WO2018143426A1 - Liquid supply system - Google Patents

Liquid supply system Download PDF

Info

Publication number
WO2018143426A1
WO2018143426A1 PCT/JP2018/003648 JP2018003648W WO2018143426A1 WO 2018143426 A1 WO2018143426 A1 WO 2018143426A1 JP 2018003648 W JP2018003648 W JP 2018003648W WO 2018143426 A1 WO2018143426 A1 WO 2018143426A1
Authority
WO
WIPO (PCT)
Prior art keywords
check valve
valve
container
shaft member
pump chamber
Prior art date
Application number
PCT/JP2018/003648
Other languages
French (fr)
Japanese (ja)
Inventor
森 浩一
清隆 古田
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to KR1020197021570A priority Critical patent/KR20190098226A/en
Priority to US16/482,642 priority patent/US20200011322A1/en
Priority to CN201880006941.2A priority patent/CN110177943A/en
Priority to EP18747632.0A priority patent/EP3578819A1/en
Priority to JP2018566138A priority patent/JPWO2018143426A1/en
Priority to RU2019122418A priority patent/RU2019122418A/en
Publication of WO2018143426A1 publication Critical patent/WO2018143426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/082Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0824Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible

Definitions

  • the present invention relates to a liquid supply system for supplying a liquid.
  • Patent Document 1 A technique using a liquid supply system having a pump chamber formed of bellows in order to circulate liquid through a circulation channel is known (see Patent Document 1).
  • a check valve for stopping a back flow of liquid is provided in a pipe connected to a container provided with a pump chamber.
  • the smaller the valve opening area of the check valve the faster the flow velocity, and cavitation tends to occur on the downstream side of the valve.
  • cavitation occurs, it causes abnormal noise and vibration, and discharge efficiency by the pump decreases.
  • it is effective to increase the opening area of the valve.
  • An object of the present invention is to provide a liquid supply system capable of suppressing the occurrence of cavitation without increasing the size of the apparatus.
  • the present invention employs the following means in order to solve the above problems.
  • the liquid supply system of the present invention is A container provided with a pump chamber therein and provided with a fluid inlet and outlet; A shaft member that reciprocates in the vertical direction in the container; In the container, the first bellows and the second bellows that are arranged side by side in the vertical direction and expand and contract as the shaft member reciprocates, A first pump chamber formed by a space surrounding an outer peripheral surface of the first bellows; A second pump chamber formed by a space surrounding the outer peripheral surface of the second bellows; A first check valve which is provided on a flow path passing through the first pump chamber and stops a back flow of fluid; A second check valve which is provided on a flow path passing through the second pump chamber and stops a back flow of fluid; A liquid supply system comprising: The first check valve and the second check valve are both provided in the container, and are arranged on the opposite side to the shaft member with respect to the actuator that drives the shaft member. .
  • the first check valve and the second check valve are provided in the container, and are disposed on the opposite side of the shaft member from the actuator. Therefore, compared with the case where a check valve is provided on the pipe connected to the container, it is easier to install the container on the container, and it is not necessary to enlarge the entire apparatus including the pipe. Further, the first check valve and the second check valve can be easily assembled without being obstructed by the actuator. Furthermore, it is easy to ensure a large space for arranging the first check valve and the second check valve, and it is easy to increase the opening area of these valves.
  • the first check valve includes an annular first valve body that opens while opening the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member
  • the second check valve may include an annular second valve body that opens while opening the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member.
  • the opening area of the valve can be increased, and compared with a check valve (for example, a poppet valve) that opens and closes by a fluid flowing in the vertical direction, there is no resistance due to fluid flow, and the opening and closing of the valve Since the responsiveness is excellent, it is possible to prevent the occurrence of cavitation due to insufficient fluid flow into the pump chamber.
  • a check valve for example, a poppet valve
  • the first check valve and the second check valve may both be arranged coaxially with the shaft member in the container.
  • the diameter of the opening / closing part of the valve in the first valve body and the diameter of the opening / closing part of the valve in the second valve body may be the same.
  • the occurrence of cavitation can be suppressed without increasing the size of the apparatus.
  • FIG. 1 is a schematic configuration diagram of a liquid supply system according to an embodiment of the present invention.
  • FIG. 2 is a partially broken sectional view of the check valve according to the embodiment of the present invention.
  • FIG. 3 is an enlarged schematic cross-sectional view of the vicinity of the first check valve and the second check valve according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a state in which the check valve according to the embodiment of the present invention is closed.
  • FIG. 5 is a schematic cross-sectional view showing a state in which the check valve according to the embodiment of the present invention is opened.
  • FIG. 6 is a schematic cross-sectional view showing a state in which the valve in the check valve according to the embodiment of the present invention is being closed.
  • a liquid supply system according to an embodiment of the present invention will be described with reference to FIGS.
  • the liquid supply system according to the present embodiment can be suitably used, for example, to maintain the superconducting device in an ultra-low temperature state. That is, in a superconducting device, it is necessary to always cool a superconducting coil or the like. Therefore, the apparatus to be cooled is always cooled by always supplying an ultra-low temperature liquid (liquid nitrogen or liquid helium) to the apparatus to be cooled provided with a superconducting coil. More specifically, by providing a circulation flow path that passes through the apparatus to be cooled, and by attaching the liquid supply system according to the present embodiment in the circulation flow path, the ultra low temperature liquid is circulated to It becomes possible to always cool.
  • FIG. 1 is a schematic configuration diagram of an entire liquid supply system according to an embodiment of the present invention, and is a diagram showing a schematic configuration of the entire liquid supply system in cross-section.
  • the liquid supply system 10 includes a liquid supply system main body (hereinafter referred to as the system main body 100), a vacuum container 200 in which the system main body 100 is installed, and piping (a suction pipe 310 and a delivery pipe 320). And. Both the suction pipe 310 and the delivery pipe 320 enter the inside of the vacuum container 200 from the outside of the vacuum container 200 and are connected to the system main body 100.
  • the inside of the vacuum container 200 is sealed, and the space outside the system main body 100, the suction pipe 310, and the delivery pipe 320 is maintained in a vacuum state in the vacuum container 200. Thereby, this space has a heat insulating function.
  • the liquid supply system 10 is usually installed on a horizontal plane. In the state where the liquid supply system 10 is installed, the upper side in FIG. 1 is the upper side in the vertical direction, and the lower side in FIG. 1 is the lower side in the vertical direction.
  • the system main body 100 includes a linear actuator 110 serving as a driving source, a shaft member 120 that reciprocates in the vertical direction by the linear actuator 110, and a container 130.
  • the linear actuator 110 may be fixed at an arbitrary location, and the location to be fixed may be fixed to the container 130 or may be fixed to another location not shown.
  • the shaft member 120 is installed so as to enter the inside of the container from the outside of the container 130 through an opening 130 a provided in the ceiling portion of the container 130.
  • a fluid suction port 130b and a delivery port 130c are provided at the bottom of the container 130.
  • the suction pipe 310 is connected to a position where the suction port 130b is provided, and the delivery pipe 320 is connected to a position where the delivery port 130c is provided.
  • a plurality of members are provided inside the container 130, and a plurality of pump chambers, a liquid flow path, and a heat insulating vacuum chamber are formed by a plurality of spaces partitioned by the plurality of members. Yes.
  • the internal configuration of the container 130 will be described in more detail.
  • the shaft member 120 includes a shaft main body 121 having a hollow portion therein, a cylindrical portion 122 provided so as to surround the outer peripheral surface side of the shaft main body 121, and a connecting portion 123 that connects the shaft main body 121 and the cylindrical portion 122. And have. Further, an upper end side outward flange portion 122 a is provided at the upper end of the cylindrical portion 122, and a lower end side outward flange portion 122 b is provided at the lower end of the cylindrical portion 122.
  • the container 130 includes a substantially cylindrical body portion 130X and a bottom plate portion 130Y.
  • the body portion 130X is provided with a first inward flange portion 130Xa provided near the center in the height direction and a second inward flange portion 130Xb provided above.
  • a plurality of first flow paths 130Xc extending in the axial direction are formed in the body portion 130X at intervals in the circumferential direction.
  • a second flow path 130Xd formed of a cylindrical space extending in the axial direction is also provided inside the body portion 130X, further radially outside the region where the first flow path 130Xc is provided.
  • a channel 130d that extends outward in the radial direction and is connected to the first channel 130Xc is uniformly formed in a circumferential shape.
  • the bottom plate portion 130Y of the container 130 is uniformly formed with a circular channel 130e extending radially outward. That is, the flow channel 130d and the flow channel 130e are configured so that fluid can flow radially in all directions from 360 ° toward the radially outer side.
  • a first bellows 141 and a second bellows 142 that are expanded and contracted with the reciprocation of the shaft member 120 are provided inside the container 130.
  • the first bellows 141 and the second bellows 142 are arranged side by side in the vertical direction.
  • the upper end side of the first bellows 141 is fixed to the upper end side outward flange portion 122a of the cylindrical portion 122 of the shaft member 120, and the lower end side of the first bellows 141 is fixed to the first inward flange portion 130Xa of the container 130. ing.
  • the upper end side of the second bellows 142 is fixed to the first inward flange portion 130Xa of the container 130, and the lower end side of the second bellows 142 is connected to the lower end side outward flange portion 122b of the cylindrical portion 122 of the shaft member 120. It is fixed.
  • a first pump chamber P1 is formed by a space surrounding the outer peripheral surface of the first bellows 141, and a second pump chamber P2 is formed by a space surrounding the outer peripheral surface of the second bellows 142.
  • a third bellows 151 and a fourth bellows 152 that are expanded and contracted with the reciprocating movement of the shaft member 120 are also provided inside the container 130.
  • the upper end side of the third bellows 151 is fixed to the ceiling portion of the container 130, and the lower end side of the third bellows 151 is fixed to the shaft member 120. Thereby, the opening part 130a provided in the container 130 is closed.
  • the upper end side of the fourth bellows 152 is fixed to a second inward flange portion 130 ⁇ / b> Xb provided in the container 130, and the lower end side of the fourth bellows 152 is fixed to the connecting portion 123 in the shaft member 120.
  • the space K2 and the third space K3 formed on the inner peripheral surface side of the first bellows 141 and the second bellows 142 are connected.
  • a space formed by the first space K1, the second space K2, and the third space K3 is sealed. In the present embodiment, the sealed space formed by these is maintained in a vacuum state and has a heat insulating function.
  • check valves 160 inside the container 130, there are four check valves 160 (first check valve 160A, second check valve 160B, third check valve 160C and fourth check valve according to the position of attachment). A stop valve 160D). All of these four check valves 160 are arranged coaxially with the shaft member 120 in the container 130. That is, the central axis of the shaft member 120 and the central axis of each check valve 160 are designed to coincide.
  • the first check valve 160A and the second check valve 160B are both provided in the container 130.
  • the first check valve 160 ⁇ / b> A and the second check valve 160 ⁇ / b> B are both disposed on the opposite side (downward side) from the shaft member 120 with respect to the linear actuator 110.
  • the third check valve 160C and the fourth check valve 160D are disposed above the first check valve 160A and the second check valve 160B.
  • the first check valve 160A and the third check valve 160C are provided on the flow path passing through the first pump chamber P1.
  • the first check valve 160A and the third check valve 160C play a role of stopping the backflow of the fluid flowing by the pumping action by the first pump chamber P1.
  • the first check valve 160A is provided on the upstream side with respect to the first pump chamber P1
  • the third check valve 160C is provided on the downstream side.
  • the first check valve 160 ⁇ / b> A is provided on a flow path 130 d formed at the bottom of the container 130.
  • the third check valve 160C is provided on a flow path formed in the vicinity of the second inward flange portion 130Xb provided in the container 130.
  • the second check valve 160B and the fourth check valve 160D are provided on the flow path passing through the second pump chamber P2.
  • the second check valve 160B and the fourth check valve 160D play a role of stopping the backflow of the fluid flowing by the pumping action by the second pump chamber P2. More specifically, the second check valve 160B is provided on the upstream side with respect to the second pump chamber P2, and the fourth check valve 160D is provided on the downstream side. More specifically, the second check valve 160B is provided on the flow path 130e formed in the bottom plate portion 130Y of the container 130.
  • the fourth check valve 160D is provided on a flow path formed in the vicinity of the first inward flange portion 130Xa of the container 130.
  • the fluid that has passed through the first check valve 160A is sent to the first pump chamber P1 through the first flow path 130Xc inside the body portion 130X of the container 130. Further, since the fluid pressure in the second pump chamber P2 is increased, the second check valve 160B is closed and the fourth check valve 160D is opened. As a result, the fluid in the second pump chamber P2 passes through the fourth check valve 160D (see arrow T12) and is sent to the second flow path 130Xd inside the body portion 130X. Thereafter, the fluid passes through the outlet 130 c and is sent out of the liquid supply system 10 through the delivery pipe 320.
  • the first bellows 141 is extended and the second bellows 142 is contracted.
  • the first check valve 160A is closed and the third check valve 160C is opened.
  • the fluid in the first pump chamber P1 passes through the third check valve 160C (see arrow T11) and is sent to the second flow path 130Xd inside the body portion 130X. Thereafter, the fluid passes through the outlet 130 c and is sent out of the liquid supply system 10 through the delivery pipe 320.
  • the second check valve 160B is opened and the fourth check valve 160D is closed.
  • the fluid (see arrow S10) sent from the outside of the liquid supply system 10 through the suction pipe 310 is sucked into the container 130 from the suction port 130b and passes through the second check valve 160B (see arrow S12). ). Then, the fluid that has passed through the second check valve 160B is sent to the second pump chamber P2.
  • the fluid can be flowed from the suction pipe 310 side to the delivery pipe 320 side when the shaft member 120 is lowered or raised. Therefore, so-called pulsation can be suppressed.
  • FIG. 2 is a partially broken cross-sectional view of a check valve according to an embodiment of the present invention, and shows a cross-sectional view cut along a plane including a central axis on the left side in the drawing.
  • FIG. 3 is an enlarged schematic cross-sectional view of the vicinity of the first check valve and the second check valve according to the embodiment of the present invention.
  • FIG. 4 to 6 are schematic cross-sectional views showing a basic configuration of a valve structure including a check valve according to this embodiment.
  • 4 shows a state in which the check valve is closed
  • FIG. 5 shows a state in which the check valve is open
  • FIG. 6 shows a state in the middle of closing the valve in the check valve.
  • the check valve 160 includes an annular valve body 161 and a sub-valve body 162 provided above the valve body 161.
  • the valve body 161 is configured to rise while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120 to open the valve.
  • the valve body 161 is provided in the cylindrical part 161a, the lower end side of the cylindrical part 161a, and the diameter-expanded part 161b diameter-expanded as it goes below,
  • the outward flange part 161c provided in the upper end side of the cylindrical part 161a It has.
  • the sub-valve body 162 is composed of a disk-shaped member having a through hole in the center, and the outer diameter thereof is larger than the inner diameter of the cylindrical portion 161a of the valve body 161, and the inner diameter is larger than the inner diameter of the cylindrical portion 161a. Designed to be smaller.
  • FIG. 3 shows an enlarged schematic cross-sectional view of a part of the valve structure including the first check valve 160A and the second check valve 160B.
  • the first check valve 160A includes an annular valve body (first valve body 161A) and a first sub-valve body 162A provided above the first valve body 161A.
  • the first valve body 161A includes a cylindrical portion 161Aa, an enlarged diameter portion 161Ab, and an outward flange portion 161Ac.
  • the second check valve 160B includes an annular valve body (second valve body 161B) and a second sub-valve body 162B provided above the second valve body 161B.
  • the second valve body 161B includes a cylindrical portion 161Ba, an enlarged diameter portion 161Bb, and an outward flange portion 161Bc.
  • the first check valve 160A and the second check valve 160B have the same dimensions. Therefore, the diameter of the valve opening / closing portion in the first valve body 161A is the same as the diameter of the valve opening / closing portion in the second valve body 161B. In addition, the diameter of the opening / closing part of the valve corresponds to the diameter D of the tip of the enlarged diameter part 161b in the valve body 161 shown in FIG.
  • the basic configurations of the third check valve 160C and the fourth check valve 160D are the same, and the basic configuration of the valve structure including these check valves is also the same.
  • the diameter of the valve opening / closing portion in the valve body of the third check valve 160C and the diameter of the valve opening / closing portion in the valve body of the fourth check valve 160D are the same, but the first valve body 161A and the second valve body The valve body 161B is designed to be larger than the diameter of the valve opening / closing part.
  • the opening and closing operation of the check valve 160 according to this embodiment will be described.
  • the basic structure of the valve structure including the check valve is the same in any check valve. Therefore, the opening / closing operation of the check valve will be described with reference to FIGS. 4 to 6 showing the basic configuration.
  • the check valve 160 is attached to the attached portion 170.
  • the to-be-attached part 170 is not necessarily comprised by 1 member.
  • the attached portion 170 corresponds to the bottom portion of the container 130.
  • the attached portion 170 corresponds to the bottom plate portion 130 ⁇ / b> Y in the container 130.
  • the attached portion 170 corresponds to a portion in the vicinity of the second inward flange portion 130Xb provided on the body portion 130X of the container 130.
  • the attached portion 170 corresponds to a portion in the vicinity where the first inward flange portion 130Xa provided on the body portion 130X of the container 130 is provided.
  • the attached portion 170 is provided with a flow path 171 extending radially outward and horizontally from the central axis side of the shaft member 120 and the check valve 160.
  • the flow path 171 is uniformly formed in a circumferential shape. That is, the flow path 171 is configured such that fluid can flow radially in all directions from 360 ° toward the radially outer side.
  • a guide surface 172 for guiding the moving direction of the valve body 161 is provided on the attached portion 170.
  • the guide surface 172 is a cylindrical surface.
  • a minute annular gap G is formed between the inner peripheral surface of the valve body 161 and the guide surface 172. That is, the valve body 161 is loosely fitted to the guide surface 172. Thereby, the valve body 161 can reciprocate in a substantially vertical direction without receiving sliding resistance.
  • the mounted portion 170 is provided with an annular groove 173 on the upper surface of the guide surface 172 in which the sub-valve body 162 is mounted.
  • the sub-valve body 162 is attached to the annular groove 173 so that the inner peripheral surface thereof is slidable with respect to the groove bottom surface 173 a of the annular groove 173.
  • the auxiliary valve body 162 can reciprocate in the vertical direction within the range of the groove width of the annular groove 173.
  • the lower groove side surface 173b and the upper end surface 161c1 of the valve body 161 are designed to have the same height among the groove side surfaces of the annular groove 173.
  • the sub-valve body 162 is in contact with both the groove side surface 173b of the annular groove 173 and the upper end surface 161c1 of the valve body 161, and the annular gap G is closed. .
  • valve seat 174 is provided on the mounted portion 170.
  • the valve seat 174 is constituted by a horizontal plane.
  • the operation of the valve structure configured as described above will be described.
  • the fluid pressure on the upstream side is higher than that on the downstream side of the flow path via the check valve 160, and when these differential pressures exceed the weight of the check valve 160, the valve body 161 rises.
  • the sub-valve element 162 is also pressed by the valve element 161 and rises by receiving the fluid pressure from the annular gap G.
  • the valve is opened.
  • fluid flows radially outward from the central axis side of the shaft member 120 and horizontally in the flow path 171 provided in the attached portion 170 (see the arrow in FIG. 5).
  • the valve body 161 rises while opening the valve while receiving the pressure of the fluid flowing radially outward and horizontally from the central axis side of the shaft member 120.
  • FIG. 6 shows a state in which the valve in the check valve 160 is in the middle of closing, and shows a state in which the valve body 161 is seated on the valve seat 174 and the sub-valve body 162 is in the middle of lowering.
  • the responsiveness of opening and closing of the valve by the valve body 161 can be enhanced. This is because it is known as disclosed in Patent Document 1 described above, and the details thereof will be described. However, the momentum of the fluid acting on the valve body 161 can be reduced. Moreover, since the structure which closes a valve in 2 steps
  • first check valve 160A and the second check valve 160B are disposed coaxially with the shaft member 120 in the container 130. Further, each of the first check valve 160A and the second check valve 160B is a circle that rises while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120 to open the valve. Annular valve bodies (first valve body 161A and second valve body 161B) are configured to open and close the valves.
  • the opening area of the valve can be increased without increasing the size of the entire apparatus including the pipes (the suction pipe 310 and the delivery pipe 320). .
  • production of a cavitation can be suppressed, without enlarging an apparatus (the whole apparatus including piping).
  • first valve body 161A and the second valve body 161B are configured to open and open the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120. Therefore, compared with a check valve (for example, a poppet valve) that opens and closes the valve by fluid flowing in the vertical direction, the valve opening and closing response is excellent.
  • a check valve for example, a poppet valve
  • both the first check valve 160A and the second check valve 160B are arranged on the opposite side (lower side) to the shaft member 120 with respect to the linear actuator 110. Accordingly, the first check valve 160A and the second check valve 160B can be easily assembled without being obstructed by the linear actuator 110. In addition, it is easy to secure a wide space for arranging the first check valve 160A and the second check valve 160B, and it is easy to increase the opening area of these valves.
  • the diameter of the valve opening / closing portion in the first valve body 161A and the diameter of the valve opening / closing portion in the second valve body 161B are the same.
  • the opening / closing periods of the valves of the first valve body 161A and the second valve body 161B can be easily equalized.
  • the discharge capability by the 1st pump chamber P1 and the discharge capability by the 2nd pump chamber P2 can be made equivalent easily. Therefore, pulsation can be more effectively suppressed.
  • a configuration is adopted in which the outside of the system main body 100, the suction pipe 310, and the delivery pipe 320 is evacuated to provide a heat insulating function. Further, in this embodiment, a configuration is adopted in which the sealed space formed by the first space K1, the second space K2, and the third space K3 is evacuated to have a heat insulating function. However, it is also possible to maintain the temperature of the fluid flowing through the circulation flow path at a low temperature by flowing an ultra-low temperature liquid in these spaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Provided is a liquid supply system in which the occurrence of cavitation can be suppressed without an increase in device size. This liquid supply system comprises: a first pump chamber P1 formed by a space surrounding an outer peripheral surface of a first bellows 141; a second pump chamber P2 formed by a space surrounding an outer peripheral surface of a second bellows 142; a first check valve 160A that is provided in a flow path passing through the first pump chamber P1 and that prevents the backflow of a fluid; and a second check valve 160B that is provided in a flow path passing through the second pump chamber P2 and that prevents the backflow of a fluid. The first check valve 160A and the second check valve 160B are both provided in a container 130 and arranged on the opposite side, with respect to a shaft member 120, from a linear actuator 110 which drives the shaft member 120.

Description

液体供給システムLiquid supply system
 本発明は、液体を供給する液体供給システムに関する。 The present invention relates to a liquid supply system for supplying a liquid.
 循環流路に対して液体を循環させるために、ベローズにより形成されたポンプ室を有する液体供給システムを利用した技術が知られている(特許文献1参照)。このような液体供給システムにおいては、ポンプ室が備えられた容器に接続された配管に、液体の逆流を止める逆止弁が備えられている。 A technique using a liquid supply system having a pump chamber formed of bellows in order to circulate liquid through a circulation channel is known (see Patent Document 1). In such a liquid supply system, a check valve for stopping a back flow of liquid is provided in a pipe connected to a container provided with a pump chamber.
 このような技術においては、逆止弁における弁の開口面積が狭い程、流速が早くなり、弁の下流側でキャビテーションが発生し易い。キャビテーションが発生すると、異音や振動の原因となる他、ポンプによる吐出効率が低下してしまう。キャビテーションの発生を抑制させるには、弁の開口面積を広くするのが効果的である。しかしながら、容器に接続された配管に備えられた逆止弁における弁の開口面積を広くするには制限があるか、または太い管を用いなければならず、配管を含めた装置全体が大型化してしまう。 In such a technique, the smaller the valve opening area of the check valve, the faster the flow velocity, and cavitation tends to occur on the downstream side of the valve. When cavitation occurs, it causes abnormal noise and vibration, and discharge efficiency by the pump decreases. In order to suppress the occurrence of cavitation, it is effective to increase the opening area of the valve. However, there is a limit to increasing the valve opening area of the check valve provided in the pipe connected to the container, or a thick pipe must be used, and the entire apparatus including the pipe is enlarged. End up.
国際公開第2015/050091号International Publication No. 2015/050091 特開2016-37912号公報Japanese Unexamined Patent Publication No. 2016-37912 特開平4-128578号公報Japanese Patent Laid-Open No. 4-128578
 本発明の目的は、装置を大型化することなく、キャビテーションの発生を抑制可能な液体供給システムを提供することにある。 An object of the present invention is to provide a liquid supply system capable of suppressing the occurrence of cavitation without increasing the size of the apparatus.
 本発明は、上記課題を解決するために以下の手段を採用した。 The present invention employs the following means in order to solve the above problems.
 すなわち、本発明の液体供給システムは、
 内部にポンプ室が備えられ、かつ流体の吸入口及び送出口が設けられている容器と、
 前記容器内において、鉛直方向に往復移動する軸部材と、
 前記容器内において、鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
 前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
 前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
 前記第1ポンプ室を通る流路上に設けられ、流体の逆流を止める第1逆止弁と、
 前記第2ポンプ室を通る流路上に設けられ、流体の逆流を止める第2逆止弁と、
を備える液体供給システムであって、
 前記第1逆止弁及び前記第2逆止弁は、いずれも、前記容器に設けられ、前記軸部材を駆動するアクチュエータとは前記軸部材に対し反対側に配置されていることを特徴とする。
That is, the liquid supply system of the present invention is
A container provided with a pump chamber therein and provided with a fluid inlet and outlet;
A shaft member that reciprocates in the vertical direction in the container;
In the container, the first bellows and the second bellows that are arranged side by side in the vertical direction and expand and contract as the shaft member reciprocates,
A first pump chamber formed by a space surrounding an outer peripheral surface of the first bellows;
A second pump chamber formed by a space surrounding the outer peripheral surface of the second bellows;
A first check valve which is provided on a flow path passing through the first pump chamber and stops a back flow of fluid;
A second check valve which is provided on a flow path passing through the second pump chamber and stops a back flow of fluid;
A liquid supply system comprising:
The first check valve and the second check valve are both provided in the container, and are arranged on the opposite side to the shaft member with respect to the actuator that drives the shaft member. .
 本発明によれば、第1逆止弁及び第2逆止弁は、容器に設けられ、アクチュエータとは軸部材に対し反対側に配置されている。従って、容器に接続する管に逆止弁を設ける場合に比べて、容器に対して設置し易く、配管を含めた装置全体を大型化する必要がない。また、第1逆止弁及び第2逆止弁を、アクチュエータに邪魔されることなく、簡単に組み立てることができる。更に、第1逆止弁及び第2逆止弁の配置スペースを広く確保し易く、これらの弁の開口面積を広くするのが容易である。 According to the present invention, the first check valve and the second check valve are provided in the container, and are disposed on the opposite side of the shaft member from the actuator. Therefore, compared with the case where a check valve is provided on the pipe connected to the container, it is easier to install the container on the container, and it is not necessary to enlarge the entire apparatus including the pipe. Further, the first check valve and the second check valve can be easily assembled without being obstructed by the actuator. Furthermore, it is easy to ensure a large space for arranging the first check valve and the second check valve, and it is easy to increase the opening area of these valves.
 前記第1逆止弁は、前記軸部材の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開く円環状の第1弁体を備え、
 前記第2逆止弁は、前記軸部材の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開く円環状の第2弁体を備えているとよい。
The first check valve includes an annular first valve body that opens while opening the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member,
The second check valve may include an annular second valve body that opens while opening the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member.
 これにより、弁の開口面積を広くすることができ、また、鉛直方向に流れる流体により弁を開閉する逆止弁(例えば、ポペット弁)に比べて、流体流れによる抵抗が無く、弁の開閉の応答性に優れているため、流体のポンプ室への流体流入不足によるキャビテーションの発生を防止することができる。 As a result, the opening area of the valve can be increased, and compared with a check valve (for example, a poppet valve) that opens and closes by a fluid flowing in the vertical direction, there is no resistance due to fluid flow, and the opening and closing of the valve Since the responsiveness is excellent, it is possible to prevent the occurrence of cavitation due to insufficient fluid flow into the pump chamber.
 前記第1逆止弁及び前記第2逆止弁は、いずれも、前記容器内に前記軸部材と同軸上に配置されているとよい。 The first check valve and the second check valve may both be arranged coaxially with the shaft member in the container.
 これにより、ポンプ室を形成する部材と容器を組み立てる際、簡単に組み立てることができる。 This enables easy assembly when assembling the member and container forming the pump chamber.
 第1弁体における弁の開閉部の径と、第2弁体における弁の開閉部の径は同一であるとよい。 The diameter of the opening / closing part of the valve in the first valve body and the diameter of the opening / closing part of the valve in the second valve body may be the same.
 これにより、第1弁体と第2弁体の弁の開閉期間を簡単に同等にすることができる。 This makes it possible to easily equalize the opening and closing periods of the first valve body and the second valve body.
 なお、上記各構成は、可能な限り組み合わせて採用し得る。 Note that the above configurations can be combined as much as possible.
 以上説明したように、本発明によれば、装置を大型化することなく、キャビテーションの発生を抑制することができる。 As described above, according to the present invention, the occurrence of cavitation can be suppressed without increasing the size of the apparatus.
図1は本発明の実施例に係る液体供給システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a liquid supply system according to an embodiment of the present invention. 図2は本発明の実施例に係る逆止弁の一部破断断面図である。FIG. 2 is a partially broken sectional view of the check valve according to the embodiment of the present invention. 図3は本発明の実施例に係る第1逆止弁及び第2逆止弁の付近を拡大した模式的断面図である。FIG. 3 is an enlarged schematic cross-sectional view of the vicinity of the first check valve and the second check valve according to the embodiment of the present invention. 図4は本発明の実施例に係る逆止弁の弁が閉じた状態を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a state in which the check valve according to the embodiment of the present invention is closed. 図5は本発明の実施例に係る逆止弁の弁が開いた状態を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a state in which the check valve according to the embodiment of the present invention is opened. 図6は本発明の実施例に係る逆止弁における弁が閉じる途中の状態を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a state in which the valve in the check valve according to the embodiment of the present invention is being closed.
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. .
 (実施例)
 図1~図6を参照して、本発明の実施例に係る液体供給システムについて説明する。本実施例に係る液体供給システムは、例えば、超電導機器を超低温状態に維持させるために好適に用いることができる。すなわち、超電導機器においては、超電導コイルなどを常時冷却させる必要がある。そこで、超電導コイルなどが備えられた被冷却装置に超低温の液体(液体窒素や液体ヘリウム)を常時供給することで、被冷却装置は常時冷却される。より具体的には、被冷却装置を通る循環流路を設け、かつ、この循環流路中に本実施例に係る液体供給システムを取り付けることにより、超低温の液体を循環させて、被冷却装置を常時冷却させることが可能となる。
(Example)
A liquid supply system according to an embodiment of the present invention will be described with reference to FIGS. The liquid supply system according to the present embodiment can be suitably used, for example, to maintain the superconducting device in an ultra-low temperature state. That is, in a superconducting device, it is necessary to always cool a superconducting coil or the like. Therefore, the apparatus to be cooled is always cooled by always supplying an ultra-low temperature liquid (liquid nitrogen or liquid helium) to the apparatus to be cooled provided with a superconducting coil. More specifically, by providing a circulation flow path that passes through the apparatus to be cooled, and by attaching the liquid supply system according to the present embodiment in the circulation flow path, the ultra low temperature liquid is circulated to It becomes possible to always cool.
 <液体供給システムの全体構成>
 図1は本発明の実施例に係る液体供給システム全体の概略構成図であり、液体供給システム全体の概略構成を断面的に示した図である。本実施例に係る液体供給システム10は、液体供給システム本体(以下、システム本体100と称する)と、システム本体100が内部に設置される真空容器200と、配管(吸入管310及び送出管320)とを備えている。吸入管310及び送出管320は、いずれも真空容器200の外部から真空容器200の内部に入り込み、システム本体100に接続されている。真空容器200の内部は密閉されており、真空容器200の内部のうち、システム本体100,吸入管310及び送出管320の外側の空間は真空状態が維持されている。これにより、この空間は断熱機能を備えている。液体供給システム10は、通常、水平面上に設置される。液体供給システム10が設置された状態において、図1における上方が鉛直方向上方となり、図1における下方が鉛直方向下方となる。
<Overall configuration of liquid supply system>
FIG. 1 is a schematic configuration diagram of an entire liquid supply system according to an embodiment of the present invention, and is a diagram showing a schematic configuration of the entire liquid supply system in cross-section. The liquid supply system 10 according to the present embodiment includes a liquid supply system main body (hereinafter referred to as the system main body 100), a vacuum container 200 in which the system main body 100 is installed, and piping (a suction pipe 310 and a delivery pipe 320). And. Both the suction pipe 310 and the delivery pipe 320 enter the inside of the vacuum container 200 from the outside of the vacuum container 200 and are connected to the system main body 100. The inside of the vacuum container 200 is sealed, and the space outside the system main body 100, the suction pipe 310, and the delivery pipe 320 is maintained in a vacuum state in the vacuum container 200. Thereby, this space has a heat insulating function. The liquid supply system 10 is usually installed on a horizontal plane. In the state where the liquid supply system 10 is installed, the upper side in FIG. 1 is the upper side in the vertical direction, and the lower side in FIG. 1 is the lower side in the vertical direction.
 システム本体100は、駆動源となるリニアアクチュエータ110と、リニアアクチュエータ110により鉛直方向に往復移動する軸部材120と、容器130とを備えている。尚、リニアアクチュエータ110は任意の箇所に固定され、固定される箇所は容器130に固定されていてもよいし、他の図示しない箇所に固定されていてもよい。軸部材120は、容器130の外部から、容器130の天井部に設けられた開口部130aを介して容器内部に入り込むように設置されている。また、容器130の底部には、流体の吸入口130b及び送出口130cが設けられている。上記の吸入管310は吸入口130bが設けられた位置に接続され、送出管320は、送出口130cが設けられた位置に接続されている。 The system main body 100 includes a linear actuator 110 serving as a driving source, a shaft member 120 that reciprocates in the vertical direction by the linear actuator 110, and a container 130. The linear actuator 110 may be fixed at an arbitrary location, and the location to be fixed may be fixed to the container 130 or may be fixed to another location not shown. The shaft member 120 is installed so as to enter the inside of the container from the outside of the container 130 through an opening 130 a provided in the ceiling portion of the container 130. In addition, a fluid suction port 130b and a delivery port 130c are provided at the bottom of the container 130. The suction pipe 310 is connected to a position where the suction port 130b is provided, and the delivery pipe 320 is connected to a position where the delivery port 130c is provided.
 容器130の内部においては、複数の部材が備えられており、これら複数の部材により区画された複数の空間によって、複数のポンプ室と、液体の流路と、断熱用の真空室が形成されている。以下、この容器130の内部の構成について、より詳細に説明する。 A plurality of members are provided inside the container 130, and a plurality of pump chambers, a liquid flow path, and a heat insulating vacuum chamber are formed by a plurality of spaces partitioned by the plurality of members. Yes. Hereinafter, the internal configuration of the container 130 will be described in more detail.
 軸部材120は、内部に中空部を有する軸本体部121と、軸本体部121の外周面側を囲むように設けられる円筒部122と、軸本体部121と円筒部122を連結する連結部123とを有している。また、円筒部122の上端には上端側外向きフランジ部122aが設けられ、円筒部122の下端には下端側外向きフランジ部122bが設けられている。 The shaft member 120 includes a shaft main body 121 having a hollow portion therein, a cylindrical portion 122 provided so as to surround the outer peripheral surface side of the shaft main body 121, and a connecting portion 123 that connects the shaft main body 121 and the cylindrical portion 122. And have. Further, an upper end side outward flange portion 122 a is provided at the upper end of the cylindrical portion 122, and a lower end side outward flange portion 122 b is provided at the lower end of the cylindrical portion 122.
 容器130は、略円筒状の胴体部130Xと、底板部130Yとを備えている。また、胴体部130Xには、高さ方向の中央付近に設けられる第1内向きフランジ部130Xaと、上方に設けられる第2内向きフランジ部130Xbとが設けられている。 The container 130 includes a substantially cylindrical body portion 130X and a bottom plate portion 130Y. The body portion 130X is provided with a first inward flange portion 130Xa provided near the center in the height direction and a second inward flange portion 130Xb provided above.
 胴体部130Xの内部には、軸方向に伸びる第1流路130Xcが周方向に間隔を空けて複数形成されている。また、胴体部130Xの内部には、第1流路130Xcが設けられている領域よりも更に径方向外側において、軸方向に伸びる円筒状の空間で構成された第2流路130Xdも設けられている。また、容器130の底部には、径方向外側に向かって伸び、第1流路130Xcに繋がる流路130dが円周状に一様に形成されている。更に、容器130における底板部130Yには、径方向外側に向かって伸びる流路130eが円周状に一様に形成されている。つまり、これらの流路130d及び流路130eは、中心軸線側から径方向外側に向かって、放射状に360°全ての方向に流体が流れ得るように構成されている。 A plurality of first flow paths 130Xc extending in the axial direction are formed in the body portion 130X at intervals in the circumferential direction. In addition, a second flow path 130Xd formed of a cylindrical space extending in the axial direction is also provided inside the body portion 130X, further radially outside the region where the first flow path 130Xc is provided. Yes. Further, at the bottom of the container 130, a channel 130d that extends outward in the radial direction and is connected to the first channel 130Xc is uniformly formed in a circumferential shape. Further, the bottom plate portion 130Y of the container 130 is uniformly formed with a circular channel 130e extending radially outward. That is, the flow channel 130d and the flow channel 130e are configured so that fluid can flow radially in all directions from 360 ° toward the radially outer side.
 また、容器130の内部には、軸部材120の往復移動に伴って伸縮する第1ベローズ141及び第2ベローズ142が設けられている。これらの第1ベローズ141及び第2ベローズ142は、鉛直方向に並べて配置されている。第1ベローズ141の上端側は軸部材120における円筒部122の上端側外向きフランジ部122aに固定されており、第1ベローズ141の下端側は容器130の第1内向きフランジ部130Xaに固定されている。また、第2ベローズ142の上端側は容器130の第1内向きフランジ部130Xaに固定されており、第2ベローズ142の下端側は軸部材120における円筒部122の下端側外向きフランジ部122bに固定されている。そして、第1ベローズ141の外周面を囲む空間により第1ポンプ室P1が形成されており、第2ベローズ142の外周面を囲む空間により第2ポンプ室P2が形成されている。 In addition, a first bellows 141 and a second bellows 142 that are expanded and contracted with the reciprocation of the shaft member 120 are provided inside the container 130. The first bellows 141 and the second bellows 142 are arranged side by side in the vertical direction. The upper end side of the first bellows 141 is fixed to the upper end side outward flange portion 122a of the cylindrical portion 122 of the shaft member 120, and the lower end side of the first bellows 141 is fixed to the first inward flange portion 130Xa of the container 130. ing. The upper end side of the second bellows 142 is fixed to the first inward flange portion 130Xa of the container 130, and the lower end side of the second bellows 142 is connected to the lower end side outward flange portion 122b of the cylindrical portion 122 of the shaft member 120. It is fixed. A first pump chamber P1 is formed by a space surrounding the outer peripheral surface of the first bellows 141, and a second pump chamber P2 is formed by a space surrounding the outer peripheral surface of the second bellows 142.
 また、容器130の内部には、軸部材120の往復移動に伴って伸縮する第3ベローズ151及び第4ベローズ152も設けられている。第3ベローズ151の上端側は容器130の天井部に固定されており、第3ベローズ151の下端側は軸部材120に固定されている。これにより、容器130に設けられた開口部130aが塞がれている。第4ベローズ152の上端側は容器130に設けられた第2内向きフランジ部130Xbに固定されており、第4ベローズ152の下端側は軸部材120における連結部123に固定されている。そして、軸部材120の軸本体部121の内部の中空部により形成される第1空間K1と、第3ベローズ151の外周面側及び第4ベローズ152の内周面側などにより形成される第2空間K2と、第1ベローズ141及び第2ベローズ142の内周面側に形成される第3空間K3は繋がっている。これら第1空間K1と第2空間K2と第3空間K3により形成される空間は密閉されている。本実施例では、これらにより形成される密閉空間は真空状態が維持されており、断熱機能を備えている。 In addition, a third bellows 151 and a fourth bellows 152 that are expanded and contracted with the reciprocating movement of the shaft member 120 are also provided inside the container 130. The upper end side of the third bellows 151 is fixed to the ceiling portion of the container 130, and the lower end side of the third bellows 151 is fixed to the shaft member 120. Thereby, the opening part 130a provided in the container 130 is closed. The upper end side of the fourth bellows 152 is fixed to a second inward flange portion 130 </ b> Xb provided in the container 130, and the lower end side of the fourth bellows 152 is fixed to the connecting portion 123 in the shaft member 120. The second space formed by the first space K1 formed by the hollow portion inside the shaft main body 121 of the shaft member 120, the outer peripheral surface side of the third bellows 151, the inner peripheral surface side of the fourth bellows 152, and the like. The space K2 and the third space K3 formed on the inner peripheral surface side of the first bellows 141 and the second bellows 142 are connected. A space formed by the first space K1, the second space K2, and the third space K3 is sealed. In the present embodiment, the sealed space formed by these is maintained in a vacuum state and has a heat insulating function.
 更に、容器130の内部には、4つの逆止弁160(取り付けられた位置に応じて、適宜、第1逆止弁160A,第2逆止弁160B,第3逆止弁160C及び第4逆止弁160Dと称する)が設けられている。これら4つの逆止弁160は、いずれも、容器130内において、軸部材120と同軸上に配置されている。つまり、軸部材120の中心軸線と各逆止弁160の中心軸線が一致するように設計されている。また、第1逆止弁160Aと第2逆止弁160Bは、いずれも、容器130に設けられている。また、これら第1逆止弁160Aと第2逆止弁160Bは、いずれも、リニアアクチュエータ110とは軸部材120に対し反対側(下方側)に配置されている。そして、第3逆止弁160Cと第4逆止弁160Dは、第1逆止弁160Aと第2逆止弁160Bよりも上方側に配置されている。 Furthermore, inside the container 130, there are four check valves 160 (first check valve 160A, second check valve 160B, third check valve 160C and fourth check valve according to the position of attachment). A stop valve 160D). All of these four check valves 160 are arranged coaxially with the shaft member 120 in the container 130. That is, the central axis of the shaft member 120 and the central axis of each check valve 160 are designed to coincide. The first check valve 160A and the second check valve 160B are both provided in the container 130. The first check valve 160 </ b> A and the second check valve 160 </ b> B are both disposed on the opposite side (downward side) from the shaft member 120 with respect to the linear actuator 110. The third check valve 160C and the fourth check valve 160D are disposed above the first check valve 160A and the second check valve 160B.
 また、第1逆止弁160Aと第3逆止弁160Cは、第1ポンプ室P1を通る流路上に設けられている。これら第1逆止弁160A及び第3逆止弁160Cは、第1ポンプ室P1によるポンプ作用によって流れる流体の逆流を止める役割を担っている。より具体的には、第1ポンプ室P1に対して、上流側に第1逆止弁160Aが設けられ、下流側に第3逆止弁160Cが設けられている。更に具体的には、第1逆止弁160Aは、容器130の底部に形成された流路130d上に設けられている。また、第3逆止弁160Cは、容器130に設けられた第2内向きフランジ部130Xbの付近に形成される流路上に設けられている。 The first check valve 160A and the third check valve 160C are provided on the flow path passing through the first pump chamber P1. The first check valve 160A and the third check valve 160C play a role of stopping the backflow of the fluid flowing by the pumping action by the first pump chamber P1. More specifically, the first check valve 160A is provided on the upstream side with respect to the first pump chamber P1, and the third check valve 160C is provided on the downstream side. More specifically, the first check valve 160 </ b> A is provided on a flow path 130 d formed at the bottom of the container 130. The third check valve 160C is provided on a flow path formed in the vicinity of the second inward flange portion 130Xb provided in the container 130.
 そして、第2逆止弁160Bと第4逆止弁160Dは、第2ポンプ室P2を通る流路上に設けられている。これら第2逆止弁160B及び第4逆止弁160Dは、第2ポンプ室P2によるポンプ作用によって流れる流体の逆流を止める役割を担っている。より具体的には、第2ポンプ室P2に対して、上流側に第2逆止弁160Bが設けられ、下流側に第4逆止弁160Dが設けられている。更に具体的には、第2逆止弁160Bは、容器130の底板部130Yに形成された流路130e上に設けられている。また、第4逆止弁160Dは、容器130の第1内向きフランジ部130Xaの付近に形成された流路上に設けられている。 The second check valve 160B and the fourth check valve 160D are provided on the flow path passing through the second pump chamber P2. The second check valve 160B and the fourth check valve 160D play a role of stopping the backflow of the fluid flowing by the pumping action by the second pump chamber P2. More specifically, the second check valve 160B is provided on the upstream side with respect to the second pump chamber P2, and the fourth check valve 160D is provided on the downstream side. More specifically, the second check valve 160B is provided on the flow path 130e formed in the bottom plate portion 130Y of the container 130. The fourth check valve 160D is provided on a flow path formed in the vicinity of the first inward flange portion 130Xa of the container 130.
 <液体供給システム全体の動作説明>
 液体供給システム全体の動作について説明する。リニアアクチュエータ110によって、軸部材120が下降する際においては、第1ベローズ141は縮み、第2ベローズ142は伸びる。このとき、第1ポンプ室P1の流体圧力は低くなるため、第1逆止弁160Aは弁が開き、第3逆止弁160Cは弁が閉じた状態となる。これにより、液体供給システム10の外部から吸入管310により送られる流体(矢印S10参照)は、吸入口130bから容器130内に吸入されて、第1逆止弁160Aを通り抜けていく(矢印S11参照)。そして、第1逆止弁160Aを通り抜けた流体は、容器130における胴体部130Xの内部の第1流路130Xcを通り、第1ポンプ室P1へと送られる。また、第2ポンプ室P2の流体圧力は高くなるため、第2逆止弁160Bは弁が閉じ、第4逆止弁160Dは弁が開いた状態となる。これにより、第2ポンプ室P2内の流体は、第4逆止弁160Dを通り抜けて(矢印T12参照)、胴体部130Xの内部の第2流路130Xdへと送られる。その後、流体は、送出口130cを通り、送出管320により液体供給システム10の外部へと送出される。
<Operation description of the entire liquid supply system>
The overall operation of the liquid supply system will be described. When the shaft member 120 is lowered by the linear actuator 110, the first bellows 141 contracts and the second bellows 142 extends. At this time, since the fluid pressure in the first pump chamber P1 is low, the valve of the first check valve 160A is opened and the valve of the third check valve 160C is closed. Thereby, the fluid (see arrow S10) sent from the outside of the liquid supply system 10 through the suction pipe 310 is sucked into the container 130 from the suction port 130b and passes through the first check valve 160A (see arrow S11). ). Then, the fluid that has passed through the first check valve 160A is sent to the first pump chamber P1 through the first flow path 130Xc inside the body portion 130X of the container 130. Further, since the fluid pressure in the second pump chamber P2 is increased, the second check valve 160B is closed and the fourth check valve 160D is opened. As a result, the fluid in the second pump chamber P2 passes through the fourth check valve 160D (see arrow T12) and is sent to the second flow path 130Xd inside the body portion 130X. Thereafter, the fluid passes through the outlet 130 c and is sent out of the liquid supply system 10 through the delivery pipe 320.
 そして、リニアアクチュエータ110によって、軸部材120が上昇する際においては、第1ベローズ141は伸び、第2ベローズ142は縮む。このとき、第1ポンプ室P1の流体圧力は高くなるため、第1逆止弁160Aは弁が閉じ、第3逆止弁160Cは弁が開いた状態となる。これにより、第1ポンプ室P1内の流体は、第3逆止弁160Cを通り抜けて(矢印T11参照)、胴体部130Xの内部の第2流路130Xdへと送られる。その後、流体は、送出口130cを通り、送出管320により液体供給システム10の外部へと送出される。また、第2ポンプ室P2の流体圧力は低くなるため、第2逆止弁160Bは弁が開き、第4逆止弁160Dは弁が閉じた状態となる。これにより、液体供給システム10の外部から吸入管310により送られる流体(矢印S10参照)は、吸入口130bから容器130内に吸入されて、第2逆止弁160Bを通り抜けていく(矢印S12参照)。そして、第2逆止弁160Bを通り抜けた流体は、第2ポンプ室P2へと送られる。 When the shaft member 120 is raised by the linear actuator 110, the first bellows 141 is extended and the second bellows 142 is contracted. At this time, since the fluid pressure in the first pump chamber P1 is increased, the first check valve 160A is closed and the third check valve 160C is opened. As a result, the fluid in the first pump chamber P1 passes through the third check valve 160C (see arrow T11) and is sent to the second flow path 130Xd inside the body portion 130X. Thereafter, the fluid passes through the outlet 130 c and is sent out of the liquid supply system 10 through the delivery pipe 320. Further, since the fluid pressure in the second pump chamber P2 becomes low, the second check valve 160B is opened and the fourth check valve 160D is closed. Thus, the fluid (see arrow S10) sent from the outside of the liquid supply system 10 through the suction pipe 310 is sucked into the container 130 from the suction port 130b and passes through the second check valve 160B (see arrow S12). ). Then, the fluid that has passed through the second check valve 160B is sent to the second pump chamber P2.
 以上のように、本実施例に係る液体供給システム10においては、軸部材120が下降する際及び上昇する際のいずれにおいても、吸入管310側から送出管320側に流体を流すことができる。従って、いわゆる脈動を抑制することができる。 As described above, in the liquid supply system 10 according to the present embodiment, the fluid can be flowed from the suction pipe 310 side to the delivery pipe 320 side when the shaft member 120 is lowered or raised. Therefore, so-called pulsation can be suppressed.
 <逆止弁>
 特に、図2~図6を参照して、本実施例に係る逆止弁160について、より詳細に説明する。なお、第1逆止弁160A,第2逆止弁160B,第3逆止弁160C及び第4逆止弁160Dの構成、及びこれらの逆止弁を備える弁構造は基本的に同一である。図2は本発明の実施例に係る逆止弁の一部破断断面図であり、図中左側に中心軸線を含む面で切断した断面図を示している。図3は本発明の実施例に係る第1逆止弁及び第2逆止弁の付近を拡大した模式的断面図である。図4~図6は本実施例に係る逆止弁を備える弁構造の基本的な構成を示す模式的断面図である。なお、図4は逆止弁の弁が閉じた状態を示し、図5は逆止弁の弁が開いた状態を示し、図6は逆止弁における弁が閉じる途中の状態を示している。
<Check valve>
In particular, the check valve 160 according to this embodiment will be described in more detail with reference to FIGS. The configurations of the first check valve 160A, the second check valve 160B, the third check valve 160C, and the fourth check valve 160D, and the valve structure including these check valves are basically the same. FIG. 2 is a partially broken cross-sectional view of a check valve according to an embodiment of the present invention, and shows a cross-sectional view cut along a plane including a central axis on the left side in the drawing. FIG. 3 is an enlarged schematic cross-sectional view of the vicinity of the first check valve and the second check valve according to the embodiment of the present invention. 4 to 6 are schematic cross-sectional views showing a basic configuration of a valve structure including a check valve according to this embodiment. 4 shows a state in which the check valve is closed, FIG. 5 shows a state in which the check valve is open, and FIG. 6 shows a state in the middle of closing the valve in the check valve.
 本実施例に係る逆止弁160は、円環状の弁体161と、弁体161の上方に設けられる副弁体162とを備えている。弁体161は、軸部材120の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開くように構成されている。そして、弁体161は、円筒部161aと、円筒部161aの下端側に設けられ、下方に向かうにつれて拡径する拡径部161bと、円筒部161aの上端側に設けられる外向きフランジ部161cとを備えている。副弁体162は、中心に貫通孔を有する円板状の部材により構成されており、その外径は弁体161における円筒部161aの内径より大きく、その内径は当該円筒部161aの内径よりも小さくなるように設計されている。 The check valve 160 according to this embodiment includes an annular valve body 161 and a sub-valve body 162 provided above the valve body 161. The valve body 161 is configured to rise while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120 to open the valve. And the valve body 161 is provided in the cylindrical part 161a, the lower end side of the cylindrical part 161a, and the diameter-expanded part 161b diameter-expanded as it goes below, The outward flange part 161c provided in the upper end side of the cylindrical part 161a It has. The sub-valve body 162 is composed of a disk-shaped member having a through hole in the center, and the outer diameter thereof is larger than the inner diameter of the cylindrical portion 161a of the valve body 161, and the inner diameter is larger than the inner diameter of the cylindrical portion 161a. Designed to be smaller.
 図3には第1逆止弁160Aと第2逆止弁160Bを備える弁構造の一部を拡大した模式的断面図が示されている。図示のように、第1逆止弁160Aは、円環状の弁体(第1弁体161A)と、第1弁体161Aの上方に設けられる第1副弁体162Aとを備えている。そして、第1弁体161Aは、円筒部161Aaと、拡径部161Abと、外向きフランジ部161Acとを備えている。同様に、第2逆止弁160Bは、円環状の弁体(第2弁体161B)と、第2弁体161Bの上方に設けられる第2副弁体162Bとを備えている。そして、第2弁体161Bは、円筒部161Baと、拡径部161Bbと、外向きフランジ部161Bcとを備えている。 FIG. 3 shows an enlarged schematic cross-sectional view of a part of the valve structure including the first check valve 160A and the second check valve 160B. As illustrated, the first check valve 160A includes an annular valve body (first valve body 161A) and a first sub-valve body 162A provided above the first valve body 161A. The first valve body 161A includes a cylindrical portion 161Aa, an enlarged diameter portion 161Ab, and an outward flange portion 161Ac. Similarly, the second check valve 160B includes an annular valve body (second valve body 161B) and a second sub-valve body 162B provided above the second valve body 161B. The second valve body 161B includes a cylindrical portion 161Ba, an enlarged diameter portion 161Bb, and an outward flange portion 161Bc.
 本実施例においては、第1逆止弁160Aと第2逆止弁160Bは寸法も同一である。従って、第1弁体161Aにおける弁の開閉部の径と、第2弁体161Bにおける弁の開閉部の径は同一である。なお、弁の開閉部の径は、上述した図2に示す弁体161における拡径部161bの先端の径Dに相当する。 In the present embodiment, the first check valve 160A and the second check valve 160B have the same dimensions. Therefore, the diameter of the valve opening / closing portion in the first valve body 161A is the same as the diameter of the valve opening / closing portion in the second valve body 161B. In addition, the diameter of the opening / closing part of the valve corresponds to the diameter D of the tip of the enlarged diameter part 161b in the valve body 161 shown in FIG.
 特に図示はしないが、第3逆止弁160Cと第4逆止弁160Dの基本的な構成も同一であり、これらの逆止弁を備える弁構造の基本的な構成も同一である。ただし、第3逆止弁160Cの弁体における弁の開閉部の径と、第4逆止弁160Dの弁体における弁の開閉部の径は同一であるが、第1弁体161A及び第2弁体161Bにおける弁の開閉部の径よりも大きく設計されている。 Although not specifically illustrated, the basic configurations of the third check valve 160C and the fourth check valve 160D are the same, and the basic configuration of the valve structure including these check valves is also the same. However, the diameter of the valve opening / closing portion in the valve body of the third check valve 160C and the diameter of the valve opening / closing portion in the valve body of the fourth check valve 160D are the same, but the first valve body 161A and the second valve body The valve body 161B is designed to be larger than the diameter of the valve opening / closing part.
 次に、本実施例に係る逆止弁160による弁の開閉動作について説明する。上記の通り、逆止弁を備える弁構造については、いずれの逆止弁においても基本的な構成が同一である。そこで、基本的な構成を示した図4~図6を参照して、逆止弁の開閉動作について説明する。 Next, the opening and closing operation of the check valve 160 according to this embodiment will be described. As described above, the basic structure of the valve structure including the check valve is the same in any check valve. Therefore, the opening / closing operation of the check valve will be described with reference to FIGS. 4 to 6 showing the basic configuration.
 逆止弁160は、被取付部170に取付けられる。なお、被取付部170は1部材により構成されるとは限らない。第1逆止弁160Aの場合には、被取付部170は容器130の底部に相当する。第2逆止弁160Bの場合には、被取付部170は、容器130における底板部130Yに相当する。第3逆止弁160Cの場合には、被取付部170は、容器130における胴体部130Xに設けられた第2内向きフランジ部130Xbが設けられている付近の部分に相当する。第4逆止弁160Dの場合には、被取付部170は、容器130における胴体部130Xに設けられた第1内向きフランジ部130Xaが設けられている付近の部分に相当する。 The check valve 160 is attached to the attached portion 170. In addition, the to-be-attached part 170 is not necessarily comprised by 1 member. In the case of the first check valve 160 </ b> A, the attached portion 170 corresponds to the bottom portion of the container 130. In the case of the second check valve 160 </ b> B, the attached portion 170 corresponds to the bottom plate portion 130 </ b> Y in the container 130. In the case of the third check valve 160C, the attached portion 170 corresponds to a portion in the vicinity of the second inward flange portion 130Xb provided on the body portion 130X of the container 130. In the case of the fourth check valve 160D, the attached portion 170 corresponds to a portion in the vicinity where the first inward flange portion 130Xa provided on the body portion 130X of the container 130 is provided.
 被取付部170には、軸部材120及び逆止弁160の中心軸線側から径方向外側かつ水平方向に伸びる流路171が設けられている。この流路171は、円周状に一様に形成される。すなわち、流路171は中心軸線側から径方向外側に向かって、放射状に360°全ての方向に流体が流れ得るように構成されている。 The attached portion 170 is provided with a flow path 171 extending radially outward and horizontally from the central axis side of the shaft member 120 and the check valve 160. The flow path 171 is uniformly formed in a circumferential shape. That is, the flow path 171 is configured such that fluid can flow radially in all directions from 360 ° toward the radially outer side.
 また、被取付部170には、弁体161の移動方向を案内する案内面172が設けられている。この案内面172は円柱面で構成されている。また、弁体161の内周面と案内面172との間には微小な環状隙間Gが形成されている。つまり、弁体161は、案内面172に対して遊嵌されている。これにより、弁体161は、摺動抵抗を受けることなく、略鉛直方向に往復移動することができる。 Further, a guide surface 172 for guiding the moving direction of the valve body 161 is provided on the attached portion 170. The guide surface 172 is a cylindrical surface. A minute annular gap G is formed between the inner peripheral surface of the valve body 161 and the guide surface 172. That is, the valve body 161 is loosely fitted to the guide surface 172. Thereby, the valve body 161 can reciprocate in a substantially vertical direction without receiving sliding resistance.
 また、被取付部170には、案内面172の上部に、副弁体162が装着される環状溝173が設けられている。副弁体162は、その内周面が環状溝173の溝底面173aに対して摺動自在となるように環状溝173に装着されている。また、副弁体162は環状溝173の溝幅の範囲内において、鉛直方向に往復移動することができる。そして、弁体161が着座した状態において、環状溝173の溝側面のうち下側の溝側面173bと弁体161の上端面161c1は同じ高さとなるように設計されている。従って、逆止弁160によって弁が閉じられた状態においては、副弁体162は環状溝173の溝側面173bと弁体161の上端面161c1の双方に接した状態となり、環状隙間Gが閉じられる。 In addition, the mounted portion 170 is provided with an annular groove 173 on the upper surface of the guide surface 172 in which the sub-valve body 162 is mounted. The sub-valve body 162 is attached to the annular groove 173 so that the inner peripheral surface thereof is slidable with respect to the groove bottom surface 173 a of the annular groove 173. Further, the auxiliary valve body 162 can reciprocate in the vertical direction within the range of the groove width of the annular groove 173. In the state where the valve body 161 is seated, the lower groove side surface 173b and the upper end surface 161c1 of the valve body 161 are designed to have the same height among the groove side surfaces of the annular groove 173. Accordingly, when the valve is closed by the check valve 160, the sub-valve body 162 is in contact with both the groove side surface 173b of the annular groove 173 and the upper end surface 161c1 of the valve body 161, and the annular gap G is closed. .
 更に、被取付部170には、弁座174が設けられている。この弁座174は水平面により構成されている。弁体161が自重や流体圧力を受けて下方に移動すると、弁体161における拡径部161bの先端が弁座174に密着して弁が閉じられる。 Furthermore, a valve seat 174 is provided on the mounted portion 170. The valve seat 174 is constituted by a horizontal plane. When the valve body 161 moves downward due to its own weight or fluid pressure, the tip of the enlarged diameter portion 161b of the valve body 161 is brought into close contact with the valve seat 174 and the valve is closed.
 以上のように構成される弁構造の動作について説明する。逆止弁160を介して、流路の下流側よりも上流側の流体圧力の方が高くなり、これらの差圧が逆止弁160の重量を超えると、弁体161は上昇する。このとき、副弁体162も、弁体161により押圧され、かつ環状隙間Gからの流体圧力を受けることで上昇する。これにより、弁が開いた状態となる。このとき、被取付部170に設けられた流路171によって、軸部材120の中心軸線側から径方向外側かつ水平方向に流体が流れる(図5中矢印参照)。従って、弁体161は、軸部材120の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開くことになる。 The operation of the valve structure configured as described above will be described. The fluid pressure on the upstream side is higher than that on the downstream side of the flow path via the check valve 160, and when these differential pressures exceed the weight of the check valve 160, the valve body 161 rises. At this time, the sub-valve element 162 is also pressed by the valve element 161 and rises by receiving the fluid pressure from the annular gap G. As a result, the valve is opened. At this time, fluid flows radially outward from the central axis side of the shaft member 120 and horizontally in the flow path 171 provided in the attached portion 170 (see the arrow in FIG. 5). Accordingly, the valve body 161 rises while opening the valve while receiving the pressure of the fluid flowing radially outward and horizontally from the central axis side of the shaft member 120.
 そして、上記の差圧が逆止弁160の重量よりも低くなると、弁体161及び副弁体162は、自重や上方からの流体圧力を受けることで下降する。ここで、弁体161は摺動抵抗を受けない(或いは、摺動抵抗が小さい)のに対して、副弁体162は環状溝173の溝底面173aから摺動抵抗を受ける。そのため、最初に弁体161が弁座174に着座した後に、副弁体162が環状溝173の溝側面173bと弁体161の上端面161c1の双方に接した状態となる。図6は逆止弁160における弁が閉じる途中の状態を示しており、弁体161が弁座174に着座し、かつ副弁体162が下降途中の様子を示している。 When the differential pressure becomes lower than the weight of the check valve 160, the valve body 161 and the sub-valve body 162 are lowered by receiving their own weight or fluid pressure from above. Here, the valve body 161 does not receive sliding resistance (or has low sliding resistance), whereas the sub-valve body 162 receives sliding resistance from the groove bottom surface 173 a of the annular groove 173. Therefore, after the valve body 161 is first seated on the valve seat 174, the sub-valve body 162 comes into contact with both the groove side surface 173b of the annular groove 173 and the upper end surface 161c1 of the valve body 161. FIG. 6 shows a state in which the valve in the check valve 160 is in the middle of closing, and shows a state in which the valve body 161 is seated on the valve seat 174 and the sub-valve body 162 is in the middle of lowering.
 以上のように構成される弁構造によれば、弁体161による弁の開閉の応答性を高めることができる。この理由は、上述した特許文献1に開示されているように公知であるので、その詳細は説明するが、弁体161に作用する流体の運動量を低減できるためである。また、弁体161と副弁体162の2段階で弁を閉じる構成を採用しているため、弁を閉じた際の逆流による水撃を抑制することができる。これは、弁体161によって、逆流量が絞られた後に、副弁体162により弁が完全に閉じられるためである。 According to the valve structure configured as described above, the responsiveness of opening and closing of the valve by the valve body 161 can be enhanced. This is because it is known as disclosed in Patent Document 1 described above, and the details thereof will be described. However, the momentum of the fluid acting on the valve body 161 can be reduced. Moreover, since the structure which closes a valve in 2 steps | paragraphs of the valve body 161 and the subvalve body 162 is employ | adopted, the water hammer by the backflow at the time of closing a valve can be suppressed. This is because the valve is completely closed by the sub-valve 162 after the reverse flow rate is reduced by the valve 161.
 <本実施例に係る液体供給システムの優れた点>
 本実施例に係る液体供給システム10によれば、第1逆止弁160A及び第2逆止弁160Bは、容器130内に軸部材120と同軸上に配置されている。また、これら第1逆止弁160A及び第2逆止弁160Bは、いずれも、軸部材120の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開く円環状の弁体(第1弁体161A及び第2弁体161B)によって、弁を開閉するように構成されている。従って、容器に接続する管に逆止弁を設ける場合に比べて、配管(吸入管310及び送出管320)を含めた装置全体を大型化することなく、弁の開口面積を広くすることができる。これにより、装置(配管を含めた装置全体)を大型化することなく、キャビテーションの発生を抑制することができる。
<Excellent points of the liquid supply system according to this embodiment>
According to the liquid supply system 10 according to the present embodiment, the first check valve 160A and the second check valve 160B are disposed coaxially with the shaft member 120 in the container 130. Further, each of the first check valve 160A and the second check valve 160B is a circle that rises while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120 to open the valve. Annular valve bodies (first valve body 161A and second valve body 161B) are configured to open and close the valves. Therefore, compared with the case where a check valve is provided in the pipe connected to the container, the opening area of the valve can be increased without increasing the size of the entire apparatus including the pipes (the suction pipe 310 and the delivery pipe 320). . Thereby, generation | occurrence | production of a cavitation can be suppressed, without enlarging an apparatus (the whole apparatus including piping).
 また、第1弁体161A及び第2弁体161Bは、軸部材120の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開くように構成されている。従って、鉛直方向に流れる流体により弁を開閉する逆止弁(例えば、ポペット弁)に比べて、弁の開閉の応答性に優れる。 Also, the first valve body 161A and the second valve body 161B are configured to open and open the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member 120. Therefore, compared with a check valve (for example, a poppet valve) that opens and closes the valve by fluid flowing in the vertical direction, the valve opening and closing response is excellent.
 また、第1逆止弁160A及び第2逆止弁160Bは、いずれも、リニアアクチュエータ110とは軸部材120に対し反対側(下方側)に配置されている。これにより、第1逆止弁160A及び第2逆止弁160Bを、リニアアクチュエータ110に邪魔されることなく、簡単に組み立てることができる。また、第1逆止弁160A及び第2逆止弁160Bの配置スペースを広く確保し易く、これらの弁の開口面積を広くするのが容易である。 Further, both the first check valve 160A and the second check valve 160B are arranged on the opposite side (lower side) to the shaft member 120 with respect to the linear actuator 110. Accordingly, the first check valve 160A and the second check valve 160B can be easily assembled without being obstructed by the linear actuator 110. In addition, it is easy to secure a wide space for arranging the first check valve 160A and the second check valve 160B, and it is easy to increase the opening area of these valves.
 また、本実施例においては、第1弁体161Aにおける弁の開閉部の径と、第2弁体161Bにおける弁の開閉部の径は同一である。これにより、第1弁体161Aと第2弁体161Bの弁の開閉期間を簡単に同等にすることができる。これにより、第1ポンプ室P1による吐出能力と第2ポンプ室P2による吐出能力を簡単に同等にすることができる。従って、脈動をより効果的に抑制することができる。 Further, in the present embodiment, the diameter of the valve opening / closing portion in the first valve body 161A and the diameter of the valve opening / closing portion in the second valve body 161B are the same. Thereby, the opening / closing periods of the valves of the first valve body 161A and the second valve body 161B can be easily equalized. Thereby, the discharge capability by the 1st pump chamber P1 and the discharge capability by the 2nd pump chamber P2 can be made equivalent easily. Therefore, pulsation can be more effectively suppressed.
 (その他)
 本実施例においては、真空容器200の内部のうち、システム本体100,吸入管310及び送出管320の外側を真空状態にして断熱機能を備えさせる構成を採用している。また、本実施例においては、第1空間K1と第2空間K2と第3空間K3により形成される密閉空間を真空状態にして断熱機能を備えさせる構成を採用している。しかしながら、これらの空間にも超低温液体を流すことで、循環流路を流れる流体の温度を低温に維持させることも可能である。
(Other)
In the present embodiment, a configuration is adopted in which the outside of the system main body 100, the suction pipe 310, and the delivery pipe 320 is evacuated to provide a heat insulating function. Further, in this embodiment, a configuration is adopted in which the sealed space formed by the first space K1, the second space K2, and the third space K3 is evacuated to have a heat insulating function. However, it is also possible to maintain the temperature of the fluid flowing through the circulation flow path at a low temperature by flowing an ultra-low temperature liquid in these spaces.
 10 液体供給システム
 100 システム本体
 110 リニアアクチュエータ
 120 軸部材
 121 軸本体部
 122 円筒部
 122a 上端側外向きフランジ部
 122b 下端側外向きフランジ部
 123 連結部
 130 容器
 130a 開口部
 130b 吸入口
 130c 送出口
 130d 流路
 130e 流路
 130X 胴体部
 130Xa 第1内向きフランジ部
 130Xb 第2内向きフランジ部
 130Xc 第1流路
 130Xd 第2流路
 130Y 底板部
 141 第1ベローズ
 142 第2ベローズ
 151 第3ベローズ
 152 第4ベローズ
 160 逆止弁
 160A 第1逆止弁
 160B 第2逆止弁
 160C 第3逆止弁
 160D 第4逆止弁
 161 弁体
 161A 第1弁体
 161B 第2弁体
 161a,161Aa,161Ba 円筒部
 161b,161Ab,161Bb 拡径部
 161c,161Ac,161Bc 外向きフランジ部
 161c1 上端面
 162,162A,162B 副弁体
 170 被取付部
 171 流路
 172 案内面
 173 環状溝
 173a 溝底面
 173b 溝側面
 174 弁座
 200 真空容器
 310 吸入管
 320 送出管
 G 環状隙間
 P1 第1ポンプ室
 P2 第2ポンプ室
DESCRIPTION OF SYMBOLS 10 Liquid supply system 100 System main body 110 Linear actuator 120 Shaft member 121 Shaft main body part 122 Cylindrical part 122a Upper end side outward flange part 122b Lower end side outward flange part 123 Connection part 130 Container 130a Opening part 130b Inlet 130c Outlet 130d Flow Road 130e Flow path 130X Body part 130Xa First inward flange part 130Xb Second inward flange part 130Xc First flow path 130Xd Second flow path 130Y Bottom plate part 141 First bellows 142 Second bellows 151 Third bellows 152 Fourth bellows 160 check valve 160A first check valve 160B second check valve 160C third check valve 160D fourth check valve 161 valve body 161A first valve body 161B second valve body 161a, 161Aa, 161Ba cylindrical portion 161b, 61Ab, 161Bb Enlarged portion 161c, 161Ac, 161Bc Outward flange portion 161c1 Upper end surface 162, 162A, 162B Subvalve body 170 Mounted portion 171 Channel 172 Guide surface 173 Annular groove 173a Groove bottom surface 173b Groove side surface 174 Valve seat 174 Container 310 Suction pipe 320 Delivery pipe G Annular gap P1 First pump chamber P2 Second pump chamber

Claims (5)

  1.  内部にポンプ室が備えられ、かつ流体の吸入口及び送出口が設けられている容器と、
     前記容器内において、鉛直方向に往復移動する軸部材と、
     前記容器内において、鉛直方向に並べて配置され、かつ前記軸部材の往復移動に伴って伸縮する第1ベローズ及び第2ベローズと、
     前記第1ベローズの外周面を囲む空間により形成される第1ポンプ室と、
     前記第2ベローズの外周面を囲む空間により形成される第2ポンプ室と、
     前記第1ポンプ室を通る流路上に設けられ、流体の逆流を止める第1逆止弁と、
     前記第2ポンプ室を通る流路上に設けられ、流体の逆流を止める第2逆止弁と、
    を備える液体供給システムであって、
     前記第1逆止弁及び前記第2逆止弁は、いずれも、前記容器に設けられ、前記軸部材を駆動するアクチュエータとは前記軸部材に対し反対側に配置されていることを特徴とする液体供給システム。
    A container provided with a pump chamber therein and provided with a fluid inlet and outlet;
    A shaft member that reciprocates in the vertical direction in the container;
    In the container, the first bellows and the second bellows that are arranged side by side in the vertical direction and expand and contract as the shaft member reciprocates,
    A first pump chamber formed by a space surrounding an outer peripheral surface of the first bellows;
    A second pump chamber formed by a space surrounding the outer peripheral surface of the second bellows;
    A first check valve which is provided on a flow path passing through the first pump chamber and stops a back flow of fluid;
    A second check valve which is provided on a flow path passing through the second pump chamber and stops a back flow of fluid;
    A liquid supply system comprising:
    The first check valve and the second check valve are both provided in the container, and are arranged on the opposite side to the shaft member with respect to the actuator that drives the shaft member. Liquid supply system.
  2.  前記第1逆止弁は、前記軸部材の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開く円環状の第1弁体を備え、
     前記第2逆止弁は、前記軸部材の中心軸線側から径方向外側かつ水平方向に流れる流体の圧力を受けながら上昇して弁を開く円環状の第2弁体を備えていることを特徴とする請求項1に記載の液体供給システム。
    The first check valve includes an annular first valve body that opens while opening the valve while receiving the pressure of fluid flowing radially outward and horizontally from the central axis side of the shaft member,
    The second check valve includes an annular second valve body that rises while receiving the pressure of a fluid flowing radially outward and horizontally from the central axis side of the shaft member to open the valve. The liquid supply system according to claim 1.
  3.  前記第1逆止弁及び前記第2逆止弁は、いずれも、前記容器内に前記軸部材と同軸上に配置されていることを特徴とする請求項1または2に記載の液体供給システム。 3. The liquid supply system according to claim 1, wherein the first check valve and the second check valve are both arranged coaxially with the shaft member in the container.
  4.  前記第1弁体における弁の開閉部の径と、前記第2弁体における弁の開閉部の径は同一であることを特徴とする請求項1,2または3に記載の液体供給システム。 4. The liquid supply system according to claim 1, wherein the diameter of the valve opening / closing portion of the first valve body is the same as the diameter of the valve opening / closing portion of the second valve body.
  5.  前記流体が超低温流体であり、前記容器と前記ポンプ室との間は真空状態であり、前記アクチュエータが大気中に配置される請求項1ないし請求項4のいずれかに記載の液体供給システム。 The liquid supply system according to any one of claims 1 to 4, wherein the fluid is a cryogenic fluid, a vacuum state is formed between the container and the pump chamber, and the actuator is disposed in the atmosphere.
PCT/JP2018/003648 2017-02-03 2018-02-02 Liquid supply system WO2018143426A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197021570A KR20190098226A (en) 2017-02-03 2018-02-02 Liquid supply system
US16/482,642 US20200011322A1 (en) 2017-02-03 2018-02-02 Liquid supply system
CN201880006941.2A CN110177943A (en) 2017-02-03 2018-02-02 Liquid-supplying system
EP18747632.0A EP3578819A1 (en) 2017-02-03 2018-02-02 Liquid supply system
JP2018566138A JPWO2018143426A1 (en) 2017-02-03 2018-02-02 Liquid supply system
RU2019122418A RU2019122418A (en) 2017-02-03 2018-02-02 LIQUID SUPPLY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019050 2017-02-03
JP2017-019050 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143426A1 true WO2018143426A1 (en) 2018-08-09

Family

ID=63041204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003648 WO2018143426A1 (en) 2017-02-03 2018-02-02 Liquid supply system

Country Status (7)

Country Link
US (1) US20200011322A1 (en)
EP (1) EP3578819A1 (en)
JP (1) JPWO2018143426A1 (en)
KR (1) KR20190098226A (en)
CN (1) CN110177943A (en)
RU (1) RU2019122418A (en)
WO (1) WO2018143426A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890172B2 (en) * 2018-06-18 2021-01-12 White Knight Fluid Handling Inc. Fluid pumps and related systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128578A (en) 1990-09-19 1992-04-30 Toyo Eng Corp Vacuum pump
US5558506A (en) * 1994-03-03 1996-09-24 Simmons; John M. Pneumatically shifted reciprocating pump
WO2015050091A1 (en) 2013-10-02 2015-04-09 イーグル工業株式会社 Check valve
WO2016006648A1 (en) * 2014-07-10 2016-01-14 イーグル工業株式会社 Liquid supply system
JP2016037912A (en) 2014-08-08 2016-03-22 日本ピラー工業株式会社 Bellows pump device
JP2016109022A (en) * 2014-12-05 2016-06-20 日本ピラー工業株式会社 Bellows pump device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097385U (en) * 1983-12-08 1985-07-03 イーグル工業株式会社 bellows pump
JP4547451B2 (en) * 2007-11-22 2010-09-22 シグマテクノロジー有限会社 Bellows pump and operation method of bellows pump
JP4982515B2 (en) * 2009-02-24 2012-07-25 日本ピラー工業株式会社 Bellows pump
JP5720888B2 (en) * 2011-03-30 2015-05-20 株式会社イワキ Bellows pump
EP3056779B1 (en) * 2015-02-11 2019-04-17 HUSCO Automotive Holdings LLC Control valve with annular poppet check valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128578A (en) 1990-09-19 1992-04-30 Toyo Eng Corp Vacuum pump
US5558506A (en) * 1994-03-03 1996-09-24 Simmons; John M. Pneumatically shifted reciprocating pump
WO2015050091A1 (en) 2013-10-02 2015-04-09 イーグル工業株式会社 Check valve
WO2016006648A1 (en) * 2014-07-10 2016-01-14 イーグル工業株式会社 Liquid supply system
JP2016037912A (en) 2014-08-08 2016-03-22 日本ピラー工業株式会社 Bellows pump device
JP2016109022A (en) * 2014-12-05 2016-06-20 日本ピラー工業株式会社 Bellows pump device

Also Published As

Publication number Publication date
JPWO2018143426A1 (en) 2019-11-21
KR20190098226A (en) 2019-08-21
CN110177943A (en) 2019-08-27
EP3578819A1 (en) 2019-12-11
US20200011322A1 (en) 2020-01-09
RU2019122418A3 (en) 2021-03-03
RU2019122418A (en) 2021-03-03

Similar Documents

Publication Publication Date Title
US9341399B2 (en) Electronic expansion valve
KR101750189B1 (en) Check valve
JP5627612B2 (en) Expansion valve
US10738901B1 (en) Check valve
WO2018143426A1 (en) Liquid supply system
JP2018159447A (en) Motor valve and refrigeration cycle system using the same
JP5275947B2 (en) Four-way selector valve
JPWO2018143419A1 (en) Liquid supply system
JP6754370B2 (en) Suction acoustic filter for compressor
US20230103431A1 (en) Vortex ring generation device
WO2020179564A1 (en) Liquid supply system
JP6832266B2 (en) Sliding switching valve and refrigeration cycle system
US10641260B2 (en) Pump/compressor valve seat
WO2018143417A1 (en) Liquid supply system
KR100928419B1 (en) Globe valve with straight flow path
KR102229557B1 (en) Compressor
WO2018143420A1 (en) Liquid supply system
WO2018143421A1 (en) Liquid supply system
JP2021050780A (en) Annular valve and working fluid machine
WO2018143422A1 (en) Liquid supply system
US20200003196A1 (en) Heat insulation structure and liquid supply system
JP2023042281A (en) Flow passage switching valve and valve device
JP2021014853A (en) Check valve
JP2020041758A (en) Expansion valve
JP2018168924A (en) Switching valve and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566138

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021570

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747632

Country of ref document: EP

Effective date: 20190903