WO2018147071A1 - Method for obtaining target dna fragments - Google Patents

Method for obtaining target dna fragments Download PDF

Info

Publication number
WO2018147071A1
WO2018147071A1 PCT/JP2018/001958 JP2018001958W WO2018147071A1 WO 2018147071 A1 WO2018147071 A1 WO 2018147071A1 JP 2018001958 W JP2018001958 W JP 2018001958W WO 2018147071 A1 WO2018147071 A1 WO 2018147071A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsdna
fragment
type iis
iis restriction
restriction enzyme
Prior art date
Application number
PCT/JP2018/001958
Other languages
French (fr)
Japanese (ja)
Inventor
望 谷内江
足立 大輔
知香子 佐藤
潤一 菅原
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Priority to JP2018567351A priority Critical patent/JPWO2018147071A1/en
Publication of WO2018147071A1 publication Critical patent/WO2018147071A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Definitions

  • the present invention relates to a method for obtaining a target DNA fragment.
  • the type IIs restriction enzyme is a restriction enzyme in which the base sequence (recognition site) recognized by the restriction enzyme is different from the site to be cleaved (cleavage site).
  • Non-Patent Document 1 a method of introducing a recognition site of a type IIs restriction enzyme into a cloning vector, subcloning a DNA fragment in a site-specific manner using a type IIs restriction enzyme (Patent Document 1), and a recognition site and a cleavage site
  • Patent Document 1 a method of introducing a recognition site of a type IIs restriction enzyme into a cloning vector, subcloning a DNA fragment in a site-specific manner using a type IIs restriction enzyme (Patent Document 1), and a recognition site and a cleavage site
  • a method Non-Patent Document 1 is known in which nine double-stranded (ds) DNA fragments are ligated in a specific order in a desired order.
  • Non-Patent Document 1 a target DNA fragment can be obtained in one reaction container using one type of type IIs restriction enzyme.
  • the number of dsDNA fragments that can be ligated in one reaction vessel is limited, and the length of dsDNA fragments that can be prepared without requiring complicated operations is about 100 to 1000 base pairs (bp).
  • the method described in Non-Patent Document 1 is not suitable for obtaining a target DNA fragment of a polymer.
  • the present invention provides a method for obtaining a target DNA fragment by orderly linking a plurality of DNA fragments using a type IIs restriction enzyme even if the target DNA fragment is a polymer.
  • the purpose is to provide.
  • the present invention relates to the following inventions, for example.
  • the first to m 1 m 1 DNA fragments are the first to n 1 n 1 types (where n 1 and m 1 represent a natural number of 3 or more, and n 1 ⁇ m 1 .
  • Dividing the reaction system into one or more reaction systems comprising: (Iv) In one or a plurality of reaction systems, treatment with n1 type IIs type restriction enzymes is performed, and DNA ligation fragments in the reaction system are ligated in a specific order in a sticky end formed by cleavage with a type IIs restriction enzyme. Process, (V) repeating steps (iii) and (iv) until the target DNA fragment is obtained; A method comprising: [2] The first to m 2 m 2 DNA fragments are the first to n 2 n 2 types (where n 2 and m 2 represent a natural number of 3 or more and n 2 ⁇ m 2 .
  • step (1) to (5) (1) below (a) providing - a m 2 pieces of double-stranded (ds) DNA fragment that satisfies (e), (A) the first dsDNA fragment has a base sequence recognized by the first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment; At the end portion on the side to be linked to the dsDNA fragment, the base sequence recognized by the second type IIs restriction enzyme and the sticky end formed by cleavage with the second type IIs restriction enzyme are the second dsDNA.
  • the k 2 dsDNA fragment (where k 2 represents a natural number of 2 or more and (n 2 ⁇ 1) or less) is connected to the terminal portion on the side linked to the (k 2 ⁇ 1) dsDNA fragment.
  • nucleotide sequence recognized by a type IIs restriction enzyme of the k 2 is a sticky end dsDNA fragment of the (k 2 -1) has a nucleotide sequence comprising a complementary, and the end portion of the side connecting the dsDNA fragment of the (k 2 +1), nucleotide sequences recognized by the type IIs restriction enzyme of the (k 2 +1), and the sticky end formed by being cut with a type IIs restriction enzyme (k 2 +1) has a nucleotide sequence comprising the complement of the sticky ends of dsDNA fragments of the (k 2 +1), (C) dsDNA fragments of the n 2 is first in the end on the side connected to the dsDNA fragment (n 2 -1), the base sequence recognized by a type IIs restriction enzyme of the n 2, and the n 2 A sticky end formed by cleaving with a type IIs restriction enzyme has a base sequence
  • the sticky end has a base sequence that is complementary to the sticky end of the (l 2 -1) dsDNA fragment, and the end portion on the side linked to the (l 2 +1) dsDNA fragment has ( l 2 + 1 ⁇ a ⁇ n 2 ) type IIs restriction enzyme and a sticky end formed by cleavage with the (l 2 + 1 ⁇ a ⁇ n 2 ) type IIs restriction enzyme having a sticky end and a base sequence consisting complementary of dsDNA fragments (l 2 +1) (provided that a is a number in the integer portion of a l 2 / n 2.), (E) The m 2 dsDNA fragment has a base that is recognized by the (m 2 -b ⁇ n 2 ) type IIs restriction enzyme at the end
  • the target DNA fragment can be obtained by linking a plurality of DNA fragments in a specific order using a type IIs restriction enzyme.
  • the method of the present invention according to the above [2] has an advantage that automation is easy because the dsDNA fragment or the dsDNA ligation fragment is regularly and mechanically subjected to a ligation reaction.
  • a method for obtaining a target DNA fragment comprises the steps of: 1st to m 1 m 1 DNA fragments, 1 to n 1 n 1 types (where n 1 and m 1 are 3 or more)
  • the target DNA fragment is ligated in ascending order from the first DNA fragment to the m1 DNA fragment using a type IIs restriction enzyme that represents a natural number and n 1 ⁇ m 1 ).
  • m 1 DNA fragments include k 1 (where k 1 represents a natural number of 2 or more and k 1 ⁇ n 1 ⁇ 1).
  • each of the m 1 DNA fragments has a base sequence recognized by different type IIs restriction enzymes at both ends, and the adjacent DNA fragments to be ligated are the same at the ligation ends. And a base sequence that forms a complementary sticky end when cleaved by the type IIs restriction enzyme.
  • the method for obtaining the DNA fragment of interest according to another embodiment, the first to m 2 m 2 of pieces of DNA fragments, the first to n 2 of n 2 kinds (although, n 2 and m 2 is 3 or more It represents a natural number, and a n 2 ⁇ m 2.) using type IIs restriction enzymes, the target DNA fragments by connecting to line up in ascending order from the first DNA fragment to a DNA fragment of the m 2
  • the following steps (1) to (5) are provided.
  • the first dsDNA fragment has a base sequence recognized by the first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment; At the end portion on the side to be linked to the dsDNA fragment, the base sequence recognized by the second type IIs restriction enzyme and the sticky end formed by cleavage with the second type IIs restriction enzyme are the second dsDNA. It has a base sequence that is complementary to the sticky end of the fragment.
  • the k 2 dsDNA fragment (where k 2 represents a natural number of 2 or more and (n 2 ⁇ 1) or less) is connected to the terminal portion on the side linked to the (k 2 ⁇ 1) dsDNA fragment.
  • nucleotide sequence recognized by a type IIs restriction enzyme of the k 2 is a sticky end dsDNA fragment of the (k 2 -1) has a nucleotide sequence comprising a complementary, and the end portion of the side connecting the dsDNA fragment of the (k 2 +1), nucleotide sequences recognized by the type IIs restriction enzyme of the (k 2 +1), and the sticky end formed by being cut with a type IIs restriction enzyme (k 2 +1) has a nucleotide sequence comprising the complement of the sticky ends of dsDNA fragments of the (k 2 +1).
  • (C) dsDNA fragments of the n 2 is first in the end on the side connected to the dsDNA fragment (n 2 -1), the base sequence recognized by a type IIs restriction enzyme of the n 2, and the n 2
  • a sticky end formed by cleaving with a type IIs restriction enzyme has a base sequence complementary to the sticky end of the (n 2 -1) dsDNA fragment, and the (n 2 +1) dsDNA fragment;
  • the base sequence recognized by the first type IIs restriction enzyme and the sticky end formed by cleavage with the first type IIs restriction enzyme are the (n 2 +1) th dsDNA. It has a base sequence that is complementary to the sticky end of the fragment.
  • the l 2nd dsDNA fragment (where l 2 represents a natural number not less than (n 2 +1) and not more than (m 2 ⁇ 1)) is connected to the (l 2 ⁇ 1) dsDNA fragment.
  • the end portion is formed by cutting with type IIs restriction enzymes of the (l 2 -a ⁇ n 2) nucleotide sequences recognized by the type IIs restriction enzymes, and the (l 2 -a ⁇ n 2)
  • the sticky end has a base sequence that is complementary to the sticky end of the (l 2 -1) dsDNA fragment, and the end portion on the side linked to the (l 2 +1) dsDNA fragment has ( l 2 + 1 ⁇ a ⁇ n 2 ) type IIs restriction enzyme and a sticky end formed by cleavage with the (l 2 + 1 ⁇ a ⁇ n 2 ) type IIs restriction enzyme having a sticky end and a base sequence consisting complementary of dsDNA fragments (l 2 +1) (provided that a is
  • the m 2 dsDNA fragment has a base that is recognized by the (m 2 -b ⁇ n 2 ) type IIs restriction enzyme at the end of the side linked to the (m 2 -1) dsDNA fragment. And a base sequence in which the sticky end formed by cleavage with the (m 2 -b ⁇ n 2 ) type IIs restriction enzyme is complementary to the sticky end of the (m 2 -1) dsDNA fragment And is recognized by the (m 2 + 1 ⁇ b ⁇ n 2 ) type IIs restriction enzyme at the end opposite to the end connected to the (m 2 ⁇ 1) dsDNA fragment. (Where b is the numerical value of the integer part of m 2 / n 2 ).
  • dsDNA ligated fragments are placed in different reaction vessels, each containing (n 2 ⁇ 1) so as to contain continuous dsDNA fragments, and if necessary, the remaining dsDNA ligated fragments are A step of placing in a reaction vessel and further ligating the dsDNA ligation fragment by the same operation as in step (3). (5) Repeating step (4) until all dsDNA fragments are linked.
  • FIG. 1 is a diagram for explaining the principle of obtaining a target DNA fragment by a method according to an embodiment of the present invention.
  • ten dsDNA fragments (DNA fg1 to fg10) are used as a first dsDNA fragment (DNA fg1) using three types of type IIs restriction enzymes (first to third RE).
  • first to third RE three types of type IIs restriction enzymes
  • regions indicated by “first RE” to “third RE” are regions including base sequences recognized by the first to third type IIs restriction enzymes, respectively.
  • each of the regions indicated by the first to third REs is a region comprising a part of the base sequence of the target DNA fragment ( It is designed so that a sticky end having a base sequence complementary to the sticky end of the dsDNA fragment that is cut off from the white region in FIG.
  • FIG. 1 (A) shows 10 dsDNA fragments (DNA fg1 to fg10).
  • each of the 10 dsDNA fragments has a base sequence recognized by a different type IIs restriction enzyme at both ends, and the adjacent DNA fragments to be ligated are linked to each other.
  • the first dsDNA fragment (DNA fg1) has a first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment (DNA fg2).
  • a region containing the base sequence recognized by (1) RE (first RE), and the end portion on the side linked to the second dsDNA fragment contains the base sequence recognized by the second type IIs restriction enzyme
  • the end has a base sequence that is complementary to the sticky end of the second dsDNA fragment.
  • the second dsDNA fragment has a region (second RE) containing a base sequence recognized by the second type IIs restriction enzyme at the terminal end linked to the first dsDNA fragment; Furthermore, the sticky end formed by cleaving with the second type IIs restriction enzyme is complementary to the sticky end of the first dsDNA fragment in a region consisting of a part of the base sequence of the target DNA fragment (open region). It has a base sequence that becomes The second dsDNA fragment also has a region (third RE) containing a base sequence recognized by the third type IIs restriction enzyme at the terminal portion on the side linked to the third dsDNA fragment (DNA fg3). And a sticky end formed by cleaving with a third type IIs restriction enzyme in a region consisting of a part of the base sequence of the target DNA fragment (outlined region) is the third dsDNA fragment The base sequence is complementary to the sticky end of.
  • the third dsDNA fragment has a region (third RE) containing a base sequence recognized by the third type IIs restriction enzyme at the terminal portion on the side linked to the second dsDNA fragment. Furthermore, the sticky end formed by cleaving with the third type IIs restriction enzyme in the region consisting of a part of the base sequence of the target DNA fragment (open region) is the sticky end of the second dsDNA fragment. And has a base sequence that is complementary.
  • the third dsDNA fragment also has a region (first RE) containing a base sequence recognized by the first type IIs restriction enzyme at the end portion on the side linked to the fourth dsDNA fragment (DNA fg4). And a sticky end formed by cleaving with the first type IIs restriction enzyme in a region consisting of part of the base sequence of the target DNA fragment (outlined region) is sticky to the fourth dsDNA fragment It has a base sequence that is complementary to the terminal.
  • the l-th dsDNA fragment (DNA fgl: where l represents a natural number of 4 or more and 9 or less) is attached to the end (l ⁇ ) of the side linked to the (l-1) -th dsDNA fragment.
  • the l-th dsDNA fragment is also a region containing the base sequence recognized by the (l + 1-a ⁇ 3) type IIs restriction enzyme (the (( (l + 1-a ⁇ 3) RE), and the (l + 1-a ⁇ 3) type IIs restriction enzyme in the region consisting of a part of the base sequence of the target DNA fragment (outlined region)
  • the sticky end formed by cleaving in step 1 has a base sequence that is complementary to the sticky end of the (l + 1) th dsDNA fragment.
  • the tenth dsDNA fragment (DNA fg10) is a base that is recognized by the (10-b ⁇ 3) type IIs restriction enzyme at the end linked to the ninth dsDNA fragment (DNA fg9). It has a region containing the sequence (first RE) and is further cleaved with the first type IIs restriction enzyme in a region consisting of part of the base sequence of the target DNA fragment (outlined region)
  • the sticky end to be prepared has a base sequence that is complementary to the sticky end of the ninth dsDNA fragment.
  • the tenth dsDNA fragment also contains a base sequence recognized by the (10 + 1-b ⁇ 3) type IIs restriction enzyme at the end opposite to the end linked to the ninth dsDNA fragment. It has a region (second RE).
  • b is a numerical value of the integer part of m / n, and is 3 in the example of FIG.
  • the dsDNA fragment described above may be dsDNA having blunt ends at both ends, or dsDNA having a single-stranded overhang region at one end or both ends.
  • the dsDNA fragment can be obtained by a conventionally known genetic engineering technique.
  • a dsDNA fragment is obtained by synthesizing an oligo DNA having a designed base sequence of a dsDNA fragment and an oligoDNA having a complementary sequence thereof according to a conventional method and then hybridizing them to prepare a ds oligo DNA. Can do.
  • reaction system 1 includes DNA fg1 and DNA fg2
  • reaction system 2 includes DNA fg3 and DNA fg4
  • reaction system 3 includes DNA fg5 and DNA fg6
  • reaction system 4 includes DNA fg7 and DNA fg6.
  • the reaction system 5 contains fg8 and DNA fg9 and DNA fg10. If there is a remaining dsDNA fragment (for example, if DNA fg11 is present), the remaining dsDNA fragment may be used as the reaction system 6.
  • All the first to third types of IIs type restriction enzymes are added to each reaction system.
  • one type IIs type restriction enzyme solution (a solution containing all type IIs type restriction enzymes) may be prepared and dispensed to each reaction system, which simplifies the process and facilitates automation. become.
  • type IIs restriction enzymes examples include type IIs restriction enzymes described in Table 1.
  • each dsDNA fragment is cleaved with a type IIs restriction enzyme.
  • the adjoining dsDNA fragments each form a complementary sticky end at the end of the connecting side.
  • the adjoining dsDNA fragment specifically hybridizes via the sticky end.
  • Hybridization can be promoted by adding a crowding agent such as polyethylene glycol (PEG), Ficoll, or dextran to the reaction system.
  • PEG polyethylene glycol
  • Ficoll Ficoll
  • dextran dextran
  • nicks that is, a portion lacking a phosphodiester bond
  • DNA ligase examples include Taq ligase, Amprigase Thermostable DNA ligase (Epicentre Biotechnologies), Thermostable Tfi DNA ligase (Bioneer, Inc).
  • reaction system 1 a dsDNA-linked fragment in which DNA fg1 and DNA fg2 are linked in the region indicated by the second RE is obtained.
  • the region indicated by the second RE has been removed, and the region indicated by the first RE and the region indicated by the third RE are included at both ends.
  • reaction systems 2-5 The same applies to reaction systems 2-5.
  • the obtained dsDNA ligation fragments are put in two, each in a different reaction vessel so as to contain continuous dsDNA fragments.
  • the dsDNA ligation fragment obtained in the reaction system 1 and the dsDNA ligation fragment obtained in the reaction system 2 were placed in the first reaction vessel and obtained in the reaction system 3.
  • the dsDNA ligation fragments and the dsDNA ligation fragments (two in total) obtained in the reaction system 4 are put in the second reaction vessel.
  • the dsDNA ligation fragment obtained in the reaction system 1 includes a first dsDNA fragment and a second dsDNA fragment
  • the dsDNA ligation fragment obtained in the reaction system 2 includes the third dsDNA fragment and the fourth dsDNA fragment. Therefore, the first reaction vessel (reaction system) containing these (two pieces) contains the first to fourth continuous dsDNA fragments.
  • the dsDNA ligation fragment obtained in the reaction system 5 is the remaining one.
  • the dsDNA ligation fragment (one piece) obtained in the reaction system 5 is put into the third reaction vessel.
  • each dsDNA ligation fragment is cleaved by the type IIs restriction enzyme, and each adjoining dsDNA ligation fragment forms a complementary sticky end at the end of the ligation side. Then, the adjoining dsDNA ligation fragments specifically hybridize via the sticky ends, and nicks are joined by DNA ligase to obtain a larger dsDNA ligation fragment.
  • the details of the reaction are as described above.
  • the region indicated by the first RE and the region indicated by the second RE are included at both ends of the obtained target DNA fragment. These regions can be used for operations such as cloning of a target DNA fragment into a cloning vector, for example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a method whereby n types of IIs restriction enzymes are used, first to m-th DNA fragments are linked so as to be arranged in ascending order, and a target DNA fragment is obtained. The method comprises: a step (i) in which an m number of DNA fragments are separated into a plurality of reaction systems; a step (ii) in which DNA fragments in each reaction system are linked order-specifically, using IIs restriction enzymes; a step (iii) in which the obtained linking DNA fragments are separated into at least one reaction system; a step (iv) in which the linking DNA fragments in each reaction system are linked order-specifically, using IIs restriction enzymes; and a step (v) in which steps (iii) and (iv) are repeated until the target DNA fragment is obtained.

Description

目的DNA断片を得る方法Method for obtaining a target DNA fragment
 本発明は、目的DNA断片を得る方法に関する。 The present invention relates to a method for obtaining a target DNA fragment.
 IIs型制限酵素は、当該制限酵素により認識される塩基配列(認識部位)と、切断される部位(切断部位)が異なる制限酵素である。 The type IIs restriction enzyme is a restriction enzyme in which the base sequence (recognition site) recognized by the restriction enzyme is different from the site to be cleaved (cleavage site).
 これまでに、IIs型制限酵素の認識部位をクローニングベクターに導入し、IIs型制限酵素を使用して部位特異的にDNA断片をサブクローニングする方法(特許文献1)、及び認識部位と切断部位との位置関係を適切に設計することにより、IIs型制限酵素による切断で形成される粘着末端(スティッキー・エンド)の塩基配列を制御し、1反応容器中で1種類のIIs型制限酵素を利用して、9個の二本鎖(ds)DNA断片を目的とする順に順特異的に連結する方法(非特許文献1)が知られている。 Up to now, a method of introducing a recognition site of a type IIs restriction enzyme into a cloning vector, subcloning a DNA fragment in a site-specific manner using a type IIs restriction enzyme (Patent Document 1), and a recognition site and a cleavage site By appropriately designing the positional relationship, the base sequence of the sticky end formed by cleavage with a type IIs restriction enzyme is controlled, and one type of type IIs restriction enzyme is used in one reaction vessel. In addition, a method (Non-Patent Document 1) is known in which nine double-stranded (ds) DNA fragments are ligated in a specific order in a desired order.
米国特許出願公開第2010/0291633号明細書US Patent Application Publication No. 2010/0291633
 非特許文献1に記載の方法では、1種類のIIs型制限酵素を利用して1反応容器中で目的DNA断片を得ることができる。しかしながら、1反応容器中で連結できるdsDNA断片の数には限りがあり、また、煩雑な操作を要することなく準備できるdsDNA断片の長さが100~1000塩基対(bp)程度であることから、非特許文献1に記載の方法は、高分子の目的DNA断片を得ることには向いていない。 In the method described in Non-Patent Document 1, a target DNA fragment can be obtained in one reaction container using one type of type IIs restriction enzyme. However, the number of dsDNA fragments that can be ligated in one reaction vessel is limited, and the length of dsDNA fragments that can be prepared without requiring complicated operations is about 100 to 1000 base pairs (bp). The method described in Non-Patent Document 1 is not suitable for obtaining a target DNA fragment of a polymer.
 本発明は、上述した問題に鑑み、目的DNA断片が高分子の場合であっても、IIs型制限酵素を利用して、複数のDNA断片を順特異的に連結して目的DNA断片を得る方法を提供することを目的とする。 In view of the above-described problems, the present invention provides a method for obtaining a target DNA fragment by orderly linking a plurality of DNA fragments using a type IIs restriction enzyme even if the target DNA fragment is a polymer. The purpose is to provide.
 本発明は、例えば、以下の各発明に関する。
[1]
 第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法であって、
 m個のDNA断片はそれぞれ、両末端部に異なるIIs型制限酵素により認識される塩基配列を有し、かつ隣接して連結するDNA断片はそれぞれ、連結する側の末端部に同一のIIs型制限酵素により認識される塩基配列、及び当該IIs型制限酵素で切断されたときに相補的な粘着末端を形成する塩基配列を有しており、
(i)m個のDNA断片を、k個(ただし、kは2以上の自然数を表し、かつk≦n-1である。)の連続したDNA断片を含む複数の反応系に分ける工程と、
(ii)各反応系において、n種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA断片を順特異的に連結する工程と、
(iii)得られたDNA連結断片を、連続したDNA断片を含むようにl1個(ただし、lは2以上の自然数を表し、かつl≦n-1である。)のDNA連結断片を含む1又は複数の反応系に分ける工程と、
(iv)1又は複数の各反応系において、n1種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA連結断片を順特異的に連結する工程と、
(v)目的DNA断片が得られるまで(iii)及び(iv)の工程を繰り返す工程と、
を備える、方法。
[2]
 第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法であって、
 以下の工程(1)~工程(5):
(1)以下の(a)~(e)を満たすm個の二本鎖(ds)DNA断片を準備する工程、
 (a)第1のdsDNA断片は、第2のdsDNA断片と連結する側の末端部とは反対の末端部に、第1のIIs型制限酵素により認識される塩基配列を有し、かつ第2のdsDNA断片と連結する側の末端部には、第2のIIs型制限酵素により認識される塩基配列、及び第2のIIs型制限酵素で切断されて形成される粘着末端が、第2のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
 (b)第kのdsDNA断片(ただし、kは2以上(n-1)以下の自然数を表す。)は、第(k-1)のdsDNA断片と連結する側の末端部に、第kのIIs型制限酵素により認識される塩基配列、及び第kのIIs型制限酵素で切断されて形成される粘着末端が、第(k-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(k+1)のdsDNA断片と連結する側の末端部には、第(k+1)のIIs型制限酵素により認識される塩基配列、及び第(k+1)のIIs型制限酵素で切断されて形成される粘着末端が、第(k+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
 (c)第nのdsDNA断片は、第(n-1)のdsDNA断片と連結する側の末端部に、第nのIIs型制限酵素により認識される塩基配列、及び第nのIIs型制限酵素で切断されて形成される粘着末端が、第(n-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(n+1)のdsDNA断片と連結する側の末端部には、第1のIIs型制限酵素により認識される塩基配列、及び第1のIIs型制限酵素で切断されて形成される粘着末端が、第(n+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
 (d)第lのdsDNA断片(ただし、lは(n+1)以上(m-1)以下の自然数を表す。)は、第(l-1)のdsDNA断片と連結する側の末端部に、第(l-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(l+1)のdsDNA断片と連結する側の末端部には、第(l+1-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l+1-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する(ただし、aはl/nの整数部分の数値である。)、
 (e)第mのdsDNA断片は、第(m-1)のdsDNA断片と連結する側の末端部に、第(m-b×n)のIIs型制限酵素により認識される塩基配列、及び第(m-b×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(m-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(m-1)のdsDNA断片と連結する側の末端部とは反対側の末端部には、第(m+1-b×n)のIIs型制限酵素により認識される塩基配列を有する(ただし、bはm/nの整数部分の数値である。)、
(2)m個のdsDNA断片を、第1のdsDNA断片から昇順で、(n-1)個づつ、それぞれ異なるc個の反応容器(ただし、cはm/(n-1)の整数部分の数値である。)に入れ、更に必要に応じて残余のdsDNA断片をc個の反応容器とは異なる1個の反応容器に入れる工程、
(3)dsDNA断片を含む反応容器それぞれに第1~第nのn種類のIIs型制限酵素を全て入れ、全IIs型制限酵素で処理した後、切断により形成された粘着末端で反応容器中のdsDNA断片を順特異的に連結する工程、
(4)得られたdsDNA連結断片を、連続したdsDNA断片を含むように(n-1)個づつ、それぞれ異なる反応容器に入れ、更に必要に応じて残余のdsDNA連結断片を異なる1個の反応容器に入れ、工程(3)と同様の操作でdsDNA連結断片を更に連結する工程、
(5)全てのdsDNA断片が連結されるまで工程(4)を繰り返す工程、
を備える、方法。
[3]
 IIs型制限酵素がAarI、AcuI、AlwI、BbsI、BbvI、BccI、BceAI、BciVI、BcoDI、BfuAI、BmrI、BpmI、BpuEI、BsaI、BsgI、BsmAI、BsmBI、BsmFI、BspMI、BspPI、BspQI、BsrDI、BtgZI、BstCI、EarI、EciI、Ecop15I、FauI、FokI、HgaI、HphI、HpyAV、Ksp632I、MboII、MmeI、Mn1I、SapI及びSfaNIからなる群より選ばれる少なくとも1種のIIs型制限酵素である、[1]又は[2]に記載の方法。
The present invention relates to the following inventions, for example.
[1]
The first to m 1 m 1 DNA fragments are the first to n 1 n 1 types (where n 1 and m 1 represent a natural number of 3 or more, and n 1 <m 1 . ) using type IIs restriction enzymes, a method for obtaining the desired DNA fragment by ligating to line up in ascending order from the first DNA fragment to a DNA fragment of the m 1,
m 1 pieces each DNA fragment of a nucleotide sequence recognized by a different type IIs restriction enzyme at both ends, and each DNA fragment to be connected adjacent to, the same type IIs the distal end of the side connecting A base sequence recognized by a restriction enzyme, and a base sequence that forms a complementary sticky end when cleaved by the type IIs restriction enzyme;
The (i) m 1 pieces of DNA fragments, k 1 pieces (where, k 1 represents 2 or more natural number, and a k 1n 1 -1.) A plurality of reaction system containing a continuous DNA fragment Dividing the process into
(Ii) in each reaction system, a step of treatment with n 1 kind of type IIs restriction enzymes, ligating the DNA fragments in the reaction system in sticky ends formed by cleavage with type IIs restriction enzymes forward specifically,
(Iii) 11 ligated DNA ligated fragments (where l 1 represents a natural number of 2 or more and l 1 ≦ n 1 −1) so that the obtained DNA ligated fragments include continuous DNA fragments. Dividing the reaction system into one or more reaction systems comprising:
(Iv) In one or a plurality of reaction systems, treatment with n1 type IIs type restriction enzymes is performed, and DNA ligation fragments in the reaction system are ligated in a specific order in a sticky end formed by cleavage with a type IIs restriction enzyme. Process,
(V) repeating steps (iii) and (iv) until the target DNA fragment is obtained;
A method comprising:
[2]
The first to m 2 m 2 DNA fragments are the first to n 2 n 2 types (where n 2 and m 2 represent a natural number of 3 or more and n 2 <m 2 . ) using type IIs restriction enzymes, a method for obtaining the desired DNA fragment by ligating to line up in ascending order from the first DNA fragment to a DNA fragment of the m 2,
The following steps (1) to (5):
(1) below (a) providing - a m 2 pieces of double-stranded (ds) DNA fragment that satisfies (e),
(A) the first dsDNA fragment has a base sequence recognized by the first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment; At the end portion on the side to be linked to the dsDNA fragment, the base sequence recognized by the second type IIs restriction enzyme and the sticky end formed by cleavage with the second type IIs restriction enzyme are the second dsDNA. It has a base sequence that is complementary to the sticky end of the fragment,
(B) The k 2 dsDNA fragment (where k 2 represents a natural number of 2 or more and (n 2 −1) or less) is connected to the terminal portion on the side linked to the (k 2 −1) dsDNA fragment. , nucleotide sequence recognized by a type IIs restriction enzyme of the k 2, and sticky ends are formed by being cut with a type IIs restriction enzyme of the k 2 is a sticky end dsDNA fragment of the (k 2 -1) has a nucleotide sequence comprising a complementary, and the end portion of the side connecting the dsDNA fragment of the (k 2 +1), nucleotide sequences recognized by the type IIs restriction enzyme of the (k 2 +1), and the sticky end formed by being cut with a type IIs restriction enzyme (k 2 +1) has a nucleotide sequence comprising the complement of the sticky ends of dsDNA fragments of the (k 2 +1),
(C) dsDNA fragments of the n 2 is first in the end on the side connected to the dsDNA fragment (n 2 -1), the base sequence recognized by a type IIs restriction enzyme of the n 2, and the n 2 A sticky end formed by cleaving with a type IIs restriction enzyme has a base sequence complementary to the sticky end of the (n 2 -1) dsDNA fragment, and the (n 2 +1) dsDNA fragment; At the terminal end on the ligation side, the base sequence recognized by the first type IIs restriction enzyme and the sticky end formed by cleavage with the first type IIs restriction enzyme are the (n 2 +1) th dsDNA. It has a base sequence that is complementary to the sticky end of the fragment,
(D) the l 2nd dsDNA fragment (where l 2 represents a natural number not less than (n 2 +1) and not more than (m 2 −1)) is connected to the (l 2 −1) dsDNA fragment. the end portion, is formed by cutting with type IIs restriction enzymes of the (l 2 -a × n 2) nucleotide sequences recognized by the type IIs restriction enzymes, and the (l 2 -a × n 2) The sticky end has a base sequence that is complementary to the sticky end of the (l 2 -1) dsDNA fragment, and the end portion on the side linked to the (l 2 +1) dsDNA fragment has ( l 2 + 1−a × n 2 ) type IIs restriction enzyme and a sticky end formed by cleavage with the (l 2 + 1−a × n 2 ) type IIs restriction enzyme having a sticky end and a base sequence consisting complementary of dsDNA fragments (l 2 +1) (provided that a is a number in the integer portion of a l 2 / n 2.),
(E) The m 2 dsDNA fragment has a base that is recognized by the (m 2 -b × n 2 ) type IIs restriction enzyme at the end of the side linked to the (m 2 -1) dsDNA fragment. And a base sequence in which the sticky end formed by cleavage with the (m 2 -b × n 2 ) type IIs restriction enzyme is complementary to the sticky end of the (m 2 -1) dsDNA fragment And is recognized by the (m 2 + 1−b × n 2 ) type IIs restriction enzyme at the end opposite to the end connected to the (m 2 −1) dsDNA fragment. (Where b is the numerical value of the integer part of m 2 / n 2 ),
(2) m 2 dsDNA fragments in ascending order from the first dsDNA fragment, each having (n 2 -1) c different reaction vessels (where c is an integer of m / (n-1)) A step of placing the remaining dsDNA fragments in one reaction vessel different from c reaction vessels, if necessary.
(3) Put all n 2 kinds of first to n 2 type IIs restriction enzyme to each reaction vessel containing the dsDNA fragment, after treatment with all type IIs restriction enzyme, the reaction vessel at a sticky end formed by the cut Linking the dsDNA fragments therein in a forward specific manner,
(4) The obtained dsDNA ligated fragments are placed in different reaction vessels, each containing (n 2 −1) so as to contain continuous dsDNA fragments, and if necessary, the remaining dsDNA ligated fragments are Placing in a reaction vessel and further ligating the dsDNA ligation fragment in the same manner as in step (3),
(5) repeating step (4) until all dsDNA fragments are ligated,
A method comprising:
[3]
Type IIs restriction enzymes are AarI, AcuI, AlwI, BbsI, BbvI, BccI, BceAI, BciVI, BcoDI, BfuAI, BmrI, BpmI, BpuEI, BsaI, BsgI, BsmBI, BsmBs, BsmBs, BsmB , BstCI, EarI, EciI, Ecop15I, FauI, FokI, HgaI, HphI, HpyAV, Ksp632I, MboII, MmeI, Mn1I, SapI, and SfaNI, [1] Or the method as described in [2].
 本発明によれば、目的DNA断片が高分子の場合であっても、IIs型制限酵素を利用して、複数のDNA断片を順特異的に連結して目的DNA断片を得ることができる。また、上記[2]に係る本発明の方法は、dsDNA断片又はdsDNA連結断片を規則的かつ機械的に連結反応に供するものであることから、自動化が容易であるという利点もある。 According to the present invention, even if the target DNA fragment is a polymer, the target DNA fragment can be obtained by linking a plurality of DNA fragments in a specific order using a type IIs restriction enzyme. Further, the method of the present invention according to the above [2] has an advantage that automation is easy because the dsDNA fragment or the dsDNA ligation fragment is regularly and mechanically subjected to a ligation reaction.
本発明の一実施形態に係る方法により、目的DNA断片を得る原理を説明する図である。It is a figure explaining the principle which obtains a target DNA fragment by the method concerning one embodiment of the present invention.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 一実施形態に係る目的DNA断片を得る方法は、第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法に関し、(i)m個のDNA断片を、k個(ただし、kは2以上の自然数を表し、かつk≦n-1である。)の連続したDNA断片を含む複数の反応系に分ける工程と、(ii)各反応系において、n種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA断片を順特異的に連結する工程と、(iii)得られたDNA連結断片を、連続したDNA断片を含むようにl個(ただし、lは2以上の自然数を表し、かつl≦n-1である。)のDNA連結断片を含む1又は複数の反応系に分ける工程と、(iv)1又は複数の各反応系において、n種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA連結断片を順特異的に連結する工程と、(v)目的DNA断片が得られるまで(iii)及び(iv)の工程を繰り返す工程と、を備える。ここで、m個のDNA断片はそれぞれ、両末端部に異なるIIs型制限酵素により認識される塩基配列を有し、かつ隣接して連結するDNA断片はそれぞれ、連結する側の末端部に同一のIIs型制限酵素により認識される塩基配列、及び当該IIs型制限酵素で切断されたときに相補的な粘着末端を形成する塩基配列を有している。 According to one embodiment, a method for obtaining a target DNA fragment comprises the steps of: 1st to m 1 m 1 DNA fragments, 1 to n 1 n 1 types (where n 1 and m 1 are 3 or more) The target DNA fragment is ligated in ascending order from the first DNA fragment to the m1 DNA fragment using a type IIs restriction enzyme that represents a natural number and n 1 <m 1 ). Regarding the obtaining method, (i) m 1 DNA fragments include k 1 (where k 1 represents a natural number of 2 or more and k 1 ≦ n 1 −1). a step of dividing the plurality of reaction system in each reaction system (ii), was treated with n 1 kind of type IIs restriction enzyme, the DNA fragments in the reaction system in sticky ends formed by cleavage with type IIs restriction enzyme sequence A step of specific ligation, and (iii) the obtained DNA ligation fragment , L 1 or to include a contiguous DNA fragment (however, l 1 represents 2 or more natural number, and a l 1 ≦ n 1 -1.) DNA contigs one or more of the reaction system containing the a And (iv) in one or a plurality of reaction systems, each of the reaction systems is treated with one type IIs type restriction enzyme, and the DNA ligation fragments in the reaction system are sequentially processed at the sticky ends formed by cleavage with the type IIs restriction enzyme. Specific ligation, and (v) repeating steps (iii) and (iv) until the target DNA fragment is obtained. Here, each of the m 1 DNA fragments has a base sequence recognized by different type IIs restriction enzymes at both ends, and the adjacent DNA fragments to be ligated are the same at the ligation ends. And a base sequence that forms a complementary sticky end when cleaved by the type IIs restriction enzyme.
 他の実施形態に係る目的DNA断片を得る方法は、第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法に関し、以下の工程(1)~工程(5)を備える。
(1)以下の(a)~(e)を満たすm個の二本鎖(ds)DNA断片を準備する工程。
 (a)第1のdsDNA断片は、第2のdsDNA断片と連結する側の末端部とは反対の末端部に、第1のIIs型制限酵素により認識される塩基配列を有し、かつ第2のdsDNA断片と連結する側の末端部には、第2のIIs型制限酵素により認識される塩基配列、及び第2のIIs型制限酵素で切断されて形成される粘着末端が、第2のdsDNA断片の粘着末端と相補的になる塩基配列を有する。
 (b)第kのdsDNA断片(ただし、kは2以上(n-1)以下の自然数を表す。)は、第(k-1)のdsDNA断片と連結する側の末端部に、第kのIIs型制限酵素により認識される塩基配列、及び第kのIIs型制限酵素で切断されて形成される粘着末端が、第(k-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(k+1)のdsDNA断片と連結する側の末端部には、第(k+1)のIIs型制限酵素により認識される塩基配列、及び第(k+1)のIIs型制限酵素で切断されて形成される粘着末端が、第(k+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する。
 (c)第nのdsDNA断片は、第(n-1)のdsDNA断片と連結する側の末端部に、第nのIIs型制限酵素により認識される塩基配列、及び第nのIIs型制限酵素で切断されて形成される粘着末端が、第(n-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(n+1)のdsDNA断片と連結する側の末端部には、第1のIIs型制限酵素により認識される塩基配列、及び第1のIIs型制限酵素で切断されて形成される粘着末端が、第(n+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する。
 (d)第lのdsDNA断片(ただし、lは(n+1)以上(m-1)以下の自然数を表す。)は、第(l-1)のdsDNA断片と連結する側の末端部に、第(l-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(l+1)のdsDNA断片と連結する側の末端部には、第(l+1-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l+1-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する(ただし、aはl/nの整数部分の数値である。)。
 (e)第mのdsDNA断片は、第(m-1)のdsDNA断片と連結する側の末端部に、第(m-b×n)のIIs型制限酵素により認識される塩基配列、及び第(m-b×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(m-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(m-1)のdsDNA断片と連結する側の末端部とは反対側の末端部には、第(m+1-b×n)のIIs型制限酵素により認識される塩基配列を有する(ただし、bはm/nの整数部分の数値である。)。
(2)m個のdsDNA断片を、第1のdsDNA断片から昇順で、(n-1)個づつ、それぞれ異なるc個の反応容器(ただし、cはm/(n-1)の整数部分の数値である。)に入れ、更に必要に応じて残余のdsDNA断片をc個の反応容器とは異なる1個の反応容器に入れる工程。
(3)dsDNA断片を含む反応容器それぞれに第1~第nのn種類のIIs型制限酵素を全て入れ、全IIs型制限酵素で処理した後、切断により形成された粘着末端で反応容器中のdsDNA断片を順特異的に連結する工程。
(4)得られたdsDNA連結断片を、連続したdsDNA断片を含むように(n-1)個づつ、それぞれ異なる反応容器に入れ、更に必要に応じて残余のdsDNA連結断片を異なる1個の反応容器に入れ、工程(3)と同様の操作でdsDNA連結断片を更に連結する工程。
(5)全てのdsDNA断片が連結されるまで工程(4)を繰り返す工程。
The method for obtaining the DNA fragment of interest according to another embodiment, the first to m 2 m 2 of pieces of DNA fragments, the first to n 2 of n 2 kinds (although, n 2 and m 2 is 3 or more It represents a natural number, and a n 2 <m 2.) using type IIs restriction enzymes, the target DNA fragments by connecting to line up in ascending order from the first DNA fragment to a DNA fragment of the m 2 The following steps (1) to (5) are provided.
(1) A step of preparing m 2 double-stranded (ds) DNA fragments satisfying the following (a) to (e).
(A) the first dsDNA fragment has a base sequence recognized by the first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment; At the end portion on the side to be linked to the dsDNA fragment, the base sequence recognized by the second type IIs restriction enzyme and the sticky end formed by cleavage with the second type IIs restriction enzyme are the second dsDNA. It has a base sequence that is complementary to the sticky end of the fragment.
(B) The k 2 dsDNA fragment (where k 2 represents a natural number of 2 or more and (n 2 −1) or less) is connected to the terminal portion on the side linked to the (k 2 −1) dsDNA fragment. , nucleotide sequence recognized by a type IIs restriction enzyme of the k 2, and sticky ends are formed by being cut with a type IIs restriction enzyme of the k 2 is a sticky end dsDNA fragment of the (k 2 -1) has a nucleotide sequence comprising a complementary, and the end portion of the side connecting the dsDNA fragment of the (k 2 +1), nucleotide sequences recognized by the type IIs restriction enzyme of the (k 2 +1), and the sticky end formed by being cut with a type IIs restriction enzyme (k 2 +1) has a nucleotide sequence comprising the complement of the sticky ends of dsDNA fragments of the (k 2 +1).
(C) dsDNA fragments of the n 2 is first in the end on the side connected to the dsDNA fragment (n 2 -1), the base sequence recognized by a type IIs restriction enzyme of the n 2, and the n 2 A sticky end formed by cleaving with a type IIs restriction enzyme has a base sequence complementary to the sticky end of the (n 2 -1) dsDNA fragment, and the (n 2 +1) dsDNA fragment; At the terminal end on the ligation side, the base sequence recognized by the first type IIs restriction enzyme and the sticky end formed by cleavage with the first type IIs restriction enzyme are the (n 2 +1) th dsDNA. It has a base sequence that is complementary to the sticky end of the fragment.
(D) the l 2nd dsDNA fragment (where l 2 represents a natural number not less than (n 2 +1) and not more than (m 2 −1)) is connected to the (l 2 −1) dsDNA fragment. the end portion, is formed by cutting with type IIs restriction enzymes of the (l 2 -a × n 2) nucleotide sequences recognized by the type IIs restriction enzymes, and the (l 2 -a × n 2) The sticky end has a base sequence that is complementary to the sticky end of the (l 2 -1) dsDNA fragment, and the end portion on the side linked to the (l 2 +1) dsDNA fragment has ( l 2 + 1−a × n 2 ) type IIs restriction enzyme and a sticky end formed by cleavage with the (l 2 + 1−a × n 2 ) type IIs restriction enzyme having a sticky end and a base sequence consisting complementary of dsDNA fragments (l 2 +1) (provided that a is a number in the integer portion of a l 2 / n 2.).
(E) The m 2 dsDNA fragment has a base that is recognized by the (m 2 -b × n 2 ) type IIs restriction enzyme at the end of the side linked to the (m 2 -1) dsDNA fragment. And a base sequence in which the sticky end formed by cleavage with the (m 2 -b × n 2 ) type IIs restriction enzyme is complementary to the sticky end of the (m 2 -1) dsDNA fragment And is recognized by the (m 2 + 1−b × n 2 ) type IIs restriction enzyme at the end opposite to the end connected to the (m 2 −1) dsDNA fragment. (Where b is the numerical value of the integer part of m 2 / n 2 ).
(2) m 2 dsDNA fragments in ascending order from the first dsDNA fragment, each having (n 2 -1) c different reaction vessels (where c is an integer of m / (n-1)) And the remaining dsDNA fragment is placed in one reaction vessel different from c reaction vessels as necessary.
(3) Put all n 2 kinds of first to n 2 type IIs restriction enzyme to each reaction vessel containing the dsDNA fragment, after treatment with all type IIs restriction enzyme, the reaction vessel at a sticky end formed by the cut A step of ligating the dsDNA fragments therein in a specific order.
(4) The obtained dsDNA ligated fragments are placed in different reaction vessels, each containing (n 2 −1) so as to contain continuous dsDNA fragments, and if necessary, the remaining dsDNA ligated fragments are A step of placing in a reaction vessel and further ligating the dsDNA ligation fragment by the same operation as in step (3).
(5) Repeating step (4) until all dsDNA fragments are linked.
 図1は、本発明の一実施形態に係る方法により、目的DNA断片を得る原理を説明する図である。図1に示す方法は、10個のdsDNA断片(DNA fg1~fg10)を、3種類のIIs型制限酵素(第1~第3のRE)を使用して、第1のdsDNA断片(DNA fg1)から第10のdsDNA断片(DNA fg10)まで昇順で並ぶように連結することにより目的DNA断片を得る方法である(m=10,n=3)。 FIG. 1 is a diagram for explaining the principle of obtaining a target DNA fragment by a method according to an embodiment of the present invention. In the method shown in FIG. 1, ten dsDNA fragments (DNA fg1 to fg10) are used as a first dsDNA fragment (DNA fg1) using three types of type IIs restriction enzymes (first to third RE). To the 10th dsDNA fragment (DNA fg10) so as to be arranged in ascending order to obtain the target DNA fragment (m = 10, n = 3).
 図1中、「第1のRE」~「第3のRE」で示される領域は、それぞれ第1~第3のIIs型制限酵素により認識される塩基配列を含む領域である。また、各dsDNA断片は、第1~第3のIIs型制限酵素により切断されたときに、それぞれ第1~3のREで示される領域が、目的DNA断片の塩基配列の一部からなる領域(図1中、白抜きの領域)から切り離され、かつ隣接して連結するdsDNA断片の粘着末端と相補的な塩基配列を有する粘着末端が形成されるように設計されている。 In FIG. 1, regions indicated by “first RE” to “third RE” are regions including base sequences recognized by the first to third type IIs restriction enzymes, respectively. In addition, when each dsDNA fragment is cleaved by the first to third type IIs restriction enzymes, each of the regions indicated by the first to third REs is a region comprising a part of the base sequence of the target DNA fragment ( It is designed so that a sticky end having a base sequence complementary to the sticky end of the dsDNA fragment that is cut off from the white region in FIG.
 図1(A)は、10個のdsDNA断片(DNA fg1~fg10)が示されている。図1(A)に示すとおり、10個のdsDNA断片はそれぞれ、両末端部に異なるIIs型制限酵素により認識される塩基配列を有し、かつ隣接して連結するDNA断片はそれぞれ、連結する側の末端部に同一のIIs型制限酵素により認識される塩基配列、及び当該IIs型制限酵素で切断されたときに相補的な粘着末端を形成する塩基配列を有している。 FIG. 1 (A) shows 10 dsDNA fragments (DNA fg1 to fg10). As shown in FIG. 1 (A), each of the 10 dsDNA fragments has a base sequence recognized by a different type IIs restriction enzyme at both ends, and the adjacent DNA fragments to be ligated are linked to each other. Have a base sequence that is recognized by the same type IIs restriction enzyme and a base sequence that forms a complementary sticky end when cleaved by the type IIs restriction enzyme.
 具体的には、(a)第1のdsDNA断片(DNA fg1)は、第2のdsDNA断片(DNA fg2)と連結する側の末端部とは反対の末端部に、第1のIIs型制限酵素により認識される塩基配列を含む領域(第1のRE)を有し、かつ第2のdsDNA断片と連結する側の末端部には、第2のIIs型制限酵素により認識される塩基配列を含む領域(第2のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第2のIIs型制限酵素で切断されて形成される粘着末端が、第2のdsDNA断片の粘着末端と相補的になる塩基配列を有する。 Specifically, (a) the first dsDNA fragment (DNA fg1) has a first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment (DNA fg2). A region containing the base sequence recognized by (1) RE (first RE), and the end portion on the side linked to the second dsDNA fragment contains the base sequence recognized by the second type IIs restriction enzyme An adhesion formed by cleaving with a second type IIs restriction enzyme in a region (outlined region) having a region (second RE) and further comprising a part of the base sequence of the target DNA fragment The end has a base sequence that is complementary to the sticky end of the second dsDNA fragment.
 (b)第2のdsDNA断片は、第1のdsDNA断片と連結する側の末端部に、第2のIIs型制限酵素により認識される塩基配列を含む領域(第2のRE)を有し、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第2のIIs型制限酵素で切断されて形成される粘着末端が、第1のdsDNA断片の粘着末端と相補的になる塩基配列を有する。第2のdsDNA断片はまた、第3のdsDNA断片(DNA fg3)と連結する側の末端部には、第3のIIs型制限酵素により認識される塩基配列を含む領域(第3のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第3のIIs型制限酵素で切断されて形成される粘着末端が、第3のdsDNA断片の粘着末端と相補的になる塩基配列を有する。 (B) the second dsDNA fragment has a region (second RE) containing a base sequence recognized by the second type IIs restriction enzyme at the terminal end linked to the first dsDNA fragment; Furthermore, the sticky end formed by cleaving with the second type IIs restriction enzyme is complementary to the sticky end of the first dsDNA fragment in a region consisting of a part of the base sequence of the target DNA fragment (open region). It has a base sequence that becomes The second dsDNA fragment also has a region (third RE) containing a base sequence recognized by the third type IIs restriction enzyme at the terminal portion on the side linked to the third dsDNA fragment (DNA fg3). And a sticky end formed by cleaving with a third type IIs restriction enzyme in a region consisting of a part of the base sequence of the target DNA fragment (outlined region) is the third dsDNA fragment The base sequence is complementary to the sticky end of.
 (c)第3のdsDNA断片は、第2のdsDNA断片と連結する側の末端部に、第3のIIs型制限酵素により認識される塩基配列を含む領域(第3のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第3のIIs型制限酵素で切断されて形成される粘着末端が、第2のdsDNA断片の粘着末端と相補的になる塩基配列を有する。第3のdsDNA断片はまた、第4のdsDNA断片(DNA fg4)と連結する側の末端部には、第1のIIs型制限酵素により認識される塩基配列を含む領域(第1のRE)を有し、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第1のIIs型制限酵素で切断されて形成される粘着末端が、第4のdsDNA断片の粘着末端と相補的になる塩基配列を有する。 (C) The third dsDNA fragment has a region (third RE) containing a base sequence recognized by the third type IIs restriction enzyme at the terminal portion on the side linked to the second dsDNA fragment. Furthermore, the sticky end formed by cleaving with the third type IIs restriction enzyme in the region consisting of a part of the base sequence of the target DNA fragment (open region) is the sticky end of the second dsDNA fragment. And has a base sequence that is complementary. The third dsDNA fragment also has a region (first RE) containing a base sequence recognized by the first type IIs restriction enzyme at the end portion on the side linked to the fourth dsDNA fragment (DNA fg4). And a sticky end formed by cleaving with the first type IIs restriction enzyme in a region consisting of part of the base sequence of the target DNA fragment (outlined region) is sticky to the fourth dsDNA fragment It has a base sequence that is complementary to the terminal.
 (d)第lのdsDNA断片(DNA fgl:ただし、lは4以上9以下の自然数を表す。)は、第(l-1)のdsDNA断片と連結する側の末端部に、第(l-a×3)のIIs型制限酵素により認識される塩基配列を含む領域(第(l-a×3)のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第(l-a×3)のIIs型制限酵素で切断されて形成される粘着末端が、第(l-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する。第lのdsDNA断片はまた、第(l+1)のdsDNA断片と連結する側の末端部には、第(l+1-a×3)のIIs型制限酵素により認識される塩基配列を含む領域(第(l+1-a×3)のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第(l+1-a×3)のIIs型制限酵素で切断されて形成される粘着末端が、第(l+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する。ただし、aはl/3の整数部分の数値であり、例えば、l=5の場合は1であり、l=7の場合は2である。 (D) The l-th dsDNA fragment (DNA fgl: where l represents a natural number of 4 or more and 9 or less) is attached to the end (l−) of the side linked to the (l-1) -th dsDNA fragment. a region containing a base sequence recognized by the type IIs restriction enzyme (a × 3) (RE of (1-a × 3)), and a region comprising a part of the base sequence of the target DNA fragment ( In the white area), the base in which the sticky end formed by cleavage with the (l-a × 3) type IIs restriction enzyme is complementary to the sticky end of the (l-1) dsDNA fragment Has an array. The l-th dsDNA fragment is also a region containing the base sequence recognized by the (l + 1-a × 3) type IIs restriction enzyme (the (( (l + 1-a × 3) RE), and the (l + 1-a × 3) type IIs restriction enzyme in the region consisting of a part of the base sequence of the target DNA fragment (outlined region) The sticky end formed by cleaving in step 1 has a base sequence that is complementary to the sticky end of the (l + 1) th dsDNA fragment. However, a is a numerical value of an integer part of 1/3, for example, 1 when l = 5 and 2 when l = 7.
 (e)第10のdsDNA断片(DNA fg10)は、第9のdsDNA断片(DNA fg9)と連結する側の末端部に、第(10-b×3)のIIs型制限酵素により認識される塩基配列を含む領域(第1のRE)を有しており、更に目的DNA断片の塩基配列の一部からなる領域(白抜きの領域)中に、第1のIIs型制限酵素で切断されて形成される粘着末端が、第9のdsDNA断片の粘着末端と相補的になる塩基配列を有する。第10のdsDNA断片はまた、第9のdsDNA断片と連結する側の末端部とは反対側の末端部に、第(10+1-b×3)のIIs型制限酵素により認識される塩基配列を含む領域(第2のRE)を有する。ただし、bはm/nの整数部分の数値であり、図1の例では3である。 (E) The tenth dsDNA fragment (DNA fg10) is a base that is recognized by the (10-b × 3) type IIs restriction enzyme at the end linked to the ninth dsDNA fragment (DNA fg9). It has a region containing the sequence (first RE) and is further cleaved with the first type IIs restriction enzyme in a region consisting of part of the base sequence of the target DNA fragment (outlined region) The sticky end to be prepared has a base sequence that is complementary to the sticky end of the ninth dsDNA fragment. The tenth dsDNA fragment also contains a base sequence recognized by the (10 + 1-b × 3) type IIs restriction enzyme at the end opposite to the end linked to the ninth dsDNA fragment. It has a region (second RE). However, b is a numerical value of the integer part of m / n, and is 3 in the example of FIG.
 上述したdsDNA断片は、両端が平滑末端であるdsDNAであってもよく、一端又は両端に一本鎖オーバーハング領域を有するdsDNAであってもよい。dsDNA断片は、従来公知の遺伝子工学的手法により得ることができる。例えば、設計されたdsDNA断片の塩基配列を有するオリゴDNA、及びその相補配列を有するオリゴDNAを常法に従って合成し、これらをハイブリダイズさせてdsオリゴDNAを調製することにより、dsDNA断片を得ることができる。 The dsDNA fragment described above may be dsDNA having blunt ends at both ends, or dsDNA having a single-stranded overhang region at one end or both ends. The dsDNA fragment can be obtained by a conventionally known genetic engineering technique. For example, a dsDNA fragment is obtained by synthesizing an oligo DNA having a designed base sequence of a dsDNA fragment and an oligoDNA having a complementary sequence thereof according to a conventional method and then hybridizing them to prepare a ds oligo DNA. Can do.
 図1に示す例では、まず(A)において、10個のdsDNA断片を、第1のdsDNA断片から昇順で2個づつそれぞれ異なる5つの反応系(例えば、異なる反応容器)に分ける。すなわち、反応系1は、DNA fg1及びDNA fg2を含み、反応系2は、DNA fg3及びDNA fg4を含み、反応系3は、DNA fg5及びDNA fg6を含み、反応系4は、DNA fg7及びDNA fg8を含み、反応系5は、DNA fg9及びDNA fg10を含む。もし残余のdsDNA断片があれば(例えば、DNA fg11があれば)、残余のdsDNA断片を反応系6とすればよい。 In the example shown in FIG. 1, first, in (A), 10 dsDNA fragments are divided into five different reaction systems (for example, different reaction vessels), each two in ascending order from the first dsDNA fragment. That is, reaction system 1 includes DNA fg1 and DNA fg2, reaction system 2 includes DNA fg3 and DNA fg4, reaction system 3 includes DNA fg5 and DNA fg6, and reaction system 4 includes DNA fg7 and DNA fg6. The reaction system 5 contains fg8 and DNA fg9 and DNA fg10. If there is a remaining dsDNA fragment (for example, if DNA fg11 is present), the remaining dsDNA fragment may be used as the reaction system 6.
 各反応系には、それぞれ第1~第3の3種類のIIs型制限酵素を全て添加する。このようにすることで、1種類のIIs型制限酵素溶液(全てのIIs型制限酵素を含む溶液)を用意して各反応系に分注すればよいため、工程が簡便化され、自動化が容易になる。 All the first to third types of IIs type restriction enzymes are added to each reaction system. In this way, one type IIs type restriction enzyme solution (a solution containing all type IIs type restriction enzymes) may be prepared and dispensed to each reaction system, which simplifies the process and facilitates automation. become.
 IIs型制限酵素としては、例えば、表1に記載したIIs型制限酵素を挙げることができる。
Figure JPOXMLDOC01-appb-T000001
Examples of type IIs restriction enzymes include type IIs restriction enzymes described in Table 1.
Figure JPOXMLDOC01-appb-T000001
 次いで、IIs型制限酵素により各dsDNA断片が切断される。これにより、隣接して連結するdsDNA断片はそれぞれ、連結する側の末端部に相補的な粘着末端が形成される。すると、隣接して連結するdsDNA断片は、粘着末端を介して特異的にハイブリダイズすることになる。反応系に、ポリエチレングリコール(PEG)、フィコール(Ficoll)、デキストラン等の密集剤を添加することにより、ハイブリダイズを促進することができる。 Next, each dsDNA fragment is cleaved with a type IIs restriction enzyme. As a result, the adjoining dsDNA fragments each form a complementary sticky end at the end of the connecting side. Then, the adjoining dsDNA fragment specifically hybridizes via the sticky end. Hybridization can be promoted by adding a crowding agent such as polyethylene glycol (PEG), Ficoll, or dextran to the reaction system.
 ハイブリダイズした後、反応系にDNAリガーゼを添加しておくことで、ニック(すなわち、ホスホジエステル結合が欠如している部分)が繋ぎ合わされ、dsDNA連結断片が得られることになる。 After hybridization, by adding DNA ligase to the reaction system, nicks (that is, a portion lacking a phosphodiester bond) are joined together to obtain a dsDNA-linked fragment.
 DNAリガーゼとしては、例えば、Taqリガーゼ、Ampligase Thermostable DNAリガーゼ(Epicentre Biotechnologies社製)、Thermostable Tfi DNAリガーゼ(Bioneer, Inc社製)等を挙げることができる。 Examples of the DNA ligase include Taq ligase, Amprigase Thermostable DNA ligase (Epicentre Biotechnologies), Thermostable Tfi DNA ligase (Bioneer, Inc).
 上述した反応を経ることにより、例えば、図1(B)に示すとおり、反応系1では、第2のREで示される領域部分でDNA fg1とDNA fg2が連結したdsDNA連結断片が得られる。当該dsDNA連結断片は、第2のREで示される領域は、除去されており、また両末端部に第1のREで示される領域、及び第3のREで示される領域を含んでいる。反応系2~5についても同様である。 Through the above-described reaction, for example, as shown in FIG. 1B, in the reaction system 1, a dsDNA-linked fragment in which DNA fg1 and DNA fg2 are linked in the region indicated by the second RE is obtained. In the dsDNA ligation fragment, the region indicated by the second RE has been removed, and the region indicated by the first RE and the region indicated by the third RE are included at both ends. The same applies to reaction systems 2-5.
 次いで、得られたdsDNA連結断片を、連続したdsDNA断片を含むように2個づつ、それぞれ異なる反応容器に入れる。図1に示す例では、反応系1で得られたdsDNA連結断片と、反応系2で得られたdsDNA連結断片(計2個)を第1の反応容器に入れ、反応系3で得られたdsDNA連結断片と、反応系4で得られたdsDNA連結断片(計2個)を第2の反応容器に入れている。例えば、反応系1で得られたdsDNA連結断片は、第1のdsDNA断片及び第2のdsDNA断片を含んでおり、反応系2で得られたdsDNA連結断片は、第3のdsDNA断片及び第4のdsDNA断片を含んでいるため、これら(2個)を入れた第1の反応容器(反応系)には、第1~第4の連続したdsDNA断片が含まれている。 Next, the obtained dsDNA ligation fragments are put in two, each in a different reaction vessel so as to contain continuous dsDNA fragments. In the example shown in FIG. 1, the dsDNA ligation fragment obtained in the reaction system 1 and the dsDNA ligation fragment obtained in the reaction system 2 (two in total) were placed in the first reaction vessel and obtained in the reaction system 3. The dsDNA ligation fragments and the dsDNA ligation fragments (two in total) obtained in the reaction system 4 are put in the second reaction vessel. For example, the dsDNA ligation fragment obtained in the reaction system 1 includes a first dsDNA fragment and a second dsDNA fragment, and the dsDNA ligation fragment obtained in the reaction system 2 includes the third dsDNA fragment and the fourth dsDNA fragment. Therefore, the first reaction vessel (reaction system) containing these (two pieces) contains the first to fourth continuous dsDNA fragments.
 図1に示す例では、反応系5で得られたdsDNA連結断片が残余のものとなっている。この場合、反応系5で得られたdsDNA連結断片(1個)を第3の反応容器に入れることになる。 In the example shown in FIG. 1, the dsDNA ligation fragment obtained in the reaction system 5 is the remaining one. In this case, the dsDNA ligation fragment (one piece) obtained in the reaction system 5 is put into the third reaction vessel.
 第1~第3の反応容器には、それぞれ第1~第3の3種類のIIs型制限酵素を全て添加する。これにより、IIs型制限酵素により各dsDNA連結断片が切断され、隣接して連結するdsDNA連結断片はそれぞれ、連結する側の末端部に相補的な粘着末端が形成される。すると、隣接して連結するdsDNA連結断片は、粘着末端を介して特異的にハイブリダイズし、DNAリガーゼにより、ニックが繋ぎ合わされ、より大きなdsDNA連結断片が得られることになる。当該反応の詳細は上述したとおりである。 In the first to third reaction vessels, the first to third three types of type IIs restriction enzymes are all added. As a result, each dsDNA ligation fragment is cleaved by the type IIs restriction enzyme, and each adjoining dsDNA ligation fragment forms a complementary sticky end at the end of the ligation side. Then, the adjoining dsDNA ligation fragments specifically hybridize via the sticky ends, and nicks are joined by DNA ligase to obtain a larger dsDNA ligation fragment. The details of the reaction are as described above.
 そして、図1(C)~(E)に示すとおり、上述した反応を繰り返すことで、全てのdsDNA断片が連結されて目的DNA断片が得られることになる。 Then, as shown in FIGS. 1 (C) to (E), by repeating the above-described reaction, all dsDNA fragments are ligated to obtain the target DNA fragment.
 また、図1に示した例では、得られた目的DNA断片の両末端部に第1のREで示される領域、及び第2のREで示される領域が含まれている。これらの領域は、例えば、クローニングベクターに目的DNA断片をクローニングする等の操作に利用することができる。 Further, in the example shown in FIG. 1, the region indicated by the first RE and the region indicated by the second RE are included at both ends of the obtained target DNA fragment. These regions can be used for operations such as cloning of a target DNA fragment into a cloning vector, for example.

Claims (3)

  1.  第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法であって、
     m個のDNA断片はそれぞれ、両末端部に異なるIIs型制限酵素により認識される塩基配列を有し、かつ隣接して連結するDNA断片はそれぞれ、連結する側の末端部に同一のIIs型制限酵素により認識される塩基配列、及び当該IIs型制限酵素で切断されたときに相補的な粘着末端を形成する塩基配列を有しており、
    (i)m個のDNA断片を、k個(ただし、kは2以上の自然数を表し、かつk≦n-1である。)の連続したDNA断片を含む複数の反応系に分ける工程と、
    (ii)各反応系において、n種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA断片を順特異的に連結する工程と、
    (iii)得られたDNA連結断片を、連続したDNA断片を含むようにl個(ただし、lは2以上の自然数を表し、かつl≦n-1である。)のDNA連結断片を含む1又は複数の反応系に分ける工程と、
    (iv)1又は複数の各反応系において、n種類のIIs型制限酵素で処理し、IIs型制限酵素による切断で形成された粘着末端で反応系中のDNA連結断片を順特異的に連結する工程と、
    (v)目的DNA断片が得られるまで(iii)及び(iv)の工程を繰り返す工程と、
    を備える、方法。
    The first to m 1 m 1 DNA fragments are the first to n 1 n 1 types (where n 1 and m 1 represent a natural number of 3 or more, and n 1 <m 1 . ) using type IIs restriction enzymes, a method for obtaining the desired DNA fragment by ligating to line up in ascending order from the first DNA fragment to a DNA fragment of the m 1,
    m 1 pieces each DNA fragment of a nucleotide sequence recognized by a different type IIs restriction enzyme at both ends, and each DNA fragment to be connected adjacent to, the same type IIs the distal end of the side connecting A base sequence recognized by a restriction enzyme, and a base sequence that forms a complementary sticky end when cleaved by the type IIs restriction enzyme;
    The (i) m 1 pieces of DNA fragments, k 1 pieces (where, k 1 represents 2 or more natural number, and a k 1n 1 -1.) A plurality of reaction system containing a continuous DNA fragment Dividing the process into
    (Ii) in each reaction system, a step of treatment with n 1 kind of type IIs restriction enzymes, ligating the DNA fragments in the reaction system in sticky ends formed by cleavage with type IIs restriction enzymes forward specifically,
    The (iii) the resulting DNA ligated fragment, l 1 or to include a contiguous DNA fragment (however, l 1 represents 2 or more natural number, and a l 1 ≦ n 1 -1.) DNA ligation Dividing into one or more reaction systems containing fragments;
    (Iv) In one or a plurality of reaction systems, n treatments with one type IIs type restriction enzyme, and the DNA ligation fragments in the reaction system are ligated in a specific order with sticky ends formed by cleavage with a type IIs restriction enzyme. And a process of
    (V) repeating steps (iii) and (iv) until the target DNA fragment is obtained;
    A method comprising:
  2.  第1~第mのm個のDNA断片を、第1~第nのn種類(ただし、n及びmは3以上の自然数を表し、かつn<mである。)のIIs型制限酵素を使用して、第1のDNA断片から第mのDNA断片まで昇順で並ぶように連結することにより目的DNA断片を得る方法であって、
     以下の工程(1)~工程(5):
    (1)以下の(a)~(e)を満たすm個の二本鎖(ds)DNA断片を準備する工程、
     (a)第1のdsDNA断片は、第2のdsDNA断片と連結する側の末端部とは反対の末端部に、第1のIIs型制限酵素により認識される塩基配列を有し、かつ第2のdsDNA断片と連結する側の末端部には、第2のIIs型制限酵素により認識される塩基配列、及び第2のIIs型制限酵素で切断されて形成される粘着末端が、第2のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
     (b)第kのdsDNA断片(ただし、kは2以上(n-1)以下の自然数を表す。)は、第(k-1)のdsDNA断片と連結する側の末端部に、第kのIIs型制限酵素により認識される塩基配列、及び第kのIIs型制限酵素で切断されて形成される粘着末端が、第(k-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(k+1)のdsDNA断片と連結する側の末端部には、第(k+1)のIIs型制限酵素により認識される塩基配列、及び第(k+1)のIIs型制限酵素で切断されて形成される粘着末端が、第(k+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
     (c)第nのdsDNA断片は、第(n-1)のdsDNA断片と連結する側の末端部に、第nのIIs型制限酵素により認識される塩基配列、及び第nのIIs型制限酵素で切断されて形成される粘着末端が、第(n-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(n+1)のdsDNA断片と連結する側の末端部には、第1のIIs型制限酵素により認識される塩基配列、及び第1のIIs型制限酵素で切断されて形成される粘着末端が、第(n+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する、
     (d)第lのdsDNA断片(ただし、lは(n+1)以上(m-1)以下の自然数を表す。)は、第(l-1)のdsDNA断片と連結する側の末端部に、第(l-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(l+1)のdsDNA断片と連結する側の末端部には、第(l+1-a×n)のIIs型制限酵素により認識される塩基配列、及び第(l+1-a×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(l+1)のdsDNA断片の粘着末端と相補的になる塩基配列を有する(ただし、aはl/nの整数部分の数値である。)、
     (e)第mのdsDNA断片は、第(m-1)のdsDNA断片と連結する側の末端部に、第(m-b×n)のIIs型制限酵素により認識される塩基配列、及び第(m-b×n)のIIs型制限酵素で切断されて形成される粘着末端が、第(m-1)のdsDNA断片の粘着末端と相補的になる塩基配列を有し、かつ第(m-1)のdsDNA断片と連結する側の末端部とは反対側の末端部には、第(m+1-b×n)のIIs型制限酵素により認識される塩基配列を有する(ただし、bはm/nの整数部分の数値である。)、
    (2)m個のdsDNA断片を、第1のdsDNA断片から昇順で、(n-1)個づつ、それぞれ異なるc個の反応容器(ただし、cはm/(n-1)の整数部分の数値である。)に入れ、更に必要に応じて残余のdsDNA断片をc個の反応容器とは異なる1個の反応容器に入れる工程、
    (3)dsDNA断片を含む反応容器それぞれに第1~第nのn種類のIIs型制限酵素を全て入れ、全IIs型制限酵素で処理した後、切断により形成された粘着末端で反応容器中のdsDNA断片を順特異的に連結する工程、
    (4)得られたdsDNA連結断片を、連続したdsDNA断片を含むように(n-1)個づつ、それぞれ異なる反応容器に入れ、更に必要に応じて残余のdsDNA連結断片を異なる1個の反応容器に入れ、工程(3)と同様の操作でdsDNA連結断片を更に連結する工程、
    (5)全てのdsDNA断片が連結されるまで工程(4)を繰り返す工程、
    を備える、方法。
    The first to m 2 m 2 DNA fragments are the first to n 2 n 2 types (where n 2 and m 2 represent a natural number of 3 or more and n 2 <m 2 . ) using type IIs restriction enzymes, a method for obtaining the desired DNA fragment by ligating to line up in ascending order from the first DNA fragment to a DNA fragment of the m 2,
    The following steps (1) to (5):
    (1) below (a) providing - a m 2 pieces of double-stranded (ds) DNA fragment that satisfies (e),
    (A) the first dsDNA fragment has a base sequence recognized by the first type IIs restriction enzyme at the end opposite to the end linked to the second dsDNA fragment; At the end portion on the side to be linked to the dsDNA fragment, the base sequence recognized by the second type IIs restriction enzyme and the sticky end formed by cleavage with the second type IIs restriction enzyme are the second dsDNA. It has a base sequence that is complementary to the sticky end of the fragment,
    (B) The k 2 dsDNA fragment (where k 2 represents a natural number of 2 or more and (n 2 −1) or less) is connected to the terminal portion on the side linked to the (k 2 −1) dsDNA fragment. , nucleotide sequence recognized by a type IIs restriction enzyme of the k 2, and sticky ends are formed by being cut with a type IIs restriction enzyme of the k 2 is a sticky end dsDNA fragment of the (k 2 -1) has a nucleotide sequence comprising a complementary, and the end portion of the side connecting the dsDNA fragment of the (k 2 +1), nucleotide sequences recognized by the type IIs restriction enzyme of the (k 2 +1), and the sticky end formed by being cut with a type IIs restriction enzyme (k 2 +1) has a nucleotide sequence comprising the complement of the sticky ends of dsDNA fragments of the (k 2 +1),
    (C) dsDNA fragments of the n 2 is first in the end on the side connected to the dsDNA fragment (n 2 -1), the base sequence recognized by a type IIs restriction enzyme of the n 2, and the n 2 A sticky end formed by cleaving with a type IIs restriction enzyme has a base sequence complementary to the sticky end of the (n 2 -1) dsDNA fragment, and the (n 2 +1) dsDNA fragment; At the terminal end on the ligation side, the base sequence recognized by the first type IIs restriction enzyme and the sticky end formed by cleavage with the first type IIs restriction enzyme are the (n 2 +1) th dsDNA. It has a base sequence that is complementary to the sticky end of the fragment,
    (D) the l 2nd dsDNA fragment (where l 2 represents a natural number not less than (n 2 +1) and not more than (m 2 −1)) is connected to the (l 2 −1) dsDNA fragment. the end portion, is formed by cutting with type IIs restriction enzymes of the (l 2 -a × n 2) nucleotide sequences recognized by the type IIs restriction enzymes, and the (l 2 -a × n 2) The sticky end has a base sequence that is complementary to the sticky end of the (l 2 -1) dsDNA fragment, and the end portion on the side linked to the (l 2 +1) dsDNA fragment has ( l 2 + 1−a × n 2 ) type IIs restriction enzyme and a sticky end formed by cleavage with the (l 2 + 1−a × n 2 ) type IIs restriction enzyme having a sticky end and a base sequence consisting complementary of dsDNA fragments (l 2 +1) (provided that a is a number in the integer portion of a l 2 / n 2.),
    (E) The m 2 dsDNA fragment has a base that is recognized by the (m 2 -b × n 2 ) type IIs restriction enzyme at the end of the side linked to the (m 2 -1) dsDNA fragment. And a base sequence in which the sticky end formed by cleavage with the (m 2 -b × n 2 ) type IIs restriction enzyme is complementary to the sticky end of the (m 2 -1) dsDNA fragment And is recognized by the (m 2 + 1−b × n 2 ) type IIs restriction enzyme at the end opposite to the end connected to the (m 2 −1) dsDNA fragment. (Where b is the numerical value of the integer part of m 2 / n 2 ),
    (2) m 2 dsDNA fragments in ascending order from the first dsDNA fragment, each having (n 2 -1) c different reaction vessels (where c is an integer of m / (n-1)) A step of placing the remaining dsDNA fragments in one reaction vessel different from c reaction vessels, if necessary.
    (3) Put all n 2 kinds of first to n 2 type IIs restriction enzyme to each reaction vessel containing the dsDNA fragment, after treatment with all type IIs restriction enzyme, the reaction vessel at a sticky end formed by the cut Linking the dsDNA fragments therein in a forward specific manner,
    (4) The obtained dsDNA ligated fragments are placed in different reaction vessels, each containing (n 2 −1) so as to contain continuous dsDNA fragments, and if necessary, the remaining dsDNA ligated fragments are Placing in a reaction vessel and further ligating the dsDNA ligation fragment in the same manner as in step (3),
    (5) repeating step (4) until all dsDNA fragments are ligated,
    A method comprising:
  3.  IIs型制限酵素がAarI、AcuI、AlwI、BbsI、BbvI、BccI、BceAI、BciVI、BcoDI、BfuAI、BmrI、BpmI、BpuEI、BsaI、BsgI、BsmAI、BsmBI、BsmFI、BspMI、BspPI、BspQI、BsrDI、BtgZI、BstCI、EarI、EciI、Ecop15I、FauI、FokI、HgaI、HphI、HpyAV、Ksp632I、MboII、MmeI、Mn1I、SapI及びSfaNIからなる群より選ばれる少なくとも1種のIIs型制限酵素である、請求項1又は2に記載の方法。 Type IIs restriction enzymes are AarI, AcuI, AlwI, BbsI, BbvI, BccI, BceAI, BciVI, BcoDI, BfuAI, BmrI, BpmI, BpuEI, BsaI, BsgI, BsmBI, BsmBs, BsmBs, BsmB 2. At least one type IIs restriction enzyme selected from the group consisting of BstCI, EarI, EciI, Ecop15I, FauI, FokI, HgaI, HphI, HpyAV, Ksp632I, MboII, MmeI, Mn1I, SapI and SfaNI. Or the method of 2.
PCT/JP2018/001958 2017-02-08 2018-01-23 Method for obtaining target dna fragments WO2018147071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567351A JPWO2018147071A1 (en) 2017-02-08 2018-01-23 Method for obtaining a target DNA fragment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021483 2017-02-08
JP2017-021483 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147071A1 true WO2018147071A1 (en) 2018-08-16

Family

ID=63107396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001958 WO2018147071A1 (en) 2017-02-08 2018-01-23 Method for obtaining target dna fragments

Country Status (2)

Country Link
JP (1) JPWO2018147071A1 (en)
WO (1) WO2018147071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4065706A4 (en) * 2019-11-25 2024-01-17 William Marsh Rice University Linear dna assembly for nanopore sequencing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041083A (en) * 2002-07-11 2004-02-12 Toyota Central Res & Dev Lab Inc Method for efficiently synthesizing double-stranded dna molecule
JP2004141025A (en) * 2002-10-23 2004-05-20 Hitachi Ltd Synthetic dna fragment for cell expression and method for preparation
WO2011154147A1 (en) * 2010-06-11 2011-12-15 Icon Genetics Gmbh System and method of modular cloning
JP2016103986A (en) * 2014-12-01 2016-06-09 国立大学法人 東京大学 Method for manufacturing dna cassette in which a plurality of units are coupled in a multiple manner, and vector including the cassette

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244379B2 (en) * 2003-07-16 2009-03-25 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041083A (en) * 2002-07-11 2004-02-12 Toyota Central Res & Dev Lab Inc Method for efficiently synthesizing double-stranded dna molecule
JP2004141025A (en) * 2002-10-23 2004-05-20 Hitachi Ltd Synthetic dna fragment for cell expression and method for preparation
WO2011154147A1 (en) * 2010-06-11 2011-12-15 Icon Genetics Gmbh System and method of modular cloning
JP2016103986A (en) * 2014-12-01 2016-06-09 国立大学法人 東京大学 Method for manufacturing dna cassette in which a plurality of units are coupled in a multiple manner, and vector including the cassette

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4065706A4 (en) * 2019-11-25 2024-01-17 William Marsh Rice University Linear dna assembly for nanopore sequencing

Also Published As

Publication number Publication date
JPWO2018147071A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US10689680B2 (en) Pairing code directed assembly
EP3337898B1 (en) Capture of nucleic acids using a nucleic acid-guided nuclease-based system
EP4008796B1 (en) Construction of next generation sequencing (ngs) libraries using competitive strand displacement
JP6110297B2 (en) Combination sequence barcodes for high-throughput screening
JP2022017453A5 (en)
EP3564394B1 (en) Method of preparing libraries of template polynucleotides
EP2379751B1 (en) Novel genome sequencing strategies
US20150284789A1 (en) Method for targeted sequencing
JP2018535689A5 (en)
US20130045894A1 (en) Method for Amplification of Target Nucleic Acids Using a Multi-Primer Approach
US8617817B2 (en) Whole transciptome sequencing
WO2018147071A1 (en) Method for obtaining target dna fragments
WO2021232023A2 (en) Methods for ligation-coupled-pcr
KR20140075635A (en) Method of simultaneous synthesis of DNA library using high-throughput parallel DNA synthesis method
JP2006506953A5 (en)
US10655170B2 (en) Coupling adaptors to a target nucleic acid
US11299775B2 (en) Method for designing primer, primer, primer set, DNA amplification method, and analysis method
US20230075082A1 (en) Method for synthesizing dna
Robinson et al. Illumina Technology
JPWO2018147070A1 (en) Method for producing a DNA fragment having a desired base sequence
US20150329906A1 (en) Novel genome sequencing strategies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751593

Country of ref document: EP

Kind code of ref document: A1