl ether, polypropylene glycol myristyl ether as polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl ether, or polyoxyalkylene alkylamide. And mixtures thereof, propylene oxide / ethylene oxide adduct of oleic acid, SN deformer 260 (trademark), SN deformer 265 (trademark), SN deformer 466 (trademark) (both are San Nopco Co., Ltd.), antifoaming agent NO. 21 (trademark), antifoaming agent NO.
  • SAGTEX DSA trademark
  • polypropylene glycol lauryl ether polypropylene glycol myristyl ether as polyoxyalkylene fatty acid ester
  • polyoxyalkylene alkyl ether polyoxyalkylene alkylamide
  • the antifoaming agent is preferably a polyoxyalkylene fatty acid ester, a polyoxyalkylene alkyl ether, or a polyoxyalkylene alkyl amide from the viewpoint of storage stability, and polypropylene glycol lauryl ether, polypropylene glycol myristyl ether, and a mixture thereof.
  • oxyethylene polyoxypropylene examples include Newpol PE-61 (trademark) and Newpole PE-71 (trademark), and examples of the polyoxypropylene include polypropylene glycol having a molecular weight of 2,000 to 100,000.
  • the antifoaming agent is preferably polysiloxane, DK Q1-1183 (trademark) is SN, polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl ether, or polyoxyalkylene alkylamide as SN.
  • Deformer 260 (trademark), SN deformer 265 (trademark), SN deformer 466 (trademark), antifoaming agent NO. 21 (trademark), antifoaming agent NO.
  • the antifoaming agent of component (D) contains one or more compounds selected from fatty acid esters and alkylamines.
  • alkylamine is preferable from the viewpoint of storage stability of the dispersant composition of the present invention, dimethylalkylamine having an alkyl group having 8 to 18 carbon atoms is more preferable, and dimethyldecylamine. More preferred is one or more alkylamines selected from dimethyllaurylamine, dimethylmyristylamine, and dimethylpalmitylamine.
  • the content of the component (D) in the composition is preferably 0.001% by mass or more, more preferably 0.01. It is contained in an amount of not less than mass%, preferably not more than 3 mass%, more preferably not more than 1 mass%.
  • the dispersing agent composition for hydraulic compositions of this invention contains (D) component, (D) with respect to the sum total of content of (A) component, (B) component, and (C) component.
  • the component is contained in an amount of preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and preferably 3% by mass or less, more preferably 1% by mass or less.
  • the dispersant composition for a hydraulic composition of the present invention includes a conventional cement dispersant, a water-soluble polymer compound, an air entraining agent, a cement wetting agent, an expanding material, a waterproofing agent, a retarding agent, a quick setting agent, and a thickening agent.
  • a coagulant, a drying shrinkage reducing agent, a strength enhancer, a curing accelerator, a preservative, and the like (excluding those corresponding to the component (A), the component (B), or the component (C)) it can.
  • the form of the dispersant composition for a hydraulic composition of the present invention may be either liquid or solid, and is preferably liquid.
  • the dispersant composition for hydraulic compositions of the present invention can contain water.
  • Examples of the hydraulic composition targeted by the dispersant composition for hydraulic composition of the present invention include a hydraulic composition containing hydraulic powder and water.
  • the hydraulic powder is a powder having physical properties that hardens by a hydration reaction, and examples thereof include cement and gypsum. Cement is preferred, and more preferred is ordinary portland cement, belite cement, medium heat cement, early strength cement, very early strength cement, sulfate resistant cement, and the like. Also, blast furnace slag cement, fly ash cement, silica fume cement, etc. in which pozzolanic action and / or latent hydraulic properties such as blast furnace slag, fly ash, silica fume, and stone powder (calcium carbonate powder) are added to cement, etc. But you can.
  • the dispersant composition for a hydraulic composition of the present invention has a water / hydraulic powder ratio of preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably It is suitably used for a hydraulic composition of 150% by mass or less, more preferably 120% by mass or less, and still more preferably 80% by mass or less.
  • the water / hydraulic powder ratio is the mass percentage (mass%) of water and hydraulic powder in the hydraulic composition, and is calculated by the mass of water / mass of hydraulic powder ⁇ 100. .
  • the water / hydraulic powder ratio is calculated based on the amount of water and the amount of powder having physical properties that are cured by a hydration reaction.
  • the powder having physical properties that hardens by a hydration reaction includes a powder having a pozzolanic action, a powder having a latent hydraulic property, and a powder selected from stone powder (calcium carbonate powder).
  • the amount is also included in the amount of hydraulic powder.
  • the amount of the high-strength admixture is also included in the amount of the hydraulic powder. The same applies to the following mass parts related to the mass of the hydraulic powder.
  • the dispersant composition for hydraulic composition of the present invention is suitable for cement milk.
  • the cement milk has a water / hydraulic powder ratio of preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably 150% by mass or less, more preferably 120% by mass. Hereinafter, it is more preferably 80% by mass or less.
  • the dispersant composition for a hydraulic composition of the present invention is suitable for a construction method using a waste liquid, specifically, a grout construction method or a fluidized earth method.
  • Examples of the hydraulic composition targeted by the dispersant composition for a hydraulic composition of the present invention include a grout method or a cement composition for a fluidized earth method.
  • the present invention includes a hydraulic powder, water, a polymer compound (A) [(A) component] having a monomer unit containing an aromatic ring, and a polymer (B) [(B) having a monomer unit having a carboxylic acid group.
  • Component] and a sugar composition (C) having a molecular weight of 1,000 or less (component (C)) are provided.
  • Cement milk is one example of the hydraulic composition of the present invention.
  • Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the hydraulic powder are the same as those of the dispersant composition for a hydraulic composition of the present invention.
  • the specific example and preferable aspect of water / hydraulic powder ratio are also the same as the dispersing agent composition for hydraulic compositions of this invention.
  • the hydraulic composition of this invention can contain (D) component.
  • the fluidity of the hydraulic composition of the present invention is maintained. And even if clay, such as soil, is mixed, an increase in viscosity can be suppressed. Utilizing such characteristics, it can be suitably used for applications such as ground improvement.
  • the hydraulic composition of the present invention is suitable for a pile circumference fixing liquid.
  • the hydraulic composition of the present invention can be used as it is or as a soil cement mixed with excavated soil, as a pile circumference fixing solution or a root hardening solution in foundation pile construction.
  • the total of the component (A), the component (B) and the component (C) is preferably 0.1% by mass or more, more preferably 0.4%, based on the hydraulic powder. More than mass%, and preferably 2.0 mass% or less, More preferably, it contains 1.2 mass% or less.
  • the component (A) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 0.6% by mass with respect to the hydraulic powder. % Or less, more preferably 0.3% by mass or less.
  • the component (B) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 1% by mass or less, based on the hydraulic powder. More preferably, the content is 0.6% by mass or less.
  • the component (C) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 0.6% by mass with respect to the hydraulic powder. % Or less, more preferably 0.3% by mass or less.
  • the mass ratio of the component (A) to the component (B) is (A) / (B), preferably 0.01 or more, from the viewpoint of suppressing the thickening of the soil cement.
  • it is 0.05 or more, More preferably, it is 0.1 or more, Preferably it is 1.5 or less, More preferably, it is 1 or less, More preferably, it is 0.5 or less.
  • the hydraulic composition of the present invention is preferably prepared using the dispersant composition for hydraulic composition of the present invention.
  • the hydraulic composition of the present invention is prepared by mixing water, (A) component, (B) component, and (C) kneaded water having a pH of 7.5 or less with hydraulic powder. Is preferred.
  • the kneaded water is also included in the dispersant composition of the present invention as long as the requirements of the dispersant composition of the present invention are satisfied.
  • the manufacturing method of a hydraulic composition which mixes the liquid composition containing water, (A) component, (B) component, and (C) component with hydraulic powder is provided.
  • the total of component (A), component (B) and component (C) is preferably 0.1% by weight or more, more preferably 0.4% by weight or more with respect to the hydraulic powder, and , Preferably 2.0% by mass or less, more preferably 1.2% by mass or less.
  • a method for producing a hydraulic composition wherein a liquid composition containing water, the component (A), the component (B) and the component (C) is mixed with a hydraulic powder.
  • the pH of the liquid composition is preferably 7.5 or less, more preferably 7 or less, further preferably 6.9 or less, and preferably 2 or more, more preferably 3 or more, and still more preferably 4 More preferably, it is 5 or more.
  • the liquid composition in these production methods is kneaded water, and is also a dispersant composition for a hydraulic composition of the present invention.
  • the dispersant composition for a hydraulic composition of the present invention is a powder
  • a premix for a hydraulic composition containing the powder dispersant composition for a hydraulic composition of the present invention and a hydraulic powder. Can be provided.
  • a grout method or a fluidized earth method using the dispersant composition for a hydraulic composition of the present invention is a soft ground that builds pillars and walls in the ground while sending the hydraulic composition into the ground as a high-pressure jet jet fluid, scraping the surrounding earth and sand and discharging it as ground mud. It is an improved construction method.
  • the fluidized earth method is a method in which soil discharged during construction or civil engineering is mixed with cement and backfilled for reuse.
  • the hydraulic composition and the ground can be mixed with stirring.
  • Specific examples of the ground improvement method include shallow layer improvement and deep layer improvement. For these shallow and deep layer improvements, you can refer to the “Ground Improvement Manual 3rd Edition” (Cement Association). More specifically, the improvement method of the ground includes the “embedding method of ready-made concrete piles”, and further, the water of the present invention is applied to the pile root consolidation part and the pile circumference part of the “pre-boring method” and “nakabori method”. A hard composition is used.
  • the ground improvement method of the present invention is a method of mixing the ground and a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention in these methods.
  • the mixing amount of the hydraulic composition can be appropriately determined in consideration of the composition of the hydraulic composition, the construction method, the soil quality, the target strength, and the like. For example, the mixing amount of the hydraulic composition with respect to 1 m 3 of soil can be 100 kg or more and 1,000 kg or less.
  • a pre-boring root consolidation using a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention as a pile circumference fixing liquid and / or a root consolidation liquid As an example of the ground improvement method of the present invention, a pre-boring root consolidation using a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention as a pile circumference fixing liquid and / or a root consolidation liquid.
  • a construction method is mentioned. More specifically, a liquid composition having a pH of 7.5 or less containing water, the component (A), the component (B) and the component (C) is mixed with a hydraulic powder to prepare a hydraulic composition, There is a pre-boring root hardening method in which the obtained hydraulic composition is used as a pile circumference fixing liquid and / or a root hardening liquid.
  • Example ⁇ Compounding ingredients> Table 1 shows the components used in the following Examples and Comparative Examples.
  • the C′-1 dextrin had a molecular weight greater than 1,000.
  • Cement milk evaluation method (1-1) Preparation of cement milk Mixing the ingredients shown in Table 1 and water to prepare a dispersant aqueous solution, and in a 2L plastic cup (2L disposable cup, Nikko Hansen Co., Ltd.) Cement milk was prepared by mixing with cement and kneading with a hand mixer for 1 minute. At that time, the temperature of each material, water, and each component, and the room temperature were all set to 22 ° C. As the cement, ordinary cement was used. Water for preparing the dispersant aqueous solution was tap water. The cement and the dispersant aqueous solution were used so that the dispersant aqueous solution / cement was 60%.
  • the aqueous dispersant / cement substantially corresponds to a water / hydraulic powder ratio.
  • the components (A), (B), and (C) in Table 1 were used so that the amounts added to the cement were as shown in Tables 2-3.
  • the component (C ′) is a comparative compound of the component (C), but is regarded as the component (C) for convenience, and indicates a mass ratio and mass% (the same applies hereinafter).
  • component (D) antifoaming agent No. 21 mass% was added with respect to the total amount (Equivalent component conversion) of (A) component, (B) component, and (C) component.
  • the height of the liquid surface from the bottom of the cup is A
  • the height of the fluidized bed is B
  • the thickness of the gelled layer is C
  • A B + C.
  • the fluidity (%) was determined by B / A ⁇ 100 and shown in the table.
  • the flow rate is preferably as close to 100%. Elapsed time represents the time since cement and water first contacted.
  • cement milk was prepared by the following procedure. Mix the ingredients in Table 1 and water to prepare an aqueous dispersant solution, mix with cement in a 500 ml plastic cup (500 ml disposable cup, Nikko Hansen Co., Ltd.), knead with a hand mixer for 1 minute, and cement milk was prepared. At that time, the temperature of each material, water, and each component, and the room temperature were all set to 22 ° C. As the cement, ordinary cement was used. Water for preparing the dispersant aqueous solution was tap water. The cement and the dispersant aqueous solution were used so that the dispersant aqueous solution / cement was 60% by mass.
  • the aqueous dispersant / cement substantially corresponds to a water / hydraulic powder ratio.
  • the components (A), (B), and (C) in Table 1 were used so that the amounts added to the cement were as shown in Tables 2-3.
  • component (D) antifoaming agent No. 21 mass% was added with respect to the total amount (Equivalent component conversion) of (A) component, (B) component, and (C) component.
  • muddy water and cement milk were put into another 500 ml plastic cup, and stirred for 30 seconds with a hand mixer to prepare a soil cement.
  • Kasaoka clay (adjusted to a specific gravity of 1.5 by adding water) was used.
  • the mass ratio is a mass ratio where the sum of the component (A), the component (B) and the component (C) is 100 (the same applies hereinafter).
  • the mass% of component (D) is mass% relative to the total of component (A), component (B) and component (C) (the same applies hereinafter).
  • * 3 The addition amount of (A) + (B) + (C) is mass% with respect to cement (the same applies hereinafter).
  • Example 3 and Comparative Example 3 Cement milk and soil cement were prepared using the components in Table 1 as shown in Table 4, and the same evaluation as in Example 1 was performed. The results are shown in Table 4.
  • the pH was adjusted as shown in Table 4 using the acids shown in Table 5 (shown as the component (E)).
  • the mass% of the component (E) is the mass% in the aqueous dispersant solution.
  • Example 4 Cement milk and soil cement were prepared using the components in Table 1 as shown in Table 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 6.
  • the component (B) was used by adjusting the neutralization degree as shown in Table 6 using sodium hydroxide.
  • Example 5 The component of Table 1 and water were mixed, and the dispersing agent composition for hydraulic compositions which contains 40 mass% of (A) component, (B) component, and (C) component in total with the composition of Table 7 was prepared.
  • a component (D) 0.4 mass% of D-2 Pharmin DM2098 was added to the total amount (converted to the effective component) of the components (A), (B) and (C).
  • Acetic acid was added to adjust the pH of the 2% by weight aqueous solution of the dispersant composition for hydraulic composition to 6 to 7 at 22 ° C.
  • the composition was stored at 40 ° C. for 1 day or 7 days, and the appearance was visually observed. The results are shown in Table 7.

Abstract

The present invention is a dispersant composition for a hydraulic composition, the dispersant composition containing a polymeric compound (A) which has aromatic ring–containing monomer units, a polymer (B) which has carboxylic acid group–containing monomer units, and a sugar compound (C) which has a molecular weight of 1,000 or less.

Description

水硬性組成物用分散剤組成物Dispersant composition for hydraulic composition
 本発明は、水硬性組成物用分散剤組成物及びグラウト工法又は流動化処理土工法に関する。 The present invention relates to a dispersant composition for a hydraulic composition and a grout method or a fluidized earth method.
背景技術
 基礎杭を築造する基礎杭施工方法の一つに、プレボーリング根固め工法がある。これは、掘削液を注入しながら土壌をオーガで所定深度(支持層)まで掘削した後、根固め液を掘削先端部へ注入し、その後、オーガを引き上げながら杭周固定液を注入し、杭をこの掘削孔に建て込み、圧入又は軽打により根固め液中に定着させ、根固め液と杭周固定液の硬化によって杭と地盤を一体化させる方法である。プレボーリング根固め工法は、根固め液や杭周固定液として一般にセメントミルクを用いるため、セメントミルク工法とも呼ばれる。また、杭周固定液として、掘削した土壌とセメントミルクとを混合したソイルセメントが用いられることもある。特開2005-54437号公報、特開2014-114600号公報、特開2014-125788号公報には、基礎杭の施工に関する技術が開示されている。
Background Art One of the foundation pile construction methods for constructing foundation piles is a pre-boring root hardening method. This is because the soil is excavated to a predetermined depth (support layer) with the auger while injecting the drilling fluid, then the root hardening fluid is injected into the excavation tip, and then the pile circumference fixing fluid is injected while pulling up the auger, Is built in this excavation hole, fixed in the root-setting liquid by press-fitting or light hitting, and the pile and the ground are integrated by hardening the root-setting liquid and the pile circumference fixing liquid. The pre-boring root hardening method is also called a cement milk method because cement milk is generally used as a root hardening liquid or a pile circumference fixing liquid. Moreover, the soil cement which mixed excavated soil and cement milk may be used as a pile circumference fixing liquid. Japanese Patent Application Laid-Open Nos. 2005-54437, 2014-114600, and 2014-125788 disclose techniques related to construction of foundation piles.
 また、特開2000-143315号公報には、(イ)不飽和モノカルボン酸及び不飽和ジカルボン酸からなる群より選ばれる1種以上の単量体を重合して得られる重合体又は共重合体の水溶性塩と、(ロ)オキシカルボン酸もしくはその塩、糖及び糖アルコールからなる群より選ばれる1種以上の化合物とを重量比で(イ)/(ロ)=97/3~20/80の割合で含有する、粘土質を含む水硬性組成物の減粘性に優れた水硬性組成物用添加剤が開示されている。 JP 2000-143315 A discloses a polymer or copolymer obtained by polymerizing one or more monomers selected from the group consisting of (a) an unsaturated monocarboxylic acid and an unsaturated dicarboxylic acid. And (b) oxycarboxylic acid or a salt thereof, and one or more compounds selected from the group consisting of sugars and sugar alcohols in a weight ratio of (A) / (B) = 97/3 to 20 / The additive for hydraulic compositions excellent in the deviscousness of the hydraulic composition containing clay is contained at a ratio of 80.
 また、特開平2-48450号公報には、所定の水不溶性重合体及び/又は所定の水不溶性金属コンプレックスと、水酸基を有する水溶性高分子とを、所定の割合で含有するセメント混和剤が開示されている。 JP-A-2-48450 discloses a cement admixture containing a predetermined water-insoluble polymer and / or a predetermined water-insoluble metal complex and a water-soluble polymer having a hydroxyl group in a predetermined ratio. Has been.
発明の概要
 本発明は、セメントミルクのような水硬性粉体と水の混練物である水硬性組成物の流動性を維持でき、且つソイルセメントの増粘を抑制できる水硬性組成物用分散剤組成物を提供する。
SUMMARY OF THE INVENTION The present invention relates to a dispersant for a hydraulic composition that can maintain the fluidity of a hydraulic composition that is a kneaded product of hydraulic powder such as cement milk and can suppress the thickening of soil cement. A composition is provided.
 本発明は、芳香環を含むモノマー単位を有する高分子化合物(A)〔以下、(A)成分という〕、カルボン酸基を有するモノマー単位を有する重合物(B)〔以下、(B)成分という〕、及び分子量が1,000以下の糖化合物(C)〔以下、(C)成分という〕を含有する、水硬性組成物用分散剤組成物に関する。 The present invention includes a polymer compound (A) having a monomer unit containing an aromatic ring (hereinafter referred to as “component (A)”), a polymer having a monomer unit having a carboxylic acid group (B) [hereinafter referred to as “component (B)”. And a sugar composition (C) having a molecular weight of 1,000 or less (hereinafter referred to as component (C)).
 また、本発明は、前記本発明の水硬性組成物用分散剤組成物を使用する、グラウト工法又は流動化処理土工法に関する。 The present invention also relates to a grout method or a fluidized earth method using the dispersant composition for a hydraulic composition of the present invention.
 また、本発明は、前記本発明の水硬性組成物用分散剤組成物を含有する水硬性組成物を地盤と攪拌混合する、地盤の改良工法に関する。 The present invention also relates to a ground improvement method in which the hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention is stirred and mixed with the ground.
 また、本発明は、水、水硬性粉体、(A)成分、(B)成分、及び(C)成分を混合する、水硬性組成物の製造方法に関する。 The present invention also relates to a method for producing a hydraulic composition in which water, hydraulic powder, component (A), component (B), and component (C) are mixed.
 本発明によれば、セメントミルクの流動性を維持でき、且つソイルセメントの増粘を抑制できる水硬性組成物用分散剤組成物が提供される。 According to the present invention, there is provided a dispersant composition for a hydraulic composition capable of maintaining the fluidity of cement milk and suppressing the thickening of soil cement.
発明を実施するための形態
 ポリアクリル酸ナトリウムのようなカルボン酸基を有するモノマー単位を有する重合物は、粘土粒子に吸着することで負電荷を付与し静電反発によって分散性を発現しているものと考えられる。一方でサッカロースなどの糖化合物は、セメントに対して硬化遅延性を付与できることが知られている。これらの効果があるため、ソイルセメント用の添加剤として、前記重合物や糖化合物が用いられている。
 しかしながら、ポリアクリル酸ナトリウムはセメントに対しても作用し、添加量が多い場合などでは、セメントミルクなどの水硬性組成物に偽凝結(ゲル化)が発生する。そのため、セメントミルクを作製した後、地盤土と混合攪拌するような工法では、この様な添加剤を多量に添加できない問題が生じる。
 本発明者らは、こうした偽凝結(ゲル化)に着目し改良を行った。偽凝結は比較的水和が早いアルミネート系鉱物の水和が影響していると考えられた。そのためアルミネート系鉱物に高い吸着性を示す、芳香環を含むモノマー単位を有する高分子化合物を添加し評価した。その結果、ポリアクリル酸ナトリウムを用いる場合の偽凝結(ゲル化)が抑制されることがわかった。芳香環を含むモノマー単位を有する高分子化合物には、水硬性組成物に分散剤として用いられているものもあるが、本発明では、(B)成分及び(C)成分との組み合わせることで、セメントミルクの流動性の維持とソイルセメントの増粘の抑制を両立できるという、予想外の効果をもたらしている。
DETAILED DESCRIPTION OF THE INVENTION A polymer having a monomer unit having a carboxylic acid group, such as sodium polyacrylate, imparts a negative charge by adsorbing to clay particles, and exhibits dispersibility by electrostatic repulsion. It is considered a thing. On the other hand, it is known that sugar compounds such as saccharose can impart a set retarding property to cement. Because of these effects, the polymer or sugar compound is used as an additive for soil cement.
However, sodium polyacrylate also acts on cement, and when it is added in a large amount, false condensation (gelation) occurs in a hydraulic composition such as cement milk. For this reason, in the construction method in which cement milk is prepared and then mixed and stirred with the ground soil, there arises a problem that such an additive cannot be added in a large amount.
The present inventors have made improvements by paying attention to such false condensation (gelation). Pseudo-congealing was thought to be due to the relatively rapid hydration of aluminate minerals. Therefore, a polymer compound having a monomer unit containing an aromatic ring and showing high adsorptivity to the aluminate mineral was added and evaluated. As a result, it was found that false condensation (gelation) when using sodium polyacrylate was suppressed. Some polymer compounds having a monomer unit containing an aromatic ring are used as a dispersant in a hydraulic composition, but in the present invention, in combination with the component (B) and the component (C), This has the unexpected effect of maintaining both the fluidity of cement milk and the suppression of thickening of soil cement.
<水硬性組成物用分散剤組成物>
〔(A)成分〕
 (A)成分は、芳香環を含むモノマー単位を有する高分子化合物である。
 芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、トリアジン環が挙げられる。芳香環を含むモノマー単位としては、ベンゼン環を含むモノマー単位、ナフタレン環を含むモノマー単位、及びトリアジン環を含むモノマー単位から選ばれる1種以上のモノマー単位が挙げられる。
<Dispersant composition for hydraulic composition>
[Component (A)]
The component (A) is a polymer compound having a monomer unit containing an aromatic ring.
Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a triazine ring. Examples of the monomer unit containing an aromatic ring include one or more monomer units selected from a monomer unit containing a benzene ring, a monomer unit containing a naphthalene ring, and a monomer unit containing a triazine ring.
 (A)成分は、重量平均分子量が好ましくは1,000以上100,000以下である。この分子量の測定法は、高分子化合物により異なる。 The component (A) preferably has a weight average molecular weight of 1,000 or more and 100,000 or less. This molecular weight measurement method varies depending on the polymer compound.
 (A)成分の全モノマー単位中における、芳香環を含むモノマー単位の含有量は、セメントミルクの増粘抑制の観点およびソイルセメントの増粘抑制の観点から、好ましくは50モル%以上、より好ましくは51モル%以上、更に好ましくは60モル%以上、更に好ましくは70モル%以上、更に好ましくは80モル%以上、更に好ましくは90モル%以上である。
 ここで、「モノマー単位」とは高分子化合物中の「繰り返しユニット」を意味する。例えば、ナフタレンスルホン酸ナトリウムホルマリン縮合物の場合、下記式のような「繰り返しユニット」をモノマー単位と呼ぶ。なお、下記式において、nは繰り返しユニット数を示す。
The content of the monomer unit containing an aromatic ring in the total monomer units of the component (A) is preferably 50 mol% or more, more preferably from the viewpoint of suppression of cement milk thickening and the suppression of thickening of soil cement. Is 51 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, still more preferably 90 mol% or more.
Here, the “monomer unit” means a “repeating unit” in the polymer compound. For example, in the case of sodium naphthalene sulfonate formalin condensate, a “repeat unit” such as the following formula is called a monomer unit. In the following formula, n represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、(A)成分の全モノマー単位中における、カルボン酸基を有するモノマー単位の含有量は、セメントミルクの増粘抑制の観点およびソイルセメントの増粘抑制の観点から、好ましくは50モル%未満、より好ましくは40モル%未満、更に好ましくは30モル%未満、更に好ましくは20モル%未満、更に好ましくは10モル%未満である。 In addition, the content of the monomer unit having a carboxylic acid group in the total monomer units of the component (A) is preferably less than 50 mol% from the viewpoint of suppressing the increase in cement milk viscosity and suppressing the increase in viscosity of the soil cement. More preferably, it is less than 40 mol%, More preferably, it is less than 30 mol%, More preferably, it is less than 20 mol%, More preferably, it is less than 10 mol%.
 (A)成分としては、ナフタレンスルホン酸ホルムアルデヒド縮合物、リグニンスルホン酸、メラミンスルホン酸ホルムアルデヒド縮合物、及びそれらの塩から選ばれる1種以上の化合物が挙げられる。 (A) As a component, 1 or more types of compounds chosen from naphthalenesulfonic acid formaldehyde condensate, lignin sulfonic acid, melamine sulfonic acid formaldehyde condensate, and those salts are mentioned.
 (A)成分は、偽凝結抑制の観点から、ナフタレン環を含むモノマー単位を有する高分子化合物が好ましい。
 (A)成分としては、より好ましくは、ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩が挙げられる。ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、ナフタレンスルホン酸とホルムアルデヒドとの縮合物又はその塩である。ナフタレンスルホン酸ホルムアルデヒド縮合物は、性能を損なわない限り、単量体として、例えばメチルナフタレン、エチルナフタレン、ブチルナフタレン、ヒドロキシナフタレン、ナフタレンカルボン酸、アントラセン、フェノール、クレゾール、クレオソート油、タール、メラミン、尿素、スルファニル酸及び/又はこれらの誘導体などのような、ナフタレンスルホン酸と共縮合可能な芳香族化合物と共縮合させても良い。
The component (A) is preferably a polymer compound having a monomer unit containing a naphthalene ring from the viewpoint of suppressing false condensation.
As the component (A), naphthalenesulfonic acid formaldehyde condensate or a salt thereof is more preferable. The naphthalenesulfonic acid formaldehyde condensate or a salt thereof is a condensate of naphthalenesulfonic acid and formaldehyde or a salt thereof. The naphthalenesulfonic acid formaldehyde condensate may be used as a monomer, for example, methyl naphthalene, ethyl naphthalene, butyl naphthalene, hydroxy naphthalene, naphthalene carboxylic acid, anthracene, phenol, cresol, creosote oil, tar, melamine, as long as the performance is not impaired. It may be co-condensed with an aromatic compound capable of co-condensing with naphthalenesulfonic acid, such as urea, sulfanilic acid and / or derivatives thereof.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、例えば、マイテイ150、デモール N、デモール RN、デモール MS、デモールSN-B、デモール SS-L(いずれも花王株式会社製)、セルフロー 120、ラベリン FD-40、ラベリン FM-45(いずれも第一工業株式会社製)などのような市販品を用いることができる。 Naphthalene sulfonic acid formaldehyde condensate or salt thereof may be, for example, Mighty 150, Demol N, Demol RN, Demol MS, Demol SN-B, Demol SS-L (all manufactured by Kao Corporation), Cellflow 120, Labelin FD-40 Commercial products such as Labelin FM-45 (both manufactured by Daiichi Kogyo Co., Ltd.) can be used.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、セメントミルクの増粘抑制の観点から、重量平均分子量が、好ましくは100,000以下、より好ましくは80,000以下、更に好ましくは50,000以下、より更に好ましくは30,000以下、より更に好ましくは20,000以下、より更に好ましくは15,000以下である。そして、ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、セメント分散性向上の観点から、重量平均分子量が、好ましくは1,000以上、より好ましくは3,000以上、更に好ましくは4,000以上、より更に好ましくは5,000以上である。ナフタレンスルホン酸ホルムアルデヒド縮合物は酸の状態あるいは中和物であってもよい。 The naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 100,000 or less, more preferably 80,000 or less, and still more preferably 50,000 or less, from the viewpoint of suppressing thickening of cement milk. More preferably, it is 30,000 or less, More preferably, it is 20,000 or less, More preferably, it is 15,000 or less. The naphthalenesulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 1,000 or more, more preferably 3,000 or more, still more preferably 4,000 or more, from the viewpoint of improving cement dispersibility. More preferably, it is 5,000 or more. The naphthalene sulfonic acid formaldehyde condensate may be in the acid state or neutralized.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩の分子量は下記条件にてゲルパーミエーションクロマトグラフィ(GPC)を用いて測定することができる。
[GPC条件]
カラム:G4000SWXL+G2000SWXL(東ソー株式会社)
溶離液:30mM CHCOONa/CHCN=6/4
流量:0.7ml/min
検出:UV280nm
サンプルサイズ:0.2mg/ml
標準物質:西尾工業(株)製 ポリスチレンスルホン酸ソーダ換算(単分散ポリスチレンスルホン酸ナトリウム:分子量、206、1,800、4,000、8,000、18,000、35,000、88,000、780,000)
検出器:東ソー株式会社 UV-8020
The molecular weight of naphthalenesulfonic acid formaldehyde condensate or a salt thereof can be measured using gel permeation chromatography (GPC) under the following conditions.
[GPC conditions]
Column: G4000SWXL + G2000SWXL (Tosoh Corporation)
Eluent: 30 mM CH 3 COONa / CH 3 CN = 6/4
Flow rate: 0.7ml / min
Detection: UV280nm
Sample size: 0.2 mg / ml
Standard substance: Nishio Kogyo Co., Ltd. polystyrene sulfonate conversion (monodisperse sodium polystyrene sulfonate: molecular weight, 206, 1,800, 4,000, 8,000, 18,000, 35,000, 88,000, 780,000)
Detector: Tosoh Corporation UV-8020
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩の製造方法は、例えば、ナフタレンスルホン酸とホルムアルデヒドとを縮合反応により縮合物を得る方法が挙げられる。前記縮合物の中和を行ってもよい。また、中和で副生する水不溶解物を除去してもよい。具体的には、ナフタレンスルホン酸を得るために、ナフタレン1モルに対して、硫酸1.2~1.4モルを用い、150~165℃で2~5時間反応させてスルホン化物を得る。次いで、該スルホン化物1モルに対して、ホルムアルデヒドとして0.95~0.99モルとなるようにホルマリンを85~95℃で、3~6時間かけて滴下し、滴下後95~105℃で縮合反応を行う。更に、得られる縮合物の水溶液は酸性度が高いので貯槽等の金属腐食を抑制する観点から、得られた縮合物に、水と中和剤を加え、80~95℃で中和工程を行うことができる。中和剤は、ナフタレンスルホン酸と未反応硫酸に対してそれぞれ1.0~1.1モル倍添加することが好ましい。また、中和により生じる水不溶解物を除去することができ、その方法として好ましくは濾過による分離が挙げられる。これらの工程によって、ナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩の水溶液が得られる。この水溶液は、そのまま(A)成分の水溶液として使用することができる。更に必要に応じて該水溶液を乾燥、粉末化して粉末状のナフタレンスルホン酸ホルムアルデヒド縮合物の塩を得ることができ、これを粉末状の(A)成分として使用することができる。
 乾燥、粉末化は、噴霧乾燥、ドラム乾燥、凍結乾燥等により行うことができる。
Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate or a salt thereof include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 95 ° C. over 3 to 6 hours to form 0.95 to 0.99 mol of formaldehyde with respect to 1 mol of the sulfonated product, and then condensed at 95 to 105 ° C. Perform the reaction. Further, since the aqueous solution of the resulting condensate has a high acidity, water and a neutralizing agent are added to the obtained condensate from the viewpoint of suppressing metal corrosion in storage tanks, and a neutralization step is performed at 80 to 95 ° C. be able to. The neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per naphthalenesulfonic acid and unreacted sulfuric acid. Moreover, the water-insoluble matter which arises by neutralization can be removed, and preferably the separation by filtration is mentioned as the method. By these steps, an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained. This aqueous solution can be used as it is as the aqueous solution of the component (A). Further, if necessary, the aqueous solution can be dried and powdered to obtain a powdery salt of naphthalenesulfonic acid formaldehyde condensate, which can be used as the powdery component (A).
Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.
 (A)成分としては、リグニンスルホン酸、メラミンスルホン酸ホルムアルデヒド縮合物、及びそれらの塩から選ばれる1種以上の化合物が挙げられる。 (A) As a component, 1 or more types of compounds chosen from lignin sulfonic acid, a melamine sulfonic-acid formaldehyde condensate, and those salts are mentioned.
 リグニンスルホン酸又はその塩は、リグニンの分解物の一部を亜硫酸などでスルホン化されたもの又はその塩である。塩として、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられ、好ましくはナトリウム塩、カリウム塩などのアルカリ金属塩である。又これらに含まれる還元性糖類を限外ろ過により精製したものは、硬化遅延が低減されることから好ましい。 The lignin sulfonic acid or a salt thereof is a lignin that is partially sulfonated with sulfurous acid or a salt thereof or a salt thereof. Examples of the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and amine salts, and alkali metal salts such as sodium salts and potassium salts are preferable. Moreover, what refine | purified the reducing saccharides contained in these by ultrafiltration is preferable from the hardening delay reduced.
 リグニンスルホン酸又はその塩は、木材から抽出されるリグニンを誘導体化して得られる高分子化合物である。リグニンスルホン酸又はその塩は、例えば、セメントや石膏などの水硬性粉体を含有する水硬性組成物用の分散剤として知られている。 Lignin sulfonic acid or a salt thereof is a polymer compound obtained by derivatizing lignin extracted from wood. Lignin sulfonic acid or a salt thereof is known as a dispersant for a hydraulic composition containing hydraulic powder such as cement or gypsum.
 リグニンスルホン酸又はその塩は、性能を損なわない限り、リグニンの分解物やスルホン化した際の副生成物等を含んでよい。 Lignin sulfonic acid or a salt thereof may contain a decomposition product of lignin, a by-product upon sulfonation, or the like as long as performance is not impaired.
 リグニンスルホン酸又はその塩は、例えば、BASF社製のマスターポゾリス#70、マスターポゾリス#72、日本製紙株式会社製のサンエキス252、日本シーカ社製のプラストクリートNCなどのような市販品を用いることができる。 As the lignin sulfonic acid or a salt thereof, for example, commercially available products such as Master Pozoris # 70, Master Pozoris # 72 manufactured by BASF, Sun Extract 252 manufactured by Nippon Paper Industries Co., Ltd., Plastocrete NC manufactured by Nihon Sika Co., Ltd. are used. be able to.
 メラミンスルホン酸ホルムアルデヒド縮合物又はその塩は、メラミンにホルムアルデヒドを反応させて得られたN-メチロール化メラミンに重亜硫酸塩を反応させてメチロール基の一部をスルホメチル化し、次いで酸を加えてメチロール基を脱水縮合させてホルムアルデヒド縮合物とし、アルカリで中和して得られる公知の化合物である(例えば特公昭63-37058号公報参照)。アルカリとしては、アルカリ金属又はアルカリ土類金属の水酸化物、アンモニア、モノ、ジ、トリアルキル(炭素数2~8)アミン、モノ、ジ、トリアルカノール(炭素数2~8)アミン等を挙げることができる。 A melamine sulfonic acid formaldehyde condensate or a salt thereof is obtained by reacting N-methylol melamine obtained by reacting melamine with formaldehyde to react bisulfite to sulfomethylate a part of methylol group, and then add an acid to form methylol group. Is a known compound obtained by dehydrating and condensing to formaldehyde condensate and neutralizing with alkali (see, for example, Japanese Patent Publication No. Sho 63-37058). Examples of the alkali include hydroxides of alkali metals or alkaline earth metals, ammonia, mono, di, trialkyl (2 to 8 carbon atoms) amine, mono, di, trialkanol (2 to 8 carbon atoms) amine, and the like. be able to.
 市販品として、マイテイ150V-2(花王(株)製)、SMF-PG(日産化学工業(株))、メルフロー(三井化学(株))、メルメントF-10(昭和電工(株)製)、スーパーメラミン(日産化学社製)、フローリックMS(フローリック社製)、メルメントF4000、メルメントF10M、メルメントF245(いずれもBASFジャパン社製)等がある。 As commercial products, Mighty 150V-2 (manufactured by Kao Corporation), SMF-PG (Nissan Chemical Industry Co., Ltd.), Melflow (Mitsui Chemicals Co., Ltd.), Melment F-10 (manufactured by Showa Denko KK), Super Melamine (manufactured by Nissan Chemical Co., Ltd.), Floric MS (manufactured by Floric), Melment F4000, Melment F10M, Melment F245 (all manufactured by BASF Japan) and the like.
 メラミンスルホン酸ホルムアルデヒド縮合物の分子量は、好ましくは1,000以上、より好ましくは3,000以上、更に好ましくは5,000以上、そして、好ましくは100,000以下、より好ましくは50,000以下、更に好ましくは20,000以下である(ゲルパーミエーションクロマトグラフィー法、ポリスチレンスルホン酸換算)。 The molecular weight of the melamine sulfonic acid formaldehyde condensate is preferably 1,000 or more, more preferably 3,000 or more, still more preferably 5,000 or more, and preferably 100,000 or less, more preferably 50,000 or less, More preferably, it is 20,000 or less (gel permeation chromatography method, converted to polystyrene sulfonic acid).
〔(B)成分〕
 (B)成分は、カルボン酸基を有するモノマー単位を有する重合物である。ここで、「モノマー単位」とは、重合物中の「繰り返しユニット」を意味する。例えば、ポリアクリル酸ナトリウムの場合、下記式に示す「繰り返しユニット」をモノマー単位と呼ぶ。下記式において、mは繰り返しユニット数を示す。
[(B) component]
The component (B) is a polymer having a monomer unit having a carboxylic acid group. Here, “monomer unit” means “repeating unit” in the polymer. For example, in the case of sodium polyacrylate, a “repeating unit” represented by the following formula is called a monomer unit. In the following formula, m represents the number of repeating units.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 カルボン酸基を有するモノマーとしては、アクリル酸、メタクリル酸等の不飽和モノカルボン酸、及びマレイン酸、フマル酸、イタコン酸等の不飽和ジカルボン酸が挙げられる。
 (B)成分としては、ポリアクリル酸、ポリメタクリル酸、アクリル酸/マレイン酸共重合体、及びこれらの塩が挙げられる。塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルキルアンモニウム塩等が挙げられる。
 (B)成分は、ポリアクリル酸又はその塩が好ましく、ポリアクリル酸のナトリウム塩、及びポリアクリル酸のアンモニウム塩から選ばれる重合物がより好ましい。
Examples of the monomer having a carboxylic acid group include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid.
Examples of the component (B) include polyacrylic acid, polymethacrylic acid, acrylic acid / maleic acid copolymers, and salts thereof. Examples of the salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and alkyl ammonium salts.
The component (B) is preferably polyacrylic acid or a salt thereof, and more preferably a polymer selected from a sodium salt of polyacrylic acid and an ammonium salt of polyacrylic acid.
 (B)成分の重合物は、中和度が0%以上75%以下であることができる。すなわち、(B)成分は、未中和又は部分中和の重合物であってよい。部分中和の重合物の場合、中和度は、好ましくは10%以上、より好ましくは20%以上、そして、好ましくは60%以下、より好ましくは40%以下である。 The polymer of the component (B) can have a degree of neutralization of 0% to 75%. That is, the component (B) may be an unneutralized or partially neutralized polymer. In the case of a partially neutralized polymer, the degree of neutralization is preferably 10% or more, more preferably 20% or more, and preferably 60% or less, more preferably 40% or less.
 また、(B)成分の全モノマー単位中における、カルボン酸基を有するモノマー単位の含有量は、セメントミルクの増粘抑制の観点およびソイルセメントの増粘抑制の観点から、好ましくは50モル%以上、より好ましくは51モル%以上、更に好ましくは60モル%以上、更に好ましくは70モル%以上、更に好ましくは80モル%以上、更に好ましくは90モル%以上である。 In addition, the content of the monomer unit having a carboxylic acid group in the total monomer units of the component (B) is preferably 50 mol% or more from the viewpoint of suppressing the increase in the viscosity of cement milk and suppressing the increase in the viscosity of the soil cement. More preferably, it is 51 mol% or more, More preferably, it is 60 mol% or more, More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more.
 (B)成分の重合物は、公知の方法で製造可能である。また、市販品として入手可能である。市販品の具体例としては、ポイズシリーズ(花王株式会社)、アクアリックLシリーズ(株式会社日本触媒)、アクアリックHシリーズ(株式会社日本触媒)、ジュリマーシリーズ(東亜合成株式会社)、アロンシリーズ(東亜合成株式会社)が挙げられる。 The polymer of component (B) can be produced by a known method. Moreover, it is available as a commercial item. Specific examples of commercially available products include the Poise Series (Kao Corporation), Aquaric L Series (Nippon Shokubai Co., Ltd.), Aquaric H Series (Nihon Shokubai Co., Ltd.), Jurimer Series (Toagosei Co., Ltd.), Aron Series (Toa Gosei Co., Ltd.).
 (B)成分の重量平均分子量は、好ましくは2,000以上、より好ましくは4,000以上、更に好ましくは6,000以上、そして、好ましくは1,000,000以下、より好ましくは100,000以下、更に好ましくは50,000以下である。(B)成分の重量平均分子量は下記条件にてゲルパーミエーションクロマトグラフィ(GPC)を用いて測定することができる。
[GPC条件]
カラム:G4000PWXL+G2500PWXL(東ソー(株)製)、
溶離液:0.2Mリン酸緩衝液/アセトニトリル=7/3(体積比)
標準物質:分子量既知の単分散ポリエチレングリコール
The weight average molecular weight of the component (B) is preferably 2,000 or more, more preferably 4,000 or more, still more preferably 6,000 or more, and preferably 1,000,000 or less, more preferably 100,000. Hereinafter, it is more preferably 50,000 or less. The weight average molecular weight of the component (B) can be measured using gel permeation chromatography (GPC) under the following conditions.
[GPC conditions]
Column: G4000PWXL + G2500PWXL (manufactured by Tosoh Corporation),
Eluent: 0.2M phosphate buffer / acetonitrile = 7/3 (volume ratio)
Reference material: monodisperse polyethylene glycol of known molecular weight
〔(C)成分〕
 (C)成分は、分子量が1,000以下の糖化合物である。(C)成分は、分子量700以下、更に500以下の糖化合物が好ましい。また、(C)成分は、単糖類、二糖類及び三糖類から選ばれる1種以上の糖化合物が好ましい。
 (C)成分の糖化合物としては、糖類及び糖アルコールから選ばれる1種以上の化合物が挙げられる。糖類としては、グルコース、フルクトース、ガラクトース、マンノース等の単糖類、サッカロース等の二糖類、三糖類が挙げられる。糖類は、単糖類及び二糖類から選ばれる化合物が好ましく、二糖類がより好ましい。糖アルコールとしてはソルビトール等が挙げられる。
 (C)成分は、サッカロース、グルコース、マルトース、及びラクトースから選ばれる1種以上の化合物が好ましく、サッカロース、グルコース、マルトース、及びラクトースから選ばれる1種以上の化合物がより好ましく、サッカロース、及びグルコースから選ばれる1種以上の化合物が更に好ましく、サッカロースがより更に好ましい。本発明の水硬性組成物用分散剤組成物は、(C)成分としてサッカロースを含有することが好ましい。
[Component (C)]
Component (C) is a sugar compound having a molecular weight of 1,000 or less. The component (C) is preferably a saccharide compound having a molecular weight of 700 or less, more preferably 500 or less. The component (C) is preferably one or more sugar compounds selected from monosaccharides, disaccharides and trisaccharides.
Examples of the sugar compound as component (C) include one or more compounds selected from sugars and sugar alcohols. Examples of the saccharide include monosaccharides such as glucose, fructose, galactose, and mannose, disaccharides such as saccharose, and trisaccharides. The saccharide is preferably a compound selected from monosaccharides and disaccharides, more preferably disaccharides. Examples of the sugar alcohol include sorbitol.
Component (C) is preferably one or more compounds selected from saccharose, glucose, maltose, and lactose, more preferably one or more compounds selected from saccharose, glucose, maltose, and lactose, and from sucrose and glucose. One or more selected compounds are more preferred, and sucrose is even more preferred. The dispersant composition for hydraulic composition of the present invention preferably contains sucrose as the component (C).
〔組成、任意成分等〕
 本発明の水硬性組成物用分散剤組成物は、セメントミルクの安定性向上の観点から、(A)成分、(B)成分及び(C)成分の含有量の合計を100質量%として、(A)成分を、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上、そして、好ましくは60質量%以下、より好ましくは40質量%以下、更に好ましくは20質量%以下含有する。
[Composition, optional components, etc.]
From the viewpoint of improving the stability of cement milk, the dispersant composition for hydraulic composition of the present invention has a total content of (A) component, (B) component and (C) component of 100% by mass ( The component A) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 60% by mass or less, more preferably 40% by mass or less, still more preferably 20% by mass. % Or less.
 本発明の水硬性組成物用分散剤組成物は、ソイルセメントの増粘抑制の観点から、(A)成分、(B)成分及び(C)成分の含有量の合計を100質量%として、(B)成分を、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上、そして、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下含有する。 From the viewpoint of suppressing thickening of the soil cement, the dispersant composition for a hydraulic composition of the present invention has a total content of the component (A), the component (B) and the component (C) as 100% by mass ( The component B) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass. % Or less.
 本発明の水硬性組成物用分散剤組成物は、硬化遅延の観点から、(C)成分を、(A)成分、(B)成分及び(C)成分の含有量の合計を100質量%として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、そして、好ましくは60質量%以下、より好ましくは45質量%以下、更に好ましくは30質量%以下含有する。 The dispersant composition for a hydraulic composition according to the present invention has the component (C) as the total content of the component (A), the component (B), and the component (C) as 100% by mass from the viewpoint of curing delay. , Preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and preferably 60% by mass or less, more preferably 45% by mass or less, still more preferably 30% by mass or less. .
 本発明の水硬性組成物用分散剤組成物は、(A)成分、(B)成分、及び(C)成分を合計で、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、そして、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下含有する。この組成は、組成物中の(A)成分、(B)成分及び(C)成分の濃度が相対的に高い場合、例えば、本発明の分散剤組成物の濃縮物や希釈して用いる濃厚系の本発明の分散剤組成物について示している。
 また、本発明の水硬性組成物用分散剤組成物は、(A)成分、(B)成分、及び(C)成分を合計で、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上、そして、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下、より更に好ましくは2質量%以下含有する。この組成は、希薄系の組成物や混練水など、組成物中の(A)成分、(B)成分及び(C)成分の濃度が相対的に低い場合、例えば、混練水など本発明の分散剤組成物の希釈物について示している。
The dispersant composition for a hydraulic composition according to the present invention is a total of component (A), component (B), and component (C), preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably. Is 30% by mass or more, and preferably 90% by mass or less, more preferably 70% by mass or less, and still more preferably 50% by mass or less. This composition is, for example, a concentrated system or a concentrated system used by diluting the dispersant composition of the present invention when the concentrations of the components (A), (B) and (C) are relatively high. Of the dispersant composition of the present invention.
Further, the dispersant composition for a hydraulic composition of the present invention comprises (A) component, (B) component, and (C) component in total, preferably 0.5% by mass or more, more preferably 1% by mass. More preferably, it is 1.5% by mass or more, and preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, and still more preferably 2% by mass or less. This composition is used when the concentration of the component (A), the component (B) and the component (C) in the composition, such as a dilute composition or kneaded water, is relatively low. The dilution of the agent composition is shown.
 本発明の水硬性組成物用分散剤組成物は、ソイルセメントの増粘抑制の観点から、(A)成分と(B)成分の質量比が、(A)/(B)で、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、そして、好ましくは1.5以下、より好ましくは1以下、更に好ましくは0.5以下である。 In the dispersant composition for hydraulic composition of the present invention, the mass ratio of the component (A) to the component (B) is (A) / (B), preferably 0, from the viewpoint of suppressing the thickening of the soil cement. 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, and preferably 1.5 or less, more preferably 1 or less, still more preferably 0.5 or less.
 本発明の水硬性組成物用分散剤組成物は、ソイルセメントの増粘抑制の観点から、(B)成分と(C)成分の質量比が、(B)/(C)で、好ましくは0.5以上、より好ましくは1以上、更に好ましくは1.5以上、そして、好ましくは10以下、より好ましくは6以下、更に好ましくは4以下、更に好ましくは2.5以下である。 In the dispersant composition for a hydraulic composition of the present invention, the mass ratio of the component (B) to the component (C) is (B) / (C), preferably 0, from the viewpoint of suppressing the thickening of the soil cement. 0.5 or more, more preferably 1 or more, further preferably 1.5 or more, and preferably 10 or less, more preferably 6 or less, still more preferably 4 or less, still more preferably 2.5 or less.
 本発明の水硬性組成物用分散剤組成物は、セメントミルクの偽凝結抑制の観点から、22℃でのpHが7.5以下であることが好ましい。該pHは、より好ましくは7以下、更に好ましくは6.9以下であり、そして、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上、より更に好ましくは5以上である。
 ここで、該pHは、本発明の水硬性組成物用分散剤組成物が液体である場合は、該組成物そのもののpHである。また、該pHは、本発明の水硬性組成物用分散剤組成物が固体である場合は、該組成物を(A)成分、(B)成分及び(C)成分の合計含有量が、1質量%以上50質量%以下、好ましくは1質量%以上30質量%以下、より好ましくは1質量%以上10質量%以下、更に好ましくは1質量%以上5質量%以下、更に好ましくは1質量%以上3質量%以下、更に好ましくは2質量%となるように水で希釈して得た液体組成物のpHである。この合計含有量に幅がある場合は、その範囲の少なくとも何れかの質量%において、前記pHであればよい。
The dispersant composition for a hydraulic composition of the present invention preferably has a pH at 22 ° C. of 7.5 or less from the viewpoint of suppressing false setting of cement milk. The pH is more preferably 7 or less, still more preferably 6.9 or less, and is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and even more preferably 5 or more.
Here, when the dispersant composition for a hydraulic composition of the present invention is a liquid, the pH is the pH of the composition itself. Further, when the dispersant composition for a hydraulic composition of the present invention is solid, the pH is such that the total content of the component (A), the component (B), and the component (C) is 1 % By mass to 50% by mass, preferably 1% by mass to 30% by mass, more preferably 1% by mass to 10% by mass, more preferably 1% by mass to 5% by mass, and even more preferably 1% by mass or more. It is the pH of the liquid composition obtained by diluting with water to 3% by mass or less, more preferably 2% by mass. In the case where there is a range in the total content, the pH may be at least in any mass% of the range.
 また、本発明の水硬性組成物用分散剤組成物は、セメントミルクの偽凝結抑制の観点から、pH7.5以下で用いられる、具体的には、水を含有するpHが7.5以下の液体組成物として水硬性組成物の調製に用いられることが好ましい。該pHは、より好ましくは7以下、更に好ましくは6.9以下であり、そして、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上、より更に好ましくは5以上である。
 一般に、本発明の水硬性組成物用分散剤組成物は、水で希釈された混練水として使用される。この混練水のpHが22℃で7.5以下であることが好ましい。希釈前の組成物のpHが22℃で7.5以下であれば、混練水のpHも通常、22℃で7.5以下となる。
 本発明の一例として、水、(A)成分、(B)成分及び(C)成分を含有し、(A)成分、(B)成分及び(C)成分の合計含有量が好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上、そして、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下、より更に好ましくは2質量%以下であり、22℃でのpHが好ましくは7.5以下、より好ましくは7以下、更に好ましくは6.9以下、そして、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上、より更に好ましくは5以上である、水硬性組成物用分散剤組成物が挙げられる。この組成物は、混練水として、そのまま、あるいは任意の添加剤を添加して、使用することができる。
 pHは、原液である水硬性組成物用分散剤組成物の液性を酸で調整して、前記範囲とすることができる。酸は、(A)成分、(B)成分以外の酸である。ここでの酸は(A)成分や(B)成分よりも相対的に分子量の小さいものである。酸は、分子量1,000未満の酸が好ましい。酸は、有機酸、無機酸が使用でき、水硬性粉体の水和に影響しにくい酸がよい。好ましい酸は、オキシカルボン酸以外の有機酸及び無機酸から選ばれる酸である。有機酸は、カルボン酸基を有することが好ましく、セメントゲル化防止の観点から、一分子につきカルボン酸基を1以上5以下有する有機酸がより好ましい。有機酸としては、クエン酸、グルコン酸、酒石酸、酢酸、及びギ酸から選ばれる有機酸が挙げられる。無機酸としては、硫酸、塩酸、及び硝酸から選ばれる無機酸が挙げられる。
In addition, the dispersant composition for hydraulic composition of the present invention is used at a pH of 7.5 or less from the viewpoint of suppressing false setting of cement milk. Specifically, the pH containing water is 7.5 or less. The liquid composition is preferably used for the preparation of a hydraulic composition. The pH is more preferably 7 or less, still more preferably 6.9 or less, and is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and even more preferably 5 or more.
In general, the dispersant composition for hydraulic composition of the present invention is used as kneaded water diluted with water. The pH of the kneaded water is preferably 7.5 or less at 22 ° C. If the pH of the composition before dilution is 7.5 or less at 22 ° C., the pH of the kneaded water is usually 7.5 or less at 22 ° C.
As an example of the present invention, water, (A) component, (B) component and (C) component are contained, and the total content of (A) component, (B) component and (C) component is preferably 0.5. % By mass or more, more preferably 1% by mass or more, further preferably 1.5% by mass or more, and preferably 10% by mass or less, more preferably 7% by mass or less, still more preferably 5% by mass or less, and still more preferably. Is 2% by mass or less, and the pH at 22 ° C. is preferably 7.5 or less, more preferably 7 or less, still more preferably 6.9 or less, and preferably 2 or more, more preferably 3 or more, still more preferably Is a dispersant composition for hydraulic compositions, which is 4 or more, more preferably 5 or more. This composition can be used as kneaded water as it is or with any additive added.
The pH can be adjusted to the above range by adjusting the liquidity of the dispersant composition for a hydraulic composition as a stock solution with an acid. The acid is an acid other than the component (A) and the component (B). The acid here has a molecular weight relatively smaller than that of the component (A) or the component (B). The acid is preferably an acid having a molecular weight of less than 1,000. As the acid, an organic acid or an inorganic acid can be used, and an acid that hardly affects the hydration of the hydraulic powder is preferable. Preferred acids are acids selected from organic acids other than oxycarboxylic acids and inorganic acids. The organic acid preferably has a carboxylic acid group, and more preferably an organic acid having 1 to 5 carboxylic acid groups per molecule from the viewpoint of preventing cement gelation. Examples of the organic acid include organic acids selected from citric acid, gluconic acid, tartaric acid, acetic acid, and formic acid. Examples of the inorganic acid include inorganic acids selected from sulfuric acid, hydrochloric acid, and nitric acid.
 本発明の水硬性組成物用分散剤組成物は、22℃でのpHが好ましくは7.5以下であると、本発明の水硬性組成物用分散剤組成物の使用量を増やしても、水硬性組成物の偽凝結(ゲル化)を抑制することができる。水硬性組成物の偽凝結(ゲル化)は初期の異常水和によってもたらされると考えられる。本発明の水硬性組成物用分散剤組成物の前記pHを予め酸性寄りにすることで、接水直後のpHの急激な上昇を抑え、水和の進行を制御することができ、異常水和による偽凝結(ゲル化)を抑制できるものと考えられる。本発明の水硬性組成物用分散剤組成物の使用量が多い場合は、混練水のpHを7.5以下にすることで、有利にセメントミルクの流動性とソイルセメントの増粘抑制を両立できる。
 水硬性粉体に対する(A)成分及び(B)成分の添加量が多い場合や作業環境が高温(スラリー温度25℃以上)である場合などは、セメントミルクの流動性が低下しやすい。このような場合においては、本発明の水硬性組成物用分散剤組成物の22℃のpHを7.5以下にすることで、セメントミルクの流動性の低下を抑制できる。
The dispersant composition for hydraulic composition of the present invention has a pH at 22 ° C. of preferably 7.5 or less, even if the amount of the dispersant composition for hydraulic composition of the present invention is increased, The false condensation (gelation) of the hydraulic composition can be suppressed. It is believed that the false setting (gelation) of the hydraulic composition is caused by early abnormal hydration. By making the pH of the dispersant composition for a hydraulic composition of the present invention close to an acid in advance, a rapid increase in pH immediately after water contact can be suppressed, and the progress of hydration can be controlled. It is thought that false condensation (gelation) due to can be suppressed. When the amount of the dispersant composition for a hydraulic composition of the present invention is large, the pH of the kneaded water is preferably adjusted to 7.5 or less to advantageously achieve both the fluidity of cement milk and the suppression of thickening of the soil cement. it can.
When the amount of component (A) and component (B) added to the hydraulic powder is large, or when the working environment is high temperature (slurry temperature 25 ° C. or higher), the fluidity of cement milk tends to decrease. In such a case, the fluidity | liquidity fall of cement milk can be suppressed by making pH of 22 degreeC of the dispersing agent composition for hydraulic compositions of this invention into 7.5 or less.
 本発明の水硬性組成物用分散剤組成物は、強度発現性の観点から、消泡剤(D)〔以下、(D)成分という〕を含有することが好ましい。
 (D)成分は、消泡性の観点から、好ましくは、ポリシロキサン、ポリオキシエチレンポリオキシプロピレン、ポリプロピレンオキサイド及びその誘導体(ポリオキシプロピレン、ポリオキシプロピレングリセリルエーテルなど)、アセチレングリコール及びその誘導体(アセチレングリコール、アセチレングリコールのアルキレンオキサイド付加物など)、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルアミド、リン酸トリアルキル、アルキルアミン、並びにアルコールから選ばれる1種又は2種以上の化合物である。より好ましくはこれらの化合物であって、水に不溶の化合物である。
The dispersant composition for a hydraulic composition of the present invention preferably contains an antifoaming agent (D) [hereinafter referred to as component (D)] from the viewpoint of strength development.
The component (D) is preferably polysiloxane, polyoxyethylene polyoxypropylene, polypropylene oxide and derivatives thereof (polyoxypropylene, polyoxypropylene glyceryl ether, etc.), acetylene glycol and derivatives thereof (from the viewpoint of defoaming properties) Acetylene glycol, alkylene oxide adducts of acetylene glycol, etc.), polyoxyalkylene fatty acid esters, polyoxyalkylene alkyl ethers, polyoxyalkylene alkylamides, trialkyl phosphates, alkylamines, and alcohols. It is a compound of this. More preferably, these compounds are compounds insoluble in water.
 ポリシロキサンとしては、ポリシロキサン、ジメチルポリシロキサン、ポリヒドロキシメチルシロキサンなどが挙げられる。 Polysiloxane includes polysiloxane, dimethylpolysiloxane, polyhydroxymethylsiloxane and the like.
 ポリオキシエチレンポリオキシプロピレンとしては、ポリオキシエチレンポリオキシプロピレンランダムポリマー、ポリプロピレンオキサイド-ポリエチレンオキサイド-ポリプロピレンオキサイドブロックポリマーなどが挙げられる。消泡性の観点から、これらの重量平均分子量は、2,000以上100,000以下が好ましい。 Examples of the polyoxyethylene polyoxypropylene include polyoxyethylene polyoxypropylene random polymer, polypropylene oxide-polyethylene oxide-polypropylene oxide block polymer, and the like. From the viewpoint of defoaming properties, these weight average molecular weights are preferably 2,000 or more and 100,000 or less.
 ポリプロピレンオキサイド及びその誘導体としては、ポリオキシプロピレングリセリルエーテル、ポリオキシプロピレンなどが挙げられる。これらの、ポリプロピレンオキサイド部分の重量平均分子量は、消泡性の観点から、2,000以上100,000以下が好ましい。 Polypropylene oxide and its derivatives include polyoxypropylene glyceryl ether, polyoxypropylene and the like. The weight average molecular weight of these polypropylene oxide portions is preferably 2,000 or more and 100,000 or less from the viewpoint of defoaming properties.
 アセチレングリコール及びその誘導体としては、アセチレノールE00、アセチレノールE13(何れも川研ファインケミカル(株))、DYNOL(登録商標)604、SURFYNOL(登録商標)440、SURFYNOL(登録商標)104、SURFYNOL(登録商標)2502、SURFYNOL(登録商標)420、SURFYNOL(登録商標)DF-75(何れもエアープロダクツアンドケミカルズ社)などの市販品が挙げられる。アセチレングリコールの誘導体としては、アセチレングリコールのアルキレンオキサイド付加物が挙げられる。消泡性の観点から、アルキレンオキサイドの平均付加モル数は、1以上100以下が好ましい。アルキレンオキサイドはプロピレンオキサイドが好ましい。 Examples of acetylene glycol and its derivatives include acetylenol E00, acetylenol E13 (all are Kawaken Fine Chemical Co., Ltd.), DYNOL (registered trademark) 604, SURFYNOL (registered trademark) 440, SURFYNOL (registered trademark) 104, and SURFYNOL (registered trademark). 2502, SURFYNOL (registered trademark) 420, SURFYNOL (registered trademark) DF-75 (all of which are Air Products and Chemicals). Examples of the acetylene glycol derivative include an alkylene oxide adduct of acetylene glycol. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. The alkylene oxide is preferably propylene oxide.
 ポリオキシアルキレン脂肪酸エステルとしては、炭素数が4から22までの脂肪酸のアルキレンオキサイド付加物などが挙げられる。消泡性の観点から、アルキレンオキサイドの平均付加モル数は、1以上100以下が好ましい。また、同様の観点から、アルキレンオキサイドはプロピレンオキサイドを含むことが好ましい。 Examples of polyoxyalkylene fatty acid esters include alkylene oxide adducts of fatty acids having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide preferably contains propylene oxide.
 ポリオキシアルキレンアルキルエーテルとしては、炭素数が4から22までのアルコールのアルキレンオキサイド付加物などが挙げられる。消泡性の観点から、アルキレンオキサイドの平均付加モル数は、1以上100以下が好ましい。また、同様の観点から、アルキレンオキサイドはプロピレンオキサイドが好ましい。具体的には、ポリプロピレングリコールラウリルエーテル、ポリプロピレングリコールミリスチルエーテル及びこれらの混合物が挙げられる。 Examples of polyoxyalkylene alkyl ethers include alkylene oxide adducts of alcohols having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide is preferably propylene oxide. Specific examples include polypropylene glycol lauryl ether, polypropylene glycol myristyl ether, and mixtures thereof.
 ポリオキシアルキレンアルキルアミドとしては、炭素数が8から22までの脂肪酸とモノエタノールアミン、ジエタノールアミン等のアミンとのアミドのアルキレンオキサイド付加物などが挙げられる。消泡性の観点から、アルキレンオキサイドの平均付加モル数は、1以上100以下が好ましい。また、同様の観点から、アルキレンオキサイドはプロピレンオキサイドが好ましい。 Examples of polyoxyalkylene alkylamides include alkylene oxide adducts of amides of fatty acids having 8 to 22 carbon atoms and amines such as monoethanolamine and diethanolamine. From the viewpoint of defoaming properties, the average added mole number of alkylene oxide is preferably 1 or more and 100 or less. From the same viewpoint, the alkylene oxide is preferably propylene oxide.
 リン酸トリアルキルとしては、リン酸トリブチル、リン酸トリイソブチルなどが挙げられる。消泡性の観点から、アルキル基の炭素数は、1以上5以下が好ましい。 Examples of the trialkyl phosphate include tributyl phosphate and triisobutyl phosphate. From the viewpoint of defoaming properties, the alkyl group preferably has 1 to 5 carbon atoms.
 アルキルアミンとしては、モノアルキルアミン、ジアルキルアミン、トリアルキルアミンなどが挙げられる。難水溶性及び消泡性の観点から、アルキル基の炭素数が8以上18以下のモノメチルアルキルアミン、アルキル基の炭素数が8以上18以下のジメチルアルキルアミンが好ましい。アルキルアミンとしては、カプリルアミン(オクチルアミン)、ラウリルアミン、ステアリルアミン、ココナットアミン、ジステアリルアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルベヘニルアミン、ジメチルココナットアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジラウリルモノメチルアミン、牛脂アミン、トリオクチルアミンが挙げられる。 Examples of the alkylamine include monoalkylamine, dialkylamine, and trialkylamine. From the viewpoint of poor water solubility and antifoaming properties, monomethylalkylamines having an alkyl group with 8 to 18 carbon atoms and dimethylalkylamines with an alkyl group having 8 to 18 carbon atoms are preferred. Alkylamines include caprylamine (octylamine), laurylamine, stearylamine, coconutamine, distearylamine, dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, dimethylbehenylamine, dimethylcoconutamine, dimethylmyristylamine , Dimethyl palmitylamine, dimethyl stearylamine, dilauryl monomethylamine, beef tallow amine, and trioctylamine.
 アルコールとしては、炭素数が4から22のアルコール、好ましくは炭素数が4から22の1価アルコールなどが挙げられる。消泡性の観点から、アルコールの炭素数は、6以上18以下が好ましい。 Examples of the alcohol include alcohols having 4 to 22 carbon atoms, preferably monohydric alcohols having 4 to 22 carbon atoms. From the viewpoint of defoaming properties, the alcohol has preferably 6 to 18 carbon atoms.
 消泡剤の適当な例には、ポリシロキサンとして、SAGTEX DSA(商標)が、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、又はポリオキシアルキレンアルキルアミドとして、ポリプロピレングリコールラウリルエーテル、ポリプロピレングリコールミリスチルエーテル及びこれらの混合物、オレイン酸のプロピレンオキサイド・エチレンオキサイド付加物、SNデフォーマー260(商標)、SNデフォーマー265(商標)、SNデフォーマー466(商標)(いずれもサンノプコ株式会社)、消泡剤 NO.21(商標)、消泡剤 NO.8(商標)(いずれも花王株式会社)が、アセチレングリコールとして、DYNOL(商標)604、SURFYNOL(登録商標)440が、リン酸トリアルキルとして、リン酸トリブチル、リン酸トリイソブチルが、アルコールとして、2-エチルヘキサノールが、ポリオキシエチレンポリオキシプロピレンとして、ニューポールPE-61(商標)、ニューポールPE-71(商標)(いずれも三洋化成株式会社)が、及びポリオキシプロピレンとして、分子量が2,000以上100,000以下のポリプロピレングリコールが含まれる。 Suitable examples of antifoaming agents include SAGTEX DSA (trademark) as polysiloxane, and polypropylene glycol lauryl ether, polypropylene glycol myristyl ether as polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl ether, or polyoxyalkylene alkylamide. And mixtures thereof, propylene oxide / ethylene oxide adduct of oleic acid, SN deformer 260 (trademark), SN deformer 265 (trademark), SN deformer 466 (trademark) (both are San Nopco Co., Ltd.), antifoaming agent NO. 21 (trademark), antifoaming agent NO. 8 (trademark) (both Kao Corporation) as acetylene glycol, DYNOL (trademark) 604, SURFYNOL (registered trademark) 440 as trialkyl phosphate, tributyl phosphate, triisobutyl phosphate as alcohol, 2-ethylhexanol as polyoxyethylene polyoxypropylene, New Pole PE-61 (trademark), New Pole PE-71 (trademark) (both from Sanyo Chemical Co., Ltd.), and polyoxypropylene as molecular weight 2 Polypropylene glycol of from 1,000 to 100,000.
 また、消泡剤は、保存安定性の観点から、好ましくは、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、又はポリオキシアルキレンアルキルアミドとして、ポリプロピレングリコールラウリルエーテル、ポリプロピレングリコールミリスチルエーテル及びこれらの混合物、オレイン酸のプロピレンオキサイド・エチレンオキサイド付加物、SNデフォーマー260(商標)、SNデフォーマー265(商標)、SNデフォーマー466(商標)、消泡剤 NO.21(商標)、消泡剤 NO.8(商標)が、アセチレングリコールとして、DYNOL(商標)604、SURFYNOL(登録商標)440が、リン酸トリアルキルとして、リン酸トリブチル、リン酸トリイソブチルが、アルコールとして、2-エチルヘキサノールが、ポリオキシエチレンポリオキシプロピレンとして、ニューポールPE-61(商標)、ニューポールPE-71(商標)が、及びポリオキシプロピレンとして、分子量が2,000以上100,000以下のポリプロピレングリコールが挙げられる。 The antifoaming agent is preferably a polyoxyalkylene fatty acid ester, a polyoxyalkylene alkyl ether, or a polyoxyalkylene alkyl amide from the viewpoint of storage stability, and polypropylene glycol lauryl ether, polypropylene glycol myristyl ether, and a mixture thereof. , Propylene oxide / ethylene oxide adduct of oleic acid, SN deformer 260 (trademark), SN deformer 265 (trademark), SN deformer 466 (trademark), antifoaming agent NO. 21 (trademark), antifoaming agent NO. 8 (trademark) is acetylene glycol, DYNOL (trademark) 604, SURFYNOL (registered trademark) 440 is trialkyl phosphate, tributyl phosphate, triisobutyl phosphate, alcohol is 2-ethylhexanol, poly Examples of the oxyethylene polyoxypropylene include Newpol PE-61 (trademark) and Newpole PE-71 (trademark), and examples of the polyoxypropylene include polypropylene glycol having a molecular weight of 2,000 to 100,000.
 また、消泡剤は、経済性の観点から、好ましくは、ポリシロキサンとして、DK Q1-1183(商標)が、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、又はポリオキシアルキレンアルキルアミドとして、SNデフォーマー260(商標)、SNデフォーマー265(商標)、SNデフォーマー466(商標)、消泡剤 NO.21(商標)、消泡剤 NO.8(商標)が、リン酸トリアルキルとして、リン酸トリブチル、リン酸トリイソブチルが、アルコールとして、2-エチルヘキサノールが、ポリオキシエチレンポリオキシプロピレンとして、ニューポールPE-61(商標)、ニューポールPE-71(商標)が、及びポリオキシプロピレンとして、分子量が2,000以上100,000以下のポリプロピレングリコールが挙げられる。 Further, from the viewpoint of economy, the antifoaming agent is preferably polysiloxane, DK Q1-1183 (trademark) is SN, polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl ether, or polyoxyalkylene alkylamide as SN. Deformer 260 (trademark), SN deformer 265 (trademark), SN deformer 466 (trademark), antifoaming agent NO. 21 (trademark), antifoaming agent NO. 8 (trademark) is trialkyl phosphate, tributyl phosphate, triisobutyl phosphate is alcohol, 2-ethylhexanol is polyoxyethylene polyoxypropylene, Newpol PE-61 (trademark), Newpol Examples of PE-71 (trademark) and polyoxypropylene include polypropylene glycol having a molecular weight of 2,000 to 100,000.
 本発明の水硬性組成物用分散剤組成物では、(D)成分の消泡剤が脂肪酸エステル及びアルキルアミンから選ばれる1種以上の化合物を含むことが好ましい。
 また、上記消泡剤の中でも、本発明の分散剤組成物の保存安定性の観点から、アルキルアミンが好ましく、アルキル基の炭素数が8以上18以下のジメチルアルキルアミンがより好ましく、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、及びジメチルパルミチルアミンから選ばれる1種以上のアルキルアミンが更に好ましい。
In the dispersant composition for a hydraulic composition of the present invention, it is preferable that the antifoaming agent of component (D) contains one or more compounds selected from fatty acid esters and alkylamines.
Among the antifoaming agents, alkylamine is preferable from the viewpoint of storage stability of the dispersant composition of the present invention, dimethylalkylamine having an alkyl group having 8 to 18 carbon atoms is more preferable, and dimethyldecylamine. More preferred is one or more alkylamines selected from dimethyllaurylamine, dimethylmyristylamine, and dimethylpalmitylamine.
 本発明の水硬性組成物用分散剤組成物が(D)成分を含有する場合、組成物中の(D)成分の含有量は、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは3質量%以下、より好ましくは1質量%以下含有する。
 また、本発明の水硬性組成物用分散剤組成物が(D)成分を含有する場合、(A)成分、(B)成分及び(C)成分の含有量の合計に対して、(D)成分を、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、そして、好ましくは3質量%以下、より好ましくは1質量%以下含有する。
When the dispersant composition for hydraulic compositions of the present invention contains the component (D), the content of the component (D) in the composition is preferably 0.001% by mass or more, more preferably 0.01. It is contained in an amount of not less than mass%, preferably not more than 3 mass%, more preferably not more than 1 mass%.
Moreover, when the dispersing agent composition for hydraulic compositions of this invention contains (D) component, (D) with respect to the sum total of content of (A) component, (B) component, and (C) component. The component is contained in an amount of preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and preferably 3% by mass or less, more preferably 1% by mass or less.
 本発明の水硬性組成物用分散剤組成物は、従来のセメント分散剤、水溶性高分子化合物、空気連行剤、セメント湿潤剤、膨張材、防水剤、遅延剤、急結剤、増粘剤、凝集剤、乾燥収縮低減剤、強度増進剤、硬化促進剤、防腐剤などの成分〔(A)成分、(B)成分、又は(C)成分に該当するものを除く〕を含有することができる。 The dispersant composition for a hydraulic composition of the present invention includes a conventional cement dispersant, a water-soluble polymer compound, an air entraining agent, a cement wetting agent, an expanding material, a waterproofing agent, a retarding agent, a quick setting agent, and a thickening agent. , A coagulant, a drying shrinkage reducing agent, a strength enhancer, a curing accelerator, a preservative, and the like (excluding those corresponding to the component (A), the component (B), or the component (C)) it can.
 本発明の水硬性組成物用分散剤組成物の形態は、液体、固体の何れでもよく、液体であることが好ましい。本発明の水硬性組成物用分散剤組成物は水を含有することができる。 The form of the dispersant composition for a hydraulic composition of the present invention may be either liquid or solid, and is preferably liquid. The dispersant composition for hydraulic compositions of the present invention can contain water.
 本発明の水硬性組成物用分散剤組成物の対象とする水硬性組成物は、水硬性粉体と水とを含有する水硬性組成物が挙げられる。水硬性粉体とは、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏等が挙げられる。好ましくはセメント、より好ましくは普通ポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸塩セメント等のセメントである。また、セメント等に高炉スラグ、フライアッシュ、シリカフュームなどのポゾラン作用及び/又は潜在水硬性を有する粉体や、石粉(炭酸カルシウム粉末)等が添加された高炉スラグセメント、フライアッシュセメント、シリカフュームセメント等でもよい。 Examples of the hydraulic composition targeted by the dispersant composition for hydraulic composition of the present invention include a hydraulic composition containing hydraulic powder and water. The hydraulic powder is a powder having physical properties that hardens by a hydration reaction, and examples thereof include cement and gypsum. Cement is preferred, and more preferred is ordinary portland cement, belite cement, medium heat cement, early strength cement, very early strength cement, sulfate resistant cement, and the like. Also, blast furnace slag cement, fly ash cement, silica fume cement, etc. in which pozzolanic action and / or latent hydraulic properties such as blast furnace slag, fly ash, silica fume, and stone powder (calcium carbonate powder) are added to cement, etc. But you can.
 本発明の水硬性組成物用分散剤組成物は、水/水硬性粉体比が、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上、そして、好ましくは150質量%以下、より好ましくは120質量%以下、更に好ましくは80質量%以下の水硬性組成物に好適に用いられる。 The dispersant composition for a hydraulic composition of the present invention has a water / hydraulic powder ratio of preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably It is suitably used for a hydraulic composition of 150% by mass or less, more preferably 120% by mass or less, and still more preferably 80% by mass or less.
 ここで、水/水硬性粉体比は、水硬性組成物中の水と水硬性粉体の質量百分率(質量%)であり、水の質量/水硬性粉体の質量×100により算出される。水/水硬性粉体比は、水の量と、水和反応により硬化する物性を有する粉体の量とに基づいて算出される。水和反応により硬化する物性を有する粉体が、ポゾラン作用を有する粉体、潜在水硬性を有する粉体、及び石粉(炭酸カルシウム粉末)から選ばれる粉体を含む場合、本発明では、それらの量も水硬性粉体の量に算入する。また、水和反応により硬化する物性を有する粉体が、高強度混和材を含有する場合、高強度混和材の量も水硬性粉体の量に算入する。これは、水硬性粉体の質量が関係する以下の質量部においても同様である。 Here, the water / hydraulic powder ratio is the mass percentage (mass%) of water and hydraulic powder in the hydraulic composition, and is calculated by the mass of water / mass of hydraulic powder × 100. . The water / hydraulic powder ratio is calculated based on the amount of water and the amount of powder having physical properties that are cured by a hydration reaction. In the case where the powder having physical properties that hardens by a hydration reaction includes a powder having a pozzolanic action, a powder having a latent hydraulic property, and a powder selected from stone powder (calcium carbonate powder), The amount is also included in the amount of hydraulic powder. In addition, when the powder having physical properties that hardens by a hydration reaction contains a high-strength admixture, the amount of the high-strength admixture is also included in the amount of the hydraulic powder. The same applies to the following mass parts related to the mass of the hydraulic powder.
 本発明の水硬性組成物用分散剤組成物は、セメントミルク用として好適である。セメントミルクは、水/水硬性粉体比が、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上、そして、好ましくは150質量%以下、より好ましく120質量%以下、更に好ましくは80質量%以下である。 The dispersant composition for hydraulic composition of the present invention is suitable for cement milk. The cement milk has a water / hydraulic powder ratio of preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably 150% by mass or less, more preferably 120% by mass. Hereinafter, it is more preferably 80% by mass or less.
 本発明の水硬性組成物用分散剤組成物は、排泥液を用いる工法、具体的にはグラウト工法又は流動化処理土工法に適する。
 本発明の水硬性組成物用分散剤組成物の対象とする水硬性組成物としては、グラウト工法又は流動化処理土工法用セメント組成物が挙げられる。
The dispersant composition for a hydraulic composition of the present invention is suitable for a construction method using a waste liquid, specifically, a grout construction method or a fluidized earth method.
Examples of the hydraulic composition targeted by the dispersant composition for a hydraulic composition of the present invention include a grout method or a cement composition for a fluidized earth method.
<水硬性組成物>
 本発明は、水硬性粉体、水、芳香環を含むモノマー単位を有する高分子化合物(A)〔(A)成分〕、カルボン酸基を有するモノマー単位を有する重合物(B)〔(B)成分〕、及び分子量が1,000以下の糖化合物(C)〔(C)成分〕を含有する、水硬性組成物を提供する。セメントミルクは、本発明の水硬性組成物の1つの例である。
 (A)成分、(B)成分、(C)成分、水硬性粉体の具体例及び好ましい態様は、本発明の水硬性組成物用分散剤組成物と同じである。また、水/水硬性粉体比の具体例及び好ましい態様も、本発明の水硬性組成物用分散剤組成物と同じである。また、本発明の水硬性組成物は、(D)成分を含有することができる。
<Hydraulic composition>
The present invention includes a hydraulic powder, water, a polymer compound (A) [(A) component] having a monomer unit containing an aromatic ring, and a polymer (B) [(B) having a monomer unit having a carboxylic acid group. Component] and a sugar composition (C) having a molecular weight of 1,000 or less (component (C)) are provided. Cement milk is one example of the hydraulic composition of the present invention.
Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the hydraulic powder are the same as those of the dispersant composition for a hydraulic composition of the present invention. Moreover, the specific example and preferable aspect of water / hydraulic powder ratio are also the same as the dispersing agent composition for hydraulic compositions of this invention. Moreover, the hydraulic composition of this invention can contain (D) component.
 本発明の水硬性組成物は、流動性が維持される。そして、土壌などの粘土質が混入した場合でも、粘性の上昇が抑えられる。このような特性を生かして、地盤改良などの用途に好適に用いることができる。
 例えば、本発明の水硬性組成物は、杭周固定液用として好適である。本発明の水硬性組成物は、そのまま、あるいは、掘削土と混合したソイルセメントとして、基礎杭施工における杭周固定液や根固め液として用いることができる。
The fluidity of the hydraulic composition of the present invention is maintained. And even if clay, such as soil, is mixed, an increase in viscosity can be suppressed. Utilizing such characteristics, it can be suitably used for applications such as ground improvement.
For example, the hydraulic composition of the present invention is suitable for a pile circumference fixing liquid. The hydraulic composition of the present invention can be used as it is or as a soil cement mixed with excavated soil, as a pile circumference fixing solution or a root hardening solution in foundation pile construction.
 本発明の水硬性組成物は、(A)成分、(B)成分及び(C)成分を合計で、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.4質量%以上、そして、好ましくは2.0質量%以下、より好ましくは1.2質量%以下含有する。 In the hydraulic composition of the present invention, the total of the component (A), the component (B) and the component (C) is preferably 0.1% by mass or more, more preferably 0.4%, based on the hydraulic powder. More than mass%, and preferably 2.0 mass% or less, More preferably, it contains 1.2 mass% or less.
 本発明の水硬性組成物は、(A)成分を、水硬性粉体に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、そして、好ましくは0.6質量%以下、より好ましくは0.3質量%以下含有する。 In the hydraulic composition of the present invention, the component (A) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 0.6% by mass with respect to the hydraulic powder. % Or less, more preferably 0.3% by mass or less.
 本発明の水硬性組成物は、(B)成分を、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、そして、好ましくは1質量%以下、より好ましくは0.6質量%以下含有する。 In the hydraulic composition of the present invention, the component (B) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 1% by mass or less, based on the hydraulic powder. More preferably, the content is 0.6% by mass or less.
 本発明の水硬性組成物は、(C)成分を、水硬性粉体に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、そして、好ましくは0.6質量%以下、より好ましくは0.3質量%以下含有する。 In the hydraulic composition of the present invention, the component (C) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and preferably 0.6% by mass with respect to the hydraulic powder. % Or less, more preferably 0.3% by mass or less.
 本発明の水硬性組成物は、ソイルセメントの増粘抑制の観点から、(A)成分と(B)成分の質量比が、(A)/(B)で、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、そして、好ましくは1.5以下、より好ましくは1以下、更に好ましくは0.5以下である。 In the hydraulic composition of the present invention, the mass ratio of the component (A) to the component (B) is (A) / (B), preferably 0.01 or more, from the viewpoint of suppressing the thickening of the soil cement. Preferably it is 0.05 or more, More preferably, it is 0.1 or more, Preferably it is 1.5 or less, More preferably, it is 1 or less, More preferably, it is 0.5 or less.
 本発明の水硬性組成物は、本発明の水硬性組成物用分散剤組成物を用いて調製することが好ましい。また、本発明の水硬性組成物は、水、(A)成分、(B)成分及び(C)成分を含有するpH7.5以下の混練水を、水硬性粉体と混合して調製することが好ましい。なお、前記混練水も、本発明の分散剤組成物の要件を満たす限り、本発明の分散剤組成物に含まれる。 The hydraulic composition of the present invention is preferably prepared using the dispersant composition for hydraulic composition of the present invention. The hydraulic composition of the present invention is prepared by mixing water, (A) component, (B) component, and (C) kneaded water having a pH of 7.5 or less with hydraulic powder. Is preferred. The kneaded water is also included in the dispersant composition of the present invention as long as the requirements of the dispersant composition of the present invention are satisfied.
 本発明により、水、(A)成分、(B)成分及び(C)成分を含有する液体組成物を、水硬性粉体と混合する、水硬性組成物の製造方法が提供される。この方法では、(A)成分、(B)成分及び(C)成分を合計で、水硬性粉体に対して、好ましくは0.1質量%以上、より好ましくは0.4質量%以上、そして、好ましくは2.0質量%以下、より好ましくは1.2質量%以下混合する。
 また、本発明により、水、(A)成分、(B)成分及び(C)成分を含有する液体組成物を水硬性粉体と混合する、水硬性組成物の製造方法であって、(A)成分、(B)成分及び(C)成分を合計で、水硬性粉体に対して、0.1質量%以上、好ましくは0.4質量%以上、そして、2.0質量%以下、好ましくは1.2質量%以下混合する、水硬性組成物の製造方法が提供される。この方法では、前記液体組成物のpHが、好ましくは7.5以下、より好ましくは7以下、さらに好ましくは6.9以下、そして、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上、より更に好ましくは5以上である。
 これらの製造方法における前記液体組成物は、混練水であり、また、本発明の水硬性組成物用分散剤組成物である。
ADVANTAGE OF THE INVENTION By this invention, the manufacturing method of a hydraulic composition which mixes the liquid composition containing water, (A) component, (B) component, and (C) component with hydraulic powder is provided. In this method, the total of component (A), component (B) and component (C) is preferably 0.1% by weight or more, more preferably 0.4% by weight or more with respect to the hydraulic powder, and , Preferably 2.0% by mass or less, more preferably 1.2% by mass or less.
In addition, according to the present invention, there is provided a method for producing a hydraulic composition, wherein a liquid composition containing water, the component (A), the component (B) and the component (C) is mixed with a hydraulic powder. ) Component, (B) component and (C) component in total, based on the hydraulic powder, 0.1% by mass or more, preferably 0.4% by mass or more, and 2.0% by mass or less, preferably Is provided with a method for producing a hydraulic composition in which 1.2% by mass or less is mixed. In this method, the pH of the liquid composition is preferably 7.5 or less, more preferably 7 or less, further preferably 6.9 or less, and preferably 2 or more, more preferably 3 or more, and still more preferably 4 More preferably, it is 5 or more.
The liquid composition in these production methods is kneaded water, and is also a dispersant composition for a hydraulic composition of the present invention.
 なお、本発明の水硬性組成物用分散剤組成物が粉末である場合、本発明の水硬性組成物用粉末分散剤組成物と水硬性粉体とを含有する、水硬性組成物用プレミックスを提供することができる。 When the dispersant composition for a hydraulic composition of the present invention is a powder, a premix for a hydraulic composition containing the powder dispersant composition for a hydraulic composition of the present invention and a hydraulic powder. Can be provided.
<本発明の分散剤組成物を用いた工法>
 本発明により、本発明の水硬性組成物用分散剤組成物を使用する、グラウト工法又は流動化処理土工法が提供される。
 グラウト工法とは、地中に水硬性組成物を高圧ジェット噴流体として送り、周囲の土砂を削り取り、排泥液として地上に排出しながら、地中に柱体や壁体を構築する軟弱地盤の改良工法である。また流動化処理土工法とは建設や土木工事で排出される土をセメント類と混合して埋め戻し、再利用する工法である。
<Method using the dispersant composition of the present invention>
According to the present invention, there is provided a grout method or a fluidized earth method using the dispersant composition for a hydraulic composition of the present invention.
The grout method is a soft ground that builds pillars and walls in the ground while sending the hydraulic composition into the ground as a high-pressure jet jet fluid, scraping the surrounding earth and sand and discharging it as ground mud. It is an improved construction method. In addition, the fluidized earth method is a method in which soil discharged during construction or civil engineering is mixed with cement and backfilled for reuse.
 本発明により、本発明の水硬性組成物用分散剤組成物を含有する水硬性組成物を地盤と混合する、地盤の改良工法が提供される。該水硬性組成物と地盤との混合は撹拌しながら行うことができる。
 地盤の改良工法としては、具体的には、浅層改良や深層改良が挙げられる。これら浅層改良や深層改良は、「セメント系固化材による地盤改良マニュアル 第3版」(社団法人セメント協会)を参照できる。地盤の改良工法としては、より詳細には、「既製コンクリート杭の埋め込み工法」が挙げられ、更に「プレボーリング工法」、「中堀り工法」の杭根固め部、杭周部に本発明の水硬性組成物が用いられる。鋼管杭においては、上記工法以外にも「鋼管ソイルセメント杭工法」が挙げられる。その他、既製杭を用いない機械撹拌工法として「TRD工法」や「SMW工法」、「パワーブレンダ―工法」などが挙げられる。本発明の地盤の改良工法は、これらの工法において、地盤と本発明の水硬性組成物用分散剤組成物を含有する水硬性組成物とを混合するものである。該水硬性組成物の混合量は、水硬性組成物の組成、工法、地盤の土質、目標強度などを考慮して適宜決めることができる。例えば、土1mに対して該水硬性組成物の混合量を100kg以上1,000kg以下とすることができる。
According to the present invention, there is provided an improved ground method for mixing a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention with the ground. The hydraulic composition and the ground can be mixed with stirring.
Specific examples of the ground improvement method include shallow layer improvement and deep layer improvement. For these shallow and deep layer improvements, you can refer to the “Ground Improvement Manual 3rd Edition” (Cement Association). More specifically, the improvement method of the ground includes the “embedding method of ready-made concrete piles”, and further, the water of the present invention is applied to the pile root consolidation part and the pile circumference part of the “pre-boring method” and “nakabori method”. A hard composition is used. For steel pipe piles, “steel pipe soil cement pile method” can be cited in addition to the above method. In addition, “TRD method”, “SMW method”, “power blender method”, etc. can be cited as mechanical agitation methods that do not use ready-made piles. The ground improvement method of the present invention is a method of mixing the ground and a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention in these methods. The mixing amount of the hydraulic composition can be appropriately determined in consideration of the composition of the hydraulic composition, the construction method, the soil quality, the target strength, and the like. For example, the mixing amount of the hydraulic composition with respect to 1 m 3 of soil can be 100 kg or more and 1,000 kg or less.
 本発明の地盤の改良工法の一例として、本発明の水硬性組成物用分散剤組成物を含有する水硬性組成物を、杭周固定液及び/又は根固め液として使用する、プレボーリング根固め工法が挙げられる。より詳細には、水、(A)成分、(B)成分及び(C)成分を含有するpH7.5以下の液体組成物を、水硬性粉体と混合して水硬性組成物を調製し、得られた水硬性組成物を、杭周固定液及び/又は根固め液として使用する、プレボーリング根固め工法が挙げられる。 As an example of the ground improvement method of the present invention, a pre-boring root consolidation using a hydraulic composition containing the dispersant composition for a hydraulic composition of the present invention as a pile circumference fixing liquid and / or a root consolidation liquid. A construction method is mentioned. More specifically, a liquid composition having a pH of 7.5 or less containing water, the component (A), the component (B) and the component (C) is mixed with a hydraulic powder to prepare a hydraulic composition, There is a pre-boring root hardening method in which the obtained hydraulic composition is used as a pile circumference fixing liquid and / or a root hardening liquid.
実施例
<配合成分>
 表1に、以下の実施例、比較例で用いた成分を示した。C’-1のデキストリンは、分子量が1,000よりも大きいものであった。
Example <Compounding ingredients>
Table 1 shows the components used in the following Examples and Comparative Examples. The C′-1 dextrin had a molecular weight greater than 1,000.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1~2及び比較例1~2>
 表1の成分を用いて、セメントミルクとソイルセメントに対する評価を以下のように行った。結果を表2~3に示す。
<Examples 1 and 2 and Comparative Examples 1 and 2>
Using the components in Table 1, the evaluation for cement milk and soil cement was performed as follows. The results are shown in Tables 2-3.
(1)セメントミルク評価方法
(1-1)セメントミルクの調製
 表1の成分と水とを混合して分散剤水溶液を調製し、2Lプラスチックカップ(2Lディスポカップ、ニッコー・ハンセン株式会社)内でセメントと混合し、ハンドミキサーにて1分間混練してセメントミルクを調製した。その際、各材料、水、及び各成分の温度、並びに室温は、すべて22℃とした。
 セメントは普通セメントを用いた。分散剤水溶液を調製するための水は上水道水を用いた。セメントと分散剤水溶液は、分散剤水溶液/セメントが60%となるように用いた。
分散剤水溶液/セメントは、実質的に水/水硬性粉体比に相当する。
 表1の(A)成分、(B)成分、(C)成分は、セメントに対する添加量が表2~3の通りとなるように用いた。(C’)成分は、(C)成分の比較化合物であるが、便宜的に(C)成分とみなして質量比と質量%を示した(以下同様)。
 表2~3では、(D)成分として、消泡剤No.21を、(A)成分、(B)成分及び(C)成分の合計量(有効分換算)に対し、0.2質量%添加した。
(1) Cement milk evaluation method (1-1) Preparation of cement milk Mixing the ingredients shown in Table 1 and water to prepare a dispersant aqueous solution, and in a 2L plastic cup (2L disposable cup, Nikko Hansen Co., Ltd.) Cement milk was prepared by mixing with cement and kneading with a hand mixer for 1 minute. At that time, the temperature of each material, water, and each component, and the room temperature were all set to 22 ° C.
As the cement, ordinary cement was used. Water for preparing the dispersant aqueous solution was tap water. The cement and the dispersant aqueous solution were used so that the dispersant aqueous solution / cement was 60%.
The aqueous dispersant / cement substantially corresponds to a water / hydraulic powder ratio.
The components (A), (B), and (C) in Table 1 were used so that the amounts added to the cement were as shown in Tables 2-3. The component (C ′) is a comparative compound of the component (C), but is regarded as the component (C) for convenience, and indicates a mass ratio and mass% (the same applies hereinafter).
In Tables 2 to 3, as component (D), antifoaming agent No. 21 mass% was added with respect to the total amount (Equivalent component conversion) of (A) component, (B) component, and (C) component.
(1-2)評価
 セメントミルクの調製後、表に示す経過時間ごとに、メカニカルスターラー(アズワン株式会社製、トルネードスタンダード)で、セメントミルクを、200rpmで30分間攪拌した。メカニカルスターラーには、攪拌羽として、アズワン株式会社製、トルネード用撹拌羽根 FUT-100と、攪拌棒として、アズワン株式会社製、撹拌シャフト S-500をセットして用いた。
 撹拌終了後、セメントミルクの外観を観察し、ゲル化層の形成の有無を確認し、ゲル化層の厚み、流動層(流動可能な層)の高さを、それぞれ、定規で測定した。カップの底から液面の高さをAとし、流動層の高さをB、ゲル化層の厚みをCとするとA=B+Cとなる。B/A×100により流動率(%)を求め、表に示した。流動率は100%に近いほど好ましい。経過時間は、セメントと水が最初に接触してからの時間を表す。
(1-2) Evaluation After the preparation of cement milk, the cement milk was stirred at 200 rpm for 30 minutes with a mechanical stirrer (manufactured by ASONE Co., Ltd., Tornado Standard) at every elapsed time shown in the table. In the mechanical stirrer, a stirring blade FUT-100 for Tornado manufactured by ASONE Co., Ltd. was used as a stirring blade, and a stirring shaft S-500 manufactured by ASONE Co., Ltd. was used as a stirring rod.
After completion of the stirring, the appearance of the cement milk was observed, whether or not a gelled layer was formed was confirmed, and the thickness of the gelled layer and the height of the fluidized layer (flowable layer) were measured with a ruler. When the height of the liquid surface from the bottom of the cup is A, the height of the fluidized bed is B, and the thickness of the gelled layer is C, A = B + C. The fluidity (%) was determined by B / A × 100 and shown in the table. The flow rate is preferably as close to 100%. Elapsed time represents the time since cement and water first contacted.
(2)ソイルセメント評価方法
(2-1)ソイルセメントの調製
 まず、セメントミルクを次の手順で調製した。表1の成分と水とを混合して分散剤水溶液を調製し、500mlプラスチックカップ(500mLディスポカップ、ニッコー・ハンセン株式会社)内でセメントと混合し、ハンドミキサーにて1分間混練してセメントミルクを調製した。その際、各材料、水、及び各成分の温度、並びに室温は、すべて22℃とした。
 セメントは普通セメントを用いた。分散剤水溶液を調製するための水は上水道水を用いた。セメントと分散剤水溶液は、分散剤水溶液/セメントが60質量%となるように用いた。分散剤水溶液/セメントは、実質的に水/水硬性粉体比に相当する。
 表1の(A)成分、(B)成分、(C)成分は、セメントに対する添加量が表2~3の通りとなるように用いた。
 表2~3では、(D)成分として、消泡剤No.21を、(A)成分、(B)成分及び(C)成分の合計量(有効分換算)に対し、0.2質量%添加した。
 その後、別の500mlプラスチックカップ内に、泥水とセメントミルクとを投入し、ハンドミキサーにて30秒撹拌してソイルセメントを調製した。泥水は、笠岡粘土(水を加え比重1.5に調整)を用いた。泥水とセメントミルクは、泥水/セメントミルク=240/70の質量比で用いた。攪拌後、振動を与えて上面を均し、ラップフィルムで封をして所定時間まで22℃で静置した。
(2) Method for evaluating soil cement (2-1) Preparation of soil cement First, cement milk was prepared by the following procedure. Mix the ingredients in Table 1 and water to prepare an aqueous dispersant solution, mix with cement in a 500 ml plastic cup (500 ml disposable cup, Nikko Hansen Co., Ltd.), knead with a hand mixer for 1 minute, and cement milk Was prepared. At that time, the temperature of each material, water, and each component, and the room temperature were all set to 22 ° C.
As the cement, ordinary cement was used. Water for preparing the dispersant aqueous solution was tap water. The cement and the dispersant aqueous solution were used so that the dispersant aqueous solution / cement was 60% by mass. The aqueous dispersant / cement substantially corresponds to a water / hydraulic powder ratio.
The components (A), (B), and (C) in Table 1 were used so that the amounts added to the cement were as shown in Tables 2-3.
In Tables 2 to 3, as component (D), antifoaming agent No. 21 mass% was added with respect to the total amount (Equivalent component conversion) of (A) component, (B) component, and (C) component.
Thereafter, muddy water and cement milk were put into another 500 ml plastic cup, and stirred for 30 seconds with a hand mixer to prepare a soil cement. As the muddy water, Kasaoka clay (adjusted to a specific gravity of 1.5 by adding water) was used. The muddy water and cement milk were used at a mass ratio of muddy water / cement milk = 240/70. After stirring, the top surface was leveled by applying vibration, sealed with a wrap film, and allowed to stand at 22 ° C. for a predetermined time.
(2-2)評価
 ソイルセメントの調製から2、3、4時間後に、ソイルセメントの粘性をベーンせん断試験機によるトルクを測定して評価した。ベーンせん断試験機はテスコ社製のものを使用した。ベーン(羽根)は15mm×30mm、トルクドライバーはFTD5CN-S、FTD20CN-S、FTD50CN2-Sを使用した。
(2-2) Evaluation 2, 3, and 4 hours after the preparation of the soil cement, the viscosity of the soil cement was evaluated by measuring the torque with a vane shear tester. A vane shear tester manufactured by Tesco was used. The vane (blade) used was 15 mm × 30 mm, and the torque driver used was FTD5CN-S, FTD20CN-S, FTD50CN2-S.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
*1 質量比は、(A)成分、(B)成分及び(C)成分の合計を100とする質量比である(以下同様)。
*2 (D)成分の質量%は、(A)成分、(B)成分及び(C)成分の合計に対する質量%である(以下同様)。
*3 (A)+(B)+(C)添加量は、セメントに対する質量%である(以下同様)。
* 1 The mass ratio is a mass ratio where the sum of the component (A), the component (B) and the component (C) is 100 (the same applies hereinafter).
* 2 The mass% of component (D) is mass% relative to the total of component (A), component (B) and component (C) (the same applies hereinafter).
* 3 The addition amount of (A) + (B) + (C) is mass% with respect to cement (the same applies hereinafter).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例3及び比較例3>
 表1の成分を表4のように用いてセメントミルクとソイルセメントを調製し、実施例1と同様の評価を行った。結果を表4に示す。なお、分散剤水溶液の調製の際に、表5の酸((E)成分として示した)を用いてpHが表4の通りとなるように調整した。
<Example 3 and Comparative Example 3>
Cement milk and soil cement were prepared using the components in Table 1 as shown in Table 4, and the same evaluation as in Example 1 was performed. The results are shown in Table 4. In preparing the aqueous dispersant solution, the pH was adjusted as shown in Table 4 using the acids shown in Table 5 (shown as the component (E)).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
*4 (E)成分の質量%は、分散剤水溶液中の質量%である。 * 4 The mass% of the component (E) is the mass% in the aqueous dispersant solution.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例4>
 表1の成分を表6のように用いてセメントミルクとソイルセメントを調製し、実施例1と同様の評価を行った。結果を表6に示す。なお、(B)成分は、水酸化ナトリウムを用いて、中和度が表6の通りとなるように調整して用いた。
<Example 4>
Cement milk and soil cement were prepared using the components in Table 1 as shown in Table 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 6. The component (B) was used by adjusting the neutralization degree as shown in Table 6 using sodium hydroxide.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例5>
 表1の成分及び水を混合して、表7の組成で(A)成分、(B)成分及び(C)成分を合計で40質量%含有する水硬性組成物用分散剤組成物を調製した。表7では、(D)成分として、D-2のファーミンDM2098を、(A)成分、(B)成分及び(C)成分の合計量(有効分換算)に対し、0.4質量%添加した。また、酢酸を添加して、水硬性組成物用分散剤組成物の、2質量%水溶液の22℃でのpHが6~7となるように調整した。該組成物を、40℃で1日又は7日保存し、外観を目視観察した。結果を表7に示す。
<Example 5>
The component of Table 1 and water were mixed, and the dispersing agent composition for hydraulic compositions which contains 40 mass% of (A) component, (B) component, and (C) component in total with the composition of Table 7 was prepared. . In Table 7, as a component (D), 0.4 mass% of D-2 Pharmin DM2098 was added to the total amount (converted to the effective component) of the components (A), (B) and (C). . Acetic acid was added to adjust the pH of the 2% by weight aqueous solution of the dispersant composition for hydraulic composition to 6 to 7 at 22 ° C. The composition was stored at 40 ° C. for 1 day or 7 days, and the appearance was visually observed. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (14)

  1.  芳香環を含むモノマー単位を有する高分子化合物(A)、カルボン酸基を有するモノマー単位を有する重合物(B)、及び分子量が1,000以下の糖化合物(C)を含有する、水硬性組成物用分散剤組成物。 Hydraulic composition comprising a polymer compound (A) having a monomer unit containing an aromatic ring, a polymer (B) having a monomer unit having a carboxylic acid group, and a sugar compound (C) having a molecular weight of 1,000 or less Dispersant composition for physical use.
  2.  前記高分子化合物(A)の重量平均分子量が1,000以上100,000以下であり、前記重合物(B)の重量平均分子量が2,000以上1,000,000以下である、請求項1に記載の水硬性組成物用分散剤組成物。 The weight average molecular weight of the polymer compound (A) is 1,000 or more and 100,000 or less, and the weight average molecular weight of the polymer (B) is 2,000 or more and 1,000,000 or less. Dispersant composition for hydraulic composition as described in 2.
  3.  前記高分子化合物(A)がナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩を含む、請求項1又は2に記載の水硬性組成物用分散剤組成物。 The dispersant composition for hydraulic composition according to claim 1 or 2, wherein the polymer compound (A) comprises a naphthalenesulfonic acid formaldehyde condensate or a salt thereof.
  4.  前記重合物(B)がポリアクリル酸又はその塩を含む、請求項1~3いずれかに記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to any one of claims 1 to 3, wherein the polymer (B) contains polyacrylic acid or a salt thereof.
  5.  前記糖化合物(C)がサッカロースを含む、請求項1~4いずれかに記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to any one of claims 1 to 4, wherein the sugar compound (C) comprises saccharose.
  6.  22℃でのpHが7.5以下である、請求項1~5いずれかに記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to any one of claims 1 to 5, wherein the pH at 22 ° C is 7.5 or less.
  7.  更に消泡剤(D)を含有する、請求項1~6いずれかに記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to any one of claims 1 to 6, further comprising an antifoaming agent (D).
  8.  消泡剤(D)が脂肪酸エステル及びアルキルアミンから選ばれる1種以上の化合物を含む、請求項7に記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to claim 7, wherein the antifoaming agent (D) comprises one or more compounds selected from fatty acid esters and alkylamines.
  9.  前記水硬性組成物が、グラウト工法又は流動化処理土工法用セメント組成物である、請求項1~8いずれかに記載の水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition according to any one of claims 1 to 8, wherein the hydraulic composition is a cement composition for a grout method or a fluidized earth method.
  10.  請求項1~9いずれかに記載の水硬性組成物用分散剤組成物を使用する、グラウト工法又は流動化処理土工法。 A grout method or a fluidized earth method using the dispersant composition for a hydraulic composition according to any one of claims 1 to 9.
  11.  請求項1~9いずれかに記載の水硬性組成物用分散剤組成物を含有する水硬性組成物を地盤と混合する、地盤の改良工法。 A ground improvement construction method in which a hydraulic composition containing the dispersant composition for a hydraulic composition according to any one of claims 1 to 9 is mixed with the ground.
  12.  水、水硬性粉体、芳香環を含むモノマー単位を有する高分子化合物(A)、カルボン酸基を有するモノマー単位を有する重合物(B)、及び分子量が1,000以下の糖化合物(C)を混合する、水硬性組成物の製造方法。 Water, hydraulic powder, polymer compound (A) having a monomer unit containing an aromatic ring, polymer (B) having a monomer unit having a carboxylic acid group, and sugar compound (C) having a molecular weight of 1,000 or less The manufacturing method of the hydraulic composition which mixes.
  13.  水、芳香環を含むモノマー単位を有する高分子化合物(A)、カルボン酸基を有するモノマー単位を有する重合物(B)、及び分子量が1,000以下の糖化合物(C)を含有する液体組成物を、水硬性粉体と混合する、請求項12に記載の水硬性組成物の製造方法。 Liquid composition containing water, a polymer compound (A) having a monomer unit containing an aromatic ring, a polymer (B) having a monomer unit having a carboxylic acid group, and a sugar compound (C) having a molecular weight of 1,000 or less The manufacturing method of the hydraulic composition of Claim 12 which mixes a thing with hydraulic powder.
  14.  前記液体組成物の22℃でのpHが7.5以下である、請求項13に記載の水硬性組成物の製造方法。 The method for producing a hydraulic composition according to claim 13, wherein the pH of the liquid composition at 22 ° C is 7.5 or less.
PCT/JP2018/003997 2017-02-07 2018-02-06 Dispersant composition for hydraulic composition WO2018147266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020649 2017-02-07
JP2017-020649 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147266A1 true WO2018147266A1 (en) 2018-08-16

Family

ID=63108216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003997 WO2018147266A1 (en) 2017-02-07 2018-02-06 Dispersant composition for hydraulic composition

Country Status (2)

Country Link
JP (1) JP6850744B2 (en)
WO (1) WO2018147266A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367548A (en) * 1991-06-17 1992-12-18 Kao Corp Cement additive for ultrahigh pressure jet impregnation method
JPH07268324A (en) * 1994-03-31 1995-10-17 Kawasaki Steel Corp Cement admixture for ultra-high pressure ejection mixing process
JPH1015811A (en) * 1996-06-28 1998-01-20 Kao Corp Processing assistant composition and surface processing method employing the processing assistant composition
JPH11263974A (en) * 1998-12-16 1999-09-28 Taisei Corp Additive for hydraulic composition containing rejected soil
JP2000281422A (en) * 1999-03-29 2000-10-10 Sumitomo Osaka Cement Co Ltd Setting retarder for backfill grouting material, setting retarder liquid for backfill grouting material, backfill grouting material and backfill grouting work
JP2008094679A (en) * 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk Grout composition and grout material using the same
JP2008285597A (en) * 2007-05-18 2008-11-27 Taiheiyo Material Kk Compatibilizer for high pressure jetting stirring construction
JP2011057459A (en) * 2009-09-07 2011-03-24 Nippon Paper Chemicals Co Ltd Cement admixture and cement composition using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367548A (en) * 1991-06-17 1992-12-18 Kao Corp Cement additive for ultrahigh pressure jet impregnation method
JPH07268324A (en) * 1994-03-31 1995-10-17 Kawasaki Steel Corp Cement admixture for ultra-high pressure ejection mixing process
JPH1015811A (en) * 1996-06-28 1998-01-20 Kao Corp Processing assistant composition and surface processing method employing the processing assistant composition
JPH11263974A (en) * 1998-12-16 1999-09-28 Taisei Corp Additive for hydraulic composition containing rejected soil
JP2000281422A (en) * 1999-03-29 2000-10-10 Sumitomo Osaka Cement Co Ltd Setting retarder for backfill grouting material, setting retarder liquid for backfill grouting material, backfill grouting material and backfill grouting work
JP2008094679A (en) * 2006-10-13 2008-04-24 Denki Kagaku Kogyo Kk Grout composition and grout material using the same
JP2008285597A (en) * 2007-05-18 2008-11-27 Taiheiyo Material Kk Compatibilizer for high pressure jetting stirring construction
JP2011057459A (en) * 2009-09-07 2011-03-24 Nippon Paper Chemicals Co Ltd Cement admixture and cement composition using the same

Also Published As

Publication number Publication date
JP6850744B2 (en) 2021-03-31
JP2018127394A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6077156B2 (en) Dispersant composition for hydraulic composition
JP7069053B2 (en) Admixture for hydraulic composition
RU2613372C2 (en) Hydraulic composition
RU2565298C2 (en) Dispersant for hydraulic composition
JP6171038B2 (en) Dispersant composition for hydraulic composition
JP6148874B2 (en) Liquid quick setting agent, quick setting cement concrete, and spraying method using the same
JP6749951B2 (en) Dispersant composition for hydraulic composition
JP6689676B2 (en) Dispersant composition for hydraulic composition
JP6850744B2 (en) Dispersant composition for hydraulic composition
JP7033108B2 (en) Ground improvement method
JP6869927B2 (en) Dispersant composition for hydraulic composition
JP6650262B2 (en) Surface aesthetic improver composition for hydraulic composition
JP6362531B2 (en) Hydraulic composition
JP2015231930A (en) Liquid rapid hardening agent, rapid hardening cement concrete and spraying process using the same
JP6924738B2 (en) Additives for soil cement
JP6727182B2 (en) Additives for hydraulic compositions
JPH08295546A (en) Air entraining agent for fly ash-containing cement composition
JP2000327387A (en) Cement admixture
JP2003002715A (en) Additive for grout
WO2018052112A1 (en) Hydraulic composition to be used for centrifugal casting
JP2000302510A (en) Cement admixture
JP2019031647A (en) Method for producing hydraulic slurry and ground improvement method
JPH10291846A (en) Cement mixing agent
JP2019105124A (en) Hydraulic composition for pile construction method
JPH10291847A (en) Cement mixing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751436

Country of ref document: EP

Kind code of ref document: A1