WO2018145562A1 - 虚拟小区的功率分配方法及基站 - Google Patents

虚拟小区的功率分配方法及基站 Download PDF

Info

Publication number
WO2018145562A1
WO2018145562A1 PCT/CN2018/073033 CN2018073033W WO2018145562A1 WO 2018145562 A1 WO2018145562 A1 WO 2018145562A1 CN 2018073033 W CN2018073033 W CN 2018073033W WO 2018145562 A1 WO2018145562 A1 WO 2018145562A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
base station
virtual
virtual cell
power
Prior art date
Application number
PCT/CN2018/073033
Other languages
English (en)
French (fr)
Inventor
周鋆卿
秦洪峰
孙长印
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018145562A1 publication Critical patent/WO2018145562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present invention relates to the field of communications, and in particular, to a power allocation method for a virtual cell and a base station.
  • Ultra-intensive heterogeneous network technology is one of the main hotspots of next-generation wireless network technology.
  • the virtual cell technology changes the traditional cell design concept, and combines multiple small-coverage access sites into one virtual size zone, and uses multiple access sites as the virtual-sized zone.
  • the resources are scheduled to avoid a large amount of control signaling overhead and frequent handover of the terminal, thereby improving user experience and system efficiency.
  • the virtual cell is defined by the user.
  • the serving cell follows the UE to provide user-centric services.
  • the concept of the serving cell following the user is essentially that the logical connection remains unchanged, the user does not need to perform control plane switching, but in fact, the access point on which the actual transmission of the UE depends is still changing with the movement.
  • the main problem of the user-centric mobile virtual cell is how to maintain the consistency of the serving cell connected by the user when the local area is crossed, that is, the user is no longer limited by the network deployment and the area, and can continue to enjoy continuous stable service.
  • the present invention provides a power allocation method for a virtual cell and a base station, which are used to solve the problem of unreasonable power allocation and low system performance when the user-centric mobile virtual cell technology allocates power to users in the virtual cell.
  • a method for allocating a power of a virtual cell includes: a base station in a first virtual cell transmitting a cell measurement set message to a user equipment in its coverage, wherein the cell measurement set message includes a user
  • the device needs to measure a predetermined number of virtual cell sets; the base station in the first virtual cell receives all measurement results measured by all user equipments in the first virtual cell according to the cell measurement set message, where each The measurement result of the user equipment indicates that the user equipment is subjected to an interference value of a base station of each virtual cell other than the first virtual cell in the predetermined number of virtual cells; and the base station in the first virtual cell receives the reservation
  • transmitting, by the user equipment, the predetermined number of virtual cells except the first virtual cell. Disturbance value in user equipment generates virtual cell; and a base station
  • a base station in a first virtual cell, and includes: a sending module, configured to send a cell measurement set message to a user equipment in a coverage area of the base station, where the cell measurement The set message includes a set of a predetermined number of virtual cells that the user equipment needs to measure; the receiving module is configured to: receive all measurement results measured by the user equipment in the first virtual cell according to the cell measurement set message, where each The measurement result of the user equipments indicates that the user equipment is subjected to interference values of base stations of the virtual cells other than the first virtual cell in the predetermined number of virtual cells; and receiving the predetermined number of virtual cells An application impact information reported by a base station of each virtual cell outside the first virtual cell, where the application impact information is that the base station in the first virtual cell sends information to each user equipment in its coverage area.
  • User settings in each virtual cell except the first virtual cell in a predetermined number of virtual cells Generating interference value; and a power distribution module for influencing the result, and according to the measurement information
  • FIG. 1 is a schematic diagram of a wireless system composed of three base stations and two UEs in the prior art
  • FIG. 2 is a flowchart of a method for allocating power of a virtual cell according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an implementation in accordance with an embodiment of the present invention.
  • FIG. 5 is a flow diagram of an implementation in accordance with an embodiment of the present invention.
  • the user-centric mobile virtual cell divides the entire network into an overlapable and cooperative virtual cell (VSC), which ensures that all users are not in the edge area of the network, that is, the entire network has no edge users. .
  • VSC overlapable and cooperative virtual cell
  • the wireless system is composed of three base stations and two UEs.
  • the wireless network can be partitioned into two VSCs: a first VSC can be composed of base stations m1, m2, and m3, and a second VSC can be composed of base stations m2 and m3. All base stations in each VSC communicate cooperatively with all users belonging to the VSC. Once all base station VSC sets are determined, the corresponding resource scheduling and allocation techniques are also determined so that each user can be scheduled in the corresponding partition. Since power control plays a very important role in cellular system interference management, power allocation is particularly important in resource allocation issues.
  • the same base station provides services for different users.
  • the base station needs to allocate power among different users.
  • Current power allocation methods include power allocation based on user channel statistical strength and power allocation based on instantaneous channel strength. The disadvantage of both methods is that the interference power is the same for each user. However, considering that the strength of the signal is different when the user is in different locations of the cell, a good interference management effect cannot be obtained only by means of interference fairness.
  • the present invention provides a power allocation method and a base station for a virtual cell.
  • the invention will be further described in detail below with reference to the drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 2 is a flowchart of a method for allocating power of a virtual cell according to an embodiment of the present invention, the method including steps S202 to S208.
  • step S202 the base station in the first virtual cell sends a cell measurement set message to the user equipment in its coverage area, where the cell measurement set message includes a set of a predetermined number of virtual cells that the user equipment needs to measure.
  • step S204 the base station in the first virtual cell receives all measurement results measured by all user equipments in the first virtual cell according to the cell measurement set message, where the measurement result of each user equipment indicates that the user equipment is subjected to a predetermined number of virtual The interference value of the base station of each virtual cell except the first virtual cell in the cell.
  • step S206 the base station in the first virtual cell receives the impact information fed back by the base station of each virtual cell except the first virtual cell in the predetermined number of virtual cells, where the impact information is the base station in the first virtual cell.
  • step S208 the base station in the first virtual cell determines the virtual power allocated to the user equipment in its coverage according to the measurement result and the application impact information.
  • the base station of the current virtual cell sends a cell measurement set message to the user equipment in its coverage, and then receives all measurement results returned by all user equipments in the cell according to the cell measurement set message, and receives other virtual
  • the impact information fed back by the cell to the base station of the virtual cell and comprehensively considering the virtual power that can be allocated to each user equipment in the virtual cell based on all the measurement results and all the applied influence information.
  • the virtual power is allocated to each user equipment by comprehensively considering the influence of various aspects, so that the power allocated to each user equipment is reasonable, the system performance is improved, and the user-centric mobile virtual cell technology is solved.
  • the user in the virtual cell allocates power, there is a problem that the allocation is unreasonable and the system performance is low.
  • the power allocated by the base station m of the first virtual cell to the user k may be determined according to the following formula: Share p m,k :
  • k ⁇ K m represents a set of service users whose user k belongs to the base station m, Indicates that the base station m is any one of all base stations of the first virtual cell, It is the total power value that the base station m can allocate, that is, the allocation threshold.
  • the virtual power value p k to which the kth user is allocated may be determined according to the following formula (p k is the sum of the virtual power values assigned to the user k by all base stations in the cell):
  • ⁇ m is the Lagrangian multiplier of the base station m
  • ⁇ m, k represents the power coefficient assigned by the base station m to the user k
  • ⁇ k represents the weight of the user k
  • M k represents the base station to which the user k belongs in the virtual cell
  • t k represents the applied influence information
  • r k represents the perceived influence information, which is obtained by the measurement result of the user k, and is a function related to the interference received by the user k
  • t k and r k can be determined by the following formula:
  • g kk is the channel gain of user k
  • g kj is the interference of user j to user k
  • ⁇ j is the signal to interference and noise ratio of user j, and its value is:
  • the initial virtual power value assigned to the user equipment k is determined, and t k and r k of the user equipment k are determined based on the initial virtual power value and the measurement result of the user equipment k .
  • M represents a set of base stations to which the user equipment k of the first virtual cell belongs, Is the initial value of the Lagrangian multiplier.
  • the third step according to the water injection formula
  • the power value p k assigned to the user k is calculated.
  • each base station according to the formula It is judged whether the sum of the power allocated by the base station to each user is greater than the total power value that the base station can allocate.
  • the Lagrangian multiplier ⁇ m (a m + b m )/2 of the base station m is adjusted, and a m is set to ⁇ m and continues to the third step for calculation.
  • the Lagrangian multiplier ⁇ m (a m + b m )/2 of the base station m is adjusted, and b m is set. Is ⁇ m .
  • the third step to the sixth step are repeatedly performed until the power value to which the kth user equipment is allocated is determined.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the present invention also provides a base station having an overall control function, the base station being disposed in a first virtual cell.
  • the base station includes a transmitting module 10, a receiving module 20, and a power allocating module 30.
  • the sending module 10 is configured to send a cell measurement set message to the user equipment in the coverage of the base station, where the cell measurement set message includes a set of a predetermined number of virtual cells that the user equipment needs to measure.
  • the receiving module 20 is coupled to the sending module 10, and configured to receive all measurement results that are measured by the user equipment in the first virtual cell according to the cell measurement set message, where the measurement result corresponding to each user equipment indicates that the user equipment is subjected to a predetermined number of virtual The interference value of the base station of each virtual cell except the first virtual cell in the cell.
  • the receiving module 20 is further configured to receive the impact information of the base station feedback of each virtual cell except the first virtual cell in the predetermined virtual cell, where the impact information is applied to the base station in the first virtual cell to the user in the coverage area.
  • the power distribution module 30 is coupled to the receiving module 20 for determining virtual power allocated to each user equipment based on the measurement result and the applied influence information.
  • the specific functions of the power distribution module 30 are described below.
  • the power share p m,k allocated by the base station m of the first virtual cell to the user equipment k is determined according to the following formula:
  • k ⁇ K m represents a set of service users whose user k belongs to the base station m, Indicates that the base station m is any one of all base stations. It is the total power value that the base station m can allocate.
  • the virtual power value p k to which the kth user is assigned can be determined according to the following formula:
  • ⁇ m is the Lagrangian multiplier of the base station m
  • ⁇ m, k represents the power coefficient assigned by the base station m to the user k
  • ⁇ k represents the weight of the user k
  • M k represents the base station to which the user k belongs in the virtual cell
  • t k represents the applied influence information
  • r k represents the perceived influence information, which is obtained by the measurement result of the user k, and is a function related to the interference received by the user k
  • t k and r k can be determined by the following equation:
  • g kk is the channel gain of user k
  • g kj is the interference of user j to user k
  • ⁇ j is the signal to interference and noise ratio of user j, and its value is:
  • the power distribution module specifically allocates the virtual power value p k according to the following procedure.
  • the initial virtual power value assigned to the user equipment k is determined, and t k and r k of the user equipment k are determined based on the initial virtual power value and the measurement result of the user equipment k .
  • M represents a set of base stations to which the user equipment k in the first virtual cell belongs, Is the initial value of the Lagrangian multiplier.
  • the third step according to t k and r k , according to the water injection formula
  • the power value p k assigned by the base station to the user k device is calculated.
  • the fourth step is determined whether the sum of power allocated by the base station to each user equipment is greater than a total power value that the base station can allocate.
  • the third step to the sixth step are repeatedly performed until it is determined that the kth user equipment is allocated to the power value.
  • the ⁇ m,k used by the power distribution module can be determined by any of the following methods:
  • the present invention proposes a water injection power allocation method based on a user-centered virtual cell, which improves interference cancellation. In addition to gain, the system capacity is further increased.
  • the virtual cell of the method is composed of a plurality of base stations and UEs, and the base station may be composed of a macro cell and a plurality of low-power base stations under the coverage thereof, such as a home base station, a pico base station, and the like.
  • the method can solve the interference problem generated after the introduction of the micro cell and the power allocation problem of the joint beamforming.
  • each mobile station is in a virtual cell composed of a plurality of base stations, and the base station group M k , M in the virtual cell to which the mobile station k belongs k ⁇ M, ie the base station in the base station group M k is part of all base stations.
  • M in the base station covering the mobile station set in the virtual cell to K m, wherein K m ⁇ K.
  • the base station in the base station group of a virtual cell shares user data, so that all base station antennas in the base station group can be beamformed to form a cooperative transmission, that is, each base station m can serve a series of mobile stations K m , each mobile receiving information from a base station k M k of the group. It is assumed here that M k or K m has determined the virtual cell to which it belongs using a pre-grouping method. Since we do not have any restrictions on M k , there may be overlapping base stations between the two base station groups, that is, for k.k' ⁇ K, there are M k ⁇ M k' ⁇ and M k ⁇ M k' It is a common parameter setting for a collaborative base station.
  • the optimal power allocated to the user is solved by using the utility rate to obtain the maximum weighted sum of the users, and the constrained optimization problem is obtained:
  • ⁇ k is the weight of user k
  • ⁇ k (P) is the signal to interference and noise ratio of user k, and its value is:
  • g kk is the channel gain of user k
  • g kj is the interference of user j to user k
  • p k is the power to which user k is allocated
  • p j is the power to which user j is allocated
  • P is the vector consisting of p k
  • the above optimal problem also satisfies the following constraint, that is, the sum of the power allocated by one base station to all users does not exceed the total power that it can allocate:
  • ⁇ m,k is the power coefficient assigned to the user k by the base station m
  • p k is the virtual power of the user k
  • the power share allocated by the base station m to the user k can be calculated by the following formula:
  • the virtual power of the user k can be calculated by the following non-negative constraint water injection algorithm:
  • ⁇ m is a Lagrangian multiplier and t k is a function related to the interference generated by user k, which can be calculated by:
  • r k is a function related to the interference received by the user k and can be calculated by the following formula:
  • the water injection parameter (ie, Lagrangian multiplier) ⁇ m of the base station m can be obtained by an iterative algorithm. For example, given t k and r k to be obtained by p k, p k updated with the new t k and r k, until it converges. Since ⁇ m p k is a monotonic function of multidimensional dichotomy given by t k and r k p k is calculated.
  • ⁇ m,k is a power coefficient allocated by the base station m to the user k, and can be determined by the following method.
  • M k is a set of base stations included in the virtual cell to which the user k belongs;
  • V m,k is the mth dimension of the beamforming vector of user k.
  • the value of the beamforming vector can be obtained by means of eigenvalue decomposition, zero forcing, signal to dry leakage ratio, and the like.
  • the combination of t k and r k may include the following manners:
  • FIG. 4 is a block diagram of an implementation in accordance with an embodiment of the present invention.
  • an implementation according to an embodiment of the present invention mainly includes two layers.
  • the lower layer is composed of a virtual cell and its base stations, such as the base stations m i and m j of the virtual cell
  • the upper layer is a virtual cell central control node, which can be located at any base station (such as a primary base station), for example, at a macro cell base station.
  • PF scheduler An independent fair scheduler (PF scheduler) and power control are run on each virtual cell, wherein the fair scheduler calculates the scheduling priority of the user according to the average instantaneous rate and the historical average rate of the users served by the base station, and then determines according to the priority order. The user schedules, and finally the PF scheduler schedules the users according to the power distribution of the joint design according to the output result of the central node.
  • the central node runs the joint cell power allocation method, and the process is as follows: the scheduler of each virtual cell selects the scheduled user; the virtual cell central control node receives the measurement result of each virtual cell base station, such as the channel matrix of each scheduled user to each virtual cell; The joint cell power allocation method is executed to determine the power allocated by each user; the central node outputs the power result allocated by each user, and sends the output result to each virtual cell; each virtual cell sends the user data by using the received power allocated by each user.
  • FIG. 5 shows a flow of an implementation manner of an embodiment of the present invention.
  • system messages are transmitted over the SIB of the broadcast channel SBCH.
  • the virtual cell 1 is a virtual cell in which the virtual center control node is located.
  • UE1 is a user of virtual cell 1.
  • the virtual center control node determines that the virtual cells 1 to 3 are cooperative virtual cells, that is, determine a virtual cell measurement set.
  • the virtual cell set (ie, the cell measurement set is newly defined in the SIB message of the LTE) may be extended by the SIB message and broadcasted by the virtual cell included in the virtual cell set before the extension.
  • UE1 obtains a set of cell measurements, ie, virtual cells 1 to 3, by reading the SIB message.
  • the measurement configuration of UE1 to virtual cells 1 to 3 is implemented by a Measurement Configuration IE in a Connection Reconfiguration (RRC) message, which is an extension of the original message IE of the LTE system.
  • RRC Connection Reconfiguration
  • the UE1 performs parameter measurement on the virtual cell set ⁇ virtual cell 1, virtual cell 2, virtual cell 3 ⁇ according to the measurement configuration, for example, using the pilot signal to the reference signal receiving power of the virtual cells 1 to 3 (Reference Signal Receiving) Power, RSRP) and Reference Signal Received Quality (RSRQ), channel matrix, etc. are measured.
  • the pilot signal to the reference signal receiving power of the virtual cells 1 to 3 (Reference Signal Receiving) Power, RSRP) and Reference Signal Received Quality (RSRQ), channel matrix, etc.
  • the virtual cell 2 and the virtual cell 3 report the measurement results of the respective cell users to the virtual cell 1.
  • the virtual cell 1 collects measurements of all users for the virtual cell set ⁇ virtual cell 1, virtual cell 2, virtual cell 3 ⁇ .
  • the virtual cell 1 calculates the power allocated to each user, and notifies each virtual cell, and the PF scheduler of each virtual cell sequentially schedules the users by using the power allocated by each user.
  • Each virtual cell ⁇ virtual cell 1, virtual cell 2, virtual cell 3 ⁇ transmits data to the scheduled users of the respective virtual cells.
  • the above describes the general process of the inter-cell coordinated water injection power allocation method according to the embodiment of the present invention.
  • a first specific implementation according to an embodiment of the present invention is described below, in which the power allocation coefficient ⁇ m, k of the base station m is allocated to the user k , and the combination of ⁇ m, k , t k and r k determined by the harmonic averaging method is ⁇ t k , r k ⁇ .
  • the output ⁇ m,k p k is used as the power allocated by the base station m to the user k.
  • the method mainly comprises two cycles of outer layer and inner layer.
  • the outer loop determines the corresponding t k (user k interferes with other users) and r k (user k is interfered by other users) and assigns an initial value to the Lagrangian multiplier ⁇ m through the initial virtual power of the user. It mainly includes steps (3) and (4) for providing initial values for the power allocated to the user k for subsequent calculations.
  • the operation of the inner loop includes solving the power p k assigned to the user k according to the non-negative constraint, assigning the sum of the powers assigned to all users by the above calculated base station m to p m , and making the Lagrangian multiplier The ⁇ m interval is halved.
  • the operation of the inner loop also includes determining the total power that p m and the base station can allocate. Size relationship and greater than p m (When the sum of the powers allocated to all users exceeds the total power of the base station), ⁇ m is assigned to a m such that the updated ⁇ m becomes larger, and p k becomes smaller due to the inverse relationship of ⁇ m and p m . On the contrary, p k becomes larger.
  • the judgment condition of the end of the inner loop is (10), if the judgment condition of (10) is not satisfied, the inner loop is continuously executed, and if the judgment condition of (10) is satisfied, the outer loop is entered.
  • the judgment condition of the end of the outer loop is (11), and if the judgment condition of (11) is not satisfied, the outer loop is continuously executed (that is, steps (3) and (4) are repeated), and if the judgment condition of (11) is satisfied, Returns the user power ⁇ m,k p k , End the program.
  • the power allocation coefficient of the base station m to the user k is ⁇ m,k determined by using the precoding vector.
  • the combination of t k and r k uses ⁇ t k , r k ⁇ .
  • the other steps of this implementation are the same as the first implementation except that the calculation of the power partition coefficient is different.
  • the process of calculating the precoding vector coefficients ⁇ m,k based on channel eigenvalue decomposition includes:
  • the first step obtaining a composite channel between the user k and the serving base station
  • h km is the channel impulse response of base station m to user k
  • p mk is the power allocation of base station m to user k
  • the second step seeking a channel autocorrelation matrix
  • the third step eigenvalue decomposition to obtain the largest beamforming vector, that is, the beamforming vector of the user;
  • the fourth step the other cells calculate respective precoding vectors in the same steps as the first to third.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了虚拟小区的功率分配方法及基站。所述方法包括:第一虚拟小区内的基站向其覆盖范围内的用户设备发送小区测量集消息;第一虚拟小区内的基站接收第一虚拟小区内所有用户设备测量得到的所有测量结果,其中,每个用户设备的测量结果指示该用户设备受到预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区的基站的干扰值;第一虚拟小区内的基站接收预定数量的虚拟小区中除第一虚拟小区外各个虚拟小区的基站反馈的施加影响信息;以及基站根据测量结果和施加影响信息确定分配给各个用户设备的虚拟功率。

Description

虚拟小区的功率分配方法及基站 技术领域
本发明涉及通讯领域,特别是涉及虚拟小区的功率分配方法及基站。
背景技术
超密集异构网络技术是新一代无线网络技术主要热点之一。在超密集异构网络技术中,虚拟小区技术改变了传统的小区设计理念,在控制上将多个小覆盖的接入站点联合为一个虚拟大小区,将多个接入站点当做该虚拟大小区的资源来调度,从而避免大量的控制信令开销以及终端的频繁切换,提升用户体验和系统效率。
基于覆盖场景和回传特性,有三种典型的虚拟小区技术:以用户为中心的移动虚拟小区技术、单层静态虚拟小区技术以及分层异构覆盖虚拟小区技术。
关于以用户为中心的移动虚拟小区,其核心思想是虚拟小区是以用户为单位来定义的。当用户接入网络时,具有一个最初的服务小区,之后随着用户设备(User Equipment,UE)的移动,这个服务小区一直跟随UE来提供以用户为中心的服务。虽然这种服务小区跟随用户的概念本质上是逻辑连接一直保持不变,用户不需要进行控制面切换,但其实UE的实际传输所依靠的接入点仍旧随着移动在不断变化。以用户为中心的移动虚拟小区的主要问题是跨本地区域时如何保持用户所连接的服务小区的一致性,即让用户不再受网络部署和区域的限制,可以一直享受到连续的稳定服务。
在一些情形下,当使用以用户为中心的移动虚拟小区技术为虚拟小区中的用户分配功率时,仍然存在功率分配不合理、系统性能较低等缺点。
发明内容
本发明提供虚拟小区的功率分配方法及基站,用以解决以用户为 中心的移动虚拟小区技术在为虚拟小区中的用户分配功率时存在的功率分配不合理、系统性能低的问题。
根据本发明的一方面,提供一种虚拟小区的功率分配方法,包括:第一虚拟小区内的基站向其覆盖范围内的用户设备发送小区测量集消息,其中,所述小区测量集消息包括用户设备需要测量的预定数量的虚拟小区的集合;所述第一虚拟小区内的基站接收所述第一虚拟小区内所有用户设备根据所述小区测量集消息测量得到的所有测量结果,其中,每个用户设备的测量结果指示所述用户设备受到所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站的干扰值;所述第一虚拟小区内的基站接收所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,所述施加影响信息为所述第一虚拟小区内的基站给其覆盖范围内的每个用户设备发送信息时对所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区内的用户设备产生的干扰值;以及所述第一虚拟小区内的基站根据所述测量结果和所述施加影响信息确定分配给其覆盖范围内的用户设备的虚拟功率。
根据本发明的另一方面,提供一种设置在第一虚拟小区内的基站,包括:发送模块,用于向所述基站覆盖范围内的用户设备发送小区测量集消息,其中,所述小区测量集消息包括用户设备需要测量的预定数量的虚拟小区的集合;接收模块,用于:接收所述第一虚拟小区内所有用户设备根据所述小区测量集消息测量得到的所有测量结果,其中,每个用户设备的测量结果指示所述用户设备受到所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站的干扰值;并且接收所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,所述施加影响信息为所述第一虚拟小区内的基站给其覆盖范围内的每个用户设备发送信息时对所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区内的用户设备产生的干扰值;以及功率分配模块,用于根据所述测量结果和所述施加影响信息确定分配给所述基站覆盖范围内的用户设备的虚拟功率。
附图说明
图1是现有技术中由三个基站和两个UE组成的无线系统的示意图;
图2是根据本发明实施例的虚拟小区的功率分配方法的流程图;
图3是根据本发明实施例的基站的结构示意图;
图4是根据本发明实施例的一种实现方式的框图;以及
图5是根据本发明实施例的一种实现方式的流程图。
具体实施方式
以用户为中心的移动虚拟小区将整个网络划分为可重叠、可协作的虚拟小区(Virtual Small Cell,VSC),这样可以确保所有的用户都不会处于网络的边缘区域,即整个网络无边缘用户。这是因为在一种分区模式下处于边缘的用户在另一种分区模式下是中心用户,在一种分区模式下某一用户的干扰基站在另一种分区模式下是另一用户的服务基站。
如图1所示,该无线系统由三个基站和两个UE组成。在图1中,可以将该无线网络分割成两个VSC:第一VSC可以由基站m1、m2和m3组成,以及第二VSC可以由基站m2和m3组成。每个VSC中的所有基站与属于该VSC中的所有用户进行协作通信。一旦所有的基站VSC集合被确定下来,相应的资源调度、分配技术也被确定下来,以使每个用户均可以在相应的分区中被调度。由于功率控制在蜂窝系统干扰管理当中起到相当重要的作用,因此在资源分配问题中功率分配尤为重要。
在以用户为中心的虚拟小区结构中,同一基站为不同用户提供服务,为此,基站需要在不同用户之间分配功率。目前已有的功率分配方法包括基于用户信道统计强度的功率分配和基于瞬时信道强度的功率分配。这两种方法的缺点是对于每个用户的干扰功率是一样的。但是考虑到用户在小区不同位置时其信号的强度不同,所以仅凭借干扰公平无法获得好的干扰管理效果。
因此,当使用以用户为中心的移动虚拟小区技术为虚拟小区中的 用户分配功率时,仍然存在功率分配不合理、系统性能较低等缺点。
为了解决以用户为中心的移动虚拟小区技术在为虚拟小区中的用户分配功率时存在的功率分配不合理、系统性能低的问题,本发明提供了用于虚拟小区的功率分配方法及基站。以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
图2是根据本发明实施例的虚拟小区的功率分配方法的流程图,该方法包括步骤S202至S208。
在步骤S202中,第一虚拟小区内的基站向其覆盖范围内的用户设备发送小区测量集消息,其中,小区测量集消息包括用户设备需要测量的预定数量的虚拟小区的集合。
在步骤S204中,第一虚拟小区内的基站接收第一虚拟小区内所有用户设备根据小区测量集消息测量得到的所有测量结果,其中,每个用户设备的测量结果指示用户设备受到预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区的基站的干扰值。
在步骤S206中,第一虚拟小区内的基站接收预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,施加影响信息为第一虚拟小区内的基站给其覆盖范围内的用户设备发送信息时对预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区内的用户产生的干扰值。
在步骤S208中,第一虚拟小区内的基站根据测量结果和施加影响信息确定分配给其覆盖范围内的用户设备的虚拟功率。
在一个实施例中,当前虚拟小区的基站向其覆盖范围内的用户设备发送小区测量集消息,随后接收该小区内的所有用户设备根据该小区测量集消息返回的所有测量结果,并接收其他虚拟小区向该虚拟小区的基站反馈的施加影响信息,进而根据所有的测量结果和所有的施加影响信息来综合考虑能够分配给该虚拟小区内的各个用户设备的虚拟功率。这样,通过综合考虑各方面的影响情况再为各个用户设备分配虚拟功率,使得分配到每个用户设备的功率都较为合理,提高了系统性能,解决了以用户为中心的移动虚拟小区技术在为虚拟小区中的 用户分配功率时存在的分配不合理、系统性能低的问题。
在第一虚拟小区内的基站根据测量结果和施加影响信息确定分配给该小区内的各个用户设备的虚拟功率的过程中,可以按照如下公式确定第一虚拟小区的基站m分配给用户k的功率份额p m,k
Figure PCTCN2018073033-appb-000001
其中,p m,k满足以下约束条件:
Figure PCTCN2018073033-appb-000002
其中,k∈K m表示用户k属于基站m的服务用户集合,
Figure PCTCN2018073033-appb-000003
表示基站m为第一虚拟小区的所有基站中的任意一个,
Figure PCTCN2018073033-appb-000004
是基站m能够分配的总功率值,即分配阈值。
可以按照如下公式确定第k个用户被分配的虚拟功率值p k(p k是该小区内所有基站分配给用户k的虚拟功率值之和):
Figure PCTCN2018073033-appb-000005
其中,μ m是基站m的拉格朗日乘数,φ m,k表示基站m分配给用户k的功率系数,ω k表示用户k的权重,M k表示虚拟小区内用户k所属的基站的集合,t k表示施加影响信息,是与用户k产生的干扰有关的函数,r k表示感受影响信息,由用户k的测量结果得到,是与用户k接收的干扰有关的函数,t k和r k可由下式来确定:
Figure PCTCN2018073033-appb-000006
r k(P)=(∑ i≠k,i∈Kg kip i2)/g kk
其中,g kk是用户k的信道增益,g kj是用户j对用户k的干扰,γ j是用户j的信干噪比,其值为:
Figure PCTCN2018073033-appb-000007
下面对第一虚拟小区内基站确定分配给第k个用户的虚拟功率值p k的具体过程进行说明。
第一步,确定分配给用户设备k的初始虚拟功率值,并根据初始虚拟功率值以及用户设备k的测量结果确定用户设备k的t k和r k
第二步,设置
Figure PCTCN2018073033-appb-000008
其中,M表示第一虚拟小区的用户设备k所属的基站的集合,
Figure PCTCN2018073033-appb-000009
是拉格朗日乘数的初始值。
第三步,按照注水公式
Figure PCTCN2018073033-appb-000010
计算分配给用户k的功率值p k
第四步,每个基站按照公式
Figure PCTCN2018073033-appb-000011
判断该基站分配给各个用户的功率的和是否大于该基站可分配的总功率值。
第五步,在基站m分配的总功率大于其可分配的总功率值的情况下,调整基站m的拉格朗日乘数μ m=(a m+b m)/2,,并将a m设置为μ m,继续返回第三步进行计算。
第六步,在基站m分配的总功率小于其总功率限制值的情况下,调整基站m的拉格朗日乘数μ m=(a m+b m)/2,,并将b m设置为μ m
第七步,重复执行第三步至第六步,直至确定第k个用户设备被分配到的功率值为止。
实现的过程中,采用以下任一方法来确定φ m,k
(1)平均分配方法:φ m,k=1/M k
(2)调和平均方法:
Figure PCTCN2018073033-appb-000012
其中,h m,k是基站m到用户k的信道矢量;以及
(3)波束形成法:φ m,k=|V m,k| 2,其中,V m,k是用户k的波束形成矢量的第m个维度。
图3是根据本发明实施例的基站的结构示意图。
本发明还提供一种具有总体控制功能的基站,该基站设置在第一虚拟小区内。本领域技术人员知晓,对于任意一个基站,其所对应的小区就是第一虚拟小区。如图3所示,该基站包括发送模块10、接收模块20和功率分配模块30。
发送模块10用于向基站覆盖范围内的用户设备发送小区测量集消息,其中,小区测量集消息包括用户设备需要测量的预定数量的虚拟小区的集合。
接收模块20与发送模块10耦合,用于接收第一虚拟小区内所有用户设备根据小区测量集消息测量得到的所有测量结果,其中,每个用户设备对应的测量结果指示用户设备受到预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区的基站的干扰值。接收模块20还用于接收预定个虚拟小区中除第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,施加影响信息为第一虚拟小区内的基站给其覆盖范围内的用户设备发送信息时对预定数量的虚拟小区中除第一虚拟小区外的各个虚拟小区内的用户产生的干扰值。
功率分配模块30与接收模块20耦合,用于根据测量结果和施加影响信息确定分配给各个用户设备的虚拟功率。
下面对功率分配模块30的具体功能进行描述。
按照如下公式确定第一虚拟小区的基站m分配给用户设备k的功率份额p m,k
Figure PCTCN2018073033-appb-000013
其中,p m,k满足以下约束条件:
Figure PCTCN2018073033-appb-000014
其中,k∈K m表示用户k属于基站m的服务用户集合,
Figure PCTCN2018073033-appb-000015
表示基站m为所有基站中的任意一个,
Figure PCTCN2018073033-appb-000016
是基站m能够分配的总功率值。可以按照如下公式确定第k个用户被分配的虚拟功率值p k
Figure PCTCN2018073033-appb-000017
其中,μ m是基站m的拉格朗日乘数,φ m,k表示基站m分配给用户k的功率系数,ω k表示用户k的权重,M k表示虚拟小区内用户k所属的基站的集合,t k表示施加影响信息,是与用户k产生的干扰有关的函数,r k表示感受影响信息,由用户k的测量结果得到,是与用户k接收的干 扰有关的函数,t k和r k可通过以下等式来确定:
Figure PCTCN2018073033-appb-000018
r k(P)=(∑ i≠k,i∈Kg kip i2)/g kk
其中,g kk是用户k的信道增益,g kj是用户j对用户k的干扰,γ j是用户j的信干噪比,其值为:
Figure PCTCN2018073033-appb-000019
功率分配模块具体按照如下过程分配虚拟功率值p k
第一步,确定分配给用户设备k的初始虚拟功率值,并根据初始虚拟功率值以及用户设备k的测量结果确定用户设备k的t k和r k
第二步,设置
Figure PCTCN2018073033-appb-000020
其中,M表示第一虚拟小区内的用户设备k所属的基站的集合,
Figure PCTCN2018073033-appb-000021
是拉格朗日乘数的初始值。
第三步,根据t k和r k,按照注水公式
Figure PCTCN2018073033-appb-000022
计算基站分配给用户k设备的功率值p k
第四步,按照公式
Figure PCTCN2018073033-appb-000023
判断该基站分配给各个用户设备的功率的和是否大于该基站可分配的总功率值。
第五步,在分配的总功率大于该基站可分配的总功率值的情况下,将基站m的拉格朗日乘数调整为μ m=(a m+b m)/2,,并将α m设置为μ m,继续返回第三步进行计算。
第六步,在基站m分配的总功率小于其总功率限制值的情况下,将基站m的拉格朗日乘数调整为μ m=(a m+b m)/2,并将b m设置为μ m,继续返回第三步进行计算。
第七步,重复执行第三步至第六步,直至确定第k个用户设备被分配到功率值为止。
功率分配模块使用的φ m,k可以采用以下任一方法确定:
(1)平均分配方法:φ m,k=1/M k
(2)调和平均方法:
Figure PCTCN2018073033-appb-000024
以及
(3)波束形成法:φ m,k=|V m,k| 2,其中,V m,k是用户k的波束形成矢量的第m个维度。
为了解决现有技术中功率分配方法的缺点,同时为虚拟小区的预编码提供基站间联合功率分配,本发明提出了一种基于以用户为中心的虚拟小区的注水功率分配方法,在消除干扰提高增益之外,进一步增加系统容量。
该方法的虚拟小区由多个基站和UE组成,基站可以由宏小区及其覆盖之下的数个低功率基站如家庭基站、微微基站等组成。该方法可以解决微小区引入后产生的干扰问题和联合波束赋形的功率分配问题。
在根据本实施例的异构网小区间协作注水功率分配方法中,假设每个移动台处于由多个基站组成的一个虚拟小区中,移动台k所属的虚拟小区内的基站群M k,M k∈M,即基站群M k中的基站是所有基站中的一部分。基站m在虚拟小区中覆盖的移动台集合为K m,其中K m∈K。一个虚拟小区的基站群里的基站共享用户数据,这样将基站群里所有基站天线进行波束形成后可以形成一种协作式传输,即每个基站m可以服务一系列移动台K m,每个移动台k接收来自基站群M k的信息。此处假设M k或K m已使用预先分群方法确定所属的虚拟小区。因为我们不对M k有任何限制,所以两个基站群之间可能有重叠的基站,即对k.k'∈K,有M k∩M k'≠Φ而M k≠M k',这些都是协作式基站的通用参数设置。
在上述异构网小区间协作注水功率控制分配方法中,以得到用户的最大加权和的速率为效用函数来求解给用户分配的最优功率,得到具有约束的优化问题:
Figure PCTCN2018073033-appb-000025
其中,ω k是用户k的权重,γ k(P)是用户k的信干噪比,其值为:
Figure PCTCN2018073033-appb-000026
其中,g kk是用户k的信道增益,g kj是用户j对用户k的干扰,p k是用户k被分配的功率,p j是用户j被分配的功率,P是由p k组成的矢量,
Figure PCTCN2018073033-appb-000027
是用户k的信道噪声。
上述最优问题同时还要满足下面的约束条件,即一个基站分配给所有用户的功率之和不超过它能够分配的总功率:
Figure PCTCN2018073033-appb-000028
其中,φ m,k是基站m分配给用户k的功率系数,p k是用户k的虚拟功率,
Figure PCTCN2018073033-appb-000029
是基站m的总功率。
在上述异构网小区间协作注水功率分配方法中,可以通过下式来计算基站m分配给用户k的功率份额:
Figure PCTCN2018073033-appb-000030
在上述异构网小区间协作注水功率设计方法中,用户k的虚拟功率可以采用下述非负约束的注水算法来计算:
Figure PCTCN2018073033-appb-000031
其中,μ m是拉格朗日乘数,t k是与用户k产生的干扰有关的函数,可以采用下式来计算:
Figure PCTCN2018073033-appb-000032
r k是与用户k接收的干扰有关的函数,可以采用下式来计算:
r k(P)=(∑ i≠k,i∈Kg kip i2)/g kk
在上述异构网小区间协作注水功率分配方法中,基站m的注水参数(即拉格朗日乘数)μ m可通过迭代算法获得。例如,通过给定t k和r k得到p k,利用新的p k更新t k和r k,直到它收敛。因为p k是μ m的单调函数,利用多维二分法可以通过给定的t k和r k来计算出p k
在上述异构网小区间协作注水功率分配方法中,φ m,k是基站m分配给用户k的功率系数,可以通过下述方法来确定。
1)平均分配方法:φ m,k=1/M k
其中,M k是用户k所属的虚拟小区中包含的基站的集合;
2)调和平均方法:
Figure PCTCN2018073033-appb-000033
3)波束形成法:φ m,k=|V m,k| 2
其中,V m,k是用户k的波束形成矢量的第m个维度。波束形成矢量的值可通过特征值分解、迫零、信干泄漏比等方法获得。
在上述异构网小区间协作注水功率分配方法中,非负约束的注水算法计算第k个用户的虚拟功率时,t k和r k的组合可以包括以下方式:
{0,0},{t k,0},{0,r k},{t k,r k}。
图4所示是根据本发明实施例的一种实现方式的框图。
如图4所示,根据本发明实施例的实现方式主要包括两层。下层由虚拟小区及其包括的基站组成,如虚拟小区的基站m i和m j,上层为虚拟小区中心控制节点,可位于任意一个基站(如主基站),例如位于宏小区基站处。
各个虚拟小区上运行独立的公平调度器(PF调度器)和功率控制,其中公平调度器根据所属基站服务的用户的平均瞬时速率和历史平均速率计算用户的调度优先级,然后根据优先级次序决定用户调度,最后PF调度器根据中心节点的输出结果,按照联合设计的功率分配调度用户。
中心节点运行联合小区功率分配方法,过程如下:各个虚拟小区的调度器选择调度的用户;虚拟小区中心控制节点接收各个虚拟小区基站的测量结果,如各个调度用户到各个虚拟小区的信道矩阵等;运行联合小区功率分配方法确定各个用户分配的功率;中心节点输出各个用户分配的功率结果,并将输出结果发送到各虚拟小区;各个虚拟小区采用收到的各个用户分配的功率发送用户数据。
图5示出本发明实施例的一种实现方式的流程。在LTE中,通过广播信道SBCH的SIB来传送系统消息。假设虚拟小区1是虚拟中心控制节点所在虚拟小区。UE1是虚拟小区1的一个用户。虚拟中心控制节点确定虚拟小区1至3是协作虚拟小区,即确定虚拟小区测量集合。可以通过SIB消息扩展虚拟小区集合(即在LTE的SIB消息中新定义小区测量集合)并在扩展前的虚拟小区集合所包含的虚拟小区广播。UE1通过读取SIB消息获得小区测量集合,即虚拟小区1至3。
UE1对虚拟小区1至3的测量配置是通过连接重配置(Connection Reconfiguration,RRC)消息中的测量配置消息(Measurement Configuration IE)来实现的,Measurement Configuration IE是对LTE系统的原消息IE的扩展。
UE1根据测量配置,完成对虚拟小区集合{虚拟小区1,虚拟小区2,虚拟小区3}的参数测量,例如,采用虚拟小区1至3的各自的导频符号对参考信号接收功率(Reference Signal Receiving Power,RSRP)和参考信号接收质量(Reference Signal Received Quality,RSRQ)、信道矩阵等进行测量。
虚拟小区2和虚拟小区3将各自小区用户的测量结果上报虚拟小区1。
虚拟小区1收集所有用户针对虚拟小区集合{虚拟小区1,虚拟小区2,虚拟小区3}的测量值。
虚拟小区1计算分配给各个用户的功率,并通知各个虚拟小区,各个虚拟小区的PF调度器依次采用收到的各个用户分配的功率调度用户。
各个虚拟小区{虚拟小区1,虚拟小区2,虚拟小区3}与各自虚拟小区的调度用户传输数据。
以上描述了根据本发明实施例的异构网小区间协作注水功率分配方法的大体过程。下面说明根据本发明实施例的第一具体实现,其中基站m分配给用户k的功率分配系数φ m,k采用调和平均方法确定的φ m,k,t k和r k的组合采用{t k,r k}。
(1)初始化基站分配给其所属的虚拟小区的覆盖范围内的所有用 户设备的初始虚拟功率集合P={p k},k=1,2,.基站m对用户k的功率分配系数为φ m,k
(2)通过初始虚拟功率集合P={p k}和功率分配系数φ m,k确定t k和r k,
Figure PCTCN2018073033-appb-000034
(3)通过初始虚拟功率P更新t k和r k,其中,
Figure PCTCN2018073033-appb-000035
(4)设置
Figure PCTCN2018073033-appb-000036
(5)根据t k和r k计算p k,即,
Figure PCTCN2018073033-appb-000037
其中[] +表示向上取整数。
(6)确定基站m已经分配的总功率p
Figure PCTCN2018073033-appb-000038
(7)设置μ m=(a m+b m)/2,
Figure PCTCN2018073033-appb-000039
该过程中,(6)和(7)的步骤可以调整顺序。
(8)如果
Figure PCTCN2018073033-appb-000040
则将a m设置为μ m
Figure PCTCN2018073033-appb-000041
并返回步骤(4)继续执行。
(9)如果
Figure PCTCN2018073033-appb-000042
则将b m设置为μ m并返回步骤(5)继续执行。
(10)执行上述比较调整过程,直到
Figure PCTCN2018073033-appb-000044
或者∑ mμ m<δ为止。
(11)针对下一个用户重复进行上述(3)至(10)的步骤,直到P收敛或者达到最大迭代次数为止。
(12)输出φ m,kp k作为基站m分配给用户k的功率。
该方法主要包括外层和内层两个循环。外层循环通过用户的初始虚拟功率确定相应的t k(用户k对别的用户的干扰)和r k(用户k受到别的用户的干扰)并给拉格朗日乘数μ m赋初值,主要包括步骤(3)和(4),用于为后续计算分配给用户k的功率提供初始值。
内层循环的操作包括根据非负约束求解分配给用户k的功率p k、将通过上述计算得出的基站m分配给所有用户的功率之和赋值给p m、 以及使拉格朗日乘数μ m区间减半。内层循环的操作还包括判断p m与基站可分配的总功率
Figure PCTCN2018073033-appb-000045
的大小关系,并在p m大于
Figure PCTCN2018073033-appb-000046
(说明给所有用户分配的功率之和超过了基站的总功率)时将μ m赋值给a m,使得更新后的μ m变大,由于μ m和p m的反比关系,p k变小。反之,则p k变大。
内层循环结束的判断条件是(10),如果不满足(10)的判断条件,则继续执行内层循环,如果满足(10)的判断条件则进入外层循环。外层循环结束的判断条件是(11),如果不满足(11)的判断条件则继续执行外层循环(即,重复步骤(3)和(4)),如果满足(11)的判断条件则返回用户功率φ m,kp k
Figure PCTCN2018073033-appb-000047
结束程序。
根据本发明实施例的第二种实现方式,假设基站m对用户k的功率分配系数为采用预编码矢量确定的φ m,k。t k和r k的组合采用{t k,r k}。除了功率分配系数的计算不同之外,该实现方式的其他步骤与第一种实现方式相同。
基于信道特征值分解的计算预编码矢量系数φ m,k的过程包括:
第一步:获取用户k与服务基站的复合信道
Figure PCTCN2018073033-appb-000048
其中h km是基站m到用户k的信道冲击响应,p mk是基站m对用户k的功率分配,
Figure PCTCN2018073033-appb-000049
是用户k的虚拟小区基站集合,N t是基站的发射天线个数;
第二步:求信道自相关矩阵;
第三步:特征值分解求最大的波束形成矢量即用户的波束形成矢量;
第四步:其他小区按照与第一到第三相同的步骤计算各自的预编码矢量。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (10)

  1. 一种虚拟小区的功率分配方法,包括:
    第一虚拟小区内的基站向其覆盖范围内的用户设备发送小区测量集消息,其中,所述小区测量集消息包括用户设备需要测量的预定数量的虚拟小区的集合;
    所述第一虚拟小区内的基站接收所述第一虚拟小区内所有用户设备根据所述小区测量集消息测量得到的所有测量结果,其中,每个用户设备的测量结果指示所述用户设备受到所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站的干扰值;
    所述第一虚拟小区内的基站接收所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,所述施加影响信息为所述第一虚拟小区内的基站给其覆盖范围内的每个用户设备发送信息时对所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区内的用户设备产生的干扰值;以及
    所述第一虚拟小区内的基站根据所述测量结果和所述施加影响信息确定分配给其覆盖范围内的用户设备的虚拟功率。
  2. 如权利要求1所述的功率分配方法,其中,所述第一虚拟小区内的基站根据所述测量结果和所述施加影响信息确定分配给其覆盖范围内的用户设备的虚拟功率包括:
    按照如下公式确定用户设备k被分配的虚拟功率值p k
    Figure PCTCN2018073033-appb-100001
    其中,μ m是所述第一虚拟小区内任一基站m的拉格朗日乘数,φ m,k表示所述基站m分配给用户设备k的功率系数,ω k表示用户设备k的权重,M k表示所述第一虚拟小区内用户设备k所属的基站的集合,t k表示施加影响信息,是与用户设备k产生的干扰有关的函数,r k表示感受影响信息,由用户设备k的测量结果得到,是与用户设备k 接收的干扰有关的函数,
    Figure PCTCN2018073033-appb-100002
    r k(Ρ)=(∑ i≠k,i∈Kg kip i2)/g kk
    其中,g kk是用户设备k的信道增益,g kj是用户设备j对用户设备k的干扰,γ j是用户设备j的信干噪比,其值为:
    Figure PCTCN2018073033-appb-100003
  3. 如权利要求2所述的功率分配方法,其中,确定用户设备k被分配的虚拟功率值p k之前还包括:
    按照如下公式确定所述基站m分配给用户设备k的功率份额p m,k
    Figure PCTCN2018073033-appb-100004
    其中,所述功率份额p m,k满足以下约束条件:
    Figure PCTCN2018073033-appb-100005
    其中,k∈K m表示用户设备k属于所述基站m的服务用户集合,
    Figure PCTCN2018073033-appb-100006
    表示所述基站m为所述第一虚拟小区内的任意一个基站,
    Figure PCTCN2018073033-appb-100007
    是所述基站m能够分配的总功率值。
  4. 如权利要求3所述的功率分配方法,其中,所述第一虚拟小区内基站确定分配给用户设备k的虚拟功率值p k的过程如下:
    第一步,确定分配给用户设备k的初始虚拟功率值,并根据所述初始虚拟功率值以及测量结果确定所述用户设备k的t k和r k
    第二步,设置
    Figure PCTCN2018073033-appb-100008
    其中,
    Figure PCTCN2018073033-appb-100009
    表示所述第一虚拟小区内的用户设备k所属的基站的集合,
    Figure PCTCN2018073033-appb-100010
    是拉格朗日乘数的初始值;
    第三步,根据t k和r k,按照注水公式
    Figure PCTCN2018073033-appb-100011
    计算为用户设备k分配的功率值p k
    第四步,每个基站按照公式
    Figure PCTCN2018073033-appb-100012
    判断该基站分配给各个用户设备的功率的和是否大于其可分配的总功率值;
    第五步,在基站m分配的总功率大于其可分配的总功率值的情况下,调整基站m的拉格朗日乘数μ m=(a m+b m)/2,并将a m设置为μ m,继续返回第三步进行计算;
    第六步,在基站m分配的总功率小于其可分配的总功率值的情况下,调整基站m的拉格朗日乘数μ m=(a m+b m)/2,并将b m设置为μ m,继续返回第三步进行计算;
    第七步,重复执行第三步至第六步,直至确定用户设备k被分配到的功率值为止。
  5. 如权利要求2至4中任一项所述的功率分配方法,其中,采用以下任一方法确定φ m,k
    平均分配方法:φ m,k=1/M k
    调和平均方法:
    Figure PCTCN2018073033-appb-100013
    其中,h m,k是基站m到用户设备k的信道矢量;以及
    波束形成法:φ m,k=|V m,k| 2,其中,V m,k是用户设备k的波束形成矢量的第m个维度。
  6. 一种设置在第一虚拟小区内的基站,包括:
    发送模块,用于向所述基站覆盖范围内的用户设备发送小区测量集消息,其中,所述小区测量集消息包括用户设备需要测量的预定 数量的虚拟小区的集合;
    接收模块,用于:
    接收所述第一虚拟小区内所有用户设备根据所述小区测量集消息测量得到的所有测量结果,其中,每个用户设备的测量结果指示所述用户设备受到所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站的干扰值;并且
    接收所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区的基站反馈的施加影响信息,其中,所述施加影响信息为所述第一虚拟小区内的基站给其覆盖范围内的每个用户设备发送信息时对所述预定数量的虚拟小区中除所述第一虚拟小区外的各个虚拟小区内的用户设备产生的干扰值;以及
    功率分配模块,用于根据所述测量结果和所述施加影响信息确定分配给所述基站覆盖范围内的用户设备的虚拟功率。
  7. 如权利要求6所述的基站,其中,所述功率分配模块还用于:
    按照如下公式确定用户设备k被分配的虚拟功率值p k
    Figure PCTCN2018073033-appb-100014
    其中,μ m是所述第一虚拟小区内任一基站m的拉格朗日乘数,φ m,k表示所述基站m分配给用户设备k的功率系数,ω k表示用户设备k的权重,M k表示所述第一虚拟小区内用户设备k所属的基站的集合,t k表示施加影响信息,是与用户设备k产生的干扰有关的函数,r k表示感受影响信息,由用户设备k的测量结果得到,是与用户设备k接收的干扰有关的函数,
    Figure PCTCN2018073033-appb-100015
    r k(Ρ)=(∑ i≠k,i∈Kg kip i2)/g kk
    其中,g kk是用户设备k的信道增益,g kj是用户设备j对用户设备k的干扰,γ j是用户设备j的信干噪比,其值为:
    Figure PCTCN2018073033-appb-100016
  8. 如权利要求7所述的基站,其中,所述功率分配模块还用于:
    按照如下公式确定所述基站m分配给用户设备k的功率份额p m,k
    Figure PCTCN2018073033-appb-100017
    其中,所述功率份额p m,k满足以下约束条件:
    Figure PCTCN2018073033-appb-100018
    其中,k∈K m表示用户设备k属于所述基站m的服务用户集合,
    Figure PCTCN2018073033-appb-100019
    表示所述基站m为所述第一虚拟小区内的任意一个基站,
    Figure PCTCN2018073033-appb-100020
    是所述基站m能够分配的总功率值。
  9. 如权利要求8所述的基站,其中,所述功率分配模块还按照如下过程确定分配给用户设备k的虚拟功率值p k
    第一步,确定分配给用户设备k的初始虚拟功率值,并根据所述初始虚拟功率值以及测量结果确定所述用户设备k的t k和r k
    第二步,设置
    Figure PCTCN2018073033-appb-100021
    其中,
    Figure PCTCN2018073033-appb-100022
    表示所述第一虚拟小区内的用户设备k所属的基站的集合,
    Figure PCTCN2018073033-appb-100023
    是拉格朗日乘数的初始值;
    第三步,根据t k和r k,按照注水公式
    Figure PCTCN2018073033-appb-100024
    计算为用户设备k分配的功率值p k
    第四步,按照公式
    Figure PCTCN2018073033-appb-100025
    判断该基站分配给各个用户设备的功率的和是否大于其可分配的总功率值;
    第五步,在分配的总功率大于该基站可分配的总功率值的情况下,调整拉格朗日乘数μ m=(a m+b m)/2,并将a m设置为μ m,继续返回第 三步进行计算;
    第六步,在分配的总功率小于该基站可分配的总功率值的情况下,调拉格朗日乘数μ m=(a m+b m)/2,并将b m设置为μ m,继续返回第三步进行计算;
    第七步,重复执行第三步至第六步,直至确定用户设备k被分配到的功率值为止。
  10. 如权利要求7至9中任一项所述的基站,其中,采用以下任一方法确定所述功率分配模块使用的φ m,k
    平均分配方法:φ m,k=1/M k
    调和平均方法:
    Figure PCTCN2018073033-appb-100026
    其中,h m,k是基站m到用户设备k的信道矢量;以及
    波束形成法:φ m,k=|V m,k| 2,其中,V m,k是用户设备k的波束形成矢量的第m个维度。
PCT/CN2018/073033 2017-02-10 2018-01-17 虚拟小区的功率分配方法及基站 WO2018145562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710073466.8A CN108419265A (zh) 2017-02-10 2017-02-10 一种虚拟小区的功率分配方法及基站
CN201710073466.8 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018145562A1 true WO2018145562A1 (zh) 2018-08-16

Family

ID=63107172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073033 WO2018145562A1 (zh) 2017-02-10 2018-01-17 虚拟小区的功率分配方法及基站

Country Status (2)

Country Link
CN (1) CN108419265A (zh)
WO (1) WO2018145562A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669770A (zh) * 2020-07-09 2020-09-15 段云云 一种基于5g网络的全双工通信干扰抑制系统及方法
CN113824490B (zh) * 2021-11-25 2022-02-11 四川轻化工大学 一种基于星地链路上行非正交多址接入的软切换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408710A1 (en) * 2002-09-30 2004-04-14 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system
CN1719929A (zh) * 2004-07-10 2006-01-11 三星电子株式会社 码分多址通信系统中用于下行链路传输的资源分配方法
CN102711124A (zh) * 2012-06-08 2012-10-03 北京邮电大学 一种双层网络中毫微微小区的功率分配方法
CN105050192A (zh) * 2015-06-04 2015-11-11 重庆邮电大学 密集网络中基于虚拟小区的干扰管理方法
WO2016093390A1 (ko) * 2014-12-10 2016-06-16 엘지전자 주식회사 클라우드 무선 접속 네트워크 환경에서 사용자 중심 가상 셀의 간섭 감소를 위한 신호를 생성하는 방법 및 이를 위한 장치
CN106028456A (zh) * 2016-07-11 2016-10-12 东南大学 一种5g高密度网络中虚拟小区的功率分配方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404800B (zh) * 2008-03-12 2011-02-09 北京邮电大学 Ofdma蜂窝系统中基于虚小区的半静态干扰协调方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408710A1 (en) * 2002-09-30 2004-04-14 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system
CN1719929A (zh) * 2004-07-10 2006-01-11 三星电子株式会社 码分多址通信系统中用于下行链路传输的资源分配方法
CN102711124A (zh) * 2012-06-08 2012-10-03 北京邮电大学 一种双层网络中毫微微小区的功率分配方法
WO2016093390A1 (ko) * 2014-12-10 2016-06-16 엘지전자 주식회사 클라우드 무선 접속 네트워크 환경에서 사용자 중심 가상 셀의 간섭 감소를 위한 신호를 생성하는 방법 및 이를 위한 장치
CN105050192A (zh) * 2015-06-04 2015-11-11 重庆邮电大学 密集网络中基于虚拟小区的干扰管理方法
CN106028456A (zh) * 2016-07-11 2016-10-12 东南大学 一种5g高密度网络中虚拟小区的功率分配方法

Also Published As

Publication number Publication date
CN108419265A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
US10057034B2 (en) Method and system for dynamic allocation of resources in a cellular network
Xu et al. Cooperative distributed optimization for the hyper-dense small cell deployment
Giupponi et al. Distributed interference control in OFDMA-based femtocells
Semiari et al. Matching theory for priority-based cell association in the downlink of wireless small cell networks
CN105471488B (zh) 一种多小区波束形成方法和装置
Chen et al. Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks
Park et al. Load-balancing scheme with small-cell cooperation for clustered heterogeneous cellular networks
Yu et al. Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks
Lan et al. Resource allocation and performance study for LTE networks integrated with femtocells
WO2018145562A1 (zh) 虚拟小区的功率分配方法及基站
Alam et al. Hopfield neural network based uplink/downlink transmission order optimization for dynamic indoor TDD femtocells
Wang et al. QoS-aware cooperative power control and resource allocation scheme in LTE femtocell networks
Thakur et al. An energy efficient cell selection scheme for femtocell network with spreading
Elbassiouny et al. Traffic-aware user association technique for dynamic on/off switching of small cells
Huang et al. HICIC: Hybrid inter-cell interference coordination for two-tier heterogeneous networks with non-uniform topologies
CN108377542A (zh) 一种基于信干漏比的功率分割方法
Abdullah et al. Design of a cell selection mechanism to mitigate interference for cell-edge macro users in femto-macro heterogeneous network
Malini et al. Soft frequency reuse based interference minimization technique for long term evolution-advanced heterogeneous networks
Hasan et al. Inter-cell interference coordination in Heterogeneous Network: A qualitative and quantitative analysis
Jie et al. A CoMP-Based outage compensation solution for heterogeneous femtocell networks
Saha et al. A novel approach for centralized 3D radio resource allocation and scheduling in dense HetNets for 5G control-/user-plane separation architectures
Pedersen et al. Study of dynamic eicic in a realistic urban deployment
Oo et al. Traffic offloading via Markov approximation in heterogeneous cellular networks
Chen et al. Multi-tone almost blank subframes for enhanced inter-cell interference coordination in LTE HetNets
Thienthong et al. Comparative study of scheduling algorithms in lte hetnets with almost blank subframe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751397

Country of ref document: EP

Kind code of ref document: A1