WO2018143255A1 - Mobility evaluation system and mobility evaluation method - Google Patents

Mobility evaluation system and mobility evaluation method Download PDF

Info

Publication number
WO2018143255A1
WO2018143255A1 PCT/JP2018/003162 JP2018003162W WO2018143255A1 WO 2018143255 A1 WO2018143255 A1 WO 2018143255A1 JP 2018003162 W JP2018003162 W JP 2018003162W WO 2018143255 A1 WO2018143255 A1 WO 2018143255A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
mobility
actuator
voltage
ossicle
Prior art date
Application number
PCT/JP2018/003162
Other languages
French (fr)
Japanese (ja)
Inventor
小池 卓二
加以 高桑
優花 入江
晶 神崎
世傑 徐
武展 肥後
林 正晃
Original Assignee
国立大学法人電気通信大学
学校法人慶應義塾
有限会社メカノトランスフォーマ
株式会社リーデンス
第一医科株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017135735A external-priority patent/JP7036309B2/en
Application filed by 国立大学法人電気通信大学, 学校法人慶應義塾, 有限会社メカノトランスフォーマ, 株式会社リーデンス, 第一医科株式会社 filed Critical 国立大学法人電気通信大学
Publication of WO2018143255A1 publication Critical patent/WO2018143255A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering

Definitions

  • the middle ear is an organ that converts sound waves incident on the ear canal into vibrations of the eardrum and efficiently transmits the mechanical vibrations to the inner ear cochlea through the ossicular chain.
  • the chain consists of the tibia, quinuta, and stapes and is held by the ligaments and muscle tendons to vibrate easily in the tympanic chamber. If these ligaments and muscle tendons become stuck due to aging or lesions, conduction hearing loss occurs, resulting in middle ear disease.
  • Patent Document 1 discloses an optical force detection element for a microsurgical instrument for evaluating the mobility of the ossicular chain in tympanoplasty as a method for quantitatively evaluating the ossicular mobility.
  • An optical force sensing element is disclosed having a sensitivity of 5 to 20 times higher than in the xy direction perpendicular to the axis.
  • an object of the present invention is to provide a user-friendly mobility evaluation system for quantitatively evaluating the mobility of the ossicles.
  • a mobility evaluation system is a mobility evaluation system that evaluates the mobility of the ossicle, and includes an excitation device that makes contact with the ossicle and applies vibration, an actuator that vibrates the excitation device, and an excitation device.
  • the reaction force applied to the actuator when the vibration device is brought into contact with the ossicle is measured, and based on the measurement result, the measurement probe including a force sensor that outputs a voltage, and the FFT output based on the voltage output from the measurement probe
  • An analysis unit that performs analysis to obtain a predetermined frequency component value, an evaluation unit that evaluates the mobility of the ossicle based on the predetermined frequency component value, and an output unit that outputs an evaluation result are provided.
  • the excitation device is an elongated rod-like probe, and the probe is removably supported by a fixed fulcrum and a force sensor at two points near the center of gravity and at the end.
  • the actuator gives a constant amplitude vibration around a fulcrum near the center of gravity of the probe
  • the force sensor includes a piezoelectric sensor and a charge amplifier, and the piezoelectric sensor applies the force applied to the probe by the probe.
  • the charge amplifier generates a charge signal
  • the charge amplifier converts the generated charge signal into a voltage and outputs the voltage.
  • the analysis unit includes an AD converter, and the AD converter converts the voltage into voltage information of the digital signal. Then, the voltage information may be subjected to FFT analysis.
  • the probe may be provided with a dent formed in the vicinity of the center of gravity, and the fulcrum may be provided with a spherically shaped magnet to be fitted and supported in the dent.
  • the measurement probe may include an elastic body that elastically contacts the probe.
  • the actuator may vibrate the probe at 5 Hz or more
  • the predetermined frequency component value may be a value of a frequency component of 5 Hz or more of each waveform in the voltage information.
  • the mobility evaluation system according to the present invention is installed in the cochlear window or in the vicinity of the cochlear window, and detects the cochlear microphone potential when the vibration is applied to the ossicles by the vibration device, and the detected cochlear microphone potential.
  • the output unit may display the measured cochlear microphone potential.
  • the mobility evaluation method is a mobility evaluation method for evaluating the mobility of the ossicle, and is a process for applying vibration to the ossicle by bringing the tip of the probe vibrated by the actuator into contact with the ossicle.
  • the voltage measurement step that outputs the voltage based on the measurement result, and the voltage output from the measurement probe based on the measurement result.
  • An analysis step for performing a FFT analysis to obtain a predetermined frequency component value an evaluation step for evaluating the mobility of the ossicle based on the predetermined frequency component value, and an output step for outputting the evaluation result.
  • a mobility evaluation system is a mobility evaluation system that evaluates the mobility of the ossicle, and includes an excitation device that makes contact with the ossicle and applies vibration, an actuator that vibrates the excitation device, and an excitation device.
  • the reaction force applied to the actuator when the vibration device is brought into contact with the ossicle is measured, and based on the measurement result, the measurement probe including a force sensor that outputs a voltage, and the FFT output based on the voltage output from the measurement probe Analyzing to obtain a predetermined frequency component value by analyzing, mobility evaluation unit comprising an evaluation unit for evaluating the mobility of the ossicle based on the predetermined frequency component value, and an output unit for outputting the evaluation result System.
  • a predetermined frequency component value can be obtained when quantitatively evaluating the mobility of the ossicles, so that it is possible to provide a mobility evaluation system that can reduce the effects of camera shake when used as a handpiece. , Improve usability.
  • the mobility evaluation system and the mobility evaluation method according to the present invention can improve usability in quantifying the mobility of the ossicles.
  • the mobility evaluation system 700 includes a measurement probe 100, an information processing device 300, a display device 400 (400a, 400b), an amplifier 500, and an electrode 600.
  • a display device 400 400a, 400b
  • an amplifier 500 500
  • an electrode 600 an electrode 600.
  • two display devices 400a and 400b are shown for ease of explanation, but one display device 400 or 400 or more may be present.
  • display devices are collectively referred to as a display device 400 unless there is a particular need for distinction.
  • the display 400 and the audio output unit 340 of the information processing apparatus 300 described later output the evaluation results of the mobility of the ossicles and the measurement results of the cochlear microphone potential (display, audio output, etc.). Collectively referred to as an output section.
  • the output unit outputs the evaluation result of the evaluation unit.
  • the measurement probe 100 measures the reaction force applied to the actuator when the vibrating device is brought into contact with the ossicle, the vibration device that makes contact with the ossicle and vibrates, the actuator that vibrates the vibration device, and the vibration device. And a force sensor that outputs a voltage based on the measurement result.
  • the measurement probe 100 is an elongated rod-like probe, and the probe is supported by a fixed fulcrum and a force sensor at two points near the center of gravity and at the end, and an actuator Provides a vibration having a constant amplitude around a fulcrum near the center of gravity of the probe, the force sensor includes a piezoelectric sensor and a charge amplifier, and the piezoelectric sensor applies the force applied to the probe by the actuator.
  • the charge signal may be generated by being applied by a needle, and the charge amplifier may convert the generated charge signal into a voltage and output the voltage.
  • the information processing device 300 is connected to the measurement probe 100, the display device 400, the amplifier 500, or the like by wire or wirelessly, and receives information processing requests from these peripheral devices and peripheral devices to perform information processing. Done. Any computer device such as a server that provides the result of the processing may be used, or a hardware device dedicated to the measurement probe 100 may be used.
  • the display device 400 may be any device as long as it is connected to the information processing device 300 and displays the display information output from the information processing device 300 on the screen.
  • the display device 400 displays, for example, the evaluation result of the ossicular mobility evaluated by the information processing device 300.
  • the display device 400 may display the measured cochlear microphone potential using the electrode 600 and the amplifier 500.
  • the amplifier 500 may be an amplifier device such as a differential amplifier that amplifies a weak signal such as a cochlear microphone potential measured by the electrode 600.
  • the electrode 600 may be a silver electrode that can be installed near the cochlear window or near the cochlear window and can measure the cochlear microphone potential (CM).
  • CM cochlear microphone potential
  • the mobility evaluation system 700 uses the reaction force applied to the measurement probe 100 as voltage information when the tip of the measurement probe 100 is vibrated and brought into contact with the ossicle 800 that is the measurement target.
  • the information processing apparatus 300 evaluates the mobility of the ossicle based on the transmitted voltage.
  • the mobility evaluation system 700 may display the evaluation result on the display device 400b using a graph or the like as shown in FIG. 1, or may notify the voice by the voice output function of the information processing device 300. .
  • the operator can confirm the quantitative evaluation of the mobility of the ossicles before and during the operation, and determine the surgical procedure, etc. It can be done efficiently.
  • the mobility evaluation system 700 is installed in the vicinity of the cochlear window or the cochlear window, and an electrode for detecting the cochlear microphone potential when the ossicle is vibrated by the vibration device, An amplifier for amplifying and measuring the detected cochlear microphone potential may be provided, and the output unit may display the measured cochlear microphone potential.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the information processing apparatus 300.
  • the information processing apparatus 300 includes a communication unit 310, an I / O unit 320, a control unit 330, an audio output unit 340, a storage unit 350, and the like.
  • the communication unit 310 has a function of performing communication (transmission and reception of various messages) with peripheral devices and other information processing devices under the control of the control unit 330 via the network. Specifically, for example, the communication unit 310 transmits a message transmitted from each unit to another device, receives a message from the other device, and receives the message according to the control of the control unit 330 via the network. Communicate the message to other parts.
  • the communication may be either wired or wireless, and any communication protocol may be used as long as mutual communication can be performed. Further, the communication may be subjected to an encryption process in order to ensure security.
  • the “message” here includes text, images (photos, illustrations), sound, moving images, and the like, and information attached thereto (information about dates, positions, etc. attached to the text, images, sounds, and moving images).
  • the I / O unit 320 has a function of connecting to other devices, other devices or media by wireless or wired in accordance with the control of the control unit 330.
  • the I / O unit 320 includes WiFi (Wireless Fidelity), HDMI (registered trademark) (High-Definition Multimedia Interface), USB (Universal Serial Bus), power connector, I2C (Inter-Integrated Circuit), and the like.
  • WiFi Wireless Fidelity
  • HDMI registered trademark
  • USB Universal Serial Bus
  • power connector I2C (Inter-Integrated Circuit), and the like.
  • I2C Inter-Integrated Circuit
  • the control unit 330 is a processor having a function of controlling each unit.
  • the control unit 330 includes an analysis unit (not shown) and an evaluation unit (not shown).
  • the control unit 330 may receive, for example, a command output from a program or the like stored in the storage unit 350, and may control each unit to operate based on the command. Further, the control unit 330 may generate display information to be displayed on the display device 400 based on, for example, the evaluation result of the mobility of the ossicles and the measurement result of the cochlear microphone potential.
  • the analysis unit performs an FFT analysis based on the voltage output from the measurement probe 100 to obtain a predetermined frequency component value.
  • FFT analysis refers to analysis by fast Fourier transform (Fast Fourier Transform), which can be obtained by analyzing component values for each frequency.
  • the analysis unit may include, for example, an AD converter, and the AD converter may convert the voltage output from the measurement probe 100 into voltage information of a digital signal, and the voltage information may be subjected to FFT analysis.
  • the AD converter an AD conversion circuit built in the information processing apparatus 300 may be used, or an external AD converter may be used.
  • the measurement probe 100 is assumed to be used as a handpiece that is held and measured by a surgeon during the operation, and at that time, it is necessary to consider the influence of camera shake.
  • the predetermined frequency component value may be 5 Hz or more. More preferably, in consideration of the audible range, the vibration frequency of the vibration applied to the ossicles by the measurement probe 100 may be 20 Hz, which is the lower limit of the audible range.
  • the analysis unit may obtain a component value of voltage information equal to the vibration excitation frequency (input frequency to the actuator 116) of the vibration applied to the probe 103 by the actuator 116 as the predetermined frequency component value.
  • the excitation frequency of the actuator is 20 Hz
  • the value of the 20 Hz frequency component of each waveform in the voltage information may be obtained as the predetermined frequency component value.
  • raising the frequency to the audible range may cause cochlear injury and the like, but the influence of camera shake can be reduced without raising the frequency to the audible range.
  • the influence of camera shake can be excluded from the voltage output from the measurement probe 100 by the FFT analysis by the analysis unit, the measurement probe 100 can be measured with the hand held by the operator and can be easily measured during the operation. it can.
  • the result of measuring the mobility of the calibrator imitating the stapes 122 and the ligament 121 supporting the bone with the measurement probe 100 Will be described.
  • the 20 Hz component of the FFT analysis result increases.
  • the mobility of the ossicle is quantified by the increased amount.
  • the frequency component seen at 5 Hz or less is due to camera shake, it can be clearly distinguished from the 20 Hz component. Therefore, even in hand-held measurement using the measurement probe 100, the mobility evaluation system according to the present invention has the effect of camera shake. It is possible to evaluate the ossicular mobility with almost no exposure.
  • the evaluation unit evaluates the mobility (compliance) of the ossicle based on a predetermined frequency component value. Specifically, for example, the evaluation unit fixes the ossicle based on a 20 Hz component value equal to the excitation frequency of vibration such as rotational vibration given to the ossicle by the measurement probe 100 (equal to the input frequency to the actuator 116). Evaluate the degree.
  • the evaluation unit evaluates as normal if the compliance of the 20 Hz component value is within the range of the reciprocal of the spring constant (compliance) of the system composed of the otic bone and ligament of the normal ear, and if out of the range, It may be evaluated as abnormal (the ear ossicles are fixed). Thereby, it can be quantitatively shown that the ossicle is less likely to vibrate.
  • the mobility (compliance) C of the ossicle is a displacement [unit: m] that the actuator 116 gives to the ossicle, and a reaction force P [unit] when the actuator 116 gives the displacement to the ossicle. : N] and the following equation (1).
  • the sound output unit 340 has a function of outputting sound according to the control of the control unit 330.
  • the audio output unit 340 notifies the evaluation result.
  • the audio output unit 340 may be a speaker built in the information processing apparatus 300 or an external audio output device.
  • the storage unit 350 has a function of storing various programs, data, and parameters necessary for the information processing apparatus 300 to operate in accordance with the control of the control unit 330.
  • the storage unit 350 specifically, for example, a main storage device composed of ROM and RAM, an auxiliary storage device composed of a nonvolatile memory, HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory And various other recording media.
  • the storage unit 350 may store the voltage output from the measurement probe 100 under the control of the control unit 330 as voltage information of a digital signal converted into a digital signal via an AD converter (not shown).
  • Measurement probe measures ossicular reaction force.
  • the measurement probe 100 includes a probe 103 and an attachment 120 as an example.
  • the attachment 120 includes, for example, an actuator 116, a piezoelectric sensor 117, a strain gauge 118, and a probe fixing magnet 119.
  • FIG. 3 shows a state where the probe 103 is attached to the attachment 120.
  • the stapes 122 and ligaments 121 constituting the ossicle are modeled and described.
  • the measurement probe 100 causes the actuator 116 to vibrate when the probe 103 is vibrated at 20 Hz by the actuator 116 and the tip of the probe is brought into contact with the stapes 122 constituting the ossicle to be measured.
  • the reaction force applied to the sensor is measured by the piezoelectric sensor 117, and a voltage is output.
  • the displacement applied to the ossicles should be as small as possible from the viewpoint of protection of the cochlea
  • the displacement applied by the actuator 116 of the measurement probe 100 is set to 40 ⁇ m or less, and the actual voltage is applied. Amplify using a charge amplifier or the like (not shown) and output a voltage proportional to the measured reaction force.
  • the displacement of the actuator 116 is measured by the strain gauge 118.
  • FIG. 4 is an exploded perspective view showing an example of the configuration of the measurement probe 100.
  • the configuration of the measurement probe 100 according to the second embodiment includes, as an example, an upper cover 101, a lower cover B102, a probe 103, a lock knob 104, a cord bush 105, a lower cover A106, and a leaf spring 107.
  • the probe 103 is formed in an elongated rod shape.
  • the probe 103 may be an otologic probe or the like, and is supported by these components by being placed on a fulcrum bracket 109 as a fixed fulcrum and a piezoelectric sensor 117 attached to the actuator 116. And attached.
  • the probe 103 which is an otologic probe normally used during surgery, is placed on the fulcrum bracket 109 and the piezoelectric sensor 117 attached to the actuator 116 (that is, the probe 103 is attached to the attachment). Therefore, it is possible to provide an easy-to-use measurement probe that can be easily attached and can measure the quantitative reaction force of the ossicle.
  • the tip of the probe 103 directly touches the ossicle, the probe 103 can be easily replaced and hygiene can be improved with such simple attachment.
  • the probe 103 may be formed with a depression (concave portion) in the vicinity of the center of gravity.
  • the probe 103 may be provided with a concave or concave digging portion such as a spherical shape or a circular shape in the vicinity of its center of gravity in order to be supported by a fulcrum bracket 109 or the like.
  • a convex protrusion may be provided.
  • the probe 103 when the probe 103 is removed from the measurement probe 100 and used, it also serves as an indicator for positioning the operator's handle. When the operator holds the probe 103 with his / her hand, it is visually confirmed. Since the position near the center of gravity of the probe 103 can be easily specified without any problem, a convenient probe can be provided.
  • a 6 mm rectangular protrusion or the like may be provided, and the uneven portions may be fitted together.
  • the probe 103 when the probe 103 is placed on the fulcrum bracket 109, when the probe 103 is horizontal with respect to the longitudinal direction, clearances (for example, on the both sides between the concave portion of the probe 103 and the convex portion of the fulcrum bracket 109, for example, The probe 103 may be disposed on the fulcrum fitting 109 so that a gap of 0.05 mm on one side is formed.
  • the measurement probe 100 may include an elastic body that elastically contacts the probe 103.
  • the elastic body may be any material as long as it is in contact with the probe 103 and imparts an elastic resistance force.
  • a leaf spring may be considered.
  • the leaf spring 107 may be elastically in contact with the probe 103 and give an elastic resistance force.
  • the leaf springs 107a and 107b are screwed to the upper cover 101 by tapping screws 108a and 108b.
  • the probe is fixed. It may be attached so as to contact 103.
  • the piezoelectric sensor 117 is disposed so as to be sandwiched between the probe 103 and the actuator 116, and measures the reaction force applied to the actuator 116 by the probe 103 that vibrates and rotates. The measured reaction force is transmitted to the charge amplifier 112, and the charge amplifier 112 converts the reaction force into a voltage and outputs the voltage. Specifically, the piezoelectric sensor 117 generates a charge signal when the force applied by the actuator 116 to the probe 103 is applied by the probe 103. At this time, the charge amplifier 112 converts the generated charge signal into a voltage and outputs the voltage.
  • the piezoelectric sensor 117 may be a piezoelectric sensor (piezo-type piezoelectric ceramic), a laminated piezoelectric sensor, or the like.
  • the sensor holding part 134 is a member that holds (adheres) the sensor main body part 133.
  • the sensor holding unit 134 may hold one or more round grooves (four round grooves in the example of FIG. 9) to hold the signal line (code) from the sensor main body 133.
  • the charge amplifier 112 is connected to cords 113 and 123, and the cords 113 and 123 are connected to an external device (such as the information processing device 300) through the cord bush 105.
  • the cord bush 105 may be attached to the lower cover A106 using a fixing means such as a hexagon nut fixing rib. With such a configuration, the cord bush 105 can be easily attached.
  • the charge amplifier 112 may be configured separately into (1) an OP amplifier unit that performs analog operation and amplification, and (2) a power supply unit that supplies power to the actuator.
  • a line (signal line) for connecting to the OP amplifier unit for outputting an analog signal and (2) a line (power line) for connecting to the power supply unit and supplying power to the actuator 116 are separated. May be formed.
  • FIG. 5 is a perspective view showing an example of the configuration of the measurement probe 100.
  • FIG. 5 shows a state where the measurement probe 100 according to the second embodiment is used with each component attached as described above.
  • 5A is a perspective view of the measurement probe 100 according to the second embodiment when viewed obliquely from the cord bush 105 side
  • FIG. 5B is a perspective view of the measurement probe 100 according to the second embodiment of the probe 103. It is the perspective view seen diagonally from the front end side.
  • the measurement probe 100 according to the second embodiment includes a lower cover B102 and a lower cover so that an operator can easily grasp the measurement probe 100 by holding the lower cover B102 and the lower cover A106.
  • A106 has a shape that conforms to the shape of a human hand. By setting it as such a structure, the measurement probe 100 can be made into a handpiece, and the measurement probe 100 which is easy to use can be provided.
  • the piezoelectric sensor 117 generates a charge signal by applying the force applied to the probe 103 by the actuator 116 by the force applied when the end of the probe 103 moves up and down.
  • the actuator 116 can give the probe 103 vibration such as rotational vibration having a constant amplitude centered on a fulcrum near the center of gravity.
  • FIG. 8 is a flowchart illustrating an example of processing executed by the mobility evaluation system 700.
  • the present invention is not limited to this, and it is also used when evaluating the cured state of a part of a living body in a fine space. it can. For example, it can also be used when detecting the presence or absence of cancer in the surrounding area by vibrating the stomach wall with an endoscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

This mobility evaluation system for evaluating the mobility of the ossicles, is provided with: a measurement probe comprising a vibration exciter which contacts the ossicles and transmits vibration, an actuator which causes the vibration exciter to vibrate, and a force sensor which measures the reactive force on the actuator when the vibration exciter contacts the ossicles, and which outputs a voltage on the basis of the measurement result; an analysis unit which performs a FFT analysis on the basis of the voltage outputted from the measurement probe and which calculates a prescribed frequency component value; an evaluation unit which evaluates the mobility of the ossicles on the basis of the prescribed frequency component value; and an output unit which outputs the evaluation result.

Description

可動性評価システムおよび可動性評価方法Mobility evaluation system and mobility evaluation method
 本発明は、可動性評価システムおよび可動性評価方法に関し、特に耳小骨の可動性を定量化する可動性評価システムおよび可動性評価方法に関する。 The present invention relates to a mobility evaluation system and a mobility evaluation method, and more particularly to a mobility evaluation system and a mobility evaluation method for quantifying the mobility of the ossicles.
 従来から、耳科手術に関して、中耳疾患に対する診断および治療において、術者が探針により耳小骨を押し動かすことで、耳小骨の可動性を確認する方法が存在する。 Conventionally, with regard to otic surgery, there is a method for confirming the mobility of an ossicle by an operator pushing and moving the ossicle with a probe in diagnosis and treatment for middle ear disease.
 具体的には、中耳は、外耳道に入射された音波を鼓膜の振動に変換し、その機械的振動を耳小骨連鎖によって、内耳蝸牛へ効率よく伝達する役割を果たしている器官であり、耳小骨連鎖は、ツチ骨、キヌタ骨、アブミ骨からなり、靱帯および筋腱によって鼓室内に振動しやすいよう保持されている。これらの靱帯および筋腱が加齢や病変により固着してしまうと、伝音難聴が生じ、中耳疾患となる。 Specifically, the middle ear is an organ that converts sound waves incident on the ear canal into vibrations of the eardrum and efficiently transmits the mechanical vibrations to the inner ear cochlea through the ossicular chain. The chain consists of the tibia, quinuta, and stapes and is held by the ligaments and muscle tendons to vibrate easily in the tympanic chamber. If these ligaments and muscle tendons become stuck due to aging or lesions, conduction hearing loss occurs, resulting in middle ear disease.
 そこで、聴力を回復させるため、外科手術により当該固着を直接取り除き、耳小骨の可動性を正常な状態に復元する必要があるが、術式決定に重要な固着部位の特定と、その程度の判断は術者が探針を用いて押し動かす方法により行われていた。
しかしながら、そのような方法では、明確な基準がなく、術者の経験に依存するところが大きかった。
Therefore, in order to restore hearing, it is necessary to remove the fixation directly by surgery and restore the mobility of the ossicles to a normal state. Was performed by a method in which the surgeon pushes the probe using a probe.
However, such methods do not have clear standards and depend heavily on the experience of the surgeon.
 特許文献1には、耳小骨可動性を定量的に評価する方法として、鼓膜形成術において耳小骨連鎖の可動性を評価する微細手術用器具のための光学式力検出要素であって、光ファイバ測定技術を用いて微細手術用機器またはツールの先端部と診察または治療されるべき組織または臓器との間の、3次元の接触力を検出しモニタリングする方法によって、構造体のz方向軸において当該軸に垂直なx-y方向においてよりも5~20倍高い感度を有する光学式力検出要素を開示している。 Patent Document 1 discloses an optical force detection element for a microsurgical instrument for evaluating the mobility of the ossicular chain in tympanoplasty as a method for quantitatively evaluating the ossicular mobility. By means of a method of detecting and monitoring the three-dimensional contact force between the tip of a microsurgical instrument or tool and the tissue or organ to be examined or treated using measurement techniques, An optical force sensing element is disclosed having a sensitivity of 5 to 20 times higher than in the xy direction perpendicular to the axis.
特開2013-160756号公報JP 2013-160756 A
 しかしながら、特許文献1記載の発明では、耳小骨の可動性の評価結果を情報処理装置に備えられたディスプレイに表示するにあたって、3次元の接触力を検出し情報処理する必要があるため、処理負荷が高く、効率の面で問題がある。また、構造体に固定された光ファイバを用いるため、例えば、衛生面を考慮して、または、光ファイバに不具合が生じた場合などにおいて、測定機器を取り替える必要がある際に、コストの面および交換可能性に問題があり、使い勝手が必ずしも十分でなかった。また、光ファイバの品質を確保するにあたって、光ファイバは破損や汚れ(コンタミネーション)に弱いため、取扱いには慎重にならざるを得ず、使い勝手が必ずしも十分ではなかった。 However, in the invention described in Patent Document 1, when displaying the evaluation result of the mobility of the ossicles on the display provided in the information processing apparatus, it is necessary to detect and process the three-dimensional contact force. However, there is a problem in terms of efficiency. In addition, since an optical fiber fixed to the structure is used, for example, in consideration of hygiene, or when a measurement device needs to be replaced in the case where a failure occurs in the optical fiber, the cost and There was a problem in exchangeability, and usability was not always sufficient. Further, in order to ensure the quality of the optical fiber, the optical fiber is vulnerable to breakage and dirt (contamination), so it must be handled with care, and the usability is not always sufficient.
 そこで、本発明は、耳小骨の可動性を定量的に評価するにあたって、使い勝手の良い可動性評価システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a user-friendly mobility evaluation system for quantitatively evaluating the mobility of the ossicles.
 本発明に係る可動性評価システムは、耳小骨の可動性を評価する可動性評価システムであって、耳小骨に接触し、振動を与える加振装置と、加振装置を振動させるアクチュエータと、加振装置を耳小骨に接触させたときにアクチュエータにかかる反力を測定し、当該測定結果に基づき、電圧を出力する力センサとを含む計測プローブと、計測プローブから出力された電圧に基づき、FFT解析をして、所定の周波数成分値を求める解析部と、所定の周波数成分値に基づき、耳小骨の可動性を評価する評価部と評価結果を出力する出力部とを備える。 A mobility evaluation system according to the present invention is a mobility evaluation system that evaluates the mobility of the ossicle, and includes an excitation device that makes contact with the ossicle and applies vibration, an actuator that vibrates the excitation device, and an excitation device. The reaction force applied to the actuator when the vibration device is brought into contact with the ossicle is measured, and based on the measurement result, the measurement probe including a force sensor that outputs a voltage, and the FFT output based on the voltage output from the measurement probe An analysis unit that performs analysis to obtain a predetermined frequency component value, an evaluation unit that evaluates the mobility of the ossicle based on the predetermined frequency component value, and an output unit that outputs an evaluation result are provided.
 さらに、本発明に係る可動性評価システムにおいて、加振装置は細長い棒状の探針であり、当該探針はその重心付近と端部の2点において、固定支点と力センサにより取り外し可能に支持され、アクチュエータは、探針の重心付近の支点を中心として一定振幅の振動を与え、力センサは、圧電センサおよびチャージアンプを含み、当該圧電センサはアクチュエータが探針に与えている力を探針により加えられることで電荷信号を発生させ、チャージアンプは、当該発生した電荷信号を電圧に変換して出力し、解析部は、ADコンバータを含み、当該ADコンバータで電圧をデジタル信号の電圧情報に変換し、当該電圧情報をFFT解析してもよい。 Furthermore, in the mobility evaluation system according to the present invention, the excitation device is an elongated rod-like probe, and the probe is removably supported by a fixed fulcrum and a force sensor at two points near the center of gravity and at the end. The actuator gives a constant amplitude vibration around a fulcrum near the center of gravity of the probe, the force sensor includes a piezoelectric sensor and a charge amplifier, and the piezoelectric sensor applies the force applied to the probe by the probe. In addition, the charge amplifier generates a charge signal, and the charge amplifier converts the generated charge signal into a voltage and outputs the voltage. The analysis unit includes an AD converter, and the AD converter converts the voltage into voltage information of the digital signal. Then, the voltage information may be subjected to FFT analysis.
 さらに、本発明に係る可動性評価システムにおいて、探針は、重心付近に窪みが形成され、支点は、窪みに嵌めて支持するための、球状に形成されたマグネットを備えてもよい。 Furthermore, in the mobility evaluation system according to the present invention, the probe may be provided with a dent formed in the vicinity of the center of gravity, and the fulcrum may be provided with a spherically shaped magnet to be fitted and supported in the dent.
 さらに、本発明に係る可動性評価システムにおいて、計測プローブは、探針に弾性的に接する弾性体を備えてもよい。 Furthermore, in the mobility evaluation system according to the present invention, the measurement probe may include an elastic body that elastically contacts the probe.
 さらに、本発明に係る可動性評価システムにおいて、アクチュエータは、5Hz以上で探針を振動させ、所定の周波数成分値は、電圧情報における各波形の5Hz以上の周波数成分の値であってもよい。 Furthermore, in the mobility evaluation system according to the present invention, the actuator may vibrate the probe at 5 Hz or more, and the predetermined frequency component value may be a value of a frequency component of 5 Hz or more of each waveform in the voltage information.
 さらに、本発明に係る可動性評価システムは、蝸牛窓または蝸牛窓近傍に設置し、加振装置により耳小骨に振動を与えているときの蝸牛マイクロホン電位を検出する電極と、検出した蝸牛マイクロホン電位を増幅させ、計測する増幅器とを備え、出力部は、計測した蝸牛マイクロホン電位を表示してもよい。 Furthermore, the mobility evaluation system according to the present invention is installed in the cochlear window or in the vicinity of the cochlear window, and detects the cochlear microphone potential when the vibration is applied to the ossicles by the vibration device, and the detected cochlear microphone potential. The output unit may display the measured cochlear microphone potential.
 本発明に係る可動性評価方法は、耳小骨の可動性を評価する可動性評価方法であって、アクチュエータにより振動させた探針の先端を耳小骨に接触させることにより耳小骨に振動を与える加振ステップと、探針の先端を耳小骨に接触させたときのアクチュエータにかかる反力を測定し、当該測定結果に基づき、電圧を出力する電圧測定ステップと、計測プローブから出力された電圧に基づき、FFT解析をして、所定の周波数成分値を求める解析ステップと、所定の周波数成分値に基づき、耳小骨の可動性を評価する評価ステップと、評価結果を出力する出力ステップとを備える。 The mobility evaluation method according to the present invention is a mobility evaluation method for evaluating the mobility of the ossicle, and is a process for applying vibration to the ossicle by bringing the tip of the probe vibrated by the actuator into contact with the ossicle. Based on the oscillation step, the voltage measurement step that outputs the voltage based on the measurement result, and the voltage output from the measurement probe based on the measurement result. , An analysis step for performing a FFT analysis to obtain a predetermined frequency component value, an evaluation step for evaluating the mobility of the ossicle based on the predetermined frequency component value, and an output step for outputting the evaluation result.
 本発明に係る可動性評価システムは、耳小骨の可動性を評価する可動性評価システムであって、耳小骨に接触し、振動を与える加振装置と、加振装置を振動させるアクチュエータと、加振装置を耳小骨に接触させたときにアクチュエータにかかる反力を測定し、当該測定結果に基づき、電圧を出力する力センサとを含む計測プローブと、計測プローブから出力された電圧に基づき、FFT解析をして、所定の周波数成分値を求める解析部と、所定の周波数成分値に基づき、前記耳小骨の可動性を評価する評価部と、評価結果を出力する出力部とを備える可動性評価システムである。これらの構成により、耳小骨の可動性を定量的に評価するにあたって、所定の周波数成分値を求めることができるため、ハンドピースとして用いたときの手振れの影響を低減できる可動性評価システムを提供でき、使い勝手を向上できる。 A mobility evaluation system according to the present invention is a mobility evaluation system that evaluates the mobility of the ossicle, and includes an excitation device that makes contact with the ossicle and applies vibration, an actuator that vibrates the excitation device, and an excitation device. The reaction force applied to the actuator when the vibration device is brought into contact with the ossicle is measured, and based on the measurement result, the measurement probe including a force sensor that outputs a voltage, and the FFT output based on the voltage output from the measurement probe Analyzing to obtain a predetermined frequency component value by analyzing, mobility evaluation unit comprising an evaluation unit for evaluating the mobility of the ossicle based on the predetermined frequency component value, and an output unit for outputting the evaluation result System. With these configurations, a predetermined frequency component value can be obtained when quantitatively evaluating the mobility of the ossicles, so that it is possible to provide a mobility evaluation system that can reduce the effects of camera shake when used as a handpiece. , Improve usability.
 本発明に係る可動性評価システムおよび可動性評価方法は、耳小骨の可動性を定量化するにあたって、使い勝手を向上できる。 The mobility evaluation system and the mobility evaluation method according to the present invention can improve usability in quantifying the mobility of the ossicles.
本発明の一実施形態に係る可動性評価システムの構成を示すシステム図である。It is a system diagram showing a configuration of a mobility evaluation system according to an embodiment of the present invention. 本発明の一実施形態に係る可動性評価システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the mobility evaluation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る計測プローブの内部構造の概念を示す概念図である。It is a conceptual diagram which shows the concept of the internal structure of the measurement probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る計測プローブの分解斜視図である。It is a disassembled perspective view of the measurement probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る計測プローブの斜視図である。It is a perspective view of a measurement probe concerning one embodiment of the present invention. (a)本発明の一実施形態に係る計測プローブの平面図である。(b)本発明の一実施形態に係る計測プローブの側面図である。(A) It is a top view of the measurement probe which concerns on one Embodiment of this invention. (B) It is a side view of the measurement probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る計測プローブの断面図である。It is sectional drawing of the measurement probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る可動性評価システムが実行する処理を示すフローチャートである。It is a flowchart which shows the process which the mobility evaluation system which concerns on one Embodiment of this invention performs. 本発明の一実施形態に係る力センサの斜視図である。It is a perspective view of a force sensor concerning one embodiment of the present invention. 本発明の一実施形態に係る探針及び支点金具の断面図である。It is sectional drawing of the probe and fulcrum metal fitting which concern on one Embodiment of this invention.
 以下、本発明の一実施形態について、図面を参照しながら説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (可動性評価システム700の構成)
 図1は、可動性評価システム700の構成の一例を示すシステム図である。
(Configuration of Mobility Evaluation System 700)
FIG. 1 is a system diagram showing an example of the configuration of the mobility evaluation system 700.
 図1に示すように、可動性評価システム700は、計測プローブ100、情報処理装置300、表示装置400(400a、400b)、増幅器500、電極600を含んで構成される。なお、図1において、説明を簡単にするために、表示装置400を、表示装置400a、400bの2台示しているが、1台でもよくまた、2台以上存在してもよい。なお、以下においては、特に区別の必要がない場合に、表示装置を総称して、表示装置400と記載する。また、可動性評価システム700において、表示装置400と後述する情報処理装置300の音声出力部340を、耳小骨の可動性の評価結果および蝸牛マイクロホン電位の計測結果を出力(表示、音声出力等)するものとして総称して出力部と記載する。出力部は、評価部の評価結果を出力する。 1, the mobility evaluation system 700 includes a measurement probe 100, an information processing device 300, a display device 400 (400a, 400b), an amplifier 500, and an electrode 600. In FIG. 1, two display devices 400a and 400b are shown for ease of explanation, but one display device 400 or 400 or more may be present. In the following, display devices are collectively referred to as a display device 400 unless there is a particular need for distinction. In the mobility evaluation system 700, the display 400 and the audio output unit 340 of the information processing apparatus 300 described later output the evaluation results of the mobility of the ossicles and the measurement results of the cochlear microphone potential (display, audio output, etc.). Collectively referred to as an output section. The output unit outputs the evaluation result of the evaluation unit.
 計測プローブ100は、耳小骨に接触し、振動を与える加振装置と、加振装置を振動させるアクチュエータと、加振装置を耳小骨に接触させたときにアクチュエータにかかる反力を測定し、当該測定結果に基づき、電圧を出力する力センサとを含んで構成される。 The measurement probe 100 measures the reaction force applied to the actuator when the vibrating device is brought into contact with the ossicle, the vibration device that makes contact with the ossicle and vibrates, the actuator that vibrates the vibration device, and the vibration device. And a force sensor that outputs a voltage based on the measurement result.
 計測プローブ100は、一例として、後述するように、加振装置は細長い棒状の探針であり、当該探針はその重心付近と端部の2点において、固定支点と力センサにより支持され、アクチュエータは、当該探針の重心付近の支点を中心として一定振幅の振動を与え、力センサは、圧電センサおよびチャージアンプを含み、当該圧電センサは当該アクチュエータが当該探針に与えている力を当該探針により加えられることで電荷信号を発生させ、当該チャージアンプは、当該発生した電荷信号を電圧に変換して出力してもよい。 For example, as will be described later, the measurement probe 100 is an elongated rod-like probe, and the probe is supported by a fixed fulcrum and a force sensor at two points near the center of gravity and at the end, and an actuator Provides a vibration having a constant amplitude around a fulcrum near the center of gravity of the probe, the force sensor includes a piezoelectric sensor and a charge amplifier, and the piezoelectric sensor applies the force applied to the probe by the actuator. The charge signal may be generated by being applied by a needle, and the charge amplifier may convert the generated charge signal into a voltage and output the voltage.
 情報処理装置300は、具体的には、例えば、計測プローブ100、表示装置400、増幅器500等と有線または無線により接続し、これらの周辺装置および周辺機器からの情報処理要求を受けて情報処理を行い。当該処理の結果を提供するサーバ等のコンピュータ機器であればよく、また、計測プローブ100専用のハードウェア機器でもよい。 Specifically, for example, the information processing device 300 is connected to the measurement probe 100, the display device 400, the amplifier 500, or the like by wire or wirelessly, and receives information processing requests from these peripheral devices and peripheral devices to perform information processing. Done. Any computer device such as a server that provides the result of the processing may be used, or a hardware device dedicated to the measurement probe 100 may be used.
 表示装置400は、情報処理装置300に接続され、情報処理装置300から出力された表示情報を画面表示させるディスプレイ装置であれば、どの様な装置でもよい。表示装置400は、例えば、情報処理装置300が評価した耳小骨の可動性の評価結果を表示する。表示装置400は、一例として、電極600および増幅器500によって、計測された蝸牛マイクロホン電位を表示してもよい。 The display device 400 may be any device as long as it is connected to the information processing device 300 and displays the display information output from the information processing device 300 on the screen. The display device 400 displays, for example, the evaluation result of the ossicular mobility evaluated by the information processing device 300. For example, the display device 400 may display the measured cochlear microphone potential using the electrode 600 and the amplifier 500.
 増幅器500は、電極600が計測した蝸牛マイクロホン電位等の微弱信号を増幅させる差動増幅器等のアンプ機器であればよい。 The amplifier 500 may be an amplifier device such as a differential amplifier that amplifies a weak signal such as a cochlear microphone potential measured by the electrode 600.
 電極600は、蝸牛窓または蝸牛窓近傍に設置でき、蝸牛マイクロホン電位(CM)を計測できる銀電極であればよい。 The electrode 600 may be a silver electrode that can be installed near the cochlear window or near the cochlear window and can measure the cochlear microphone potential (CM).
 図1に示すように、可動性評価システム700は、一例として、計測プローブ100の先端を振動させ、計測対象である耳小骨800に接触させたときに計測プローブ100にかかる反力を電圧として情報処理装置300に伝達し、情報処理装置300は、伝達された電圧に基づき、耳小骨の可動性を評価する。可動性評価システム700は、当該評価結果を、図1に示すように表示装置400bにグラフ等を用いて表示してもよいし、情報処理装置300の音声出力機能によって音声で通知してもよい。このように耳小骨の可動性の評価結果を視覚化することで、術者が術前および術中に、耳小骨の可動性を定量的な評価を確認することができ、術式の決定等を効率良く行うことができる。このような構成によれば、耳小骨可動性を数値と共にグラフ等により画面表示し、必要に応じて音声により術者に通知することにより、術中でも容易に耳小骨の可動性、すなわち、耳小骨の固着状態を診断することができる。 As shown in FIG. 1, the mobility evaluation system 700, as an example, uses the reaction force applied to the measurement probe 100 as voltage information when the tip of the measurement probe 100 is vibrated and brought into contact with the ossicle 800 that is the measurement target. The information processing apparatus 300 evaluates the mobility of the ossicle based on the transmitted voltage. The mobility evaluation system 700 may display the evaluation result on the display device 400b using a graph or the like as shown in FIG. 1, or may notify the voice by the voice output function of the information processing device 300. . By visualizing the evaluation results of the mobility of the ossicles in this way, the operator can confirm the quantitative evaluation of the mobility of the ossicles before and during the operation, and determine the surgical procedure, etc. It can be done efficiently. According to such a configuration, the mobility of the ear ossicles, that is, the ear ossicles can be easily displayed even during the operation by displaying the ossicular mobility with a numerical value and a graph or the like and notifying the operator by voice as necessary. Can be diagnosed.
 図1に示すように、可動性評価システム700は、一例として、蝸牛窓または蝸牛窓近傍に設置し、加振装置により耳小骨に振動を与えているときの蝸牛マイクロホン電位を検出する電極と、検出した蝸牛マイクロホン電位を増幅させ、計測する増幅器とを備え、出力部は、計測した蝸牛マイクロホン電位を表示してもよい。 As shown in FIG. 1, as an example, the mobility evaluation system 700 is installed in the vicinity of the cochlear window or the cochlear window, and an electrode for detecting the cochlear microphone potential when the ossicle is vibrated by the vibration device, An amplifier for amplifying and measuring the detected cochlear microphone potential may be provided, and the output unit may display the measured cochlear microphone potential.
 可動性評価システム700は、より具体的には、図1に示すように、一例として、蝸牛窓801に電極600を設置し、計測プローブ100を鼓膜、耳小骨800または耳小骨の替わりに挿入した人工耳小骨等に接触させ振動を与え、当該振動を与えたときに生じる蝸牛マイクロホン電位を計測してもよい。また、このとき、蝸牛マイクロホン電位を計測する際に耳小骨に与える振動は、125~2000Hz程度の可聴周波数で振動させてもよい。可動性評価システム700は、当該計測した蝸牛マイクロホン電位をグラフに描画等して表示してもよい。 More specifically, as shown in FIG. 1, the mobility evaluation system 700 has an electrode 600 installed on the cochlear window 801, and the measurement probe 100 is inserted instead of the eardrum, the ossicle 800 or the ossicle. A cochlear microphone potential generated when the vibration is applied to an artificial ossicle or the like may be measured. At this time, the vibration applied to the ossicles when measuring the cochlear microphone potential may be oscillated at an audible frequency of about 125 to 2000 Hz. The mobility evaluation system 700 may display the measured cochlear microphone potential on a graph or the like.
 このように蝸牛マイクロホン電位を計測および表示することで、中耳の伝音特性を評価することできる。また、このように蝸牛マイクロホン電位を視覚化することで、例えば、術中に一度中耳の伝音特性を評価して、処置前後に再度中耳の伝音特性を評価することで、蝸牛マイクロホン電位の振幅が十分大きくなったことを確認し、中耳の伝音特性に問題がないことを評価して手術を終了することができ、再手術のリスクを軽減することができる。 計 測 By measuring and displaying the cochlear microphone potential in this way, the sound transmission characteristics of the middle ear can be evaluated. In addition, by visualizing the cochlear microphone potential in this way, for example, by evaluating the middle ear transmission characteristics once during the operation, and by evaluating the middle ear transmission characteristics again before and after the procedure, the cochlear microphone potential It is possible to confirm that the amplitude of the signal has become sufficiently large, evaluate that there is no problem in the sound transmission characteristics of the middle ear, and complete the operation, thereby reducing the risk of reoperation.
(情報処理装置300の構成)
 以下、情報処理装置300の構成について詳細に説明する。
(Configuration of information processing apparatus 300)
Hereinafter, the configuration of the information processing apparatus 300 will be described in detail.
 図2は、情報処理装置300の機能構成の例を示すブロック図である。一例として、図2に示すように、情報処理装置300は、通信部310と、I/O部320と、制御部330と、音声出力部340、記憶部350等を含んで構成される。 FIG. 2 is a block diagram illustrating an example of a functional configuration of the information processing apparatus 300. As an example, as illustrated in FIG. 2, the information processing apparatus 300 includes a communication unit 310, an I / O unit 320, a control unit 330, an audio output unit 340, a storage unit 350, and the like.
 通信部310は、ネットワークを介して、制御部330の制御に従い、周辺装置および他の情報処理装置と通信(各種メッセージの送受信等)を実行する機能を有する。具体的には、例えば、通信部310は、ネットワークを介して、制御部330の制御に従い、各部から伝達されたメッセージを他の装置へ送信し、他の装置からメッセージを受信し、当該受信したメッセージを他の部に伝達する。当該通信は有線、無線のいずれでもよく、また、互いの通信が実行できるのであれば、どのような通信プロトコルを用いてもよい。さらに、当該通信は、セキュリティを確保するために、暗号化処理を施してもよい。ここでいう「メッセージ」には、テキスト、画像(写真、イラスト)、音声、動画等およびこれらに付帯する情報(テキスト、画像、音声、動画に付帯する日付および位置等に関する情報)が含まれる。 The communication unit 310 has a function of performing communication (transmission and reception of various messages) with peripheral devices and other information processing devices under the control of the control unit 330 via the network. Specifically, for example, the communication unit 310 transmits a message transmitted from each unit to another device, receives a message from the other device, and receives the message according to the control of the control unit 330 via the network. Communicate the message to other parts. The communication may be either wired or wireless, and any communication protocol may be used as long as mutual communication can be performed. Further, the communication may be subjected to an encryption process in order to ensure security. The “message” here includes text, images (photos, illustrations), sound, moving images, and the like, and information attached thereto (information about dates, positions, etc. attached to the text, images, sounds, and moving images).
 I/O部320は、制御部330の制御に従い、他の機器、他の装置または媒体と、無線または有線による接続する機能を有する。I/O部320は、具体的には、WiFi(Wireless Fidelity)、HDMI(登録商標)(High-Definition Multimedia Interface)、USB(Universal Serial Bus)、電源コネクタ、I2C(Inter-Integrated Circuit)等の接続装置をいう。 The I / O unit 320 has a function of connecting to other devices, other devices or media by wireless or wired in accordance with the control of the control unit 330. Specifically, the I / O unit 320 includes WiFi (Wireless Fidelity), HDMI (registered trademark) (High-Definition Multimedia Interface), USB (Universal Serial Bus), power connector, I2C (Inter-Integrated Circuit), and the like. A connected device.
 制御部330は、各部を制御する機能を有するプロセッサである。制御部330は、解析部(不図示)および評価部(不図示)を含んで構成される。制御部330は、具体的には、例えば、記憶部350に記憶されているプログラム等から出力された命令を受信し、当該命令に基づいて、各部を動作させるよう制御してもよい。また、制御部330は、例えば、耳小骨の可動性の評価結果、蝸牛マイクロホン電位の計測結果に基づいて、表示装置400に表示する表示情報を生成してもよい。 The control unit 330 is a processor having a function of controlling each unit. The control unit 330 includes an analysis unit (not shown) and an evaluation unit (not shown). Specifically, the control unit 330 may receive, for example, a command output from a program or the like stored in the storage unit 350, and may control each unit to operate based on the command. Further, the control unit 330 may generate display information to be displayed on the display device 400 based on, for example, the evaluation result of the mobility of the ossicles and the measurement result of the cochlear microphone potential.
 解析部は、計測プローブ100から出力された電圧に基づき、FFT解析をして、所定の周波数成分値を求める。ここでいう「FFT解析」とは、高速フーリエ変換(Fast Fourier Transform)による解析をいい、周波数ごとの成分値を解析して求めることができる。解析部は、具体的には、例えば、ADコンバータを含み、計測プローブ100から出力された電圧を、当該ADコンバータがデジタル信号の電圧情報に変換し、当該電圧情報をFFT解析してもよい。ADコンバータは、情報処理装置300に内蔵するAD変換回路を用いてもよいし、外付けのAD変換器を用いてもよい。 The analysis unit performs an FFT analysis based on the voltage output from the measurement probe 100 to obtain a predetermined frequency component value. Here, “FFT analysis” refers to analysis by fast Fourier transform (Fast Fourier Transform), which can be obtained by analyzing component values for each frequency. Specifically, the analysis unit may include, for example, an AD converter, and the AD converter may convert the voltage output from the measurement probe 100 into voltage information of a digital signal, and the voltage information may be subjected to FFT analysis. As the AD converter, an AD conversion circuit built in the information processing apparatus 300 may be used, or an external AD converter may be used.
 本発明に係る可動性評価システムにおいて、計測プローブ100は、術中に術者が手で保持して計測するハンドピースとして用いることを想定しており、そのとき、手振れによる影響を考慮する必要がある。計測プローブ100から出力された電圧に及ぼす手振れの影響を低減するために、一例として、当該所定の周波数成分値を5Hz以上としてもよい。また、さらに好ましくは、可聴域を考慮して、計測プローブ100が耳小骨に与える振動の加振周波数を可聴域の下限である20Hzとしてもよい。このとき、解析部は、アクチュエータ116が探針103に与える振動の加振周波数(アクチュエータ116への入力周波数)と等しい電圧情報の成分値を、当該所定の周波数成分値として求めてもよい。具体的には、例えば、解析部において、アクチュエータの加振周波数を20Hzとした場合、電圧情報における各波形の20Hzの周波数成分の値を、当該所定の周波数成分値として求めてよい。これにより、可聴域まで周波数をあげると蝸牛障害等を引き起こす可能性があるが、可聴域まで周波数をあげることなく手振れの影響を低減することができる。換言すれば、解析部によるFFT解析によって、計測プローブ100が出力する電圧から手振れの影響を除外できるため、計測プローブ100を術者が手で保持した状態で計測可能であり、術中に簡便に計測できる。 In the mobility evaluation system according to the present invention, the measurement probe 100 is assumed to be used as a handpiece that is held and measured by a surgeon during the operation, and at that time, it is necessary to consider the influence of camera shake. . In order to reduce the influence of camera shake on the voltage output from the measurement probe 100, for example, the predetermined frequency component value may be 5 Hz or more. More preferably, in consideration of the audible range, the vibration frequency of the vibration applied to the ossicles by the measurement probe 100 may be 20 Hz, which is the lower limit of the audible range. At this time, the analysis unit may obtain a component value of voltage information equal to the vibration excitation frequency (input frequency to the actuator 116) of the vibration applied to the probe 103 by the actuator 116 as the predetermined frequency component value. Specifically, for example, in the analysis unit, when the excitation frequency of the actuator is 20 Hz, the value of the 20 Hz frequency component of each waveform in the voltage information may be obtained as the predetermined frequency component value. As a result, raising the frequency to the audible range may cause cochlear injury and the like, but the influence of camera shake can be reduced without raising the frequency to the audible range. In other words, since the influence of camera shake can be excluded from the voltage output from the measurement probe 100 by the FFT analysis by the analysis unit, the measurement probe 100 can be measured with the hand held by the operator and can be easily measured during the operation. it can.
 ここで、本発明に係る可動性評価システムのFFT解析に関して、図3に示すようにアブミ骨122とそれを支える靱帯121を模した校正器の可動性を、計測プローブ100によって計測した場合の結果を用いて説明する。当該校正器を計測プローブ100によって計測した結果、当該校正器の可動性が低下する(ばね定数が大きくなる)と、FFT解析の結果の20Hz成分が増加する。当該増加量により、耳小骨の可動性を定量化する。5Hz以下に見られる周波数成分は手振れによるものであるが、20Hz成分とは明確に区別可能であるため、計測プローブ100を用いて手持ち計測でも、本発明に係る可動性評価システムは、手振れによる影響をほとんど受けずに耳小骨可動性の評価が可能である。 Here, with respect to the FFT analysis of the mobility evaluation system according to the present invention, as shown in FIG. 3, the result of measuring the mobility of the calibrator imitating the stapes 122 and the ligament 121 supporting the bone with the measurement probe 100. Will be described. As a result of measuring the calibrator with the measurement probe 100, if the mobility of the calibrator decreases (the spring constant increases), the 20 Hz component of the FFT analysis result increases. The mobility of the ossicle is quantified by the increased amount. Although the frequency component seen at 5 Hz or less is due to camera shake, it can be clearly distinguished from the 20 Hz component. Therefore, even in hand-held measurement using the measurement probe 100, the mobility evaluation system according to the present invention has the effect of camera shake. It is possible to evaluate the ossicular mobility with almost no exposure.
 評価部は、所定の周波数成分値に基づき、耳小骨の可動性(コンプライアンス)を評価する。具体的には、例えば、評価部は、計測プローブ100が耳小骨に与える回転振動等の振動の加振周波数と等しい(アクチュエータ116への入力周波数と等しい)20Hz成分値に基づき、耳小骨の固着度合を評価する。評価部は、例えば、当該20Hz成分値のコンプライアンスが、正常耳の耳小骨および靱帯からなる系のばね定数の逆数(コンプライアンス)の範囲内であれば、正常と評価し、範囲外であれば、異常(耳小骨が固着している)と評価してもよい。これにより、耳小骨が振動しにくくなっていることを定量的に示すことができる。 The evaluation unit evaluates the mobility (compliance) of the ossicle based on a predetermined frequency component value. Specifically, for example, the evaluation unit fixes the ossicle based on a 20 Hz component value equal to the excitation frequency of vibration such as rotational vibration given to the ossicle by the measurement probe 100 (equal to the input frequency to the actuator 116). Evaluate the degree. The evaluation unit, for example, evaluates as normal if the compliance of the 20 Hz component value is within the range of the reciprocal of the spring constant (compliance) of the system composed of the otic bone and ligament of the normal ear, and if out of the range, It may be evaluated as abnormal (the ear ossicles are fixed). Thereby, it can be quantitatively shown that the ossicle is less likely to vibrate.
 一例として、耳小骨の可動性(コンプライアンス)Cは、アクチュエータ116が耳小骨に与える変位をD[単位:m]と、アクチュエータ116が耳小骨に当該変位を与えた際の反力をP[単位:N]とを用いて、次の式(1)により求めることができる。 As an example, the mobility (compliance) C of the ossicle is a displacement [unit: m] that the actuator 116 gives to the ossicle, and a reaction force P [unit] when the actuator 116 gives the displacement to the ossicle. : N] and the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 音声出力部340は、制御部330の制御に従い、音声を出力する機能を有する。音声出力部340は、評価結果を通知する。音声出力部340は、情報処理装置300に内蔵されたスピーカであってもよいし、外付けの音声出力デバイスであってもよい。 The sound output unit 340 has a function of outputting sound according to the control of the control unit 330. The audio output unit 340 notifies the evaluation result. The audio output unit 340 may be a speaker built in the information processing apparatus 300 or an external audio output device.
 記憶部350は、制御部330の制御に従い、情報処理装置300が動作するうえで必要とする各種プログラム、データおよびパラメータを記憶する機能を有する。記憶部350、具体的には、例えば、ROM、RAMで構成される主記憶装置、不揮発性メモリ等で構成される補助記憶装置、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリ等各種の記録媒体によって構成される。記憶部350は、例えば、制御部330の制御に従い、計測プローブ100から出力された電圧を、ADコンバータ(不図示)を介してデジタル信号に変換したデジタル信号の電圧情報として記憶してもよい。 The storage unit 350 has a function of storing various programs, data, and parameters necessary for the information processing apparatus 300 to operate in accordance with the control of the control unit 330. The storage unit 350, specifically, for example, a main storage device composed of ROM and RAM, an auxiliary storage device composed of a nonvolatile memory, HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory And various other recording media. For example, the storage unit 350 may store the voltage output from the measurement probe 100 under the control of the control unit 330 as voltage information of a digital signal converted into a digital signal via an AD converter (not shown).
(計測プローブ100の構成)
(実施形態1)
 以下、計測プローブ100の構成の一実施形態(実施形態1)について詳細に説明する。
 図3は、実施形態1に係る計測プローブ100の内部構造の概念の一例を示す概念図である。実施形態1は、本発明に係る計測プローブ100の原理を構成する態様の形態である。
(Configuration of measurement probe 100)
(Embodiment 1)
Hereinafter, an embodiment (Embodiment 1) of the configuration of the measurement probe 100 will be described in detail.
FIG. 3 is a conceptual diagram illustrating an example of the concept of the internal structure of the measurement probe 100 according to the first embodiment. Embodiment 1 is a form of the aspect which comprises the principle of the measurement probe 100 which concerns on this invention.
 計測プローブは、耳小骨反力を計測する。図3に示すように、計測プローブ100は、一例として、探針103およびアタッチメント120を含んで構成される。また、アタッチメント120は、一例として、アクチュエータ116、圧電センサ117、ひずみゲージ118、探針用固定用磁石119を含んで構成される。図3は、探針103をアタッチメント120に取り付けた状態を示す。図3において、説明のため、耳小骨を構成するアブミ骨122と靱帯121をモデル化して記載する。 Measurement probe measures ossicular reaction force. As shown in FIG. 3, the measurement probe 100 includes a probe 103 and an attachment 120 as an example. The attachment 120 includes, for example, an actuator 116, a piezoelectric sensor 117, a strain gauge 118, and a probe fixing magnet 119. FIG. 3 shows a state where the probe 103 is attached to the attachment 120. In FIG. 3, for the sake of explanation, the stapes 122 and ligaments 121 constituting the ossicle are modeled and described.
 探針103は、具体的には、耳科用探針を用いてもよい。このように、実際に耳科手術等で使用している探針を用いることで、術者が違和感なく耳小骨反力を計測することができる。アクチュエータ116は、具体的には、探針を駆動するための変位拡大機構付き圧電アクチュエータ等を用いればいい。圧電センサ117は、具体的には、圧電センサ(ピエゾ式圧電セラミックス)等を用いればよい。 As the probe 103, specifically, an otologic probe may be used. Thus, by using the probe that is actually used in otologic surgery or the like, the surgeon can measure the reaction force of the ossicle without a sense of incongruity. Specifically, the actuator 116 may be a piezoelectric actuator with a displacement magnifying mechanism for driving the probe. Specifically, the piezoelectric sensor 117 may be a piezoelectric sensor (piezoelectric piezoelectric ceramic) or the like.
 探針103は、その重心付近と端部の2点において、それぞれ固定支点と圧電センサ117により取り外し可能に支持されており、当該支持部分には、探針固定用磁石119を用いる。このように、探針103をアタッチメント120に取り付ける構成とすることにより、探針103の脱着が容易となり、例えば探針103のみ交換したり滅菌処理を施したりすることができるため、衛生面を向上させることができる。 The probe 103 is removably supported by a fixed fulcrum and a piezoelectric sensor 117 at two points near the center of gravity and at the end thereof, and a probe fixing magnet 119 is used for the support part. In this way, by adopting a configuration in which the probe 103 is attached to the attachment 120, the probe 103 can be easily attached and detached. For example, only the probe 103 can be replaced or sterilized, thereby improving hygiene. Can be made.
 計測プローブ100は、具体的には、例えば、探針103先端の側部を耳小骨に当てアクチュエータ116により重心付近の支点を中心として一定振幅の回転振動等の振動を探針103に与え、圧電センサ117により、アクチュエータ116が与えている力(すなわち探針103からの反力)を測定し、電圧を出力する。このような構成とすることで、アクチュエータ116による探針103の動きが、術者が通常計測時に行う動きと類似しているため、違和感なく耳小骨反力を計測することができる。 Specifically, for example, the measurement probe 100 applies a vibration such as rotational vibration with a constant amplitude around the fulcrum near the center of gravity to the probe 103 by the actuator 116 by placing the side of the tip of the probe 103 against the ossicle, and piezoelectrically The sensor 117 measures the force applied by the actuator 116 (that is, the reaction force from the probe 103) and outputs a voltage. By adopting such a configuration, the movement of the probe 103 by the actuator 116 is similar to the movement performed by the operator during normal measurement, so that the ossicular reaction force can be measured without a sense of incongruity.
 計測プローブ100は、より具体的には、例えば、アクチュエータ116により、探針103を20Hzで振動させ、探針先端を計測対象の耳小骨を構成するアブミ骨122に接触させたときに、アクチュエータ116にかかる反力を圧電センサ117で測定して、電圧を出力する。ここで、当該出力した電圧は、耳小骨へ与える変位は蝸牛の保護の観点からすると可能な限り微小であったほうがよいため、計測プローブ100のアクチュエータ116が与える変位を40μm以下とし、実際の手術手技と同程度にし、チャージアンプ等(不図示)を用いて増幅して、当該測定した反力に比例した電圧を出力する。なお、アクチュエータ116の変位は、ひずみゲージ118により計測する。 More specifically, for example, the measurement probe 100 causes the actuator 116 to vibrate when the probe 103 is vibrated at 20 Hz by the actuator 116 and the tip of the probe is brought into contact with the stapes 122 constituting the ossicle to be measured. The reaction force applied to the sensor is measured by the piezoelectric sensor 117, and a voltage is output. Here, since the displacement applied to the ossicles should be as small as possible from the viewpoint of protection of the cochlea, the displacement applied by the actuator 116 of the measurement probe 100 is set to 40 μm or less, and the actual voltage is applied. Amplify using a charge amplifier or the like (not shown) and output a voltage proportional to the measured reaction force. The displacement of the actuator 116 is measured by the strain gauge 118.
(実施形態2)
 以下、計測プローブ100の構成の一実施形態(実施形態2)について詳細に説明する。
(Embodiment 2)
Hereinafter, an embodiment (Embodiment 2) of the configuration of the measurement probe 100 will be described in detail.
 図4は、計測プローブ100の構成の一例を示す分解斜視図である。
 実施形態2に係る計測プローブ100の構成は、図4に示すように、一例として、上カバー101、下カバーB102、探針103、ロック用ツマミ104、コードブッシュ105、下カバーA106、板バネ107(107a、107b)、タッピングネジ108(108a、108b、108c、108d、108e、108f、108g、108h)、支点用金具109、Eリング110、アクチュエータ116、チャージアンプ112、コード113、123、アクチュエータ用ホルダ114、標準ネジ115(115a、115b、115c)、圧電センサ117、支点用金具固定ピン111、を含んで構成される。実施形態2に係る計測プローブ100の構成において、アタッチメントは、支点用金具109、アクチュエータ116、圧電センサ117を含んで構成される。
FIG. 4 is an exploded perspective view showing an example of the configuration of the measurement probe 100.
As shown in FIG. 4, the configuration of the measurement probe 100 according to the second embodiment includes, as an example, an upper cover 101, a lower cover B102, a probe 103, a lock knob 104, a cord bush 105, a lower cover A106, and a leaf spring 107. (107a, 107b), tapping screw 108 (108a, 108b, 108c, 108d, 108e, 108f, 108g, 108h), fulcrum bracket 109, E ring 110, actuator 116, charge amplifier 112, cords 113, 123, for actuator It includes a holder 114, standard screws 115 (115a, 115b, 115c), a piezoelectric sensor 117, and a fulcrum bracket fixing pin 111. In the configuration of the measurement probe 100 according to the second embodiment, the attachment includes a fulcrum bracket 109, an actuator 116, and a piezoelectric sensor 117.
 探針103は、細長い棒状で形成されている。探針103は、具体的には、耳科用探針等を用いればよく、固定支点として支点用金具109と、アクチュエータ116に取り付けられる圧電センサ117とに載置することでこれらの部品に支持され取り付けられる。これにより、通常術中に用いられる耳科用探針である探針103を、支点用金具109と、アクチュエータ116に取り付けられる圧電センサ117とに載置する(すなわち、探針103をアタッチメントに取り付ける)だけでよく、簡易に取り付けられて、定量的な耳小骨反力を計測することができ、使い勝手のよい計測プローブを提供することができる。また、探針103の先端は直接耳小骨に触れるため、このように簡易な取り付けであれば、探針103の交換もしやすく衛生面の向上を図ることもできる。 The probe 103 is formed in an elongated rod shape. Specifically, the probe 103 may be an otologic probe or the like, and is supported by these components by being placed on a fulcrum bracket 109 as a fixed fulcrum and a piezoelectric sensor 117 attached to the actuator 116. And attached. As a result, the probe 103, which is an otologic probe normally used during surgery, is placed on the fulcrum bracket 109 and the piezoelectric sensor 117 attached to the actuator 116 (that is, the probe 103 is attached to the attachment). Therefore, it is possible to provide an easy-to-use measurement probe that can be easily attached and can measure the quantitative reaction force of the ossicle. In addition, since the tip of the probe 103 directly touches the ossicle, the probe 103 can be easily replaced and hygiene can be improved with such simple attachment.
 また、探針103は、重心付近に窪み(凹状の部分)が形成されてもよい。探針103は、具体的には、例えば、図10に示すように、支点金具109等で支持するために、その重心付近に球状又は円形状等の凹状の掘り込み部分を設けてもよく、また、逆に、凸状の突起部分を設けてもよい。この様な構成とすることで、支持部材(支点金具109等)に対して座りよく設置でき、また、回転方向にブレが生じることを防ぐことができる。また、探針103を計測プローブ100から取り外して使用する際にも、術者の持ち手の位置決めのためのしるしにもなり、術者が手で探針103を持つ際に、目視で確認しなくとも簡単に探針103の重心の付近の位置が特定できるため、使い勝手のよい探針を提供することができる。 Further, the probe 103 may be formed with a depression (concave portion) in the vicinity of the center of gravity. Specifically, for example, as shown in FIG. 10, the probe 103 may be provided with a concave or concave digging portion such as a spherical shape or a circular shape in the vicinity of its center of gravity in order to be supported by a fulcrum bracket 109 or the like. Conversely, a convex protrusion may be provided. With such a configuration, it is possible to satisfactorily install the support member (the fulcrum bracket 109 or the like), and it is possible to prevent the occurrence of blurring in the rotation direction. Further, when the probe 103 is removed from the measurement probe 100 and used, it also serves as an indicator for positioning the operator's handle. When the operator holds the probe 103 with his / her hand, it is visually confirmed. Since the position near the center of gravity of the probe 103 can be easily specified without any problem, a convenient probe can be provided.
 支点用金具109と探針103の取り付けについて、一例として、支点用金具109の支点が計測プローブ100の長手方向に山形状を形成し、探針103の短手方向に、凹部(例えば、探針103の長さが160mmで、支点用金具109から圧電センサ117の計測点(探針103がアクチュエータ116に取り付けられる圧電センサ117に載置されて、計測される点)まで55mmの場合、幅1.1mm、深さ0.6mmの矩形状の溝など)を設け、一方、支点用金具109には凸部(例えば、上記探針103の溝に対して、幅1.0m、高さ0.6mmの矩形状の出っ張りなど)を設け、当該凹凸部を嵌め合わせることで取り付けてもよい。さらに、探針103を支点用金具109に載置した時に、探針103が長手方向に対して水平時には、探針103の凹部と支点用金具109の凸部の間の両側にクリアランス(例えば、片側0.05mmの隙間)ができるように探針103を支点用金具109に配置してもよい。このような構成により、アクチュエータ116により探針103に回転振動が与えられ、探針103が傾いた際(例えば支点用金具109が探針103を支える支点(回転中心)を中心に傾き1°で傾いた時など)に、探針103は支点用金具109と干渉し、当該干渉により、探針103の先端が短手方向にそって、上下に精度よく動くことができ(例えば、上記傾き1°で傾いた際には、tan1°×105mm=約1.8mm動くことができる)、かつ、探針103の取り外し取り付けを容易とすることができる。 As an example of attachment of the fulcrum bracket 109 and the probe 103, the fulcrum of the fulcrum bracket 109 forms a mountain shape in the longitudinal direction of the measurement probe 100, and a recess (for example, a probe) When the length of 103 is 160 mm and the distance from the fulcrum fitting 109 to the measurement point of the piezoelectric sensor 117 (the point where the probe 103 is mounted on the piezoelectric sensor 117 attached to the actuator 116 and measured) is 55 mm, the width 1 0.1 mm and a 0.6 mm depth rectangular groove, etc., while the fulcrum fitting 109 has a protrusion (for example, a width of 1.0 m and a height of 0. A 6 mm rectangular protrusion or the like may be provided, and the uneven portions may be fitted together. Further, when the probe 103 is placed on the fulcrum bracket 109, when the probe 103 is horizontal with respect to the longitudinal direction, clearances (for example, on the both sides between the concave portion of the probe 103 and the convex portion of the fulcrum bracket 109, for example, The probe 103 may be disposed on the fulcrum fitting 109 so that a gap of 0.05 mm on one side is formed. With such a configuration, rotational vibration is applied to the probe 103 by the actuator 116, and when the probe 103 is tilted (for example, the fulcrum metal fitting 109 has a tilt of 1 ° around the fulcrum (rotation center) that supports the probe 103. When the probe is tilted, the probe 103 interferes with the fulcrum bracket 109, and the interference allows the tip of the probe 103 to move up and down along the short direction (for example, the inclination 1). When tilted at 0 °, tan 1 ° × 105 mm = about 1.8 mm can be moved), and the probe 103 can be easily attached and detached.
 また、支点用金具109と探針103の取り付けの別の一例について、図10を用いて説明する。図10は、支点用金具109及び探針103の取付方法の一例を説明する支点用金具109及び探針103の図6(a)のX-X’線断面図の一部である。支点用金具109は、図10に示すように、球状に形成したマグネット部136と、マグネット部136を嵌め込んで支持する土台部135を含んで構成してもよい。また、探針103は、図10に示すように、一部に、マグネット部136を嵌め込むようにSR形状の掘り込み加工を設けてもよい。マグネット部136には、例えば、上から薄板状のアルミウムを被せて形成してもよい。この様な構成とすることで、探針103は、球状のマグネット136によって点支持で支持されるため、探針103がアクチュエータ116により回転振動を与えられた際に並進運動方向にブレが生じず回転方向に柔軟に動くことができ、かつ、探針103の計測プローブ100からの取り外しと計測プローブ100への取り付けを容易とすることができる。さらに、この様な構成とすることで、マグネット136の磁力で探針103を支点用金具109に固定することができるため、探針103の計測プローブ100からの脱落を防止することができる。 Further, another example of attaching the fulcrum bracket 109 and the probe 103 will be described with reference to FIG. FIG. 10 is a partial cross-sectional view of the fulcrum bracket 109 and the probe 103 taken along the line X-X ′ in FIG. 6A for explaining an example of a method of attaching the fulcrum bracket 109 and the probe 103. As shown in FIG. 10, the fulcrum metal fitting 109 may include a magnet part 136 formed in a spherical shape and a base part 135 that fits and supports the magnet part 136. Further, as shown in FIG. 10, the probe 103 may be provided with an SR-shaped digging process so that the magnet portion 136 is fitted into a part thereof. For example, the magnet portion 136 may be formed by covering thin plate-like aluminum from above. With such a configuration, the probe 103 is supported by the spherical magnet 136 with point support, so that when the probe 103 is subjected to rotational vibration by the actuator 116, no blurring occurs in the translational movement direction. The probe 103 can move flexibly in the rotation direction, and the probe 103 can be easily detached from the measurement probe 100 and attached to the measurement probe 100. Furthermore, with such a configuration, the probe 103 can be fixed to the fulcrum bracket 109 by the magnetic force of the magnet 136, and therefore, the probe 103 can be prevented from falling off from the measurement probe 100.
 計測プローブ100は、探針103に弾性的に接する弾性体を備えてもよい。当該弾性体は、探針103に接して弾性抵抗力を付与するものであればどの様なものでもよく、例えば、板バネなどが考えられる。本例では、一例として、板バネ107を使用した例として説明する。板バネ107は、探針103に弾性的に接して、弾性抵抗力を付与してもよい。具体的には、板バネ107a、107bは、図4に示すように、タッピングネジ108a、108bによって上カバー101にネジ留めされており、上カバー101を下カバーB102にセットした際に、探針103に接するように取り付けられていてもよい。このような構成とすることで、探針103の慣性項を打ち消すことができ、精度よく耳小骨反力を計測することができる。また、このような構成とすることにより、板バネ107は交換可能となるため、使い勝手のよい計測プローブを提供することができる。 The measurement probe 100 may include an elastic body that elastically contacts the probe 103. The elastic body may be any material as long as it is in contact with the probe 103 and imparts an elastic resistance force. For example, a leaf spring may be considered. In this example, as an example, a description will be given of an example in which the leaf spring 107 is used. The leaf spring 107 may be elastically in contact with the probe 103 and give an elastic resistance force. Specifically, as shown in FIG. 4, the leaf springs 107a and 107b are screwed to the upper cover 101 by tapping screws 108a and 108b. When the upper cover 101 is set on the lower cover B102, the probe is fixed. It may be attached so as to contact 103. With such a configuration, the inertial term of the probe 103 can be canceled and the ossicular reaction force can be accurately measured. Further, by adopting such a configuration, the leaf spring 107 can be exchanged, so that a user-friendly measurement probe can be provided.
 支点用金具109は、探針103の固定支点として、図4に示すように、支点用金具固定ピン111により下カバーA106にピン留めされて取り付けられていてもよい。 As shown in FIG. 4, the fulcrum bracket 109 may be attached to the lower cover A 106 by a fulcrum bracket fixing pin 111 as a fixed fulcrum of the probe 103.
 また、支点用金具109は、図10に示すように、球状に形成したマグネット136と、マグネット136の重心付近の窪みに嵌め込んで支持する土台135を含んで構成してもよい。 Further, as shown in FIG. 10, the fulcrum metal fitting 109 may include a spherical magnet 136 and a base 135 that is fitted and supported in a recess near the center of gravity of the magnet 136.
 圧電センサ117は、探針103とアクチュエータ116に挟み込まれるように配置され、回転振動する探針103によってアクチュエータ116にかかる反力を測定する。測定した反力はチャージアンプ112に伝達され、チャージアンプ112が当該反力を電圧に変換して出力する。圧電センサ117は、具体的には、アクチュエータ116が探針103に与えている力が探針103により加えられることで電荷信号を発生させる。このとき、チャージアンプ112は、当該発生した電荷信号を電圧に変換して出力する。圧電センサ117は、具体的には、圧電センサ(ピエゾ式圧電セラミックス)、積層圧電センサ等を用いればよい。 The piezoelectric sensor 117 is disposed so as to be sandwiched between the probe 103 and the actuator 116, and measures the reaction force applied to the actuator 116 by the probe 103 that vibrates and rotates. The measured reaction force is transmitted to the charge amplifier 112, and the charge amplifier 112 converts the reaction force into a voltage and outputs the voltage. Specifically, the piezoelectric sensor 117 generates a charge signal when the force applied by the actuator 116 to the probe 103 is applied by the probe 103. At this time, the charge amplifier 112 converts the generated charge signal into a voltage and outputs the voltage. Specifically, the piezoelectric sensor 117 may be a piezoelectric sensor (piezo-type piezoelectric ceramic), a laminated piezoelectric sensor, or the like.
 また、圧電センサ117は、一例として、探針103を点支持ではなく、面又は線で支持してもよい。圧電センサ117が探針103を線で接触して支持する例について図9を用いて説明する。図9は、圧電センサ117の一例を示す斜視図である。圧電センサ117は、図9に示すように、圧電センサ117は、横ぶれ防止機構部131、マグネット部132、センサ本体部133、センサ保持部134、含んで構成してもよい。 Further, as an example, the piezoelectric sensor 117 may support the probe 103 not by point support but by a surface or a line. An example in which the piezoelectric sensor 117 supports the probe 103 in contact with a line will be described with reference to FIG. FIG. 9 is a perspective view showing an example of the piezoelectric sensor 117. As shown in FIG. 9, the piezoelectric sensor 117 may include a lateral shake prevention mechanism unit 131, a magnet unit 132, a sensor main body unit 133, and a sensor holding unit 134.
 横ぶれ防止機構部131は、探針103の横ぶれを防止するための部材である。横ぶれ防止機構部131は、例えば、略円板状の部材であり、その上部には、略中央に、凹状の両サイドの高さを高くした探針受けを形成(言い換えれば、中央サイドに半円柱状の突起部分を、両サイドに中央サイドの突起部分より高さを高くした左右ブレ防止の突起部分を形成)してもよい。この様な構成により、マグネット部132の磁力によって、取り外し可能かつ拘束力をもって支持しつつ、両サイドに形成された突起部分の傾斜面により、探針103の芯を自動的にマグネット部132に対して揃え、探針103の横ぶれを防止することができる。さらに、この様な構成により、線接触で支持されるため、センサの応答が点接触より向上させることができ、精度よく探針103から加えられる力を測定することができる。横ぶれ防止機構部131の材質は、軽量で一定の剛性があればどのような材質でもよく、例えばステンレス等を用い考えられる。 The side shake prevention mechanism 131 is a member for preventing the side shake of the probe 103. The side shake prevention mechanism 131 is, for example, a substantially disk-shaped member, and a probe receiver with a height of both concave sides is formed at the upper part thereof (in other words, at the center side). Semi-cylindrical protrusions may be formed on both sides with left and right anti-shake protrusions that are higher in height than the protrusions on the central side. With such a configuration, the core of the probe 103 is automatically moved with respect to the magnet unit 132 by the inclined surfaces of the protruding portions formed on both sides while being supported by the magnetic force of the magnet unit 132 so that it can be removed and restrained. Therefore, the horizontal displacement of the probe 103 can be prevented. Further, since the structure is supported by line contact, the response of the sensor can be improved compared to point contact, and the force applied from the probe 103 can be measured with high accuracy. The material of the side shake prevention mechanism 131 may be any material as long as it is lightweight and has a certain rigidity, and for example, stainless steel or the like can be used.
 マグネット部132は、探針103を、磁力によって取り外し可能かつ拘束力をもって横ぶれ防止機構部131の凹状の探針受けに支持させる部材である。マグネット部132の材質は、探針103を、磁力によって、取り外し可能かつ拘束力を与えるものであれば、どの様な材質でもよく、例えば、ネオジム磁石等を用いることが考えられる。 The magnet unit 132 is a member that allows the probe 103 to be removed by a magnetic force and supported by the concave probe receiver of the lateral shake prevention mechanism unit 131 with a binding force. The material of the magnet part 132 may be any material as long as the probe 103 can be removed by magnetic force and gives a restraining force. For example, a neodymium magnet or the like can be used.
 センサ本体部133は、圧電センサ117のセンサ本体である。センサ本体部133は、圧電効果を有する圧電素子を有し、探針103により加えられる力を電荷信号に変換して出力する。 The sensor main body 133 is a sensor main body of the piezoelectric sensor 117. The sensor main body 133 has a piezoelectric element having a piezoelectric effect, converts the force applied by the probe 103 into a charge signal, and outputs it.
 センサ保持部134は、センサ本体部133を保持(接着)する部材である。また、センサ保持部134は、1以上の丸溝(図9の例では、4か所ある丸溝)を設けて、センサ本体部133からの信号線(コード)を保持してもよい。 The sensor holding part 134 is a member that holds (adheres) the sensor main body part 133. The sensor holding unit 134 may hold one or more round grooves (four round grooves in the example of FIG. 9) to hold the signal line (code) from the sensor main body 133.
 また、圧電センサ117は、一例として、横ぶれ防止機構部131及びマグネット部132とセンサ本体部133の間に非導電性の部材を挟んで構成してもよい。この様な構成により、力センサ117のセンサ本体部133と横ぶれ防止機構部131を介した探針103との間に絶縁領域を設けることができ、耳小骨800周辺は電気的に非常にセンシティブであるため、より安全に、計測プローブ100の探針103を用いて耳小骨に接触させることができる。 Further, as an example, the piezoelectric sensor 117 may be configured by sandwiching a non-conductive member between the side shake prevention mechanism portion 131 and the magnet portion 132 and the sensor main body portion 133. With such a configuration, an insulating region can be provided between the sensor main body 133 of the force sensor 117 and the probe 103 via the side shake prevention mechanism 131, and the periphery of the ossicle 800 is electrically very sensitive. Therefore, the probe 103 of the measurement probe 100 can be contacted with the ossicle more safely.
 アクチュエータ116は、図4に示すように、アクチュエータ用ホルダ114に格納されて、標準ネジ115によりアクチュエータ用ホルダ114にネジ留めされることで取り付けられている。アクチュエータ116は、具体的には、例えば、変位拡大機構付き圧電アクチュエータ等を用いればよい。 As shown in FIG. 4, the actuator 116 is stored in the actuator holder 114 and attached by being screwed to the actuator holder 114 with a standard screw 115. Specifically, the actuator 116 may be a piezoelectric actuator with a displacement enlarging mechanism, for example.
 チャージアンプ112は、アクチュエータ用ホルダ114にタッピングネジ108cによりネジ留めされて取り付けられており、アクチュエータ用ホルダ114はタッピングネジ108d、108e、108fにより下カバーA106にネジ留めされて取り付けられている。 The charge amplifier 112 is screwed and attached to the actuator holder 114 with a tapping screw 108c, and the actuator holder 114 is screwed to and attached to the lower cover A106 with tapping screws 108d, 108e, and 108f.
 チャージアンプ112は、コード113、123が接続されており、コード113、123は、コードブッシュ105を通って外部の装置(情報処理装置300等)と接続する。なお、コードブッシュ105は、例えば六角ナット固定リブ等の固定手段を用いて、下カバーA106に取り付けてもよい。この様な構成とすることで、コードブッシュ105の取り付けが容易となる。また、チャージアンプ112は、(1)アナログ演算及び増幅するOPアンプ部と(2)アクチュエータに電源を供給するための電源供給部に分離して構成してもよく、それに伴い、コード113、123は、(1)OPアンプ部に接続しアナログ信号を出力するための線(信号線)と(2)電源供給部に接続しアクチュエータ116に電源を供給するための線(電源線)を分離して形成してもよい。この様な構成により、OPアンプ部は、ノイズを拾ってしまう関係上、力センサ117の近傍に設ける必要があるが、それ以外の部分(電源供給部)については計測プローブ100の外に設けることで、計測プローブ100のハンドピース化において、よりコンパクトにすることができる。また、この様な構成により、信号線と電源線を分けたことで出力した信号に対する誘導ノイズの影響を低減することもできる。 The charge amplifier 112 is connected to cords 113 and 123, and the cords 113 and 123 are connected to an external device (such as the information processing device 300) through the cord bush 105. The cord bush 105 may be attached to the lower cover A106 using a fixing means such as a hexagon nut fixing rib. With such a configuration, the cord bush 105 can be easily attached. Further, the charge amplifier 112 may be configured separately into (1) an OP amplifier unit that performs analog operation and amplification, and (2) a power supply unit that supplies power to the actuator. (1) A line (signal line) for connecting to the OP amplifier unit for outputting an analog signal and (2) a line (power line) for connecting to the power supply unit and supplying power to the actuator 116 are separated. May be formed. With such a configuration, the OP amplifier unit needs to be provided in the vicinity of the force sensor 117 in order to pick up noise, but the other part (power supply unit) is provided outside the measurement probe 100. Thus, in making the measurement probe 100 into a handpiece, it can be made more compact. Further, with such a configuration, it is possible to reduce the influence of induced noise on the output signal by separating the signal line and the power supply line.
 実施形態2に係る計測プローブ100は、図4に示すように、上記のとおり各部品が取り付けられた状態で、上カバー101と下カバーB102を取り付け、下カバーB102と下カバーA106を取り付け、ロック用ツマミ104をEリング110によりEリング留めによって取り付けられて使用される。なお、上カバー101は、図4に示すように、短手方向の一部と下カバーB102の一部が折りたたみのヒンジ機構を形成し、上カバー101は下カバーB102に一部が取り付けられた状態で回動し、下カバーB102に対し上カバー101を開閉することが可能としてもよい。このような構成にすることによりタッピングネジ108a、108bによりネジ留めされている板バネ107a、107bが交換可能となり、使い勝手のよい計測プローブを提供することができる。上カバー101の一部を下カバーB102の一部に取り付ける際のヒンジ機構の一例として、ヒンジ機構を形成し、回動する上カバー101の一部に山形状の凸部を設け、一方、当該一部に対応する下カバーB102の一部に谷形状の凹部を設け、当該凹凸部が嵌めこんだ状態で上カバー101の回動を固定するように形成してもよい。 As shown in FIG. 4, in the measurement probe 100 according to the second embodiment, the upper cover 101 and the lower cover B102 are attached, the lower cover B102 and the lower cover A106 are attached, The knob 104 is attached to the E-ring 110 by E-ring fastening and used. As shown in FIG. 4, the upper cover 101 forms a hinge mechanism in which a part in the short direction and a part of the lower cover B102 are folded, and the upper cover 101 is partly attached to the lower cover B102. The upper cover 101 may be opened and closed with respect to the lower cover B102. With this configuration, the leaf springs 107a and 107b screwed by the tapping screws 108a and 108b can be exchanged, and an easy-to-use measurement probe can be provided. As an example of a hinge mechanism for attaching a part of the upper cover 101 to a part of the lower cover B102, a hinge mechanism is formed, and a part of the rotating upper cover 101 is provided with a mountain-shaped convex portion, A part of the lower cover B102 corresponding to a part may be provided with a trough-shaped concave part so that the rotation of the upper cover 101 is fixed in a state where the concave and convex part is fitted.
 計測プローブ100は、図4に示すように、加振装置は細長い棒状の探針103であり、探針103はその重心付近と端部の2点において、固定支点と力センサにより支持され、アクチュエータ116は、探針103の重心付近の支点を中心として一定振幅の回転振動等の振動を与え、力センサは、圧電センサ117およびチャージアンプ112を含み、圧電センサ117はアクチュエータが探針103に与えている力を探針103により加えられることで電荷信号を発生させ、チャージアンプ112は、当該発生した電荷信号を電圧に変換して出力してもよい。このような構成とすることで、定量的な耳小骨反力を計測することを可能とし、耳小骨固着耳の処置前後の可動性の改善度を定量化することができ、術後成績の向上および再手術のリスクを低減することができる。 As shown in FIG. 4, the measurement probe 100 is an elongated rod-like probe 103. The probe 103 is supported by a fixed fulcrum and a force sensor at two points near the center of gravity and at the end, and an actuator 116 gives vibration such as rotational vibration with a constant amplitude around a fulcrum near the center of gravity of the probe 103, the force sensor includes a piezoelectric sensor 117 and a charge amplifier 112, and the piezoelectric sensor 117 is applied to the probe 103 by an actuator. The charge signal may be generated by applying the applied force by the probe 103, and the charge amplifier 112 may convert the generated charge signal into a voltage and output the voltage. With such a configuration, it is possible to measure the quantitative reaction force of the ossicle, quantify the degree of improvement in mobility before and after the treatment of the ear with ossicles, and improve postoperative results And the risk of re-operation can be reduced.
 図5は、計測プローブ100の構成の一例を示す斜視図である。
 図5は、実施形態2に係る計測プローブ100が上述のとおり各部品が取り付けられ、使用される状態を示す。図5(a)は、実施形態2に係る計測プローブ100をコードブッシュ105側からの斜め視た斜視図であり、図5(b)は、実施形態2に係る計測プローブ100を探針103の先端側からの斜め視た斜視図である。実施形態2に係る計測プローブ100は、図5に示すように、術者が計測プローブ100の下カバーB102と下カバーA106を手に掴んで保持する際に握りやすいよう、下カバーB102および下カバーA106は、人間の手の握る形にそった形状を構成している。このような構成とすることにより、計測プローブ100をハンドピース化し、使い勝手のよい計測プローブ100を提供することができる。
FIG. 5 is a perspective view showing an example of the configuration of the measurement probe 100.
FIG. 5 shows a state where the measurement probe 100 according to the second embodiment is used with each component attached as described above. 5A is a perspective view of the measurement probe 100 according to the second embodiment when viewed obliquely from the cord bush 105 side, and FIG. 5B is a perspective view of the measurement probe 100 according to the second embodiment of the probe 103. It is the perspective view seen diagonally from the front end side. As shown in FIG. 5, the measurement probe 100 according to the second embodiment includes a lower cover B102 and a lower cover so that an operator can easily grasp the measurement probe 100 by holding the lower cover B102 and the lower cover A106. A106 has a shape that conforms to the shape of a human hand. By setting it as such a structure, the measurement probe 100 can be made into a handpiece, and the measurement probe 100 which is easy to use can be provided.
 なお、図5において、説明のためロック用ツマミ104を下カバーB102の両側に取り付けた状態を示しているが、片側のみでロックすることができるよう、ロック用ツマミ104を左右のいずれかに設けてもよい。さらに、片側のみにロック用ツマミ104を設けた際、もう片方の側には、下カバーBに対して上カバー101をワンタッチで上下に開閉するための開閉用ツマミを設けてもよい。 In FIG. 5, for the sake of explanation, the lock knob 104 is shown attached to both sides of the lower cover B102, but the lock knob 104 is provided on either the left or right side so that it can be locked only on one side. May be. Furthermore, when the locking knob 104 is provided only on one side, an opening / closing knob for opening and closing the upper cover 101 up and down with one touch with respect to the lower cover B may be provided on the other side.
 図6(a)は、計測プローブ100の構成の一例を示す平面図である。
 図6(a)に示すように、術者が計測プローブ100の下カバーB102を手に掴んで保持する際に握りやすいよう、下カバーB102は、人間の手の握る形にそった形状を構成している。このような構成とすることにより、計測プローブ100をハンドピース化し、使い勝手のよい計測プローブ100を提供することができる。また、計測プローブ100は、ハンドピース化して用いることを想定しており、その一例として、図6(a)に各部の寸法(単位はmm)を記載しているが、当該寸法の限りでなく、ハンドピースとして人間の手に握り易い寸法であればどのような寸法でもよい。
FIG. 6A is a plan view illustrating an example of the configuration of the measurement probe 100.
As shown in FIG. 6 (a), the lower cover B102 has a shape conforming to the shape gripped by a human hand so that the operator can easily hold the measurement probe 100 while holding the lower cover B102 on the hand. is doing. By setting it as such a structure, the measurement probe 100 can be made into a handpiece, and the measurement probe 100 which is easy to use can be provided. In addition, the measurement probe 100 is assumed to be used as a hand piece, and as an example, the dimensions (unit: mm) of each part are shown in FIG. 6A. Any size can be used as long as the handpiece is easily gripped by a human hand.
 図6(b)は、計測プローブ100の構成の一例を示す側面図である。
 図6(b)に示すように、術者が計測プローブ100の下カバーB102と下カバーA106を手に掴んで保持する際に握りやすいよう、下カバーB102および下カバーA106は、人間の手の握る形にそった形状を構成している。このような構成とすることにより、計測プローブ100をハンドピース化し、使い勝手のよい計測プローブ100を提供することができる。また、計測プローブ100は、ハンドピース化して用いることを想定しており、その一例として、図6(b)に各部の寸法(単位はmm)を記載しているが、当該寸法の限りでなく、ハンドピースとして人間の手に握り易い寸法であればどのような寸法でもよい。
FIG. 6B is a side view showing an example of the configuration of the measurement probe 100.
As shown in FIG. 6B, the lower cover B102 and the lower cover A106 are arranged so that the operator can easily grasp the measurement probe 100 when holding the lower cover B102 and the lower cover A106. The shape is in line with the grip shape. By setting it as such a structure, the measurement probe 100 can be made into a handpiece, and the measurement probe 100 which is easy to use can be provided. In addition, the measurement probe 100 is assumed to be used as a handpiece, and as an example, the dimensions (unit: mm) of each part are shown in FIG. 6B. Any size can be used as long as the handpiece is easily gripped by a human hand.
 図7は、計測プローブ100の構成の一例を示す断面図である。図7は、図6(a)のX-X’線断面図である。
 図7に示すように、探針103は板バネ107a、107bが上方(術者が計測プローブ100を使用時において、接地面に対して上の方向をいう)から接している。また、探針103は、その重心付近と端部の2点において支持されるよう、探針103の重心付近に位置する支点用金具109と圧電センサ117の2点によって支持されて取り付けられている。圧電センサ117は、探針103の端部が上方下方に上下することによる加わる力によって、アクチュエータ116が探針103に与えている力を加えられることで電荷信号を発生させる。このような構成により、アクチュエータ116は、探針103に、その重心付近の支点を中心とした一定振幅の回転振動等の振動を与えることができる。
FIG. 7 is a cross-sectional view showing an example of the configuration of the measurement probe 100. FIG. 7 is a sectional view taken along line XX ′ in FIG.
As shown in FIG. 7, the probe 103 is in contact with the plate springs 107a and 107b from above (referred to as an upward direction with respect to the grounding surface when the operator uses the measurement probe 100). Further, the probe 103 is supported and attached by two points of a fulcrum fitting 109 and a piezoelectric sensor 117 located near the center of gravity of the probe 103 so that the probe 103 is supported at two points near the center of gravity and at the end. . The piezoelectric sensor 117 generates a charge signal by applying the force applied to the probe 103 by the actuator 116 by the force applied when the end of the probe 103 moves up and down. With such a configuration, the actuator 116 can give the probe 103 vibration such as rotational vibration having a constant amplitude centered on a fulcrum near the center of gravity.
(可動性評価システム700が実行する処理)
 図8は、可動性評価システム700が実行する処理の一例を示すフローチャートである。
(Processing executed by the mobility evaluation system 700)
FIG. 8 is a flowchart illustrating an example of processing executed by the mobility evaluation system 700.
 可動性評価システム700は、加振装置を回転振動させる(ステップS10)。可動性評価システム700は、より具体的には、アクチュエータ116により回転振動させた探針103の先端を耳小骨に接触させることにより耳小骨に振動を与える(ステップS10)。 The mobility evaluation system 700 rotates and vibrates the vibration exciter (step S10). More specifically, the mobility evaluation system 700 applies vibration to the ossicle by bringing the tip of the probe 103 rotated and vibrated by the actuator 116 into contact with the ossicle (step S10).
 可動性評価システム700は、可動性を評価する場合(ステップS11の「可動性を評価する」の場合)、探針103の先端を耳小骨に接触させたときのアクチュエータ116にかかる反力を測定する(ステップS12)。可動性評価システム700は、当該測定結果に基づき、電圧を出力する(ステップS13)。可動性評価システム700は電圧情報の周波数を解析する(ステップS14)。可動性評価システム700は、より具体的には、計測プローブから出力された電圧に基づき、FFT解析をして、所定の周波数成分値を求める(ステップS14)。可動性評価システム700は、所定の周波数成分値に基づき、耳小骨の可動性を評価する(ステップS15)。 The mobility evaluation system 700 measures the reaction force applied to the actuator 116 when the tip of the probe 103 is brought into contact with the ossicle when evaluating mobility (in the case of “evaluating mobility” in step S11). (Step S12). The mobility evaluation system 700 outputs a voltage based on the measurement result (step S13). The mobility evaluation system 700 analyzes the frequency of the voltage information (step S14). More specifically, the mobility evaluation system 700 performs an FFT analysis based on the voltage output from the measurement probe to obtain a predetermined frequency component value (step S14). The mobility evaluation system 700 evaluates the mobility of the ossicle based on a predetermined frequency component value (step S15).
 可動性評価システム700は、電位を計測する場合(ステップS11の「電位を計測する」の場合)、蝸牛マイクロホン電位を計測する(ステップS16)。 The mobility evaluation system 700 measures the cochlear microphone potential when measuring the potential (in the case of “measuring potential” in step S11) (step S16).
 可動性評価システム700は、これらの計測および評価結果を出力する(ステップS17)。 The mobility evaluation system 700 outputs these measurement and evaluation results (step S17).
(その他)
 本発明に係る可動性評価システムについて、耳小骨の可動性を評価する実施形態を取りあげているが、それに限らず、微細空間における生体の一部の硬化状態等を評価する場合においても用いることができる。例えば、内視鏡により胃壁を振動させて周辺領域のがんの有無を検出する場合にも用いることができる。
(Other)
Although the embodiment for evaluating the mobility of the ossicle is taken up with respect to the mobility evaluation system according to the present invention, the present invention is not limited to this, and it is also used when evaluating the cured state of a part of a living body in a fine space. it can. For example, it can also be used when detecting the presence or absence of cancer in the surrounding area by vibrating the stomach wall with an endoscope.
100 計測プローブ
300 情報処理装置
400 表示装置
500 増幅器
600 電極
700 可動性評価システム
DESCRIPTION OF SYMBOLS 100 Measurement probe 300 Information processing apparatus 400 Display apparatus 500 Amplifier 600 Electrode 700 Mobility evaluation system

Claims (7)

  1.  耳小骨の可動性を評価する可動性評価システムであって、
     前記耳小骨に接触し、振動を与える加振装置と、
     前記加振装置を振動させるアクチュエータと、
     前記加振装置を前記耳小骨に接触させたときに前記アクチュエータにかかる反力を測定し、前記測定結果に基づき、電圧を出力する力センサと、
     を含む計測プローブと、
     前記計測プローブから出力された前記電圧に基づき、FFT解析をして、所定の周波数成分値を求める解析部と、
     前記所定の周波数成分値に基づき、前記耳小骨の可動性を評価する評価部と、
     前記評価結果を出力する出力部と、
     を備える可動性評価システム。
    A mobility evaluation system for evaluating the mobility of the ossicles,
    An excitation device that contacts and applies vibration to the ossicles;
    An actuator that vibrates the vibration exciter;
    A force sensor that measures a reaction force applied to the actuator when the vibration device is brought into contact with the ossicle, and outputs a voltage based on the measurement result;
    A measurement probe including
    Based on the voltage output from the measurement probe, an FFT analysis is performed to obtain a predetermined frequency component value;
    An evaluation unit that evaluates the mobility of the ossicle based on the predetermined frequency component value;
    An output unit for outputting the evaluation result;
    A mobility evaluation system comprising:
  2.  前記加振装置は細長い棒状の探針であり、前記探針は、その重心付近と端部の2点において、固定支点と前記力センサにより取り外し可能に支持され、
     前記アクチュエータは、前記探針の重心付近の支点を中心として一定振幅の振動を与え、
     前記力センサは、圧電センサおよびチャージアンプを含み、前記圧電センサは前記アクチュエータが前記探針に与えている力を前記探針により加えられることで電荷信号を発生させ、前記チャージアンプは、前記発生した電荷信号を電圧に変換して出力し、
     前記解析部は、ADコンバータを含み、前記ADコンバータで前記電圧をデジタル信号の電圧情報に変換し、前記電圧情報をFFT解析すること、
     を特徴とする請求項1に記載の可動性評価システム。
    The vibrating device is an elongated rod-like probe, and the probe is removably supported by a fixed fulcrum and the force sensor at two points near the center of gravity and at the end,
    The actuator gives a constant amplitude vibration around a fulcrum near the center of gravity of the probe,
    The force sensor includes a piezoelectric sensor and a charge amplifier, and the piezoelectric sensor generates a charge signal when the force applied to the probe by the actuator is applied by the probe, and the charge amplifier generates the generation signal. The converted charge signal is converted to voltage and output,
    The analysis unit includes an AD converter; the AD converter converts the voltage into voltage information of a digital signal; and the FFT analysis of the voltage information;
    The mobility evaluation system according to claim 1.
  3.  前記探針は、重心付近に窪みが形成され、
     前記支点は、前記窪みに嵌めて支持するための、球状に形成されたマグネットを備えること、
     を特徴とする請求項2に記載の可動性評価システム。
    The probe has a depression formed near the center of gravity,
    The fulcrum is provided with a spherically shaped magnet for fitting and supporting in the recess;
    The mobility evaluation system according to claim 2.
  4.  前記計測プローブは、
     前記探針に弾性的に接する弾性体を備えること
     を特徴とする請求項2または3に記載の可動性評価システム。
    The measurement probe is
    The mobility evaluation system according to claim 2, further comprising an elastic body that elastically contacts the probe.
  5.  前記アクチュエータは、5Hz以上で前記探針に振動させ、
     前記所定の周波数成分値は、前記電圧情報における各波形の5Hz以上の周波数成分の値であること、
    を特徴とする請求項2または3に記載の可動性評価システム。
    The actuator vibrates the probe at 5 Hz or higher,
    The predetermined frequency component value is a value of a frequency component of 5 Hz or more of each waveform in the voltage information;
    The mobility evaluation system according to claim 2 or 3, wherein
  6.  前記可動性評価システムは、
     蝸牛窓または蝸牛窓近傍に設置し、前記加振装置により前記耳小骨に振動を与えているときの蝸牛マイクロホン電位を検出する電極と、
     前記検出した蝸牛マイクロホン電位を増幅させ、計測する増幅器と、
     を備え、
     前記出力部は、前記計測した蝸牛マイクロホン電位を表示すること、
     を特徴とする請求項1乃至3のいずれか1項記載の可動性評価システム。
    The mobility evaluation system includes:
    An electrode for detecting a cochlear microphone potential when the cochlear window or the cochlear window is installed, and the osseous bone is vibrated by the vibration device;
    An amplifier for amplifying and measuring the detected cochlear microphone potential;
    With
    The output unit displays the measured cochlear microphone potential;
    The mobility evaluation system according to any one of claims 1 to 3, wherein:
  7.  耳小骨の可動性を評価する可動性評価方法であって、
     アクチュエータにより振動させた探針の先端を前記耳小骨に接触させることにより前記耳小骨に振動を与える加振ステップと、
     前記探針の先端を耳小骨に接触させたときの前記アクチュエータにかかる反力を測定し、前記測定結果に基づき、電圧を出力する電圧測定ステップと、
     前記計測プローブから出力された前記電圧に基づき、FFT解析をして、所定の周波数成分値を求める解析ステップと、
     前記所定の周波数成分値に基づき、前記耳小骨の可動性を評価する評価ステップと、
     前記評価結果を出力する出力ステップと、
     を備える可動性評価方法。
    A mobility evaluation method for evaluating the mobility of the ossicles,
    An excitation step for applying vibration to the ossicle by bringing the tip of the probe oscillated by an actuator into contact with the ossicle;
    Measuring a reaction force applied to the actuator when the tip of the probe is brought into contact with the ossicle, and a voltage measuring step for outputting a voltage based on the measurement result;
    Based on the voltage output from the measurement probe, an analysis step of performing an FFT analysis to obtain a predetermined frequency component value;
    An evaluation step for evaluating the mobility of the ossicle based on the predetermined frequency component value;
    An output step of outputting the evaluation result;
    A mobility evaluation method comprising:
PCT/JP2018/003162 2017-01-31 2018-01-31 Mobility evaluation system and mobility evaluation method WO2018143255A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017016331 2017-01-31
JP2017-016331 2017-01-31
JP2017-135735 2017-07-11
JP2017135735A JP7036309B2 (en) 2017-01-31 2017-07-11 Mobility evaluation system

Publications (1)

Publication Number Publication Date
WO2018143255A1 true WO2018143255A1 (en) 2018-08-09

Family

ID=63039730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003162 WO2018143255A1 (en) 2017-01-31 2018-01-31 Mobility evaluation system and mobility evaluation method

Country Status (1)

Country Link
WO (1) WO2018143255A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121070A (en) * 2004-10-23 2006-05-11 John Macken Magnet-coupling device and method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121070A (en) * 2004-10-23 2006-05-11 John Macken Magnet-coupling device and method of the same

Similar Documents

Publication Publication Date Title
US6663575B2 (en) Device for electromechanical stimulation and testing of hearing
US9949670B2 (en) Ear model, head model, and measuring apparatus and measuring method employing same
Bornitz et al. Evaluation of implantable actuators by means of a middle ear simulation model
Teudt et al. Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse
US11736869B2 (en) Actuator testing systems and methods
Grossöhmichen et al. Validation of methods for prediction of clinical output levels of active middle ear implants from measurements in human cadaveric ears
Aw et al. Click-evoked vestibulo-ocular reflex: stimulus–response properties in superior canal dehiscence
US9158891B2 (en) Medical device diagnostics using a portable device
Fröhlich et al. Influence of transducer types on bone conduction hearing thresholds
Linder et al. Objective measurements of ossicular chain mobility using a palpating instrument intraoperatively
WO2018143255A1 (en) Mobility evaluation system and mobility evaluation method
JP7036309B2 (en) Mobility evaluation system
JP6596141B1 (en) Middle ear transmission characteristic evaluation system, middle ear transmission characteristic evaluation method, and measurement probe
Gladiné et al. Human middle-ear nonlinearity measurements using laser Doppler vibrometry
Margolis et al. Acoustic method for calibration of audiometric bone vibrators
Fredén Jansson et al. Robustness and lifetime of the bone conduction implant–a pilot study
JP2018187052A (en) Testing pole for obtaining index of coupling degree of dental implant body, and system with the same
Jorge et al. In vitro model for intraoperative adjustments in an implantable hearing aid (MET)
US11471074B2 (en) Middle ear sound transmission characteristics evaluation system, middle ear sound transmission characteristics evaluation method, and measuring probe
D’hondt et al. Alteration of the relative vibration of the round window membrane after implantation of a direct acoustic cochlear implant
JP3756125B2 (en) Ossicular mobility detector
Majdalawieh et al. Output vibration measurements of bone-anchored hearing AIDS
Gladiné et al. Evaluation of artificial fixation of the incus and malleus with minimally invasive intraoperative laser vibrometry (MIVIB) in a temporal bone model
Schwarz et al. Evaluation of coupling efficiency in round window vibroplasty with a new handheld probe
Lukic et al. Finding the Optimal Head Position for Bone Conduction Sound Measurements when Using a Skin Microphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748394

Country of ref document: EP

Kind code of ref document: A1