WO2018147086A1 - Road-subsidence risk-level evaluation device, road-subsidence risk-level evaluation method, and computer program for road-subsidence risk-level evaluation - Google Patents

Road-subsidence risk-level evaluation device, road-subsidence risk-level evaluation method, and computer program for road-subsidence risk-level evaluation Download PDF

Info

Publication number
WO2018147086A1
WO2018147086A1 PCT/JP2018/002316 JP2018002316W WO2018147086A1 WO 2018147086 A1 WO2018147086 A1 WO 2018147086A1 JP 2018002316 W JP2018002316 W JP 2018002316W WO 2018147086 A1 WO2018147086 A1 WO 2018147086A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
formula
road
determination
depression
Prior art date
Application number
PCT/JP2018/002316
Other languages
French (fr)
Japanese (ja)
Inventor
康生 清水
恭悟 野村
Original Assignee
株式会社日水コン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日水コン filed Critical 株式会社日水コン
Priority to CN201880007801.7A priority Critical patent/CN110234811B/en
Priority to JP2018567359A priority patent/JP6682021B2/en
Publication of WO2018147086A1 publication Critical patent/WO2018147086A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data

Definitions

  • the present invention relates to a road collapse risk evaluation apparatus and a road collapse risk evaluation method for evaluating the risk of road collapse, and a computer program for road collapse risk evaluation that is installed in a computer and evaluates the risk of road collapse.
  • sewer pipes for example, sewer pipe misalignment and poor joints account for about 40% of the total.
  • Such defective sewer pipes are caused not only by external forces represented by increased traffic and earthquake motion, but also by aging pipes and poor construction.
  • various infrastructure information such as water and sewage systems that are centrally managed by the road management system of the general incorporated foundation and road management center are provided mutually. However, even such a system does not include all information indicating the state of the infrastructure under the road.
  • active faults in the city and its surrounding areas among Japanese government-designated cities Such an active fault is considered to be a hazard that causes dislocation of roads.
  • the infrastructure information described above does not necessarily include the presence of the hazard.
  • the cavity exploration vehicle equipped with radar has the exploration ability to detect cavities with an exploration width of about 2.0 m, an exploration depth of about 1.5 m, a length of 50 cm x width 50 cm x thickness 10 cm or more. Have. By using such a vehicle, it is possible to grasp the existence and size of the cavity under the road.
  • a cavity exploration method using such a vehicle is exemplified in Patent Document 1.
  • the conventional cavity exploration method described above is merely a means for grasping the existence of the cavity, and it is difficult to objectively and quantitatively evaluate the risk of road collapse. In order to prevent road depression and take appropriate measures, it is strongly required to objectively and quantitatively evaluate the risk of occurrence of depression.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to objectively and quantitatively evaluate the risk of occurrence of road depression.
  • a road collapse risk evaluation apparatus for evaluating the risk of road collapse, Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula
  • Determination factor factor data receiving means for receiving determination factor factor data obtained by quantifying the factors of road depression at a plurality of sampled sampling points;
  • General judgment formula shown in the following formula (A) based on the specific judgment formula ⁇ Y is an external standard indicating whether or not a road is depressed
  • General judgment expression storage means for storing First substituting means for substituting the judgment formula factor data constituted by the categorical variable into the general judgment formula read from the general judgment formula storage unit; Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij); Specific determination formula storage means for storing the specific determination formula; A risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated; Second substitution means for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific judgment formula read from the specific judgment formula storage means; A determination value determining means for performing a calculation based on the processing of the second substitution means, and determining a determination value obtained by quantifying the risk of depression at each evaluation target point; including.
  • the road collapse risk evaluation apparatus preferably classifies the determination value calculated by the specific determination formula into a predetermined range, and a threshold for occurrence of the collapse based on the presence or absence of actual depression Threshold value determining means for determining
  • the road collapse risk evaluation device is preferably a map information storage unit that stores information of a map including each evaluation target point; On the map read from the map information storage means, a map display means for performing display by color or shade based on the determination value indicating the risk of depression at each evaluation target point; Further included.
  • the factors of the road collapse are the presence of an underground cavity, the type of backfill soil, the state of groundwater, the number of years of pipe laying, the pipe It is two or more of the thickness of the earth covering on the road, the part of the pipe, the pipe type, the pipe breakage, the traffic vibration, the summer temperature and the active fault hazard.
  • the road collapse risk evaluation method is a method of evaluating the risk of road collapse using an apparatus for evaluating the risk of road collapse, Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula
  • a determination formula factor data reception step for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampled sampling points;
  • General judgment formula shown in the following formula (A) based on the specific judgment formula ⁇ Y is an external standard indicating whether or not a road is depressed
  • Xi are explanatory variables that cause a road depression,
  • A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more
  • xij is the jth categorical variable of Xi
  • aij is the categorical coefficient of xij.
  • the determination value calculated by the specific determination formula is classified into a predetermined range, and a threshold of occurrence of the collapse based on the presence or absence of actual depression
  • the method further includes a threshold value determining step for determining.
  • each evaluation is performed on the map read out from the map information storage unit that stores information on the map including each evaluation target point.
  • the method further includes a map display step for performing display by color or shade based on the determination value indicating the risk of depression at the target point.
  • a computer program for evaluating the risk of road collapse is a computer program that is installed in a computer and that causes the computer to function as a road collapse risk evaluation apparatus for evaluating the risk of road collapse.
  • the computer Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula Determination factor factor data receiving means for receiving determination factor factor data quantifying the factors of road depression at a plurality of sampled sampling points;
  • General judgment formula shown in the following formula (A) based on the specific judgment formula ⁇ Y is an external standard indicating whether or not a road is depressed
  • X1 to Xn Xi are explanatory variables that cause a road depression
  • A1 to An are coefficients multiplied by X1 to Xn
  • n is the number of the i-th explanatory variable Xi, an integer of 1 or more
  • xij is the jth categorical variable of Xi, and
  • the first substituting means for substituting the judgment formula factor data composed of the categorical variables into the general judgment formula read from the general judgment formula storage means. Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij); Risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated; A second substituting unit for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage unit that stores the specific determination formula; and An operation is performed based on the processing of the second substitution means, and functions as a determination value determination means for determining a determination value obtained by quantifying the risk of depression at each evaluation target point.
  • the computer program for risk assessment of road collapse preferably includes the computer,
  • the determination value calculated by the specific determination formula is classified into a predetermined range, and further functions as threshold determination means for determining a depression occurrence threshold based on the actual presence or absence of depression.
  • the computer program for risk assessment of road collapse preferably includes the computer, On the map read out from the map information storage means for storing the information of the map including each evaluation target point, the color or gray level is classified according to the judgment value indicating the risk of depression at each evaluation target point. It further functions as a map display means for performing display.
  • FIG. 1 is a conceptual diagram for determining a road collapse risk according to an embodiment of the present invention.
  • the figure for demonstrating the general formula (general determination formula) of the determination formula demonstrated based on FIG. 1 is shown.
  • the details of the general determination formula shown in FIG. 1A are shown.
  • An example of the various data used for preparation of the road depression sign judgment formula is shown.
  • An example of the various data used for preparation of the road depression precursor determination formula different from the example shown to FIG. 1C is shown.
  • FIG. 2 shows an example of various data used to create a road collapse predictor determination formula different from those shown in FIGS. 1C and 1D.
  • FIG. 3 shows the configuration of each function of the road collapse risk evaluation apparatus according to the embodiment of the present invention.
  • FIG. 4 shows a flow of main steps of the road collapse risk evaluation method according to the embodiment of the present invention.
  • FIG. 5 is a table in which the external reference Y and the various explanatory variables X1 to X5 at the 100 points for creating the judgment formula are quantified, and shows data at the 1st to 50th points.
  • FIG. 6 is a table in which the external reference Y and the various explanatory variables X1 to X5 at the 100 points for creating the judgment formula are quantified, and shows data at the 51st to 100th points.
  • FIG. 7 is a diagram (7A) for explaining the general judgment formula, a diagram (7B) for explaining the digitized factor data, a diagram (7C) for explaining the specific judgment formula, and the threshold value.
  • FIG. 8 shows a table in which various explanatory variables X1 to X5 are digitized at 30 evaluation target points to be evaluated for risk.
  • FIG. 9 shows a map (9A) of an area including an evaluation target point and a risk evaluation map (9B) in which unit blocks including each point are displayed on the map by color classification or light / dark classification.
  • FIG. 10 is a diagram (10A) for explaining a specific determination formula, diagrams (10B, 10C) for explaining a threshold value, and a risk evaluation in which a unit block including each point is displayed on the map by color coding or gray coding. Each map (10D) is shown.
  • FIG. 11 is a table in which various explanatory variables X6 to X11 at 100 points for determination formula creation are quantified, and shows data of the 1st to 50th points.
  • FIG. 12 is a table in which various explanatory variables X6 to X11 at 100 points for determination formula creation are quantified, and shows data of the 51st to 100th points.
  • FIG. 13 compares the size of the range of Expression 3 in FIG. 13A for explaining the specific determination formula, the figures 13B and 13C for explaining the threshold values, and 11 road crush factors (13A). Each figure (13D) is shown.
  • FIG. 14 shows a table in which various explanatory variables X6 to X11 at 30 evaluation target points that are targets for risk evaluation are digitized.
  • FIG. 15 shows a risk evaluation map in which unit blocks including each point are displayed on the map by color classification or light / dark classification.
  • 1 Road collapse risk evaluation device (also simply called “device”) 10: Judgment formula factor data receiving unit (judgment formula factor data receiving means) 11: General judgment formula storage unit (general judgment formula storage means) 13: 1st substitution part (1st substitution means) 14: Specific determination formula determination unit (specific determination formula determination means) 15: Threshold determination unit (threshold determination means) 16: Specific determination formula storage unit (specific determination formula storage means) 18: Risk factor data reception unit (risk factor data reception means) 19: Second substitution unit (second substitution means) 20: Determination value determination unit (determination value determination means) 21: Map information storage unit (map information storage means) 23: Map display section (map display means)
  • FIG. 1 is a conceptual diagram for determining a road collapse risk according to an embodiment of the present invention.
  • Peril data and various hazard data in order to obtain the road collapse risk, various data represented by, for example, peril data, hazard data, field survey hazard data, and base MH management hazard data are required. It is. All of these data cause road collapse.
  • Peril data means data that causes a danger.
  • the peril data in this embodiment is collected by the road manager and the sewer manager in cooperation with preventive maintenance against road depression. Specific examples of the peril data include depression history, road improvement history, and cavity investigation history (follow-up observation, cause investigation, repair, etc.).
  • Hazard data refers to the danger situation (risk factor) when road depression is considered a dangerous event.
  • hazard data include sewer pipe attributes such as pipe type, caliber, aging value, deterioration damage, construction history, and the like. The same applies to water pipes. These data are available from the ledger. There are other infrastructures such as gas pipes for hazards that cause road depression, and the various data are required. Furthermore, the backfill material of various buried objects, the groundwater level status, traffic volume, and road surface temperature can also be included in the hazard data.
  • Field Survey Hazard Data is survey data related to roads and refers to the danger of road collapse.
  • This data requires road surface information by MMS (Mobile Mapping System) and its position information.
  • MMS Mobile Mapping System
  • This data is obtained, for example, by surveying the survey vehicle at a traveling speed of 40 km / h or more. Traffic regulation is not required for data collection.
  • the survey vehicle it is possible to measure the 3D terrain model using the laser scanner and camera. From the MMS information obtained in this way, the depression situation on the road can be known.
  • the investigation vehicle can be equipped with GPR (Ground Penetrating Radar).
  • GPR extracts abnormal signals (including cavities and looseness signals as well as information on buried pipes, etc.) from the data measured by the survey vehicle, and identifies abnormal signals having the characteristics of cavities from among them. .
  • the abnormality signal is obtained by surveying the survey vehicle at a traveling speed of about 40 km / h. Traffic regulation is not required for data collection.
  • exploration accuracy a exploration depth of about 1.5 m, a cavity having a length of 50 cm ⁇ width 50 cm ⁇ thickness 10 cm or more can be explored. If a more accurate method is adopted, it is also possible to estimate the state of cavities in the soil layer up to about 3.0 m from data up to an exploration depth of 1.5 m.
  • the site MH management hazard data is data related to the real-time environment inside and outside the pipeline, and refers to the risk of road collapse.
  • sewer pipes are likely to deteriorate due to corrosion of concrete or the like caused by hydrogen sulfide. For this reason, inspections and surveys such as hydrogen sulfide concentration are extremely important.
  • sewerage pipes that have deteriorated in the pipes are easily damaged by road loads. From such points, real-time information such as hydrogen sulfide in the sewer pipe can be hazard data for road depression.
  • water temperature, water quality, and water level in sewer pipes can also be this type of hazard data.
  • Road depression sign judgment formula creation is a road depression by inputting the above coordinated information into the general formula of the judgment formula and applying quantification type II It means to determine the sign judgment formula.
  • the target variable to be estimated is the peril data (F)
  • the level of the road depression is expressed in about two to three levels
  • various hazard data are considered as information related to the hazard data (Xi). That is, this step outputs an assumed depression state level from qualitatively given Xi data.
  • Quantification of road collapse risk by unit block The quantification is to divide the area to be investigated into a plurality of blocks and substitute the coordinate value of the point in each block into the judgment formula obtained earlier, The risk level is quantified in units of each block. As a result, when the road is divided into unit blocks in the survey target area having the road, it is possible to quantitatively and objectively grasp how much the block has a risk of road collapse.
  • the creation of the road collapse predictive judgment formula described above is an operation for specifying the judgment formula using the peril data and hazard data at a plurality of points for creating the judgment formula.
  • the numerical value of the road collapse risk by unit block is based on the peril data and various hazard data of the target point for which the collapse risk is calculated (which may partially overlap with the point for creating the above judgment formula). This is an operation for substituting into the above-identified judgment formula and expressing the depression risk level as a numerical value.
  • FIG. 1A and FIG. 1B are diagrams for explaining a general expression (general determination expression) of the determination expression described based on FIG.
  • FIG. 1C and FIG. 1D show an example of various data used to create a road collapse sign determination formula.
  • FIG. 2 shows an example of various data different from those shown in FIGS. 1C and 1D and used for creating a road collapse sign determination formula.
  • the external standard is, in the most typical example, the presence or absence of a road depression, which means a result of whether or not a phenomenon of depression has occurred. Further, the external standard may include not only the presence or absence of a road depression, but also the status of each stage at the risk of road depression.
  • Y external criteria
  • B1 means no road depression
  • B2 means a road depression.
  • the explanatory variable (X) means an investigation result of a situation assumed as a cause of the road depression.
  • X can be represented by X1, X2, X3,..., Xn (n is the number of the i-th explanatory variable Xi and is an integer of 1 or more), and X1, X2, X3, etc. are generalized, It can be referred to as “Xi”.
  • the relational expression between the external criterion (Y) and the explanatory variable (X) is the expression shown in FIG. 1A, more specifically the expression shown in FIG. 1B. In these equations, A is a coefficient by which the explanatory variable Xi is multiplied.
  • a coefficient to be multiplied by X1 is represented by A1
  • a coefficient to be multiplied by X2 is represented by A2
  • a coefficient to be multiplied by Xn is represented by An.
  • A1, A2, A3, etc. can be generalized and referred to as “Ai”.
  • xij represents the jth categorical variable of Xi
  • aij represents the category coefficient of xij
  • mi represents the number of categories of Xi.
  • the comma (,) existing between the category coefficients aij may be omitted in the notation.
  • the categorical variable (xij) is a variable constituting the explanatory variable Xi, but can take various numbers depending on the type of Xi.
  • X1 has three categorical variables x11, x12, and x13.
  • X2 has two categorical variables x21 and x22.
  • X3 has three categorical variables x31, x32, and x33.
  • X4 has three categorical variables x41, x42, and x43.
  • FIG. 1D partly different from FIG. 1C, for example, X4 has four categorical variables x41, x42, x43, and x44.
  • each categorical variable xij constituting the explanatory variable Xi is all zero, or only one is 1 and the others are zero. This will be described in detail later.
  • Various changes can be made to the criteria for dividing a categorical variable into a plurality of categories and the number of categorical variables. In this embodiment, three types of explanatory variables of FIG. 1C, FIG. 1D, and FIG. 2 are illustrated.
  • the explanatory variable (X1) of the existence of a cavity has a cavity at a position less than 1/2 of the earth covering, and at a position of 1/2 or more of the earth covering when there is no cavity.
  • the position less than 1/2 of the earth covering is a position below 1/2 of the thickness of the earth and sand covering the pipe such as the sewage pipe.
  • the position of 1/2 or more of the earth covering is a position that is 1/2 or less than the thickness of the earth and sand covering a pipe such as a sewer pipe.
  • the explanatory variable (X2) of backfilling soil is divided into two types: a case where the soil type is gravel soil and a case where the soil type is sandy soil.
  • the explanatory variable (X3) of the state of groundwater is divided into three types: when there is no groundwater, when there is groundwater, and when there is groundwater and there is fluctuation.
  • When there is groundwater it is divided into cases where there is no change in groundwater and cases where there is no change.
  • the risk of depression is higher when there is groundwater fluctuation. Therefore, the case where there is groundwater is divided into two cases from the viewpoint of the presence or absence of fluctuations in groundwater.
  • the explanatory variable (X4) of elapsed years (years since pipe installation) is divided into three types: less than 20 years, more than 20 years and less than 40 years, and more than 40 years.
  • the explanatory variable (X5) of the earth covering thickness is divided into three types of 2 m or more, 1 m or more and less than 2 m, and less than 1 m.
  • the explanatory variable (X6) of the part of the pipe line is divided into the case of the attachment pipe, the case of the main pipe, and the other three types.
  • the explanatory variable (X7), which is a pipe type, is divided into three types: ceramic pipe, reinforced concrete, and others.
  • the explanatory variable (X8) of the sewer pipe breakage state is divided into two types, that is, the case where it is not broken and the case where it is broken.
  • the explanatory variable (X9) of traffic vibration is divided into two types, a case where it is large and a case where it is small relative to a predetermined standard.
  • the explanatory variable (X10) of summer temperature is classified into two types: a case where the temperature is higher than a predetermined temperature (for example, a temperature within the range of 25 to 35 ° C. monthly average temperature) and a case where the temperature is lower.
  • the explanatory variable (X11), which is an active fault hazard, is classified into two types when there is an active fault and when there is no active fault.
  • the variable which comprises each said explanatory variable can be called a categorical variable.
  • the number of categorical variables is two or three in each explanatory variable, but may be four or more. Further, the number of categorical variables in each explanatory variable is not limited to the above example.
  • X1 has three categorical variables, but only two or four or more may be used. The same applies to other explanatory variables. However, the explanatory variable for creating the judgment formula and the explanatory variable for risk assessment need to have the same type and criteria / number of categorical variables.
  • FIG. 3 shows the configuration of each function of the road collapse risk evaluation apparatus according to the embodiment of the present invention.
  • the road collapse risk evaluation apparatus 1 is an apparatus for evaluating the risk of road collapse.
  • a road collapse risk evaluation apparatus (hereinafter also simply referred to as “apparatus”) 1 includes a determination formula factor data receiving unit 10, a general determination formula storage unit 11, a general determination formula reading unit 12, a first substitution unit 13, and a specific determination.
  • a map information reading unit 22 and a map display unit 23 are provided.
  • Determination formula factor data receiving unit 10 general determination formula reading unit 12, first substitution unit 13, specific determination formula determining unit 14, threshold determining unit 15, specific determination formula reading unit 17, risk factor data receiving unit 18,
  • the second substitution unit 19, the determination value determination unit 20, the map information reading unit 22, and the map display unit 23 are configured so that a central processing unit (CPU) mounted on an electronic circuit board in a computer can execute a computer program (for road collapse risk evaluation). Each process is performed by executing a computer program.
  • the general determination formula storage unit 11, the specific determination formula storage unit 16, and the map information storage unit 21 are memories such as a RAM or a hard disk capable of reading and writing data.
  • the general determination formula storage unit 11 and / or the map information storage unit 21 are not limited to a RAM or a hard disk, and may be a ROM from which data is unilaterally read. Further, the judgment factor factor data receiving unit 10 and / or the risk factor data receiving unit 18 receives each data from various devices (server, keyboard, pointing device, touch panel, etc.) connected to the apparatus 1 by wire or wirelessly. It is possible to accept. For example, even if the user inputs a numerical value shown in FIG. 7 (7B), which will be described later, from the keyboard, the determination factor factor data reception unit 10 and / or the risk factor data reception unit 18 receives the input numerical value. good. In this way, the determination formula factor data reception unit 10 and / or the risk factor data reception unit 18 may be connected to an input device, another computer, or a communication device not shown in FIG.
  • the determination factor data receiving unit 10 is an equation for determining the risk of road collapse, and is data necessary for determining a specific determination equation as a function expression of the cause of road depression and the risk.
  • This is a component functioning as determination formula factor data receiving means for receiving determination formula factor data in which the factors of road depression at a plurality of sampling points sampled for creating a specific determination formula are quantified.
  • the factors of the road collapse preferably, the presence of underground cavities, the type of backfill soil, the situation of groundwater, the age of pipe laying, the thickness of the overburden on the pipe, the part of the pipe, the pipe type, Two or more of pipe breakage, traffic vibration, summer temperature and active fault hazard.
  • the determination formula factor data is data digitized for each factor, and is “1” when applicable and “0” when not applicable.
  • the specific determination formula refers to a formula illustrated in FIG. 7 (7C). These will be described in detail later with reference to FIG.
  • the general judgment formula storage unit 11 is a component that functions as a general judgment formula storage unit that stores a general judgment formula that is the basis of the specific judgment formula.
  • the general determination formula refers to a formula illustrated in FIG. 7 (7A) described later.
  • the general judgment formula storage unit 11 has been described as a configuration unit that stores a general judgment formula, but a configuration unit that can also store other data, for example, a judgment formula factor data receiving unit 10, a general judgment formula reading unit.
  • first substitution unit 13 specific determination formula determination unit 14, threshold determination unit 15, specific determination formula read unit 17, risk factor data reception unit 18, second substitution unit 19, determination value determination unit 20, map information
  • It may be a component capable of storing one or more computer programs (a computer program for risk assessment of road collapse) required for performing each process of the reading unit 22 and the map display unit 23.
  • the general judgment formula reading unit 12 is a configuration unit that reads data of the general judgment formula from the general judgment formula storage unit 11.
  • the first substitution unit 13 is a component that functions as first substitution means for substituting the factor data for judgment formula into the general judgment formula read from the general judgment formula storage unit 11.
  • the specific determination formula determination unit 14 is a component that functions as a specific determination formula determination unit that determines the specific determination formula by substituting the determination formula factor data into the general determination formula and performs an operation.
  • the threshold determination unit 15 is a component that functions as a threshold determination unit that classifies the determination values calculated by the specific determination formula into a predetermined range and determines a threshold for occurrence of depression based on the actual presence or absence of depression.
  • the threshold value is a determination value that means a boundary that increases the risk of occurrence of depression.
  • the determination value is a value of Y in the specific determination expression exemplified in FIG. 7 (7C).
  • the threshold is determined to be ⁇ 0.2 because, when the threshold is set to ⁇ 0.2, the correct answer rate for the presence or absence of depression is high and the erroneous determination rate is low. If the threshold value is set to 0 (zero), a point where no depression has occurred within the range of determination value ⁇ 0 is likely to be included as an error. On the other hand, if the threshold value is ⁇ 0.4, a point where depression occurs within the range of determination value ⁇ ⁇ 0.4 is likely to be included as an error.
  • the determination value ( ⁇ 0.2) having the smallest determination error is set as the threshold value. This point will be described in detail later with reference to FIGS. 7 (7D) and (7E).
  • the threshold determination unit 15 is not an essential component and may not be provided in the device 1.
  • the specific determination formula storage unit 16 is a component that functions as a specific determination formula storage unit that stores at least a specific determination formula.
  • the specific determination formula storage unit 16 may further store a threshold value.
  • the specific determination formula reading unit 17 is a component that reads a specific determination formula from the specific determination formula storage unit 16.
  • the specific determination formula reading unit 17 may further read the threshold value.
  • the risk factor data receiving unit 18 functions as a risk factor data receiving unit that receives risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated.
  • the determination formula factor data receiving unit 10 and / or the risk factor data receiving unit 18 are described as components capable of receiving specific data, but can also receive other data.
  • a configuration unit for example, a configuration unit that accepts data arbitrarily input by the user may also be used.
  • the second substitution unit 19 is a component that functions as a second substitution unit that substitutes risk factor data into the specific determination formula read from the specific determination formula storage unit 16.
  • the determination value determination unit 20 is a component functioning as a determination value determination unit that performs a calculation based on the processing of the second substitution unit 19 and determines a determination value obtained by quantifying the risk of depression at each evaluation target point.
  • the map information storage unit 21 is a component that functions as a map information storage unit that stores map information including each evaluation target point.
  • the map information reading unit 22 is a component that reads predetermined map information from the map information storage unit 21.
  • the map display unit 23 functions as a map display unit that displays colors or shades on the map read from the map information storage unit 21 based on a determination value indicating the risk of depression at each evaluation target point. It is a component.
  • the color or shading information can be stored in the map information storage unit 21 or in another storage unit (not shown in FIG. 3) so as to be read out.
  • the map information reading unit 22 described above can also read color or shade information from the map information storage unit 21 together with the map information.
  • the map display unit 23 may be a component that displays only the determination value indicating the degree of risk without displaying the color.
  • the map display unit 23 may be a component that displays both the color and the determination value. Further, the map display unit 23 may display monochrome shades instead of colors. In this case, the determination value can be displayed together with monochrome shading, or can be hidden. Further, when the apparatus 1 is provided with the threshold value determination unit 15, the map display unit 23 may display the color and shades largely changed before and after the threshold value.
  • the apparatus 1 may include a first depression factor value conversion unit 30, a first storage unit 31, a second depression factor value conversion unit 40, and a second storage unit 41.
  • the first depression factor numerical value conversion unit 30 converts the road depression factor into a numerical value shown in FIG. 7 (7B) described later, and transmits the numerical value data to the determination formula factor data reception unit 10. It is a component that functions as numerical value conversion means.
  • storage part 31 is a 1st memory
  • the first depression factor numerical value conversion unit 30 refers to the data table stored in the first storage unit 31 and digitizes each road factor and transmits the digitized data to the determination formula factor data reception unit 10. To do.
  • the second depression factor numerical value conversion unit 40 functions as a second depression factor numerical value conversion unit that converts a road depression factor into a numerical value and transmits the numerical value data to the risk factor data receiving unit 18.
  • storage part 41 is a 2nd memory
  • the second depression factor numerical value conversion unit 40 refers to the data table stored in the second storage unit 41, digitizes each road factor, and transmits the digitized data to the risk factor data reception unit 18. To do.
  • the first depression factor numerical value conversion unit 30 and the second depression factor numerical value conversion unit 40 are parts that perform each process by the CPU executing a computer program (a computer program for evaluating the risk of road depression).
  • the first storage unit 31 and the second storage unit 41 are memories represented by a RAM, a hard disk, and the like that can read and write information.
  • the device 1 is a road collapse risk evaluation device for evaluating the risk of road collapse, and is an expression for determining the risk of road collapse, and causes and risks of road collapse.
  • Data necessary for determining a specific judgment formula as a function formula with and accepting judgment formula factor data obtained by quantifying factors of road depression at a plurality of sampling points sampled for creating a specific judgment formula
  • Determination formula factor data receiving means (corresponding to the determination formula factor data receiving unit 10) and a general determination formula ⁇ Y is an external criterion indicating whether or not a road has collapsed.
  • Xi is an explanatory variable that causes a road collapse
  • A1 to An are coefficients to be multiplied by X1 to Xn
  • n is the number of the i-th explanatory variable Xi
  • xij is the jth character of Xi
  • the Gori variables, aij is the category coefficient xij
  • mi is the number of categories Xi, respectively.
  • the first substituting means (corresponding to the first substituting unit 13) and the factor data for the judgment formula are substituted into the general judgment formula, and the variation between the two groups is relative to the total variation by the quantification theory type II analysis.
  • Specific determination formula determining means (corresponding to the specific determination formula determination unit 14) for determining the specific determination formula specifying the category coefficient (aij) by executing the calculation so as to maximize the value, and the specification for storing the specific determination formula
  • Determination factor storage means (corresponding to the specific determination expression storage unit 16) and risk factor data reception means (dangerous) that receives risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated Factor data
  • a second substituting unit for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage unit. 19
  • determination value determination means (corresponding to the determination value determination unit 20) that performs a calculation based on the processing of the second substitution means and determines a determination value
  • FIG. 4 shows a flow of main steps of the road collapse risk evaluation method according to the embodiment of the present invention.
  • the road collapse risk evaluation method is a method for evaluating the road collapse risk using an apparatus for evaluating the road collapse risk. As shown in FIG. 4, this evaluation method is based on a determination formula factor data receiving step (S100) for receiving data of each factor (determination formula factor data) at a determination formula creation point, and a specific determination formula.
  • S100 determination formula factor data receiving step
  • Steps S400 and S800 are not essential steps.
  • the map display step may be a step of displaying only the determination value indicating the degree of risk without performing display of color and shading.
  • the map display step may be a step of displaying both the color, the shading, and the determination value.
  • the map display step may be a step of displaying monochrome shades instead of colors.
  • the determination value can be displayed together with monochrome shading, or can be hidden.
  • the threshold value determining step (S400) is performed, the map display step may be displayed by changing the color or shade largely before and after the threshold value.
  • Determination formula factor data receiving step (S100) This step is a step of receiving determination formula factor data obtained by quantifying the factors of road depression at a plurality (100 in this embodiment) of sampling points sampled for creating a specific determination formula. This step can be performed by the determination formula factor data receiving unit 10 of the apparatus 1. Judgment formula factor data is data necessary to determine a specific judgment formula.
  • the specific determination expression is an expression for determining the risk of road depression, and is a function expression of the cause of road depression (corresponding to the explanatory variable Xi) and the risk (corresponding to the external criterion Y).
  • FIG. 5 and FIG. 6 show tables quantifying the external reference Y and various explanatory variables X1 to X5 at 100 points for creating a judgment formula.
  • FIG. 5 shows data at each of the first to 50th points
  • FIG. 6 shows data at each of the 51st to 100th points.
  • the presence or absence of depression at the 1st to 100th points of the road in a specific area in Sakai City and the five explanatory variables that can be the cause are represented by numbers 1 to 3. . These points 1 to 100 are sampling points sampled for creating the specific determination formula.
  • “1” means that there is no depression
  • “2” means that there is depression.
  • the existence of the cavity (X1) “1” means that there is no cavity, “2” means that there is a cavity at a position less than 1/2 of the soil covering thickness, and “3”. Means that there is a cavity at a position of 1/2 or more of the covering thickness.
  • the first sampling point in the table of FIG. 5 is that Y and X1 to X5 are all “1”, so there is no depression, no cavities, the backfilling soil is gravel, groundwater There is no, the elapsed years are less than 20 years, and the earth covering is a point of 2 m or more.
  • Other sampling points are similarly interpreted by numerical values of 1 to 3. What is important here is that the numerical values 1 to 3 in FIG. 5 and FIG. 6 are merely for categorizing the external criteria and each explanatory variable by type, and the absolute values of the numerical values themselves have meaning. It is not. Therefore, the alphabets a, b, and c may be used instead of the numerical values 1, 2, and 3. It is also important that the numbers 1 to 3 in the tables of FIGS. 5 and 6 are not directly substituted into the general judgment formula. This point will be described later.
  • FIG. 7 is a diagram (7A) for explaining the general judgment formula, a diagram (7B) for explaining the digitized factor data, a diagram (7C) for explaining the specific judgment formula, and the threshold value.
  • Figures (7D, 7E) are respectively shown.
  • n is the number of explanatory variables (a positive integer).
  • A1, A2, A3,..., An are coefficients of X1, X2, X3,..., Xn (when these are generalized, “Xi”), respectively. .
  • n 5.
  • X1 has three variables of x11, x12, and x13 that can take 1 or zero (this is referred to as a categorical variable, but may be simply referred to as a variable hereinafter).
  • X2 has two variables of x21 and x22 that can take 1 or zero.
  • X3 has three variables that can be 1 or zero, x31, x32, and x33.
  • X4 has three variables that can be 1 or zero, x41, x42, and x43.
  • X5 has three variables that can be 1 or zero, x51, x52, and x53.
  • X2 to X5.
  • one of x21 and x22 is 1, and the others are zero.
  • any one of x31, x32, and x33 is 1, and the other two are zero.
  • any one of x41, x42, and x43 is 1, and the other two are zero.
  • any one of x51, x52, and x53 is 1, and the other two are zero.
  • Step S100 includes (x11, x12, x13), (x21, x22), (x11, x12, x13), as factorial data for judgment formulas that quantify the factors of the road depression and the presence or absence of depression at each sampling point sampled for creating the specific judgment formula.
  • (x31, x32, x33), (x41, x42, x43), (x51, x52, x53) and Y are received.
  • This step is a step of substituting the judgment formula factor data into the general judgment formula and performing an operation to determine the specific judgment formula. Specifically, in this step, a specific determination formula is obtained by quantification theory type II analysis. This step can be performed by the specific determination formula determination unit 14 of the device 1. Now, the coefficients (a11, a21, etc.) in A1 to A5 are assumed to be aij. i is an order of A1 to A5, and is a positive integer of 1 to 5. j is the order of the coefficients in one Ai. Since A1 has three coefficients, j is any positive integer from 1 to 3.
  • the coefficient aij seeking is obtained as a component of the eigenvector corresponding to the largest eigenvalue (eta 2).
  • a specific determination formula as shown in Formula 1 of (7C) is obtained.
  • the specific determination expression is a relational expression between the explanatory variable Xi and the objective variable Y in a state where the coefficient aij is specified.
  • Y means “determination value” indicating the risk of road collapse in the specific determination formula. That is, Y, which means the presence or absence of a road depression or a sign in the general determination formula, is a “determination value” indicating the risk of road collapse in the specific determination formula. Therefore, Y in the general determination formula may be distinguished from “Y1” and Y in the specific determination formula may be described as “Y2”.
  • Threshold determination step is a step of determining a threshold value for occurrence of depression.
  • the threshold value means a determination value for determining the risk of occurrence of depression.
  • This step can be performed by the threshold value determination unit 15 of the device 1.
  • the determination value calculated by the specific determination formula is classified into a predetermined range, and a threshold value for occurrence of depression is determined based on the presence or absence of actual depression.
  • the determination values are classified into 16 in a predetermined range of 0.2. No. A depression of the road occurs from 1 to 7 (that is, the judgment value is ⁇ 0.2 or less).
  • road depression does not occur 100% when the determination value is ⁇ 0.2 or less, and does not occur 100% when the determination value is greater than ⁇ 0.2. There may be no road depression even when the determination value is ⁇ 0.2 or less, or there may be road depression even when the determination value is greater than ⁇ 0.2. In such a situation where the set of road depressions and the set of road depressions overlap each other, the judgment value is No. It is appropriate to determine the position where the determination error is the smallest as the threshold value when setting in each stage from 1 to 16. In the example shown in (7C, 7E), if the threshold value is set to a value smaller than ⁇ 0.2, the determination error becomes larger than when the threshold value is set to ⁇ 0.2 (in this case, a range equal to or greater than the threshold value).
  • Steps S100 to S400 are processing until a specific determination formula is obtained from a general determination formula based on information on sample points.
  • Risk factor data reception step This step is a step of accepting risk factor data obtained by quantifying the factors of road depression at a plurality of evaluation target points to be evaluated. This step can be performed by the risk factor data receiving unit 18 of the device 1. In this embodiment, risk factor data for 30 evaluation target points are accepted.
  • the evaluation target point is preferably located in a geographically close position such as the same municipality as the sampling point or the same district in the same municipality.
  • FIG. 8 shows a table in which various explanatory variables X1 to X5 are digitized at 30 evaluation target points to be evaluated for risk.
  • Numerals 1 to 3 of X1 to X5 in FIG. 8 have the same meaning as the numerical values in FIGS.
  • the evaluation target point No. In “1”, “1” is entered in X1 to X4, and only X5 is “2”.
  • the No. At point 1 it means that there is no cavity, the backfilling soil is gravel soil, there is no groundwater, the elapsed time is less than 20 years, and the earth covering is 1 m or more and less than 2 m.
  • the other 29 locations are similarly interpreted based on the numbers in the table.
  • Step S500 accepts (x11, x12, x13), (x21, x22), (x31, x32, x33), (x41, x42, x43), (x51, x52, x53) as risk factor data. It is a step.
  • the evaluation target point No. 1 shown in FIG. 1 the data of (1, 0, 0), (1, 0), (1, 0, 0), (1, 0, 0), (0, 1, 0) is the risk factor data receiving unit. 18 is accepted.
  • the evaluation target point No. 1 shown in FIG. 7 the risk factor data of (1, 0, 0), (0, 1), (0, 1, 0), (0, 1, 0), (0, 0, 1) is used for the risk level. It is received by the factor data receiving unit 18. Such data reception is performed in a similar manner for the other 28 sampling points.
  • Second substitution step (S600) This step is a step of substituting the risk factor data into the specific determination formula. This step can be performed by the second substitution unit 19 of the device 1. In this step, the risk factor data such as the evaluation target point No. In the case of 1, in the step of substituting the data (1, 0, 0), (1, 0), (1, 0, 0), (1, 0, 0), (0, 1, 0) is there. In this step, the same substitution is performed for the other 29 evaluation target points.
  • Determination value determination step (S700) This step is a step of determining a determination value based on the risk of depression at each evaluation target point by calculation using a specific determination formula. This step can be performed by the determination value determination unit 20 of the device 1. As a result of this calculation, Y (determination value meaning risk) of the specific determination formula is obtained for each evaluation target point.
  • Map display step (step S800) This step is a step of performing display by color or shade based on a determination value indicating the risk of depression at each evaluation target point on the map. This step can be performed by the map display unit 23 of the device 1.
  • FIG. 9 shows a map (9A) of an area including an evaluation target point and a risk evaluation map (9B) in which a unit block including each point is displayed on the map by color classification or gray scale classification.
  • the map of (9A) is obtained in S700 in a unit block (for example, a length of 50 m on the left and right, a range of radius of 50 m, etc. is arbitrarily determined) around each evaluation target point on the map shown in (9A).
  • the judgment value (which may be referred to as a risk level) and a color based on the judgment value are displayed.
  • the map (9B) may be referred to as a risk evaluation map.
  • the numerical values at 30 locations in the risk evaluation map mean the risk of road depression, and the smaller the numerical value, the higher the risk of depression.
  • Blocks with a high risk of depression are preferably displayed in dark red, for example, and are displayed in different colors from light red, orange, yellow, light blue, and dark blue as the risk decreases.
  • the degree of danger may be displayed in monochrome shades without using color.
  • the risk evaluation map (9B) is an example in which the risk is visually represented by monochrome shading, and the risk is higher as it is closer to black.
  • the risk evaluation map may be displayed with only the determination value, only the color or monochrome shading, or any combination of the determination value and the color or monochrome shading.
  • step S50 the road collapse factor is converted into the numerical value shown in FIG. 7 (7B), and the first depression is transmitted to the determination formula factor data receiving unit 10
  • This step is a step executed by the first depression factor value conversion unit 30 with reference to the data table of the first storage unit 31.
  • a second depression factor value conversion step (step S450) may be performed in which the road depression factor is converted into a numerical value and the numerical value data is transmitted to the risk factor data receiving unit 18.
  • step S450 a step executed by the second depression factor value conversion unit 40 with reference to the data table in the second storage unit 41.
  • FIG. 10 is a diagram (10A) for explaining a specific determination formula, diagrams (10B, 10C) for explaining a threshold value, and a risk evaluation in which a unit block including each point is displayed on the map by color coding or gray coding. Each map (10D) is shown.
  • the range is a numerical range of the category quantity of the explanatory variable Xi, and indicates the degree of influence on Y.
  • the range of the three types of road collapse factors of the presence of the cavity (X1), the number of years elapsed (X4), and the situation of the groundwater (X3) is large in this order, and the others are smaller than these. Therefore, two factors are selected from the larger range, and X1 and X4 are adopted as explanatory variables.
  • the specific determination formula (Formula 2) of (10A) is obtained.
  • (10B) shows the distribution of judgment values (sample scores). It is the same as the above-mentioned result that the risk of depression increases as the determination value decreases. In this case, when the judgment value is -0.2 or less (NO.7), 100% road collapse occurs, and when the judgment value is 0 or less (NO.8), 6 out of 14 cases are misidentified (no depression). Result. For this reason, the threshold value is -0.2. In this case, the discriminatory probability is 94%. From this result, it is considered that a sufficiently high evaluation can be performed depending on the selection of the depression factor even when the depression factor is limited to two.
  • FIG. 11 and FIG. 12 show tables in which various explanatory variables X6 to X11 are digitized at 100 points for determination formula creation.
  • FIG. 11 shows the data of each of the 1st to 50th points
  • FIG. 12 shows the data of each of the 51st to 100th points.
  • Y and X1 to X5 are as shown in FIGS.
  • FIG. 13 compares the size of the range of Expression 3 in FIG. 13A for explaining the specific determination formula, the figures 13B and 13C for explaining the threshold values, and 11 road crush factors (13A). Each figure (13D) is shown.
  • the explanatory power of the formula will be high, but it is not simply that the number of items is large. Even if many factors having relatively low explanatory power are taken in, the contribution for improving the determination accuracy becomes small, and the difficulty in obtaining data increases. Furthermore, if the number of variables is increased, the coefficient of the identified determination formula may be a coefficient code that does not appropriately describe the actual influence content. Therefore, it is necessary to select an appropriate explanatory variable from the 11 depression factors listed in FIG. 2 in consideration of the road characteristics of the target city, the sewer pipe characteristics, and the like. Here, an example of calculation when all the 11 depression factors listed as candidates are taken in will be described.
  • the additional data shown in FIG. 11 and FIG. 12 are the pipe part (X6), pipe type (X7), sewer damage (X8), traffic vibration (X9), summer temperature (X10), and active fault hazard (X11). ).
  • the data received by the judgment formula factor data receiving unit 10 includes the presence of underground cavities, the type of backfill soil, the status of groundwater, the number of years the pipe has been laid, the thickness of the covering over the pipe, the part of the pipe, the pipe Data on species, pipeline breakage, traffic vibration, summer temperature and active fault hazard. As described with reference to FIG. 7 (7B), such data (factorial data for judgment formula) is data that is quantified for each factor, and is “1” when applicable, and is not applicable. Represents data that is “0”.
  • each of the component units 11 to 23 in the apparatus 1 After receiving the numerical data related to the eleven types of factors in the determination formula factor data receiving unit 10, each of the component units 11 to 23 in the apparatus 1 performs each process in the flow of FIG. 4 as described above. As a result of the processing of the specific determination formula determination unit 14, Formula 3 shown in (13A) is determined. In the distribution of the determination values (sample scores) of (13B, 13C), the risk of road collapse increases as the determination value decreases, as described above. Also in this example, the threshold is ⁇ 0.2. Using 11 depression factors, the discriminatory probability was about 97%. It can be seen that the hit ratio is higher than when there are two or five depression factors (94% for both).
  • FIG. 14 shows a table in which various explanatory variables X6 to X11 at 30 evaluation target points that are targets for risk assessment are quantified.
  • the explanatory variables X1 to X5 are as shown in FIG.
  • FIG. 15 shows a risk evaluation map in which unit blocks including each point are displayed on the map by color classification or light / dark classification.
  • step S500 step S450 as a modified example
  • the map of FIG. 15 is displayed. It can be seen that although the risk level and color or shading of each block in the map does not match those of FIG. 9 (9B) or FIG. 10 (10D), a similar map is obtained.
  • the road collapse risk evaluation method is specifically a method for evaluating the risk of road collapse using the device 1 for evaluating the risk of road collapse, This is an equation for determining the risk of road collapse, and is necessary for determining the specific determination formula as a function expression of the factors of road collapse and the risk, and is sampled for creating the specific determination formula
  • a determination formula factor data receiving step for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampling points;
  • General judgment formula (Y) as the basis of the specific judgment formula ⁇ Y is an external standard indicating the presence or absence of a road depression, X1 to Xn: Xi is an explanatory variable that causes a road depression, and A1 to An Is a coefficient to be multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi and is an integer of 1 or more, xij is the j-th categorical variable of Xi, aij is the categorical coefficient of
  • the road collapse risk evaluation computer program is a computer program that is installed in a computer and causes the computer to function as the road collapse risk evaluation device 1 for evaluating the risk of road collapse.
  • the computer program for evaluating the risk of road collapse is a computer represented by the device 1, which includes a determination formula factor data reception unit 10, a first substitution unit 13, a specific determination formula determination unit 14, a risk factor data reception unit 18, It functions as the second substitution unit 19 and the determination value determination unit 20.
  • the computer program for evaluating the risk of road collapse is a computer that is represented by the apparatus 1 and includes a general determination formula reading unit 12, a threshold value determination unit 15, a specific determination formula reading unit 17, a map information reading unit 22, a first collapse factor. It is preferable to function as at least one of the numerical value conversion unit 30 and the second depression factor numerical value conversion unit 40.
  • the road collapse risk evaluation computer program is a computer typified by the device 1, and includes a determination formula factor data reception step (S100), a first substitution step (S200), a specific determination formula determination step (S300), The risk factor data reception step (S500), the second substitution step (S600), and the determination value determination step (S700) are executed. Further, the road collapse risk evaluation computer program is a computer typified by the apparatus 1, and includes a first depression factor numerical value conversion step (S50), a general judgment formula reading step (herein referred to as S150), and a threshold value determination step.
  • S400 at least one of a second depression factor numerical value conversion step (S450), a specific determination formula reading step (referred to here as S550), a map information reading step (referred to here as S750), and a map display step (S800).
  • S450 second depression factor numerical value conversion step
  • S550 specific determination formula reading step
  • S750 map information reading step
  • S800 map display step
  • one step is executed.
  • the road collapse risk evaluation computer program is executed after being installed in a memory in the apparatus 1 from another computer (server) that is physically separated from the apparatus 1, or an information recording medium (for example, Once stored in a compact disk, portable flash memory, FD, MD, etc.) and installed in the memory in the device 1 through insertion or connection of the information recording medium to the device 1, it is executed or not read as it is installed. It may be issued and executed.
  • the information recording medium means a non-temporary tangible recording medium.
  • the computer program for evaluating the risk of road collapse may be in the form of one program or two or more programs. Similarly, the information recording medium storing the computer program for evaluating the risk of road collapse may be 1 or 2 or more.
  • the road collapse risk evaluation computer program is specifically installed in a computer, and causes the computer to function as the road collapse risk evaluation apparatus 1 for evaluating the risk of road collapse.
  • a program The computer This is an equation for determining the risk of road collapse, and is necessary for determining the specific determination formula as a function expression of the factors of road collapse and the risk, and is sampled for creating the specific determination formula
  • Determination formula factor data receiving means (corresponding to the determination formula factor data receiving unit 10) for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampling points;
  • General judgment formula (Y) as the basis of the specific judgment formula ⁇ Y is an external standard indicating the presence or absence of a road depression, X1 to Xn: Xi is an explanatory variable that causes a road depression, and A1 to An Is a coefficient to be multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi and is an integer of 1 or more, xij is the j
  • the first substituting unit (corresponding to the first substituting unit 13) for substituting the judgment formula factor data constituted by the categorical variables into the general judgment formula read out from the general judgment formula storage unit. Substituting the factor data for the judgment formula into the general judgment formula and performing an operation so that the variation between the two groups is maximized relative to the total variation by quantification theory type II analysis, and the category coefficient (aij )
  • Specific determination formula determination means (corresponding to the specific determination formula determination unit 14) for determining the specific determination formula specifying
  • a risk factor data receiving means (corresponding to the risk factor data receiving unit 18) for receiving risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated; Second substitution means (into the second substitution section 19) substitutes risk factor data composed of categorical variables at the evaluation target point into the specific judgment formula read from the special judgment formula storage means for storing the specific judgment formula. Equivalent), and a calculation process based on the processing of the second assigning means to function as a judgment value determining means (corresponding
  • the present invention can be used for technologies and industries that predict the danger of road cave-in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computing Systems (AREA)
  • Emergency Management (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Road Repair (AREA)
  • Alarm Systems (AREA)

Abstract

[Problem] To objectively and quantitatively evaluate the level of risk of the occurrence of road subsidence. [Solution] The present invention relates to a road-subsidence risk-level evaluation device 1 including: a classification-formula-factor-data accepting means 10; a general-classification-formula storage means 11; a first substitution means 13; a specific-classification-formula determining means 14; a specific-classification-formula storage means 16; a risk-level-factor-data accepting means 18; a second substitution means 19; and a classification-value determining means 20. The present invention also relates to a method for evaluating the level of risk of road subsidence by using the device 1, as well as a computer program for road-subsidence risk-level evaluation, said program causing a computer to function as the road-subsidence risk-level evaluation device 1.

Description

道路陥没危険度評価装置および道路陥没危険度評価方法、ならびに道路陥没危険度評価用コンピュータプログラムRoad collapse risk evaluation device, road collapse risk evaluation method, and computer program for road collapse risk evaluation クロスリファレンスCross reference
 本出願は、2017年2月8日に日本国において出願された特願2017-021003に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。 This application claims priority based on Japanese Patent Application No. 2017-021003 filed in Japan on February 8, 2017, the contents of which are incorporated herein by reference. Moreover, the content described in the patent quoted in this application, a patent application, and literature is used for this specification.
 本発明は、道路陥没の危険度を評価する道路陥没危険度評価装置および道路陥没危険度評価方法、ならびにコンピュータにインストールされて道路陥没の危険度を評価する道路陥没危険度評価用コンピュータプログラムに関する。 The present invention relates to a road collapse risk evaluation apparatus and a road collapse risk evaluation method for evaluating the risk of road collapse, and a computer program for road collapse risk evaluation that is installed in a computer and evaluates the risk of road collapse.
 日本において、地方自治体の職員数は、人口減少や高齢化に加え、自治体財政の緊縮により減少を続けている。職員の減少については、道路や上下水道などのインフラの維持管理部署においても将来的な備えが必要である。日本の道路陥没は、大小を問わず、平均して毎年4000件を超える頻度で発生している。道路陥没が交通、電気・ガス等のライフラインを含めた経済全体に与える影響は、地方よりも都市部にて大きい。道路陥没を未然に防ぎ道路を保全するには、道路地盤情報(特に地下の空洞の存在)の早期取得が必要である。 In Japan, the number of local government staff has continued to decrease due to the austerity of local government finances in addition to population decline and aging. Regarding the decrease in staff, it is necessary to prepare for the future in the maintenance department of infrastructure such as roads and water and sewage systems. In Japan, road depressions occur at an average of more than 4000 cases every year, regardless of size. The impact of road depression on the entire economy, including lifelines such as traffic, electricity and gas, is greater in urban areas than in rural areas. In order to prevent road collapse and protect the road, it is necessary to obtain road ground information (especially the presence of underground cavities) at an early stage.
 空洞の発生原因には、下水道管渠に起因するもの、例えば下水道管のズレや接合不良が、全体の約4割を占める。このような下水道管の不良は、交通量の増大や地震動に代表される外力の他、管の老朽化や施工不良等が原因で起こる。現在、政令都市においては、一般財団法人・道路管理センターの道路管理システムが一元管理する上下水道などの各種インフラ情報を相互に提供している。しかし、そのようなシステムでも、道路下インフラの状態を示す情報全てが盛り込まれているわけではない。さらに、日本の政令都市の中には、市内やその周辺域に多くの活断層がある。かかる活断層は、道路陥没の遠因となるハザードとも考えられる。先に説明したインフラ情報には、必ずしも前記ハザードの存在が盛り込まれているわけではない。 The cause of the generation of cavities is caused by sewer pipes, for example, sewer pipe misalignment and poor joints account for about 40% of the total. Such defective sewer pipes are caused not only by external forces represented by increased traffic and earthquake motion, but also by aging pipes and poor construction. Currently, in the ordinance-designated city, various infrastructure information such as water and sewage systems that are centrally managed by the road management system of the general incorporated foundation and road management center are provided mutually. However, even such a system does not include all information indicating the state of the infrastructure under the road. In addition, there are many active faults in the city and its surrounding areas among Japanese government-designated cities. Such an active fault is considered to be a hazard that causes dislocation of roads. The infrastructure information described above does not necessarily include the presence of the hazard.
 ここで、国内外の道路陥没とその対応に目を向けると、韓国では、日本に比べて下水道管路を原因とする道路陥没の発生頻度が多いことが知られている。その対策の一つとして、ソウル市は、2015年に、東京都と道路陥没の技術協力に関する行政合意書を締結した。これをうけて、ソウル市は、地面透過レーダー(GPR)を用いた調査を行い、今後3年周期で主要な幹線道路の探査を実施することを決定した。現在、ソウル市では、空洞の調査および分析のためのプログラムを開発中にある。米国およびカナダでは、スモーク・テスティング(Smoke Testing)という方法にて下水道管の破損を探知している。この方法は、具体的には、マンホールを1つ定めた後、そのマンホールから無臭・無毒性の煙を下水道に入れ、そのマンホールと下水管を通って別のマンホールから煙を噴出させる方法である。このとき、煙の噴出しなかったマンホールにつながっている下水管の中に、破損等している下水管が存在すると判断される。 Here, it is known that the incidence of road cave-in caused by sewer pipes is higher in Korea than in Japan, when looking at the road cave-in and out of the country. As one of the measures, Seoul City signed an administrative agreement in 2015 with Tokyo regarding technical cooperation for road collapse. In response, Seoul City conducted a survey using ground-penetrating radar (GPR) and decided to conduct major main road exploration in the next three years. Currently, Seoul City is developing a program for investigation and analysis of cavities. In the United States and Canada, damage to sewer pipes is detected by a method called Smoke Testing. Specifically, after one manhole is determined, odorless and nontoxic smoke is put into the sewer from that manhole, and the smoke is ejected from another manhole through the manhole and the sewer pipe. . At this time, it is determined that there is a damaged sewer pipe in the sewer pipe connected to the manhole where no smoke was emitted.
 日本では、スモーク・テスティングを適用すると、住居等密集市街地における稠密な管渠布設状況の下では道路上の観測が難しく、かつ道路下の管渠そのものの密度が高く配置されているため、正確な漏えい場所の特定は難しい。このため、日本では、GPRを適用する方が道路事情に符合している。日本では、近年、道路法等が改正され、国土交通省道路局は、道路の総点検実施要領を示し、その中でレーダーによる道路下の空洞調査を行うことを示している。レーダーを搭載した空洞探査車両は、国土交通省のマニュアルによれば、探査幅2.0m程度、探査深度1.5m程度、縦50cm×横50cm×厚さ10cm以上の空洞が検知できる探査能力を有する。このような車両を用いることにより、道路下の空洞の存在やその大きさを把握することが可能である。このような車両を使った空洞探査方法は特許文献1に例示されている。 In Japan, when smoke testing is applied, it is difficult to observe on the road under dense pipe laying conditions in densely populated urban areas such as residences, and the density of pipes under the road itself is high. It is difficult to identify a leaking place. For this reason, in Japan, applying GPR matches the road conditions. In Japan, the Road Law has been revised in recent years, and the Ministry of Land, Infrastructure, Transport and Tourism's Road Bureau has indicated the outline of the implementation of road inspections, and in that it will conduct a cavity survey under the radar. According to the Ministry of Land, Infrastructure, Transport and Tourism manual, the cavity exploration vehicle equipped with radar has the exploration ability to detect cavities with an exploration width of about 2.0 m, an exploration depth of about 1.5 m, a length of 50 cm x width 50 cm x thickness 10 cm or more. Have. By using such a vehicle, it is possible to grasp the existence and size of the cavity under the road. A cavity exploration method using such a vehicle is exemplified in Patent Document 1.
特開平05-087945号公報Japanese Patent Laid-Open No. 05-087945
 しかし、上記従来の空洞探査方法は、単に空洞の存在を把握する手段にすぎず、道路陥没の危険度を客観的かつ定量的に評価することは難しい。道路陥没を未然に防ぐとともに適切な対処をとるには、陥没発生の危険度を客観的かつ定量的に評価することが強く求められている。 However, the conventional cavity exploration method described above is merely a means for grasping the existence of the cavity, and it is difficult to objectively and quantitatively evaluate the risk of road collapse. In order to prevent road depression and take appropriate measures, it is strongly required to objectively and quantitatively evaluate the risk of occurrence of depression.
 本発明は、上記課題を解決するためになされたものであって、道路陥没発生の危険度を客観的かつ定量的に評価することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to objectively and quantitatively evaluate the risk of occurrence of road depression.
(1)上記目的を達成するための一実施形態に係る道路陥没危険度評価装置は、道路陥没の危険度を評価するための道路陥没危険度評価装置であって、
 道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段と、
 前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段と、
 前記一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入手段と、
 前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定手段と、
 前記特定判定式を記憶する特定判定式記憶手段と、
 評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段と、
 前記特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入手段と、
 前記第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段と、
を含む。
(1) A road collapse risk evaluation apparatus according to an embodiment for achieving the above object is a road collapse risk evaluation apparatus for evaluating the risk of road collapse,
Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula Determination factor factor data receiving means for receiving determination factor factor data obtained by quantifying the factors of road depression at a plurality of sampled sampling points;
General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, General judgment expression storage means for storing
First substituting means for substituting the judgment formula factor data constituted by the categorical variable into the general judgment formula read from the general judgment formula storage unit;
Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij);
Specific determination formula storage means for storing the specific determination formula;
A risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
Second substitution means for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific judgment formula read from the specific judgment formula storage means;
A determination value determining means for performing a calculation based on the processing of the second substitution means, and determining a determination value obtained by quantifying the risk of depression at each evaluation target point;
including.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(2)別の実施形態に係る道路陥没危険度評価装置は、好ましくは、前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定手段を、さらに含む。 (2) The road collapse risk evaluation apparatus according to another embodiment preferably classifies the determination value calculated by the specific determination formula into a predetermined range, and a threshold for occurrence of the collapse based on the presence or absence of actual depression Threshold value determining means for determining
(3)別の実施形態に係る道路陥没危険度評価装置は、好ましくは、前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段と、
 前記マップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示手段と、
をさらに含む。
(3) The road collapse risk evaluation device according to another embodiment is preferably a map information storage unit that stores information of a map including each evaluation target point;
On the map read from the map information storage means, a map display means for performing display by color or shade based on the determination value indicating the risk of depression at each evaluation target point;
Further included.
(4)別の実施形態に係る道路陥没危険度評価装置では、好ましくは、前記道路陥没の要因は、地下の空洞の存在、埋戻し土の種類、地下水の状況、管路布設経過年数、管路上の土被り厚、管路の部位、管種、管路の破損状況、交通振動、夏期気温および活断層ハザードの内の2以上である。 (4) In the road collapse risk evaluation apparatus according to another embodiment, preferably, the factors of the road collapse are the presence of an underground cavity, the type of backfill soil, the state of groundwater, the number of years of pipe laying, the pipe It is two or more of the thickness of the earth covering on the road, the part of the pipe, the pipe type, the pipe breakage, the traffic vibration, the summer temperature and the active fault hazard.
(5)一実施形態に係る道路陥没危険度評価方法は、道路陥没の危険度を評価するための装置を用いて道路陥没の危険度を評価する方法であって、
 道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付ステップと、
 前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入ステップと、
 前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定ステップと、
 評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付ステップと、
 前記特定判定式を記憶する特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入ステップと、
 前記第二代入ステップの処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定ステップと、
を含む。
(5) The road collapse risk evaluation method according to an embodiment is a method of evaluating the risk of road collapse using an apparatus for evaluating the risk of road collapse,
Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula A determination formula factor data reception step for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampled sampling points;
General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, The first substituting step of substituting the determination formula factor data constituted by the categorical variable into the general determination formula read from the general determination formula storage means for storing
Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, A specific determination formula determining step for determining the specific determination formula specifying the coefficient (aij);
A risk factor data reception step for accepting risk factor data that quantifies the factors of road collapse at a plurality of evaluation target points to be evaluated;
A second substituting step of substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage means for storing the specific determination formula;
A determination value determination step for performing a calculation based on the processing of the second substitution step and determining a determination value obtained by quantifying the risk of depression at each evaluation target point;
including.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
(6)別の実施形態に係る道路陥没危険度評価方法は、好ましくは、前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定ステップを、さらに含む。 (6) In the road collapse risk evaluation method according to another embodiment, preferably, the determination value calculated by the specific determination formula is classified into a predetermined range, and a threshold of occurrence of the collapse based on the presence or absence of actual depression The method further includes a threshold value determining step for determining.
(7)別の実施形態に係る道路陥没危険度評価方法は、好ましくは、前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示ステップを、さらに含む。 (7) In the road collapse risk evaluation method according to another embodiment, preferably, each evaluation is performed on the map read out from the map information storage unit that stores information on the map including each evaluation target point. The method further includes a map display step for performing display by color or shade based on the determination value indicating the risk of depression at the target point.
(8)一実施形態に係る道路陥没危険度評価用コンピュータプログラムは、コンピュータにインストールされて、該コンピュータを、道路陥没の危険度を評価するための道路陥没危険度評価装置として機能させるコンピュータプログラムであって、
 該コンピュータを、
 道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段、
 前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入手段、
 前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定手段、
 評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段、
 前記特定判定式を記憶する特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入手段、および
 前記第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段として機能させる。
(8) A computer program for evaluating the risk of road collapse according to an embodiment is a computer program that is installed in a computer and that causes the computer to function as a road collapse risk evaluation apparatus for evaluating the risk of road collapse. There,
The computer
Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula Determination factor factor data receiving means for receiving determination factor factor data quantifying the factors of road depression at a plurality of sampled sampling points;
General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, The first substituting means for substituting the judgment formula factor data composed of the categorical variables into the general judgment formula read from the general judgment formula storage means.
Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij);
Risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
A second substituting unit for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage unit that stores the specific determination formula; and An operation is performed based on the processing of the second substitution means, and functions as a determination value determination means for determining a determination value obtained by quantifying the risk of depression at each evaluation target point.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
(9)別の実施形態に係る道路陥没危険度評価用コンピュータプログラムは、好ましくは、前記コンピュータを、
 前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定手段としてさらに機能させる。
(9) The computer program for risk assessment of road collapse according to another embodiment preferably includes the computer,
The determination value calculated by the specific determination formula is classified into a predetermined range, and further functions as threshold determination means for determining a depression occurrence threshold based on the actual presence or absence of depression.
(10)別の実施形態に係る道路陥没危険度評価用コンピュータプログラムは、好ましくは、前記コンピュータを、
 前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示手段として、さらに機能させる。
(10) The computer program for risk assessment of road collapse according to another embodiment preferably includes the computer,
On the map read out from the map information storage means for storing the information of the map including each evaluation target point, the color or gray level is classified according to the judgment value indicating the risk of depression at each evaluation target point. It further functions as a map display means for performing display.
 本発明によれば、道路陥没発生の危険度を客観的かつ定量的に評価することができる。 According to the present invention, it is possible to objectively and quantitatively evaluate the risk of road depression.
図1は、本発明の実施形態における道路陥没危険度を求めるための概念図を示す。FIG. 1 is a conceptual diagram for determining a road collapse risk according to an embodiment of the present invention. 図1に基づき説明した判定式の一般式(一般判定式)を説明するための図を示す。The figure for demonstrating the general formula (general determination formula) of the determination formula demonstrated based on FIG. 1 is shown. 図1Aに示す一般判定式の詳細を示す。The details of the general determination formula shown in FIG. 1A are shown. 道路陥没予兆判定式の作成に用いる各種データの一例を示す。An example of the various data used for preparation of the road depression sign judgment formula is shown. 図1Cに示す例と異なる道路陥没予兆判定式の作成に用いる各種データの一例を示す。An example of the various data used for preparation of the road depression precursor determination formula different from the example shown to FIG. 1C is shown. 図2は、図1Cおよび図1Dと異なる道路陥没予兆判定式の作成に用いる各種データの一例を示す。FIG. 2 shows an example of various data used to create a road collapse predictor determination formula different from those shown in FIGS. 1C and 1D. 図3は、本発明の実施形態に係る道路陥没危険度評価装置の機能別の構成を示す。FIG. 3 shows the configuration of each function of the road collapse risk evaluation apparatus according to the embodiment of the present invention. 図4は、本発明の実施形態に係る道路陥没危険度評価方法の主要ステップのフローを示す。FIG. 4 shows a flow of main steps of the road collapse risk evaluation method according to the embodiment of the present invention. 図5は、判定式作成用の地点100箇所における外的基準Yおよび各種説明変数X1~X5を数値化した表であって、1~50番目の各地点のデータを示す。FIG. 5 is a table in which the external reference Y and the various explanatory variables X1 to X5 at the 100 points for creating the judgment formula are quantified, and shows data at the 1st to 50th points. 図6は、判定式作成用の地点100箇所における外的基準Yおよび各種説明変数X1~X5を数値化した表であって、51~100番目の各地点のデータを示す。FIG. 6 is a table in which the external reference Y and the various explanatory variables X1 to X5 at the 100 points for creating the judgment formula are quantified, and shows data at the 51st to 100th points. 図7は、一般判定式を説明するための図(7A)、数値化された要因データを説明するための図(7B)、特定判定式を説明するための図(7C)および閾値を説明するための図(7D,7E)をそれぞれ示す。FIG. 7 is a diagram (7A) for explaining the general judgment formula, a diagram (7B) for explaining the digitized factor data, a diagram (7C) for explaining the specific judgment formula, and the threshold value. Figures (7D, 7E) are respectively shown. 図8は、危険度を評価する対象となる評価対象地点30箇所における各種説明変数X1~X5を数値化した表を示す。FIG. 8 shows a table in which various explanatory variables X1 to X5 are digitized at 30 evaluation target points to be evaluated for risk. 図9は、評価対象地点を含むエリアのマップ(9A)および当該マップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップ(9B)をそれぞれ示す。FIG. 9 shows a map (9A) of an area including an evaluation target point and a risk evaluation map (9B) in which unit blocks including each point are displayed on the map by color classification or light / dark classification. 図10は、特定判定式を説明するための図(10A)、閾値を説明するための図(10B,10C)およびマップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップ(10D)をそれぞれ示す。FIG. 10 is a diagram (10A) for explaining a specific determination formula, diagrams (10B, 10C) for explaining a threshold value, and a risk evaluation in which a unit block including each point is displayed on the map by color coding or gray coding. Each map (10D) is shown. 図11は、判定式作成用の地点100箇所における各種説明変数X6~X11を数値化した表であって、1~50番目の各地点のデータを示す。FIG. 11 is a table in which various explanatory variables X6 to X11 at 100 points for determination formula creation are quantified, and shows data of the 1st to 50th points. 図12は、判定式作成用の地点100箇所における各種説明変数X6~X11を数値化した表であって、51~100番目の各地点のデータを示す。FIG. 12 is a table in which various explanatory variables X6 to X11 at 100 points for determination formula creation are quantified, and shows data of the 51st to 100th points. 図13は、特定判定式を説明するための図(13A)、閾値を説明するための図(13B,13C)および道路陥没要因11個について(13A)の式3のレンジの大きさを比較した図(13D)をそれぞれ示す。FIG. 13 compares the size of the range of Expression 3 in FIG. 13A for explaining the specific determination formula, the figures 13B and 13C for explaining the threshold values, and 11 road crush factors (13A). Each figure (13D) is shown. 図14は、危険度を評価する対象となる評価対象地点30箇所における各種説明変数X6~X11を数値化した表を示す。FIG. 14 shows a table in which various explanatory variables X6 to X11 at 30 evaluation target points that are targets for risk evaluation are digitized. 図15は、マップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップを示す。FIG. 15 shows a risk evaluation map in which unit blocks including each point are displayed on the map by color classification or light / dark classification.
1:道路陥没危険度評価装置(単に「装置」ともいう)
10:判定式用要因データ受付部(判定式用要因データ受付手段)
11:一般判定式記憶部(一般判定式記憶手段)
13:第一代入部(第一代入手段)
14:特定判定式決定部(特定判定式決定手段)
15:閾値決定部(閾値決定手段)
16:特定判定式記憶部(特定判定式記憶手段)
18:危険度用要因データ受付部(危険度用要因データ受付手段)
19:第二代入部(第二代入手段)
20:判定値決定部(判定値決定手段)
21:マップ情報記憶部(マップ情報記憶手段)
23:マップ表示部(マップ表示手段)
1: Road collapse risk evaluation device (also simply called “device”)
10: Judgment formula factor data receiving unit (judgment formula factor data receiving means)
11: General judgment formula storage unit (general judgment formula storage means)
13: 1st substitution part (1st substitution means)
14: Specific determination formula determination unit (specific determination formula determination means)
15: Threshold determination unit (threshold determination means)
16: Specific determination formula storage unit (specific determination formula storage means)
18: Risk factor data reception unit (risk factor data reception means)
19: Second substitution unit (second substitution means)
20: Determination value determination unit (determination value determination means)
21: Map information storage unit (map information storage means)
23: Map display section (map display means)
 次に、本発明の実施形態について図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 Next, an embodiment of the present invention will be described with reference to the drawings. The embodiments described below do not limit the invention according to the claims, and all the elements and combinations described in the embodiments are essential for the solution of the invention. Is not limited.
<第一実施形態>
 まず、本発明の第一実施形態に係る道路陥没危険度評価装置および道路陥没危険度評価方法ならびに道路陥没危険度評価用コンピュータプログラムについて説明する。
<First embodiment>
First, a road collapse risk evaluation apparatus, a road collapse risk evaluation method, and a road collapse risk evaluation computer program according to the first embodiment of the present invention will be described.
<1.道路陥没危険度評価の概念>
 図1は、本発明の実施形態における道路陥没危険度を求めるための概念図を示す。
<1. Concept of Road Crash Risk Assessment>
FIG. 1 is a conceptual diagram for determining a road collapse risk according to an embodiment of the present invention.
(1)ペリルデータおよび各種ハザードデータ
 この実施形態において、道路陥没危険度を求めるには、例えば、ペリルデータ、ハザードデータ、現地調査工ハザードデータおよび拠点MH管理ハザードデータに代表される各種データが必要である。これらのデータは、いずれも道路陥没の要因となる。ペリルデータとは、危険をもたらす原因となるデータを意味する。この実施形態におけるペリルデータは、道路陥没に対する予防保全を道路管理者と下水道管理者が連携して収集される。ペリルデータとしては、具体的には、陥没履歴、道路改良履歴、空洞調査履歴(経過観察、原因調査、補修など)を例示できる。
(1) Peril data and various hazard data In this embodiment, in order to obtain the road collapse risk, various data represented by, for example, peril data, hazard data, field survey hazard data, and base MH management hazard data are required. It is. All of these data cause road collapse. Peril data means data that causes a danger. The peril data in this embodiment is collected by the road manager and the sewer manager in cooperation with preventive maintenance against road depression. Specific examples of the peril data include depression history, road improvement history, and cavity investigation history (follow-up observation, cause investigation, repair, etc.).
 ハザードデータとは、道路陥没を危険事象と考えたときの危険事情(危険要因)を意味する。ハザードデータとしては、下水道管の属性として、管種・口径・経年値・劣化破損・工事履歴等が例示できる。水道管路も同様である。これらのデータは、台帳から入手可能である。道路陥没を惹起するハザードには、ガス管などの他のインフラもあり、前記各種データが必要となる。さらに、各種埋設物の埋戻し材料、地下水位の状況、交通量、路面温度もハザードデータに含まれ得る。 Hazard data refers to the danger situation (risk factor) when road depression is considered a dangerous event. Examples of hazard data include sewer pipe attributes such as pipe type, caliber, aging value, deterioration damage, construction history, and the like. The same applies to water pipes. These data are available from the ledger. There are other infrastructures such as gas pipes for hazards that cause road depression, and the various data are required. Furthermore, the backfill material of various buried objects, the groundwater level status, traffic volume, and road surface temperature can also be included in the hazard data.
 現地調査工ハザードデータ(現地調査工道路調査ハザードデータともいう)とは、道路に関する調査データであり、道路陥没の危険事情をいう。このデータは、MMS(Mobile Mapping System)による路面情報と、その位置情報とを要する。このデータは、例えば、調査車両が時速40km以上の走行速度で測量を行って得られる。データ収集にあたり、交通規制は必要とされない。調査車両を用いると、搭載されるレーザスキャナーとカメラによる三次元地形モデルの計測が可能である。こうして得られるMMS情報によって、道路上の陥没状況がわかる。さらに、調査車両は、GPR(Ground Penetrating Rader)を搭載可能である。GPRは、調査車両にて測定したデータから異常信号(空洞や緩み等の信号の他、埋設管等の情報も含まれる)を抽出し、それらの中から空洞の特徴をもつ異常信号を特定する。当該異常信号は、調査車両が時速40km程度の走行速度で測量を行って得られる。データ収集にあたり、交通規制は必要とされない。探査精度としては、探査深度1.5m程度、縦50cm×横50cm×厚さ10cm以上の空洞を探査可能とするものである。なお、さらに高精度な手法を採用すれば、探査深度1.5mまでのデータから3.0m程度までの土層の空洞発生状況を推定することも可能である。 ”Field Survey Hazard Data (also called Field Survey Road Survey Hazard Data) is survey data related to roads and refers to the danger of road collapse. This data requires road surface information by MMS (Mobile Mapping System) and its position information. This data is obtained, for example, by surveying the survey vehicle at a traveling speed of 40 km / h or more. Traffic regulation is not required for data collection. When the survey vehicle is used, it is possible to measure the 3D terrain model using the laser scanner and camera. From the MMS information obtained in this way, the depression situation on the road can be known. Furthermore, the investigation vehicle can be equipped with GPR (Ground Penetrating Radar). GPR extracts abnormal signals (including cavities and looseness signals as well as information on buried pipes, etc.) from the data measured by the survey vehicle, and identifies abnormal signals having the characteristics of cavities from among them. . The abnormality signal is obtained by surveying the survey vehicle at a traveling speed of about 40 km / h. Traffic regulation is not required for data collection. As exploration accuracy, a exploration depth of about 1.5 m, a cavity having a length of 50 cm × width 50 cm × thickness 10 cm or more can be explored. If a more accurate method is adopted, it is also possible to estimate the state of cavities in the soil layer up to about 3.0 m from data up to an exploration depth of 1.5 m.
 拠点MH管理ハザードデータとは、管路内外のリアルタイムの環境に関わるデータであって道路陥没の危険事情をいう。例えば、下水道管路は、硫化水素に起因するコンクリート等の腐食によって劣化しやすい。このため、硫化水素濃度等の点検・調査は極めて重要である。また、管路内の劣化の進行した下水道管路では、道路荷重による破損も発生しやすい。このような点から、下水道管路内の硫化水素等のリアルタイムな情報が道路陥没のハザードデータとなり得る。その他に、下水道管路内の水温、水質、水位もこの種のハザードデータとなり得る。 The site MH management hazard data is data related to the real-time environment inside and outside the pipeline, and refers to the risk of road collapse. For example, sewer pipes are likely to deteriorate due to corrosion of concrete or the like caused by hydrogen sulfide. For this reason, inspections and surveys such as hydrogen sulfide concentration are extremely important. In addition, sewerage pipes that have deteriorated in the pipes are easily damaged by road loads. From such points, real-time information such as hydrogen sulfide in the sewer pipe can be hazard data for road depression. In addition, water temperature, water quality, and water level in sewer pipes can also be this type of hazard data.
(2)データの座標値化
 上記のペリルデータおよび各種ハザードデータは、台帳から、あるいは調査によって入手され、座標値化に供される。MMSおよびGPRを搭載した探査車両は、GPS(Global Positioning System)により走行位置を常時記録できる。このため、地下の空洞位置の座標値化が可能である。また、道路、各種地下埋設物は、台帳においてあるいは台帳から抽出後に座標値化できる。このように、上記ペリルデータおよび各種ハザードデータを座標値化することにより、資料調査、現地調査を併せて、道路陥没危険度の効率的な管理が可能である。また、道路陥没予兆判定式(単に、予兆判定式ともいう)に基づく陥没危険度の算定の自動化が可能である。このような座標値化については、後ほど詳述する。
(2) Coordinate value conversion of data The above-mentioned peril data and various hazard data are obtained from a ledger or by survey and used for coordinate value conversion. An exploration vehicle equipped with MMS and GPR can always record a traveling position by GPS (Global Positioning System). For this reason, the coordinate value of the underground cavity position can be obtained. In addition, roads and various underground objects can be coordinated in the ledger or after being extracted from the ledger. As described above, by converting the above-described peril data and various hazard data into coordinate values, it is possible to efficiently manage the risk of road collapse by combining the data survey and the field survey. In addition, it is possible to automate the calculation of the depression risk based on the road depression sign determination formula (also simply referred to as a sign determination formula). Such coordinate value conversion will be described in detail later.
(3)道路陥没予兆判定式の作成
 道路陥没予兆判定式の作成とは、当該判定式の一般式に、上記座標値化された情報を入力し、数量化II類を適用することによって道路陥没予兆判定式を決定することをいう。この作業では、推定する目的変数をペリルデータ(F)として道路陥没の状況のレベルを2~3段階程度で表し、そのハザードデータ(Xi)に関する情報として各種ハザードデータを考える。すなわち、この工程は、定性的に与えられるXiデータから、想定される陥没状況レベルを出力するものである。
(3) Creation of road depression sign judgment formula Road depression sign judgment formula creation is a road depression by inputting the above coordinated information into the general formula of the judgment formula and applying quantification type II It means to determine the sign judgment formula. In this work, the target variable to be estimated is the peril data (F), the level of the road depression is expressed in about two to three levels, and various hazard data are considered as information related to the hazard data (Xi). That is, this step outputs an assumed depression state level from qualitatively given Xi data.
(4)単位ブロック別道路陥没危険度の数値化
 当該数値化は、調査対象となる領域を複数ブロックに分け、各ブロック内の地点の座標値を先に求められた判定式に代入して、各ブロックの単位で危険度の数値化を図るものである。この結果、道路を有する調査対象領域内において、道路を単位ブロックに分けたときに、各ブロックがどの程度道路陥没の危険度を有するかを定量的かつ客観的に把握できる。
(4) Quantification of road collapse risk by unit block The quantification is to divide the area to be investigated into a plurality of blocks and substitute the coordinate value of the point in each block into the judgment formula obtained earlier, The risk level is quantified in units of each block. As a result, when the road is divided into unit blocks in the survey target area having the road, it is possible to quantitatively and objectively grasp how much the block has a risk of road collapse.
 以上のように、上記の道路陥没予兆判定式の作成は、判定式作成用の複数地点のペリルデータ及びハザードデータを使って判定式を特定する作業である。これに対して、単位ブロック別道路陥没危険度の数値化は、陥没危険度を求める対象地点(上記判定式作成用の地点と一部重複していても良い)のペリルデータや各種ハザードデータを上記の特定された判定式に代入して、陥没危険度を数値で表す作業である。 As described above, the creation of the road collapse predictive judgment formula described above is an operation for specifying the judgment formula using the peril data and hazard data at a plurality of points for creating the judgment formula. On the other hand, the numerical value of the road collapse risk by unit block is based on the peril data and various hazard data of the target point for which the collapse risk is calculated (which may partially overlap with the point for creating the above judgment formula). This is an operation for substituting into the above-identified judgment formula and expressing the depression risk level as a numerical value.
 図1Aおよび図1Bは、図1に基づき説明した判定式の一般式(一般判定式)を説明するための図を示す。図1Cおよび図1Dは、道路陥没予兆判定式の作成に用いる各種データの一例を示す。図2は、図1Cおよび図1Dと異なるデータであって、道路陥没予兆判定式の作成に用いる各種データの一例を示す。 FIG. 1A and FIG. 1B are diagrams for explaining a general expression (general determination expression) of the determination expression described based on FIG. FIG. 1C and FIG. 1D show an example of various data used to create a road collapse sign determination formula. FIG. 2 shows an example of various data different from those shown in FIGS. 1C and 1D and used for creating a road collapse sign determination formula.
 図1A~1Dおよび図2に示す情報は、大きく、外的基準と、説明変数とに分けられる。外的基準とは、最も典型的な例では、道路陥没の有無であり、陥没という現象が生じているか否かという結果を意味する。また、外的基準は、道路陥没の有無のみならず、道路陥没の危険性のある各段階の状況をも含み得る。図1Aでは、外的基準(Y)が道路陥没の有無という2種類のみの場合には、k=2となり、YはB1とB2の2通りとなる。ここでは、B1は道路陥没なしを、B2は道路陥没ありを、それぞれ意味する。一方、外的基準(Y)が道路陥没の有無に加えて、「陥没兆候あり」というもう一つの状況を含む場合には、k=3となり、YはB1、B2およびB3の3通りとなる。B3は道路陥没の兆候ありを意味する。説明変数(X)とは、道路陥没の原因として想定される状況の調査結果を意味する。説明変数(X)は、道路陥没の原因と考えられる要因であって、Y=f(Xi)においては、好ましくは、少なくとも2つ(X1およびX2)を含む。ただし、Xの数は、1以上であれば制約は無い。Xは、X1、X2、X3、・・・、Xn(nはi番目の説明変数Xiの数であって1以上の整数)で表すことができ、X1、X2、X3などを一般化して、「Xi」と称することができる。外的基準(Y)と説明変数(X)の関係式は、図1Aに示す式、より詳しくは図1Bに示す式となる。これらの式において、Aは、説明変数Xiに乗じる係数である。X1に乗じる係数はA1、X2に乗じる係数はA2、Xnに乗じる係数はAnでそれぞれ表される。A1、A2、A3などを一般化して、「Ai」と称することができる。 1A-1D and the information shown in FIG. 2 are broadly divided into external criteria and explanatory variables. The external standard is, in the most typical example, the presence or absence of a road depression, which means a result of whether or not a phenomenon of depression has occurred. Further, the external standard may include not only the presence or absence of a road depression, but also the status of each stage at the risk of road depression. In FIG. 1A, when there are only two types of external criteria (Y), that is, whether or not there is a road depression, k = 2, and Y is B1 and B2. Here, B1 means no road depression, and B2 means a road depression. On the other hand, if the external standard (Y) includes another situation of “there is a sign of depression” in addition to the presence or absence of road depression, k = 3, and Y is B1, B2, and B3. . B3 means that there is a sign of road collapse. The explanatory variable (X) means an investigation result of a situation assumed as a cause of the road depression. The explanatory variable (X) is a factor that is considered to be the cause of the road depression, and preferably includes at least two (X1 and X2) when Y = f (Xi). However, there is no restriction as long as the number of X is 1 or more. X can be represented by X1, X2, X3,..., Xn (n is the number of the i-th explanatory variable Xi and is an integer of 1 or more), and X1, X2, X3, etc. are generalized, It can be referred to as “Xi”. The relational expression between the external criterion (Y) and the explanatory variable (X) is the expression shown in FIG. 1A, more specifically the expression shown in FIG. 1B. In these equations, A is a coefficient by which the explanatory variable Xi is multiplied. A coefficient to be multiplied by X1 is represented by A1, a coefficient to be multiplied by X2 is represented by A2, and a coefficient to be multiplied by Xn is represented by An. A1, A2, A3, etc. can be generalized and referred to as “Ai”.
 Y=f(Xi)という式は、下記式(A)のように示すことができる。式(A)において、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。式(A)において、カテゴリー係数aij同士の間に存在するカンマ(,)は、表記上、無くても良い。 The equation Y = f (Xi) can be expressed as the following equation (A). In Expression (A), xij represents the jth categorical variable of Xi, aij represents the category coefficient of xij, and mi represents the number of categories of Xi. In the formula (A), the comma (,) existing between the category coefficients aij may be omitted in the notation.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 カテゴリー変数(xij)は、説明変数Xiを構成する変数であるが、Xiの種類によって種々の数を採り得る。例えば、図1Cに示す例では、X1は、x11、x12、x13という3つのカテゴリー変数を有する。X2は、x21、x22という2つのカテゴリー変数を有する。X3は、x31、x32、x33という3つのカテゴリー変数を有する。X4は、x41、x42、x43という3つのカテゴリー変数を有する。しかし、図1Dに示す例では、図1Cと一部異なり、例えば、X4はx41、x42、x43、x44という4つのカテゴリー変数を有する。このように、カテゴリー変数の個数は、説明変数に応じて種々変更できる。説明変数Xiを構成する各カテゴリー変数xijは、すべてゼロ、若しくは1個のみが1で他がゼロである。これについては、後ほど、詳述する。カテゴリー変数を複数に区分けする基準、およびカテゴリー変数の個数についても種々変更できる。この実施形態では、図1C、図1Dおよび図2という3種類の説明変数を例示している。 The categorical variable (xij) is a variable constituting the explanatory variable Xi, but can take various numbers depending on the type of Xi. For example, in the example shown in FIG. 1C, X1 has three categorical variables x11, x12, and x13. X2 has two categorical variables x21 and x22. X3 has three categorical variables x31, x32, and x33. X4 has three categorical variables x41, x42, and x43. However, in the example shown in FIG. 1D, partly different from FIG. 1C, for example, X4 has four categorical variables x41, x42, x43, and x44. Thus, the number of categorical variables can be variously changed according to the explanatory variables. Each categorical variable xij constituting the explanatory variable Xi is all zero, or only one is 1 and the others are zero. This will be described in detail later. Various changes can be made to the criteria for dividing a categorical variable into a plurality of categories and the number of categorical variables. In this embodiment, three types of explanatory variables of FIG. 1C, FIG. 1D, and FIG. 2 are illustrated.
 ここでは、道路陥没の要因の一例(すなわち、説明変数の一例)として、空洞の存在(X1とする)、埋戻し土(X2とする)、地下水の状況(X3とする)、経過年数(X4とする)、土被り厚(X5とする)、管路の部位(X6とする)、管種(X7とする)、下水管破損状況(X8とする)、交通振動(X9とする)、夏期気温(X10とする)および活断層ハザード(X11とする)を挙げることとする。以後に登場するX1~X11については、上記各説明変数を意味する。 Here, as an example of the cause of the road collapse (that is, an example of explanatory variables), the presence of a cavity (X1), backfill soil (X2), groundwater status (X3), elapsed years (X4) ), Cover thickness (X5), pipe part (X6), pipe type (X7), sewer damage (X8), traffic vibration (X9), summer Let us list the temperature (denoted as X10) and the active fault hazard (denoted as X11). Subsequent X1 to X11 mean the above explanatory variables.
 図2に示すように、空洞の存在という説明変数(X1)は、空洞が無い場合、土被り1/2未満の位置に空洞がある場合、および土被り1/2以上の位置に空洞がある場合の3種類に分けられる。土被り1/2未満の位置とは、下水管等の管の上を覆っている土砂の厚さの1/2よりも下の位置である。土被り1/2以上の位置とは、下水管等の管の上を覆っている土砂の厚さの1/2またはそれよりも浅い位置である。埋戻し土という説明変数(X2)は、当該土の種類が砂礫土である場合と、当該土の種類が砂質土である場合の2種類に分けられる。地下水の状況という説明変数(X3)は、地下水が無い場合、地下水がある場合、および地下水があって変動もある場合の3種類に分けられる。地下水がある場合、地下水の変動がある場合と無い場合に分けられる。地下水の変動のある場合の方が陥没の危険性がより高い。よって、地下水がある場合を、地下水の変動の有無という観点で、地下水がある場合を2つに分けている。経過年数(管路設置からの経過年数)という説明変数(X4)は、20年未満経過、20年以上40年未満経過、および40年以上経過の3種類に分けられる。土被り厚という説明変数(X5)は、2m以上、1m以上2m未満、および1m未満の3種類に分けられる。管路の部位という説明変数(X6)は、取付管の場合、本管の場合、およびその他の3種類に分けられる。管種という説明変数(X7)は、陶管、鉄筋コンクリート、およびその他の3種類に分けられる。下水管破損状況という説明変数(X8)は、破損していない場合と、破損している場合の2種類に分けられる。交通振動という説明変数(X9)は、所定基準に対して多い場合と、少ない場合の2種類に分けられる。夏期気温という説明変数(X10)は、所定気温(例えば、月平均気温25~35℃の範囲内の気温に設定可能)より高い場合と、低い場合の2種類に分けられる。活断層ハザードという説明変数(X11)は、活断層がある場合と、無い場合の2種類に分けられる。なお、上記各説明変数を構成する変数をカテゴリー変数と称することができる。カテゴリー変数は、上記の例示では、各説明変数において2つあるいは3つであるが、4つ以上でも良い。また、各説明変数中のカテゴリー変数の数は、上記の例示に限定されない。例えば、X1には3種のカテゴリー変数があるが、2つのみ、あるいは4つ以上としても良い。他の説明変数についても同様である。ただし、判定式作成用の説明変数と、危険度評価用の説明変数とは、その種類および各カテゴリー変数の基準・個数等も一致する必要がある。 As shown in FIG. 2, the explanatory variable (X1) of the existence of a cavity has a cavity at a position less than 1/2 of the earth covering, and at a position of 1/2 or more of the earth covering when there is no cavity. There are three types of cases. The position less than 1/2 of the earth covering is a position below 1/2 of the thickness of the earth and sand covering the pipe such as the sewage pipe. The position of 1/2 or more of the earth covering is a position that is 1/2 or less than the thickness of the earth and sand covering a pipe such as a sewer pipe. The explanatory variable (X2) of backfilling soil is divided into two types: a case where the soil type is gravel soil and a case where the soil type is sandy soil. The explanatory variable (X3) of the state of groundwater is divided into three types: when there is no groundwater, when there is groundwater, and when there is groundwater and there is fluctuation. When there is groundwater, it is divided into cases where there is no change in groundwater and cases where there is no change. The risk of depression is higher when there is groundwater fluctuation. Therefore, the case where there is groundwater is divided into two cases from the viewpoint of the presence or absence of fluctuations in groundwater. The explanatory variable (X4) of elapsed years (years since pipe installation) is divided into three types: less than 20 years, more than 20 years and less than 40 years, and more than 40 years. The explanatory variable (X5) of the earth covering thickness is divided into three types of 2 m or more, 1 m or more and less than 2 m, and less than 1 m. The explanatory variable (X6) of the part of the pipe line is divided into the case of the attachment pipe, the case of the main pipe, and the other three types. The explanatory variable (X7), which is a pipe type, is divided into three types: ceramic pipe, reinforced concrete, and others. The explanatory variable (X8) of the sewer pipe breakage state is divided into two types, that is, the case where it is not broken and the case where it is broken. The explanatory variable (X9) of traffic vibration is divided into two types, a case where it is large and a case where it is small relative to a predetermined standard. The explanatory variable (X10) of summer temperature is classified into two types: a case where the temperature is higher than a predetermined temperature (for example, a temperature within the range of 25 to 35 ° C. monthly average temperature) and a case where the temperature is lower. The explanatory variable (X11), which is an active fault hazard, is classified into two types when there is an active fault and when there is no active fault. In addition, the variable which comprises each said explanatory variable can be called a categorical variable. In the above example, the number of categorical variables is two or three in each explanatory variable, but may be four or more. Further, the number of categorical variables in each explanatory variable is not limited to the above example. For example, X1 has three categorical variables, but only two or four or more may be used. The same applies to other explanatory variables. However, the explanatory variable for creating the judgment formula and the explanatory variable for risk assessment need to have the same type and criteria / number of categorical variables.
<2.道路陥没危険度評価装置および道路陥没危険度評価方法>
 図3は、本発明の実施形態に係る道路陥没危険度評価装置の機能別の構成を示す。
<2. Road Crash Risk Assessment Device and Road Crash Risk Assessment Method>
FIG. 3 shows the configuration of each function of the road collapse risk evaluation apparatus according to the embodiment of the present invention.
 この実施形態に係る道路陥没危険度評価装置1は、道路陥没の危険度を評価するための装置である。道路陥没危険度評価装置(以後、単に「装置」ともいう)1は、判定式用要因データ受付部10、一般判定式記憶部11、一般判定式読出部12、第一代入部13、特定判定式決定部14、閾値決定部15、特定判定式記憶部16、特定判定式読出部17、危険度用要因データ受付部18、第二代入部19、判定値決定部20、マップ情報記憶部21、マップ情報読出部22およびマップ表示部23を備える。 The road collapse risk evaluation apparatus 1 according to this embodiment is an apparatus for evaluating the risk of road collapse. A road collapse risk evaluation apparatus (hereinafter also simply referred to as “apparatus”) 1 includes a determination formula factor data receiving unit 10, a general determination formula storage unit 11, a general determination formula reading unit 12, a first substitution unit 13, and a specific determination. Formula determination unit 14, threshold determination unit 15, specific determination formula storage unit 16, specific determination formula read unit 17, risk factor data reception unit 18, second substitution unit 19, determination value determination unit 20, map information storage unit 21 A map information reading unit 22 and a map display unit 23 are provided.
 判定式用要因データ受付部10、一般判定式読出部12、第一代入部13、特定判定式決定部14、閾値決定部15、特定判定式読出部17、危険度用要因データ受付部18、第二代入部19、判定値決定部20、マップ情報読出部22およびマップ表示部23は、コンピュータ内の電子回路基板に搭載される中央処理装置(CPU)がコンピュータプログラム(道路陥没危険度評価用コンピュータプログラム)を実行することによって各処理を行う。一般判定式記憶部11、特定判定式記憶部16およびマップ情報記憶部21は、データを読み書き可能なRAMあるいはハードディスク等のメモリである。一般判定式記憶部11および/またはマップ情報記憶部21は、RAMやハードディスクに限定されず、例えば、一方的にデータを読み出しされるROMであっても良い。また、判定式用要因データ受付部10および/または危険度用要因データ受付部18は、装置1に有線または無線で接続される各種機器(サーバー、キーボード、ポインティングデバイス、タッチパネルなど)から各データを受け付けることが可能である。例えば、ユーザがキーボードから、後述の図7(7B)に示す数値を入力し、判定式用要因データ受付部10および/または危険度用要因データ受付部18がその入力された数値を受け付けても良い。このように、判定式用要因データ受付部10および/または危険度用要因データ受付部18は、図3にて不図示の入力機器、別のコンピュータあるいは通信機器と接続されていても良い。 Determination formula factor data receiving unit 10, general determination formula reading unit 12, first substitution unit 13, specific determination formula determining unit 14, threshold determining unit 15, specific determination formula reading unit 17, risk factor data receiving unit 18, The second substitution unit 19, the determination value determination unit 20, the map information reading unit 22, and the map display unit 23 are configured so that a central processing unit (CPU) mounted on an electronic circuit board in a computer can execute a computer program (for road collapse risk evaluation). Each process is performed by executing a computer program. The general determination formula storage unit 11, the specific determination formula storage unit 16, and the map information storage unit 21 are memories such as a RAM or a hard disk capable of reading and writing data. The general determination formula storage unit 11 and / or the map information storage unit 21 are not limited to a RAM or a hard disk, and may be a ROM from which data is unilaterally read. Further, the judgment factor factor data receiving unit 10 and / or the risk factor data receiving unit 18 receives each data from various devices (server, keyboard, pointing device, touch panel, etc.) connected to the apparatus 1 by wire or wirelessly. It is possible to accept. For example, even if the user inputs a numerical value shown in FIG. 7 (7B), which will be described later, from the keyboard, the determination factor factor data reception unit 10 and / or the risk factor data reception unit 18 receives the input numerical value. good. In this way, the determination formula factor data reception unit 10 and / or the risk factor data reception unit 18 may be connected to an input device, another computer, or a communication device not shown in FIG.
 判定式用要因データ受付部10は、道路陥没の危険度を判定するための式であって道路陥没の要因と危険度との関数式としての特定判定式を決定するために必要なデータであって、特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段として機能する構成部である。ここで、道路陥没の要因としては、好ましくは、地下の空洞の存在、埋戻し土の種類、地下水の状況、管路布設経過年数、管路上の土被り厚、管路の部位、管種、管路の破損状況、交通振動、夏期気温および活断層ハザードの内の2以上である。また、判定式用要因データは、要因ごとに数値化されたデータであり、該当する場合には「1」であり、該当しない場合には「0」となるデータを称する。また、特定判定式とは、図7(7C)に例示される式を称する。これらについては、後ほど、図7を参照しながら詳述する。 The determination factor data receiving unit 10 is an equation for determining the risk of road collapse, and is data necessary for determining a specific determination equation as a function expression of the cause of road depression and the risk. This is a component functioning as determination formula factor data receiving means for receiving determination formula factor data in which the factors of road depression at a plurality of sampling points sampled for creating a specific determination formula are quantified. Here, as the factors of the road collapse, preferably, the presence of underground cavities, the type of backfill soil, the situation of groundwater, the age of pipe laying, the thickness of the overburden on the pipe, the part of the pipe, the pipe type, Two or more of pipe breakage, traffic vibration, summer temperature and active fault hazard. The determination formula factor data is data digitized for each factor, and is “1” when applicable and “0” when not applicable. Further, the specific determination formula refers to a formula illustrated in FIG. 7 (7C). These will be described in detail later with reference to FIG.
 一般判定式記憶部11は、前記特定判定式の元になる一般判定式を記憶する一般判定式記憶手段として機能する構成部である。ここで、一般判定式とは、後述の図7(7A)に例示する式を称する。上記一般判定式記憶部11は、一般判定式を記憶する構成部として説明されているが、別のデータをも記憶できる構成部、例えば、判定式用要因データ受付部10、一般判定式読出部12、第一代入部13、特定判定式決定部14、閾値決定部15、特定判定式読出部17、危険度用要因データ受付部18、第二代入部19、判定値決定部20、マップ情報読出部22およびマップ表示部23の各処理を行うために必要な1または2以上のコンピュータプログラム(道路陥没危険度評価用コンピュータプログラム)を記憶可能な構成部でも良い。 The general judgment formula storage unit 11 is a component that functions as a general judgment formula storage unit that stores a general judgment formula that is the basis of the specific judgment formula. Here, the general determination formula refers to a formula illustrated in FIG. 7 (7A) described later. The general judgment formula storage unit 11 has been described as a configuration unit that stores a general judgment formula, but a configuration unit that can also store other data, for example, a judgment formula factor data receiving unit 10, a general judgment formula reading unit. 12, first substitution unit 13, specific determination formula determination unit 14, threshold determination unit 15, specific determination formula read unit 17, risk factor data reception unit 18, second substitution unit 19, determination value determination unit 20, map information It may be a component capable of storing one or more computer programs (a computer program for risk assessment of road collapse) required for performing each process of the reading unit 22 and the map display unit 23.
 一般判定式読出部12は、一般判定式記憶部11から一般判定式のデータを読み出す構成部である。 The general judgment formula reading unit 12 is a configuration unit that reads data of the general judgment formula from the general judgment formula storage unit 11.
 第一代入部13は、一般判定式記憶部11から読み出された一般判定式に、判定式用要因データを代入する第一代入手段として機能する構成部である。 The first substitution unit 13 is a component that functions as first substitution means for substituting the factor data for judgment formula into the general judgment formula read from the general judgment formula storage unit 11.
 特定判定式決定部14は、判定式用要因データを一般判定式に代入して演算を行って特定判定式を決定する特定判定式決定手段として機能する構成部である。 The specific determination formula determination unit 14 is a component that functions as a specific determination formula determination unit that determines the specific determination formula by substituting the determination formula factor data into the general determination formula and performs an operation.
 閾値決定部15は、特定判定式によって算出される判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定手段として機能する構成部である。閾値は、陥没発生の危険性が高くなる境界を意味する判定値である。判定値は、図7(7C)に例示される特定判定式におけるYの値である。図7(7D)の例示では、判定値が-0.2以下のときに道路陥没が認められる事実に基づいて、閾値=-0.2との決定がなされている。ただし、判定値=-0.2を境にして陥没の有無が明確に分かれるとは限らない。例えば、判定値=0でも陥没が発生している地点もある一方で、判定値=-0.3でも陥没が発生していない地点もあり得る。かかる状況にもかかわらず、閾値を-0.2と決定するのは、閾値=-0.2としたときに、陥没有無の判定正解率が高く、誤判定率が小さくなるからである。仮に閾値を0(ゼロ)とすると、判定値≦0の範囲内に陥没の発生していない地点も誤差として含まれやすくなる。一方、仮に閾値を-0.4とすると、判定値≧-0.4の範囲内に陥没の発生している地点も誤差として含まれやすくなる。このような誤差の大小を考慮して、最も判定誤差が小さくなる判定値(-0.2)を閾値としている。この点については、図7(7D)および(7E)を参照しながら、後ほど詳述する。なお、閾値決定部15は、必須の構成部ではなく、装置1に設けなくても良い。 The threshold determination unit 15 is a component that functions as a threshold determination unit that classifies the determination values calculated by the specific determination formula into a predetermined range and determines a threshold for occurrence of depression based on the actual presence or absence of depression. The threshold value is a determination value that means a boundary that increases the risk of occurrence of depression. The determination value is a value of Y in the specific determination expression exemplified in FIG. 7 (7C). In the example of FIG. 7 (7D), the threshold = −0.2 is determined based on the fact that road depression is recognized when the determination value is −0.2 or less. However, the presence / absence of depression is not always clearly divided at the judgment value = −0.2. For example, there is a spot where a depression occurs even when the judgment value = 0, and there may be a spot where no depression occurs even when the judgment value = −0.3. Despite this situation, the threshold is determined to be −0.2 because, when the threshold is set to −0.2, the correct answer rate for the presence or absence of depression is high and the erroneous determination rate is low. If the threshold value is set to 0 (zero), a point where no depression has occurred within the range of determination value ≦ 0 is likely to be included as an error. On the other hand, if the threshold value is −0.4, a point where depression occurs within the range of determination value ≧ −0.4 is likely to be included as an error. Considering the magnitude of such an error, the determination value (−0.2) having the smallest determination error is set as the threshold value. This point will be described in detail later with reference to FIGS. 7 (7D) and (7E). The threshold determination unit 15 is not an essential component and may not be provided in the device 1.
 特定判定式記憶部16は、少なくとも特定判定式を記憶する特定判定式記憶手段として機能する構成部である。特定判定式記憶部16は、さらに閾値を記憶しても良い。 The specific determination formula storage unit 16 is a component that functions as a specific determination formula storage unit that stores at least a specific determination formula. The specific determination formula storage unit 16 may further store a threshold value.
 特定判定式読出部17は、特定判定式記憶部16から特定判定式を読み出す構成部である。特定判定式読出部17は、さらに閾値を読み出しても良い。 The specific determination formula reading unit 17 is a component that reads a specific determination formula from the specific determination formula storage unit 16. The specific determination formula reading unit 17 may further read the threshold value.
 危険度用要因データ受付部18は、評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段として機能する構成部である。上記判定式用要因データ受付部10および/または上記危険度用要因データ受付部18は、それぞれ特有のデータを受け付けることのできる構成部として説明されているが、別のデータをも受け付けることのできる構成部、例えば、ユーザが任意に入力したデータをも受け付ける構成部であっても良い。 The risk factor data receiving unit 18 functions as a risk factor data receiving unit that receives risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated. The determination formula factor data receiving unit 10 and / or the risk factor data receiving unit 18 are described as components capable of receiving specific data, but can also receive other data. A configuration unit, for example, a configuration unit that accepts data arbitrarily input by the user may also be used.
 第二代入部19は、特定判定式記憶部16から読み出された特定判定式に、危険度用要因データを代入する第二代入手段として機能する構成部である。 The second substitution unit 19 is a component that functions as a second substitution unit that substitutes risk factor data into the specific determination formula read from the specific determination formula storage unit 16.
 判定値決定部20は、第二代入部19の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段として機能する構成部である。 The determination value determination unit 20 is a component functioning as a determination value determination unit that performs a calculation based on the processing of the second substitution unit 19 and determines a determination value obtained by quantifying the risk of depression at each evaluation target point.
 マップ情報記憶部21は、各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段として機能する構成部である。 The map information storage unit 21 is a component that functions as a map information storage unit that stores map information including each evaluation target point.
 マップ情報読出部22は、マップ情報記憶部21から所定のマップ情報を読み出す構成部である。 The map information reading unit 22 is a component that reads predetermined map information from the map information storage unit 21.
 マップ表示部23は、マップ情報記憶部21から読み出されたマップ上において、各評価対象地点における陥没の危険度を示す判定値に基づき色別若しくは濃淡別の表示を行うマップ表示手段として機能する構成部である。色あるいは濃淡の情報は、マップ情報記憶部21内、あるいは別の記憶部(図3では不図示)に読み出し可能に格納することができる。前述のマップ情報読出部22は、マップ情報記憶部21からマップ情報と共に色あるいは濃淡の情報をも読み出すことができる。 The map display unit 23 functions as a map display unit that displays colors or shades on the map read from the map information storage unit 21 based on a determination value indicating the risk of depression at each evaluation target point. It is a component. The color or shading information can be stored in the map information storage unit 21 or in another storage unit (not shown in FIG. 3) so as to be read out. The map information reading unit 22 described above can also read color or shade information from the map information storage unit 21 together with the map information.
 なお、マップ表示部23は、色を表示せずに、当該危険度を示す判定値のみを表示する構成部でも良い。また、マップ表示部23は、色と判定値の両方を表示する構成部でも良い。さらに、マップ表示部23は、色に代えて、モノクロの濃淡を表示しても良い。その場合、判定値をモノクロの濃淡と共に表示し、あるいは非表示とすることもできる。また、閾値決定部15を装置1に備える場合、マップ表示部23は、閾値の前後で大きく色や濃淡を変化させて表示しても良い。 The map display unit 23 may be a component that displays only the determination value indicating the degree of risk without displaying the color. The map display unit 23 may be a component that displays both the color and the determination value. Further, the map display unit 23 may display monochrome shades instead of colors. In this case, the determination value can be displayed together with monochrome shading, or can be hidden. Further, when the apparatus 1 is provided with the threshold value determination unit 15, the map display unit 23 may display the color and shades largely changed before and after the threshold value.
 上記の形態の変形例として、装置1内に、第一陥没要因数値変換部30、第一記憶部31、第二陥没要因数値変換部40および第二記憶部41を備えるようにしても良い。第一陥没要因数値変換部30は、道路陥没要因を、後述の図7(7B)に示す数値に変換して、判定式用要因データ受付部10に当該数値のデータを送信する第一陥没要因数値変換手段として機能する構成部である。第一記憶部31は、道路陥没要因を上記数値に変換するためのデータテーブルを記憶する情報の読み書き可能な第一記憶手段である。第一陥没要因数値変換部30は、第一記憶部31に記憶されるデータテーブルを参照して、各道路要因を数値化し、その数値化されたデータを判定式用要因データ受付部10に送信する。同様に、第二陥没要因数値変換部40は、道路陥没要因を数値に変換して、危険度用要因データ受付部18に当該数値のデータを送信する第二陥没要因数値変換手段として機能する構成部である。第二記憶部41は、道路陥没要因を上記数値に変換するためのデータテーブルを記憶する情報の読み書き可能な第二記憶手段である。第二陥没要因数値変換部40は、第二記憶部41に記憶されるデータテーブルを参照して、各道路要因を数値化し、その数値化されたデータを危険度用要因データ受付部18に送信する。第一陥没要因数値変換部30および第二陥没要因数値変換部40は、CPUがコンピュータプログラム(道路陥没危険度評価用コンピュータプログラム)を実行することによって各処理を行う部分である。第一記憶部31および第二記憶部41は、情報の読み出しと書き込みを可能とするRAMやハードディスク等に代表されるメモリである。 As a modification of the above embodiment, the apparatus 1 may include a first depression factor value conversion unit 30, a first storage unit 31, a second depression factor value conversion unit 40, and a second storage unit 41. The first depression factor numerical value conversion unit 30 converts the road depression factor into a numerical value shown in FIG. 7 (7B) described later, and transmits the numerical value data to the determination formula factor data reception unit 10. It is a component that functions as numerical value conversion means. The 1st memory | storage part 31 is a 1st memory | storage means with which the information which memorize | stores the data table for converting a road depression factor into the said numerical value can be read and written. The first depression factor numerical value conversion unit 30 refers to the data table stored in the first storage unit 31 and digitizes each road factor and transmits the digitized data to the determination formula factor data reception unit 10. To do. Similarly, the second depression factor numerical value conversion unit 40 functions as a second depression factor numerical value conversion unit that converts a road depression factor into a numerical value and transmits the numerical value data to the risk factor data receiving unit 18. Part. The 2nd memory | storage part 41 is a 2nd memory | storage means with which the information which memorize | stores the data table for converting a road depression factor into the said numerical value can be read and written. The second depression factor numerical value conversion unit 40 refers to the data table stored in the second storage unit 41, digitizes each road factor, and transmits the digitized data to the risk factor data reception unit 18. To do. The first depression factor numerical value conversion unit 30 and the second depression factor numerical value conversion unit 40 are parts that perform each process by the CPU executing a computer program (a computer program for evaluating the risk of road depression). The first storage unit 31 and the second storage unit 41 are memories represented by a RAM, a hard disk, and the like that can read and write information.
 装置1は、より詳細には、道路陥没の危険度を評価するための道路陥没危険度評価装置であって、道路陥没の危険度を判定するための式であって道路陥没の要因と危険度との関数式としての特定判定式を決定するために必要なデータであって、特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段(判定式用要因データ受付部10に相当)と、特定判定式の元になる式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段(一般判定式記憶部11に相当)と、一般判定式記憶手段から読み出された一般判定式に、カテゴリー変数により構成される判定式用要因データを代入する第一代入手段(第一代入部13に相当)と、判定式用要因データを一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、カテゴリー係数(aij)を特定した特定判定式を決定する特定判定式決定手段(特定判定式決定部14に相当)と、特定判定式を記憶する特定判定式記憶手段(特定判定式記憶部16に相当)と、評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段(危険度用要因データ受付部18に相当)と、特定判定式記憶手段から読み出された特定判定式に、評価対象地点においてカテゴリー変数により構成される危険度用要因データを代入する第二代入手段(第二代入部19に相当)と、第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段(判定値決定部20に相当)と、を含む。 More specifically, the device 1 is a road collapse risk evaluation device for evaluating the risk of road collapse, and is an expression for determining the risk of road collapse, and causes and risks of road collapse. Data necessary for determining a specific judgment formula as a function formula with and accepting judgment formula factor data obtained by quantifying factors of road depression at a plurality of sampling points sampled for creating a specific judgment formula Determination formula factor data receiving means (corresponding to the determination formula factor data receiving unit 10) and a general determination formula {Y is an external criterion indicating whether or not a road has collapsed. X1 to Xn: Xi is an explanatory variable that causes a road collapse, A1 to An are coefficients to be multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, and an integer of 1 or more, xij is the jth character of Xi The Gori variables, aij is the category coefficient xij, mi is the number of categories Xi, respectively. } Is substituted into the general judgment formula storage means (corresponding to the general judgment formula storage section 11) and the general judgment formula read from the general judgment formula storage means. The first substituting means (corresponding to the first substituting unit 13) and the factor data for the judgment formula are substituted into the general judgment formula, and the variation between the two groups is relative to the total variation by the quantification theory type II analysis. Specific determination formula determining means (corresponding to the specific determination formula determination unit 14) for determining the specific determination formula specifying the category coefficient (aij) by executing the calculation so as to maximize the value, and the specification for storing the specific determination formula Determination factor storage means (corresponding to the specific determination expression storage unit 16) and risk factor data reception means (dangerous) that receives risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated Factor data And a second substituting unit (second substituting unit) for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage unit. 19), and determination value determination means (corresponding to the determination value determination unit 20) that performs a calculation based on the processing of the second substitution means and determines a determination value that quantifies the risk of depression at each evaluation target point. ,including.
 図4は、本発明の実施形態に係る道路陥没危険度評価方法の主要ステップのフローを示す。 FIG. 4 shows a flow of main steps of the road collapse risk evaluation method according to the embodiment of the present invention.
 この実施形態に係る道路陥没危険度評価方法は、道路陥没の危険度を評価するための装置を用いて道路陥没の危険度を評価する方法である。図4に示すように、この評価方法は、判定式作成用の地点における各要因のデータ(判定式用要因データ)を受け付ける判定式用要因データ受付ステップ(S100)、特定判定式の元になる一般判定式に判定式用要因データを代入する第一代入ステップ(S200)、演算によって特定判定式を決定する特定判定式決定ステップ(S300)、陥没発生の閾値を決定する閾値決定ステップ(S400)、評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付ステップ(S500)、特定判定式に危険度用要因データを代入する第二代入ステップ(S600)、演算によって各評価対象地点における陥没の危険度に基づく判定値を決定する判定値決定ステップ(S700)、マップ上において各評価対象地点における陥没の危険度を示す判定値に基づく色別若しくは濃淡別の表示を行うマップ表示ステップ(ステップS800)を行うことによって道路陥没危険度を評価する方法である。なお、ステップS400およびステップS800は、必須のステップではない。また、装置1にて説明したことと同様に、マップ表示ステップは、色や濃淡の表示を行うことなく、当該危険度を示す判定値のみを表示するステップでも良い。また、マップ表示ステップは、色や濃淡と、判定値とを両方表示するステップでも良い。さらに、マップ表示ステップは、色に代えて、モノクロの濃淡を表示するステップでも良い。その場合、判定値をモノクロの濃淡と共に表示し、あるいは非表示とすることもできる。また、閾値決定ステップ(S400)を行う場合、マップ表示ステップは、閾値の前後で大きく色や濃淡を変化させて表示しても良い。以下、上記各ステップについて図5~9を参照しながら説明する。 The road collapse risk evaluation method according to this embodiment is a method for evaluating the road collapse risk using an apparatus for evaluating the road collapse risk. As shown in FIG. 4, this evaluation method is based on a determination formula factor data receiving step (S100) for receiving data of each factor (determination formula factor data) at a determination formula creation point, and a specific determination formula. A first substitution step (S200) for substituting judgment formula factor data into a general judgment formula, a specific judgment formula decision step (S300) for deciding a specific judgment formula by calculation, and a threshold decision step (S400) for deciding a depression occurrence threshold ), A risk factor data receiving step (S500) for receiving risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated, and substituting the risk factor data into the specific determination formula Second substitution step (S600), determination value determination step (S600) for determining a determination value based on the risk of depression at each evaluation target point by calculation 00), a method for evaluating the risk of road collapse by performing a map display step (step S800) for displaying by color or shade based on a determination value indicating the risk of depression at each evaluation target point on the map. is there. Steps S400 and S800 are not essential steps. In addition, as described in the apparatus 1, the map display step may be a step of displaying only the determination value indicating the degree of risk without performing display of color and shading. Further, the map display step may be a step of displaying both the color, the shading, and the determination value. Further, the map display step may be a step of displaying monochrome shades instead of colors. In this case, the determination value can be displayed together with monochrome shading, or can be hidden. Further, when the threshold value determining step (S400) is performed, the map display step may be displayed by changing the color or shade largely before and after the threshold value. The above steps will be described below with reference to FIGS.
(1)判定式用要因データ受付ステップ(S100)
 このステップは、特定判定式作成用にサンプリングされた複数(この実施形態では100)箇所のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付けるステップである。このステップは、装置1の判定式用要因データ受付部10によって行うことができる。判定式用要因データは、特定判定式を決定するために必要なデータである。特定判定式は、道路陥没の危険度を判定するための式であって道路陥没の要因(説明変数Xiに相当)と危険度(外的基準Yに相当)との関数式である。
(1) Determination formula factor data receiving step (S100)
This step is a step of receiving determination formula factor data obtained by quantifying the factors of road depression at a plurality (100 in this embodiment) of sampling points sampled for creating a specific determination formula. This step can be performed by the determination formula factor data receiving unit 10 of the apparatus 1. Judgment formula factor data is data necessary to determine a specific judgment formula. The specific determination expression is an expression for determining the risk of road depression, and is a function expression of the cause of road depression (corresponding to the explanatory variable Xi) and the risk (corresponding to the external criterion Y).
 図5および図6は、判定式作成用の地点100箇所における外的基準Yおよび各種説明変数X1~X5を数値化した表をそれぞれ示す。図5は、1~50番目の各地点のデータを、図6は、51~100番目の各地点のデータをそれぞれ示す。 FIG. 5 and FIG. 6 show tables quantifying the external reference Y and various explanatory variables X1 to X5 at 100 points for creating a judgment formula. FIG. 5 shows data at each of the first to 50th points, and FIG. 6 shows data at each of the 51st to 100th points.
 図5および図6の表では、某市内の特定エリア内の道路の1~100番目の地点における陥没の有無と、その要因となり得る5つの説明変数とを1~3の数字で表している。これら1~100の地点は、特定判定式作成用にサンプリングされたサンプリング地点である。図5および図6の表において、例えば、陥没の有無(Y)に関しては、「1」は陥没が無いことを意味し、「2」は陥没があることを意味する。また、空洞の存在(X1)に関しては、「1」は空洞が無いことを意味し、「2」は土被り厚さの1/2未満の位置に空洞があることを意味し、「3」は土被り厚さの1/2以上の位置に空洞があることを意味する。埋め戻し土(X2)に関しては、「1」は土の種類が砂礫土であることを意味し、「2」は土の種類が砂質土であることを意味する。地下水の状況(X3)に関しては、「1」は無しを意味し、「2」はありを意味し、「3」はあり・変動もありを意味する。経過年数(X4)に関しては、「1」は20年未満を意味し、「2」は20年以上40年未満を意味し、「3」は40年以上を意味する。土被り(X5)に関しては、「1」は2m以上を意味し、「2」は1m以上2m未満を意味し、「3」は1m未満を意味する。 In the tables of FIGS. 5 and 6, the presence or absence of depression at the 1st to 100th points of the road in a specific area in Sakai City and the five explanatory variables that can be the cause are represented by numbers 1 to 3. . These points 1 to 100 are sampling points sampled for creating the specific determination formula. In the tables of FIGS. 5 and 6, for example, regarding presence / absence (Y) of depression, “1” means that there is no depression, and “2” means that there is depression. Regarding the existence of the cavity (X1), “1” means that there is no cavity, “2” means that there is a cavity at a position less than 1/2 of the soil covering thickness, and “3”. Means that there is a cavity at a position of 1/2 or more of the covering thickness. Regarding backfill soil (X2), “1” means that the soil type is gravel soil, and “2” means that the soil type is sandy soil. Regarding the groundwater status (X3), “1” means no, “2” means yes, “3” means yes / no fluctuation. Regarding the elapsed years (X4), “1” means less than 20 years, “2” means 20 years or more and less than 40 years, and “3” means 40 years or more. Regarding the earth covering (X5), “1” means 2 m or more, “2” means 1 m or more and less than 2 m, and “3” means less than 1 m.
 したがって、例えば、図5の表中の1番目のサンプリング地点は、YおよびX1~X5が全て「1」であることから、陥没が無く、空洞が無く、埋め戻し土が砂礫土であり、地下水が無く、経過年数が20年未満であり、土被りが2m以上の地点である。他のサンプリング地点も、1~3の数値によって同様に解釈される。ここで重要なことは、図5および図6における数値1~3は、外的基準および各説明変数を単に種類別に分けるためのものに過ぎず、その数値の絶対値自体に意味を有していないことである。したがって、数値1,2,3に代えて、アルファベットa,b,cを用いても良い。また、図5および図6の表中の数字1~3は、そのまま一般判定式に代入されるわけではないということも重要である。この点については後述する。 Thus, for example, the first sampling point in the table of FIG. 5 is that Y and X1 to X5 are all “1”, so there is no depression, no cavities, the backfilling soil is gravel, groundwater There is no, the elapsed years are less than 20 years, and the earth covering is a point of 2 m or more. Other sampling points are similarly interpreted by numerical values of 1 to 3. What is important here is that the numerical values 1 to 3 in FIG. 5 and FIG. 6 are merely for categorizing the external criteria and each explanatory variable by type, and the absolute values of the numerical values themselves have meaning. It is not. Therefore, the alphabets a, b, and c may be used instead of the numerical values 1, 2, and 3. It is also important that the numbers 1 to 3 in the tables of FIGS. 5 and 6 are not directly substituted into the general judgment formula. This point will be described later.
 図7は、一般判定式を説明するための図(7A)、数値化された要因データを説明するための図(7B)、特定判定式を説明するための図(7C)および閾値を説明するための図(7D,7E)をそれぞれ示す。 FIG. 7 is a diagram (7A) for explaining the general judgment formula, a diagram (7B) for explaining the digitized factor data, a diagram (7C) for explaining the specific judgment formula, and the threshold value. Figures (7D, 7E) are respectively shown.
 図5および図6の例では、特定判定式の元になる一般判定式は、Y=f(Xi)=A1・X1+A2・X2+A3・X3+・・・+An・Xnで表される。ここで、nは、説明変数の数(正の整数)である。A1,A2,A3,・・・,An(これらを一般化すると「Ai」)は、それぞれ、X1,X2,X3,・・・,Xn(これらを一般化すると「Xi」)の係数である。図5および図6の例では、説明変数は5つであるから、n=5である。ここで、X1は、x11、x12、x13という1またはゼロをとり得る3つの変数(これをカテゴリー変数というが、以後、単に、変数ということもある。)をもつ。X2は、x21、x22という1またはゼロをとり得る2つの変数をもつ。X3は、x31、x32、x33という1またはゼロをとり得る3つの変数をもつ。X4は、x41、x42、x43という1またはゼロをとり得る3つの変数をもつ。X5は、x51、x52、x53という1またはゼロをとり得る3つの変数をもつ。 5 and 6, the general judgment formula that is the basis of the specific judgment formula is represented by Y = f (Xi) = A1 · X1 + A2 · X2 + A3 · X3 +... + An · Xn. Here, n is the number of explanatory variables (a positive integer). A1, A2, A3,..., An (when these are generalized, “Ai”) are coefficients of X1, X2, X3,..., Xn (when these are generalized, “Xi”), respectively. . In the example of FIGS. 5 and 6, since there are five explanatory variables, n = 5. Here, X1 has three variables of x11, x12, and x13 that can take 1 or zero (this is referred to as a categorical variable, but may be simply referred to as a variable hereinafter). X2 has two variables of x21 and x22 that can take 1 or zero. X3 has three variables that can be 1 or zero, x31, x32, and x33. X4 has three variables that can be 1 or zero, x41, x42, and x43. X5 has three variables that can be 1 or zero, x51, x52, and x53.
 (7A)では、X1~X3までしか表示していないが、Y=f(Xi)を正確に記載すれば、Y=f(Xi)=A1・X1+A2・X2+A3・X3+A4・X4+A5・X5=(a11・x11+a12・x12+a13・x13)+(a21・x21+a22・x22)+(a31・x31+a32・x32+a33・x33)+(a41・x41+a42・x42+a43・x43)+(a51・x51+a52・x52+a53・x53)となる。 In (7A), only X1 to X3 are displayed, but if Y = f (Xi) is accurately described, Y = f (Xi) = A1 · X1 + A2 · X2 + A3 · X3 + A4 · X4 + A5 · X5 = (a11 X11 + a12 * x12 + a13 * x13) + (a21 * x21 + a22 * x22) + (a31 * x31 + a32 * x32 + a33 * x33) + (a41 * x41 + a42 * x42 + a43 * x43) + (a51 * x51 + a52 * x52 + a53 * x53).
 ここで、代表してX1について説明すると、x11、x12、x13の内のいずれか1つは1となり、他の2つはゼロとなる。したがって、空洞が無い場合には、x11=1、x12=0、x13=0となる。同様に、土被り1/2未満の位置に空洞がある場合には、x11=0、x12=1、x13=0となる。土被り1/2以上の位置に空洞がある場合には、x11=0、x12=0、x13=1となる。すなわち、(7B)に示すように、x11、x12、x13の組み合わせは、x11、x12、x13のいずれか1つのみを1として他の2つを0とする3種類となる。これは、X2~X5についても同様であり、X2の場合、x21、x22の内のいずれかが1であって、他はゼロとなる。X3の場合、x31、x32、x33の内のいずれか1つが1であって、他2つはゼロとなる。X4の場合、x41、x42、x43の内のいずれか1つが1であって、他2つはゼロとなる。X5の場合、x51、x52、x53の内のいずれか1つが1であって、他2つはゼロとなる。 Here, X1 will be described as a representative, and any one of x11, x12, and x13 is 1, and the other two are zero. Therefore, when there is no cavity, x11 = 1, x12 = 0, and x13 = 0. Similarly, when there is a cavity at a position less than 1/2 of the covering, x11 = 0, x12 = 1, and x13 = 0. When there is a cavity at a position of 1/2 or more of the covering, x11 = 0, x12 = 0, and x13 = 1. That is, as shown in (7B), there are three types of combinations of x11, x12, and x13, where only one of x11, x12, and x13 is 1 and the other two are 0. The same applies to X2 to X5. In the case of X2, one of x21 and x22 is 1, and the others are zero. In the case of X3, any one of x31, x32, and x33 is 1, and the other two are zero. In the case of X4, any one of x41, x42, and x43 is 1, and the other two are zero. In the case of X5, any one of x51, x52, and x53 is 1, and the other two are zero.
 ステップS100は、特定判定式作成用にサンプリングされた各サンプリング地点における道路陥没の要因および陥没の有無を定量化した判定式用要因データとして、(x11,x12,x13)、(x21,x22)、(x31,x32,x33)、(x41,x42,x43)、(x51,x52,x53)およびYを受け付けるステップである。例えば、図5に示すサンプリング地点No.1では、目的変数Yのとり得る2つの分類(2群)の内の「陥没なし」という群において、(1,0,0)、(1,0)、(1,0,0)、(1,0,0)、(1,0,0)というデータが判定式用要因データ受付部10に受け付けられる。同様に、例えば、図5に示すサンプリング地点No.43では、目的変数Yのとり得る2つの分類(2群)の内の「陥没あり」という群において、(0,1,0)、(0,1)、(0,1,0)、(0,1,0)、(0,1,0)という判定式用要因データが判定式用要因データ受付部10に受け付けられる。かかるデータの受付は、他のサンプリング地点98箇所に対しても同様に行われる。 Step S100 includes (x11, x12, x13), (x21, x22), (x11, x12, x13), as factorial data for judgment formulas that quantify the factors of the road depression and the presence or absence of depression at each sampling point sampled for creating the specific judgment formula. In this step, (x31, x32, x33), (x41, x42, x43), (x51, x52, x53) and Y are received. For example, the sampling point No. 1 shown in FIG. 1, in the group of “no depression” out of two possible classifications (group 2) of the objective variable Y, (1, 0, 0), (1, 0), (1, 0, 0), ( Data of (1, 0, 0) and (1, 0, 0) is received by the determination factor factor data receiving unit 10. Similarly, for example, sampling point No. 1 shown in FIG. 43, in the group of “with depression” out of the two classifications (group 2) that the objective variable Y can take, (0, 1, 0), (0, 1), (0, 1, 0), ( The determination formula factor data of 0, 1, 0) and (0, 1, 0) is received by the determination formula factor data receiving unit 10. The reception of such data is similarly performed at 98 other sampling points.
(2)第一代入ステップ(S200)
 このステップは、一般判定式(7A参照)に、上記判定式用要因データ、例えばサンプリング地点No.1の場合には、(1,0,0)、(1,0)、(1,0,0)、(1,0,0)、(1,0,0)というデータを代入するステップである。このステップは、装置1の第一代入部13によって行うことができる。図5および図6に示す合計100箇所のサンプリング地点の例では、陥没の無い地点が45箇所、陥没のある地点が55箇所存在する。したがって、陥没の無い群(Y1群と称する)において、判定式用要因データを代入した45個のY=f(Xi)が得られる。同様に、陥没のある群(Y2群と称する)において、判定式用要因データを代入した55個のY=f(Xi)が得られる。
(2) First substitution step (S200)
In this step, the general judgment formula (see 7A) is added to the judgment formula factor data, for example, sampling point No. In the case of 1, in the step of substituting the data (1, 0, 0), (1, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0) is there. This step can be performed by the first substitution unit 13 of the device 1. In the example of a total of 100 sampling points shown in FIGS. 5 and 6, there are 45 points without depressions and 55 points with depressions. Therefore, in the group without depression (referred to as Y1 group), 45 Y = f (Xi) into which the determination formula factor data is substituted are obtained. Similarly, 55 Y = f (Xi) are obtained by substituting the factor data for the judgment formula in the depressed group (referred to as Y2 group).
(3)特定判定式決定ステップ(S300)
 このステップは、判定式用要因データを一般判定式に代入して演算を行って特定判定式を決定するステップである。具体的には、このステップでは、数量化理論II類分析により特定判定式が求められる。このステップは、装置1の特定判定式決定部14によって行うことができる。いま、A1~A5中の係数(a11,a21等)をaijとする。iはA1~A5の順番であり、1~5のいずれかの正の整数である。jは、1つのAiの中の係数の順番である。A1であれば、3つの係数を有することから、jは1~3のいずれかの正の整数である。目的変数Yの分類(2群)を最もよく判別するように、2群の群間変動を全変動に対して相対的に最大にするようにaijを定める。すなわち、相関比(η)=(群間分散SB/全分散ST)を最大にするようにaijを定める。このとき、一般に、全分散ST=群内分散SW+群間分散SBである。このような条件で、相関比が最大となるように式を解くと、この問題は固有値問題に帰着し、求める係数aijは最大固有値(η)に対応する固有ベクトルの成分として求められる。この結果、今回の計算例では、(7C)の式1に示すような特定判定式が得られる。なお、かかる解析手法は、例えば、「多変量統計解析法」(著者: 田中豊/脇本和昌、出版社: 現代数学社)に開示されている。特定判定式は、aijという係数が特定された状態にある説明変数Xiと目的変数Yとの関係式である。Yは、特定判定式において、道路の陥没リスクを示す「判定値」を意味する。すなわち、一般判定式において道路の陥没の有無や兆候を意味していたYは、特定判定式では道路の陥没リスクを示す「判定値」となる。このため、一般判定式におけるYを「Y1」と、特定判定式におけるYを「Y2」と区別して表記しても良い。
(3) Specific determination formula determination step (S300)
This step is a step of substituting the judgment formula factor data into the general judgment formula and performing an operation to determine the specific judgment formula. Specifically, in this step, a specific determination formula is obtained by quantification theory type II analysis. This step can be performed by the specific determination formula determination unit 14 of the device 1. Now, the coefficients (a11, a21, etc.) in A1 to A5 are assumed to be aij. i is an order of A1 to A5, and is a positive integer of 1 to 5. j is the order of the coefficients in one Ai. Since A1 has three coefficients, j is any positive integer from 1 to 3. In order to best discriminate the classification (group 2) of the objective variable Y, aij is determined so as to maximize the intergroup variation of the two groups relative to the total variation. That is, aij is determined so as to maximize the correlation ratio (η 2 ) = (inter-group variance SB / total variance ST). At this time, generally, the total variance ST = intra-group variance SW + inter-group variance SB. In such conditions, when solving equation as correlation ratio is maximized, this problem results in an eigenvalue problem, the coefficient aij seeking is obtained as a component of the eigenvector corresponding to the largest eigenvalue (eta 2). As a result, in the present calculation example, a specific determination formula as shown in Formula 1 of (7C) is obtained. Such an analysis method is disclosed in, for example, “Multivariate Statistical Analysis Method” (author: Yutaka Tanaka / Kazumasa Wakimoto, publisher: Hyundai Mathematics). The specific determination expression is a relational expression between the explanatory variable Xi and the objective variable Y in a state where the coefficient aij is specified. Y means “determination value” indicating the risk of road collapse in the specific determination formula. That is, Y, which means the presence or absence of a road depression or a sign in the general determination formula, is a “determination value” indicating the risk of road collapse in the specific determination formula. Therefore, Y in the general determination formula may be distinguished from “Y1” and Y in the specific determination formula may be described as “Y2”.
(4)閾値決定ステップ(S400)
 このステップは、陥没発生の閾値を決定するステップである。当該閾値は、陥没発生の危険性を判断するための判定値を意味する。このステップは、装置1の閾値決定部15によって行うことができる。このステップでは、特定判定式によって算出される判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値が決定される。(7D,7E)に示すように、この実施形態では、判定値は、0.2という所定範囲で16個に分類されている。また、No.1~7まで(すなわち、判定値が-0.2以下)で道路の陥没が発生している。ただし、道路の陥没は、判定値が-0.2以下のときに100%生じ、判定値が-0.2より大きいときには100%生じないというわけではない。判定値が-0.2以下のときにも道路の陥没が生じていない場合もあれば、判定値が-0.2より大きいときにも道路の陥没が生じている場合もある。このような道路の陥没の集合と道路の非陥没の集合とが互いに重なりあう状況下では、判定値をNo.1~16までの各段階に設定したときに、最も判定誤差が小さくなる位置を閾値と決めるのが妥当である。(7C,7E)に示す例では、閾値を-0.2より小さい値に設定すれば、閾値を-0.2に設定したときに比べて判定誤差が大きくなる(この場合、閾値以上の範囲に、陥没が生じるケースが多く含まれる)。また、閾値を-0.2より大きい値に設定しても、閾値を-0.2に設定したときに比べて判定誤差が大きくなる(この場合、閾値未満の範囲に陥没が生じていないケースが多く含まれる)。閾値を-0.2と設定したときに、陥没の生じている場合と生じていない場合とを高確率にて分離できる。なお、サンプル地点100箇所において閾値を-0.2としたときの陥没有無の判定的中率は96%である。これは、誤差が4%であることを意味する。ステップS100~S400までは、サンプル地点の情報に基づき、一般判定式から特定判定式を求めるまでの処理である。
(4) Threshold determination step (S400)
This step is a step of determining a threshold value for occurrence of depression. The threshold value means a determination value for determining the risk of occurrence of depression. This step can be performed by the threshold value determination unit 15 of the device 1. In this step, the determination value calculated by the specific determination formula is classified into a predetermined range, and a threshold value for occurrence of depression is determined based on the presence or absence of actual depression. As shown in (7D, 7E), in this embodiment, the determination values are classified into 16 in a predetermined range of 0.2. No. A depression of the road occurs from 1 to 7 (that is, the judgment value is −0.2 or less). However, road depression does not occur 100% when the determination value is −0.2 or less, and does not occur 100% when the determination value is greater than −0.2. There may be no road depression even when the determination value is −0.2 or less, or there may be road depression even when the determination value is greater than −0.2. In such a situation where the set of road depressions and the set of road depressions overlap each other, the judgment value is No. It is appropriate to determine the position where the determination error is the smallest as the threshold value when setting in each stage from 1 to 16. In the example shown in (7C, 7E), if the threshold value is set to a value smaller than −0.2, the determination error becomes larger than when the threshold value is set to −0.2 (in this case, a range equal to or greater than the threshold value). In many cases, depressions occur.) Even if the threshold value is set to a value larger than −0.2, the determination error becomes larger than when the threshold value is set to −0.2 (in this case, there is no depression in the range below the threshold value). Are included). When the threshold is set to −0.2, it is possible to separate the case where the depression has occurred and the case where the depression has not occurred with a high probability. It should be noted that the critical rate of the presence or absence of depression when the threshold value is −0.2 at 100 sample points is 96%. This means that the error is 4%. Steps S100 to S400 are processing until a specific determination formula is obtained from a general determination formula based on information on sample points.
(5)危険度用要因データ受付ステップ(S500)
 このステップは、評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付けるステップである。このステップは、装置1の危険度用要因データ受付部18によって行うことができる。この実施形態では、30箇所の評価対象地点の危険度用要因データが受け付けられる。評価対象地点はサンプリング地点と同じ市町村、同じ市町村内の同じ地区などのように、地理的に近い位置にある方が好ましい。
(5) Risk factor data reception step (S500)
This step is a step of accepting risk factor data obtained by quantifying the factors of road depression at a plurality of evaluation target points to be evaluated. This step can be performed by the risk factor data receiving unit 18 of the device 1. In this embodiment, risk factor data for 30 evaluation target points are accepted. The evaluation target point is preferably located in a geographically close position such as the same municipality as the sampling point or the same district in the same municipality.
 図8は、危険度を評価する対象となる評価対象地点30箇所における各種説明変数X1~X5を数値化した表を示す。 FIG. 8 shows a table in which various explanatory variables X1 to X5 are digitized at 30 evaluation target points to be evaluated for risk.
 図8のX1~X5の数値1~3は、図5及び図6の数値と同じ意味である。例えば、評価対象地点No.1では、X1~X4までに「1」が入り、X5だけが「2」となっている。これは、当該No.1の地点では、空洞が無く、埋め戻し土が砂礫土であり、地下水が無く、経過年数が20年未満であり、土被りが1m以上2m未満であることを意味している。他の29箇所も、表中の数字に基づき同様に解釈される。 Numerals 1 to 3 of X1 to X5 in FIG. 8 have the same meaning as the numerical values in FIGS. For example, the evaluation target point No. In “1”, “1” is entered in X1 to X4, and only X5 is “2”. This is because the No. At point 1, it means that there is no cavity, the backfilling soil is gravel soil, there is no groundwater, the elapsed time is less than 20 years, and the earth covering is 1 m or more and less than 2 m. The other 29 locations are similarly interpreted based on the numbers in the table.
 ここで重要なことは、図8における数値1~3は、図5および図6と同様、各説明変数を単に種類別に分けるためのものに過ぎず、その数値の絶対値自体に意味を有していないことである。したがって、数値1,2,3に代えて、アルファベットa,b,cを用いても良い。また、図8の表中の数字1~3は、そのまま特定判定式に代入されるわけではないということも重要である。 What is important here is that the numerical values 1 to 3 in FIG. 8 are merely used to classify the explanatory variables by type, as in FIGS. 5 and 6, and the absolute values of the numerical values themselves have meaning. That is not. Therefore, the alphabets a, b, and c may be used instead of the numerical values 1, 2, and 3. It is also important that the numbers 1 to 3 in the table of FIG. 8 are not directly substituted into the specific determination formula.
 ステップS500は、危険度用要因データとして、(x11,x12,x13)、(x21,x22)、(x31,x32,x33)、(x41,x42,x43)、(x51,x52,x53)を受け付けるステップである。例えば、図8に示す評価対象地点No.1では、(1,0,0)、(1,0)、(1,0,0)、(1,0,0)、(0,1,0)というデータが危険度用要因データ受付部18に受け付けられる。同様に、例えば、図8に示す評価対象地点No.7では、(1,0,0)、(0,1)、(0,1,0)、(0,1,0)、(0,0,1)という危険度用要因データが危険度用要因データ受付部18に受け付けられる。かかるデータの受付は、他のサンプリング地点28箇所に対しても同様に行われる。 Step S500 accepts (x11, x12, x13), (x21, x22), (x31, x32, x33), (x41, x42, x43), (x51, x52, x53) as risk factor data. It is a step. For example, the evaluation target point No. 1 shown in FIG. 1, the data of (1, 0, 0), (1, 0), (1, 0, 0), (1, 0, 0), (0, 1, 0) is the risk factor data receiving unit. 18 is accepted. Similarly, for example, the evaluation target point No. 1 shown in FIG. 7, the risk factor data of (1, 0, 0), (0, 1), (0, 1, 0), (0, 1, 0), (0, 0, 1) is used for the risk level. It is received by the factor data receiving unit 18. Such data reception is performed in a similar manner for the other 28 sampling points.
(6)第二代入ステップ(S600)
 このステップは、特定判定式に危険度用要因データを代入するステップである。このステップは、装置1の第二代入部19によって行うことができる。このステップは、特定判定式(7C参照)に、上記危険度用要因データ、例えば評価対象地点No.1の場合には、(1,0,0)、(1,0)、(1,0,0)、(1,0,0)、(0,1,0)というデータを代入するステップである。このステップでは、他の29箇所の評価対象地点についても同様の代入が行われる。
(6) Second substitution step (S600)
This step is a step of substituting the risk factor data into the specific determination formula. This step can be performed by the second substitution unit 19 of the device 1. In this step, the risk factor data such as the evaluation target point No. In the case of 1, in the step of substituting the data (1, 0, 0), (1, 0), (1, 0, 0), (1, 0, 0), (0, 1, 0) is there. In this step, the same substitution is performed for the other 29 evaluation target points.
(7)判定値決定ステップ(S700)
 このステップは、特定判定式を用いた演算によって各評価対象地点における陥没の危険度に基づく判定値を決定するステップである。このステップは、装置1の判定値決定部20によって行うことができる。この演算の結果、特定判定式のY(危険度を意味する判定値)が評価対象地点ごとに求められる。
(7) Determination value determination step (S700)
This step is a step of determining a determination value based on the risk of depression at each evaluation target point by calculation using a specific determination formula. This step can be performed by the determination value determination unit 20 of the device 1. As a result of this calculation, Y (determination value meaning risk) of the specific determination formula is obtained for each evaluation target point.
(8)マップ表示ステップ(ステップS800)
 このステップは、マップ上において各評価対象地点における陥没の危険度を示す判定値に基づく色別若しくは濃淡別の表示を行うステップである。このステップは、装置1のマップ表示部23によって行うことができる。
(8) Map display step (step S800)
This step is a step of performing display by color or shade based on a determination value indicating the risk of depression at each evaluation target point on the map. This step can be performed by the map display unit 23 of the device 1.
 図9は、評価対象地点を含むエリアのマップ(9A)および当該マップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップ(9B)をそれぞれ示す。 FIG. 9 shows a map (9A) of an area including an evaluation target point and a risk evaluation map (9B) in which a unit block including each point is displayed on the map by color classification or gray scale classification.
 (9A)に示すように、マップ上には、1~30までの符号を付けた評価対象地点が明示されている。(9B)のマップは、(9A)に示すマップ上の各評価対象地点を中心とした単位ブロック(例えば、左右50mの長さ、半径50mの範囲等任意に決められる)に、S700にて求められた判定値(危険度といっても良い)とその判定値に基づく色とを表示したものである。(9B)のマップは、危険度評価マップと称しても良い。危険度評価マップ内の30箇所の数値は、道路陥没の危険性を意味しており、数値が小さいほど陥没の危険度が高い。陥没の危険度の高いブロックは、例えば濃い赤色で示し、危険度が低くなるに従い薄い赤色、オレンジ色、黄色、薄い青色、濃い青色と色を変えて表示するのが好ましい。また、カラーを使用せず、モノクロの濃淡で危険度を表示しても良い。(9B)の危険度評価マップは、モノクロの濃淡で危険度を視覚的に表した例であり、黒色に近いほど危険度を高くしている。なお、危険度評価マップは、判定値のみ、色若しくはモノクロの濃淡のみ、判定値と色若しくはモノクロの濃淡との組み合わせのいずれで表示されても良い。 (9A) As shown in (9A), the evaluation target points with 1 to 30 are clearly indicated on the map. The map of (9B) is obtained in S700 in a unit block (for example, a length of 50 m on the left and right, a range of radius of 50 m, etc. is arbitrarily determined) around each evaluation target point on the map shown in (9A). The judgment value (which may be referred to as a risk level) and a color based on the judgment value are displayed. The map (9B) may be referred to as a risk evaluation map. The numerical values at 30 locations in the risk evaluation map mean the risk of road depression, and the smaller the numerical value, the higher the risk of depression. Blocks with a high risk of depression are preferably displayed in dark red, for example, and are displayed in different colors from light red, orange, yellow, light blue, and dark blue as the risk decreases. Also, the degree of danger may be displayed in monochrome shades without using color. The risk evaluation map (9B) is an example in which the risk is visually represented by monochrome shading, and the risk is higher as it is closer to black. The risk evaluation map may be displayed with only the determination value, only the color or monochrome shading, or any combination of the determination value and the color or monochrome shading.
 なお、図4のフローにおいて、ステップS100に先立ち、道路陥没要因を、図7(7B)に示す数値に変換して、判定式用要因データ受付部10に当該数値のデータを送信する第一陥没要因数値変換ステップ(ステップS50)を行っても良い。このステップは、第一陥没要因数値変換部30が第一記憶部31のデータテーブルを参照して実行するステップである。また、ステップS500に先立ち、道路陥没要因を数値に変換して、危険度用要因データ受付部18に当該数値のデータを送信する第二陥没要因数値変換ステップ(ステップS450)を行っても良い。このステップは、第二陥没要因数値変換部40が第二記憶部41のデータテーブルを参照して実行するステップである。 In the flow of FIG. 4, prior to step S100, the road collapse factor is converted into the numerical value shown in FIG. 7 (7B), and the first depression is transmitted to the determination formula factor data receiving unit 10 You may perform a factor numerical value conversion step (step S50). This step is a step executed by the first depression factor value conversion unit 30 with reference to the data table of the first storage unit 31. Prior to step S500, a second depression factor value conversion step (step S450) may be performed in which the road depression factor is converted into a numerical value and the numerical value data is transmitted to the risk factor data receiving unit 18. This step is a step executed by the second depression factor value conversion unit 40 with reference to the data table in the second storage unit 41.
 上記の道路陥没危険度の評価は、道路陥没の要因を5つとしたときのものである。次に、道路陥没の要因を2つに絞ったときの評価について、図10を参照しながら説明する。 The above evaluation of the risk of road collapse is based on five factors for road collapse. Next, the evaluation when the cause of the road depression is limited to two will be described with reference to FIG.
 図10は、特定判定式を説明するための図(10A)、閾値を説明するための図(10B,10C)およびマップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップ(10D)をそれぞれ示す。 FIG. 10 is a diagram (10A) for explaining a specific determination formula, diagrams (10B, 10C) for explaining a threshold value, and a risk evaluation in which a unit block including each point is displayed on the map by color coding or gray coding. Each map (10D) is shown.
 一般判定式の説明変数はできるだけ少ない方がデータ収集などの手間が省けて都合が良い。ただし、判定のための精度は確保されなければならない。ここで、道路陥没の要因となる説明変数を5つとした前述の分析例を踏まえ、説明変数を2つに絞り込んだ場合の例について説明する。なお、説明変数の数が異なっても、装置1内の構成および評価方法のフローについては、前述の例と共通する。 説明 It is convenient to reduce the number of explanatory variables in the general judgment formula as much as possible to save time and effort for data collection. However, the accuracy for determination must be ensured. Here, an example in which the explanatory variables are narrowed down to two will be described based on the above-described analysis example in which the five explanatory variables that cause the road collapse are five. Even if the number of explanatory variables is different, the configuration in the apparatus 1 and the flow of the evaluation method are the same as in the above example.
 この絞り込みでは、判定結果に影響する度合いの大きな説明変数(レンジの大きな要因)は、優先して残し、それ以外の説明変数を捨象するものとする。ここで、レンジとは、説明変数Xiのカテゴリー数量の有する数値幅のことであり、Yへの影響の度合いを示す。前述の例では、空洞の存在(X1)、経過年数(X4)および地下水の状況(X3)の3種の道路陥没要因のレンジがこの順に大きく、他はこれらに比べて小さい。そこで、レンジの大きな方から2要因を選定し、X1とX4を説明変数として採用する。2要因に数量化理論II類分析を適用して演算を行うと、(10A)の特定判定式(式2)が得られる。 In this narrowing down, explanatory variables that have a large degree of influence on the judgment result (factors with a large range) are left with priority, and other explanatory variables are discarded. Here, the range is a numerical range of the category quantity of the explanatory variable Xi, and indicates the degree of influence on Y. In the above-mentioned example, the range of the three types of road collapse factors of the presence of the cavity (X1), the number of years elapsed (X4), and the situation of the groundwater (X3) is large in this order, and the others are smaller than these. Therefore, two factors are selected from the larger range, and X1 and X4 are adopted as explanatory variables. When calculation is performed by applying the quantification theory type II analysis to the two factors, the specific determination formula (Formula 2) of (10A) is obtained.
 (10B)の表は、判定値(サンプルスコア)の分布を示す。判定値が小さくなるほど陥没の危険度は高くなることは前述の結果と同様である。この事例では、判定値が-0.2以下(NO.7)になると100%道路陥没を起こし、判定値を0以下(NO.8)とすると14件中6件の誤判別(陥没無し)を含む結果となる。このため、閾値は-0.2ということになる。この場合、判別的中率は、94%である。この結果から、陥没要因を2つに絞った場合でも、陥没要因の選択次第で、十分に高い評価を行うことが可能であると考えられる。 (10B) shows the distribution of judgment values (sample scores). It is the same as the above-mentioned result that the risk of depression increases as the determination value decreases. In this case, when the judgment value is -0.2 or less (NO.7), 100% road collapse occurs, and when the judgment value is 0 or less (NO.8), 6 out of 14 cases are misidentified (no depression). Result. For this reason, the threshold value is -0.2. In this case, the discriminatory probability is 94%. From this result, it is considered that a sufficiently high evaluation can be performed depending on the selection of the depression factor even when the depression factor is limited to two.
 (10A)の特定判定式に、図8に示す表中のX1およびX4の各データを代入して、各評価対象地点の陥没危険度の判定を行い、続いてマップ上に判定値とそれに基づく濃淡の表示を行った結果、(10D)に示す危険度評価マップが得られる。このマップにおいても、図9(9B)の危険度評価マップと同様、数値が小さいほど陥没の危険度が高くなる。なお、評価対象地点No.1~30以外の「境界部」や「交差点部」の数値は、表記上、(9B)と同様の値としている。(10D)より、評価対象地点No.13とNo.15の各地点で陥没が発生する可能性が高く、(9B)の危険度評価マップと同様の結果が得られている。他の評価対象地点については、陥没要因を絞り込んだことから、判定値の差異(濃淡差)が小さくなっている。また、評価対象地点No.10とNo.16は、判定値がマイナスから0またはプラスに変化している。これらは、陥没要因を絞り込んだ特定判定式を用いた影響であると考えられる。ただし、相対的に危険度の高い場所であることは読み取ることができる。 Substituting each data of X1 and X4 in the table shown in FIG. 8 into the specific determination formula of (10A), determination of the depression risk level of each evaluation target point is performed, and subsequently, the determination value and its basis on the map As a result of displaying the shading, a risk evaluation map shown in (10D) is obtained. Also in this map, as in the risk evaluation map of FIG. 9 (9B), the smaller the numerical value, the higher the risk of depression. Evaluation point No. The numerical values of “boundary part” and “intersection part” other than 1 to 30 are the same as (9B) in terms of notation. (10D), the evaluation target point No. 13 and no. There is a high possibility that depressions will occur at each of the 15 points, and the same result as the risk evaluation map of (9B) is obtained. As for other evaluation target points, since the depression factor is narrowed down, the difference in the judgment values (shading difference) is small. In addition, the evaluation target point No. 10 and no. In 16, the determination value changes from minus to 0 or plus. These are considered to be effects using a specific judgment formula that narrows down the cause of depression. However, it can be read that the place has a relatively high risk level.
 次に、道路陥没の要因を11個としたときの評価について説明する。 Next, the evaluation when the number of road cave-in factors is 11 will be described.
 図11および図12は、判定式作成用の地点100箇所における各種説明変数X6~X11を数値化した表をそれぞれ示す。図11は、1~50番目の各地点のデータを、図12は、51~100番目の各地点のデータをそれぞれ示す。なお、YおよびX1~X5は、図5および図6に示すとおりである。図13は、特定判定式を説明するための図(13A)、閾値を説明するための図(13B,13C)および道路陥没要因11個について(13A)の式3のレンジの大きさを比較した図(13D)をそれぞれ示す。 FIG. 11 and FIG. 12 show tables in which various explanatory variables X6 to X11 are digitized at 100 points for determination formula creation. FIG. 11 shows the data of each of the 1st to 50th points, and FIG. 12 shows the data of each of the 51st to 100th points. Y and X1 to X5 are as shown in FIGS. FIG. 13 compares the size of the range of Expression 3 in FIG. 13A for explaining the specific determination formula, the figures 13B and 13C for explaining the threshold values, and 11 road crush factors (13A). Each figure (13D) is shown.
 判定式の説明変数として、目的変数(Y)に対して説明力の高いものを選定すれば式の説明力は高くなるが、単に項目数が多ければ良いというものではない。相対的に説明力の低い要因を多く取り込んでも、判定精度を向上するための寄与は小さいものとなり、データ入手の困難さが増すこととなる。さらに、変数を多くすると、同定された判定式の係数が実際の影響内容を適切に記述していない係数符号となる場合もあるため注意が必要である。従って、図2に挙げた11個の陥没要因から、対象とする都市の道路特性、下水道管路特性などを考慮して適切な説明変数を選定する必要がある。ここでは、候補として挙げた11個の陥没要因を全て取り込んだ場合の計算例について説明する。図11および図12に示す追加データは、管路の部位(X6)、管種(X7)、下水管破損状況(X8)、交通振動(X9)、夏期気温(X10)および活断層ハザード(X11)に関するデータである。 If the explanatory variable of the judgment formula is selected with a high explanatory power for the objective variable (Y), the explanatory power of the formula will be high, but it is not simply that the number of items is large. Even if many factors having relatively low explanatory power are taken in, the contribution for improving the determination accuracy becomes small, and the difficulty in obtaining data increases. Furthermore, if the number of variables is increased, the coefficient of the identified determination formula may be a coefficient code that does not appropriately describe the actual influence content. Therefore, it is necessary to select an appropriate explanatory variable from the 11 depression factors listed in FIG. 2 in consideration of the road characteristics of the target city, the sewer pipe characteristics, and the like. Here, an example of calculation when all the 11 depression factors listed as candidates are taken in will be described. The additional data shown in FIG. 11 and FIG. 12 are the pipe part (X6), pipe type (X7), sewer damage (X8), traffic vibration (X9), summer temperature (X10), and active fault hazard (X11). ).
 図11および図12の表において、管路の部位(X6)に関しては、「1」は取付管を意味し、「2」は本管を意味し、「3」はその他を意味する。管種(X7)に関しては、「1」は陶管を意味し、「2」は鉄筋コンクリートを意味し、「3」はその他を意味する。下水管破損状況(X8)に関しては、「1」はありを意味し、「2」は無しを意味する。交通振動(X9)に関しては、「1」は所定基準より多いことを意味し、「2」は所定基準以下を意味する。夏期気温(X10)に関しては、「1」は所定気温より高いことを意味し、「2」は所定気温以下であることを意味する。活断層ハザード(X11)に関しては、「1」はありを意味し、「2」は無しを意味する。これらの数値1~3は、各説明変数X6~X11を単に種類別に分けるためのものに過ぎず、その数値の絶対値自体に意味を有していない。したがって、数値1,2,3に代えて、アルファベットa,b,cを用いても良い。また、図11および図12の表中の数字1~3は、そのまま一般判定式に代入されるわけではない。この点については、YおよびX1~X5に関して前述したとおりである。 11 and 12, in the table of the pipe line (X6), “1” means the mounting pipe, “2” means the main pipe, and “3” means the other. Regarding the pipe type (X7), “1” means porcelain pipe, “2” means reinforced concrete, and “3” means others. Regarding the sewer pipe breakage situation (X8), “1” means “present” and “2” means “not present”. Regarding traffic vibration (X9), “1” means more than a predetermined standard, and “2” means below a predetermined standard. Regarding summer temperature (X10), “1” means higher than a predetermined temperature, and “2” means lower than a predetermined temperature. Regarding the active fault hazard (X11), “1” means “Yes” and “2” means “No”. These numerical values 1 to 3 are merely for classifying the explanatory variables X6 to X11 by type, and the absolute values of the numerical values themselves have no meaning. Therefore, the alphabets a, b, and c may be used instead of the numerical values 1, 2, and 3. Further, the numbers 1 to 3 in the tables of FIGS. 11 and 12 are not directly substituted into the general determination formula. This point is as described above with respect to Y and X1 to X5.
 判定式用要因データ受付部10は受け付けるデータは、地下の空洞の存在、埋戻し土の種類、地下水の状況、管路布設経過年数、管路上の土被り厚に加え、管路の部位、管種、管路の破損状況、交通振動、夏期気温および活断層ハザードに関するデータである。かかるデータ(判定式用要因データ)は、図7(7B)を参照しながら説明したように、要因ごとに数値化されたデータであり、該当する場合には「1」であり、該当しない場合には「0」となるデータを称する。 The data received by the judgment formula factor data receiving unit 10 includes the presence of underground cavities, the type of backfill soil, the status of groundwater, the number of years the pipe has been laid, the thickness of the covering over the pipe, the part of the pipe, the pipe Data on species, pipeline breakage, traffic vibration, summer temperature and active fault hazard. As described with reference to FIG. 7 (7B), such data (factorial data for judgment formula) is data that is quantified for each factor, and is “1” when applicable, and is not applicable. Represents data that is “0”.
 判定式用要因データ受付部10において11種類の要因に関する数値データを受け付けた後、装置1内の各構成部11~23は、前述と同様、図4のフローにて各処理を行う。特定判定式決定部14の処理の結果、(13A)に示す式3が決定される。(13B,13C)の判定値(サンプルスコア)の分布において、判定値が小さくなるほど道路陥没の危険度は高くなることは、前述と同様である。この例でも、閾値はー0.2である。11個の陥没要因を用いると、判別的中率は約97%となった。的中率は、陥没要因が2つあるいは5つの場合(いずれも94%)に比べて高くなっていることがわかる。なお、経過年数(X4)など一部の説明変数のカテゴリー数量で、実際の影響内容を適切に記述していない結果が表れている(例えば、X4では老朽化度が低い新しい管でもマイナスのカテゴリー数量が生じている)。 After receiving the numerical data related to the eleven types of factors in the determination formula factor data receiving unit 10, each of the component units 11 to 23 in the apparatus 1 performs each process in the flow of FIG. 4 as described above. As a result of the processing of the specific determination formula determination unit 14, Formula 3 shown in (13A) is determined. In the distribution of the determination values (sample scores) of (13B, 13C), the risk of road collapse increases as the determination value decreases, as described above. Also in this example, the threshold is −0.2. Using 11 depression factors, the discriminatory probability was about 97%. It can be seen that the hit ratio is higher than when there are two or five depression factors (94% for both). It should be noted that the category quantities of some explanatory variables such as the number of years elapsed (X4) show results that do not adequately describe the actual impact (for example, X4 is a negative category even for new tubes with a low degree of aging) Quantity has arisen).
 (13D)の図によれば、空洞の存在(X1)、経過年数(X4)および地下水の状況(X3)が上位にあることがわかる。このことから、これら3種類の要因が道路陥没の危険度を評価する上で考慮されるのが好ましいと考えられる。 (13D) It can be seen that the presence of the cavity (X1), the number of years elapsed (X4), and the status of the groundwater (X3) are at the top. From this, it is considered that these three types of factors are preferably considered in evaluating the risk of road collapse.
 図14は、危険度を評価する対象となる評価対象地点30箇所における各種説明変数X6~X11を数値化した表を示す。説明変数X1~X5については、図8に示すとおりである。図15は、マップ上に各地点を含む単位ブロックを色分け若しくは濃淡分けで表示した危険度評価マップを示す。 FIG. 14 shows a table in which various explanatory variables X6 to X11 at 30 evaluation target points that are targets for risk assessment are quantified. The explanatory variables X1 to X5 are as shown in FIG. FIG. 15 shows a risk evaluation map in which unit blocks including each point are displayed on the map by color classification or light / dark classification.
 図4のフロー中のステップS500(変形例としては、ステップS450)以降の処理を行うと、図15のマップが表示される。マップ内の各ブロックの危険度および色若しくは濃淡は、図9(9B)あるいは図10(10D)のそれらと一致はしないが、類似したマップが得られることがわかる。 When the processing after step S500 (step S450 as a modified example) in the flow of FIG. 4 is performed, the map of FIG. 15 is displayed. It can be seen that although the risk level and color or shading of each block in the map does not match those of FIG. 9 (9B) or FIG. 10 (10D), a similar map is obtained.
 上述のようなこの実施形態に係る道路陥没危険度評価方法は、詳細には、道路陥没の危険度を評価するための装置1を用いて道路陥没の危険度を評価する方法であって、
 道路陥没の危険度を判定するための式であって道路陥没の要因と危険度との関数式としての特定判定式を決定するために必要なデータであって、特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付ステップと、
 特定判定式の元になる式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された一般判定式に、カテゴリー変数により構成される判定式用要因データを代入する第一代入ステップ(S200)と、
 判定式用要因データを一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、カテゴリー係数(aij)を特定した特定判定式を決定する特定判定式決定ステップ(S300)と、
 評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付ステップ(S500)と、
 特定判定式を記憶する特定判定式記憶手段から読み出された特定判定式に、評価対象地点においてカテゴリー変数により構成される危険度用要因データを代入する第二代入ステップ(S600)と、
 第二代入ステップの処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定ステップ(S700)と、
を含む。
The road collapse risk evaluation method according to this embodiment as described above is specifically a method for evaluating the risk of road collapse using the device 1 for evaluating the risk of road collapse,
This is an equation for determining the risk of road collapse, and is necessary for determining the specific determination formula as a function expression of the factors of road collapse and the risk, and is sampled for creating the specific determination formula A determination formula factor data receiving step for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampling points;
General judgment formula (Y) as the basis of the specific judgment formula {Y is an external standard indicating the presence or absence of a road depression, X1 to Xn: Xi is an explanatory variable that causes a road depression, and A1 to An Is a coefficient to be multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi and is an integer of 1 or more, xij is the j-th categorical variable of Xi, aij is the categorical coefficient of xij, and mi is The number of categories of Xi is shown respectively. }, The first substituting step (S200) of substituting the factor data for the judgment formula constituted by the categorical variable into the general judgment formula read from the general judgment formula storage means for storing
Substituting the factor data for the judgment formula into the general judgment formula and performing an operation so that the variation between the two groups is maximized relative to the total variation by quantification theory type II analysis, and the category coefficient (aij Specific determination formula determination step (S300) for determining a specific determination formula specifying
A risk factor data receiving step (S500) for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
A second substituting step (S600) of substituting the factor data for risk composed of categorical variables at the evaluation target point into the specific determination formula read from the specific determination formula storage means for storing the specific determination formula;
A determination value determination step (S700) for performing a calculation based on the processing of the second substitution step and determining a determination value obtained by quantifying the risk of depression at each evaluation target point;
including.
<3.道路陥没危険度評価用コンピュータプログラム> <3. Computer program for assessing the risk of road collapse>
 道路陥没危険度評価用コンピュータプログラムは、コンピュータにインストールされて、該コンピュータを、道路陥没の危険度を評価するための道路陥没危険度評価装置1として機能させるコンピュータプログラムである。道路陥没危険度評価用コンピュータプログラムは、装置1に代表されるコンピュータを、判定式用要因データ受付部10、第一代入部13、特定判定式決定部14、危険度用要因データ受付部18、第二代入部19および判定値決定部20として機能させるものである。また、道路陥没危険度評価用コンピュータプログラムは、装置1に代表されるコンピュータを、一般判定式読出部12、閾値決定部15、特定判定式読出部17、マップ情報読出部22、第一陥没要因数値変換部30および第二陥没要因数値変換部40の少なくともいずれか1つとして機能させるものであるのが好ましい。 The road collapse risk evaluation computer program is a computer program that is installed in a computer and causes the computer to function as the road collapse risk evaluation device 1 for evaluating the risk of road collapse. The computer program for evaluating the risk of road collapse is a computer represented by the device 1, which includes a determination formula factor data reception unit 10, a first substitution unit 13, a specific determination formula determination unit 14, a risk factor data reception unit 18, It functions as the second substitution unit 19 and the determination value determination unit 20. Further, the computer program for evaluating the risk of road collapse is a computer that is represented by the apparatus 1 and includes a general determination formula reading unit 12, a threshold value determination unit 15, a specific determination formula reading unit 17, a map information reading unit 22, a first collapse factor. It is preferable to function as at least one of the numerical value conversion unit 30 and the second depression factor numerical value conversion unit 40.
 道路陥没危険度評価用コンピュータプログラムは、装置1に代表されるコンピュータをして、判定式用要因データ受付ステップ(S100)、第一代入ステップ(S200)、特定判定式決定ステップ(S300)、危険度用要因データ受付ステップ(S500)、第二代入ステップ(S600)および判定値決定ステップ(S700)を実行させるものである。また、道路陥没危険度評価用コンピュータプログラムは、装置1に代表されるコンピュータをして、第一陥没要因数値変換ステップ(S50)、一般判定式読出ステップ(ここではS150とする)、閾値決定ステップ(S400)、第二陥没要因数値変換ステップ(S450)、特定判定式読出ステップ(ここではS550とする)、マップ情報読出ステップ(ここではS750とする)およびマップ表示ステップ(S800)の少なくともいずれか1つのステップを実行させるものであるのが好ましい。 The road collapse risk evaluation computer program is a computer typified by the device 1, and includes a determination formula factor data reception step (S100), a first substitution step (S200), a specific determination formula determination step (S300), The risk factor data reception step (S500), the second substitution step (S600), and the determination value determination step (S700) are executed. Further, the road collapse risk evaluation computer program is a computer typified by the apparatus 1, and includes a first depression factor numerical value conversion step (S50), a general judgment formula reading step (herein referred to as S150), and a threshold value determination step. (S400), at least one of a second depression factor numerical value conversion step (S450), a specific determination formula reading step (referred to here as S550), a map information reading step (referred to here as S750), and a map display step (S800). Preferably, one step is executed.
 また、道路陥没危険度評価用コンピュータプログラムは、装置1と物理的に分離される別のコンピュータ(サーバとする)から装置1内のメモリにインストールされてから実行され、あるいは情報記録媒体(例えば、コンパクトディスク、携帯型フラッシュメモリ、FD、MD等)に一旦格納され当該情報記録媒体を装置1に挿入若しくは接続することを通じて装置1内のメモリにインストールされてから実行され若しくはインストールされずにそのまま読み出されて実行されても良い。上記情報記録媒体は、非一時的な有形の記録媒体を意味する。道路陥没危険度評価用コンピュータプログラムは、1つのプログラムの形態あるいは2以上のプログラムの形態であっても良い。道路陥没危険度評価用コンピュータプログラムを格納した情報記録媒体も同様に、1あるいは2以上であっても良い。 Further, the road collapse risk evaluation computer program is executed after being installed in a memory in the apparatus 1 from another computer (server) that is physically separated from the apparatus 1, or an information recording medium (for example, Once stored in a compact disk, portable flash memory, FD, MD, etc.) and installed in the memory in the device 1 through insertion or connection of the information recording medium to the device 1, it is executed or not read as it is installed. It may be issued and executed. The information recording medium means a non-temporary tangible recording medium. The computer program for evaluating the risk of road collapse may be in the form of one program or two or more programs. Similarly, the information recording medium storing the computer program for evaluating the risk of road collapse may be 1 or 2 or more.
 この実施形態に係る道路陥没危険度評価用コンピュータプログラムは、詳細には、コンピュータにインストールされて、該コンピュータを、道路陥没の危険度を評価するための道路陥没危険度評価装置1として機能させるコンピュータプログラムであって、
 該コンピュータを、
 道路陥没の危険度を判定するための式であって道路陥没の要因と危険度との関数式としての特定判定式を決定するために必要なデータであって、特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段(判定式用要因データ受付部10に相当)、
 特定判定式の元になる式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された一般判定式に、カテゴリー変数により構成される判定式用要因データを代入する第一代入手段(第一代入部13に相当)、
 判定式用要因データを一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、カテゴリー係数(aij)を特定した特定判定式を決定する特定判定式決定手段(特定判定式決定部14に相当)、
 評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段(危険度用要因データ受付部18に相当)、
 特定判定式を記憶する特定判定式記憶手段から読み出された特定判定式に、評価対象地点においてカテゴリー変数により構成される危険度用要因データを代入する第二代入手段(第二代入部19に相当)、および
 第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段(判定値決定部20に相当)として機能させる。
The road collapse risk evaluation computer program according to this embodiment is specifically installed in a computer, and causes the computer to function as the road collapse risk evaluation apparatus 1 for evaluating the risk of road collapse. A program,
The computer
This is an equation for determining the risk of road collapse, and is necessary for determining the specific determination formula as a function expression of the factors of road collapse and the risk, and is sampled for creating the specific determination formula Determination formula factor data receiving means (corresponding to the determination formula factor data receiving unit 10) for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampling points;
General judgment formula (Y) as the basis of the specific judgment formula {Y is an external standard indicating the presence or absence of a road depression, X1 to Xn: Xi is an explanatory variable that causes a road depression, and A1 to An Is a coefficient to be multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi and is an integer of 1 or more, xij is the j-th categorical variable of Xi, aij is the categorical coefficient of xij, and mi is The number of categories of Xi is shown respectively. }, The first substituting unit (corresponding to the first substituting unit 13) for substituting the judgment formula factor data constituted by the categorical variables into the general judgment formula read out from the general judgment formula storage unit.
Substituting the factor data for the judgment formula into the general judgment formula and performing an operation so that the variation between the two groups is maximized relative to the total variation by quantification theory type II analysis, and the category coefficient (aij ) Specific determination formula determination means (corresponding to the specific determination formula determination unit 14) for determining the specific determination formula specifying
A risk factor data receiving means (corresponding to the risk factor data receiving unit 18) for receiving risk factor data obtained by quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
Second substitution means (into the second substitution section 19) substitutes risk factor data composed of categorical variables at the evaluation target point into the specific judgment formula read from the special judgment formula storage means for storing the specific judgment formula. Equivalent), and a calculation process based on the processing of the second assigning means to function as a judgment value determining means (corresponding to the judgment value determining unit 20) for determining a judgment value obtained by quantifying the risk of depression at each evaluation target point. .
 本発明は、道路陥没の危険性を予想する技術や産業に利用できる。 The present invention can be used for technologies and industries that predict the danger of road cave-in.

Claims (10)

  1.  道路陥没の危険度を評価するための道路陥没危険度評価装置であって、
     道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段と、
     前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段と、
     前記一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入手段と、
     前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定手段と、
     前記特定判定式を記憶する特定判定式記憶手段と、
     評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段と、
     前記特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入手段と、
     前記第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段と、
    を含む道路陥没危険度評価装置。
    Figure JPOXMLDOC01-appb-M000001
    A road collapse risk evaluation device for evaluating the risk of road collapse,
    Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula Determination factor factor data receiving means for receiving determination factor factor data obtained by quantifying the factors of road depression at a plurality of sampled sampling points;
    General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, General judgment expression storage means for storing
    First substituting means for substituting the judgment formula factor data constituted by the categorical variable into the general judgment formula read from the general judgment formula storage unit;
    Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij);
    Specific determination formula storage means for storing the specific determination formula;
    A risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
    Second substitution means for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific judgment formula read from the specific judgment formula storage means;
    A determination value determining means for performing a calculation based on the processing of the second substitution means, and determining a determination value obtained by quantifying the risk of depression at each evaluation target point;
    Road cave risk assessment device including
    Figure JPOXMLDOC01-appb-M000001
  2.  前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定手段を、さらに含む請求項1に記載の道路陥没危険度評価装置。 2. The road collapse risk according to claim 1, further comprising threshold determination means for classifying the determination value calculated by the specific determination formula into a predetermined range and determining a threshold for occurrence of depression based on the presence or absence of actual depression. Evaluation device.
  3.  前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段と、
     前記マップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示手段と、
    をさらに含む請求項1または請求項2に記載の道路陥没危険度評価装置。
    Map information storage means for storing information of a map including each evaluation target point;
    On the map read from the map information storage means, a map display means for performing display by color or shade based on the determination value indicating the risk of depression at each evaluation target point;
    The road collapse risk evaluation apparatus according to claim 1 or 2, further comprising:
  4.  前記道路陥没の要因は、
     地下の空洞の存在、埋戻し土の種類、地下水の状況、管路布設経過年数、管路上の土被り厚、管路の部位、管種、管路の破損状況、交通振動、夏期気温および活断層ハザードの内の2以上である請求項1から請求項3のいずれか1項に記載の道路陥没危険度評価装置。
    The cause of the road collapse is
    Existence of underground cavities, type of backfill soil, groundwater condition, age of pipe laying, thickness of earth covering on pipe, pipe part, pipe type, pipe breakage, traffic vibration, summer temperature and activity The road collapse risk evaluation apparatus according to any one of claims 1 to 3, wherein there are two or more of the fault hazards.
  5.  道路陥没の危険度を評価するための装置を用いて道路陥没の危険度を評価する方法であって、
     道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付ステップと、
     前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入ステップと、
     前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定ステップと、
     評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付ステップと、
     前記特定判定式を記憶する特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入ステップと、
     前記第二代入ステップの処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定ステップと、
    を含む道路陥没危険度評価方法。
    Figure JPOXMLDOC01-appb-M000002
    A method for evaluating the risk of road depression using a device for evaluating the risk of road depression,
    Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula A determination formula factor data reception step for receiving determination formula factor data quantifying the factors of road depression at a plurality of sampled sampling points;
    General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, The first substituting step of substituting the determination formula factor data constituted by the categorical variable into the general determination formula read from the general determination formula storage means for storing
    Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, A specific determination formula determining step for determining the specific determination formula specifying the coefficient (aij);
    A risk factor data reception step for accepting risk factor data that quantifies the factors of road collapse at a plurality of evaluation target points to be evaluated;
    A second substituting step of substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage means for storing the specific determination formula;
    A determination value determination step for performing a calculation based on the processing of the second substitution step and determining a determination value obtained by quantifying the risk of depression at each evaluation target point;
    Road collapse risk evaluation method including
    Figure JPOXMLDOC01-appb-M000002
  6.  前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定ステップを、さらに含む請求項5に記載の道路陥没危険度評価方法。 The road collapse risk according to claim 5, further comprising a threshold determination step of classifying the determination value calculated by the specific determination formula into a predetermined range and determining a threshold for occurrence of depression based on the presence or absence of actual depression. Evaluation methods.
  7.  前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示ステップを、さらに含む請求項5または請求項6に記載の道路陥没危険度評価方法。 On the map read out from the map information storage means for storing the information of the map including each evaluation target point, the color or gray level is classified according to the judgment value indicating the risk of depression at each evaluation target point. The road collapse risk evaluation method according to claim 5 or 6, further comprising a map display step for performing display.
  8.  コンピュータにインストールされて、該コンピュータを、道路陥没の危険度を評価するための道路陥没危険度評価装置として機能させるコンピュータプログラムであって、
     該コンピュータを、
     道路陥没の危険度を判定するための式であって道路陥没の要因と前記危険度との関数式としての特定判定式を決定するために必要なデータであって、前記特定判定式作成用にサンプリングされた複数のサンプリング地点における道路陥没の要因を定量化した判定式用要因データを受け付ける判定式用要因データ受付手段、
     前記特定判定式の元になる下記の式(A)に示す一般判定式{Yは道路の陥没の有無を示す外的基準を、X1~Xn:Xiは道路陥没の要因となる説明変数を、A1~AnはそれぞれX1~Xnに乗じる係数を、nはi番目の説明変数Xiの数であって1以上の整数を、xijはXiのj番目のカテゴリー変数を、aijはxijのカテゴリー係数を、miはXiのカテゴリー数を、それぞれ示す。}を記憶する一般判定式記憶手段から読み出された前記一般判定式に、前記カテゴリー変数により構成される前記判定式用要因データを代入する第一代入手段、
     前記判定式用要因データを前記一般判定式に代入して数量化理論II類分析により2群の群間変動を全変動に対して相対的に最大にするように演算を実行して、前記カテゴリー係数(aij)を特定した前記特定判定式を決定する特定判定式決定手段、
     評価対象となる複数の評価対象地点における道路陥没の要因を定量化した危険度用要因データを受け付ける危険度用要因データ受付手段、
     前記特定判定式を記憶する特定判定式記憶手段から読み出された前記特定判定式に、前記評価対象地点において前記カテゴリー変数により構成される前記危険度用要因データを代入する第二代入手段、および
     前記第二代入手段の処理に基づき演算を行い、各評価対象地点における陥没の危険度を数値化した判定値を決定する判定値決定手段として機能させる道路陥没危険度評価用コンピュータプログラム。
    Figure JPOXMLDOC01-appb-M000003
    A computer program that is installed in a computer and causes the computer to function as a road collapse risk evaluation device for evaluating the risk of road collapse,
    The computer
    Formula for determining the risk of road collapse, and data necessary for determining a specific determination formula as a function expression of the factor of road collapse and the risk, for creating the specific determination formula Determination factor factor data receiving means for receiving determination factor factor data quantifying the factors of road depression at a plurality of sampled sampling points;
    General judgment formula shown in the following formula (A) based on the specific judgment formula {Y is an external standard indicating whether or not a road is depressed, X1 to Xn: Xi are explanatory variables that cause a road depression, A1 to An are coefficients multiplied by X1 to Xn, n is the number of the i-th explanatory variable Xi, an integer of 1 or more, xij is the jth categorical variable of Xi, and aij is the categorical coefficient of xij. , Mi respectively indicate the number of categories of Xi. }, The first substituting means for substituting the judgment formula factor data composed of the categorical variables into the general judgment formula read from the general judgment formula storage means.
    Substituting the judgment factor factor data into the general judgment formula, and performing a calculation so as to make the variation between the two groups relatively large with respect to the total variation by quantification theory type II analysis, Specific determination formula determining means for determining the specific determination formula specifying the coefficient (aij);
    Risk factor data receiving means for receiving risk factor data quantifying the factors of road collapse at a plurality of evaluation target points to be evaluated;
    A second substituting unit for substituting the risk factor data constituted by the categorical variable at the evaluation target point into the specific determination formula read from the specific determination formula storage unit that stores the specific determination formula; and A road collapse risk evaluation computer program that performs calculation based on the processing of the second substitution means and functions as a determination value determination means that determines a determination value obtained by quantifying the risk of depression at each evaluation target point.
    Figure JPOXMLDOC01-appb-M000003
  9.  前記コンピュータを、
     前記特定判定式によって算出される前記判定値を所定範囲に分類し、実際の陥没の有無に基づいて陥没発生の閾値を決定する閾値決定手段としてさらに機能させる請求項8に記載の道路陥没危険度評価用コンピュータプログラム。
    The computer,
    9. The road collapse risk according to claim 8, further comprising a threshold determination unit that classifies the determination value calculated by the specific determination formula into a predetermined range and determines a threshold for occurrence of depression based on the presence or absence of actual depression. Computer program for evaluation.
  10.  前記コンピュータを、
     前記各評価対象地点を含むマップの情報を記憶するマップ情報記憶手段から読み出された前記マップ上において、前記各評価対象地点における陥没の危険度を示す前記判定値に基づき色別若しくは濃淡別の表示を行うマップ表示手段として、さらに機能させる請求項8または請求項9に記載の道路陥没危険度評価用コンピュータプログラム。

     
    The computer,
    On the map read out from the map information storage means for storing the information of the map including each evaluation target point, the color or gray level is classified according to the judgment value indicating the risk of depression at each evaluation target point. The computer program for evaluating the risk of road collapse according to claim 8 or 9, further functioning as map display means for performing display.

PCT/JP2018/002316 2017-02-08 2018-01-25 Road-subsidence risk-level evaluation device, road-subsidence risk-level evaluation method, and computer program for road-subsidence risk-level evaluation WO2018147086A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880007801.7A CN110234811B (en) 2017-02-08 2018-01-25 Road collapse risk degree evaluation device, evaluation method, and computer program for evaluation
JP2018567359A JP6682021B2 (en) 2017-02-08 2018-01-25 Road collapse risk evaluation device, road collapse risk evaluation method, and computer program for road collapse risk evaluation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021003 2017-02-08
JP2017-021003 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147086A1 true WO2018147086A1 (en) 2018-08-16

Family

ID=63107404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002316 WO2018147086A1 (en) 2017-02-08 2018-01-25 Road-subsidence risk-level evaluation device, road-subsidence risk-level evaluation method, and computer program for road-subsidence risk-level evaluation

Country Status (3)

Country Link
JP (1) JP6682021B2 (en)
CN (1) CN110234811B (en)
WO (1) WO2018147086A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17051U1 (en) * 2019-11-18 2021-04-15 Walter Dietl PROCEDURE FOR DETERMINING CONSERVATION MEASURES FOR AT LEAST ONE ROAD
KR102259619B1 (en) * 2020-01-30 2021-06-01 임도형 Methods for estimating Cave-in Damage Index and deriving cavity management standards using it
CN113793038A (en) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 Karst mountain subway tunnel engineering disaster zoning method under multi-factor coupling
CN114926968A (en) * 2022-05-18 2022-08-19 中铁第四勘察设计院集团有限公司 Roadbed void monitoring system, roadbed void monitoring method, roadbed void monitoring equipment and storage medium
KR20230069634A (en) * 2021-11-12 2023-05-19 한국건설기술연구원 Ground subsidence risk assessment system, method, and a recording medium recording a computer readable program for executing the method
CN117236706A (en) * 2023-11-16 2023-12-15 海纳云物联科技有限公司 Evaluation method, device, equipment and storage medium for leakage risk of heating power pipeline

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295051A (en) * 2008-06-06 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Facility inspection system, measurement system, and facility inspection method
US20120123969A1 (en) * 2010-11-15 2012-05-17 Messmer Peter F Methods and Processes of Road Use Evaluation and Regulation
JP2016151954A (en) * 2015-02-18 2016-08-22 国立大学法人九州大学 Maintenance management work support device and maintenance management work support program for road structure
JP2017002537A (en) * 2015-06-09 2017-01-05 株式会社東芝 Device and method for providing road inspection information

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587945A (en) * 1991-09-27 1993-04-09 Doro Hozen Gijutsu Center Cavity inspection method for paved road
KR100755474B1 (en) * 2005-12-22 2007-09-04 (주)지엠지 Image acquire system of a collapse risk position be interlocked with the senser
JP2009281924A (en) * 2008-05-23 2009-12-03 Shimizu Corp Ground collapse prediction alarm system and ground collapse prediction alarm method
JP5213803B2 (en) * 2009-07-07 2013-06-19 日立建機株式会社 Roadside crash risk monitoring device and transport vehicle
JP4442916B1 (en) * 2009-10-27 2010-03-31 ジオ・サーチ株式会社 Non-destructive investigation method for internal damage of pavement
JP5062921B1 (en) * 2012-05-01 2012-10-31 株式会社ウオールナット Cavity thickness estimation method and apparatus
JP2014098597A (en) * 2012-11-13 2014-05-29 Geo Search Co Ltd Method for evaluating the risk of subsidence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295051A (en) * 2008-06-06 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Facility inspection system, measurement system, and facility inspection method
US20120123969A1 (en) * 2010-11-15 2012-05-17 Messmer Peter F Methods and Processes of Road Use Evaluation and Regulation
JP2016151954A (en) * 2015-02-18 2016-08-22 国立大学法人九州大学 Maintenance management work support device and maintenance management work support program for road structure
JP2017002537A (en) * 2015-06-09 2017-01-05 株式会社東芝 Device and method for providing road inspection information

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17051U1 (en) * 2019-11-18 2021-04-15 Walter Dietl PROCEDURE FOR DETERMINING CONSERVATION MEASURES FOR AT LEAST ONE ROAD
KR102259619B1 (en) * 2020-01-30 2021-06-01 임도형 Methods for estimating Cave-in Damage Index and deriving cavity management standards using it
CN113793038A (en) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 Karst mountain subway tunnel engineering disaster zoning method under multi-factor coupling
CN113793038B (en) * 2021-09-16 2023-12-22 贵阳市城市轨道交通集团有限公司 Karst mountain area subway tunnel engineering disaster partitioning method under multi-factor coupling
KR20230069634A (en) * 2021-11-12 2023-05-19 한국건설기술연구원 Ground subsidence risk assessment system, method, and a recording medium recording a computer readable program for executing the method
KR102554245B1 (en) * 2021-11-12 2023-07-11 한국건설기술연구원 Ground subsidence risk assessment system, method, and a recording medium recording a computer readable program for executing the method
CN114926968A (en) * 2022-05-18 2022-08-19 中铁第四勘察设计院集团有限公司 Roadbed void monitoring system, roadbed void monitoring method, roadbed void monitoring equipment and storage medium
CN114926968B (en) * 2022-05-18 2023-10-10 中铁第四勘察设计院集团有限公司 Roadbed void monitoring system, monitoring method, device and storage medium
CN117236706A (en) * 2023-11-16 2023-12-15 海纳云物联科技有限公司 Evaluation method, device, equipment and storage medium for leakage risk of heating power pipeline
CN117236706B (en) * 2023-11-16 2024-02-20 海纳云物联科技有限公司 Evaluation method, device, equipment and storage medium for leakage risk of heating power pipeline

Also Published As

Publication number Publication date
JPWO2018147086A1 (en) 2019-11-07
JP6682021B2 (en) 2020-04-15
CN110234811A (en) 2019-09-13
CN110234811B (en) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2018147086A1 (en) Road-subsidence risk-level evaluation device, road-subsidence risk-level evaluation method, and computer program for road-subsidence risk-level evaluation
Hearn et al. Landslide susceptibility mapping: a practitioner’s view
CN108960599B (en) Power transmission line rainstorm disaster refined prediction method and system based on inversion algorithm
Sreelekha et al. Assessment of topological pattern of urban road transport system of Calicut city
Darestani et al. Fragility analysis of coastal roadways and performance assessment of coastal transportation systems subjected to storm hazards
Habib Quantifying topographic ruggedness using principal component analysis
JP7141309B2 (en) Quantitative evaluation system for disaster occurrence risk caused by ground displacement, its method, and its program
Goda et al. Probabilistic tsunami damage assessment considering stochastic source models: Application to the 2011 Tohoku earthquake
Stanislawski et al. Automated road breaching to enhance extraction of natural drainage networks from elevation models through deep learning
Sun et al. Development of the artificial neural network’s swarm-based approaches predicting East Azerbaijan landslide susceptibility mapping
SAHDEV et al. Land Use Planning for Hillside Development Using GIS Based Analytic Hierarchy Process.
Wang et al. The utilization of physically based models and GIS techniques for comprehensive risk assessment of storm surge: A case study of Huizhou
CN111612336A (en) Oil and gas pipeline failure factor correction method based on big data
Bannayan et al. Predicting realizations of daily weather data for climate forecasts using the non‐parametric nearest‐neighbour re‐sampling technique
Xing et al. Patterns of influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction
Chandrasekar et al. Computer application on evaluating beach sediment erosion and accretion from profile survey data
Pires et al. Dynamics of coastal systems using GIS analysis and geomaterials evaluation for groins
Grandmont et al. Assessing land suitability for residential development in permafrost regions: A multi-criteria approach to land-use planning in northern Quebec, Canada
JP7288229B2 (en) Pipeline vulnerability estimation system, pipeline vulnerability estimation method, model creation device, and program
Quiroga et al. Feasibility of mapping and marking underground utilities by state transportation departments
Chettry Geospatial Analysis of Urban Sprawl in Agartala Municipal Council, India, from 1991 to 2021
Rossi Criticality and risk assessment for pipe rehabilitation in the city of Santa Barbara sewer system
Minyi Uncertainty and sensitivity analysis in soil strata model generation for ground settlement risk evaluation
Luo et al. Fuzzy Comprehensive Evaluation of Land Cover Classification Data
Zhao et al. a Praxis on Data Quality Evaluation of Underground Pipeline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751234

Country of ref document: EP

Kind code of ref document: A1