WO2018143355A1 - Analysis device - Google Patents

Analysis device Download PDF

Info

Publication number
WO2018143355A1
WO2018143355A1 PCT/JP2018/003437 JP2018003437W WO2018143355A1 WO 2018143355 A1 WO2018143355 A1 WO 2018143355A1 JP 2018003437 W JP2018003437 W JP 2018003437W WO 2018143355 A1 WO2018143355 A1 WO 2018143355A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electromagnetic wave
generated
plasma generator
analysis object
Prior art date
Application number
PCT/JP2018/003437
Other languages
French (fr)
Japanese (ja)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2018566089A priority Critical patent/JPWO2018143355A1/en
Publication of WO2018143355A1 publication Critical patent/WO2018143355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/68Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields

Definitions

  • the present invention relates to an analyzer for spectroscopically analyzing an object to be analyzed by analyzing light emitted from plasma.
  • the inventors of the present invention are configured by using a plasma generation apparatus that can realize high-intensity and large-volume laser light-induced plasma under atmospheric pressure by easy control using low-power laser light. Has been proposed (see Patent Document 1).
  • This plasma generation apparatus includes a light source that emits laser light, a condensing optical system that condenses the laser light emitted from the light source, an electromagnetic wave oscillator that oscillates electromagnetic waves, and a substance that exists at a position where the laser light is collected.
  • a plasma generation device having an antenna that radiates an electromagnetic wave toward the plasma generated by laser light irradiation, a control device that controls the electromagnetic wave oscillator, and a measurement unit that measures the light emitted from the plasma, The control device controls the laser beam and the electromagnetic wave synchronously to control the irradiation timing of the laser beam and the emission timing of the electromagnetic wave, and the microwave emission time so that the generated plasma does not disappear in a short time.
  • the plasma maintenance time is controlled, and the measurement means is a measurement system of laser induced breakdown spectroscopy (LIBS).
  • LIBS laser induced breakdown spectroscopy
  • Electromagnetic wave (microwave) energy is superimposed on plasma generated by spark-induced breakdown spectroscopy (SIBS) that uses breakdown by spark discharge instead of laser for initial plasma generation (supplying energy above the breakdown threshold)
  • SIBS spark-induced breakdown spectroscopy
  • the present inventors have proposed a device that radiates electromagnetic waves from a radiation antenna in a continuous wave during the plasma maintenance period of plasma generated by a plasma generator and spectrally analyzes a sample that is continuously transported by a transport device. (See Patent Document 5).
  • the aluminum selection methods disclosed in Patent Documents 3 to 4 have a problem that the cost of the entire apparatus increases due to the use of X-rays.
  • the analysis apparatus described in Patent Document 5 has a problem that it is difficult to analyze an analysis object having a variation in the height direction from above.
  • the present invention has been made in view of such a point, and an object of the present invention is to enable spectroscopic analysis even for an analysis object having variations in the height direction, and to reduce the cost of the entire apparatus. It is to provide an analyzer that can.
  • the analysis device of the present invention made to solve the above problems is as follows.
  • a plasma generator for bringing a part of the analysis object into a plasma state;
  • An optical analyzer for analyzing plasma light of an analysis object emitted from the plasma generated by the plasma generator;
  • the analysis object is transported so as to come into contact with plasma generated by a plasma generator by a transport machine,
  • the plasma generator includes an electromagnetic wave irradiator that irradiates the generated plasma with electromagnetic waves,
  • the carrier forms a plasma contact portion in which the lower surface or the side surface of the analysis object comes into contact with the plasma generated by the plasma generator.
  • the analysis device of the present invention can reliably perform spectroscopic analysis even for an analysis object that varies in the height direction by contacting the plasma generated by the plasma generator from below or from the side of the analysis object. it can. Further, by irradiating the generated plasma with electromagnetic waves, the plasma is maintained and the volume thereof is expanded, so that a part of the analysis object is reliably converted into plasma.
  • the plasma generator includes a discharger that causes a dielectric breakdown by causing a potential difference between the electrodes; An electromagnetic wave irradiator that irradiates the plasma generated by the discharger with an electromagnetic wave; A control mechanism for controlling the discharger and the electromagnetic wave irradiator, The control mechanism can be configured to control the oscillation pattern of the electromagnetic wave from the electromagnetic wave irradiator so as to maintain the plasma generated by the dielectric breakdown by the discharger.
  • the discharger includes a discharge electrode and a ground electrode, and generates a spark discharge by generating a spark discharge between the discharge electrode and the ground electrode or the analyte,
  • the plasma region is expanded by irradiating an electromagnetic wave at the moment when the plasma is present and causing the plasma to absorb the electromagnetic wave energy.
  • the analyzer of the present invention can perform spectroscopic analysis regardless of the size of the analysis object, and in order to sort out high-grade aluminum alloys and other aluminum alloys from the waste aluminum material, the aluminum alloys are classified by alloy system. It is possible to discriminate and to reduce the cost of the entire apparatus without using an expensive X-ray apparatus.
  • FIGS. 4A and 4B show another embodiment of the same electromagnetic discharge type plasma generator, where FIG. 5A is a front view, FIG. 5B is a cross-sectional view taken along the line AA in FIG. FIG.
  • the first embodiment is an analyzer 1 according to the present invention.
  • the analysis apparatus 1 includes a plasma generator 3 that brings a part of an analysis object into a plasma state, and plasma light of the analysis object that is emitted from the plasma generated by the plasma generator 3.
  • An optical analyzer 2 for analysis is provided, and the analysis target is sequentially brought into contact with the plasma PB generated by the plasma generator 3 by the carrier 4 and is carried so that a part thereof is in a plasma state.
  • the plasma generator 3 includes an electromagnetic wave irradiator that irradiates the generated plasma with an electromagnetic wave
  • the carrier 4 includes a plasma contact portion S in which a lower part or a side surface of the analysis object comes into contact with the plasma generated by the plasma generator 3.
  • the plasma contact portion S can be configured, for example, by using two conveyor belts and forming a gap between them when the transporter 4 is a belt conveyor. In the case of a roller conveyor, a space between rollers can be used. Details of the plasma contact portion between the rollers will be described later.
  • the conveyor 4 employs a belt conveyor.
  • the plasma generator 3 includes a discharger that causes a dielectric breakdown by causing a potential difference between electrodes, an electromagnetic wave irradiator that irradiates an electromagnetic wave to plasma generated by the discharger, and a control that controls the discharger and the electromagnetic wave irradiator.
  • Mechanism. By irradiating the plasma generated by dielectric breakdown with electromagnetic waves (for example, 2.45 GHz microwaves), the generated plasma is maintained and expanded, and the lower surface or side surface of the analysis object sent by the carrier 4 is A plasma state can be reliably obtained.
  • Spark plugs can be employed as a discharger that causes dielectric breakdown in the plasma generator 3.
  • an electromagnetic wave discharge type plasma generator hereinafter referred to as MDI (Microwave Discharge Igniter)
  • MDI Microwave Discharge Igniter
  • the MDI 3A includes an input unit 52 that receives an electromagnetic wave oscillated from an electromagnetic wave oscillator, a booster 5 that boosts the input electromagnetic wave, a discharge electrode 55a that forms a discharge gap 6, and a ground electrode. 51a, and the voltage boosting means 5 increases the potential difference of the discharge gap 6 to cause discharge.
  • the discharge electrode 55a is formed at the tip of the electrode shaft portion 55b extending from the bottomed cylindrical portion 54 through which the input shaft portion 53 extending from the input portion 52 is inserted to the side opposite to the input portion.
  • An input shaft portion 53 extending from the input portion 52 is insulated from the cylindrical portion 54.
  • a cylindrical insulator 59 is interposed between the inner peripheral surface of the cylindrical portion 54.
  • cylindrical portion 54 and the electrode shaft portion 55 b are also electrically insulated from the inner peripheral surface of the front end side casing 51 ⁇ / b> A of the casing 51.
  • the cylindrical portion 54 and the electrode shaft portion 55 b are enclosed in a cylindrical insulator 59.
  • An equivalent circuit C2 described later is formed between the outer peripheral surface of the cylindrical portion 54 and the inner peripheral surface of the casing 51A covering the cylindrical portion 54, and between the electrode shaft portion 55b and the inner peripheral surface of the casing 51A.
  • An equivalent circuit capacitor C3 is formed. The resonance frequency is adjusted by the dielectric constant that varies depending on the type of the insulator 59.
  • C1 mentioned above can also be abbreviate
  • the casing 51B on the rear end side of the casing 51 has a through hole.
  • An input portion 52 that receives supply of electromagnetic waves from the electromagnetic wave oscillator MW is formed at one end of the casing 51B, and an input shaft portion 53 that extends from the input portion 52 is formed at the other end.
  • a protruding cylindrical insulator 59 is disposed, and a discharge electrode 55a, a cylindrical portion 54, an electrode shaft portion 55b, and a casing 51A including the insulator 59 covering these are incorporated.
  • the method of incorporating the input portion 52, the input shaft portion 53, and the casing 51A of the insulator 59 covering them is not particularly limited, but in the present embodiment, it corresponds to the outer peripheral surface of the insulator 59 and the through hole of the casing 51B.
  • the step is inserted from the left side of the figure to engage the insulator with the step to prevent falling off to the right side, and the casing 51A is inserted from the left side to cover the input portion 52, the input shaft portion 53 and these. The falling of the insulator 59 to the left side is also prevented.
  • the fixing is performed by screwing the male screw portion engraved on the outer peripheral surface of the casing 51A into the female screw portion engraved in the through hole. To do.
  • the casing 51A can be securely fixed to the casing 51B using a fixing means such as welding, or can be fixed using a fixing means such as welding without forming a threaded portion. it can.
  • the ground electrode 51a is formed at the tip of a cylindrical casing 51A that covers the discharge electrode 55a, and forms a discharge gap 6 between the inner surface of the ground electrode 51a and the outer surface of the discharge electrode 55a.
  • the boosting means 5 is composed of an equivalent circuit shown in FIG.
  • the boosting means 5 uses the electrode shaft portion 55b as a coil L, forms a resonance structure at three locations between the capacitors C1, C2 and C3 described above, and boosts the supplied electromagnetic waves.
  • the first resonance region by the capacitor C2 formed between the outer peripheral surface of the cylindrical portion 54 and the inner peripheral surface of the casing 51 that covers the cylindrical portion 54, and the casing 51 that covers the electrode shaft portion 55b and the electrode shaft portion 55b.
  • the potential difference between the discharge electrode 55a and the ground electrode 51a is increased to several tens of kV to cause discharge. Yes.
  • it can also be set as the structure which does not form C1 of an equivalent circuit by electrically connecting the input shaft part 53 and the cylindrical part 54, and not carrying out capacitive coupling.
  • the electromagnetic wave oscillator MW is always supplied with a predetermined voltage, for example, 12V from the electromagnetic wave power source P. Then, an electromagnetic wave (for example, 2.45 GHz microwave) is output from the control device 4 as a pulse wave of an oscillation pattern in which an electromagnetic wave oscillation signal is set with a predetermined duty ratio, pulse time, and the like.
  • a predetermined voltage for example, 12V
  • an electromagnetic wave for example, 2.45 GHz microwave
  • the MDI can adopt the configuration of the equivalent circuit shown in FIG.
  • the MDI has a hollow cylindrical case 30 and an input portion 33 which is substantially coaxial with the case 30 and connected to one end of the electromagnetic wave oscillator MW and connected to the other end.
  • a center electrode 31 that forms an antenna portion 31 a that radiates electromagnetic waves supplied from the input portion 33, and a shield pipe 33 that covers a shaft portion 31 b having a smaller diameter than the antenna portion 31 a that connects the antenna portion 31 a of the center electrode 31 and the input portion 33.
  • a resonance electrode 32 including a discharge part 32a covering the antenna part 31a and a cylindrical resonance part 32b covering the shield pipe 33.
  • the electromagnetic wave supplied from the resonance unit Re is boosted to increase the potential difference between the discharge unit 32a and the ground electrode 30a formed at the tip of the case 30, and the primary plasma SP1 is generated.
  • the process until the primary plasma SP1 is generated is the same as that of the MDI described above.
  • the discharge part 32a which covers the antenna part 31a which comprises the resonance electrode 32 may be a cylindrical part, as shown in FIG.4 (d), it is comprised so that it may become a semicircle shape. And the discharge part 32a and the resonance part 32b are connected by the connection part 32c which notched leaving the circular arc part of about 15 thru
  • the resonance electrode 32 is manufactured by cutting out a thin cylindrical metal material.
  • the ground electrode 30a formed at the tip of the case 30 is preferably formed with a plurality of notches (slits) as shown in FIGS. 4B to 4C. Can grow greatly.
  • the shield pipe 33 is a shield for preventing the electromagnetic wave supplied from the shaft portion 31b to the resonance portion 32b from being capacitively coupled, and is electrically insulated from the center electrode 31 and the resonance electrode 32.
  • One end of the shield pipe 33 is formed integrally with the input portion 33 and is fixed to the anti-ground electrode side of the case 30.
  • a ceramic pipe, ceramic powder, or the like may be filled as an insulator between the inner peripheral surface of the shield pipe 33 and the outer peripheral surface of the center electrode 31 for insulation.
  • the insulating pipe is provided with a step on the inner peripheral surface of the case 30 so that the resonance electrode 32 can be positioned. It is preferable to arrange the insulating pipe 34 along the shape of the gap between the outer peripheral surface of the shield pipe 33 and the inner peripheral surface of the resonance part 32b.
  • an electromagnetic wave (2.45 GHz microwave in this embodiment) supplied from the external electromagnetic wave oscillator MW is transmitted from the antenna portion 31a of the center electrode 31 to the resonance portion 32b of the resonance electrode 32 via the discharge portion 32a.
  • the voltage is boosted by the resonance portion Re formed between the outer peripheral surface and the inner peripheral surface of the case 30, and the potential difference between the discharge portion 32a of the resonance electrode 32 and the ground electrode 30a is increased.
  • primary plasma SP is generated between the discharge part 32a and the ground electrode 30a.
  • the antenna unit 31a and the discharge unit 32a form a capacitor that is capacitively coupled.
  • the primary plasma SP When the primary plasma SP is generated, impedance mismatch occurs, but the electromagnetic wave passing through the center electrode 31 not passing through the resonance part Re is supplied from the antenna part 31a to the primary plasma SP1, and the primary plasma SP is generated.
  • the plasma ball PB is maintained and enlarged.
  • the plasma ball PB generated in the present embodiment first generates a spark discharge between the discharge electrode 31a and the ground electrode 30a of the discharge part, and irradiates the electromagnetic wave at the moment when the primary plasma SP is present.
  • the plasma SP is generated as a result of expanding the plasma region by absorbing electromagnetic wave energy.
  • the plasma is maintained in a spherical shape like a flame under zero gravity.
  • the spark discharge may be generated between the discharge electrode and the analysis object without being generated between the discharge electrode and the ground electrode.
  • the plasma ball PB is formed in a spherical shape like a flame under zero gravity by balancing the plasma pressure and the pressure of the surrounding gas.
  • the plasma pressure is proportional to the electromagnetic wave (microwave) power input for plasma generation.
  • the plasma size depends on parameters such as spark discharge energy, gap between electrodes, electromagnetic wave supply pattern (power, pulse pattern, frequency, etc.), electrode shape, pressure, and atmospheric gas type.
  • spark discharge energy is 30 mJ
  • gap between electrodes is 5 mm
  • power as an electromagnetic wave supply pattern is 50 W
  • pulse pattern is continuous wave
  • the frequency is 2.45 GHz
  • the electrode shape is rod-to-rod
  • the pressure is atmospheric pressure
  • the atmospheric gas species is air.
  • spectroscopic analysis can be performed regardless of the size of the analyte, and in order to select high-grade aluminum alloys and other aluminum alloys from aluminum waste Aluminum alloys can be discriminated by alloy system, and the overall cost of the apparatus can be reduced without using an expensive X-ray apparatus.
  • the plasma generator 3 can use a mixer type plasma generator 300 that mixes the energy of the pulse voltage and the electromagnetic wave energy in the same transmission line.
  • the mixer-type plasma generator 300 includes a first input terminal 310 to which an electromagnetic wave is input, a second input terminal 315 to which a pulse voltage is input, and a mixture from which the pulse voltage and the electromagnetic wave are output.
  • the first conductive member 320 and the second conductive member 321 are accommodated at a distance from the second conductive member 321, and are disposed coaxially with the first conductive member 320 and the second conductive member 321. Outside Respectively the body 310b and the mixed output terminal 340 and a third conductive member 330.
  • the electromagnetic wave supplied from the first input terminal 310 is directed to the gap (filled with an insulator in the illustrated example) between the second conductive member 321 and the first conductive member 320.
  • the second conductive member 321 and the first conductive member 320 are joined by capacitive coupling by configuring as a resonator parallel to the core (longitudinal direction) and performing impedance matching. Accordingly, the electromagnetic wave is supplied to the plasma generated through the first conductive member 320 through which the pulse voltage flows.
  • a leakage preventing means 322 (choke structure in the illustrated example) for preventing electromagnetic waves from leaking to the second input terminal 315 side is disposed. ing.
  • the electromagnetic wave (microwave) supplied from the first input terminal 310 is supplied from the first input terminal 310 to the initial plasma SP via the second conductive member 321 and the first conductive member 320 that are capacitively coupled. Then, the plasma state is maintained, and a part of the analysis object sent in the plasma ball PB state is turned into plasma.
  • the tip of the first conductive member 320 and the inner conductor 340a serving as the ground electrode are connected.
  • the front end portion of the inner conductor 340a is expanded so that the gap is more than the insulation distance, thereby analyzing the first conductive member 320 serving as the discharge electrode with the analysis target as the ground electrode.
  • optical analyzer 2 that analyzes the plasma light analyzes the plasma light emitted from the part of the analysis object that is in contact with the plasma ball PB in which the initial plasma SP is expanded by the irradiation of the electromagnetic wave (microwave).
  • optical analysis means for analyzing the analysis object is configured.
  • the optical analyzer 2 analyzes the analysis object using the time integration value of the emission intensity of the plasma light in the analysis period in the plasma maintenance period.
  • the optical analyzer 2 includes an optical probe 20, an optical fiber 21, a spectrometer 22, a photodetector 23, and a signal processor 24.
  • the optical probe 20 is a device for deriving plasma light emitted from a plasma state.
  • a lens capable of capturing a relatively wide range of light is attached to the tip of a cylindrical casing.
  • the optical probe is arranged at a close position so that plasma light emitted from the entire plasma ball PB as a plasma region can be introduced into the lens, or plasma light is introduced through a mirror as shown in the figure. Is attached.
  • the spectroscope 22 is connected to the optical probe 20 via the optical fiber 21.
  • the spectroscope 22 takes in the plasma light incident on the optical probe 20.
  • the spectroscope 22 uses a diffraction grating or a prism to disperse the incident plasma light in different directions depending on the wavelength.
  • a shutter is provided at the entrance of the spectroscope 22 to divide the analysis period for analyzing the plasma light.
  • the shutter is switched by the control device between an open state that allows light to enter the spectrometer and a closed state that prohibits light from entering the spectrometer. If the exposure timing of the photodetector can be controlled, the analysis period may be divided by controlling the photodetector.
  • the photodetector 23 is disposed so as to receive light in a predetermined wavelength band among the light dispersed by the spectroscope 22. In response to the command signal output from the control device 24, the photodetector 23 photoelectrically converts the received light in the wavelength band into an electrical signal for each wavelength and outputs the electrical signal.
  • a charge coupled device is used for the photodetector 23, for example.
  • the electrical signal output from the photodetector is input to the signal processing device.
  • the signal processor 24 calculates the time integrated value of the emission intensity for each wavelength based on the electrical signal output from the photodetector 23.
  • the signal processor 24 calculates a time integration value (emission spectrum) of the emission intensity for each wavelength with respect to the plasma light incident on the spectrometer 22 during the analysis period in which the shutter is in the open state.
  • the signal processor 24 detects a wavelength component having a strong emission intensity from the time integrated value of the emission intensity for each wavelength, and identifies a substance corresponding to the detected wavelength component as a component of the analysis target.
  • the analysis apparatus 1 of the present embodiment brings the plasma ball PB generated by the plasma generator 3 into contact with the object to be analyzed using the gap provided between the two belts as a plasma contact portion. As a result, a part of the analysis object is converted into plasma, identified as a component of the analysis object by the optical analyzer, and the component of the analysis object sent by the carrier 4 is analyzed.
  • the object to be analyzed is waste aluminum, it is possible to sort the aluminum alloy derived from the wrought material and the aluminum alloy derived from the cast material according to the alloy system.
  • the conveyor belt as the conveyor 4 is provided with a side wall, and a notch or a hole formed in the other side wall is provided by arranging a pressing means for pressing the analyte from one side wall side to the other side wall side. It can also be used as a plasma contact portion.
  • the aluminum waste material which is an analysis object whose components have been analyzed by the optical analyzer 2, is sorted according to the difference in its components.
  • the sorter is not particularly limited.
  • a sorter that uses a gate-type sorter with a gate at the end of the transporter or that changes the drop location by blowing high-pressure air when falling from the end is used. Or adopt a machine.
  • the analyzer of this embodiment has the same configuration except that the configuration of the transport device 4 is different from that of the first embodiment, and a description thereof will be omitted.
  • the transporter 4 uses two conveyor belts to make plasma contact between the terminal end of the first conveyor 4A and the start end of the second conveyor 4B. It is used as a department.
  • a roller conveyor in which a plurality of rollers rolling in the same direction are arranged in parallel can also be employed.
  • the analysis object needs to have a sufficient size compared to the roller diameter in order to prevent the analysis object from falling during the conveyance.
  • the transporter 4 is provided with a small-diameter stretching roller 41A so that the belt portion extends from the upper part of the rotating roller 40A at the end of the first conveyor 4A toward the start end of the second conveyor 4B, and the second conveyor 4B.
  • a small-diameter stretching roller 41B is arranged so that the belt portion extends toward the end of the first conveyor 4A also from the upper part of the rotation roller 40B at the starting end.
  • the plasma contact portion S is defined between the end edge of the first conveyor 4A and the start edge of the second conveyor 4B, and the plasma generator 3 and the optical analyzer 2 are disposed below the analysis object.
  • a plurality of plasma generators 3 and optical analyzers 2 can be arranged in a direction perpendicular to the transport direction of the transport machine 4. By comprising in this way, it can discriminate
  • Such a plurality of arrangements is realized because the single system is inexpensive and the plasma size is large.
  • by adopting such a multiple arrangement configuration it is possible to simultaneously perform spectroscopic analysis, detection of the passage of an analysis object, and position detection in a direction orthogonal to the conveyance.
  • the time and position information obtained by the passage detection and the position detection together with the spectroscopic analysis result is suitably used for, for example, a sorting apparatus that selectively discriminates the same kind of waste materials having different components such as aluminum waste materials.
  • the analysis apparatus of the present invention can perform spectroscopic analysis by reliably converting a part of an analysis object having a different size to be transported using a transport machine. It is suitably used for the application of a sorting device that selectively discriminates the same kind of waste materials having different components such as aluminum waste materials.

Abstract

This analysis device is provided with a plasma generator 3 which brings part of an analyte to a plasma state, and an optical analyzer 2 which analyzes the plasma light of the analyte emitted from the plasma generated by the plasma generator 3, wherein, by means of a conveyance device 4, the analyte contacts the plasma PB generated by the plasma generator 3 in order, and the analyte is conveyed such that a portion thereof is brought to a plasma state. The plasma generator 3 is provided with an electromagnetic wave irradiator which irradiates electromagnetic waves onto the generated plasma, and the conveyance device 4 forms a plasma contact area S where the bottom or side of the analyte contacts the plasma generated by the plasma generator 3.

Description

分析装置Analysis equipment
 本発明は、プラズマから発せられる光を分析することにより分析対象物を分光分析する分析装置に関する。 The present invention relates to an analyzer for spectroscopically analyzing an object to be analyzed by analyzing light emitted from plasma.
 本発明者等は、大気圧下において、高強度、かつ、大体積のレーザ光誘起プラズマを、低出力のレーザ光を用いて容易な制御により実現できるようなされたプラズマ生成装置を用いて構成される計測装置を提案している(特許文献1参照)。 The inventors of the present invention are configured by using a plasma generation apparatus that can realize high-intensity and large-volume laser light-induced plasma under atmospheric pressure by easy control using low-power laser light. Has been proposed (see Patent Document 1).
 このプラズマ生成装置は、レーザ光を発する光源と、光源から発せられたレーザ光を集光する集光光学系と、電磁波を発振する電磁波発振器と、レーザ光が集光される位置に存在する物質によりレーザ光の照射により生成されたプラズマに向けて電磁波を放射するアンテナと、電磁波発振器を制御する制御装置とを有するプラズマ生成装置と、プラズマから発せられた光を計測する計測手段とを備え、制御装置は、レーザ光と電磁波とを同期的に制御して、レーザ光の照射タイミングと電磁波の放射タイミングとを制御するとともに、生成されたプラズマが短時間で消滅しないようにマイクロ波の放射時間を制御することによりプラズマの維持時間を制御し、計測手段は、レーザ誘起ブレイクダウン分光法(LIBS)の計測系であり、プラズマから発せられた光を分光する分光器と、分光器により分光された光を受ける光センサとを有し、光センサが出力する電気信号に基づいて演算処理を行うように構成されている。 This plasma generation apparatus includes a light source that emits laser light, a condensing optical system that condenses the laser light emitted from the light source, an electromagnetic wave oscillator that oscillates electromagnetic waves, and a substance that exists at a position where the laser light is collected. A plasma generation device having an antenna that radiates an electromagnetic wave toward the plasma generated by laser light irradiation, a control device that controls the electromagnetic wave oscillator, and a measurement unit that measures the light emitted from the plasma, The control device controls the laser beam and the electromagnetic wave synchronously to control the irradiation timing of the laser beam and the emission timing of the electromagnetic wave, and the microwave emission time so that the generated plasma does not disappear in a short time. By controlling the plasma, the plasma maintenance time is controlled, and the measurement means is a measurement system of laser induced breakdown spectroscopy (LIBS). A spectroscope for dispersing the light emitted from Zuma, and an optical sensor for receiving the light dispersed by the spectroscope, and is configured to perform arithmetic processing based on an electric signal the optical sensor outputs.
 また、初期プラズマの生成(ブレイクダウン閾値以上のエネルギを供給)にレーザではなく火花放電によるブレイクダウンを利用するスパーク誘起ブレイクダウン分光法(SIBS)で生成したプラズマに電磁波(マイクロ波)エネルギを重畳し、プラズマを維持拡大する技術も提案している(特許文献2参照)。 Electromagnetic wave (microwave) energy is superimposed on plasma generated by spark-induced breakdown spectroscopy (SIBS) that uses breakdown by spark discharge instead of laser for initial plasma generation (supplying energy above the breakdown threshold) In addition, a technique for maintaining and expanding plasma has also been proposed (see Patent Document 2).
 また、アルミニウム廃材から、高品位なアルミニウム合金とその他のアルミニウム合金とを選別するために合金系別にアルミニウム合金を判別する方法として、校正用試料とエネルギの異なる2つのX線に係る単位面積毎の透過X線強度を、搬送手段によって送られてくる試料にX線を当てることで測定する方法が提案されている(特許文献3~4)。 In addition, as a method for discriminating aluminum alloys by alloy system in order to select high-grade aluminum alloys and other aluminum alloys from the waste aluminum, a calibration sample and a unit area related to two X-rays having different energies are used. Methods have been proposed for measuring transmitted X-ray intensity by applying X-rays to a sample sent by a conveying means (Patent Documents 3 to 4).
 係る方法を採用することで、展伸材由来のアルミ合金や鋳造材由来のアルミ合金を合金系別に選別して回収することができる。 By adopting such a method, it is possible to select and recover the aluminum alloy derived from the wrought material or the aluminum alloy derived from the cast material according to the alloy system.
 また、本発明者等は、プラズマ生成器によって生成したプラズマのプラズマ維持期間中に放射アンテナから電磁波を連続波で放射し、搬送装置によって連続的に搬送される試料を分光分析する装置を提案している(特許文献5参照)。 In addition, the present inventors have proposed a device that radiates electromagnetic waves from a radiation antenna in a continuous wave during the plasma maintenance period of plasma generated by a plasma generator and spectrally analyzes a sample that is continuously transported by a transport device. (See Patent Document 5).
特許第5651843号Japanese Patent No. 5651843 特許第5352895号Japanese Patent No. 5352895 特開2013-136019号公報JP 2013-136019 A 特開2012-073080号公報JP 2012-073080 A 国際公開第2013/039036号International Publication No. 2013/039036
 ところで、特許文献3~4に開示された、アルミニウムの選別方法は、X線を利用するため装置全体に係る費用が高騰するという問題がある。また、特許文献5に記載の分析装置では高さ方向にばらつきのある分析対象物を上方から分析することは困難であるという問題がある。 By the way, the aluminum selection methods disclosed in Patent Documents 3 to 4 have a problem that the cost of the entire apparatus increases due to the use of X-rays. In addition, the analysis apparatus described in Patent Document 5 has a problem that it is difficult to analyze an analysis object having a variation in the height direction from above.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、高さ方向にばらつきのある分析対象物であっても分光分析することが可能であるとともに、装置全体の低廉化をはかることができる分析装置を提供することである。 The present invention has been made in view of such a point, and an object of the present invention is to enable spectroscopic analysis even for an analysis object having variations in the height direction, and to reduce the cost of the entire apparatus. It is to provide an analyzer that can.
 上記課題を解決するためになされた本発明の分析装置は、
 分析対象物の一部をプラズマ状態にするプラズマ生成器と、
 前記プラズマ生成器により生成されたプラズマから発せられる分析対象物のプラズマ光を分析する光分析器とを備え、
 前記分析対象物が、搬送機によってプラズマ生成器が生成するプラズマに当接するように搬送される分析装置であって、
 前記プラズマ生成器は、生成したプラズマに電磁波を照射する電磁波照射器を備え、
 前記搬送機は、分析対象物の下面又は側面がプラズマ生成器によって生成されるプラズマと接触するプラズマ接触部を形成するようにしている。
The analysis device of the present invention made to solve the above problems is as follows.
A plasma generator for bringing a part of the analysis object into a plasma state;
An optical analyzer for analyzing plasma light of an analysis object emitted from the plasma generated by the plasma generator;
The analysis object is transported so as to come into contact with plasma generated by a plasma generator by a transport machine,
The plasma generator includes an electromagnetic wave irradiator that irradiates the generated plasma with electromagnetic waves,
The carrier forms a plasma contact portion in which the lower surface or the side surface of the analysis object comes into contact with the plasma generated by the plasma generator.
 本発明の分析装置は、プラズマ生成器によって生成したプラズマを分析対象物の下方又は側面から当接させることで高さ方向にばらつきのある分析対象物であっても確実に分光分析を行うことができる。また生成したプラズマに電磁波を照射することによって、プラズマは維持されるとともに、その体積が拡大され分析対象物の一部を確実にプラズマ化する。 The analysis device of the present invention can reliably perform spectroscopic analysis even for an analysis object that varies in the height direction by contacting the plasma generated by the plasma generator from below or from the side of the analysis object. it can. Further, by irradiating the generated plasma with electromagnetic waves, the plasma is maintained and the volume thereof is expanded, so that a part of the analysis object is reliably converted into plasma.
 この場合において、前記プラズマ生成器は、電極間に電位差を生じさせることで絶縁破壊を起こす放電器と、
 該放電器によって生じたプラズマに電磁波を照射する電磁波照射器と、
 放電器及び電磁波照射器を制御する制御機構とから構成され、
 該制御機構は、放電器による絶縁破壊によって生じたプラズマを維持するように電磁波照射器からの電磁波の発振パターンを制御するように構成することができる。
In this case, the plasma generator includes a discharger that causes a dielectric breakdown by causing a potential difference between the electrodes;
An electromagnetic wave irradiator that irradiates the plasma generated by the discharger with an electromagnetic wave;
A control mechanism for controlling the discharger and the electromagnetic wave irradiator,
The control mechanism can be configured to control the oscillation pattern of the electromagnetic wave from the electromagnetic wave irradiator so as to maintain the plasma generated by the dielectric breakdown by the discharger.
 さらに、前記プラズマ生成器において、前記放電器は放電電極および接地電極を備え、該放電電極と該接地電極あるいは前記分析対象物との間に火花放電を生じさせることでプラズマを生成し、
 該プラズマが存在する瞬間に電磁波を照射し、プラズマに電磁波エネルギを吸収させることにより、プラズマ領域を拡大することを特徴とする。
Further, in the plasma generator, the discharger includes a discharge electrode and a ground electrode, and generates a spark discharge by generating a spark discharge between the discharge electrode and the ground electrode or the analyte,
The plasma region is expanded by irradiating an electromagnetic wave at the moment when the plasma is present and causing the plasma to absorb the electromagnetic wave energy.
 本発明の分析装置は、分析対象物の大きさに関係なく分光分析を行うことができ、アルミニウム廃材から、高品位なアルミニウム合金とその他のアルミニウム合金とを選別するために合金系別にアルミニウム合金を判別することができるとともに、高価なX線装置を用いることなく装置全体の低廉化を図ることができる。 The analyzer of the present invention can perform spectroscopic analysis regardless of the size of the analysis object, and in order to sort out high-grade aluminum alloys and other aluminum alloys from the waste aluminum material, the aluminum alloys are classified by alloy system. It is possible to discriminate and to reduce the cost of the entire apparatus without using an expensive X-ray apparatus.
本発明の分析装置の概略図で、(a)は側面図、(b)は平面図である。It is the schematic of the analyzer of this invention, (a) is a side view, (b) is a top view. 同分析装置に使用するプラズマ生成装置のうち電磁波放電型プラズマ生成器を示す一部断面の正面図である。It is a front view of the partial cross section which shows an electromagnetic wave discharge type | mold plasma generator among the plasma generators used for the analyzer. 等価回路を示し、(a)は電磁波放射器の昇圧手段の等価回路、(b)は別の電磁波放射器の昇圧手段の等価回路である。An equivalent circuit is shown, (a) is an equivalent circuit of the step-up means of the electromagnetic wave emitter, and (b) is an equivalent circuit of the step-up means of another electromagnetic wave emitter. 同電磁波放電型プラズマ生成器別の実施例を示し(a)は正面図、(b)は(a)のA-A断面図、(c)は側面図、(d)は共振電極を示す斜視図である。FIGS. 4A and 4B show another embodiment of the same electromagnetic discharge type plasma generator, where FIG. 5A is a front view, FIG. 5B is a cross-sectional view taken along the line AA in FIG. FIG. 同分析装置に使用するプラズマ生成装置のうち混合器型プラズマ生成器を示す一部断面の正面図である。It is a front view of the partial cross section which shows a mixer type | mold plasma generator among the plasma generators used for the analyzer. 同混合器型プラズマ生成器の変形例を示す一部断面の正面図である。It is a front view of the partial cross section which shows the modification of the mixer type | mold plasma generator. 本発明の分析装置の変形例の概略図で、(a)は側面図、(b)は平面図である。It is the schematic of the modification of the analyzer of this invention, (a) is a side view, (b) is a top view.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
<実施形態1>
 本実施形態1は、本発明に係る分析装置1である。当該分析装置1は、図1に示すように、分析対象物の一部をプラズマ状態にするプラズマ生成器3と、このプラズマ生成器3により生成されたプラズマから発せられる分析対象物のプラズマ光を分析する光分析器2とを備え、分析対象物は搬送機4によって順次プラズマ生成器3によって生成されるプラズマPBに当接し、一部がプラズマ状態となるように搬送される。プラズマ生成器3は、生成したプラズマに電磁波を照射する電磁波照射器を備え、搬送機4は、分析対象物の下部又は側面がプラズマ生成器3によって生成されるプラズマと接触するプラズマ接触部Sを形成する。このプラズマ接触部Sは、搬送機4がベルトコンベアの場合は、例えば、2本のコンベアベルトを使いその間に隙間を形成するようにして構成することができる。また、ローラコンベアの場合は、ローラ間を用いることができる。ローラ間をプラズマ接触部とする詳細については後述する。本実施形態においては、搬送機4はベルトコンベアを採用している。
<Embodiment 1>
The first embodiment is an analyzer 1 according to the present invention. As shown in FIG. 1, the analysis apparatus 1 includes a plasma generator 3 that brings a part of an analysis object into a plasma state, and plasma light of the analysis object that is emitted from the plasma generated by the plasma generator 3. An optical analyzer 2 for analysis is provided, and the analysis target is sequentially brought into contact with the plasma PB generated by the plasma generator 3 by the carrier 4 and is carried so that a part thereof is in a plasma state. The plasma generator 3 includes an electromagnetic wave irradiator that irradiates the generated plasma with an electromagnetic wave, and the carrier 4 includes a plasma contact portion S in which a lower part or a side surface of the analysis object comes into contact with the plasma generated by the plasma generator 3. Form. The plasma contact portion S can be configured, for example, by using two conveyor belts and forming a gap between them when the transporter 4 is a belt conveyor. In the case of a roller conveyor, a space between rollers can be used. Details of the plasma contact portion between the rollers will be described later. In the present embodiment, the conveyor 4 employs a belt conveyor.
<プラズマ生成器>
 プラズマ生成器3は、電極間に電位差を生じさせることで絶縁破壊を起こす放電器と、この放電器によって生じたプラズマに電磁波を照射する電磁波照射器と、放電器及び電磁波照射器を制御する制御機構とから構成される。絶縁破壊によって生じたプラズマに電磁波(例えば、2.45GHzのマイクロ波)を照射することで、生じたプラズマを維持・拡大し、搬送機4によって送られてくる分析対象物の下面又は側面を、確実にプラズマ状態にすることができる。
<Plasma generator>
The plasma generator 3 includes a discharger that causes a dielectric breakdown by causing a potential difference between electrodes, an electromagnetic wave irradiator that irradiates an electromagnetic wave to plasma generated by the discharger, and a control that controls the discharger and the electromagnetic wave irradiator. Mechanism. By irradiating the plasma generated by dielectric breakdown with electromagnetic waves (for example, 2.45 GHz microwaves), the generated plasma is maintained and expanded, and the lower surface or side surface of the analysis object sent by the carrier 4 is A plasma state can be reliably obtained.
 プラズマ生成器3のうち、絶縁破壊を生じさせる放電器として、点火プラグを採用することができる。また、電磁波(マイクロ波)を共振回路からなる昇圧手段によって昇圧し、電極間の電位差を高めて絶縁破壊を生じさせる電磁波放電型プラズマ生成器(以下、MDI(Microwave Discharge Igniter)とよぶ。)を採用することもできる。このMDI3Aは、図2に示すように電磁波発振器から発振される電磁波の供給を受ける入力部52と、入力された電磁波を昇圧する昇圧手段5と、放電ギャップ6を形成する放電電極55a及び接地電極51aとを備え、昇圧手段5により放電ギャップ6の電位差を高め放電を生じさせるように構成している。 Spark plugs can be employed as a discharger that causes dielectric breakdown in the plasma generator 3. In addition, an electromagnetic wave discharge type plasma generator (hereinafter referred to as MDI (Microwave Discharge Igniter)) that boosts electromagnetic waves (microwaves) by a boosting means comprising a resonance circuit and raises the potential difference between the electrodes to cause dielectric breakdown. It can also be adopted. As shown in FIG. 2, the MDI 3A includes an input unit 52 that receives an electromagnetic wave oscillated from an electromagnetic wave oscillator, a booster 5 that boosts the input electromagnetic wave, a discharge electrode 55a that forms a discharge gap 6, and a ground electrode. 51a, and the voltage boosting means 5 increases the potential difference of the discharge gap 6 to cause discharge.
 放電電極55aは、入力部52から伸びる入力軸部53が挿通される有底の筒状部54から反入力部側に伸びる電極軸部55bの先端に形成されている。入力部52から伸びる入力軸部53は、筒状部54とは絶縁されている。具体的には、筒状部54内周面との間に筒状の絶縁体59が介在している。絶縁体59を介在させるか筒状部54の内周面と接触しないように構成することで筒状部54と入力軸部53は容量結合となり、後述する等価回路のC1を形成する。また、筒状部54及び電極軸部55bとケーシング51の先端側ケーシング51Aの内周面との間も電気的に絶縁されている。本実施形態においては、筒状部54及び電極軸部55bは筒状の絶縁体59に内包されている。筒状部54の外周面と筒状部54を覆うケーシング51Aの内周面との間によって、後述する等価回路のC2を形成し、電極軸部55bとケーシング51Aの内周面との間で等価回路のコンデンサC3を形成している。絶縁体59の種類によって異なる誘電率によって、共振周波数が調整される。なお、上述したC1は、入力軸部53を筒状部材54と電気的に接続することで省略することもできる。 The discharge electrode 55a is formed at the tip of the electrode shaft portion 55b extending from the bottomed cylindrical portion 54 through which the input shaft portion 53 extending from the input portion 52 is inserted to the side opposite to the input portion. An input shaft portion 53 extending from the input portion 52 is insulated from the cylindrical portion 54. Specifically, a cylindrical insulator 59 is interposed between the inner peripheral surface of the cylindrical portion 54. By constituting the insulator 59 so as not to be in contact with the inner peripheral surface of the cylindrical portion 54, the cylindrical portion 54 and the input shaft portion 53 are capacitively coupled, and form an equivalent circuit C1 described later. Further, the cylindrical portion 54 and the electrode shaft portion 55 b are also electrically insulated from the inner peripheral surface of the front end side casing 51 </ b> A of the casing 51. In the present embodiment, the cylindrical portion 54 and the electrode shaft portion 55 b are enclosed in a cylindrical insulator 59. An equivalent circuit C2 described later is formed between the outer peripheral surface of the cylindrical portion 54 and the inner peripheral surface of the casing 51A covering the cylindrical portion 54, and between the electrode shaft portion 55b and the inner peripheral surface of the casing 51A. An equivalent circuit capacitor C3 is formed. The resonance frequency is adjusted by the dielectric constant that varies depending on the type of the insulator 59. In addition, C1 mentioned above can also be abbreviate | omitted by connecting the input shaft part 53 with the cylindrical member 54 electrically.
 ケーシング51の後端側ケーシング51Bは貫通孔を備え、この貫通孔に、一端に電磁波発振器MWからの電磁波の供給を受ける入力部52を形成し他端に入力部52から伸びる入力軸部53が突出する筒状の絶縁体59を配設するとともに、放電電極55a、筒状部54及び電極軸部55bとこれらを覆う絶縁体59を内包したケーシング51Aが組み込まれている。入力部52、入力軸部53及びこれらを覆う絶縁体59のケーシング51Aが組み込み方法は特に限定するものではないが、本実施形態においては、絶縁体59の外周面及びケーシング51Bの貫通孔に対応する段差を設け、図例左側から挿通し、絶縁体を段差に係合させ、右側への抜け落ちを防止するとともに、左側からケーシング51Aを挿通して入力部52、入力軸部53及びこれらを覆う絶縁体59の左側への抜け落ちも防止する。ケーシング51Bに対するケーシング51Aの固定方法も特に限定するものではないが、本実施形態においては、貫通孔に刻設した雌ねじ部にケーシング51Aの外周面に刻設した雄ねじ部を螺合することによって固定する。螺合による固定後に溶接等の固定手段を用いてケーシング51Aをケーシング51Bに対して確実に固定することもでき、また、ねじ部を形成することなく溶接等の固定手段を用いて固定することもできる。 The casing 51B on the rear end side of the casing 51 has a through hole. An input portion 52 that receives supply of electromagnetic waves from the electromagnetic wave oscillator MW is formed at one end of the casing 51B, and an input shaft portion 53 that extends from the input portion 52 is formed at the other end. A protruding cylindrical insulator 59 is disposed, and a discharge electrode 55a, a cylindrical portion 54, an electrode shaft portion 55b, and a casing 51A including the insulator 59 covering these are incorporated. The method of incorporating the input portion 52, the input shaft portion 53, and the casing 51A of the insulator 59 covering them is not particularly limited, but in the present embodiment, it corresponds to the outer peripheral surface of the insulator 59 and the through hole of the casing 51B. The step is inserted from the left side of the figure to engage the insulator with the step to prevent falling off to the right side, and the casing 51A is inserted from the left side to cover the input portion 52, the input shaft portion 53 and these. The falling of the insulator 59 to the left side is also prevented. Although the method for fixing the casing 51A to the casing 51B is not particularly limited, in the present embodiment, the fixing is performed by screwing the male screw portion engraved on the outer peripheral surface of the casing 51A into the female screw portion engraved in the through hole. To do. After fixing by screwing, the casing 51A can be securely fixed to the casing 51B using a fixing means such as welding, or can be fixed using a fixing means such as welding without forming a threaded portion. it can.
 接地電極51aは、放電電極55aを覆う筒状のケーシング51Aの先端で形成され、この接地電極51aの内面と放電電極55aの外面との間で放電ギャップ6を形成する。 The ground electrode 51a is formed at the tip of a cylindrical casing 51A that covers the discharge electrode 55a, and forms a discharge gap 6 between the inner surface of the ground electrode 51a and the outer surface of the discharge electrode 55a.
 昇圧手段5は、図3(a)に示す等価回路で構成されている。昇圧手段5は、電極軸部55bをコイルLとして、上述したコンデンサC1、C2及びC3との間の3箇所で共振構造形成し、供給される電磁波を昇圧するようにしている。特に、筒状部54の外周面と筒状部54を覆うケーシング51の内周面との間に形成されるコンデンサC2による第1共振領域及び電極軸部55bと電極軸部55bを覆うケーシング51との間に形成されるコンデンサC3による第2共振領域によって、供給される電磁波を昇圧して、放電電極55aと接地電極51aとの間の電位差を数十kVまで高め放電を生じさせるようにしている。なお、入力軸部53と筒状部54を電気的に接続して容量結合としないことで等価回路のC1を形成しない構成とすることもできる。 The boosting means 5 is composed of an equivalent circuit shown in FIG. The boosting means 5 uses the electrode shaft portion 55b as a coil L, forms a resonance structure at three locations between the capacitors C1, C2 and C3 described above, and boosts the supplied electromagnetic waves. In particular, the first resonance region by the capacitor C2 formed between the outer peripheral surface of the cylindrical portion 54 and the inner peripheral surface of the casing 51 that covers the cylindrical portion 54, and the casing 51 that covers the electrode shaft portion 55b and the electrode shaft portion 55b. By boosting the supplied electromagnetic wave by the second resonance region formed by the capacitor C3 between and the discharge electrode 55a, the potential difference between the discharge electrode 55a and the ground electrode 51a is increased to several tens of kV to cause discharge. Yes. In addition, it can also be set as the structure which does not form C1 of an equivalent circuit by electrically connecting the input shaft part 53 and the cylindrical part 54, and not carrying out capacitive coupling.
 一般に、共振領域、特に第2共振領域での共振周波数から外れた周波数の電磁波を供給しても、電磁波を昇圧して放電電極55aと接地電極51aとの間の電位差高めることができない。共振領域で定まる共振周波数からどの程度外れた周波数を供給しても昇圧することができるかは、所謂Q値によって決定される。Q値とは、
 Q=ω0/(ω1-ω2)で表される。
 ここで、ω0:共振周波数、ω1及びω2(ω1>ω2):それぞれ周波数ω0のときのエネルギが1/2となる周波数である。従って、ω1及びω2の値がω0に近いほど、共振のピークが鋭く、Q値が大きくなり、大きなエネルギを得ることができ一般的にはQ値が大きくなる設計をすることが望ましい。しかし、Q値が大きい場合、共振させるためには共振領域で定まる共振周波数からのズレを大きくとることはできない。本発明者等の実験によるときは、Q値が50程度のときに±30ヘルツ、より好ましくは±20Hzの範囲の周波数の電磁波であれば共振させて放電させることが可能である。
In general, even if an electromagnetic wave having a frequency deviating from the resonance frequency in the resonance region, particularly the second resonance region, is supplied, the potential difference between the discharge electrode 55a and the ground electrode 51a cannot be increased by boosting the electromagnetic wave. It is determined by so-called Q value whether the frequency can be boosted by supplying a frequency deviating from the resonance frequency determined in the resonance region. Q value is
Q = ω0 / (ω1-ω2).
Here, ω0: resonance frequency, ω1 and ω2 (ω1> ω2): frequencies at which the energy is halved when the frequency is ω0. Therefore, it is desirable to design such that the closer the values of ω1 and ω2 are to ω0, the sharper the resonance peak, the larger the Q value, and the greater the energy that can be obtained. However, when the Q value is large, in order to resonate, the deviation from the resonance frequency determined in the resonance region cannot be made large. According to experiments by the present inventors, when the Q value is about 50, an electromagnetic wave having a frequency in the range of ± 30 Hz, more preferably ± 20 Hz, can be resonated and discharged.
 電磁波発振器MWは、常時所定電圧、例えば12Vを電磁波用電源Pから供給される。そして、制御装置4から電磁波発振信号を所定のデューティ比、パルス時間等を設定した発振パターンのパルス波として電磁波(例えば、2.45GHzのマイクロ波)を出力する。 The electromagnetic wave oscillator MW is always supplied with a predetermined voltage, for example, 12V from the electromagnetic wave power source P. Then, an electromagnetic wave (for example, 2.45 GHz microwave) is output from the control device 4 as a pulse wave of an oscillation pattern in which an electromagnetic wave oscillation signal is set with a predetermined duty ratio, pulse time, and the like.
 また、MDIは、図3(b)に示す等価回路の構成を採用することもできる。このMDIは、図4に示すように、中空円筒状のケース30と、ケース30と略同軸状で、一端が外部の電磁波発振器MWと接続される入力部33と連結されるとともに、他端に入力部33から供給される電磁波を放射するアンテナ部31aを形成した中心電極31と、中心電極31のアンテナ部31aと入力部33を連結するアンテナ部31aより小径の軸部31bを覆うシールドパイプ33と、アンテナ部31aを覆う放電部32aとシールドパイプ33を覆う筒状の共振部32bとからなる共振電極32とから構成される。そして、共振部Reで供給される電磁波が昇圧され放電部32aとケース30の先端に形成された接地電極30aとの間の電位差が高められ、1次プラズマSP1が生成される。この1次プラズマSP1が生成されるまでの行程は上述したMDIと同様である。 Also, the MDI can adopt the configuration of the equivalent circuit shown in FIG. As shown in FIG. 4, the MDI has a hollow cylindrical case 30 and an input portion 33 which is substantially coaxial with the case 30 and connected to one end of the electromagnetic wave oscillator MW and connected to the other end. A center electrode 31 that forms an antenna portion 31 a that radiates electromagnetic waves supplied from the input portion 33, and a shield pipe 33 that covers a shaft portion 31 b having a smaller diameter than the antenna portion 31 a that connects the antenna portion 31 a of the center electrode 31 and the input portion 33. And a resonance electrode 32 including a discharge part 32a covering the antenna part 31a and a cylindrical resonance part 32b covering the shield pipe 33. Then, the electromagnetic wave supplied from the resonance unit Re is boosted to increase the potential difference between the discharge unit 32a and the ground electrode 30a formed at the tip of the case 30, and the primary plasma SP1 is generated. The process until the primary plasma SP1 is generated is the same as that of the MDI described above.
 共振電極32を構成するアンテナ部31aを覆う放電部32aは、筒状部であっても構わないが、図4(d)に示すように、半円形状となるように構成している。そして、放電部32aと共振部32bは15乃至30°程度の円弧部を残して切り欠いた連結部32cによって連結されている。図より明らかなように、共振電極32は薄肉の円筒状金属材料を切り欠いて製作する。ケース30の先端に形成される接地電極30aは、図4(b)~(c)に示すように、複数の切り欠き部(スリット)を形成することが好ましく、これにより、生成されるプラズマボールを大きく成長させることができる。 Although the discharge part 32a which covers the antenna part 31a which comprises the resonance electrode 32 may be a cylindrical part, as shown in FIG.4 (d), it is comprised so that it may become a semicircle shape. And the discharge part 32a and the resonance part 32b are connected by the connection part 32c which notched leaving the circular arc part of about 15 thru | or 30 degrees. As is apparent from the figure, the resonance electrode 32 is manufactured by cutting out a thin cylindrical metal material. The ground electrode 30a formed at the tip of the case 30 is preferably formed with a plurality of notches (slits) as shown in FIGS. 4B to 4C. Can grow greatly.
 シールドパイプ33は、軸部31bから共振部32bへ供給される電磁波が容量結合しないためのシールドで、中心電極31及び共振電極32と電気的に絶縁されている。シールドパイプ33は、一端が入力部33と一体に形成し、ケース30の反接地電極側に固定するようにしている。シールドパイプ33の内周面と中心電極31の外周面との間には絶縁体としてセラミックパイプやセラミック粉末等を充填し、絶縁するようにしても構わない。また、シールドパイプ33の外周面と共振部32bの内周面との間にも絶縁パイプを設けることが好ましく、この絶縁パイプは共振電極32の位置決めができるようにケース30内周面の段差とシールドパイプ33の外周面と共振部32bの内周面との隙間形状に沿った絶縁パイプ34を配設することが好ましい。 The shield pipe 33 is a shield for preventing the electromagnetic wave supplied from the shaft portion 31b to the resonance portion 32b from being capacitively coupled, and is electrically insulated from the center electrode 31 and the resonance electrode 32. One end of the shield pipe 33 is formed integrally with the input portion 33 and is fixed to the anti-ground electrode side of the case 30. A ceramic pipe, ceramic powder, or the like may be filled as an insulator between the inner peripheral surface of the shield pipe 33 and the outer peripheral surface of the center electrode 31 for insulation. Further, it is preferable to provide an insulating pipe between the outer peripheral surface of the shield pipe 33 and the inner peripheral surface of the resonance part 32b. The insulating pipe is provided with a step on the inner peripheral surface of the case 30 so that the resonance electrode 32 can be positioned. It is preferable to arrange the insulating pipe 34 along the shape of the gap between the outer peripheral surface of the shield pipe 33 and the inner peripheral surface of the resonance part 32b.
 上記構成において、外部の電磁波発振器MWから供給される電磁波(本実施形態においては2.45GHzのマイクロ波)は中心電極31のアンテナ部31aから放電部32aを介して共振電極32の共振部32bの外周面とケース30の内周面との間に形成される共振部Reで昇圧され、共振電極32の放電部32aと接地電極30aとの間の電位差が高められる。その結果、放電部32aと接地電極30aとの間で1次プラズマSPが生成される。アンテナ部31aと放電部32aは、容量結合されるコンデンサを形成している。 In the above configuration, an electromagnetic wave (2.45 GHz microwave in this embodiment) supplied from the external electromagnetic wave oscillator MW is transmitted from the antenna portion 31a of the center electrode 31 to the resonance portion 32b of the resonance electrode 32 via the discharge portion 32a. The voltage is boosted by the resonance portion Re formed between the outer peripheral surface and the inner peripheral surface of the case 30, and the potential difference between the discharge portion 32a of the resonance electrode 32 and the ground electrode 30a is increased. As a result, primary plasma SP is generated between the discharge part 32a and the ground electrode 30a. The antenna unit 31a and the discharge unit 32a form a capacitor that is capacitively coupled.
 1次プラズマSPが生成されることで、インピーダンスの不整合が生じるが、共振部Reを介さない中心電極31を通る電磁波は、アンテナ部31aから1次プラズマSP1に供給され、1次プラズマSPが維持されるとともに拡大されプラズマボールPBとなる。 When the primary plasma SP is generated, impedance mismatch occurs, but the electromagnetic wave passing through the center electrode 31 not passing through the resonance part Re is supplied from the antenna part 31a to the primary plasma SP1, and the primary plasma SP is generated. The plasma ball PB is maintained and enlarged.
 ここで、本実施形態で生じるプラズマボールPBは、まず放電部の放電電極31aと接地電極30aとの間に火花放電を生じさせ、1次プラズマSPが存在する瞬間に電磁波を照射し、1次プラズマSPに電磁波エネルギを吸収させることで、プラズマ領域が拡大した結果生成される。一定エネルギを供給した場合、そのプラズマは無重力下での火炎のように球状で維持される。また、火花放電は放電電極と接地電極との間で生じさせずに、放電電極と分析対象物との間で生じさせてもよい。 Here, the plasma ball PB generated in the present embodiment first generates a spark discharge between the discharge electrode 31a and the ground electrode 30a of the discharge part, and irradiates the electromagnetic wave at the moment when the primary plasma SP is present. The plasma SP is generated as a result of expanding the plasma region by absorbing electromagnetic wave energy. When a constant energy is supplied, the plasma is maintained in a spherical shape like a flame under zero gravity. Further, the spark discharge may be generated between the discharge electrode and the analysis object without being generated between the discharge electrode and the ground electrode.
 プラズマボールPBは、プラズマ圧力と周辺ガスの圧力とのバランスを取ることで、無重力下の火炎のような球状に形成される。ここで、プラズマ圧力は、プラズマ生成のために投入される電磁波(マイクロ波)電力に比例する。 The plasma ball PB is formed in a spherical shape like a flame under zero gravity by balancing the plasma pressure and the pressure of the surrounding gas. Here, the plasma pressure is proportional to the electromagnetic wave (microwave) power input for plasma generation.
 プラズマサイズは、火花放電エネルギ、電極間ギャップ、電磁波供給パターン(電力、パルスパターン、周波数等)、電極形状、圧力、雰囲気ガス種等のパラメータに依存する。たとえば、直径7mm程度の球状のプラズマボールを生成するための各種パラメータ条件は、火花放電エネルギが30mJ、電極間ギャップは5mm、電磁波供給パターンとしての電力は50W、パルスパターンは連続波であって、周波数は2.45GHz、さらに、電極形状はロッド対ロッド、圧力は大気圧であって、雰囲気ガス種は空気という条件である。 The plasma size depends on parameters such as spark discharge energy, gap between electrodes, electromagnetic wave supply pattern (power, pulse pattern, frequency, etc.), electrode shape, pressure, and atmospheric gas type. For example, various parameter conditions for generating a spherical plasma ball having a diameter of about 7 mm are: spark discharge energy is 30 mJ, gap between electrodes is 5 mm, power as an electromagnetic wave supply pattern is 50 W, pulse pattern is continuous wave, The frequency is 2.45 GHz, the electrode shape is rod-to-rod, the pressure is atmospheric pressure, and the atmospheric gas species is air.
 このようにして、本実施形態によれば、レーザによるブレイクダウンや火花放電だけでは達成することができなかったプラズマサイズを形成することができる。このようなプラズマサイズで分光分析を行うことで、分析対象物の大きさに関係なく分光分析を行うことができ、アルミニウム廃材から、高品位なアルミニウム合金とその他のアルミニウム合金とを選別するために合金系別にアルミニウム合金を判別することができるとともに、高価なX線装置を用いることなく装置全体の低廉化を図ることができる。 Thus, according to the present embodiment, it is possible to form a plasma size that could not be achieved by laser breakdown or spark discharge alone. By performing spectroscopic analysis at such a plasma size, spectroscopic analysis can be performed regardless of the size of the analyte, and in order to select high-grade aluminum alloys and other aluminum alloys from aluminum waste Aluminum alloys can be discriminated by alloy system, and the overall cost of the apparatus can be reduced without using an expensive X-ray apparatus.
 また、プラズマ生成器3は図5に示すように、パルス電圧のエネルギと電磁波エネルギとを同一の伝送線路に混合する混合器型プラズマ生成器300を用いることができる。この混合器型プラズマ生成器300は図5に示すように、電磁波が入力される第1入力端子310と、パルス電圧が入力される第2入力端子315と、パルス電圧と電磁波が出力される混合出力端子340と、一端が第2入力端子315に電気的に接続され、他端(先端)が混合出力端子340の内側導体340aとの間で放電ギャップを形成する棒状の第1導電部材320と、間隔を隔てて第1導電部材320を囲い、第1導電部材320と同軸に配置されて、第1入力端子310の内側導体310aに電気的に接続される筒状の第2導電部材321と、第2導電部材321と間隔を隔てて第1導電部材320及び第2導電部材321を収容し、第1導電部材320及び第2導電部材321と同軸に配置されて、第1入力端子310の外側導体310bと混合出力端子340とにそれぞれ電気的に接続される筒状の第3導電部材330とから構成されている。 Further, as shown in FIG. 5, the plasma generator 3 can use a mixer type plasma generator 300 that mixes the energy of the pulse voltage and the electromagnetic wave energy in the same transmission line. As shown in FIG. 5, the mixer-type plasma generator 300 includes a first input terminal 310 to which an electromagnetic wave is input, a second input terminal 315 to which a pulse voltage is input, and a mixture from which the pulse voltage and the electromagnetic wave are output. An output terminal 340, and a rod-shaped first conductive member 320 whose one end is electrically connected to the second input terminal 315 and whose other end (tip) forms a discharge gap with the inner conductor 340a of the mixed output terminal 340; A cylindrical second conductive member 321 that surrounds the first conductive member 320 at an interval, is disposed coaxially with the first conductive member 320, and is electrically connected to the inner conductor 310a of the first input terminal 310; The first conductive member 320 and the second conductive member 321 are accommodated at a distance from the second conductive member 321, and are disposed coaxially with the first conductive member 320 and the second conductive member 321. Outside Respectively the body 310b and the mixed output terminal 340 and a third conductive member 330. cylindrical electrically connected.
 この混合器型プラズマ生成器300は、第1入力端子310から供給される電磁波が、第2導電部材321と第1導電部材320との空隙(図例では絶縁体が充填されている)を軸心と平行方向(長手方向)の共振器として構成し、インピーダンス整合を行って、第2導電部材321と第1導電部材320とを容量結合で接合されている。これによって、電磁波はパルス電圧が流れる第1導電部材320を介して生成されるプラズマに供給される。また、第2入力端子315と第1導電部材320との間には電磁波が第2入力端子315側に漏洩することを防止するための漏洩防止手段322(図例ではチョーク構造)を配設している。 In the mixer-type plasma generator 300, the electromagnetic wave supplied from the first input terminal 310 is directed to the gap (filled with an insulator in the illustrated example) between the second conductive member 321 and the first conductive member 320. The second conductive member 321 and the first conductive member 320 are joined by capacitive coupling by configuring as a resonator parallel to the core (longitudinal direction) and performing impedance matching. Accordingly, the electromagnetic wave is supplied to the plasma generated through the first conductive member 320 through which the pulse voltage flows. Further, between the second input terminal 315 and the first conductive member 320, a leakage preventing means 322 (choke structure in the illustrated example) for preventing electromagnetic waves from leaking to the second input terminal 315 side is disposed. ing.
 このように構成することで、パルス電圧の印加によって第1導電部材320の先端と混合出力端子340の内側導体340aとの間に形成される放電ギャップで絶縁破壊が生じ、初期プラズマSPが生成される。そして、第1入力端子310から供給される電磁波(マイクロ波)は、第1入力端子310から、容量結合されている第2導電部材321と第1導電部材320を介して、初期プラズマSPに供給され、プラズマ状態を維持しプラズマボールPB状態となって送られてくる分析対象物の一部をプラズマ化する。 With this configuration, dielectric breakdown occurs in the discharge gap formed between the tip of the first conductive member 320 and the inner conductor 340a of the mixed output terminal 340 due to the application of the pulse voltage, and the initial plasma SP is generated. The The electromagnetic wave (microwave) supplied from the first input terminal 310 is supplied from the first input terminal 310 to the initial plasma SP via the second conductive member 321 and the first conductive member 320 that are capacitively coupled. Then, the plasma state is maintained, and a part of the analysis object sent in the plasma ball PB state is turned into plasma.
 また、搬送手段4で送られてくる分析対象物が本実施形態で分析対象とするアルミニウム等、導電材料である場合には、第1導電部材320の先端と接地電極となる内側導体340aとの間を絶縁距離以上に離すように、例えば、図6に示すように、内側導体340aの先端部分を拡開することで、分析対象物を接地電極として放電電極となる第1導電部材320と分析対象物との間で絶縁破壊を生じるように構成することもできる When the analysis object sent by the conveying means 4 is a conductive material such as aluminum to be analyzed in the present embodiment, the tip of the first conductive member 320 and the inner conductor 340a serving as the ground electrode are connected. For example, as shown in FIG. 6, the front end portion of the inner conductor 340a is expanded so that the gap is more than the insulation distance, thereby analyzing the first conductive member 320 serving as the discharge electrode with the analysis target as the ground electrode. Can be configured to cause dielectric breakdown with the object
<光分析器>
 プラズマ光を分析する光分析器2は、初期プラズマSPが電磁波(マイクロ波)の照射によって拡大したプラズマボールPBに当接した分析対象物の一部がプラズマ化し、そこから発せられるプラズマ光を分析して、分析対象物を分析する光分析手段を構成している。光分析器2は、プラズマ維持期間のうち分析期間のプラズマ光の発光強度の時間積分値を用いて、分析対象物を分析する。光分析器2は、周知のごとく、光学プローブ20、光ファイバ21、分光器22、光検出器23及び信号処理器24を備えている。
<Optical analyzer>
The optical analyzer 2 that analyzes the plasma light analyzes the plasma light emitted from the part of the analysis object that is in contact with the plasma ball PB in which the initial plasma SP is expanded by the irradiation of the electromagnetic wave (microwave). Thus, optical analysis means for analyzing the analysis object is configured. The optical analyzer 2 analyzes the analysis object using the time integration value of the emission intensity of the plasma light in the analysis period in the plasma maintenance period. As is well known, the optical analyzer 2 includes an optical probe 20, an optical fiber 21, a spectrometer 22, a photodetector 23, and a signal processor 24.
 光学プローブ20は、プラズマ状態から発せられるプラズマ光を導出するための装置である。光学プローブ20は、筒状のケーシングの先端部に、比較的広い範囲の光を取り込み可能なレンズを取り付けている。光学プローブは、プラズマ領域であるプラズマボールPBの全体から発せられるプラズマ光をレンズに導入できるように、近接した位置に配設するか、図例のように鏡を介してプラズマ光を導入するように取り付けられている。 The optical probe 20 is a device for deriving plasma light emitted from a plasma state. In the optical probe 20, a lens capable of capturing a relatively wide range of light is attached to the tip of a cylindrical casing. The optical probe is arranged at a close position so that plasma light emitted from the entire plasma ball PB as a plasma region can be introduced into the lens, or plasma light is introduced through a mirror as shown in the figure. Is attached.
 分光器22は、光ファイバ21を介して光学プローブ20に接続されている。分光器22には、光学プローブ20に入射したプラズマ光が取り込まれる。分光器22は、回折格子又はプリズムを用いて、入射したプラズマ光を波長に応じて異なる向きに分散させる。 The spectroscope 22 is connected to the optical probe 20 via the optical fiber 21. The spectroscope 22 takes in the plasma light incident on the optical probe 20. The spectroscope 22 uses a diffraction grating or a prism to disperse the incident plasma light in different directions depending on the wavelength.
 なお、分光器22の入口には、プラズマ光を分析する分析期間を区切るためのシャッタが設けられている。シャッタは、制御装置により、分光器に光が入射することを許容する開状態と、分光器に光が入射することを禁止する閉状態との間で切り替えられる。なお、光検出器の露光タイミングを制御できる場合には、光検出器を制御して分析期間を区切るようにしてもよい。 Note that a shutter is provided at the entrance of the spectroscope 22 to divide the analysis period for analyzing the plasma light. The shutter is switched by the control device between an open state that allows light to enter the spectrometer and a closed state that prohibits light from entering the spectrometer. If the exposure timing of the photodetector can be controlled, the analysis period may be divided by controlling the photodetector.
 光検出器23は、分光器22により分散された光のうち所定の波長帯域の光を受光するように配置されている。光検出器23は、制御装置24から出力された指令信号に応答して、受光した波長帯域の光を波長毎に電気信号に光電変換して出力する。光検出器23には、例えば電荷結合素子(Charge Coupled Device)が用いられる。光検出器から出力された電気信号は、信号処理装置に入力される。 The photodetector 23 is disposed so as to receive light in a predetermined wavelength band among the light dispersed by the spectroscope 22. In response to the command signal output from the control device 24, the photodetector 23 photoelectrically converts the received light in the wavelength band into an electrical signal for each wavelength and outputs the electrical signal. For the photodetector 23, for example, a charge coupled device is used. The electrical signal output from the photodetector is input to the signal processing device.
 信号処理器24は、光検出器23から出力された電気信号に基づいて、波長毎に発光強度の時間積算値を算出する。信号処理器24は、シャッタが開状態になっている分析期間に分光器22に入射したプラズマ光に対して、波長毎の発光強度の時間積分値(発光スペクトル)を算出する。信号処理器24は、波長毎の発光強度の時間積算値から、発光強度が強い波長成分を検出し、検出した波長成分に対応する物質を分析対象物の成分として同定する。 The signal processor 24 calculates the time integrated value of the emission intensity for each wavelength based on the electrical signal output from the photodetector 23. The signal processor 24 calculates a time integration value (emission spectrum) of the emission intensity for each wavelength with respect to the plasma light incident on the spectrometer 22 during the analysis period in which the shutter is in the open state. The signal processor 24 detects a wavelength component having a strong emission intensity from the time integrated value of the emission intensity for each wavelength, and identifies a substance corresponding to the detected wavelength component as a component of the analysis target.
<分析装置の動作>
 本実施形態においては、上述したプラズマ生成器の中で混合器型のプラズマ生成器3を使用した例で説明するが、点火プラグ又はMDIと電磁波発振器の組み合わせや電磁波発振機能を組み込んだエンハスドタイプのMDIを使用することもできる。
<Operation of analyzer>
In the present embodiment, an example in which the mixer-type plasma generator 3 is used among the plasma generators described above will be described. A type of MDI can also be used.
 本実施形態の分析装置1は、2本のベルト間に設けた隙間をプラズマ接触部としてプラズマ生成器3が生成するプラズマボールPBを分析対象物と接触させる。これによって、分析対象物の一部がプラズマ化し、光分析器によって分析対象物の成分として同定され、搬送機4によって送られる分析対象物の成分が分析される。分析対象物がアルミ廃材の場合、展伸材由来のアルミ合金や鋳造材由来のアルミ合金を合金系別に選別することが可能となる。 The analysis apparatus 1 of the present embodiment brings the plasma ball PB generated by the plasma generator 3 into contact with the object to be analyzed using the gap provided between the two belts as a plasma contact portion. As a result, a part of the analysis object is converted into plasma, identified as a component of the analysis object by the optical analyzer, and the component of the analysis object sent by the carrier 4 is analyzed. When the object to be analyzed is waste aluminum, it is possible to sort the aluminum alloy derived from the wrought material and the aluminum alloy derived from the cast material according to the alloy system.
 また、搬送機4としてのコンベアベルトに側壁を設け、一方の側壁側から他方の側壁側に分析対象物を押し付ける押圧手段を配設することで他方の側壁に形成した切り欠き部や穴部をプラズマ接触部として利用することもできる。 Further, the conveyor belt as the conveyor 4 is provided with a side wall, and a notch or a hole formed in the other side wall is provided by arranging a pressing means for pressing the analyte from one side wall side to the other side wall side. It can also be used as a plasma contact portion.
 光分析機2によって、成分が分析された分析対象物であるアルミニウム廃材は、その成分の違いによって選別される。 The aluminum waste material, which is an analysis object whose components have been analyzed by the optical analyzer 2, is sorted according to the difference in its components.
 選別機は、特に限定するものではなく、搬送機の終端部にゲートを設けたゲート式選別機を採用したり、終端部からの落下の際に高圧エアを吹き付けることで落下箇所を変動させる選別機を採用したりすることができる。 The sorter is not particularly limited. A sorter that uses a gate-type sorter with a gate at the end of the transporter or that changes the drop location by blowing high-pressure air when falling from the end is used. Or adopt a machine.
<実施形態2>
 本実施形態の分析装置は、実施形態1と搬送機4の構成が異なる以外は同様の構成であり、その説明を省略する。
<Embodiment 2>
The analyzer of this embodiment has the same configuration except that the configuration of the transport device 4 is different from that of the first embodiment, and a description thereof will be omitted.
 本実施形態の搬送機4は、図7(a)に示すように、2台のコンベアベルトを用いて、第1コンベア4Aの終端辺と第2コンベア4Bの開始端辺との間をプラズマ接触部として利用するようにしている。また、同方向に転動する複数のローラを並列して並べたローラコンベアを採用することもできる。ただし、ローラコンベアを使用する場合、分析対象物の搬送中の落下を防止するために、分析対象物はローラ径に比べて十分な大きさを有する必要がある。 As shown in FIG. 7A, the transporter 4 according to the present embodiment uses two conveyor belts to make plasma contact between the terminal end of the first conveyor 4A and the start end of the second conveyor 4B. It is used as a department. A roller conveyor in which a plurality of rollers rolling in the same direction are arranged in parallel can also be employed. However, when a roller conveyor is used, the analysis object needs to have a sufficient size compared to the roller diameter in order to prevent the analysis object from falling during the conveyance.
 この搬送機4は、第1コンベア4Aの終端の回動ローラ40Aの上部からベルト部分が第2コンベア4Bの開始端に向けて伸びるように小径の延伸ローラ41Aを配設し、第2コンベア4Bの開始端の回動ローラ40Bの上部からもベルト部分が第1コンベア4Aの終端に向けて伸びるように小径の延伸ローラ41Bを配設するようにしている。これによって、第1コンベア4Aの終端辺と第2コンベア4Bの開始端辺の間をプラズマ接触部Sとし、分析対象物の通過する下方に、プラズマ生成器3及び光分析器2を配設するように構成する。このように構成することで、小型の分析対象物であっても問題なく分析することができる。 The transporter 4 is provided with a small-diameter stretching roller 41A so that the belt portion extends from the upper part of the rotating roller 40A at the end of the first conveyor 4A toward the start end of the second conveyor 4B, and the second conveyor 4B. A small-diameter stretching roller 41B is arranged so that the belt portion extends toward the end of the first conveyor 4A also from the upper part of the rotation roller 40B at the starting end. As a result, the plasma contact portion S is defined between the end edge of the first conveyor 4A and the start edge of the second conveyor 4B, and the plasma generator 3 and the optical analyzer 2 are disposed below the analysis object. Configure as follows. With this configuration, even a small analysis object can be analyzed without any problem.
 また、図7(b)に示すように、プラズマ生成器3と光分析器2(図示省略)を搬送機4の搬送方向と直交する方向に複数並べることができる。このように構成することで、分析対象物を1列に並べること無く判別し選別処理を行うことができる。このような複数配置は、単体システムが低廉で、かつ、プラズマサイズが大きいからこそ成り立つものである。さらには、このような複数配置の構成を採ることで、分光分析、分析対象物の通過検知、および、搬送と直交する方向の位置検出を同時に行うことができる。分光分析結果とともに、通過検知と位置検出により得られる時間と位置情報は、例えば、アルミ廃材など成分の異なる同種廃材を選択的に判別する選別装置の用途に好適に用いられる。 Further, as shown in FIG. 7B, a plurality of plasma generators 3 and optical analyzers 2 (not shown) can be arranged in a direction perpendicular to the transport direction of the transport machine 4. By comprising in this way, it can discriminate | determine and arrange | position a analysis object, without arranging in a line. Such a plurality of arrangements is realized because the single system is inexpensive and the plasma size is large. Furthermore, by adopting such a multiple arrangement configuration, it is possible to simultaneously perform spectroscopic analysis, detection of the passage of an analysis object, and position detection in a direction orthogonal to the conveyance. The time and position information obtained by the passage detection and the position detection together with the spectroscopic analysis result is suitably used for, for example, a sorting apparatus that selectively discriminates the same kind of waste materials having different components such as aluminum waste materials.
 以上説明したように、本発明の分析装置は、搬送機を使って搬送される大きさの異なる分析対象物であってもその一部を確実にプラズマ化して分光分析を行うことができるから、アルミ廃材など成分の異なる同種廃材を選択的に判別する選別装置の用途に好適に用いられる。 As described above, the analysis apparatus of the present invention can perform spectroscopic analysis by reliably converting a part of an analysis object having a different size to be transported using a transport machine. It is suitably used for the application of a sorting device that selectively discriminates the same kind of waste materials having different components such as aluminum waste materials.
 1  分析装置
 2  光分析器
 3  プラズマ生成器
 4  搬送機
DESCRIPTION OF SYMBOLS 1 Analyzer 2 Optical analyzer 3 Plasma generator 4 Conveyance machine

Claims (3)

  1.  分析対象物の一部をプラズマ状態にするプラズマ生成器と、
     前記プラズマ生成器により生成されたプラズマから発せられる分析対象物のプラズマ光を分析する光分析器とを備え、
     前記分析対象物が、搬送機によってプラズマ生成器が生成するプラズマに当接するように搬送される分析装置であって、
     前記プラズマ生成器は、生成したプラズマに電磁波を照射する電磁波照射器を備え、
     前記搬送機は、分析対象物の下面又は側面がプラズマ生成器によって生成されるプラズマと接触するプラズマ接触部を形成するようにした分析装置。
    A plasma generator for bringing a part of the analysis object into a plasma state;
    An optical analyzer for analyzing plasma light of an analysis object emitted from the plasma generated by the plasma generator;
    The analysis object is transported so as to come into contact with plasma generated by a plasma generator by a transport machine,
    The plasma generator includes an electromagnetic wave irradiator that irradiates the generated plasma with electromagnetic waves,
    The analyzer is configured to form a plasma contact portion in which a lower surface or a side surface of an analysis object is in contact with plasma generated by a plasma generator.
  2.  前記プラズマ生成器は、電極間に電位差を生じさせることで絶縁破壊を起こす放電器と、
     該放電器によって生じたプラズマに電磁波を照射する電磁波照射器と、
     放電器及び電磁波照射器を制御する制御機構とから構成され、
     該制御機構は、放電器による絶縁破壊によって生じたプラズマを維持するように電磁波照射器からの電磁波の発振パターンを制御するようにした請求項1に記載の分析装置。
    The plasma generator includes a discharger that causes a dielectric breakdown by causing a potential difference between the electrodes;
    An electromagnetic wave irradiator that irradiates the plasma generated by the discharger with an electromagnetic wave;
    A control mechanism for controlling the discharger and the electromagnetic wave irradiator,
    The analyzer according to claim 1, wherein the control mechanism controls an oscillation pattern of an electromagnetic wave from the electromagnetic wave irradiator so as to maintain a plasma generated by dielectric breakdown by a discharger.
  3.  前記プラズマ生成器の前記放電器は、放電電極および接地電極を備え、該放電電極と該接地電極あるいは前記分析対象物との間に火花放電を生じさせることでプラズマを生成し、
     該プラズマが存在する瞬間に電磁波を照射し、プラズマに電磁波エネルギを吸収させることにより、プラズマ領域を拡大することを特徴とする請求項1に記載の分析装置。
    The discharger of the plasma generator includes a discharge electrode and a ground electrode, and generates a plasma by generating a spark discharge between the discharge electrode and the ground electrode or the analyte,
    The analyzer according to claim 1, wherein the plasma region is expanded by irradiating the electromagnetic wave at the moment when the plasma exists and causing the plasma to absorb the electromagnetic wave energy.
PCT/JP2018/003437 2017-02-01 2018-02-01 Analysis device WO2018143355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566089A JPWO2018143355A1 (en) 2017-02-01 2018-02-01 Analysis equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-017153 2017-02-01
JP2017017153 2017-02-01

Publications (1)

Publication Number Publication Date
WO2018143355A1 true WO2018143355A1 (en) 2018-08-09

Family

ID=63039781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003437 WO2018143355A1 (en) 2017-02-01 2018-02-01 Analysis device

Country Status (2)

Country Link
JP (1) JPWO2018143355A1 (en)
WO (1) WO2018143355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051213A (en) * 2020-08-07 2020-12-08 北京航空航天大学 Optical diagnostic probe for measuring local plasma and measuring method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532198A (en) * 2006-03-31 2009-09-10 トーマス バレリオ、 Method and apparatus for classifying fine non-ferrous metals and insulated wire fragments
WO2012036138A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method
WO2015200111A1 (en) * 2014-06-23 2015-12-30 Tsi, Inc. Rapid material analysis using libs spectroscopy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532198A (en) * 2006-03-31 2009-09-10 トーマス バレリオ、 Method and apparatus for classifying fine non-ferrous metals and insulated wire fragments
WO2012036138A1 (en) * 2010-09-15 2012-03-22 イマジニアリング株式会社 Analysis device and analysis method
WO2015200111A1 (en) * 2014-06-23 2015-12-30 Tsi, Inc. Rapid material analysis using libs spectroscopy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051213A (en) * 2020-08-07 2020-12-08 北京航空航天大学 Optical diagnostic probe for measuring local plasma and measuring method thereof
CN112051213B (en) * 2020-08-07 2021-11-16 北京航空航天大学 Optical diagnostic probe for measuring local plasma and measuring method thereof

Also Published As

Publication number Publication date
JPWO2018143355A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
Okamoto Annular-shaped microwave-induced nitrogen plasma at atmospheric pressure for emission spectrometry of solutions
US7821634B2 (en) Laser-triggered plasma apparatus for atomic emission spectroscopy
US8822948B1 (en) Method and apparatus for control of a plasma for spectrometry
Jankowski et al. Recent developments in instrumentation of microwave plasma sources for optical emission and mass spectrometry: Tutorial review
JP5415420B2 (en) A system for analyzing low-pressure gases by emission spectroscopy.
US8633442B2 (en) Terahertz wave generating device, camera, imaging device, and measuring device
US20130015766A1 (en) Apparatus for generating mini and micro plasmas and methods of use
WO2018143355A1 (en) Analysis device
JP5352895B2 (en) Material analyzer
US8879061B2 (en) Analysis apparatus and analysis method
EP0734049B1 (en) Plasma mass spectrometry method and apparatus
RU2408871C2 (en) Apparatus for spectral analysis of composition of substance
JP6732006B2 (en) Microwave plasma generation chamber and plasma generation method
US8879062B2 (en) Analysis apparatus and analysis method
US11875985B2 (en) Mass spectrometer comprising an ionization device
JP2006220501A (en) Measuring instrument for trace amount of component
JP6111473B2 (en) Analysis apparatus and analysis method
US3417287A (en) Low power high frequency discharge plasma generator
JP4981872B2 (en) Trace component measuring device
JPH11297266A (en) Mass spectrometer and ion source
D Anghel et al. Atmospheric pressure plasmas in resonant circuits
JPS6059538B2 (en) Emission spectrometer
Stoiljković et al. Emission intensity enhancement of DC arc plasma induced by external oscillating magnetic field
Juettner et al. Dependence of nonstationary behavior of arc cathode spots on discharge duration
JPH06342640A (en) High frequency induction coupled plasma mass spectorometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748350

Country of ref document: EP

Kind code of ref document: A1