WO2018147132A1 - Display device, and abnormality determination method for television receiver and display device - Google Patents
Display device, and abnormality determination method for television receiver and display device Download PDFInfo
- Publication number
- WO2018147132A1 WO2018147132A1 PCT/JP2018/003062 JP2018003062W WO2018147132A1 WO 2018147132 A1 WO2018147132 A1 WO 2018147132A1 JP 2018003062 W JP2018003062 W JP 2018003062W WO 2018147132 A1 WO2018147132 A1 WO 2018147132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display
- circuit
- current value
- display device
- display circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/04—Diagnosis, testing or measuring for television systems or their details for receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/63—Generation or supply of power specially adapted for television receivers
Definitions
- the present invention relates to a display device, a television receiver, and a display device abnormality determination method, and more particularly, to a display device, a television receiver, and a display device that detect an abnormality based on a current supplied to a display circuit included in the display device.
- the present invention relates to an abnormality determination method.
- a display device having a display circuit for displaying a received video signal of a television broadcast or an output video signal of a personal computer is known. Such a display device is designed to cope with a wide range of power consumption when displaying various video patterns. Also, at the manufacturing stage of the display device, it is inspected whether or not the display device is manufactured as designed (see, for example, Patent Document 1), and a product having a power consumption defect is not shipped.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a display device, a television receiver, and a display device that can detect an abnormality accompanied by an increase in current at which the protection circuit does not operate. It is to provide an abnormality determination method.
- a first technical means is a display device having a power supply circuit and a display circuit driven by power from the power supply circuit, wherein the magnitude of the current supplied to the display circuit is reduced.
- a current value storage unit that preliminarily stores a measured current value measured by the circuit as a reference current value; and a determination control unit that determines abnormality of the display circuit.
- the determination control unit is generated by the pattern generation unit
- the display circuit is subjected to display processing of the predetermined pattern, and an abnormality of the display circuit is determined based on a measured current value measured by the current measuring circuit and the reference current value.
- the second technical means is characterized in that, in the first technical means, the reference current value is the measured current value at the time of manufacturing the display device.
- the pattern generation unit generates the predetermined pattern at the time of power-on operation or power-off operation of the display device and displays the pattern on the display circuit. It is characterized by that.
- the fourth technical means is any one of the first to third technical means, wherein the display circuit includes a liquid crystal panel.
- the pattern generation unit displays the predetermined pattern on the liquid crystal panel while a backlight for supplying light to the liquid crystal panel is turned off.
- the sixth technical means is a television receiver including a display device according to any one of the first to fifth technical means.
- a seventh technical means is an abnormality determination method for a display device having a power supply circuit and a display circuit driven by power from the power supply circuit, wherein the display device applies a predetermined pattern to the display circuit in advance. Storing a magnitude of a supply current to the display circuit measured when the display process is performed as a reference current value; and measuring when the display device causes the display circuit to display the predetermined pattern.
- An abnormality determination method for a display device comprising: determining abnormality of the display circuit based on the measured value of the supply current to the display circuit and the reference current value.
- the present invention it is possible to detect an abnormality accompanied by an increase in current at which the protection circuit does not operate.
- FIG. 1 is a diagram illustrating an example of a display device according to an embodiment of the present invention.
- a display device according to an embodiment includes a power supply circuit and a display circuit driven by power from the power supply circuit.
- the display device 100 includes a display circuit 101, a power supply circuit 102, a current measurement circuit 103, a control circuit 107, and a video signal input unit 110.
- the display circuit 101 performs processing for displaying a television broadcast reception video signal, a personal computer output video signal, and the like. Therefore, a tuner is connected to or built in the display circuit 101 and input to the video signal input unit 110, and a speaker or earphone that outputs an audio signal from the tuner of the television broadcast is connected or built in. Thus, a television receiver including the display circuit 101 can be obtained. Further, a monitor of the personal computer can be obtained by displaying the video signal input to the video signal input unit 110 by connecting the display circuit 101 to the personal computer or incorporating the personal computer.
- the received video signal and the output video signal may be analog signals or digital signals.
- the processing performed by the display circuit 101 to display a received video signal, an output video signal, or the like is based on the received video signal or the output video signal, and the video processing for processing the video and the display circuit 101 operates to display the video.
- Video processing includes processing that changes the video display mode, such as video contrast, brightness, and sharpness. Also, when the video signal includes multiple frames, between video frames, such as frame interpolation. Generating a new image of the subframe. Processing for displaying a received video signal, an output video signal, or the like may be referred to as “display processing”.
- the sub-circuit or the like that is operated by the display circuit 101 to display a video is a circuit that displays the video so that the viewer can see it.
- the sub circuit include a cathode ray tube, a liquid crystal panel, and an organic EL (Electro Luminescence) panel. These sub circuits and the like constitute a part of the display circuit 101.
- a preferred example of the display device 100 of the present invention is a liquid crystal display device that performs display processing using a display circuit 101 including a liquid crystal panel.
- FIG. 2 is a diagram illustrating an example of a configuration of a display circuit included in a display device according to an embodiment of the present invention.
- FIG. 2 shows an example of a configuration of a display circuit 101 including a liquid crystal panel as the display device 100.
- the display circuit 101 includes a display control circuit 201, a source driver 202, a gate driver 203, and a liquid crystal panel 204.
- the display circuit 101 also includes a backlight 205 that supplies light to the liquid crystal panel 204 and a backlight control circuit 206 that controls the backlight 205 in accordance with the control of the display control circuit 201.
- the liquid crystal panel 204 includes a plurality of source lines 211m connected to the source driver 202 (m is an integer not less than 1 and not more than the number of source lines) and a plurality of gate lines 212n connected to the gate driver 203 (n is And an integer greater than or equal to 1 and less than or equal to the number of gate lines).
- a pixel is formed at a position where the source line 211m and the gate line 212n intersect with each other, and a TFT 213mn and a pixel electrode 214mn are disposed as shown in FIG.
- the gate electrode of the TFT 213mn is connected to the gate line 212n.
- the source and drain of the TFT 213mn are connected to the source line 211m and the pixel electrode 214mn.
- the TFT 213mn When the TFT 213mn whose gate electrode is connected to the gate line 212n is selected, the TFT 213mn is turned on, and the data voltage supplied from the source line 211m is applied to the pixel electrode 214mn as a voltage representing the luminance of the pixel.
- the pixel electrode 214mn sandwiches a liquid crystal material with a counter electrode (not shown), the polarization characteristics of the liquid crystal material change according to the supplied data voltage, and the amount of light transmitted from the backlight 205 is transmitted. To control.
- a storage capacitor may be arranged in parallel with the liquid crystal material between the pixel electrode 214mn and the counter electrode, and the data voltage is continuously applied to the pixel electrode 214mn even when the TFT 213nm is not selected by the storage capacitor. It may be like this.
- the current supplied to the liquid crystal panel 204 by the display process is mainly supplied by the source driver 202 and the gate driver 203 via the source line 211m and the gate line 212n.
- the display control circuit 201 controls the source driver 202, the gate driver 203, and the backlight control circuit 206 based on the video signal supplied to the display circuit 101 from the video signal input unit 110 or the control circuit 107.
- the display control circuit 201 turns on the backlight 205 via the backlight control circuit 206 and supplies light from the backlight 205 to the liquid crystal panel 204.
- the gate driver 203 sends a control signal so as to sequentially select the gate line 212n, and the source driver 202 outputs the data voltage to the pixel via the source line 211m and the TFT 213mn connected to the selected gate line 212n.
- a control signal is sent so as to be supplied to the electrode 214mn.
- the backlight 205 may include a plurality of light emitting areas, and local dimming control may be performed to control the amount of light emitted from each of the plurality of light emitting areas.
- the liquid crystal panel 204 is a normally black type in which light from the backlight 205 is blocked unless a voltage is applied to the pixel electrode 214 nm due to the characteristics of the liquid crystal material and a pair of polarizing plates that sandwich the liquid crystal panel 204. And a normally white type that transmits light from the backlight 205 if no voltage is applied to the pixel electrode 214 nm.
- the display circuit 101 when the display circuit 101 performs display processing of a black image as a whole, the current value supplied to the liquid crystal panel 204 by the source driver 202 and the gate driver 203 is minimized, When the display circuit 101 displays white video, the current value supplied to the liquid crystal panel 204 by the source driver 202 and the gate driver 203 can be maximized.
- the power supply circuit 102 supplies power to the display circuit 101.
- the display circuit 101 is driven by the power supplied from the power supply circuit 102.
- the display control circuit 201, the source driver 202, the gate driver 203, and the backlight control circuit 206 are not shown in FIG.
- Each power supply line for supplying power from the power supply circuit 102 is provided in the display circuit 101.
- the power supplied to the liquid crystal panel 204 is mainly supplied from the source driver 202 and the gate driver 203 through the source line 211m and the gate line 212n. Electric power is supplied to the backlight 205 via the backlight control circuit 206. Note that if a direct current with a substantially constant voltage is supplied from the power supply circuit 102, the amount of power can be the amount of current.
- FIG. 3 is a diagram illustrating an example of the configuration of the power supply circuit 102.
- the power supply circuit 102 can be configured as an LLC circuit, for example.
- the power supply circuit 102 is configured as a half-bridge circuit, and includes two switching elements, a first switching element 301 and a second switching element 302, a series resonance capacitor 305, and a primary coil 304.
- a transformer having secondary coils 306 and 307, two rectifying diodes 308 and 309, and an LLC IC 303 for controlling on / off of the first switching element 301 and the second switching element 302, respectively.
- a DC of a predetermined voltage is applied, and the drain and source of the first switching element 301 consisting of a power MOS transistor, the drain and source of the second switching element 302 Is connected.
- the output signal of the LLC IC 303 is supplied to the gates of the first switching element 301 and the second switching element 302.
- One terminal of a series circuit of the transformer primary coil 304 and the capacitor 305 is connected to a location where the first switching element 301 and the second switching element 302 are connected, and the series circuit of the transformer primary coil 304 and the capacitor 305 is connected.
- the other terminal of the second switching element 302 is connected to the source side of the second switching element 302.
- the anodes of rectifying diodes 308 and 309 are connected to the secondary coils 306 and 307 of the transformer.
- the cathodes of the rectifying diodes 308 and 309 are connected to one terminal of the rectifying capacitor 310, and the other terminal of the rectifying capacitor 310 is connected to the intermediate tap of the secondary coils 306 and 307.
- the output terminal 321 1 connected to both terminals of the rectifying capacitor 310, the output terminal 321 2, and the output terminal 321 3 are different direct currents from those applied between the input terminals 320 1 and 320 2 of the power supply circuit 102.
- a direct current having a voltage can be output.
- the output terminal 321 1 used as a common terminal (for example, the ground level), for example, the output terminal 321 3, can supply a DC current to the display control circuit 201 and the backlight control circuit 206, the output terminal 321 2 A direct current can be supplied to the source driver 202 and the gate driver 203.
- the power supply circuit 102 includes a protection circuit (not shown) that prevents power from being supplied to the display circuit 101 when the amount of current supplied to the display circuit 101 exceeds a predetermined value from the normally assumed current amount. obtain.
- a protection circuit may be provided separately from the power supply circuit 102.
- the current measurement circuit 103 measures the magnitude of the supply current supplied from the power supply circuit 102 to the display circuit 101.
- current measuring circuit 103 the output terminal 321 2, to measure the magnitude of the current value supplied to the source driver 202 and gate driver 203.
- the control circuit 107 generates one or a plurality of specific pattern video signals, outputs them to the display circuit 101, and supplies current values supplied from the power supply circuit 102 to the source driver 202 and the gate driver 203 by the current measurement circuit 103.
- This is a circuit that measures and determines an abnormality in the display circuit 101 based on a measured current value that is a current value obtained by the measurement.
- the current value supplied to the source driver 202 and the gate driver 203 includes the current value supplied to the liquid crystal panel 204.
- the source driver 202 and the gate driver 203 themselves supply the liquid crystal panel 204 from the source driver 202 and the gate driver 203 via the source line 211m and the gate line 212n, rather than the current consumption associated with the operation according to the control from the display control circuit 201. Since the consumed current is larger, the current value supplied to the source driver 202 and the gate driver 203 can be regarded as the current value supplied to the liquid crystal panel 204.
- the control circuit 107 can also be configured using only hardware elements. Further, a hardware element may be combined with a software element (computer program), and the two may be configured to cooperate with each other.
- FIG. 4 shows an example of the configuration of the hardware elements in the case where the software elements are combined with the hardware elements and the two are cooperated.
- the control circuit 107 is configured by a CPU (Central Processing Unit) 401, a memory 402, and an external I / F 403 connected to each other via a bus.
- the CPU 401 executes a program stored in the memory 402, reads / writes data from / to the memory 402, and inputs / outputs signals to / from the current measurement circuit 103 and the display circuit 101 connected to the control circuit 107 by the external I / F 403. And operate to achieve certain objectives.
- the memory 402 can include both a non-rewritable and read-only area in addition to an area whose contents can be rewritten by a program executed by the CPU 401.
- the memory 402 when the supply of power from the outside of the control circuit 107 is stopped, the stored contents are maintained even if the supply of power from the outside of the control circuit 107 is stopped.
- a part of the area of the memory 402 (for example, reference numeral 412 in FIG. 4) can be used as the current value storage unit 106.
- the control circuit 107 there is an operation of realizing the control circuit 107 as a circuit having the pattern generation unit 104, the determination control unit 105, and the current value storage unit 106.
- the pattern generation unit 104 outputs a video signal representing a predetermined pattern generated by execution of a program by the CPU 401 or stored in the memory 402 to the display circuit 101.
- the display circuit 101 By outputting a video signal representing a predetermined pattern to the display circuit 101 via the external I / F 403, the display circuit 101 performs display processing of the predetermined pattern.
- the display circuit 101 includes the backlight 205 and an abnormality other than the backlight 205 is determined, a control signal for turning off the backlight 205 is output to the display circuit 101 via the external I / F 403. You may make it do. By doing so, the pattern can be prevented from being visually recognized by the user of the display device 100, and the user can be prevented from feeling uncomfortable.
- the predetermined pattern is not limited to one and may be plural.
- the determination control unit 105 controls the pattern generation unit 104 to generate a video signal representing a predetermined pattern on the display circuit 101, outputs the video signal to the display circuit 101, and from the current measurement circuit 103 to the display circuit 101 from the power supply circuit 102.
- a supply current value (measurement current value) to be supplied is acquired via the external I / F 403. Then, the determination control unit 105 reads the reference current value from the current value storage unit 106 of the memory 402 and determines whether or not the display circuit 101 has an abnormality based on the measured current value and the reference current value.
- the reference current value when the display device 100 passes the quality inspection at the time of factory shipment, the display device 100 is actually operated, and a video signal representing a predetermined pattern is actually output to the display circuit 101.
- the measured current value can be used. If the reference current value is a value actually measured for each display device 100, different reference current values can be stored in the current value storage unit 106 if the display device 100 is different.
- the display device 100 In order to store the measured current value as the reference current value in the current value storage unit 106 when the display device 100 passes the quality inspection at the time of shipment from the factory, the display device 100 is stored in, for example, the reference current value measurement setting mode. Set to. Further, the display device 100 is prevented from being set to the reference current value measurement setting mode after shipment from the factory. For example, the program executed when the quality inspection at the time of factory shipment is passed and the display device 100 is set to the reference current value measurement setting mode is erased from the memory 402. By doing so, it is possible to prevent the reference current value stored in advance in the current value storage unit 106 from being rewritten after the display device 100 is distributed to the market.
- the reference current value is not registered in the current value storage unit 106 when the display device 100 is manufactured.
- the determination control unit 105 determines that the reference current value stored in the current value storage unit 106 is the above-described special value. Can be detected. Therefore, when the determination control unit 105 detects that the reference current value stored in the current value storage unit is special data, the video signal representing a predetermined pattern is output to the display circuit 101 as a first measurement.
- the current value storage unit 106 It can also be determined that the current value has been acquired, and the acquired measured current value can be stored in the current value storage unit 106 as a reference current value.
- the process of storing the reference current value in the current value storage unit 106 and the process of reading the reference current value and comparing it with the measured current value can be combined.
- data representing a predetermined pattern or a program to be generated can be stored in a partial area 411 of the memory 402.
- a plurality of patterns such as “pattern A”, “pattern B”,... Can be stored as a predetermined pattern in which data is stored or a generation program is stored. Therefore, as the measured current value when the video signal represented by the pattern is output to the display circuit 101 for each pattern in another partial area 412 of the memory 402, for example, for the “pattern A”, the value X, For “pattern B”, values Y,... Can be stored.
- the data X, Y,... are set as special data when the display device 100 is manufactured, and the determination control unit 105 outputs a video signal representing a pattern to the display circuit 101 as the first time to obtain a measured current value. Make sure that it has been done.
- FIG. 5 is a diagram showing a control flow of the control circuit 107, in other words, an operation flow of a program executed by the CPU 401 in this embodiment.
- step S501 it is determined whether or not it is time to make an abnormality determination. If it is determined that it is not necessary to perform abnormality determination (when branching to NO), step S501 is repeated or a wait state is entered until abnormality determination should be performed.
- abnormality determination should be performed it is performed at a stage where the operation is activated by an operation of turning on the power to the display device 100, or at a stage where the operation is stopped by an operation of turning off the power to the display device 100. Also good.
- a black color video display process (for example, if a black color video is a television broadcast receiver) It may be temporarily displayed when changing), and it may be determined that abnormality determination should be performed by detecting that the entire backlight 205 is turned off. Further, when the local dimming control as described above is performed, it may be determined that the abnormality determination should be performed when all of the plurality of areas of the backlight 205 are turned off.
- the data of the current value (reference current value) stored in the current value storage unit 106 (in other words, the area 412) is read (step S502). .
- the pattern generation unit 104 outputs the video signal of the pattern to the display circuit 101 and causes the display circuit 101 to perform display processing (in other words, the control circuit 107 A pattern video signal is output via the external I / F 403) (step S504).
- step S505 When a current value is measured by the current measuring circuit 103 and a measured current value is obtained (step S505), the measured current value is stored in the current value storage unit 106 (in other words, the region 412) (step S506), and the process is terminated. To do. If data and programs corresponding to a plurality of patterns are stored in the area 411, the steps from S504 to S506 are repeatedly executed a plurality of times.
- step S503 if the reference current value data is not special data (if branched to NO), the pattern generation unit 104 generates a pattern video signal and displays it on the display circuit 101 as in step S504. Processing is performed (step S507).
- the measured current value is compared with the reference current value. As a result of the comparison, when the change in the measured current value from the reference current value is not more than a predetermined value (for example, the measured current value is not more than 110% of the reference current value) (when branched to YES), the process is terminated.
- a predetermined value for example, the measured current value is not more than 110% of the reference current value
- step S510 If the change in the measured current value from the reference current value is larger than a predetermined value (when branching to NO), an abnormality detection process is performed (step S510).
- the steps from step S507 to S509 are repeatedly executed a plurality of times. If the step S510 is executed even once, the step S510 need not be repeated again after the execution.
- the control circuit 107 causes the display circuit 101 to display a video indicating that there is an abnormality without displaying the video of the video signal input to the video signal input unit 110.
- the supply current supplied to the display circuit 101 is made smaller than usual.
- the operation of the display circuit 101 can be paused regularly or irregularly.
- how much the supply current is made smaller than the normal time, or how long and the interval during which the operation of the display circuit 101 is stopped is determined by the change in the measured current value from the reference current value. It may be changed accordingly. For example, if the change in the measured current value from the reference current value is large, the supply current can be made smaller, or the time during which the operation of the display circuit 101 is suspended can be made longer, and the interval can be made longer.
- a predetermined address for example, the address of the server of the failure reception department of the manufacturer of the display device 100
- an abnormality of the display circuit 101 of the display device 100 has been determined (detected).
- the operation of the display circuit 101 is stopped and recording of a TV program or the like that is viewed by the display device 100 is started. Alternatively, it may be possible to view later on another display device 100 or the like.
- FIG. 6 is a diagram for explaining another example of abnormality detection processing as Embodiment 2 of the present invention.
- the abnormality detection process it is detected by which part of the liquid crystal panel 204 the abnormality has occurred.
- the liquid crystal panel 204 is divided into a plurality of regions along the source line 211m (in other words, the source line 211m is divided so as to be a boundary between adjacent regions).
- the liquid crystal panel 204 is divided into regions 601, 602, 603, and 604 along the source line 211m.
- the liquid crystal panel 204 when the display process is performed with a predetermined gradation such as black on the entire liquid crystal panel 204 is performed. It is assumed that the supply current is stored as 2.8 A in the current value storage unit 106 as a reference current value. In this case, it can be assumed that each region 601, 602, 603, and 604 consumes 0.7A.
- step S510 an abnormality detection process
- the control circuit 107 sequentially performs display processing of, for example, white with a predetermined gradation in the areas 601, 602, 603, and 604. For example, as shown in FIG. 6B, display processing of a white color with a predetermined gradation in the region 601 is performed, and display processing of a pattern displaying black with a predetermined gradation is performed in the other regions.
- the measurement current value is obtained as 4.7 A when the supply current to the liquid crystal panel 204 is measured.
- a white display process with a predetermined gradation is performed on the area 603, and a black display process with a predetermined gradation is performed on the other areas.
- the source line 211m and the common electrode are short-circuited in the TFT 600, the current flowing between the source line 211m and the common electrode increases, so that the current consumption of the region 603 increases from 2.5A to 3.8A.
- the measurement current is obtained as 5.9A. Therefore, it can be estimated that there is an abnormality in the region 603 at this stage.
- a white display process with a predetermined gradation is performed on the area 604, and a black display process with a predetermined gradation is performed on the other areas.
- the measured current value is obtained as 4.7A.
- the measured current value when the patterns of FIGS. 6B, 6C, 6D, and 6E are displayed is the largest value in the case of FIG. 6D. Is obtained, and it is concluded that the region 603 is defective.
- step S504 of FIG. 5 a process for displaying white with a predetermined gradation in some areas and a process for displaying black with a predetermined gradation in other areas are sequentially executed. It is also possible to determine the abnormality of each area before entering.
- the reference current value and the measured current value are compared with respect to whether or not a current increase in which the power supplied to the display circuit 101 does not operate the protection circuit due to the occurrence of a short circuit occurs. However, it is possible to determine whether the power supplied to the display circuit 101 is reduced due to the occurrence of the disconnection or by comparing the reference current value with the measured current value.
- DESCRIPTION OF SYMBOLS 100 ... Display apparatus, 101 ... Display circuit, 102 ... Power supply circuit, 103 ... Current measurement circuit, 104 ... Pattern generation part, 105 ... Judgment control part, 106 ... Current value memory
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Television Receiver Circuits (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Dc-Dc Converters (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Provided is a display device which can detect abnormalities associated with an increase in current that does not trigger a protection circuit. A display device (100) includes a display circuit driven by power from a power supply circuit (102), the display device comprising: a current measuring circuit (103) that measures current supplied to the display circuit; a pattern generation unit (104) that generates a predetermined pattern which is display processed by the display circuit; a current value storage unit (106) that pre-stores the measured current value measured by the current measuring circuit as a reference current value when the predetermined pattern generated by the pattern generation unit (104) is display processed by the display circuit; and a determination control unit (105) that determines if there is an abnormality of the display circuit. The determination control unit (105) causes the display circuit to display process the predetermined pattern generated by the pattern generation unit (104) and determines if there is an abnormality in the display circuit on the basis of the measured current value measured by the current measuring circuit (103) and the reference current value.
Description
本発明は、表示装置、テレビジョン受信機および表示装置の異常判定方法に関し、特に、表示装置の有する表示回路への供給電流に基いて異常を検出する表示装置、テレビジョン受信機および表示装置の異常判定方法に関する。
The present invention relates to a display device, a television receiver, and a display device abnormality determination method, and more particularly, to a display device, a television receiver, and a display device that detect an abnormality based on a current supplied to a display circuit included in the display device. The present invention relates to an abnormality determination method.
テレビジョン放送の受信映像信号やパーソナルコンピュータの出力映像信号などを表示する表示回路を備える表示装置が知られている。そのような表示装置に関し、様々な映像パターンを表示する際における消費電力の広範囲な増減に対応できる設計がされている。また、表示装置の製造段階においても、設計通りに製造されたかどうかについて検査がされ(例えば特許文献1参照。)、電力消費の不良を有する製品が出荷されないようになっている。
A display device having a display circuit for displaying a received video signal of a television broadcast or an output video signal of a personal computer is known. Such a display device is designed to cope with a wide range of power consumption when displaying various video patterns. Also, at the manufacturing stage of the display device, it is inspected whether or not the display device is manufactured as designed (see, for example, Patent Document 1), and a product having a power consumption defect is not shipped.
また、表示装置の出荷後の使用において、回路の短絡等の異常が発生し、大電流が流れる場合には、電源回路の保護回路が動作し、不安全な状態が発生しないようになっている。
In addition, when an abnormality such as a short circuit occurs in the display device after shipment and a large current flows, the protection circuit of the power supply circuit operates and an unsafe state does not occur. .
しかしながら、回路の短絡等の異常が発生しても、常に大電流が流れるわけではない。このため、一部の回路において短絡が発生しても通常使用範囲内での電流の上昇にとどまる場合、保護回路が動作せず、使用が継続されてしまう。例えば、表示装置として液晶パネルを含む表示回路が使用されている場合に、画素の一部の薄膜トランジスタ(TFT(Thin Film Transistor))に何らかの理由により不具合が発生し、不具合を有するTFTを経由して短絡電流が流れたとしても通常の使用範囲の電流上昇であれば、不具合が発生したTFTを含む部分の温度が異常に上昇しても表示装置の動作が継続され、不安全な事態を招きかねない。
However, even if an abnormality such as a short circuit occurs, a large current does not always flow. For this reason, even if a short circuit occurs in a part of the circuits, if the current stays within the normal use range, the protection circuit does not operate and the use is continued. For example, when a display circuit including a liquid crystal panel is used as a display device, a problem occurs in a thin film transistor (TFT (Thin Film Transistor)) of a pixel for some reason, and the defective TFT passes through the defective TFT. Even if a short-circuit current flows, if the current rises within the normal operating range, the display device will continue to operate even if the temperature of the part containing the defective TFT rises abnormally, leading to an unsafe situation. Absent.
本発明は、上述のような実情に鑑みてなされたものであり、その目的は、保護回路が動作しない電流上昇を伴う異常を検出することが可能な表示装置、テレビジョン受信機および表示装置の異常判定方法を提供することにある。
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a display device, a television receiver, and a display device that can detect an abnormality accompanied by an increase in current at which the protection circuit does not operate. It is to provide an abnormality determination method.
上記課題を解決するために、第1の技術手段は、電源回路と、該電源回路からの電力によって駆動される表示回路を有する表示装置であって、前記表示回路への供給電流の大きさを測定する電流測定回路と、前記表示回路が表示処理する所定のパターンを生成するパターン生成部と、前記パターン生成部により生成した前記所定のパターンを前記表示回路が表示処理した際に、前記電流測定回路で測定した測定電流値を基準電流値として予め記憶する電流値記憶部と、前記表示回路の異常を判定する判定制御部と、を備え、前記判定制御部は、前記パターン生成部が生成する前記所定のパターンを前記表示回路に表示処理させ前記電流測定回路で測定される測定電流値と前記基準電流値とに基いて、前記表示回路の異常を判定することを特徴とする、表示装置である。
In order to solve the above problems, a first technical means is a display device having a power supply circuit and a display circuit driven by power from the power supply circuit, wherein the magnitude of the current supplied to the display circuit is reduced. A current measurement circuit for measuring, a pattern generation unit for generating a predetermined pattern for display processing by the display circuit, and the current measurement when the display circuit performs display processing for the predetermined pattern generated by the pattern generation unit. A current value storage unit that preliminarily stores a measured current value measured by the circuit as a reference current value; and a determination control unit that determines abnormality of the display circuit. The determination control unit is generated by the pattern generation unit The display circuit is subjected to display processing of the predetermined pattern, and an abnormality of the display circuit is determined based on a measured current value measured by the current measuring circuit and the reference current value. To a display device.
第2の技術手段は、第1の技術手段において、前記基準電流値は、前記表示装置の製造時における前記測定電流値であることを特徴とする。
The second technical means is characterized in that, in the first technical means, the reference current value is the measured current value at the time of manufacturing the display device.
第3の技術手段は、第1または第2の技術手段において、前記パターン生成部は、前記表示装置の電源投入操作時または電源切断操作時に前記所定のパターンを生成して前記表示回路に表示させることを特徴とする。
According to a third technical means, in the first or second technical means, the pattern generation unit generates the predetermined pattern at the time of power-on operation or power-off operation of the display device and displays the pattern on the display circuit. It is characterized by that.
第4の技術手段は、第1から第3のいずれかの技術手段において、前記表示回路は、液晶パネルを含むことを特徴とする。
The fourth technical means is any one of the first to third technical means, wherein the display circuit includes a liquid crystal panel.
第5の技術手段は、第4の技術手段において、前記パターン生成部は、前記液晶パネルに光を供給するバックライトが消灯している間に前記所定のパターンを前記液晶パネルに表示させることを特徴とする。
According to a fifth technical means, in the fourth technical means, the pattern generation unit displays the predetermined pattern on the liquid crystal panel while a backlight for supplying light to the liquid crystal panel is turned off. Features.
第6の技術手段は、第1から第5のいずれかの技術手段のいずれかによる表示装置を備える、テレビジョン受信機である。
The sixth technical means is a television receiver including a display device according to any one of the first to fifth technical means.
第7の技術手段は、電源回路と、該電源回路からの電力によって駆動される表示回路を有する表示装置の異常判定方法であって、前記表示装置が、予め前定のパターンを前記表示回路に表示処理させた際に測定された前記表示回路への供給電流の大きさを基準電流値として記憶するステップと、前記表示装置が、前記所定のパターンを前記表示回路に表示処理させた際に測定された前記表示回路への供給電流の測定値と前記基準電流値とに基いて前記表示回路の異常を判定する、ことを含む表示装置の異常判定方法である。
A seventh technical means is an abnormality determination method for a display device having a power supply circuit and a display circuit driven by power from the power supply circuit, wherein the display device applies a predetermined pattern to the display circuit in advance. Storing a magnitude of a supply current to the display circuit measured when the display process is performed as a reference current value; and measuring when the display device causes the display circuit to display the predetermined pattern. An abnormality determination method for a display device, comprising: determining abnormality of the display circuit based on the measured value of the supply current to the display circuit and the reference current value.
本発明によれば、保護回路が動作しない電流上昇を伴う異常を検出することが可能となる。
According to the present invention, it is possible to detect an abnormality accompanied by an increase in current at which the protection circuit does not operate.
以下、図面を参照しながら、本発明の表示装置、テレビジョン受信機および表示回路の異常判定方法に係る好適な形態について説明する。ただし、本発明は、その要旨を逸脱しない範囲において、種々の変更を行なっても実施可能であり、以下の説明に限定されて解釈されることはないものである。
Hereinafter, preferred embodiments of the display device, the television receiver, and the display circuit abnormality determination method of the present invention will be described with reference to the drawings. However, the present invention can be implemented even if various changes are made without departing from the scope of the invention, and the present invention is not limited to the following description.
(実施形態1)
図1は、本発明の一実施形態に係る表示装置の一例を示す図である。一実施形態に係る表示装置は、電源回路と、電源回路からの電力によって駆動される表示回路を有する。一例としては、図1に示すように一実施形態に係る表示装置100は、表示回路101と、電源回路102と、電流測定回路103と、制御回路107と、映像信号入力部110とを備える。 (Embodiment 1)
FIG. 1 is a diagram illustrating an example of a display device according to an embodiment of the present invention. A display device according to an embodiment includes a power supply circuit and a display circuit driven by power from the power supply circuit. As an example, as illustrated in FIG. 1, thedisplay device 100 according to an embodiment includes a display circuit 101, a power supply circuit 102, a current measurement circuit 103, a control circuit 107, and a video signal input unit 110.
図1は、本発明の一実施形態に係る表示装置の一例を示す図である。一実施形態に係る表示装置は、電源回路と、電源回路からの電力によって駆動される表示回路を有する。一例としては、図1に示すように一実施形態に係る表示装置100は、表示回路101と、電源回路102と、電流測定回路103と、制御回路107と、映像信号入力部110とを備える。 (Embodiment 1)
FIG. 1 is a diagram illustrating an example of a display device according to an embodiment of the present invention. A display device according to an embodiment includes a power supply circuit and a display circuit driven by power from the power supply circuit. As an example, as illustrated in FIG. 1, the
表示回路101は、テレビジョン放送の受信映像信号やパーソナルコンピュータの出力映像信号などを表示する処理を行なう。したがって、表示回路101にチューナを接続したり内蔵させたりし映像信号入力部110に入力し、また、テレビジョン放送のチューナからの音声信号を出力するスピーカやイアフォンを接続したり内蔵させたりすることにより、表示回路101を備えるテレビジョン受信機を得ることができる。また、表示回路101がパーソナルコンピュータに接続されたり、パーソナルコンピュータを内蔵したりし、映像信号入力部110に入力される映像信号を表示することにより、パーソナルコンピュータのモニターを得ることができる。受信映像信号および出力映像信号は、アナログ信号であっても、デジタル信号であってもよい。
The display circuit 101 performs processing for displaying a television broadcast reception video signal, a personal computer output video signal, and the like. Therefore, a tuner is connected to or built in the display circuit 101 and input to the video signal input unit 110, and a speaker or earphone that outputs an audio signal from the tuner of the television broadcast is connected or built in. Thus, a television receiver including the display circuit 101 can be obtained. Further, a monitor of the personal computer can be obtained by displaying the video signal input to the video signal input unit 110 by connecting the display circuit 101 to the personal computer or incorporating the personal computer. The received video signal and the output video signal may be analog signals or digital signals.
表示回路101の行なう、受信映像信号や出力映像信号などを表示する処理には、受信映像信号や出力映像信号に基いて、映像を処理する映像処理および表示回路101が映像を表示するために動作させるサブ回路等の制御を含む。映像処理には、映像のコントラスト、明るさおよびシャープネスなどの映像の表示態様を変化させる処理を含み、また、映像信号が複数のフレームを含む場合に、フレーム補間のようにフレームとフレームとの間のサブフレームの映像を新たに生成することを含み得る。受信映像信号や出力映像信号などを表示するための処理を、「表示処理」という場合がある。また、表示回路101が映像を表示するために動作させるサブ回路等とは、映像を視聴者に視認可能に表示する回路である。サブ回路等には、例えば、ブラウン管、液晶パネル、有機EL(Electro Luminescence)パネルなどを挙げることができ、また、これらのサブ回路等は、表示回路101の一部を構成する。本発明の表示装置100としては、液晶パネルを備える表示回路101を用いて表示処理を行なう液晶表示装置が好適な例として挙げることができる。
The processing performed by the display circuit 101 to display a received video signal, an output video signal, or the like is based on the received video signal or the output video signal, and the video processing for processing the video and the display circuit 101 operates to display the video. Including the control of the sub-circuit to be performed. Video processing includes processing that changes the video display mode, such as video contrast, brightness, and sharpness. Also, when the video signal includes multiple frames, between video frames, such as frame interpolation. Generating a new image of the subframe. Processing for displaying a received video signal, an output video signal, or the like may be referred to as “display processing”. Further, the sub-circuit or the like that is operated by the display circuit 101 to display a video is a circuit that displays the video so that the viewer can see it. Examples of the sub circuit include a cathode ray tube, a liquid crystal panel, and an organic EL (Electro Luminescence) panel. These sub circuits and the like constitute a part of the display circuit 101. A preferred example of the display device 100 of the present invention is a liquid crystal display device that performs display processing using a display circuit 101 including a liquid crystal panel.
図2は、本発明の一実施形態に係る表示装置が備える表示回路の構成の一例を示す図である。図2には、表示装置100として、液晶パネルを備える表示回路101の構成の一例が示されている。表示回路101は、表示制御回路201と、ソースドライバ202と、ゲートドライバ203と、液晶パネル204とを備える。また、表示回路101は、液晶パネル204に光を供給するバックライト205と、表示制御回路201の制御にしたがってバックライト205を制御するバックライト制御回路206を備える。
FIG. 2 is a diagram illustrating an example of a configuration of a display circuit included in a display device according to an embodiment of the present invention. FIG. 2 shows an example of a configuration of a display circuit 101 including a liquid crystal panel as the display device 100. The display circuit 101 includes a display control circuit 201, a source driver 202, a gate driver 203, and a liquid crystal panel 204. The display circuit 101 also includes a backlight 205 that supplies light to the liquid crystal panel 204 and a backlight control circuit 206 that controls the backlight 205 in accordance with the control of the display control circuit 201.
液晶パネル204は、ソースドライバ202に接続される複数本のソース線211m(mは、1以上ソース線数以下の整数)と、ゲートドライバ203に接続される複数本のゲート線212n(nは、1以上ゲート線数以下の整数)と、が交差して構成されている。ソース線211mとゲート線212nとが交差している位置には、画素が構成されており、図2に示すように、TFT213mnと画素電極214mnとが配置されている。TFT213mnのゲート電極は、ゲート線212nに接続されている。また、TFT213mnのソースとドレインとは、ソース線211mと画素電極214mnとに接続されている。
The liquid crystal panel 204 includes a plurality of source lines 211m connected to the source driver 202 (m is an integer not less than 1 and not more than the number of source lines) and a plurality of gate lines 212n connected to the gate driver 203 (n is And an integer greater than or equal to 1 and less than or equal to the number of gate lines). A pixel is formed at a position where the source line 211m and the gate line 212n intersect with each other, and a TFT 213mn and a pixel electrode 214mn are disposed as shown in FIG. The gate electrode of the TFT 213mn is connected to the gate line 212n. The source and drain of the TFT 213mn are connected to the source line 211m and the pixel electrode 214mn.
ゲート線212nにゲート電極が接続されているTFT213mnが選択されると、TFT213mnがオン状態となり、ソース線211mから供給されるデータ電圧が、画素の輝度を表す電圧として画素電極214mnに印可される。画素電極214mnは、図示されていない対向電極との間で液晶材料を挟持しており、供給されるデータ電圧に応じて液晶材料による偏光特性が変化し、バックライト205から発生する光の透過量を制御する。なお、画素電極214mnと対向電極との間の液晶材料に並列して保持容量が配置されていてもよく、保持容量によりTFT213nmが選択されていない間においてもデータ電圧が画素電極214mnに印可され続けるようになっていてもよい。
When the TFT 213mn whose gate electrode is connected to the gate line 212n is selected, the TFT 213mn is turned on, and the data voltage supplied from the source line 211m is applied to the pixel electrode 214mn as a voltage representing the luminance of the pixel. The pixel electrode 214mn sandwiches a liquid crystal material with a counter electrode (not shown), the polarization characteristics of the liquid crystal material change according to the supplied data voltage, and the amount of light transmitted from the backlight 205 is transmitted. To control. Note that a storage capacitor may be arranged in parallel with the liquid crystal material between the pixel electrode 214mn and the counter electrode, and the data voltage is continuously applied to the pixel electrode 214mn even when the TFT 213nm is not selected by the storage capacitor. It may be like this.
したがって、表示処理により液晶パネル204へ供給される電流は、主に、ソースドライバ202およびゲートドライバ203により、ソース線211mおよびゲート線212n経由で供給される。
Therefore, the current supplied to the liquid crystal panel 204 by the display process is mainly supplied by the source driver 202 and the gate driver 203 via the source line 211m and the gate line 212n.
表示制御回路201は、表示回路101に映像信号入力部110または制御回路107から供給される映像信号に基いて、ソースドライバ202、ゲートドライバ203およびバックライト制御回路206を制御する。一例として、液晶パネル204に映像を視認可能に表示するには、表示制御回路201は、バックライト制御回路206を介してバックライト205をオンにしてバックライト205から液晶パネル204に光を供給し、ゲートドライバ203がゲート線212nを順次選択するように制御信号を送出し、また、ソースドライバ202が、ソース線211mおよび選択されたゲート線212nに接続されたTFT213mnを介して、データ電圧を画素電極214mnに供給するように制御信号を送出する。なお、バックライト205は複数の発光領域を含み、複数の発光領域のそれぞれの発光量を制御するローカルディミング制御がおこなわれていてもよい。
The display control circuit 201 controls the source driver 202, the gate driver 203, and the backlight control circuit 206 based on the video signal supplied to the display circuit 101 from the video signal input unit 110 or the control circuit 107. As an example, in order to display an image on the liquid crystal panel 204 so as to be visible, the display control circuit 201 turns on the backlight 205 via the backlight control circuit 206 and supplies light from the backlight 205 to the liquid crystal panel 204. The gate driver 203 sends a control signal so as to sequentially select the gate line 212n, and the source driver 202 outputs the data voltage to the pixel via the source line 211m and the TFT 213mn connected to the selected gate line 212n. A control signal is sent so as to be supplied to the electrode 214mn. Note that the backlight 205 may include a plurality of light emitting areas, and local dimming control may be performed to control the amount of light emitted from each of the plurality of light emitting areas.
なお、液晶パネル204は、液晶材料および液晶パネル204を挟持する1組の偏光板の特性により、画素電極214nmに電圧が印可されていなければバックライト205からの光が遮断されるノーマリーブラックタイプと、画素電極214nmに電圧が印可されていなければバックライト205からの光を透過させるノーマリーホワイトタイプとに、分類される。このため、ノーマリーブラックタイプであれば、全体が黒の映像を表示回路101が表示処理する場合に、ソースドライバ202およびゲートドライバ203により液晶パネル204に供給される電流値は最小となり、全体が白の映像を表示回路101が表示処理する場合に、ソースドライバ202およびゲートドライバ203により液晶パネル204に供給される電流値は最大となり得る。
Note that the liquid crystal panel 204 is a normally black type in which light from the backlight 205 is blocked unless a voltage is applied to the pixel electrode 214 nm due to the characteristics of the liquid crystal material and a pair of polarizing plates that sandwich the liquid crystal panel 204. And a normally white type that transmits light from the backlight 205 if no voltage is applied to the pixel electrode 214 nm. For this reason, in the case of a normally black type, when the display circuit 101 performs display processing of a black image as a whole, the current value supplied to the liquid crystal panel 204 by the source driver 202 and the gate driver 203 is minimized, When the display circuit 101 displays white video, the current value supplied to the liquid crystal panel 204 by the source driver 202 and the gate driver 203 can be maximized.
電源回路102は、表示回路101に電力を供給する。電源回路102から供給された電力により表示回路101が駆動される。なお、図2に示すように、表示回路101が液晶パネル204を含む場合には、図2には図示されていないが、表示制御回路201、ソースドライバ202、ゲートドライバ203およびバックライト制御回路206それぞれに電力を電源回路102から供給する、それぞれの電力供給線が表示回路101に設けられている。なお、液晶パネル204に供給される電力は、主にソースドライバ202およびゲートドライバ203からソース線211mおよびゲート線212nにより電力が供給される。バックライト205には、バックライト制御回路206を介して電力が供給される。なお、電源回路102からは電圧がほぼ一定の直流が供給されるとすると、電力量は電流量とすることができる。
The power supply circuit 102 supplies power to the display circuit 101. The display circuit 101 is driven by the power supplied from the power supply circuit 102. As shown in FIG. 2, when the display circuit 101 includes the liquid crystal panel 204, the display control circuit 201, the source driver 202, the gate driver 203, and the backlight control circuit 206 are not shown in FIG. Each power supply line for supplying power from the power supply circuit 102 is provided in the display circuit 101. Note that the power supplied to the liquid crystal panel 204 is mainly supplied from the source driver 202 and the gate driver 203 through the source line 211m and the gate line 212n. Electric power is supplied to the backlight 205 via the backlight control circuit 206. Note that if a direct current with a substantially constant voltage is supplied from the power supply circuit 102, the amount of power can be the amount of current.
図3は、電源回路102の構成の一例を示す図である。電源回路102は、例えばLLC回路として構成することが可能である。図3に示すように、電源回路102は、ハーフブリッジ型の回路として構成され、第1スイッチング素子301および第2スイッチング素子302の2つのスイッチング素子と、直列共振用のコンデンサ305と、一次コイル304、二次コイル306および307を有するトランスと、2つの整流用ダイオード308および309と、第1スイッチング素子301および第2スイッチング素子302をそれぞれオンオフ制御するLLC IC303を備えている。
FIG. 3 is a diagram illustrating an example of the configuration of the power supply circuit 102. The power supply circuit 102 can be configured as an LLC circuit, for example. As shown in FIG. 3, the power supply circuit 102 is configured as a half-bridge circuit, and includes two switching elements, a first switching element 301 and a second switching element 302, a series resonance capacitor 305, and a primary coil 304. , A transformer having secondary coils 306 and 307, two rectifying diodes 308 and 309, and an LLC IC 303 for controlling on / off of the first switching element 301 and the second switching element 302, respectively.
電源回路102の入力端子3201および3202間には、所定の電圧の直流が印可され、パワーMOSトランジスタからなる第1スイッチング素子301のドレイン・ソースと、第2スイッチング素子302のドレイン・ソースとが接続されている。LLC IC303の出力信号は、第1スイッチング素子301および第2スイッチング素子302のゲートに供給される。第1スイッチング素子301および第2スイッチング素子302が接続されている箇所には、トランスの一次コイル304とコンデンサ305の直列回路の一方の端子が接続され、トランスの一次コイル304とコンデンサ305の直列回路の他方の端子は、第2スイッチング素子302のソース側に接続されている。トランスの結合係数を小さくすることにより漏れインダクタンスを大きくし、漏れインダクタンスを共振用インダクタンスとして利用することができる。
Between the input terminals 320 1 and 320 2 of the power supply circuit 102, a DC of a predetermined voltage is applied, and the drain and source of the first switching element 301 consisting of a power MOS transistor, the drain and source of the second switching element 302 Is connected. The output signal of the LLC IC 303 is supplied to the gates of the first switching element 301 and the second switching element 302. One terminal of a series circuit of the transformer primary coil 304 and the capacitor 305 is connected to a location where the first switching element 301 and the second switching element 302 are connected, and the series circuit of the transformer primary coil 304 and the capacitor 305 is connected. The other terminal of the second switching element 302 is connected to the source side of the second switching element 302. By reducing the coupling coefficient of the transformer, the leakage inductance can be increased, and the leakage inductance can be used as a resonance inductance.
トランスの二次コイル306および307には、整流用ダイオード308および309のアノードが接続されている。また、整流用ダイオード308および309のカソードは、整流用コンデンサ310の一方の端子に接続され、整流用コンデンサ310の他方の端子は、二次コイル306および307の中間タップに接続される。整流用コンデンサ310の両端子に接続される出力端子3211と、出力端子3212および出力端子3213とには、電源回路102の入力端子3201および3202間に印可させるのとは異なる直流電圧を有する直流電流が出力され得る。
The anodes of rectifying diodes 308 and 309 are connected to the secondary coils 306 and 307 of the transformer. The cathodes of the rectifying diodes 308 and 309 are connected to one terminal of the rectifying capacitor 310, and the other terminal of the rectifying capacitor 310 is connected to the intermediate tap of the secondary coils 306 and 307. The output terminal 321 1 connected to both terminals of the rectifying capacitor 310, the output terminal 321 2, and the output terminal 321 3 are different direct currents from those applied between the input terminals 320 1 and 320 2 of the power supply circuit 102. A direct current having a voltage can be output.
そこで、出力端子3211を、共通端子(例えばグランドレベル)として用い、例えば出力端子3213により、表示制御回路201およびバックライト制御回路206に直流電流を供給することができ、出力端子3212により、ソースドライバ202およびゲートドライバ203に直流電流を供給することができる。
Therefore, the output terminal 321 1, used as a common terminal (for example, the ground level), for example, the output terminal 321 3, can supply a DC current to the display control circuit 201 and the backlight control circuit 206, the output terminal 321 2 A direct current can be supplied to the source driver 202 and the gate driver 203.
なお、電源回路102は、表示回路101に供給する電流量が、通常想定される電流量から所定値を超えるときには、表示回路101へ電力を供給しないようにする保護回路(図示せず)を備え得る。あるいは、電源回路102とは別に保護回路が備わっている場合もあり得る。
Note that the power supply circuit 102 includes a protection circuit (not shown) that prevents power from being supplied to the display circuit 101 when the amount of current supplied to the display circuit 101 exceeds a predetermined value from the normally assumed current amount. obtain. Alternatively, a protection circuit may be provided separately from the power supply circuit 102.
電流測定回路103は、電源回路102から表示回路101へ供給される供給電流の大きさを測定する。一例として、電流測定回路103は、出力端子3212により、ソースドライバ202およびゲートドライバ203に供給される電流値の大きさを測定する。
The current measurement circuit 103 measures the magnitude of the supply current supplied from the power supply circuit 102 to the display circuit 101. As an example, current measuring circuit 103, the output terminal 321 2, to measure the magnitude of the current value supplied to the source driver 202 and gate driver 203.
制御回路107は、1または複数の特定のパターンの映像信号を生成し、表示回路101に出力し、電流測定回路103により、電源回路102からソースドライバ202およびゲートドライバ203に供給される電流値を測定し、測定により得られた電流値である測定電流値に基いて、表示回路101の異常を判定する回路である。なお、上述したように、ソースドライバ202およびゲートドライバ203に供給される電流値は、液晶パネル204に供給される電流値を含む。また、一般にソースドライバ202およびゲートドライバ203そのものが表示制御回路201からの制御にしたがう動作に伴う消費電流よりも、ソースドライバ202およびゲートドライバ203からソース線211mおよびゲート線212nにより液晶パネル204に供給される消費電流の方が大きいので、ソースドライバ202およびゲートドライバ203に供給される電流値は、液晶パネル204に供給される電流値であるとみなすことが可能である。
The control circuit 107 generates one or a plurality of specific pattern video signals, outputs them to the display circuit 101, and supplies current values supplied from the power supply circuit 102 to the source driver 202 and the gate driver 203 by the current measurement circuit 103. This is a circuit that measures and determines an abnormality in the display circuit 101 based on a measured current value that is a current value obtained by the measurement. As described above, the current value supplied to the source driver 202 and the gate driver 203 includes the current value supplied to the liquid crystal panel 204. In general, the source driver 202 and the gate driver 203 themselves supply the liquid crystal panel 204 from the source driver 202 and the gate driver 203 via the source line 211m and the gate line 212n, rather than the current consumption associated with the operation according to the control from the display control circuit 201. Since the consumed current is larger, the current value supplied to the source driver 202 and the gate driver 203 can be regarded as the current value supplied to the liquid crystal panel 204.
制御回路107は、ハードウェア要素のみを用いて構成することもできる。また、ハードウェア要素にソフトウェア要素(コンピュータプログラム)を組み合わせ、両者を協働させて構成することもできる。図4には、ハードウェア要素にソフトウェア要素を組み合わせ、両者を協働させる場合のハードウェア要素の構成の例を示す。制御回路107は、CPU(Central Processing Unit)401と、メモリ402と、外部I/F403とが相互にバス結合されて構成される。CPU401は、メモリ402に記憶されたプログラムを実行し、メモリ402にデータを読み書きし、また、外部I/F403により、制御回路107に接続された電流測定回路103および表示回路101と信号の入出力を行ない、一定の目的を達成するように動作する。
The control circuit 107 can also be configured using only hardware elements. Further, a hardware element may be combined with a software element (computer program), and the two may be configured to cooperate with each other. FIG. 4 shows an example of the configuration of the hardware elements in the case where the software elements are combined with the hardware elements and the two are cooperated. The control circuit 107 is configured by a CPU (Central Processing Unit) 401, a memory 402, and an external I / F 403 connected to each other via a bus. The CPU 401 executes a program stored in the memory 402, reads / writes data from / to the memory 402, and inputs / outputs signals to / from the current measurement circuit 103 and the display circuit 101 connected to the control circuit 107 by the external I / F 403. And operate to achieve certain objectives.
なお、メモリ402は、CPU401により実行されるプログラムにより内容が書き換え可能な領域に加え、書き換え不可能であり読み取り専用の領域との両方を含むことができる。また、メモリ402は、制御回路107の外部からの電源の供給が停止すると、記憶内容が消去される領域と、制御回路107の外部からの電源の供給が停止しても、記憶内容が維持される領域とのいずれかまたは両方を含むことができる。また、メモリ402の領域の一部(例えば、図4の符号412)を電流値記憶部106として使用することができる。
Note that the memory 402 can include both a non-rewritable and read-only area in addition to an area whose contents can be rewritten by a program executed by the CPU 401. In the memory 402, when the supply of power from the outside of the control circuit 107 is stopped, the stored contents are maintained even if the supply of power from the outside of the control circuit 107 is stopped. One or both of the regions to be included. Further, a part of the area of the memory 402 (for example, reference numeral 412 in FIG. 4) can be used as the current value storage unit 106.
制御回路107の動作の一例として、制御回路107を、パターン生成部104と、判定制御部105と、電流値記憶部106とを有する回路として実現する動作がある。ここに、パターン生成部104は、CPU401によるプログラムの実行により生成されたり、メモリ402に記憶されたりしている所定のパターンを表す映像信号を表示回路101に出力する。所定のパターンを表す映像信号を表示回路101へ外部I/F403を介して出力することにより、表示回路101は、所定のパターンの表示処理を行なう。なお、表示回路101がバックライト205を備え、バックライト205以外の異常を判定する場合には、バックライト205を消灯した状態にする制御信号が外部I/F403を介して表示回路101へ出力されるようにしてもよい。このようにすることにより、パターンは、表示装置100の使用者に視認されないようにすることができ、使用者に違和感を与えないようにすることができる。また、所定のパターンは一つに限定されることなく、複数あってもよい。
As an example of the operation of the control circuit 107, there is an operation of realizing the control circuit 107 as a circuit having the pattern generation unit 104, the determination control unit 105, and the current value storage unit 106. Here, the pattern generation unit 104 outputs a video signal representing a predetermined pattern generated by execution of a program by the CPU 401 or stored in the memory 402 to the display circuit 101. By outputting a video signal representing a predetermined pattern to the display circuit 101 via the external I / F 403, the display circuit 101 performs display processing of the predetermined pattern. When the display circuit 101 includes the backlight 205 and an abnormality other than the backlight 205 is determined, a control signal for turning off the backlight 205 is output to the display circuit 101 via the external I / F 403. You may make it do. By doing so, the pattern can be prevented from being visually recognized by the user of the display device 100, and the user can be prevented from feeling uncomfortable. Further, the predetermined pattern is not limited to one and may be plural.
判定制御部105は、パターン生成部104を制御して表示回路101に所定のパターンを表す映像信号を生成し、表示回路101に出力させ、電流測定回路103より、電源回路102から表示回路101に供給される供給電流値(測定電流値)を、外部I/F403を介して取得する。そして、判定制御部105は、メモリ402の電流値記憶部106から基準電流値を読み出し、測定電流値と基準電流値とに基いて、表示回路101に異常が無いか否かを判定する。
The determination control unit 105 controls the pattern generation unit 104 to generate a video signal representing a predetermined pattern on the display circuit 101, outputs the video signal to the display circuit 101, and from the current measurement circuit 103 to the display circuit 101 from the power supply circuit 102. A supply current value (measurement current value) to be supplied is acquired via the external I / F 403. Then, the determination control unit 105 reads the reference current value from the current value storage unit 106 of the memory 402 and determines whether or not the display circuit 101 has an abnormality based on the measured current value and the reference current value.
基準電流値の一例としては、表示装置100が工場出荷時の品質検査を通過した場合に、実際に表示装置100を動作させ、表示回路101に所定のパターンを表す映像信号を出力して実際に測定された測定電流値とすることができる。基準電流値が表示装置100ごとに実際に測定された値であれば、表示装置100が異なれば、異なる基準電流値が電流値記憶部106に記憶され得ることになる。
As an example of the reference current value, when the display device 100 passes the quality inspection at the time of factory shipment, the display device 100 is actually operated, and a video signal representing a predetermined pattern is actually output to the display circuit 101. The measured current value can be used. If the reference current value is a value actually measured for each display device 100, different reference current values can be stored in the current value storage unit 106 if the display device 100 is different.
表示装置100が工場出荷時の品質検査を通過した場合に、測定された電流値を基準電流値として、電流値記憶部106に記憶するには、表示装置100を例えば、基準電流値測定設定モードに設定して行なう。また、表示装置100は、工場出荷後は、基準電流値測定設定モードに設定されることがないようにする。例えば、工場出荷時の品質検査を通過し表示装置100を基準電流値測定設定モードに設定した際に実行されたプログラムをメモリ402から消去する。このようにすることにより、電流値記憶部106に予め記憶された基準電流値が、表示装置100の市場への流通後は、書き換えられないようにすることができる。
In order to store the measured current value as the reference current value in the current value storage unit 106 when the display device 100 passes the quality inspection at the time of shipment from the factory, the display device 100 is stored in, for example, the reference current value measurement setting mode. Set to. Further, the display device 100 is prevented from being set to the reference current value measurement setting mode after shipment from the factory. For example, the program executed when the quality inspection at the time of factory shipment is passed and the display device 100 is set to the reference current value measurement setting mode is erased from the memory 402. By doing so, it is possible to prevent the reference current value stored in advance in the current value storage unit 106 from being rewritten after the display device 100 is distributed to the market.
基準電流値を電流値記憶部106に記憶させるための、表示装置100の別の実装例の一例として、表示装置100の製造時には、電流値記憶部106には、基準電流値が未登録であることを意味する、例えば全てのビットが1となるような特別なデータを記憶させておく例がある。この例においては、表示装置100が品質検査に合格した後に第1回目として制御回路107を動作させると、判定制御部105は、電流値記憶部106に記憶された基準電流値が、上述の特別なデータであることを検出することができる。そこで、判定制御部105は、電流値記憶部に記憶された基準電流値が特別なデータであることを検出すると、第1回目として表示回路101に所定のパターンを表わす映像信号を出力して測定電流値を取得したと判断し、取得した測定電流値を電流値記憶部106に基準電流値として記憶することもできる。この構成により、電流値記憶部106に基準電流値を記憶する処理と、基準電流値を読み出し、測定電流値と比較をする処理とをまとめることができる。
As an example of another implementation example of the display device 100 for storing the reference current value in the current value storage unit 106, the reference current value is not registered in the current value storage unit 106 when the display device 100 is manufactured. For example, there is an example of storing special data in which all bits are 1, for example. In this example, when the control circuit 107 is operated for the first time after the display device 100 passes the quality inspection, the determination control unit 105 determines that the reference current value stored in the current value storage unit 106 is the above-described special value. Can be detected. Therefore, when the determination control unit 105 detects that the reference current value stored in the current value storage unit is special data, the video signal representing a predetermined pattern is output to the display circuit 101 as a first measurement. It can also be determined that the current value has been acquired, and the acquired measured current value can be stored in the current value storage unit 106 as a reference current value. With this configuration, the process of storing the reference current value in the current value storage unit 106 and the process of reading the reference current value and comparing it with the measured current value can be combined.
図4に示すようにメモリ402の一部の領域411に、所定のパターンを表すデータまたは生成するプログラムを記憶させておくことができる。この場合、データが記憶されたり生成プログラムが記憶されたりする所定のパターンとしては、「パターンA」、「パターンB」、・・・のように複数のパターンを記憶させておくことができる。そこで、メモリ402の別の一部の領域412に、パターンごとに、パターンが表す映像信号が表示回路101に出力された場合の測定電流値として、例えば、「パターンA」については、値X、「パターンB」については、値Y、・・・を記憶させることができる。データX、Y、・・・は、表示装置100の製造時には特別なデータとしておき、判定制御部105は、第1回目として表示回路101にパターンを表す映像信号を出力して測定電流値が取得されたと判断できるようにしておく。
As shown in FIG. 4, data representing a predetermined pattern or a program to be generated can be stored in a partial area 411 of the memory 402. In this case, a plurality of patterns such as “pattern A”, “pattern B”,... Can be stored as a predetermined pattern in which data is stored or a generation program is stored. Therefore, as the measured current value when the video signal represented by the pattern is output to the display circuit 101 for each pattern in another partial area 412 of the memory 402, for example, for the “pattern A”, the value X, For “pattern B”, values Y,... Can be stored. The data X, Y,... Are set as special data when the display device 100 is manufactured, and the determination control unit 105 outputs a video signal representing a pattern to the display circuit 101 as the first time to obtain a measured current value. Make sure that it has been done.
図5は、制御回路107の制御フロー、言い換えると本実施形態においてはCPU401により実行されるプログラムの動作フローを示す図である。制御回路107が動作を開始すると、今が異常判定を行なうべき時であるかどうかを判断する(ステップS501)。もし、異常判定を行なう必要がない(NOに分岐する場合)と判断されれば、ステップS501を繰り返すか、異常判定を行なうべき時まで待ち状態に入る。異常判定を行なうべき時の例としては、表示装置100に対する電源投入の操作により、動作が起動する途中の段階や、表示装置100に対する電源切断の操作により、動作が停止する途中の段階で行ってもよい。また、表示回路101がノーマリーブラックタイプの液晶パネル204を有する場合であれば、黒一色の映像の表示処理により(例えば、黒一色の映像は、テレビジョン放送の受信機であれば、チャンネルを変える際に一時的に表示され得る)、バックライト205全体が消灯されていることを検出し、異常判定を行なうべき時と判断してもよい。また、上述のようなローカルディミング制御が行なわれているときには、バックライト205の複数の領域すべてが消灯した場合に、異常判定を行なうべき時と判断してもよい。
FIG. 5 is a diagram showing a control flow of the control circuit 107, in other words, an operation flow of a program executed by the CPU 401 in this embodiment. When the control circuit 107 starts its operation, it is determined whether or not it is time to make an abnormality determination (step S501). If it is determined that it is not necessary to perform abnormality determination (when branching to NO), step S501 is repeated or a wait state is entered until abnormality determination should be performed. As an example of when abnormality determination should be performed, it is performed at a stage where the operation is activated by an operation of turning on the power to the display device 100, or at a stage where the operation is stopped by an operation of turning off the power to the display device 100. Also good. Further, if the display circuit 101 has a normally black type liquid crystal panel 204, a black color video display process (for example, if a black color video is a television broadcast receiver) It may be temporarily displayed when changing), and it may be determined that abnormality determination should be performed by detecting that the entire backlight 205 is turned off. Further, when the local dimming control as described above is performed, it may be determined that the abnormality determination should be performed when all of the plurality of areas of the backlight 205 are turned off.
異常判定を行なうべき時であると判断すると(YESに分岐する場合)、電流値記憶部106(言い換えると、領域412)に記憶された電流値(基準電流値)のデータを読み出す(ステップS502)。次に、基準電流値のデータが、特別なデータであるかどうかを判断する(ステップS503)。もし、特別なデータであれば(YESに分岐する場合)、パターン生成部104にパターンの映像信号を表示回路101へ出力させ、表示回路101に表示処理をさせる(言い換えると、制御回路107は、外部I/F403を介してパターンの映像信号を出力する)(ステップS504)。
If it is determined that it is time to make an abnormality determination (when branching to YES), the data of the current value (reference current value) stored in the current value storage unit 106 (in other words, the area 412) is read (step S502). . Next, it is determined whether or not the reference current value data is special data (step S503). If it is special data (when branching to YES), the pattern generation unit 104 outputs the video signal of the pattern to the display circuit 101 and causes the display circuit 101 to perform display processing (in other words, the control circuit 107 A pattern video signal is output via the external I / F 403) (step S504).
電流測定回路103による電流値測定がされ、測定電流値が得られると(ステップS505)、測定電流値を電流値記憶部106(言い換えると、領域412)に記憶し(ステップS506)、処理を終了する。なお、複数のパターンに対応するデータやプログラムが領域411に記憶されている場合には、ステップS504からS506までのステップを複数回繰り返し実行する。
When a current value is measured by the current measuring circuit 103 and a measured current value is obtained (step S505), the measured current value is stored in the current value storage unit 106 (in other words, the region 412) (step S506), and the process is terminated. To do. If data and programs corresponding to a plurality of patterns are stored in the area 411, the steps from S504 to S506 are repeatedly executed a plurality of times.
また、ステップS503において、基準電流値のデータが特別なデータでなければ(NOに分岐する場合)、ステップS504と同様に、パターン生成部104にパターンの映像信号を生成させ、表示回路101に表示処理をさせる(ステップS507)。電流測定回路103による電流値測定がされ、測定電流値が得られると(ステップS508)、測定電流値と基準電流値とを比較する。比較の結果、基準電流値からの測定電流値の変化が所定の値以下(例えば、測定電流値が基準電流値の110%以下)である場合(YESに分岐する場合)、処理を終了する。また、基準電流値からの測定電流値の変化が所定の値より大きければ(NOに分岐する場合)、異常検出時処理を行なう(ステップS510)。なお、複数のパターンに対応するデータやプログラムが領域411に記憶されている場合には、ステップS507からS509までのステップを複数回繰り返し実行する。なお、一度でもステップS510のステップが実行されれば、その実行後に再度ステップS510のステップを繰り返さなくてもよい。
In step S503, if the reference current value data is not special data (if branched to NO), the pattern generation unit 104 generates a pattern video signal and displays it on the display circuit 101 as in step S504. Processing is performed (step S507). When the current value is measured by the current measuring circuit 103 and the measured current value is obtained (step S508), the measured current value is compared with the reference current value. As a result of the comparison, when the change in the measured current value from the reference current value is not more than a predetermined value (for example, the measured current value is not more than 110% of the reference current value) (when branched to YES), the process is terminated. If the change in the measured current value from the reference current value is larger than a predetermined value (when branching to NO), an abnormality detection process is performed (step S510). When data and programs corresponding to a plurality of patterns are stored in the area 411, the steps from step S507 to S509 are repeatedly executed a plurality of times. If the step S510 is executed even once, the step S510 need not be repeated again after the execution.
異常検出時処理としては、様々なものを挙げることができる。例えば、制御回路107は、表示回路101に、映像信号入力部110に入力された映像信号の映像を表示させずに、異常がある旨の映像の表示をさせる。この一例において、同じ映像の表示を持続させると、表示回路101の異常個所の温度が上昇し、不安全な状態となりかねないので、表示回路101に供給される供給電流を通常時よりも小さくしたり、表示回路101の動作を定期的あるいは不定期的に休止させたりすることができる。また、供給電流をどの程度通常時よりも小さくするか、あるいは、表示回路101の動作を休止させる時間をどの程度の長さ、間隔とするかは、基準電流値からの測定電流値の変化に応じて変化させてもよい。たとえば、基準電流値からの測定電流値の変化が大きければ、供給電流をより小さくし、あるいは、表示回路101の動作を休止させる時間をより長くし、また、より長い間隔とすることができる。
There are various types of processing at the time of abnormality detection. For example, the control circuit 107 causes the display circuit 101 to display a video indicating that there is an abnormality without displaying the video of the video signal input to the video signal input unit 110. In this example, if the display of the same image is continued, the temperature of the abnormal part of the display circuit 101 rises and it may become an unsafe state. Therefore, the supply current supplied to the display circuit 101 is made smaller than usual. In addition, the operation of the display circuit 101 can be paused regularly or irregularly. Further, how much the supply current is made smaller than the normal time, or how long and the interval during which the operation of the display circuit 101 is stopped is determined by the change in the measured current value from the reference current value. It may be changed accordingly. For example, if the change in the measured current value from the reference current value is large, the supply current can be made smaller, or the time during which the operation of the display circuit 101 is suspended can be made longer, and the interval can be made longer.
また、表示装置100がデジタルテレビジョン受信機であり、インターネットなどのネットワークに接続されている場合には、所定のアドレス(例えば、表示装置100の製造者の故障受付部門のサーバのアドレス)に、表示装置100の表示回路101の異常が判定(検出)されたことを通知することができる。
In addition, when the display device 100 is a digital television receiver and is connected to a network such as the Internet, a predetermined address (for example, the address of the server of the failure reception department of the manufacturer of the display device 100) It can be notified that an abnormality of the display circuit 101 of the display device 100 has been determined (detected).
また、表示装置100に、録画機能が備わっていたり、録画装置が接続されていたりする場合には、表示回路101の動作を停止し、表示装置100により視聴されるテレビ番組などの録画を開始し、別の表示装置100などにより後に視聴できるようにしてもよい。
When the display device 100 has a recording function or is connected to the recording device, the operation of the display circuit 101 is stopped and recording of a TV program or the like that is viewed by the display device 100 is started. Alternatively, it may be possible to view later on another display device 100 or the like.
(実施形態2)
図6は、本発明の実施形態2として、異常検出時処理の別の一例を、説明するための図である。本実施形態においては、異常検出時処理においては、液晶パネル204のどの部分により異常が発生しているのかを検出する。そのために、ソース線211mに沿って、液晶パネル204を複数の領域に分割する(言い換えると、ソース線211mの間が隣接する領域の境界となるように分割する)。図6においては、液晶パネル204が、ソース線211mに沿って領域601、602、603および604に分割されている。 (Embodiment 2)
FIG. 6 is a diagram for explaining another example of abnormality detection processing as Embodiment 2 of the present invention. In the present embodiment, in the abnormality detection process, it is detected by which part of theliquid crystal panel 204 the abnormality has occurred. For this purpose, the liquid crystal panel 204 is divided into a plurality of regions along the source line 211m (in other words, the source line 211m is divided so as to be a boundary between adjacent regions). In FIG. 6, the liquid crystal panel 204 is divided into regions 601, 602, 603, and 604 along the source line 211m.
図6は、本発明の実施形態2として、異常検出時処理の別の一例を、説明するための図である。本実施形態においては、異常検出時処理においては、液晶パネル204のどの部分により異常が発生しているのかを検出する。そのために、ソース線211mに沿って、液晶パネル204を複数の領域に分割する(言い換えると、ソース線211mの間が隣接する領域の境界となるように分割する)。図6においては、液晶パネル204が、ソース線211mに沿って領域601、602、603および604に分割されている。 (Embodiment 2)
FIG. 6 is a diagram for explaining another example of abnormality detection processing as Embodiment 2 of the present invention. In the present embodiment, in the abnormality detection process, it is detected by which part of the
例えば、表示回路101にノーマリーブラックタイプの液晶パネルが使用されているとして、異常がない場合には、液晶パネル204の全体に所定階調の例えば黒色を表示処理するときの液晶パネル204への供給電流が2.8Aとして基準電流値として電流値記憶部106に記憶されているとする。この場合、それぞれの領域601、602、603および604は、0.7Aずつ消費するとすることが想定できる。
For example, assuming that a normally black type liquid crystal panel is used for the display circuit 101, and there is no abnormality, the liquid crystal panel 204 when the display process is performed with a predetermined gradation such as black on the entire liquid crystal panel 204 is performed. It is assumed that the supply current is stored as 2.8 A in the current value storage unit 106 as a reference current value. In this case, it can be assumed that each region 601, 602, 603, and 604 consumes 0.7A.
図6(A)に示すように、領域603に配置された或るTFT600に不具合が発生し、そのTFTが接続されるゲート線212nおよびソース線211mと共通電極とに短絡が発生しているとし、所定階調の黒色の表示処理において、領域603が2.5Aを消費するようになったとする。すると、液晶パネル204への供給電流は、2.8Aから4.6Aとなり、ステップS509において異常が判定され、異常検出時処理(ステップS510)が開始される。
As shown in FIG. 6A, it is assumed that a defect occurs in a certain TFT 600 arranged in the region 603, and a short circuit is generated between the gate line 212n and the source line 211m to which the TFT is connected and the common electrode. Suppose that the area 603 consumes 2.5 A in the black display processing of a predetermined gradation. Then, the supply current to the liquid crystal panel 204 is changed from 2.8 A to 4.6 A, an abnormality is determined in step S509, and an abnormality detection process (step S510) is started.
異常検出時処理においては、制御回路107は、領域601、602、603および604に順次、所定階調の例えば白色の表示処理をする。たとえば、図6(B)に示すように、領域601への所定階調の白色の表示処理をし、他の領域へは、所定階調の黒色表示をするパターンの表示処理をする。図6(B)の場合、領域601への供給電流が0.8Aになるとするとし、液晶パネル204への供給電流を測定すると、4.7Aとして測定電流値が得られる。
In the abnormality detection process, the control circuit 107 sequentially performs display processing of, for example, white with a predetermined gradation in the areas 601, 602, 603, and 604. For example, as shown in FIG. 6B, display processing of a white color with a predetermined gradation in the region 601 is performed, and display processing of a pattern displaying black with a predetermined gradation is performed in the other regions. In the case of FIG. 6B, assuming that the supply current to the region 601 is 0.8 A, the measurement current value is obtained as 4.7 A when the supply current to the liquid crystal panel 204 is measured.
次に、図6(C)に示すように、領域602への所定階調の白色の表示処理をし、他の領域へは、所定階調の黒色の表示処理をする。図6(C)の場合も図6(B)の場合と同様に、液晶パネル204への供給電流を測定すると、4.7Aとして測定電流値が得られる。
Next, as shown in FIG. 6C, white display processing with a predetermined gradation is performed on the area 602, and black display processing with a predetermined gradation is performed on the other areas. In the case of FIG. 6C, as in the case of FIG. 6B, when the supply current to the liquid crystal panel 204 is measured, the measured current value is obtained as 4.7A.
次に、図6(D)に示すように、領域603への所定階調の白色の表示処理をし、他の領域へは、所定階調の黒色の表示処理をする。すると、TFT600においてソース線211mと共通電極がショートしているので、ソース線211mと共通電極との間を流れる電流が増加することにより、領域603の消費電流が2.5Aから増加し3.8Aとなり、液晶パネル204への供給電流を測定すると、5.9Aとして測定電流が得られる。したがって、この段階で、領域603に異常があることが推測できる。
Next, as shown in FIG. 6D, a white display process with a predetermined gradation is performed on the area 603, and a black display process with a predetermined gradation is performed on the other areas. Then, since the source line 211m and the common electrode are short-circuited in the TFT 600, the current flowing between the source line 211m and the common electrode increases, so that the current consumption of the region 603 increases from 2.5A to 3.8A. Thus, when the supply current to the liquid crystal panel 204 is measured, the measurement current is obtained as 5.9A. Therefore, it can be estimated that there is an abnormality in the region 603 at this stage.
次に図6(E)に示すように、領域604への所定階調の白色の表示処理をし、他の領域には、所定階調の黒色の表示処理をする。図6(E)の場合も図6(B)および図6(C)の場合と同様に、液晶パネル204への供給電流を測定すると、4.7Aとして測定電流値が得られる。
Next, as shown in FIG. 6E, a white display process with a predetermined gradation is performed on the area 604, and a black display process with a predetermined gradation is performed on the other areas. In the case of FIG. 6E as well as in the case of FIG. 6B and FIG. 6C, when the supply current to the liquid crystal panel 204 is measured, the measured current value is obtained as 4.7A.
結論として、図6(B)、図6(C)、図6(D)および図6(E)のパターンが表示される際の測定電流値として、図6(D)の場合に最も大きな値が得られ、領域603に不具合があることが結論される。
In conclusion, the measured current value when the patterns of FIGS. 6B, 6C, 6D, and 6E are displayed is the largest value in the case of FIG. 6D. Is obtained, and it is concluded that the region 603 is defective.
この結論を液晶パネル204の製造者にフィードバックすることにより、領域603に不具合が発生したことにより、例えば、液晶パネルの製造工程において、領域603に対応する製造工程や製造装置の部分の劣化などが想定でき、液晶パネルの製造品質を上げることが可能となる。
By feeding back this conclusion to the manufacturer of the liquid crystal panel 204, a defect has occurred in the region 603. For example, in the manufacturing process of the liquid crystal panel, the manufacturing process corresponding to the region 603, the deterioration of the part of the manufacturing apparatus, etc. As a result, the manufacturing quality of the liquid crystal panel can be improved.
なお、図6(B)、図6(C)、図6(D)および図6(E)のように、一部の領域への所定階調の白色の表示処理および他の領域への所定階調の黒色の表示処理は、異常検出時処理にのみの表示処理に限定されない。図5のステップS504においても、一部の領域への所定階調の白色の表示処理を行ない、他の領域へは所定階調の黒色の表示処理を行なうことを順次実行し、異常検出時処理に入る前に各領域の異常を判定することも可能である。
Note that, as shown in FIGS. 6B, 6C, 6D, and 6E, white display processing of a predetermined gradation in a part of the region and predetermined display in the other region The gradation black display process is not limited to the display process only for the abnormality detection process. In step S504 of FIG. 5 as well, a process for displaying white with a predetermined gradation in some areas and a process for displaying black with a predetermined gradation in other areas are sequentially executed. It is also possible to determine the abnormality of each area before entering.
(実施形態3)
実施形態1および実施形態2においては、短絡の発生により、表示回路101への供給電力が保護回路の動作しない電流上昇が発生したかどうかに関し、基準電流値と測定電流値との比較を行なうことにより異常の判定を行なうことについて主に述べたが、断線の発生によって、表示回路101への供給電力が減少することも基準電流値と測定電流値との比較によって判定することもできる。 (Embodiment 3)
In the first embodiment and the second embodiment, the reference current value and the measured current value are compared with respect to whether or not a current increase in which the power supplied to thedisplay circuit 101 does not operate the protection circuit due to the occurrence of a short circuit occurs. However, it is possible to determine whether the power supplied to the display circuit 101 is reduced due to the occurrence of the disconnection or by comparing the reference current value with the measured current value.
実施形態1および実施形態2においては、短絡の発生により、表示回路101への供給電力が保護回路の動作しない電流上昇が発生したかどうかに関し、基準電流値と測定電流値との比較を行なうことにより異常の判定を行なうことについて主に述べたが、断線の発生によって、表示回路101への供給電力が減少することも基準電流値と測定電流値との比較によって判定することもできる。 (Embodiment 3)
In the first embodiment and the second embodiment, the reference current value and the measured current value are compared with respect to whether or not a current increase in which the power supplied to the
100…表示装置、101…表示回路、102…電源回路、103…電流測定回路、104…パターン生成部、105…判定制御部、106…電流値記憶部、107…制御回路
DESCRIPTION OF SYMBOLS 100 ... Display apparatus, 101 ... Display circuit, 102 ... Power supply circuit, 103 ... Current measurement circuit, 104 ... Pattern generation part, 105 ... Judgment control part, 106 ... Current value memory | storage part, 107 ... Control circuit
Claims (7)
- 電源回路と、該電源回路からの電力によって駆動される表示回路を有する表示装置であって、
前記表示回路への供給電流の大きさを測定する電流測定回路と、
前記表示回路が表示処理する所定のパターンを生成するパターン生成部と、
前記パターン生成部により生成した前記所定のパターンを前記表示回路が表示処理した際に、前記電流測定回路で測定した測定電流値を基準電流値として予め記憶する電流値記憶部と、
前記表示回路の異常を判定する判定制御部と、
を備え、
前記判定制御部は、前記パターン生成部が生成する前記所定のパターンを前記表示回路に表示処理させ前記電流測定回路で測定される測定電流値と前記基準電流値とに基いて、前記表示回路の異常を判定することを特徴とする、表示装置。 A display device having a power supply circuit and a display circuit driven by power from the power supply circuit,
A current measurement circuit for measuring the magnitude of the supply current to the display circuit;
A pattern generation unit that generates a predetermined pattern for display processing by the display circuit;
A current value storage unit that pre-stores a measured current value measured by the current measurement circuit as a reference current value when the display circuit displays the predetermined pattern generated by the pattern generation unit;
A determination control unit for determining an abnormality of the display circuit;
With
The determination control unit causes the display circuit to display the predetermined pattern generated by the pattern generation unit, and based on the measured current value measured by the current measurement circuit and the reference current value, A display device characterized by determining an abnormality. - 前記基準電流値は、前記表示装置の製造時における前記測定電流値である、請求項1に記載の表示装置。 The display device according to claim 1, wherein the reference current value is the measured current value at the time of manufacturing the display device.
- 前記パターン生成部は、前記表示装置の電源投入操作時または電源切断操作時に前記表示回路が表示処理する前記所定のパターンを生成する、請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the pattern generation unit generates the predetermined pattern to be displayed by the display circuit when the display device is turned on or off.
- 前記表示回路は、液晶パネルを含む、請求項1から3のいずれか1に記載の表示装置。 4. The display device according to claim 1, wherein the display circuit includes a liquid crystal panel.
- 前記パターン生成部は、前記液晶パネルに光を供給するバックライトが消灯している間に前記所定のパターンを生成する、請求項4に記載の表示装置。 The display device according to claim 4, wherein the pattern generation unit generates the predetermined pattern while a backlight for supplying light to the liquid crystal panel is turned off.
- 請求項1から5のいずれか一項に記載の表示装置を備える、テレビジョン受信機。 A television receiver comprising the display device according to any one of claims 1 to 5.
- 電源回路と、該電源回路からの電力によって駆動される表示回路を有する表示装置の異常判定方法であって、
前記表示装置が、予め所定のパターンを前記表示回路に表示処理させた際に測定された前記表示回路への供給電流の大きさを基準電流値として記憶するステップと、
前記表示装置が、前記所定のパターンを前記表示回路に表示処理させた際に測定された前記表示回路への供給電流の測定値と前記基準電流値とに基いて前記表示回路の異常を判定する、ことを含む表示装置の異常判定方法。
An abnormality determination method for a display device having a power supply circuit and a display circuit driven by power from the power supply circuit,
Storing the magnitude of the current supplied to the display circuit measured when the display device causes the display circuit to display a predetermined pattern in advance as a reference current value;
The display device determines an abnormality of the display circuit based on a measurement value of a supply current to the display circuit measured when the display circuit causes the display circuit to display the predetermined pattern and the reference current value. , And a display device abnormality determination method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-024487 | 2017-02-13 | ||
JP2017024487A JP6404964B2 (en) | 2017-02-13 | 2017-02-13 | Display device, television receiver, and display device abnormality determination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147132A1 true WO2018147132A1 (en) | 2018-08-16 |
Family
ID=63107629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003062 WO2018147132A1 (en) | 2017-02-13 | 2018-01-31 | Display device, and abnormality determination method for television receiver and display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6404964B2 (en) |
WO (1) | WO2018147132A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021117303A (en) * | 2020-01-23 | 2021-08-10 | シャープ株式会社 | Control device, control method, and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005141094A (en) * | 2003-11-07 | 2005-06-02 | Nippon Signal Co Ltd:The | Display device |
JP2011053442A (en) * | 2009-09-02 | 2011-03-17 | Sony Corp | Liquid crystal display device, method for controlling display of liquid crystal display device, and display control program |
JP2013115521A (en) * | 2011-11-25 | 2013-06-10 | Sharp Corp | Display device and program thereof |
-
2017
- 2017-02-13 JP JP2017024487A patent/JP6404964B2/en not_active Expired - Fee Related
-
2018
- 2018-01-31 WO PCT/JP2018/003062 patent/WO2018147132A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005141094A (en) * | 2003-11-07 | 2005-06-02 | Nippon Signal Co Ltd:The | Display device |
JP2011053442A (en) * | 2009-09-02 | 2011-03-17 | Sony Corp | Liquid crystal display device, method for controlling display of liquid crystal display device, and display control program |
JP2013115521A (en) * | 2011-11-25 | 2013-06-10 | Sharp Corp | Display device and program thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2018133631A (en) | 2018-08-23 |
JP6404964B2 (en) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7834836B2 (en) | Flat display apparatus and picture quality controlling method thereof | |
US20140300652A1 (en) | Information processing apparatus and program | |
KR20090040673A (en) | Method and apparatus for improving picture quality of lcd | |
KR20170049241A (en) | Display device and method for driving the same | |
KR20160021966A (en) | Display device and operation method thereof and image display system | |
JP6404964B2 (en) | Display device, television receiver, and display device abnormality determination method | |
JP5679356B2 (en) | Correction method and display device | |
US11663974B2 (en) | Correction method, correction apparatus and correction system of cathode voltage, display module and method of adjusting brightness thereof | |
US11568829B2 (en) | Electronic device and display image compensation method thereof | |
US20070109290A1 (en) | Display device having plurality of power supplies and method for controlling the same | |
JP2010085807A (en) | Display device | |
CN113112947B (en) | Display device and driving method thereof | |
US20100134477A1 (en) | Liquid crystal display device and method of driving the same | |
US10467959B2 (en) | Organic light-emitting display and method of driving same | |
US6556192B2 (en) | Apparatus and method for preventing a white-screen error in a liquid crystal display device | |
JP2009098581A (en) | Display system and control method of display system | |
JP2011215479A (en) | Liquid crystal display device | |
JP2019523914A (en) | Inspection circuit and inspection method for liquid crystal display panel | |
KR20100058757A (en) | Display device having afterimage protection and control method thereof | |
CN111681555B (en) | Display method | |
US20070279356A1 (en) | Picture Display Apparatus | |
JP2005308775A (en) | Display device and electric equipment with display device | |
US20070146285A1 (en) | Voltage adjusting circuit and method of liquid crystal display panel | |
KR20070122097A (en) | Over driving circuit for liquid crystal display | |
TWI786911B (en) | Display device, calibration method and frame displaying method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18750866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18750866 Country of ref document: EP Kind code of ref document: A1 |