WO2018143622A1 - Steel frame structure having earthquake-resistant intermediate moment joint part - Google Patents

Steel frame structure having earthquake-resistant intermediate moment joint part Download PDF

Info

Publication number
WO2018143622A1
WO2018143622A1 PCT/KR2018/001220 KR2018001220W WO2018143622A1 WO 2018143622 A1 WO2018143622 A1 WO 2018143622A1 KR 2018001220 W KR2018001220 W KR 2018001220W WO 2018143622 A1 WO2018143622 A1 WO 2018143622A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
plastic hinge
hinge portion
moment
joint
Prior art date
Application number
PCT/KR2018/001220
Other languages
French (fr)
Korean (ko)
Inventor
주영규
도병호
박만우
Original Assignee
동부제철 주식회사
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부제철 주식회사, 고려대학교 산학협력단 filed Critical 동부제철 주식회사
Publication of WO2018143622A1 publication Critical patent/WO2018143622A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/024Structures with steel columns and beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts

Definitions

  • the present invention relates to a steel structure, and more particularly, to a steel structure having an intermediate moment joint with enhanced seismic performance.
  • Moment frame is widely used as lateral force resistance system of steel structure. These moment frames are to be ductile at the joints by bending yield of beams and shear yield of panel zones. Therefore, each element of well-formed moment frame joints must undergo many plastic deformations while exhibiting the required strength during an earthquake. In fact, through many experiments in the 1960s and 1970s, steel moment frames were considered to be the best lateral resistance system.
  • moment frames that can be used for seismic design are classified into general moment frames, intermediate moment frames, and special moment frames. The choice of these frames is determined by the seismic risk and earthquake design category of the area where the building will be located. do.
  • the seismic response coefficient is applied at the time of design reflection, and as a result, the shear stress applied to the design is reduced, which reduces the overall volume of the building. There is this.
  • the beam-column joints In order to be recognized as an intermediate moment frame in the Korean Architectural Structural Standards (KBC 2016), the beam-column joints must be capable of exhibiting at least 0.02 rad of interlaminar displacement angle, and the beam dances greater than 750 mm when the joints specified in the standard are used. It is prescribed that we cannot do it.
  • the joining plate of the beam-column joint must be welded at the pole and the factory. This is to prevent the joint from breaking before the other part of the beam is plastically deformed by an appropriate amount.
  • Embodiment of the present invention is devised to solve the above problems, by increasing the plastic rotation capacity of the joint portion, it is possible to reduce the load on the joint portion of the column and the beam, it is possible to further increase the dance of the beam In addition, it is possible to facilitate the coupling of the joint more, it is possible to reduce the amount of steel, and to provide a steel structure having a seismic middle moment joint easier to transfer.
  • Embodiment of the present invention in order to solve the above problems, pillars for supporting the building; A beam joined by a joint to the column in a direction crossing the column; A first plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction away from the junction of the beam; And a second plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction spaced apart from the first plastic hinge portion at the joint portion.
  • the cross-sectional moment performance of the second plastic hinge portion is preferably smaller than the first plastic hinge portion.
  • the cross-sectional moment performance of the second plastic hinge portion and the first plastic hinge portion is effectively formed so that plastic deformation occurs at the same time by the load applied to the steel structure.
  • the width of the flange of the first plastic hinge portion is smaller than the flange width of the beam of the joint portion.
  • the flange width of the first plastic hinge portion may be implemented to be reduced to a straight shape.
  • the flange width of the second plastic hinge portion is smaller than the flange width of the joint portion.
  • the flange thickness of the second plastic hinge portion is thinner than the flange thickness of the first plastic hinge portion.
  • the flange of the second plastic hinge portion which is thinner than the flange of the first plastic hinge portion, is joined to the side surface of the flange of the first plastic hinge portion.
  • a bottom flange may be integrally formed across the coupling part, the first plastic hinge part, and the second plastic hinge part, and an upper flange may be disposed over an upper surface of the coupling part and the first plastic hinge part of the bottom flange. May be combined.
  • the strength of the flange of the second plastic hinge part is weaker than that of the flange of the first plastic hinge part, and the thickness may be the same.
  • the height of the dance of the beam can be further increased by configuring the first hinge portion and the second hinge portion that are plastically deformed near the beam and column junction. Therefore, not only can be applied to the building requiring a long span, there is an advantage that can reduce the total amount of steel.
  • FIG. 1 is a perspective view of a joint of a steel structure of a first embodiment of the present invention
  • FIG. 1 is a plan view of FIG. 1
  • FIG. 3 is a side view of FIG. 1
  • FIG. 4 is a graph showing the required moment and the actual moment performance of the beam required along the longitudinal direction of the beam when a uniform load is applied to the beam of FIG.
  • FIG. 5 is a diagram conceptually illustrating deformation of a beam when an earthquake load is applied to FIG. 1;
  • FIG. 6 is a diagram illustrating a finite element analysis result in a state in which an earthquake is applied to a time point when destruction occurs in FIG. 1.
  • FIG. 6 is a diagram illustrating a finite element analysis result in a state in which an earthquake is applied to a time point when destruction occurs in FIG. 1.
  • FIG. 7 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 1.
  • Figure 8 is a perspective view of the joint portion of the steel structure of the second embodiment of the present invention.
  • FIG. 9 is a top view of FIG. 8
  • FIG. 10 is a side view of FIG. 8
  • FIG. 11 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 8.
  • FIG. 12 is a perspective view of a joint of a steel structure of a third embodiment of the present invention.
  • FIG. 13 is a plan view of FIG. 12.
  • FIG. 14 is a side view of FIG. 12.
  • Figure 15 is a perspective view of the joint portion of the steel structure of the fourth embodiment of the present invention.
  • FIG. 16 is a top view of FIG. 15
  • FIG. 17 is a side view of FIG. 15
  • FIG. 18 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 15.
  • FIG. 20 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 19.
  • FIG. 1 is a perspective view of an intermediate moment joint of the steel structure of the first embodiment of the present invention
  • Figure 2 is a plan view of Figure 1
  • Figure 3 is a side view of FIG.
  • the steel frame structure having the seismic middle moment joint of the first embodiment of the present invention includes a pillar 100 supporting a building and the pillar 100 in a direction crossing the pillar 100. And the first plastic hinge 410 in which the cross-sectional moment performance of the beam 300 is reduced in a direction spaced apart from the joint portion of the beam 300 by the joining part 200. And a second plastic hinge part 420 having a reduced cross-sectional moment performance of the beam 300 in a direction spaced apart from the first plastic hinge part 410 at the joint part 200.
  • cross-sectional moment performance refers to the ability to withstand the moment load, depending on the material properties of the member and the shape of the cross section. In other words, the cross-sectional moment performance is affected by the cross-sectional secondary moment according to the cross-sectional shape and the material properties of the member.
  • the pillars 100 are installed to support the building on a foundation, and a plurality of pillars are installed at intervals as necessary.
  • the pillars 100 are welded in a direction transverse to both ends of the web 110 and the web 100.
  • the 'H' type member with cross section is used.
  • the shape of the pillar may be variously formed according to the needs of the building.
  • the beam 300 has a web 310 and a flange 320 welded in a direction transverse to both ends of the web 310, similarly to the pillar.
  • the flange 320 of the beam 300 is changed in shape in the direction away from the junction 200. That is, the flange 320 has a thickness between the first flange 320a adjacent to the junction, the second flange 320b connecting the first flange 320a, and the width of the flange gradually decreases, and the thickness of the second flange 320b.
  • the flange 320 of the beam is formed so that the flange width is reduced in a curved shape in the second flange (320b) on the basis of the joint, the thickness of the flange is thin in the third flange (320c).
  • the junction 200 includes a joint plate 210 bolted to and welded to the web 310 of the beam, welded to the column flange 120, and a reinforcement plate 230 welded between the flange and the flange of the column. Doing.
  • FIG. 4 is a graph showing the required moment required for the beam along the longitudinal direction of the beam and the actual moment performance of the beam when a uniform load is applied to the beam of FIG. 1.
  • the required moment D shows the magnitude of the moment applied to the actual beam by the load
  • the cross-sectional moment performance C shows the amount of moment that the beam can support according to the change in the cross section of the beam.
  • the plastic hinge part is a site where plastic deformation occurs when an excessive load is applied, and occurs in the point where the required moment (D) graph and the cross-sectional moment performance (C) graph meet in FIG. 4.
  • the first plastic hinge portion 410 is formed at one point of the second flange 320b having the reduced width of the flange, and the third flange 320c and the fourth flange 320d are formed.
  • the second plastic hinge portion 420 is formed at the junction of the).
  • the cross-sectional moment performance of the second plastic hinge part 420 is smaller than that of the first plastic hinge part 410. More preferably, the cross-sectional moment performance of the second plastic hinge portion is smaller than the cross-sectional moment performance of the first plastic hinge portion with a difference in the degree of contact with the required moment D at the same time, so that plastic deformation may occur at the same time. It is possible to increase the plastic deformation amount.
  • the width of the flange 410 of the first plastic hinge portion is formed to be smaller than the flange width of the beam of the junction portion 200, the flange width of the first plastic hinge portion 410 is formed to be reduced in a curved shape. Since the width of the flange of the first plastic hinge portion 410, that is, the width of the flange of the second flange 320b is reduced to a curved shape, there is an advantage that the cross-sectional moment performance (c) can be prevented from changing rapidly.
  • the flange thickness of the second plastic hinge part 420 is formed to be thinner than the flange thickness of the first plastic hinge part 410, and the flange width of the second plastic hinge part 420 is the flange width of the joint part 200. It is formed smaller. That is, as shown in FIG. 2, by narrowing the flange width of the fourth flange 320d, it is possible to prevent the thickness of the fourth flange 320d necessary for plastic deformation from being sharply reduced. As a result, there is an advantage that the flange thickness appropriate to the load on the fourth flange (320d) can be secured.
  • the second plastic hinge part 420 may be implemented by abutting the flange of the second plastic hinge part thinner than the flange of the first plastic hinge part toward the side of the flange of the first plastic hinge part. That is, the first flange 320a and the second flange 320b in which the first plastic hinge part 410 is formed are formed in one thick plate, and the fourth flange 320d in which the second plastic hinge part 420 is formed. After forming into a thin plate, it can be formed by welding.
  • the bottom flange is integrally formed with the coupling part 200, the first plastic hinge part 410, and the second plastic hinge part 420, and the coupling part 200 and the bottom flange are integrally formed.
  • An upper flange may be coupled to the upper surface of the first plastic hinge 420. That is, the flange may be formed by fixing the upper flange to overlap the upper surface of the bottom flange having a thickness corresponding to the second plastic hinge portion 420 so as to form a thickness of the first flange and the second flange. have.
  • FIG. 5 is a diagram conceptually illustrating deformation of a beam when an earthquake load is applied to FIG. 1.
  • an interlayer displacement angle can be exhibited even without many deformation
  • FIG. 6 is a finite element analysis result of applying a seismic load to the time point of failure in FIG. 1.
  • the welding plate 210 may be welded in the field without welding the pole and the factory, and for this reason, there is an advantage that the cost required for the logistics of the pole may be greatly reduced.
  • FIG. 7 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 1.
  • the dance of the beam was measured in the state of 1200mm.
  • the steel structure of the first embodiment of the present invention even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2% or more, the fracture does not occur, 3% Generated, it can be confirmed that there is sufficient seismic capacity.
  • the height of the dance of the beam can be further increased by configuring the first hinge part and the second hinge part which are plastically deformed near the beam and column joint part. Therefore, not only can be applied to buildings requiring long span, but also has the advantage of reducing the total amount of steel.
  • a characteristic of the present invention is that the above-described first plastic hinge portion 410 and the second plastic hinge portion 420 are formed to be spaced apart from the beam 300. If necessary, three or more plastic hinge portions may be formed, which is naturally within the scope of the present invention.
  • FIG. 8 is a perspective view of the joint of the steel structure of the second embodiment of the present invention
  • Figure 9 is a plan view of Figure 8
  • Figure 10 is a side view of FIG.
  • the steel structure of the second embodiment is different from the first embodiment in that the widths of the remaining flanges are the same except for the portion where the first plastic hinge portion 410 is formed, and the rest of the structure is the same.
  • the beam 1300 includes a web 1310 and a flange 1320 welded in both directions across the web 1310.
  • the flange 1320 of the beam 1300 is changed in shape in the direction away from the junction 200. That is, the flange 1320 has a thickness between the first flange 1320a adjacent to the junction, the second flange 1320b connecting the first flange 1320a, and the width of the flange gradually decreases, and the thickness of the second flange 1320b.
  • the third flange 1320c of the section gradually thinning, and the fourth flange (1320d) in contact with the third flange 1320c and uniformly formed with the same thickness and width as the thinner thickness of the three flanges 1320c. .
  • the flange 1320 of the beam is formed so that the flange width is reduced in a curved shape in the second flange 1320b on the basis of the joint, and the thickness of the flange is thin in the third flange 1320c.
  • the flange widths of the surfaces of the second flange 1320b and the surface of the second flange 1320b that are joined to the third flange 1320c are the same, and the third flange 1320c and the fourth flange are the same.
  • the flange width of 1320d is also formed in the same manner as the joint portion.
  • the steel frame structure of the second embodiment has an advantage that the quantity is increased compared to the first embodiment, but is much easier to manufacture.
  • FIG. 11 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 8.
  • the dance of the beam was measured in the state of 1200mm.
  • the steel structure of the second embodiment of the present invention even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2.5% or more, there is sufficient seismic capacity can confirm.
  • FIG. 12 is a perspective view of a joint of a steel frame structure according to a third embodiment of the present invention
  • FIG. 13 is a plan view of FIG. 12
  • FIG. 14 is a side view of FIG. 12.
  • the beam 2300 includes a web 2310 and a flange 2320 welded in a direction crossing both ends of the web 2310.
  • the flange 2320 of the beam 2300 is changed in shape in the direction spaced apart from the junction 200. That is, the flange 2320 is the first flange 2320a adjacent to the junction, the second flange (2320b) and the second flange (2320b) thickness is in contact with the first flange 2320a, the width of the flange is gradually smaller
  • the third flange 2320c of the section gradually thinning, and the fourth flange 2320d, which is uniformly formed with the same thickness and width as the thinned thickness of the three flanges 2320c, in contact with the third flanges 2320c.
  • the flange 2320 of the beam is formed so that the flange width is reduced in a straight line shape in the second flange (2320b) on the basis of the joint, the thickness of the flange is thinner in the third flange (2320c).
  • the flange widths of the surfaces of the second flange 2320b connected to the joint portion of the second flange 2320b and the surfaces of the second flange 2320b are the same, and the third flange 4320c and the fourth flange are the same.
  • the flange width of 2320d is also formed in the same manner as the joint portion.
  • the steel frame structure of the third embodiment is increased in quantity, but has an advantage of being much easier to manufacture.
  • the second flange 2320b in a straight line, there is an advantage that the manufacturing is easier than in the second embodiment.
  • FIG. 15 is a perspective view of a joint of a steel frame structure according to a fourth embodiment of the present invention
  • FIG. 16 is a plan view of FIG. 15
  • FIG. 17 is a side view of FIG. 15.
  • the steel frame structure of the fourth embodiment shows that four plastic hinge portions are formed.
  • the steel frame structure of the fourth embodiment is implemented by the flange 3320 of the beam 3300 having two structures of the first embodiment successively formed. That is, the portion denoted by A in FIG. 15 is the same as the flange 320 of the beam of the first embodiment, and the portion denoted by B which is the same as the flange 320 of the beam of the first embodiment is subsequently connected.
  • the plastic hinge part includes a first plastic hinge part 410, a second plastic hinge part 420, a third plastic hinge part 430, and a fourth plastic hinge part 440.
  • FIG. 18 is a graph illustrating a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 15.
  • the dance of the beam was measured in the state of 1200mm.
  • the steel structure of the fourth embodiment of the present invention even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 3% or more, there is sufficient seismic capacity can confirm.
  • 19 is a perspective view of the steel structure joint portion of the fifth embodiment of the present invention.
  • the steel frame structure is characterized in that the strength of the flange of the second plastic hinge portion 420 is weaker than the strength of the flange of the first plastic hinge portion 410, the thickness is the same. That is, the material properties of the flange 4320a in which the first plastic hinge part 410 is reduced and the flange 4320b in which the second plastic hinge part 420 is formed are different, but the thickness thereof is the same. It is characterized by. By forming the flange 4320a in which the first plastic hinge part 410 is formed of a material having a stronger strength than the other parts, the cross-sectional moment performance is different, so that the second plastic hinge part 420 is formed.
  • FIG. 20 is a graph illustrating a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 19.
  • the dance of the beam was measured in the state of 1200mm.
  • the steel structure of the fifth embodiment of the present invention even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2% or more, the fracture does not occur, 3% Generated, it can be confirmed that there is sufficient seismic capacity.
  • the fifth embodiment has the advantage that the upper surface is uniform throughout the entire section from the junction to the beam, the space utilization is much easier.
  • the feature of the present invention is characterized in forming two or more plastic hinges on the beam. Therefore, it is obvious that a configuration for forming various first plastic hinge portions may be adopted to form two or more plastic hinge portions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

Disclosed is a steel frame structure having an earthquake-resistant intermediate moment joint part, the structure comprising: columns for supporting a building; beams joined to the columns by joint parts in a direction traversing the columns; a first plastic hinge part at which the moment-of-inertia capacity of the beam is reduced in the direction of being apart from the joint part of the beam; and a second plastic hinge part at which the moment-of-inertia capacity of the beam is reduced in the direction of being apart from the first plastic hinge part at the joint part. Therefore, even if the intermediate moment structure is implemented, the depth of the beam can be further increased such that application to a building which requires a long span is enabled and the total amount of steel frames reduced.

Description

내진형 중간모멘트 접합부를 갖는 철골구조Steel structure with seismic middle moment connection
본 발명은 철골구조에 관한 것으로서, 보다 상세하게는 내진 성능이 강화된 중간모멘트 접합부를 구비한 철골구조에 관한 것이다.The present invention relates to a steel structure, and more particularly, to a steel structure having an intermediate moment joint with enhanced seismic performance.
모멘트골조는 철골구조의 횡력저항시스템으로 널리 사용되고 있는 구조이다. 이런 모멘트골조는 접합부에서 보 의 휨 항복과 패널존의 전단항복으로 연성을 발휘하여야 한다. 따라서 잘 이루어진 모멘트골조 접합부의 각 요소들은 지진시 요구 강도를 발휘하면서 많은 소성변형을 하여야 한다. 실제로, 1960∼70년대의 많은 실험을 통하여 철골모멘트골조는 최상의 횡력저항시스템으로 생각되었다.Moment frame is widely used as lateral force resistance system of steel structure. These moment frames are to be ductile at the joints by bending yield of beams and shear yield of panel zones. Therefore, each element of well-formed moment frame joints must undergo many plastic deformations while exhibiting the required strength during an earthquake. In fact, through many experiments in the 1960s and 1970s, steel moment frames were considered to be the best lateral resistance system.
그러나 Northridge (1994) 지진시 철골모멘트골조 접합부에서 예상치 못한 취성파괴가 발생하였다. 이러한 문제를 해결하기 위하여 미국에서는 SAC Project가 수행되어 철골 모멘트골조 접합부의 성능에 영향을 미치는 여러가지 원인들을 밝혀내었을 뿐만 아니라, RBS(Reduced Beam Section) 접합부, 헌치 접합부, 리브 접합부 등의 새로운 상세가 개발되었으며, 이후 다양한 건축구조기준(KBC, ANSI/AISC, FEMA)에 반영되었다.However, during the Northridge (1994) earthquake, unexpected brittle fracture occurred at the steel moment frame joint. In order to solve this problem, the SAC Project was conducted in the United States to identify various causes affecting the performance of steel moment frame joints, as well as new details such as reduced beam section (RBS) joints, haunt joints, and rib joints. It has been developed and subsequently reflected in various building structural standards (KBC, ANSI / AISC, FEMA).
현행기준에서, 내진설계에 사용할 수 있는 모멘트골조는 보통모멘트골조, 중간모멘트골조, 특수모멘트골조로 분류되고 있으며, 이러한 골조의 선택은 건물이 위치할 지역의 지진위험도와 내진설계의 범주에 따라 결정된다. Under current standards, moment frames that can be used for seismic design are classified into general moment frames, intermediate moment frames, and special moment frames. The choice of these frames is determined by the seismic risk and earthquake design category of the area where the building will be located. do.
기둥-보 접합부가 중간모멘트골조나, 특수모멘트골조로 인정되는 경우, 설계반영시 지진반응계수가 높게 적용되며, 그 결과, 설계에 적용되는 전단응력이 줄어들어, 전체적인 건축물의 물량을 줄일 수 있다는 장점이 있다. 한국 건축구조기준(KBC 2016)에는 중간모멘트골조로 인정받기 위해서는 보-기둥 접합부는 최소한 0.02rad의 층간 변위각을 발휘할 수 있어야 하며, 기준에 규정된 접합부를 사용하는 경우 보의 춤이 750mm를 초과할 수 없다고 규정되어 있다. 또한, 보-기둥 접합부의 접합 플레이트는 반드시 기둥과 공장에서 용접되어야 한다고 규정되어 있다. 이는 보의 타부분이 적절한 양만큼 소성변형되기 전에, 접합부가 파괴되는 것을 방지하기 위해서이다.When the column-beam connection is recognized as intermediate moment frame or special moment frame, the seismic response coefficient is applied at the time of design reflection, and as a result, the shear stress applied to the design is reduced, which reduces the overall volume of the building. There is this. In order to be recognized as an intermediate moment frame in the Korean Architectural Structural Standards (KBC 2016), the beam-column joints must be capable of exhibiting at least 0.02 rad of interlaminar displacement angle, and the beam dances greater than 750 mm when the joints specified in the standard are used. It is prescribed that we cannot do it. In addition, it is specified that the joining plate of the beam-column joint must be welded at the pole and the factory. This is to prevent the joint from breaking before the other part of the beam is plastically deformed by an appropriate amount.
그러나, 보의 춤이 750mm 이내로 한정되는 경우, 장 스판(span) 건축물을 구현하기 힘들 뿐만 아니라, 보의 플랜지의 두께를 증대시켜, 전체 철골 물량이 증대된다는 단점이 있다.However, when the dance of the beam is limited to less than 750mm, not only is it difficult to implement a long span structure, but also increases the thickness of the flange of the beam, there is a disadvantage that the total steel frame volume increases.
또한, 보에 접합 플레이트를 공장에서 용접하는 경우, 공장에서 현장으로 이송시, 적재가 매우 까다로워 물류비용이 급격히 증대하는 등의 공정관리의 어려움이 있다는 단점도 있다.In addition, when welding the joining plate to the beam in the factory, there is a disadvantage that there is a difficulty in the process management, such as the logistics cost is rapidly increased when the transfer from the factory to the site is very difficult.
본 발명의 실시예는 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 접합부의 소성회전 능력을 증대시켜, 기둥과 보의 접합부에 가해지는 하중을 줄일 수 있어, 보의 춤을 보다 증대시킬 수 있을 뿐만 아니라, 접합부의 결합도 보다 용이하게 할 수 있어, 철골 물량을 줄일 수 있으며, 이송도 보다 용이한 내진형 중간모멘트 접합부를 갖는 철골구조물을 제공하고자 한다.Embodiment of the present invention is devised to solve the above problems, by increasing the plastic rotation capacity of the joint portion, it is possible to reduce the load on the joint portion of the column and the beam, it is possible to further increase the dance of the beam In addition, it is possible to facilitate the coupling of the joint more, it is possible to reduce the amount of steel, and to provide a steel structure having a seismic middle moment joint easier to transfer.
본 발명의 실시예는 상기와 같은 과제를 해결하고자, 건물을 지탱하는 기둥; 상기 기둥을 가로지르는 방향으로 상기 기둥에 접합부에 의해 접합되는 보; 상기 보의 상기 접합부에서 이격되는 방향으로 상기 보의 단면 모멘트 성능이 감소되는 제 1 소성 힌지부; 및 상기 제 1 소성 힌지부로부터 상기 접합부에서 이격되는 방향으로 상기 보의 단면 모멘트 성능이 감소되는 제 2 소성힌지부;를 포함하는 것을 특징으로하는 내진형 중간모멘트 접합부를 갖는 철골구조를 제공한다.Embodiment of the present invention, in order to solve the above problems, pillars for supporting the building; A beam joined by a joint to the column in a direction crossing the column; A first plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction away from the junction of the beam; And a second plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction spaced apart from the first plastic hinge portion at the joint portion.
여기서, 상기 제 2 소성힌지부의 단면 모멘트 성능은 상기 제 1 소성 힌지부 보다 작게 형성된 것이 바람직하다.Here, the cross-sectional moment performance of the second plastic hinge portion is preferably smaller than the first plastic hinge portion.
상기 제 2 소성힌지부 및 상기 제 1 소성 힌지부의 단면 모멘트 성능은 상기 철골구조에 가해지는 하중에 의해 동시에 소성변형이 발생되도록 형성된 것이 효과적이다.The cross-sectional moment performance of the second plastic hinge portion and the first plastic hinge portion is effectively formed so that plastic deformation occurs at the same time by the load applied to the steel structure.
상기 제 1 소성힌지부의 플랜지의 폭은 상기 접합부의 상기 보의 플랜지 폭보다 작게 형성된 것이 바람직하다.Preferably, the width of the flange of the first plastic hinge portion is smaller than the flange width of the beam of the joint portion.
상기 제 1 소성힌지부의 플랜지 폭은 곡선 형상으로 감소되는 것이 효과적이다.It is effective that the flange width of the first plastic hinge portion is reduced in a curved shape.
상기 제 1 소성힌지부의 플랜지 폭은 직선 형상으로 감소되도록 구현될 수도 있다.The flange width of the first plastic hinge portion may be implemented to be reduced to a straight shape.
상기 제 2 소성힌지부의 플랜지 폭이 상기 접합부의 플랜지 폭보다 작은 것이 바람직하다.Preferably, the flange width of the second plastic hinge portion is smaller than the flange width of the joint portion.
제 2 소성힌지부의 플랜지 두께는 상기 제 1 소성힌지부의 플랜지 두께보다 얇게 형성된 것이 효과적이다.It is effective that the flange thickness of the second plastic hinge portion is thinner than the flange thickness of the first plastic hinge portion.
상기 제 1 소성힌지부의 플랜지의 측면으로 상기 제 1 소성힌지부의 플랜지보다 두께가 얇은 상기 제 2 소성힌지부의 플랜지가 맞대어져 결합된다.The flange of the second plastic hinge portion, which is thinner than the flange of the first plastic hinge portion, is joined to the side surface of the flange of the first plastic hinge portion.
또는, 상기 결합부, 상기 제 1 소성힌지부 및 상기 제 2 소성힌지부에 걸처서 바닥플랜지가 일체로 형성되며, 상기 바닥플랜지의 상기 결합부 및 상기 제 1 소성힌지부의 상면에 걸쳐서 상측 플랜지가 결합될 수도 있다.Alternatively, a bottom flange may be integrally formed across the coupling part, the first plastic hinge part, and the second plastic hinge part, and an upper flange may be disposed over an upper surface of the coupling part and the first plastic hinge part of the bottom flange. May be combined.
한편, 상기 제 2 소성힌지부의 플랜지의 강도가 상기 제 1 소성힌지부의 플랜지의 강도보다 약하며, 두께는 동일하도록 형성될 수도 있다.Meanwhile, the strength of the flange of the second plastic hinge part is weaker than that of the flange of the first plastic hinge part, and the thickness may be the same.
이상에서 살펴본 바와 같은 본 발명의 과제해결 수단에 의하면 다음과 같은 사항을 포함하는 다양한 효과를 기대할 수 있다. 다만, 본 발명이 하기와 같은 효과를 모두 발휘해야 성립되는 것은 아니다.According to the problem solving means of the present invention as described above it can be expected a variety of effects including the following matters. However, the present invention is not achieved by exerting all of the following effects.
보와 기둥 접합부 인근에 소성변형되는 제 1 힌지부와, 제 2 힌지부를 구성함으로써, 보의 춤의 높이를 보다 증대시킬 수 있다. 따라서, 장스팬을 요구하는 건물에 적용될 수 있을 뿐만 아니라, 전체 철골물량을 감소시킬 수 있다는 장점이 있다.The height of the dance of the beam can be further increased by configuring the first hinge portion and the second hinge portion that are plastically deformed near the beam and column junction. Therefore, not only can be applied to the building requiring a long span, there is an advantage that can reduce the total amount of steel.
또한, 접합부에 가해지는 응력이 적어, 접합부의 형상 혹은 조건을 좀 더 자유롭게 할 수 있다는 장점이 있다.In addition, there is an advantage that the stress applied to the joint is less, and the shape or condition of the joint can be made more free.
도 1은 본 발명의 제 1 실시예의 철골구조의 접합부의 사시도1 is a perspective view of a joint of a steel structure of a first embodiment of the present invention
도 2는 도 1의 평면도2 is a plan view of FIG. 1
도 3은 도 1의 측면도3 is a side view of FIG. 1
도 4는 도 1의 보에 균일하중이 가해지는 경우, 보의 길이방향에 따라서 보에 요구되는 소요 모멘트와, 보의 실제 모멘트 성능을 도시한 그래프4 is a graph showing the required moment and the actual moment performance of the beam required along the longitudinal direction of the beam when a uniform load is applied to the beam of FIG.
도 5는 도 1에 지진하중이 가해졌을 때, 보의 변형을 개념적으로 도시한 다이아 그램FIG. 5 is a diagram conceptually illustrating deformation of a beam when an earthquake load is applied to FIG. 1; FIG.
도 6은 도 1에 대해서 파괴가 발생하는 시점까지 지진하중을 가한 상태의 유한요소해석 결과를 도시한 도면FIG. 6 is a diagram illustrating a finite element analysis result in a state in which an earthquake is applied to a time point when destruction occurs in FIG. 1. FIG.
도 7은 도 1의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프 FIG. 7 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 1.
도 8은 본 발명의 제 2 실시예의 철골구조의 접합부의 사시도Figure 8 is a perspective view of the joint portion of the steel structure of the second embodiment of the present invention
도 9는 도 8의 평면도9 is a top view of FIG. 8
도 10은 도 8의 측면도10 is a side view of FIG. 8
도 11은 도 8의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프FIG. 11 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 8.
도 12은 본 발명의 제 3 실시예의 철골구조의 접합부의 사시도12 is a perspective view of a joint of a steel structure of a third embodiment of the present invention
도 13는 도 12의 평면도FIG. 13 is a plan view of FIG. 12.
도 14은 도 12의 측면도14 is a side view of FIG. 12.
도 15는 본 발명의 제 4 실시예의 철골구조의 접합부의 사시도Figure 15 is a perspective view of the joint portion of the steel structure of the fourth embodiment of the present invention
도 16은 도 15의 평면도FIG. 16 is a top view of FIG. 15
도 17은 도 15의 측면도17 is a side view of FIG. 15
도 18은 도 15의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프 FIG. 18 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 15.
도 19는 본 발명의 제 5 실시예의 철골구조 접합부의 사시도19 is a perspective view of the steel structure joint portion of the fifth embodiment of the present invention
도 20은 도 19의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프20 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 19.
이하, 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 제 1 실시예의 철골구조의 중간모멘트 접합부의 사시도, 도 2는 도 1의 평면도, 도 3은 도 1의 측면도이다. 1 is a perspective view of an intermediate moment joint of the steel structure of the first embodiment of the present invention, Figure 2 is a plan view of Figure 1, Figure 3 is a side view of FIG.
이들 도면에 도시된 바와 같이, 본 발명의 제 1 실시예의 내진형 중간모멘트 접합부를 갖는 철골구조는, 건물을 지탱하는 기둥(100)과, 상기 기둥(100)을 가로지르는 방향으로 상기 기둥(100)에 접합부(200)에 의해 접합되는 보(300)와, 상기 보(300)의 상기 접합부에서 이격되는 방향으로 상기 보(300)의 단면 모멘트 성능이 감소되는 제 1 소성 힌지부(410)와, 상기 제 1 소성 힌지부(410)로부터 상기 접합부(200)에서 이격되는 방향으로 상기 보(300)의 단면 모멘트 성능이 감소되는 제 2 소성힌지부(420)를 포함한다.As shown in these drawings, the steel frame structure having the seismic middle moment joint of the first embodiment of the present invention includes a pillar 100 supporting a building and the pillar 100 in a direction crossing the pillar 100. And the first plastic hinge 410 in which the cross-sectional moment performance of the beam 300 is reduced in a direction spaced apart from the joint portion of the beam 300 by the joining part 200. And a second plastic hinge part 420 having a reduced cross-sectional moment performance of the beam 300 in a direction spaced apart from the first plastic hinge part 410 at the joint part 200.
여기서, '단면 모멘트 성능'이라함은 부재의 재료특성과 단면의 형상에 따라서, 모멘트 하중을 견딜수 있는 능력을 말한다. 즉, 단면 모멘트 성능은, 단면의 형상에 따른 단면 2차 모멘트와 부재의 재료특성에 의해 영향을 받는다.Here, "cross-sectional moment performance" refers to the ability to withstand the moment load, depending on the material properties of the member and the shape of the cross section. In other words, the cross-sectional moment performance is affected by the cross-sectional secondary moment according to the cross-sectional shape and the material properties of the member.
기둥(100)은 건축물을 기초에 지탱하기 위해 설치되는 것으로서, 필요에 따라 간격을 두고 복수개 설치되며, 일반적으로 웹(110)과, 웹(100)의 양단에 가로지르는 방향으로 용접되는 플랜지(120)를 구비한 단면이 'H'형 부재가 사용된다. 그러나, 기둥의 형상은 건축물의 필요에 따라서 다양하게 형성될 수 있다.The pillars 100 are installed to support the building on a foundation, and a plurality of pillars are installed at intervals as necessary. In general, the pillars 100 are welded in a direction transverse to both ends of the web 110 and the web 100. The 'H' type member with cross section is used. However, the shape of the pillar may be variously formed according to the needs of the building.
보(300)는 기둥과 동일하게 웹(310)과, 웹(310)의 양단에 가로지르는 방향으로 용접되는 플랜지(320)를 구비한다. 다만, 보(300)의 플랜지(320)는 접합부(200)에서 이격되는 방향으로 형상이 변경된다. 즉, 플랜지(320)는 접합부와 인접한 제 1 플랜지(320a)와, 제 1 플랜지(320a)와 연접하며 플랜지의 폭이 점진적으로 작아지는 제 2 플랜지(320b)와, 제 2 플랜지(320b) 두께가 점진적으로 얇아지는 구간의 제 3 플랜지(320c)와, 제 3 플랜지(320c)와 연접하며 3 플랜지(320c)의 얇아진 두께와 동일한 두께와 폭으로 균일하게 형성된 제 4 플랜지(320d)를 포함한다. 즉, 보의 플랜지(320)는 접합부를 기준으로 제 2 플랜지(320b)에서 플랜지 폭이 곡선 형상으로 감소되며, 제 3 플랜지(320c)에서는 플랜지의 두께가 얇아지도록 형성된다. The beam 300 has a web 310 and a flange 320 welded in a direction transverse to both ends of the web 310, similarly to the pillar. However, the flange 320 of the beam 300 is changed in shape in the direction away from the junction 200. That is, the flange 320 has a thickness between the first flange 320a adjacent to the junction, the second flange 320b connecting the first flange 320a, and the width of the flange gradually decreases, and the thickness of the second flange 320b. Is a third flange 320c of the gradually thinning section, and a fourth flange 320d in contact with the third flange 320c and uniformly formed with the same thickness and width as the thinned thickness of the three flanges 320c. . That is, the flange 320 of the beam is formed so that the flange width is reduced in a curved shape in the second flange (320b) on the basis of the joint, the thickness of the flange is thin in the third flange (320c).
접합부(200)는, 보의 웹(310)에 볼팅체결되고 용접되며, 기둥 플랜지(120)에 용접된 접합 플레이트(210)와, 기둥의 플랜지와 플랜지 사이에 용접된 보강 플레이트(230)를 포함하고 있다. The junction 200 includes a joint plate 210 bolted to and welded to the web 310 of the beam, welded to the column flange 120, and a reinforcement plate 230 welded between the flange and the flange of the column. Doing.
도 4는 도 1의 보에 균일하중이 가해지는 경우, 보의 길이방향에 따라서 보에 요구되는 소요 모멘트와, 보의 실제 모멘트 성능을 도시한 그래프이다.FIG. 4 is a graph showing the required moment required for the beam along the longitudinal direction of the beam and the actual moment performance of the beam when a uniform load is applied to the beam of FIG. 1.
소요 모멘트(D)는 하중에 의해 실제 보에 가해지는 모멘트의 크기를 도시한 것이며, 단면 모멘트 성능(C)은 보가 단면 변화에 따라서, 보가 지지할 수 있는 모멘트의 양을 도시한 것이다. 소성힌지부는 초과되는 하중이 가해졌을 때, 소성변형이 발생하는 부위로서, 도 4에서, 소요 모멘트(D) 그래프와, 단면 모멘트 성능(C) 그래프가 만나는 지점에서 발생한다.The required moment D shows the magnitude of the moment applied to the actual beam by the load, and the cross-sectional moment performance C shows the amount of moment that the beam can support according to the change in the cross section of the beam. The plastic hinge part is a site where plastic deformation occurs when an excessive load is applied, and occurs in the point where the required moment (D) graph and the cross-sectional moment performance (C) graph meet in FIG. 4.
도 4에 도시된 바와 같이, 플랜지의 폭을 감소시킨, 제 2 플랜지(320b)의 어느 일지점에서 제 1 소성 힌지부(410)가 형성되며, 제 3 플랜지(320c)와 제 4 플랜지(320d)의 접합부에 제 2 소성힌지부(420)가 형성된다.As shown in FIG. 4, the first plastic hinge portion 410 is formed at one point of the second flange 320b having the reduced width of the flange, and the third flange 320c and the fourth flange 320d are formed. The second plastic hinge portion 420 is formed at the junction of the).
이때, 상기 제 2 소성힌지부(420)의 단면 모멘트 성능은 상기 제 1 소성 힌지부(410) 보다 작게 형성된다. 보다 바람직하게는 소요 모멘트(D)와 동시에 접할 수 있는 정도의 차이로 제 2 소성힌지부의 단면 모멘트 성능이 제 1 소성 힌지부의 단면 모멘트 성능보다 작게 형성되는 것이, 동시에 소성변형이 일어날 수 있도록 하여, 소성변형량을 보다 증대시킬 수 있도록 한다.In this case, the cross-sectional moment performance of the second plastic hinge part 420 is smaller than that of the first plastic hinge part 410. More preferably, the cross-sectional moment performance of the second plastic hinge portion is smaller than the cross-sectional moment performance of the first plastic hinge portion with a difference in the degree of contact with the required moment D at the same time, so that plastic deformation may occur at the same time. It is possible to increase the plastic deformation amount.
상기 제 1 소성힌지부의 플랜지(410)의 폭은 상기 접합부(200)의 상기 보의 플랜지 폭보다 작게 형성되며, 상기 제 1 소성힌지부(410)의 플랜지 폭은 곡선 형상으로 감소되도록 형성된다. 제 1 소성 힌지부(410)의 플랜지 폭, 즉, 제 2 플랜지(320b)의 플랜지의 폭이 곡선 형상으로 감소됨으로써, 단면 모멘트 성능(c)이 급속하게 변하는 것을 방지할 수 있다는 장점이 있다.The width of the flange 410 of the first plastic hinge portion is formed to be smaller than the flange width of the beam of the junction portion 200, the flange width of the first plastic hinge portion 410 is formed to be reduced in a curved shape. Since the width of the flange of the first plastic hinge portion 410, that is, the width of the flange of the second flange 320b is reduced to a curved shape, there is an advantage that the cross-sectional moment performance (c) can be prevented from changing rapidly.
제 2 소성힌지부(420)의 플랜지 두께는 상기 제 1 소성힌지부(410)의 플랜지 두께보다 얇게 형성되며, 상기 제 2 소성힌지부(420)의 플랜지 폭이 상기 접합부(200)의 플랜지 폭보다 작게 형성된다. 즉, 도 2에서 도시된 바와 같이, 제 4 플랜지(320d)의 플랜지 폭을 좁게 함으로써, 소성 변형에 필요한 제 4 플랜지(320d)의 두께가 급격히 얇아지는 것을 방지할 수 있다. 그 결과, 제 4 플랜지(320d)에서 부담하는 부하에 적절한 플랜지 두께를 확보할 수 있는 장점이 있다.The flange thickness of the second plastic hinge part 420 is formed to be thinner than the flange thickness of the first plastic hinge part 410, and the flange width of the second plastic hinge part 420 is the flange width of the joint part 200. It is formed smaller. That is, as shown in FIG. 2, by narrowing the flange width of the fourth flange 320d, it is possible to prevent the thickness of the fourth flange 320d necessary for plastic deformation from being sharply reduced. As a result, there is an advantage that the flange thickness appropriate to the load on the fourth flange (320d) can be secured.
제 2 소성힌지부(420)는, 상기 제 1 소성힌지부의 플랜지의 측면으로 상기 제 1 소성힌지부의 플랜지보다 두께가 얇은 상기 제 2 소성힌지부의 플랜지가 맞대어져 결합되어 구현될 수 있다. 즉, 제 1 소성힌지부(410)가 형성된 제 1 플랜지(320a)와 제 2 플랜지(320b)는 두꺼운 하나의 플레이트로 형성하고, 제 2 소성힌지부(420)가 형성된 제 4 플랜지(320d)는 얇은 플레이트로 형성한 후, 용접하여 형성할 수 있다.The second plastic hinge part 420 may be implemented by abutting the flange of the second plastic hinge part thinner than the flange of the first plastic hinge part toward the side of the flange of the first plastic hinge part. That is, the first flange 320a and the second flange 320b in which the first plastic hinge part 410 is formed are formed in one thick plate, and the fourth flange 320d in which the second plastic hinge part 420 is formed. After forming into a thin plate, it can be formed by welding.
혹은, 상기 결합부(200), 상기 제 1 소성힌지부(410) 및 상기 제 2 소성힌지부(420)에 결쳐서 바닥플랜지가 일체로 형성되며, 상기 바닥 플랜지의 상기 결합부(200) 및 상기 제 1 소성힌지부(420)의 상면에 걸쳐서 상측 플랜지가 결합되어 형성될 수 있다. 즉, 제 2 소성힌지부(420)에 해당하는 두께를 가진 바닥플랜지의 상면에, 제 1 플랜지 및 제 2 플랜지의 두께를 형성할 수 있도록 상측 플랜지가 겹쳐지도록 고정함으로서, 상기 플랜지가 형성될 수 있다.Alternatively, the bottom flange is integrally formed with the coupling part 200, the first plastic hinge part 410, and the second plastic hinge part 420, and the coupling part 200 and the bottom flange are integrally formed. An upper flange may be coupled to the upper surface of the first plastic hinge 420. That is, the flange may be formed by fixing the upper flange to overlap the upper surface of the bottom flange having a thickness corresponding to the second plastic hinge portion 420 so as to form a thickness of the first flange and the second flange. have.
도 5는 도 1에 지진하중이 가해졌을 때, 보의 변형을 개념적으로 도시한 다이아 그램이다.FIG. 5 is a diagram conceptually illustrating deformation of a beam when an earthquake load is applied to FIG. 1.
상기와 같이 소성 힌지부가 2개소 이상 형성됨으로써, 도 5에 도시된 바와 같이, 접합부(200)에 많은 변형이 생기지 않아도 층간 변위각을 발휘할 수 있어, 접합부가 파괴되는 것을 방지할 수 있다. 즉, 접합부(200)의 보의 춤이 높아져서, 접합부의 변형이 적어도 충분한 층간 변위각을 발휘할 수 있다. By forming two or more plastic hinge parts as mentioned above, as shown in FIG. 5, an interlayer displacement angle can be exhibited even without many deformation | transformation in the junction part 200, and it can prevent that a junction part is destroyed. That is, the dance of the beam of the junction part 200 becomes high, and the deformation | transformation of a junction part can exhibit the at least enough interlayer displacement angle.
또한, 종래에는 접합부에서 많은 변형이 발생하여야 하므로, 그 과정에 접합부에 파괴가 발생하는 것을 방지하기 위해서, 접합부의 용접 조건이나, 단면 모멘트 성능에 영향을 미칠 수 있는 공극 등을 엄격히 규제하고 있었다. 그러나, 본 발명의 실시예의 경우, 접합부가 부담하는 소성변형의 양이 매우 적으므로, 이러한 엄격한 기준을 적용하지 않아도 파괴가 발생하지 않는다는 장점이 있다.In addition, since many deformations must occur at the joint in the past, in order to prevent breakage at the joint in the process, the welding conditions of the joint and the voids that may affect the cross-sectional moment performance have been strictly regulated. However, in the embodiment of the present invention, since the amount of plastic deformation burdened by the joint is very small, there is an advantage that the fracture does not occur even if this strict standard is not applied.
도 6은 도 1에 대해서 파괴가 발생하는 시점까지 지진하중을 가한 상태의 유한요소해석 결과이다.FIG. 6 is a finite element analysis result of applying a seismic load to the time point of failure in FIG. 1.
도 6에 도시된 바와 같이, 극한의 지진하중이 가해졌을 때, 파괴혹은 좌굴이 발생하는 지점은 제 2 힌지점이며, 접합부에서는 낮은 응력이 발생하고 있음을 확인할 수 있다. As shown in FIG. 6, when an extreme earthquake load is applied, a point at which fracture or buckling occurs is a second hinge point, and it can be confirmed that low stress is generated at the junction.
따라서, 종래와 같이, 접합 플레이트(210)를 기둥과 공장에서 용접하지 않고, 현장에서 용접하여도 무방하며, 이러한 이유로, 기둥의 물류 등에 소요되는 비용이 현격이 줄어들 수 있다는 장점이 있다.Therefore, as in the prior art, the welding plate 210 may be welded in the field without welding the pole and the factory, and for this reason, there is an advantage that the cost required for the logistics of the pole may be greatly reduced.
도 7은 도 1의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프이다.FIG. 7 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 1.
이때, 보의 춤은 1200mm인 상태에서 측정하였다. 도 7에서 확인할 수 있듯이, 본 발명의 제 1 실시예의 철골구조물은 보의 춤이 750mm를 훨씬 초과한 1200mm 임에도 불구하고, 층간 변형량이 2% 이상인 경우에도 파괴가 발생하지 않으며, 3%에 파괴가 발생하여, 충분한 내진 능력이 있음을 확인할 수 있다.At this time, the dance of the beam was measured in the state of 1200mm. As can be seen in Figure 7, the steel structure of the first embodiment of the present invention, even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2% or more, the fracture does not occur, 3% Generated, it can be confirmed that there is sufficient seismic capacity.
상기와 같이, 본 발명의 제 1 실시예는, 보와 기둥 접합부 인근에 소성변형되는 제 1 힌지부와, 제 2 힌지부를 구성함으로써, 보의 춤의 높이를 보다 증대시킬 수 있다. 따라서, 장스팬을 요구하는 건물에 적용될 수 있을 뿐만 아니라, 전체 철골물량 을 감소시킬 수 있다는 장점이 있다.As described above, according to the first embodiment of the present invention, the height of the dance of the beam can be further increased by configuring the first hinge part and the second hinge part which are plastically deformed near the beam and column joint part. Therefore, not only can be applied to buildings requiring long span, but also has the advantage of reducing the total amount of steel.
또한, 접합부에 가해지는 응력이 적어, 접합부의 형상 혹은 조건을 좀더 자유롭게 할 수 있다는 장점이 있다.In addition, there is an advantage that the stress applied to the joint is less, and the shape or condition of the joint can be made more free.
본 발명의 특징은 보(300)에 전술한 제 1 소성 힌지부(410)와 제 2 소성힌지부(420)가 이격되어 형성된 점에 있다. 필요에 따라서, 소성힌지부는 3개소 이상이 형성될 수도 있으며, 이 또한 본 발명의 권리범위에 속함은 당연하다.A characteristic of the present invention is that the above-described first plastic hinge portion 410 and the second plastic hinge portion 420 are formed to be spaced apart from the beam 300. If necessary, three or more plastic hinge portions may be formed, which is naturally within the scope of the present invention.
도 8은 본 발명의 제 2 실시예의 철골구조의 접합부의 사시도, 도 9는 도 8의 평면도, 도 10은 도 8의 측면도이다. 8 is a perspective view of the joint of the steel structure of the second embodiment of the present invention, Figure 9 is a plan view of Figure 8, Figure 10 is a side view of FIG.
제 2 실시예의 철골구조는, 제 1 소성 힌지부(410)가 형성된 부위를 제외한 나머지 플랜지의 폭이 동일하게 형성된 점에서 제 1 실시예와 차이점이 있으며, 나머지 구성은 동일하다. The steel structure of the second embodiment is different from the first embodiment in that the widths of the remaining flanges are the same except for the portion where the first plastic hinge portion 410 is formed, and the rest of the structure is the same.
즉, 보(1300)는 웹(1310)과, 웹(1310)의 양단에 가로지르는 방향으로 용접되는 플랜지(1320)를 구비한다. 다만, 보(1300)의 플랜지(1320)는 접합부(200)에서 이격되는 방향으로 형상이 변경된다. 즉, 플랜지(1320)는 접합부와 인접한 제 1 플랜지(1320a)와, 제 1 플랜지(1320a)와 연접하며 플랜지의 폭이 점진적으로 작아지는 제 2 플랜지(1320b)와, 제 2 플랜지(1320b) 두께가 점진적으로 얇아지는 구간의 제 3 플랜지(1320c)와, 제 3 플랜지(1320c)와 연접하며 3 플랜지(1320c)의 얇아진 두께와 동일한 두께와 폭으로 균일하게 형성된 제 4 플랜지(1320d)를 포함한다. 즉, 보의 플랜지(1320)는 접합부를 기준으로 제 2 플랜지(1320b)에서 플랜지 폭이 곡선 형상으로 감소되며, 제 3 플랜지(1320c)에서는 플랜지의 두께가 얇아지도록 형성된다.That is, the beam 1300 includes a web 1310 and a flange 1320 welded in both directions across the web 1310. However, the flange 1320 of the beam 1300 is changed in shape in the direction away from the junction 200. That is, the flange 1320 has a thickness between the first flange 1320a adjacent to the junction, the second flange 1320b connecting the first flange 1320a, and the width of the flange gradually decreases, and the thickness of the second flange 1320b. The third flange 1320c of the section gradually thinning, and the fourth flange (1320d) in contact with the third flange 1320c and uniformly formed with the same thickness and width as the thinner thickness of the three flanges 1320c. . That is, the flange 1320 of the beam is formed so that the flange width is reduced in a curved shape in the second flange 1320b on the basis of the joint, and the thickness of the flange is thin in the third flange 1320c.
다만, 제 1 실시예와 달리, 제 2 플랜지(1320b)의 접합부와 연접하는 면과, 제 3 플랜지(1320c)에 연접하는 면의 플랜지 폭이 동일하며, 제 3플랜지(1320c) 및 제 4 플랜지(1320d)의 플랜지 폭도 접합부와 동일하게 형성된다.However, unlike the first embodiment, the flange widths of the surfaces of the second flange 1320b and the surface of the second flange 1320b that are joined to the third flange 1320c are the same, and the third flange 1320c and the fourth flange are the same. The flange width of 1320d is also formed in the same manner as the joint portion.
나머지 구성은 제 1 실시예와 동일하므로 자세한 설명은 생략한다.Since the rest of the configuration is the same as in the first embodiment, detailed description thereof will be omitted.
제 2 실시예의 철골구조는 제 1 실시예에 비해서 물량은 증대되나, 제조가 훨씬 용이하다는 장점이 있다.The steel frame structure of the second embodiment has an advantage that the quantity is increased compared to the first embodiment, but is much easier to manufacture.
도 11은 도 8의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프이다.FIG. 11 is a graph measuring a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 8.
이때, 보의 춤은 1200mm인 상태에서 측정하였다. 도 11에서 확인할 수 있듯이, 본 발명의 제 2 실시예의 철골구조물은 보의 춤이 750mm를 훨씬 초과한 1200mm 임에도 불구하고, 층간 변형량이 2.5% 이상인 경우에도 파괴가 발생하지 않으며, 충분한 내진 능력이 있음을 확인할 수 있다.At this time, the dance of the beam was measured in the state of 1200mm. As can be seen in Figure 11, the steel structure of the second embodiment of the present invention, even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2.5% or more, there is sufficient seismic capacity can confirm.
도 12는 본 발명의 제 3 실시예의 철골구조의 접합부의 사시도, 도 13는 도 12의 평면도, 도 14은 도 12의 측면도이다. 12 is a perspective view of a joint of a steel frame structure according to a third embodiment of the present invention, FIG. 13 is a plan view of FIG. 12, and FIG. 14 is a side view of FIG. 12.
제 3 실시예의 철골구조 제 2 실시예에서, 상기 제 1 소성힌지부(410)의 플랜지 폭이 직선 형상으로 감소되는 것을 제외한 나머지 구성은 동일하다.Steel Structure of Third Embodiment In the second embodiment, the rest of the configuration is the same except that the flange width of the first plastic hinge portion 410 is reduced in a straight line shape.
즉, 보(2300)는 웹(2310)과, 웹(2310)의 양단에 가로지르는 방향으로 용접되는 플랜지(2320)를 구비한다. 다만, 보(2300)의 플랜지(2320)는 접합부(200)에서 이격되는 방향으로 형상이 변경된다. 즉, 플랜지(2320)는 접합부와 인접한 제 1 플랜지(2320a)와, 제 1 플래지(2320a)와 연접하며 플랜지의 폭이 점진적으로 작아지는 제 2 플랜지(2320b)와, 제 2 플랜지(2320b) 두께가 점진적으로 얇아지는 구간의 제 3 플랜지(2320c)와, 제 3 플랜지(2320c)와 연접하며 3 플랜지(2320c)의 얇아진 두께와 동일한 두께와 폭으로 균일하게 형성된 제 4 플랜지(2320d)를 포함한다. 즉, 보의 플랜지(2320)는 접합부를 기준으로 제 2 플랜지(2320b)에서 플랜지 폭이 직선 형상으로 감소되며, 제 3 플랜지(2320c)에서는 플랜지의 두께가 얇아지도록 형성된다. That is, the beam 2300 includes a web 2310 and a flange 2320 welded in a direction crossing both ends of the web 2310. However, the flange 2320 of the beam 2300 is changed in shape in the direction spaced apart from the junction 200. That is, the flange 2320 is the first flange 2320a adjacent to the junction, the second flange (2320b) and the second flange (2320b) thickness is in contact with the first flange 2320a, the width of the flange is gradually smaller The third flange 2320c of the section gradually thinning, and the fourth flange 2320d, which is uniformly formed with the same thickness and width as the thinned thickness of the three flanges 2320c, in contact with the third flanges 2320c. . That is, the flange 2320 of the beam is formed so that the flange width is reduced in a straight line shape in the second flange (2320b) on the basis of the joint, the thickness of the flange is thinner in the third flange (2320c).
다만, 제 1 실시예와 달리, 제 2 플랜지(2320b)의 접합부와 연접하는 면과, 제 3 플랜지(2320c)에 연접하는 면의 플랜지 폭이 동일하며, 제 3플랜지(2320c) 및 제 4 플랜지(2320d)의 플랜지 폭도 접합부와 동일하게 형성된다.However, unlike the first embodiment, the flange widths of the surfaces of the second flange 2320b connected to the joint portion of the second flange 2320b and the surfaces of the second flange 2320b are the same, and the third flange 4320c and the fourth flange are the same. The flange width of 2320d is also formed in the same manner as the joint portion.
나머지 구성은 제 2 실시예와 동일하므로 자세한 설명은 생략한다.Since the rest of the configuration is the same as in the second embodiment, detailed description thereof will be omitted.
제 3 실시예의 철골구조는 제 1 실시예에 비해서 물량은 증대되나, 제조가 훨씬 용이하다는 장점이 있다. 특히, 제 2 플랜지(2320b)를 직선으로 형성함으로써, 제 2 실시예에 비해서도 제조가 용이하다는 장점이 있다.Compared to the first embodiment, the steel frame structure of the third embodiment is increased in quantity, but has an advantage of being much easier to manufacture. In particular, by forming the second flange 2320b in a straight line, there is an advantage that the manufacturing is easier than in the second embodiment.
도 15는 본 발명의 제 4 실시예의 철골구조의 접합부의 사시도, 도 16은 도 15의 평면도, 도 17은 도 15의 측면도이다. 15 is a perspective view of a joint of a steel frame structure according to a fourth embodiment of the present invention, FIG. 16 is a plan view of FIG. 15, and FIG. 17 is a side view of FIG. 15.
이들 도면에 도시된 바와 같이, 제 4 실시예의 철골구조는, 소성힌지부가 4개가 형성된 것을 도시하고 있다. 제 4 실시예의 철골구조는, 보(3300)의 플랜지(3320)가 제 1 실시예의 구조 2개가 연속적으로 형성되어 구현된다. 즉, 도 15에서 A로 표시된 부분이 제 1 실시예의 보의 플랜지(320)와 동일하며, 이와 연속하여 제 1 실시예의 보의 플랜지(320)와 동일한 B로 표시된 부분이 연결된다.As shown in these figures, the steel frame structure of the fourth embodiment shows that four plastic hinge portions are formed. The steel frame structure of the fourth embodiment is implemented by the flange 3320 of the beam 3300 having two structures of the first embodiment successively formed. That is, the portion denoted by A in FIG. 15 is the same as the flange 320 of the beam of the first embodiment, and the portion denoted by B which is the same as the flange 320 of the beam of the first embodiment is subsequently connected.
그 결과, 소성힌지부가, 제 1 소성힌지부(410), 제 2 소성힌지부(420), 제 3 소성힌지부(430) 및 제 4 소성힌지부(440)를 포함한다.As a result, the plastic hinge part includes a first plastic hinge part 410, a second plastic hinge part 420, a third plastic hinge part 430, and a fourth plastic hinge part 440.
도 18은 도 15의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프이다.FIG. 18 is a graph illustrating a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 15.
이때, 보의 춤은 1200mm인 상태에서 측정하였다. 도 18에서 확인할 수 있듯이, 본 발명의 제 4 실시예의 철골구조물은 보의 춤이 750mm를 훨씬 초과한 1200mm 임에도 불구하고, 층간 변형량이 3% 이상인 경우에도 파괴가 발생하지 않으며, 충분한 내진 능력이 있음을 확인할 수 있다.At this time, the dance of the beam was measured in the state of 1200mm. As can be seen in Figure 18, the steel structure of the fourth embodiment of the present invention, even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 3% or more, there is sufficient seismic capacity can confirm.
도 19는 본 발명의 제 5 실시예의 철골구조 접합부의 사시도이다.19 is a perspective view of the steel structure joint portion of the fifth embodiment of the present invention.
본 발명의 제 5 실시예는 철골구조는, 상기 제 2 소성힌지부(420)의 플랜지의 강도가 상기 제 1 소성힌지부(410)의 플랜지의 강도 보다 약하며, 두께는 동일한 것을 특징으로 한다. 즉, 플랜지의 폭이 감소되는 제 1 소성힌지부(410)가 형성된 플랜지(4320a)와, 제 2 소성힌지부(420)가 형성된 플랜지(4320b)의 재료특성이 상이하나, 두께는 동일하게 형성된 것을 특징으로 한다. 제 1 소성힌지부(410)가 형성된 플랜지(4320a)를 타 부분에 비해서 강도가 강한 재료로 형성함으로써 단면 모멘트 성능을 상이하게 하여, 제 2 소성힌지부(420)가 형성되도록 한다.In the fifth embodiment of the present invention, the steel frame structure is characterized in that the strength of the flange of the second plastic hinge portion 420 is weaker than the strength of the flange of the first plastic hinge portion 410, the thickness is the same. That is, the material properties of the flange 4320a in which the first plastic hinge part 410 is reduced and the flange 4320b in which the second plastic hinge part 420 is formed are different, but the thickness thereof is the same. It is characterized by. By forming the flange 4320a in which the first plastic hinge part 410 is formed of a material having a stronger strength than the other parts, the cross-sectional moment performance is different, so that the second plastic hinge part 420 is formed.
도 20은 도 19의 철골 구조물에 점진적, 반복적으로 층간 변형 하중을 가하여 파괴가 발생하는 시점을 측정한 그래프이다.FIG. 20 is a graph illustrating a time point at which fracture occurs by gradually and repeatedly applying an interlayer deformation load to the steel structure of FIG. 19.
이때, 보의 춤은 1200mm인 상태에서 측정하였다. 도 20에서 확인할 수 있듯이, 본 발명의 제 5 실시예의 철골구조물은 보의 춤이 750mm를 훨씬 초과한 1200mm 임에도 불구하고, 층간 변형량이 2% 이상인 경우에도 파괴가 발생하지 않으며, 3%에 파괴가 발생하여, 충분한 내진 능력이 있음을 확인할 수 있다.At this time, the dance of the beam was measured in the state of 1200mm. As can be seen in Figure 20, the steel structure of the fifth embodiment of the present invention, even though the dance of the beam is 1200mm far exceeding 750mm, even if the interlaminar deformation amount is 2% or more, the fracture does not occur, 3% Generated, it can be confirmed that there is sufficient seismic capacity.
제 5 실시예는 접합부부터 보 전체 구간에 걸쳐서 상면이 균일하여, 공간 활용이 훨씬 용이하다는 장점이 있다.The fifth embodiment has the advantage that the upper surface is uniform throughout the entire section from the junction to the beam, the space utilization is much easier.
이상에서 살펴본 바와 같이, 본 발명의 특징은 보에 2 이상의 소성힌지부를 형성하는 데 특징이 있다. 따라서, 2 이상의 소성힌지부를 형성하기 위해 다양한 제 1 소성힌지부를 형성하는 구성이 채택될 수 있음은 당연하다.As described above, the feature of the present invention is characterized in forming two or more plastic hinges on the beam. Therefore, it is obvious that a configuration for forming various first plastic hinge portions may be adopted to form two or more plastic hinge portions.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경 가능한 것이다.Although the preferred embodiments of the present invention have been described above by way of example, the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope described in the claims.

Claims (11)

  1. 건물을 지탱하는 기둥;Pillars supporting the building;
    상기 기둥을 가로지르는 방향으로 상기 기둥에 접합부에 의해 접합되는 보;A beam joined by a joint to the column in a direction crossing the column;
    상기 보의 상기 접합부에서 이격되는 방향으로 상기 보의 단면 모멘트 성능이 감소되는 제 1 소성 힌지부; 및A first plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction away from the junction of the beam; And
    상기 제 1 소성 힌지부로부터 상기 접합부에서 이격되는 방향으로 상기 보의 단면 모멘트 성능이 감소되는 제 2 소성힌지부;A second plastic hinge portion in which the cross-sectional moment performance of the beam is reduced in a direction away from the first plastic hinge portion at the joint portion;
    를 포함하는 것을 특징으로하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel structure having a seismic middle moment junction comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 2 소성힌지부의 단면 모멘트 성능은 상기 제 1 소성 힌지부 보다 작게 형성된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Sectional moment performance of the second plastic hinge portion is smaller than the first plastic hinge portion, characterized in that the steel structure having a seismic intermediate moment joint portion.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 제 2 소성힌지부 및 상기 제 1 소성 힌지부의 단면 모멘트 성능은 상기 철골구조에 가해지는 하중에 의해 동시에 소성변형이 발생되도록 형성된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.The cross-sectional moment performance of the second plastic hinge portion and the first plastic hinge portion is a steel structure having a seismic intermediate moment joint portion characterized in that the plastic deformation is generated at the same time by the load applied to the steel structure.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제 1 소성힌지부의 플랜지의 폭은 상기 접합부의 상기 보의 플랜지 폭보다 작게 형성된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel frame structure having a seismic intermediate moment joint portion, characterized in that the width of the flange of the first plastic hinge portion is formed smaller than the flange width of the beam of the joint portion.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제 1 소성힌지부의 플랜지 폭은 곡선 형상으로 감소되는 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel frame structure having a seismic intermediate moment joint portion characterized in that the flange width of the first plastic hinge portion is reduced in a curved shape.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 소성힌지부의 플랜지 폭은 직선 형상으로 감소되는 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel frame structure having a seismic middle moment joint portion characterized in that the flange width of the first plastic hinge portion is reduced in a straight shape.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 2 소성힌지부의 플랜지 폭이 상기 접합부의 플랜지 폭보다 작은 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel frame structure having a seismic intermediate moment joint portion, characterized in that the flange width of the second plastic hinge portion is smaller than the flange width of the joint portion.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    제 2 소성힌지부의 플랜지 두께는 상기 제 1 소성힌지부의 플랜지 두께보다 얇게 형성된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel frame structure having a seismic intermediate moment joint portion characterized in that the flange thickness of the second plastic hinge portion is formed thinner than the flange thickness of the first plastic hinge portion.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 소성힌지부의 플랜지의 측면으로 상기 제 1 소성힌지부의 플랜지보다 두께가 얇은 상기 제 2 소성힌지부의 플랜지가 맞대어져 결합된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.A steel structure having an earthquake-resistant intermediate moment joint, characterized in that the flange of the second plastic hinge portion, which is thinner than the flange of the first plastic hinge portion, is joined to the side of the flange of the first plastic hinge portion.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 결합부, 상기 제 1 소성힌지부 및 상기 제 2 소성힌지부에 결쳐서 바닥플랜지가 일체로 형성되며, The bottom flange is integrally formed with the coupling part, the first plastic hinge part and the second plastic hinge part,
    상기 바닥플랜지의 상기 결합부 및 상기 제 1 소성힌지부의 상면에 걸쳐서 상측 플랜지가 결합된 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.Steel structure having an earthquake-resistant intermediate moment joint portion characterized in that the upper flange is coupled over the upper surface of the coupling portion and the first plastic hinge portion of the bottom flange.
  11. 제 1항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제 2 소성힌지부의 플랜지의 강도가 상기 제 1 소성힌지부의 플랜지의 강도보다 약하며, 두께는 동일한 것을 특징으로 하는 내진형 중간모멘트 접합부를 갖는 철골구조.The strength of the flange of the second plastic hinge portion is less than the strength of the flange of the first plastic hinge portion, the steel structure having an earthquake-resistant intermediate moment junction, characterized in that the same.
PCT/KR2018/001220 2017-01-31 2018-01-29 Steel frame structure having earthquake-resistant intermediate moment joint part WO2018143622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0013868 2017-01-31
KR1020170013868A KR20180089145A (en) 2017-01-31 2017-01-31 Steel structure including earthquake-resistant intermediate moment connection

Publications (1)

Publication Number Publication Date
WO2018143622A1 true WO2018143622A1 (en) 2018-08-09

Family

ID=63039944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001220 WO2018143622A1 (en) 2017-01-31 2018-01-29 Steel frame structure having earthquake-resistant intermediate moment joint part

Country Status (2)

Country Link
KR (1) KR20180089145A (en)
WO (1) WO2018143622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584378A4 (en) * 2017-02-17 2020-08-05 SDR Technology Co., Ltd. Method for manufacturing beam-to-column joint structure, and beam-to-column joint structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521720B1 (en) * 2020-12-15 2023-04-14 주식회사 포스코 Structure having excellent earthquake resistant property and method for manufacturing thereof
KR102654047B1 (en) 2023-11-01 2024-04-03 주식회사 거원산업 Steel Frame Structure for Eearthquake-Proof Recovering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220061A (en) * 1997-01-31 1998-08-18 Shimizu Corp Earthqueak resistant characteristic adjusting method for steel frame and steel framed beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam
JP2000309980A (en) * 1999-04-27 2000-11-07 Shimizu Corp Structure for earthquake-resisting beam-column connection
JP2000309981A (en) * 1999-04-27 2000-11-07 Shimizu Corp Structure for earthquake-resisting beam-column connection and beam composed of h-sectional member
KR20140098524A (en) * 2013-01-31 2014-08-08 한국기술교육대학교 산학협력단 Connecting structure and method between h-shaped steel column and beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220061A (en) * 1997-01-31 1998-08-18 Shimizu Corp Earthqueak resistant characteristic adjusting method for steel frame and steel framed beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam
JP2000309980A (en) * 1999-04-27 2000-11-07 Shimizu Corp Structure for earthquake-resisting beam-column connection
JP2000309981A (en) * 1999-04-27 2000-11-07 Shimizu Corp Structure for earthquake-resisting beam-column connection and beam composed of h-sectional member
KR20140098524A (en) * 2013-01-31 2014-08-08 한국기술교육대학교 산학협력단 Connecting structure and method between h-shaped steel column and beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584378A4 (en) * 2017-02-17 2020-08-05 SDR Technology Co., Ltd. Method for manufacturing beam-to-column joint structure, and beam-to-column joint structure

Also Published As

Publication number Publication date
KR20180089145A (en) 2018-08-08

Similar Documents

Publication Publication Date Title
WO2018143622A1 (en) Steel frame structure having earthquake-resistant intermediate moment joint part
WO2016111513A1 (en) Precast concrete member with prefabricated plate and fixing channels
WO2009142416A2 (en) Strengthening member for reinforced concrete beam end coupling, and a structural-element construction method employing the same
WO2016021811A1 (en) Prefabricated wall unit and frame
WO2016032215A1 (en) Large assembly composite beam
WO2014058151A1 (en) Cast-in anchor channel having sub-anchor
WO2014175575A1 (en) Steel beam joint
WO2016171374A1 (en) Beam-penetration column joint part and method for concurrently constructing upper and lower parts of building by using same
WO2019132264A1 (en) Wall structure using blocks and frames with wedge-type coupling part formed therein and method for constructing wall using same
WO2020145542A1 (en) Band for fixing removable form for pre-fabricated column
WO2017217647A1 (en) Prefabricated aluminum form panel for construction
WO2015122558A1 (en) Exterior insulation system and exterior wall installation method using same
US20150315788A1 (en) Sleeve connector
WO2013172598A1 (en) Web member for improving node-connecting structure of composite truss girder bridge
KR20190072336A (en) Building Core System using Precast Concrete Panel with Column in the Center
KR20210000811A (en) Modular unit and construction method for using the same
WO2020145541A1 (en) Band for fixing removable form for pre-fabricated column
WO2016182278A1 (en) Composite beam structure having reinforcement structure according to size of moment generation, and construction method using same
WO2013141424A1 (en) Method for installing alc panels by longitudinally wall locking construction
WO2016111459A1 (en) Pillar bracket
WO2018143661A1 (en) Beam bridge having beam support plate and construction method therefor
WO2019208936A1 (en) Beam-girder joint for prefabricated steel frame assembly
WO2021141297A1 (en) Steel plate assembly beam for steel concrete composite beam
WO2021157796A1 (en) Steel concrete core shear wall system
JP6508866B2 (en) Column-beam frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18747868

Country of ref document: EP

Kind code of ref document: A1