WO2018143246A1 - Radio terminal and base station - Google Patents

Radio terminal and base station Download PDF

Info

Publication number
WO2018143246A1
WO2018143246A1 PCT/JP2018/003137 JP2018003137W WO2018143246A1 WO 2018143246 A1 WO2018143246 A1 WO 2018143246A1 JP 2018003137 W JP2018003137 W JP 2018003137W WO 2018143246 A1 WO2018143246 A1 WO 2018143246A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbms service
provision
transmission
notification
timing
Prior art date
Application number
PCT/JP2018/003137
Other languages
French (fr)
Japanese (ja)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2018143246A1 publication Critical patent/WO2018143246A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present disclosure relates to a radio terminal and a base station for a mobile communication system.
  • MBMS Multimedia Broadcast Multicast Service
  • MBSFN Multicast Broadcast Single Frequency Network
  • SC-PTM Single Cell Point-To-Multipoint
  • wireless terminals targeting MTC (Machine Type Communication) and IoT (Internet of Things) services that perform communication without human intervention are being studied.
  • Such a wireless terminal is required to realize low cost, wide coverage, and low power consumption.
  • 3GPP a new category of wireless terminals in which the transmission / reception bandwidth is limited to only a part of the system transmission / reception band is specified.
  • An enhanced coverage function including repetitive transmission (repetition) and the like is applied to such a new category of wireless terminals.
  • a wireless terminal is a wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission.
  • the wireless terminal receives a suspension notification indicating that provision of the specific MBMS service is suspended while receiving a specific MBMS service using the SC-PTM transmission; and A control unit that interrupts reception of the specific MBMS service in response to reception of the suspension notification.
  • a base station provides an MBMS service using SC-PTM transmission.
  • the base station determines to interrupt the provision of the specific MBMS service using the SC-PTM transmission, and interrupts the provision of the specific MBMS service before interrupting the provision of the specific MBMS service.
  • a transmission unit that transmits an interruption notification indicating that the communication is to be performed to the wireless terminal.
  • a processor is a processor for a wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission.
  • the processor is configured to receive an interruption notification indicating that provision of the specific MBMS service is interrupted while receiving a specific MBMS service using the SC-PTM transmission, and the interruption notification. In response to the reception of the specific MBMS service.
  • a processor is a processor for a base station that provides an MBMS service using SC-PTM transmission.
  • the processor determines to interrupt the provision of a specific MBMS service using the SC-PTM transmission, and interrupts the provision of the specific MBMS service before interrupting the provision of the specific MBMS service. And a process of transmitting an interruption notification indicating that to the wireless terminal.
  • the communication control method includes a step of determining that a base station that provides an MBMS service using SC-PTM transmission interrupts the provision of a specific MBMS service using the SC-PTM transmission; Before the station interrupts the provision of the specific MBMS service, the station transmits a suspension notification indicating that the provision of the specific MBMS service is suspended to the wireless terminal; and the wireless terminal receives the suspension notification. And suspending reception of the specific MBMS service.
  • a wireless terminal receives an MBMS service provided using SC-PTM transmission.
  • the radio terminal uses the SC-MTCH within the current SC-MCCH change period to receive control information for the SC-MTCH and data belonging to the first MBMS service from the base station;
  • control information including predetermined notification information
  • the predetermined notification information is information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period.
  • a base station provides an MBMS service using SC-PTM transmission.
  • the base station determines that transmission of data belonging to a second MBMS service different from the first MBMS service being provided within the current SC-MCCH change period starts within the next SC-MCCH change period
  • a transmission unit that transmits control information for the SC-MTCH and data belonging to the first MBMS service to the wireless terminal using SC-MTCH within the current SC-MCCH change period; Is provided.
  • the transmission unit transmits the control information including predetermined notification information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period.
  • a wireless terminal receives an MBMS service provided using SC-PTM transmission.
  • the radio terminal uses the SC-MTCH within the current SC-MCCH change period to receive control information for the SC-MTCH and data belonging to the first MBMS service from the base station;
  • a control unit that determines that provision of a second MBMS service different from the first MBMS service is started within the next SC-MCCH change period based on the control information.
  • the receiving unit receives predetermined notification information associated with an identifier of the second MBMS service from the base station within the current SC-MCCH change period.
  • the control unit identifies the second MBMS service based on the predetermined notification information.
  • a base station provides an MBMS service using SC-PTM transmission.
  • the base station determines to start providing a second MBMS service different from the first MBMS service provided within the current SC-MCCH change cycle within the next SC-MCCH change cycle;
  • a transmitting unit that transmits control information for the SC-MTCH and data belonging to the first MBMS service to a wireless terminal using SC-MTCH within the current SC-MCCH change period; .
  • the transmission unit transmits predetermined notification information associated with the identifier of the second MBMS service to the wireless terminal within the current SC-MCCH change period.
  • a wireless terminal receives an MBMS service provided from a network using a predetermined multicast / broadcast transmission scheme.
  • the wireless terminal receives, from the network, identification information of a specific MBMS service that is not provided using the predetermined multicast / broadcast transmission method, and a control unit that acquires service information regarding a plurality of MBMS services provided from the network A receiving unit.
  • the control unit recognizes the specific MBMS service that is not provided using the predetermined multicast / broadcast transmission scheme based on the identification information.
  • An apparatus is included in a network that provides an MBMS service to a wireless terminal using a predetermined multicast / broadcast transmission scheme.
  • the apparatus includes a control unit that determines a specific MBMS service that is not provided using the predetermined multicast / broadcast transmission method among a plurality of MBMS services that can be provided to the wireless terminal.
  • the control unit notifies the identification information of the specific MBMS service to the wireless terminal.
  • a wireless terminal receives an MBMS service provided from a network using a predetermined multicast / broadcast transmission scheme.
  • the wireless terminal includes a control unit that acquires service information regarding a plurality of MBMS services provided from the network.
  • the service information includes the provision start time of each MBMS service.
  • the control unit starts a timer in response to the provision of a specific MBMS service in which the wireless terminal is interested in reception not being started at the provision start time.
  • the control unit waits for the start of provision of the specific MBMS service while the timer is operating.
  • a wireless terminal receives an MBMS service provided from a base station using SC-PTM transmission.
  • the radio terminal receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the base station while receiving the specific MBMS service using the SC-PTM transmission.
  • a control unit that interrupts reception of the MBMS service at a first timing in response to reception of the suspension notification.
  • the control unit resumes reception of the MBMS service at a second timing after interrupting reception of the SC-MTCH.
  • a base station provides an MBMS service using SC-PTM transmission.
  • the base station determines to temporarily interrupt the provision of a specific MBMS service using the SC-PTM transmission, and provides the MBMS service before interrupting the provision of the specific MBMS service.
  • a transmission unit that transmits an interruption notification indicating interruption temporarily to the wireless terminal.
  • SIB20 SIB20 concerning an embodiment. It is a figure which shows the MBMS control information in SC-MCCH which concerns on embodiment. It is a figure which shows the downlink physical channel for eMTC UE which concerns on embodiment. It is a figure which shows the random access procedure for eMTC UE and NB-IoT UE which concern on embodiment. It is a figure which shows the operation example which concerns on 1st Embodiment. It is a figure which shows the 1st method which concerns on the example 1 of a change of 1st Embodiment. It is a figure which shows the 3rd method which concerns on the example 1 of a change of 1st Embodiment.
  • the mobile communication system according to the embodiment is an LTE (Long Term Evolution) system whose specifications are defined by 3GPP.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system according to the embodiment.
  • FIG. 2 is a diagram illustrating a network configuration related to MBMS.
  • the LTE system includes a radio terminal (UE: User Equipment) 100, a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10, and a core network (EPC: Evolved Packet Core) 20. Is provided.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile communication device.
  • the UE 100 performs radio communication with the eNB 200 that manages a cell (serving cell) in which the UE 100 is located.
  • the E-UTRAN 10 includes a base station (eNB: evolved Node-B) 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells.
  • the eNB 200 performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • the EPC 20 includes a mobility management entity (MME) and a serving gateway (S-GW) 300.
  • MME performs various mobility control etc. with respect to UE100.
  • S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 includes an MCE (Multi-Cell / Multicast Coordinating Entity) 11.
  • the MCE 11 is connected to the eNB 200 via the M2 interface.
  • the MCE 11 is connected to the MME 300 via the M3 interface (see FIG. 2).
  • the MCE 11 performs MBSFN radio resource management / allocation and the like. Specifically, the MCE 11 performs MBSFN transmission scheduling. On the other hand, scheduling of SC-PTM transmission is performed by the eNB 200.
  • the EPC 20 includes an MBMS GW (MBMS Gateway) 21.
  • the MBMS GW 21 is connected to the eNB 200 via the M1 interface.
  • the MBMS GW 21 is connected to the MME 300 via the Sm interface.
  • the MBMS GW 21 is connected to the BM-SC 22 via the SG-mb and SGi-mb interfaces (see FIG. 2).
  • the MBMS GW 21 performs IP multicast data transmission, session control, and the like for the eNB 200.
  • the EPC 20 includes a BM-SC (Broadcast Multicast Service Center) 22.
  • the BM-SC 22 is connected to the MBMS GW 21 via the SG-mb and SGi-mb interfaces.
  • the EPC 20 is connected to the P-GW 23 via the SGi interface (see FIG. 2).
  • the BM-SC 22 performs management / allocation of TMGI (Temporary Mobile Group Identity).
  • GCS AS31 is an application server for group communication.
  • the GCS AS 31 is connected to the BM-SC 22 via MB2-U and MB2-C interfaces.
  • the GCS AS 31 is connected to the P-GW 23 via the SGi interface.
  • the GCS AS 31 performs group management and data distribution in group communication.
  • FIG. 3 is a diagram illustrating a configuration of the UE 100 (wireless terminal) according to the embodiment. As illustrated in FIG. 3, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes described later.
  • FIG. 4 is a diagram illustrating a configuration of the eNB 200 (base station) according to the embodiment.
  • the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes various processes described later.
  • the backhaul communication unit 240 is connected to an adjacent eNB via the X2 interface.
  • the backhaul communication unit 240 is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • the backhaul communication unit 240 can also be used for communication performed on the M1 interface and communication performed on the M2 interface.
  • FIG. 5 is a diagram showing a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into first to third layers of the OSI reference model.
  • the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of the UE 100 and the physical layer of the eNB 200, data and control signals are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by HARQ (Hybrid ARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, data and control signals are transmitted via the transport channel.
  • the MAC layer of the eNB 200 includes a scheduler. The scheduler determines the uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and the resource blocks allocated to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC connected mode.
  • RRC connection When there is no connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC idle mode.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 6 is a diagram illustrating a configuration of a downlink channel of the LTE system.
  • FIG. 6A shows the mapping between the logical channel (Downlink Logical Channel) and the transport channel (Downlink Transport Channel).
  • PCCH Paging Control Channel
  • PCH PCH
  • BCCH Broadcast Control Channel
  • BCCH Broadcast Control Channel
  • DL-SCH Downlink Shared Channel
  • CCCH Common Control Channel
  • CCCH is a logical channel for transmission control information between the UE 100 and the eNB 200.
  • the CCCH is used when the UE 100 does not have an RRC connection with the network.
  • CCCH is mapped to DL-SCH.
  • DCCH (Dedicated Control Channel) is a logical channel for transmitting individual control information between the UE 100 and the network.
  • the DCCH is used when the UE 100 has an RRC connection.
  • DCCH is mapped to DL-SCH.
  • DTCH (Dedicated Traffic Channel) is an individual logical channel for data transmission. DTCH is mapped to DL-SCH.
  • SC-MTCH Single Cell Multicast Traffic Channel
  • SC-MTCH is a logical channel for SC-PTM transmission.
  • SC-MTCH is a point-to-multipoint downlink channel for multicast transmission of data (MBMS) from the network to UE 100 using SC-PTM transmission.
  • MBMS multicast transmission of data
  • SC-MCCH Single Cell Multicast Control Channel
  • the SC-MCCH is a point-to-multipoint downlink channel for multicast transmission of MBMS control information for one or more SC-MTCHs from the network to the UE 100.
  • SC-MCCH is used for UE 100 that receives or is interested in receiving MBMS using SC-PTM transmission. Also, only one SC-MCCH exists in one cell.
  • MCCH Multicast Control Channel
  • MCH Multicast Channel
  • MTCH Multicast Traffic Channel
  • FIG. 6B shows a mapping between a transport channel (Downlink Transport Channel) and a physical channel (Downlink Physical Channel).
  • BCH is mapped to PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • MCH is mapped to PMCH (Physical Multicast Channel). MCH supports MBSFN transmission by multiple cells.
  • PCH and DL-SCH are mapped to PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • DL-SCH supports HARQ, link adaptation, and dynamic resource allocation.
  • PDCCH carries PDSCH (DL-SCH, PCH) resource allocation information, HARQ information related to DL-SCH, and the like.
  • the PDCCH carries an uplink scheduling grant.
  • FIG. 7 is a diagram illustrating a configuration of a radio frame of the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction.
  • Each subframe includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • radio resources time / frequency resources allocated to the UE 100
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is an area mainly used as a PDCCH for transmitting a downlink control signal.
  • the remaining part of each subframe is an area that can be used mainly as a PDSCH for transmitting downlink data.
  • an MBSFN subframe that is a subframe for MBSFN transmission can be set.
  • both ends in the frequency direction in each subframe are regions used mainly as PUCCH for transmitting an uplink control signal.
  • the remaining part in each subframe is an area that can be used mainly as a PUSCH for transmitting uplink data.
  • the UE 100 may receive the MBMS service in the RRC connected mode.
  • the UE 100 may receive the MBMS service in the RRC idle mode.
  • FIG. 8 is a diagram showing an operation example of SC-PTM transmission.
  • step S ⁇ b> 1 the UE 100 acquires a USD (User Service Description) from the EPC 20 via the eNB 200.
  • USD provides basic information for each MBMS service.
  • the USD includes, for each MBMS service, TMGI for identifying the MBMS service, a frequency at which the MBMS service is provided, and provision start / end times of the MBMS service.
  • UE100 receives SIB20 from eNB200 via BCCH.
  • the SIB 20 includes information (scheduling information) necessary for acquiring the SC-MCCH.
  • FIG. 9 is a diagram showing the SIB 20.
  • the SIB 20 includes a sc-mcch-ModificationPeriod indicating a period in which the contents of the SC-MCCH can be changed (SC-MCCH change period), a sc-mcch-RepetionPeriod indicating the SC-MCCH transmission (retransmission) time interval in terms of the number of radio frames, Sc-mcch-Offset indicating the offset of the radio frame on which the SC-MCCH is scheduled, sc-mcch-Subframe indicating the subframe on which the SC-MCCH is scheduled, and the like.
  • step S3 the UE 100 receives MBMS control information from the eNB 200 via the SC-MCCH based on the SIB20.
  • the MBMS control information may be referred to as SC-PTM setting information (SCPTM Configuration).
  • SC-RNTI Single Cell RNTI
  • FIG. 10 is a diagram showing MBMS control information (SC-PTM setting information) in SC-MCCH.
  • the SC-PTM setting information includes control information applicable to the MBMS service transmitted via SC-MRB (Single Cell MBMS Point to Multipoint Radio Bearer).
  • the SC-PTM setting information includes sc-mtch-InfoList including the setting of each SC-MTCH in the cell that transmits the information, and scptmNeighbourCellList that is a list of neighboring cells that provide the MBMS service via the SC-MRB.
  • the sc-mtch-InfoList includes one or more SC-MTCH-Info.
  • Each SC-MTCH-Info includes information on the MBMS session in progress (mbmsSessionInfo) transmitted via the SC-MRB, a G-RNTI (Group RNTI) corresponding to the MBMS session, and DRX for the SC-MTCH. It contains sc-mtch-schedulingInfo which is information.
  • the mbmsSessionInfo includes a TMGI that identifies the MBMS service and a session ID (sessionId).
  • G-RNTI is an RNTI that identifies a multicast group (specifically, an SC-MTCH addressed to a specific group).
  • G-RNTI is mapped one-to-one with TMGI.
  • sc-mtch-schedulingInfo includes onDurationTimerSCPTM, drx-InactivityTimerSCPTM, schedulingPeriodStartOffsetSCPTM.
  • the schedulingPeriodOffsetSCPTM includes SC-MTCH-SchedulingCycle and SC-MTCH-SchedulingOffset.
  • step S4 the UE 100 receives the MBMS service (MBMS data) corresponding to the TMGI that it is interested in via the SC-MTCH based on the SC-MTCH-SchedulingInfo in the SC-PTM setting information.
  • the eNB 200 transmits the PDCCH using G-RNTI, and then transmits MBMS data via the PDSCH.
  • control signal (signaling) described with reference to FIG. 8 is an example. Some of the control signals may be appropriately omitted or the order of the control signals may be changed by optimization for power saving reception or the like.
  • the UE 100 in a new category is a UE 100 whose transmission / reception bandwidth is limited to only a part of the system transmission / reception band.
  • the new UE categories are referred to as, for example, category M1 and NB (Narrow Band) -IoT category.
  • the category M1 is an eMTC (enhanced machine type communications) UE.
  • the NB-IoT UE is category NB1.
  • the category M1 limits the transmission / reception bandwidth of the UE 100 to 1.08 MHz (that is, the bandwidth of 6 resource blocks).
  • the category M1 supports an enhanced coverage (EC) function using repeated transmission or the like.
  • the NB-IoT category further restricts the transmission / reception bandwidth of the UE 100 to 180 kHz (that is, the bandwidth of one resource block).
  • the NB-IoT category supports the enhanced coverage function.
  • Repeat transmission is a technique for repeatedly transmitting the same signal using a plurality of subframes.
  • the system bandwidth of the LTE system is 10 MHz, of which the transmission / reception bandwidth is 9 MHz (that is, the bandwidth of 50 resource blocks).
  • the UE 100 of category M1 cannot receive a downlink radio signal transmitted with a bandwidth wider than 6 resource blocks, it cannot receive a normal PDCCH.
  • MPDCCH MTC-PDCCH
  • NPDCCH NB-PDCCH
  • NB-PDCCH PDCCH for NB-IoT
  • the enhanced coverage function may include repeated transmission (Repetition) for repeatedly transmitting the same signal.
  • the coverage can be enhanced as the number of repeated transmissions increases.
  • the enhanced coverage function may include a power boost that increases the power density of the transmission signal.
  • the power density is increased by narrowband transmission that narrows the frequency bandwidth of the transmission signal.
  • the coverage can be enhanced as the power density of the transmission signal is increased.
  • the enhanced coverage function may include low MCS (Lower MCS) transmission that lowers the MCS used for the transmission signal. Coverage can be enhanced by performing transmission using MCS with a low data rate and high error tolerance.
  • FIG. 11 is a diagram showing a downlink physical channel for eMTC UE.
  • the eNB 200 transmits the MPDCCH within 6 resource blocks.
  • MPDCCH includes scheduling information for allocating PDSCH.
  • MPDCCH allocates PDSCH of a subframe different from the subframe in which the MPDCCH is transmitted.
  • the eNB 200 transmits the PDSCH within 6 resource blocks.
  • the eNB 200 allocates a PDSCH over a plurality of subframes in order to repeatedly transmit the same signal.
  • the UE 100 of category M1 specifies the assigned PDSCH by receiving the MPDCCH, and receives data transmitted on the assigned PDSCH.
  • FIG. 12 is a diagram showing a random access procedure for eMTC UE and NB-IoT UE.
  • the UE 100 In the initial state of FIG. 12, the UE 100 is in the RRC idle mode. The UE 100 executes a random access procedure in order to transition to the RRC connected mode.
  • UE100 has selected the cell of eNB200 as a serving cell.
  • the UE 100 does not satisfy the first cell selection criterion (first S-criteria) for normal coverage, and satisfies the second cell selection criterion (second S-criteria) for enhanced coverage In this case, it may be determined that the user is in the enhanced coverage.
  • “UE in enhanced coverage” means a UE that is required to use an enhanced coverage function (enhanced coverage mode) to access a cell. Note that eMTC UE must use the enhanced coverage mode.
  • the eNB 200 transmits PRACH (Physical Random Access Channel) related information by broadcast signaling (for example, SIB).
  • the PRACH related information includes various parameters provided for each enhanced coverage level. As an example, for the enhanced coverage level, a total of four levels of enhanced coverage levels 0 to 3 are defined. Various parameters include an RSRP (Reference Signal Received Power) threshold, a PRACH resource, and the maximum number of preamble transmissions.
  • the PRACH resource includes a radio resource (time / frequency resource) and a signal sequence (preamble sequence). The UE 100 stores the received PRACH related information.
  • step S1002 UE100 measures RSRP based on the reference signal transmitted from eNB200.
  • the UE 100 determines its own enhanced coverage level by comparing the measured RSRP with the RSRP threshold value for each enhanced coverage level.
  • the enhanced coverage level indicates the degree of enhanced coverage required for the UE 100.
  • the enhanced coverage level is associated with at least the number of transmissions (that is, the number of repetitions) in repeated transmission.
  • step S1004 the UE 100 selects a PRACH resource corresponding to its enhanced coverage level.
  • step S1005 the UE 100 transmits Msg 1 (random access preamble) to the eNB 200 using the selected PRACH resource.
  • the eNB 200 specifies the enhanced coverage level of the UE 100 based on the PRACH resource used for the received Msg 1.
  • step S1006 the eNB 200 transmits Msg 2 (random access response) including scheduling information indicating the PUSCH resource allocated to the UE 100 to the UE 100.
  • the UE 100 can transmit Msg 1 a plurality of times up to the maximum number of preamble transmissions corresponding to its own enhanced coverage level until it normally receives Msg 2.
  • step S1007 the UE 100 transmits Msg 3 to the eNB 200 based on the scheduling information.
  • Msg 3 may be an RRC Connection Request message.
  • step S1008 the eNB 200 transmits Msg 4 to the UE 100.
  • step S1009 the UE 100 transitions to the RRC connected mode in response to reception of Msg 4. Thereafter, the eNB 200 controls repeated transmission to the UE 100 based on the identified enhanced coverage level.
  • the first embodiment will be described on the premise of the mobile communication system as described above.
  • the first embodiment assumes a scenario in which firmware or the like is distributed collectively by SC-PTM transmission to the above-described new category UE (eMTC UE or NB-IoT UE) 100. Further, it is assumed that the UE 100 in the RRC idle mode mainly receives an MBMS service provided by SC-PTM transmission.
  • ENB 200 transmits MBMS control information (SC-PTM setting information) to UE 100 using SC-MCCH, which is a logical channel.
  • SC-MCCH is mapped to PDSCH which is a physical channel.
  • the PDSCH is scheduled by MPDCCH or NPDCCH (referred to as “(M / N) PDCCH” as appropriate) transmitted using SC-RNTI.
  • the eNB 200 transmits data (MBMS data) belonging to the MBMS service to the UE 100 using SC-MTCH which is a logical channel.
  • SC-MTCH is mapped to PDSCH, which is a physical channel.
  • the PDSCH is scheduled by (M / N) PDCCH transmitted using G-RNTI.
  • the first notification is one bit in the (M / N) PDCCH transmitted using SC-RNTI.
  • the first notification indicates whether the SC-MCCH has been changed.
  • the second notification is one bit in the (M / N) PDCCH transmitted using G-RNTI.
  • the second notification indicates whether the SC-MTCH setting of the MBMS service (TMGI) corresponding to the G-RNTI is changed within the next SC-MCCH change period. “Changed within the next SC-MCCH change period” is synonymous with changing from the next SC-MCCH change boundary (Modification Boundary).
  • 3rd notification is 1 bit in (M / N) PDCCH transmitted using G-RNTI.
  • the third notification indicates whether a new MBMS service is started within the next SC-MCCH change period.
  • the third notification may be used for the UE 100 receiving the ongoing MBMS service to detect that another MBMS service is started.
  • the first to third notifications may be referred to as “Direct indication”. Although an example in which the notification is configured with 1 bit has been described, the notification may be configured with a plurality of bits.
  • the first embodiment is an embodiment relating to a notification (third notification) indicating whether or not a new MBMS service is started within the next SC-MCCH change period.
  • An MBMS service may be read as an MBMS session.
  • the eNB 200 provides an MBMS service using SC-PTM transmission.
  • the control unit 230 of the eNB 200 determines that transmission of data belonging to the second MBMS service different from the first MBMS service being provided within the current SC-MCCH change cycle starts within the next SC-MCCH change cycle. To do.
  • the transmission unit 210 of the eNB 200 uses the SC-MTCH within the current SC-MCCH change period to transmit control information (DCI: Downlink Control Information) for SC-MTCH and data belonging to the first MBMS service to the UE 100. Send to.
  • the transmission unit 210 of the eNB 200 transmits control information for SC-MTCH using the (M / N) PDCCH using G-RNTI.
  • the transmission unit 210 of the eNB 200 transmits MBMS data using the PDSCH indicated by the (M / N) PDCCH.
  • the transmission unit 210 of the eNB 200 transmits control information including predetermined notification information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period.
  • the predetermined notification information can be regarded as an SC-MTCH start notification.
  • the predetermined notification information may be information indicating that SC-MCCH (SC-PTM configuration information) is changed due to the second MBMS service.
  • the predetermined notification information can be regarded as an SC-MCCH change notification.
  • the UE 100 receives an MBMS service provided using SC-PTM transmission.
  • the receiving unit 110 of the UE 100 receives SC-MTCH control information and data belonging to the first MBMS service from the eNB 200 using SC-MTCH within the current SC-MCCH change period.
  • the control unit 130 of the UE 100 starts transmission of data belonging to the second MBMS service different from the first MBMS service within the next SC-MCCH change period in response to the control information including predetermined notification information. Judge that it will be.
  • the predetermined notification information is information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period (that is, SC-MTCH start notification).
  • the predetermined notification information is information indicating that the SC-MCCH (SC-PTM configuration information) is changed due to the second MBMS service (that is, a new MBMS service) (that is, SC-MCCH change notification). It may be.
  • the predetermined notification information may be composed of 1 bit.
  • the predetermined notification information is SC-MTCH start notification, transmission of SC-MTCH is started from the next SC-MCCH modification boundary.
  • the predetermined notification information is an SC-MCCH change notification
  • the following first and second operations can be considered.
  • the SC-MTCH starts transmission from the next SC-MCCH modification boundary (that is, the second SC-MCCH modification boundary) of the next SC-MCCH modification boundary.
  • the next modification boundary transmission of the modified SC-MCCH is started, but it may take up to 1 SC-MCCH change period (1 modification period) before it reaches all UEs.
  • eNB 200 starts transmission of SC-MTCH after waiting for one SC-MCCH change period.
  • UE 100 starts receiving SC-MTCH after waiting for one SC-MCCH change period.
  • transmission of SC-MTCH is started from the next SC-MCCH modification boundary.
  • transmission of the modified SC-MCCH is started, and it is assumed that the UE 100 receives the SC-MCCH.
  • SC-MTCH transmission / reception can be performed from the next SC-MCCH modification boundary.
  • the control unit 130 of the UE 100 when the UE 100 is receiving the first MBMS service (that is, the ongoing MBMS service), the control unit 130 of the UE 100 performs the next SC-MCCH change cycle based on the predetermined notification information. It can be detected that another MBMS service is started. The control unit 130 of the UE 100 may attempt to receive the SC-MCCH within the next SC-MCCH change period when interested in an MBMS service other than the ongoing MBMS service.
  • FIG. 13 is a diagram illustrating an operation example according to the first embodiment.
  • FIG. 13 is a diagram focusing on the logical channel, and repeated transmission in the physical layer is not shown.
  • the SC-MCCH change cycle T1 starts from an SC-MCCH change boundary (SC-MCCH modification boundary) t1.
  • the eNB 200 transmits the SC-MTCH corresponding to the first MBMS service (On-going session) a plurality of times (three times in the example shown in FIG. 13) within the SC-MCCH change period T1.
  • the UE 100 receives the SC-MTCH.
  • the eNB 200 determines to notify the UE 100 of the start of the second MBMS service (New session).
  • the SC-MCCH change period T2 starts from the SC-MCCH change boundary t2.
  • the eNB 200 transmits the SC-MTCH corresponding to the first MBMS service (On-going session) a plurality of times within the SC-MCCH change period T2.
  • the eNB 200 transmits SC-MTCH control information (DCI) using the (M / N) PDCCH using G-RNTI.
  • the eNB 200 notifies the UE 100 that the second MBMS service (New session) is started within the next SC-MCCH change cycle T3 by including predetermined notification information in the control information (in FIG. 13). “Notify”).
  • the UE 100 can grasp that a new MBMS service is started, but cannot know which MBMS service is started.
  • the SC-MCCH change period T3 starts from the SC-MCCH change boundary t3.
  • the eNB 200 transmits the changed SC-MCCH (SC-MCCH changed) within the SC-MCCH change period T3.
  • the changed SC-MCCH includes the SC-MTCH setting of the second MBMS service (New session).
  • the eNB 200 starts transmitting the SC-MTCH of the second MBMS service while continuing to transmit the SC-MTCH of the first MBMS service within the SC-MCCH change period T3.
  • the eNB 200 may start the SC-MTCH transmission of the second MBMS service within the SC-MCCH change period next to the SC-MCCH change period T3.
  • the UE 100 can grasp that a new MBMS service is started based on predetermined 1-bit notification information, but grasps which MBMS service is started. That is not always easy. In particular, when a plurality of new MBMS services are started simultaneously (or continuously), it is extremely difficult to grasp which MBMS service is started. Therefore, even if the UE 100 attempts to receive a new MBMS service (New session) within the next SC-MCCH change period, the new MBMS service may be an MBMS service that the UE 100 is not interested in. In such a case, there is a problem that the power consumption of the UE 100 is wasted or reception of the first MBMS service (On-going session) is hindered.
  • Modification 1 of the first embodiment is a modification that attempts to solve such a problem.
  • the eNB 200 according to the first modification of the first embodiment provides an MBMS service using SC-PTM transmission.
  • the control unit 230 of the eNB 200 determines to start providing a second MBMS service different from the first MBMS service provided within the current SC-MCCH change cycle within the next SC-MCCH change cycle.
  • the transmission unit 210 of the eNB 200 transmits SC-MTCH control information and data belonging to the first MBMS service to the UE 100 using SC-MTCH within the current SC-MCCH change period. Transmitting section 210 transmits predetermined notification information associated with the identifier of the second MBMS service to UE 100 within the current SC-MCCH change period.
  • the UE 100 receives an MBMS service provided using SC-PTM transmission.
  • the receiving unit 110 of the UE 100 receives control information for SC-MTCH and data belonging to the first MBMS service from the eNB 200 within the current SC-MCCH change period. Based on the control information, the control unit 130 of the UE 100 determines that provision of a second MBMS service different from the first MBMS service is started within the next SC-MCCH change period.
  • the receiving unit 110 receives predetermined notification information associated with the identifier of the second MBMS service from the eNB 200 within the current SC-MCCH change period.
  • the controller 130 identifies the second MBMS service based on the predetermined notification information.
  • the predetermined notification information according to the first modification of the first embodiment is transmitted in a manner that can identify the MBMS service (New session) that starts within the next SC-MCCH change cycle.
  • the transmission timing of the predetermined notification information is associated with the identifier of the second MBMS service (New session).
  • the transmission unit 210 of the eNB 200 transmits control information (DCI) including predetermined notification information at a transmission timing associated with the identifier of the second MBMS service.
  • the control unit 130 of the UE 100 identifies the second MBMS service based on the reception timing of control information including predetermined notification information.
  • FIG. 14 is a diagram illustrating a first method according to the first modification of the first embodiment.
  • the eNB 200 transmits mapping information indicating a correspondence relationship between the identifier (TMGI) of the second MBMS service and the timing to the UE 100.
  • UE100 grasps
  • the timing may be expressed by a frame number.
  • the frame number may be at least one of a system frame number (SFN), a subframe number, and a hyper system frame number (H-SFN).
  • the timing may be expressed by a relative timing based on the SC-MCCH change boundary.
  • the timing may be defined by the number of PDCCH monitoring periods (On duration) in the DRX cycle on the basis of the SC-MCCH change boundary.
  • the eNB 200 may transmit the mapping information by SIB (for example, SIB20) or SC-MCCH.
  • SIB for example, SIB20
  • SC-MCCH SC-MCCH
  • a device other than the eNB 200 may notify the UE 100 of mapping information.
  • the BM-SC 22 or MME 300
  • a TMGI index may be included in the mapping information.
  • the index may be an index of a TMGI list in SC-MCCH.
  • the index may be an index of SAI (Service Area Identity) in SIB type 15 (SIB15). Since SAI is associated with TMGI in the USD, it is possible to indirectly indicate TMGI using the SAI index.
  • SAI Service Area Identity
  • step S102 the eNB 200 determines the transmission timing of the predetermined notification information based on the TMGI of the second MBMS service (New session).
  • step S103 the eNB 200 transmits control information including predetermined notification information to the UE 100 via the (M / N) PDCCH at the determined timing.
  • step S104 the UE 100 grasps the TMGI of the second MBMS service based on the reception timing of control information including predetermined notification information.
  • the predetermined notification information is composed of 1 bit, but in the second method, the predetermined notification information is composed of a plurality of bits.
  • the predetermined notification information is a TMGI of the second MBMS service or an index of the TMGI.
  • the transmission unit 210 of the eNB 200 transmits control information (DCI) including predetermined notification information.
  • the index may be defined in a manner similar to the first method. Therefore, UE100 can grasp
  • the TMGI index may be associated with each bit of the bit string constituting the notification information. That is, each bit position in the notification information indicates TMGI or its index.
  • the eNB 200 transmits mapping information indicating a correspondence relationship between TMGI or an index thereof and a bit position to the UE 100. For example, it is assumed that the notification information is 3 bits, the first bit is associated with TMGI A, the next bit is associated with TMGI B, and the next bit is associated with TMGI C. Under such a premise, when starting to provide the TMGI B MBMS service, the eNB 200 transmits “010” as the notification information. The UE 100 recognizes that provision of the TMGI B MBMS service is started based on the notification information and the mapping information.
  • the third method is a method of transmitting the TMGI of the second MBMS service (New session) or the index of the TMGI by PDSCH. Specifically, one bit in the control information (DCI) notifies that the second MBMS service is started, and is applicable by the MAC control element (MAC CE) transmitted on the PDSCH indicated by the control information.
  • TMGI is shown.
  • the TMGI indicated by the MAC CE may be plural (list shape).
  • FIG. 15 is a diagram illustrating a third method according to the first modification of the first embodiment.
  • the eNB 200 transmits control information including a 1-bit notification indicating that a new MBMS service is started within the next SC-MCCH change period to the UE 100 using the (M / N) PDCCH.
  • the control information includes scheduling information indicating PDSCH allocation.
  • the UE 100 determines that a new MBMS service is started within the next SC-MCCH change period based on the 1-bit notification.
  • step S132 the eNB 200 transmits the TMGI of the second MBMS service (New session) or the MAC CE including the index of the TMGI to the UE 100 through the PDSCH.
  • the UE 100 grasps the TMGI of the second MBMS service based on the MAC CE.
  • the operation according to the first modification of the first embodiment may be applied to the first notification described in the first embodiment.
  • the first notification is a notification transmitted on the (M / N) PDCCH using SC-RNTI and indicating whether or not the SC-MCCH has been changed.
  • the UE 100 can grasp the MBMS service (TMGI) related to the SC-MCCH change based on the first notification. it can.
  • TMGI MBMS service
  • the USD includes a provision start time (MBMS session start time) of each MBMS service.
  • the UE 100 grasps the provision start time of a specific MBMS service that it is interested in receiving.
  • the network may cease providing certain MBMS services using SC-PTM transmission.
  • the UE 100 in the RRC idle mode is interested in receiving a specific MBMS service.
  • the UE 100 recognizes that the specific MBMS service is not provided at the provision start time of the specific MBMS service.
  • the UE 100 has no knowledge of whether the network has stopped providing a specific MBMS service using SC-PTM transmission. Therefore, it is determined whether to wait until the provision of the MBMS service is started (that is, to maintain the RRC idle mode) or to try to receive the MBMS service by unicast (that is, to transit to the RRC connected mode). Difficult to do. From the viewpoint of the power consumption of UE 100 and the utilization efficiency of radio resources, it is desirable that UE 100 receives an MBMS service by SC-PTM while maintaining the RRC idle mode.
  • the second embodiment is an embodiment that attempts to solve such a problem.
  • the apparatus according to the second embodiment is included in a network that provides an MBMS service to the UE 100 using SC-PTM transmission (predetermined multicast / broadcast transmission scheme).
  • the device may be the eNB 200, the BM-SC 22, or the MME 300.
  • the control unit 230 of the eNB 200 determines a specific MBMS service that is not provided using SC-PTM transmission among a plurality of MBMS services that can be provided to the UE 100.
  • the control unit 230 of the eNB 200 notifies the UE 100 of identification information of the specific MBMS service.
  • the identification information may be TMGI.
  • the identification information may be a TMGI index.
  • the UE 100 receives an MBMS service provided from the network using SC-PTM transmission.
  • the control unit 130 of the UE 100 acquires service information (USD) related to a plurality of MBMS services provided from the network.
  • USD service information
  • the receiving unit 110 of the UE 100 receives identification information of a specific MBMS service that is not provided using SC-PTM transmission from the network. Based on the received identification information, the control unit 130 of the UE 100 determines that the specific MBMS service is not provided using SC-PTM transmission.
  • FIG. 16 is a diagram illustrating an operation example according to the second embodiment.
  • the UE 100 acquires service information (USD) from the EPC 20 (for example, BM-SC 22).
  • USD service information
  • the eNB 200 determines an MBMS service that is not provided using SC-PTM transmission.
  • MCE 11 rejects MBMS SESSION START.
  • the MCE 11 notifies the eNB 200 of identification information (for example, TMGI) of the MBMS service related to the rejection.
  • the eNB 200 determines an MBMS service that is not provided using SC-PTM transmission.
  • the eNB 200 broadcasts identification information of an MBMS service that is not provided using SC-PTM transmission.
  • eNB200 may include the said identification information in SIB (for example, SIB20).
  • SIB for example, SIB20.
  • the eNB 200 may broadcast a list including TMGIs of the plurality of MBMS services.
  • the eNB 200 may broadcast identification information at the original provision start time (MBMS session start time) of the specific MBMS service.
  • the eNB 200 may broadcast the identification information before and / or after the original provision start time of the specific MBMS service.
  • the eNB 200 may transmit the identification information a plurality of times over a certain period.
  • step S203 the UE 100 in the RRC idle mode recognizes an MBMS service that is not provided using SC-PTM transmission based on the identification information received from the eNB 200.
  • the UE 100 may transition to the RRC connected mode in order to receive the MBMS service by unicast. If the UE 100 determines that the MBMS service that it is interested in receiving is provided using SC-PTM transmission, even if the provision of the MBMS service is not started at the provision start time in the USD, the UE 100 The RRC idle mode may be maintained to wait until provisioning is started.
  • an apparatus other than the eNB 200 may notify the UE 100 of identification information of an MBMS service that is not provided using SC-PTM transmission.
  • the USD including the identification information (which may be a list) may be provided from the EPC 20 (for example, BM-SC 22) to the UE 100.
  • the UE 100 in the RRC idle mode may transition to the RRC connected mode when the service provision is not started at the provision start time of the specific MBMS service in which the UE 100 is interested in reception.
  • the start of service provision is only slightly delayed due to processing delay in the network, it is not preferable to immediately switch to the RRC connected mode.
  • the modified example of the second embodiment is an embodiment that attempts to solve such a problem.
  • the modified example of the second embodiment may be implemented separately from the second embodiment or may be used in combination with the second embodiment.
  • the UE 100 receives an MBMS service provided from the network using a predetermined multicast / broadcast transmission scheme.
  • the control unit 130 of the UE 100 acquires service information (USD) related to a plurality of MBMS services provided from the network.
  • the service information includes the provision start time of each MBMS service.
  • the control unit 130 of the UE 100 starts a timer in response to the provision of a specific MBMS service in which the UE 100 is interested in reception not being started at the provision start time.
  • the timer may be referred to as an allowable start delay timer.
  • the control unit 130 of the UE 100 waits for the start of provision of a specific MBMS service while the timer is operating.
  • control unit 130 of the UE 100 waits for the start of provision of a specific MBMS service in the RRC idle mode while the timer is operating. In response to the expiration of the timer, the control unit 130 of the UE 100 transitions from the RRC idle mode to the RRC connected mode in order to receive a specific MBMS service using unicast transmission.
  • the receiving unit 110 of the UE 100 may receive a timer value (allowable start delay time) to be set in the timer from the network.
  • the control unit 130 sets the timer value received from the network in the timer.
  • the timer value may be broadcast or multicast from the eNB 200.
  • the timer value may be included in SIB13, SIB15, SIB20, or SC-MCCH.
  • the timer value may be set individually for each MBMS service (TMGI), or may be a value common to all MBMS services.
  • TMGI MBMS service
  • the AS layer may acquire a timer value from the upper layer. In this case, the timer value may be included in the USD.
  • the timer value may be a predetermined fixed value.
  • FIG. 17 is a diagram illustrating an operation example according to a modification of the second embodiment.
  • the UE 100 obtains service information (USD) from the EPC 20 (for example, the BM-SC 22).
  • USD service information
  • the UE 100 may receive a timer value (allowable start delay time) to be set in the timer from the network.
  • step S251 the UE 100 in the RRC idle mode determines whether or not the provision start time of a specific MBMS service in which the UE 100 is interested in reception has come based on the USD.
  • step S252 the UE 100 determines whether or not provision of the specific MBMS service has been started.
  • step S253 the UE 100 receives the MBMS service provided using SC-PTM transmission in the RRC idle mode.
  • step S254 When provision of the specific MBMS service is not started at the provision start time (step S252: NO), in step S254, the UE 100 starts a timer and maintains the RRC idle mode to provide the specific MBMS service. Wait for it to start. If provision of the specific MBMS service is started during the operation of the timer (step S255: YES), the UE 100 stops the timer (step S256) and provides it using SC-PTM transmission in the RRC idle mode. The received MBMS service is received (step S253).
  • step S258 the UE 100 performs a random access procedure and transitions to the RRC connected mode. . And UE100 receives the said specific MBMS service by unicast in RRC connected mode.
  • a scenario is assumed in which the network temporarily interrupts the provision of the MBMS service using SC-PTM transmission.
  • the network is desired to be able to interrupt SC-PTM transmission in a period such as when congestion occurs or when the hardware is heavily loaded, and to resume SC-PTM transmission after the period has elapsed.
  • file integrity is required. Therefore, when packet loss occurs, the UE 100 in the RRC idle mode may need to change to the RRC connected mode and receive the file by unicast. Therefore, it is desirable to enable temporary interruption of SC-PTM transmission while suppressing the occurrence of packet loss.
  • the third embodiment is an embodiment for enabling temporary interruption of SC-PTM transmission.
  • the eNB 200 provides an MBMS service using SC-PTM transmission.
  • the control unit 230 of the eNB 200 determines to temporarily interrupt the provision of a specific MBMS service using SC-PTM transmission.
  • the transmission unit 210 of the eNB 200 transmits an interruption notification (Suspend indication) indicating that the provision of the MBMS service is temporarily suspended to the UE 100 before the provision of the specific MBMS service is suspended.
  • the interruption notification is transmitted by at least one of SC-MTCH transmission or control information (DCI) associated with SC-MCCH transmission, MAC CE transmitted by SC-MTCH, SC-MCCH, and SIB20.
  • DCI control information
  • the UE 100 receives the MBMS service provided from the eNB 200 using SC-PTM transmission.
  • the receiving unit 110 of the UE 100 receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the eNB 200 while receiving the specific MBMS service using SC-PTM transmission.
  • the control unit 130 of the UE 100 interrupts reception of the MBMS service at the first timing in response to reception of the suspension notification.
  • the control unit 130 of the UE 100 resumes the reception of the MBMS service at the second timing after interrupting the reception of the SC-MTCH.
  • the receiving unit 110 of the UE 100 may receive timing information indicating the first timing and / or the second timing from the eNB 200.
  • FIG. 18 is a diagram illustrating an operation example of the UE 100 according to the third embodiment.
  • the UE 100 is in the RRC idle mode.
  • step S31 the UE 100 receives a specific MBMS service provided from the eNB 200 using SC-PTM transmission.
  • step S32 the UE 100 receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the eNB 200.
  • the UE 100 interrupts reception of the specific MBMS service at the first timing.
  • the UE 100 is not required to receive (M / N) PDCCH) during a period in which provision of a specific MBMS service (specific SC-MTCH) is scheduled.
  • the UE 100 may be restricted from receiving the MBMS service by unicast while the service is suspended. For example, the UE 100 is not permitted to transition to the RRC connected mode for MBMS service reception during service interruption. Such a restriction may be effective only within the allowable delay time notified from the upper layer. That is, when the service interruption time exceeds the allowable delay time, it may be permitted to transition to the RRC connected mode for MBMS service reception.
  • the first timing may be the timing at which the interruption notification is received.
  • the first timing may be a timing at which the SC-MTCH including the interruption notification is transmitted.
  • the first timing may be determined based on a (M / N) PDCCH transmission subframe associated with SC-MTCH or a PDSCH transmission subframe corresponding to SC-MTCH.
  • the first timing may be determined based on the final transmission subframe of repetitive transmission.
  • the first timing may be the timing of the SC-MCCH modification boundary between the SC-MCCH change period at which the interruption notification is received and the next SC-MCCH change period. That is, the first timing is the timing of the first SC-MCCH change boundary after the timing when the interruption notification is received.
  • the first timing may be a relative timing determined on the basis of the time when the interruption notification is transmitted.
  • the first timing may be determined by the elapsed time (timer time) from the time when the interruption notification is transmitted.
  • the elapsed time may be a predetermined time or may be a time set by the eNB 200.
  • the first timing may be an absolute timing defined by time, subframe number, SFN, and H-SFN.
  • the said timing may be set from eNB200.
  • the first timing may be the first interruption candidate timing after the timing at which the interruption notification is received among the plurality of interruption candidate timings.
  • Such a suspension candidate timing may be referred to as “suspension boundary”.
  • the interruption candidate timing is defined using at least one of the following conditions.
  • the suspension candidate timing may be defined based on the SC-MCCH change boundary.
  • the suspension candidate timing may be obtained by equally dividing one SC-MCCH change period into a plurality of periods.
  • the reference point (start point) of the suspension candidate timing may be the same timing (subframe or the like) as the SC-MCCH change boundary.
  • the suspension candidate timing may be set for each MBMS service (TMGI).
  • the information related to the first timing as described above may be included in the interruption notification.
  • the eNB 200 may notify the UE 100 as an identifier based on the mapping table.
  • the mapping table may be a table preset in the UE 100.
  • the mapping table may be notified from the eNB 200 to the UE 100 using SC-MCCH or the like.
  • step S34 the UE 100 determines that the provision of the interrupted specific MBMS service is resumed.
  • the eNB 200 may continuously transmit a suspension notification while the provision of a specific MBMS service is suspended.
  • the UE 100 continuously receives the interruption notification while the provision of the specific MBMS service is interrupted.
  • the UE 100 may determine that the provision of the MBMS service is resumed when the interruption notification is not received.
  • the eNB 200 may transmit a restart notification indicating that the provision of the MBMS service is restarted to the UE 100.
  • the restart notification is transmitted by at least one of SC-MTCH transmission or control information (DCI) accompanying the SC-MCCH transmission, MAC CE transmitted by SC-MTCH, SC-MCCH, and SIB20.
  • DCI control information
  • the UE 100 determines that the provision of the MBMS service is resumed in response to receiving the resume notification.
  • step S35 the UE 100 resumes reception of a specific MBMS service at the second timing.
  • the second timing may be defined in the same way as the first timing.
  • the second timing may be the first resuming candidate timing after determining the resuming of SC-MTCH reception among the plurality of resuming candidate timings.
  • the restart candidate timing may be referred to as “Resumption boundary”.
  • the resume candidate timing is defined by the same method as the suspension candidate timing described above.
  • the resume candidate timing may be the same as the suspension candidate timing. In this case, the resume / suspend candidate timing may be referred to as “Suspension / resumption boundary”. Settings and notifications related to the resumption of MBMS service reception may be performed for each TMGI.
  • FIG. 19 is a diagram illustrating an operation sequence example 1 according to the third embodiment.
  • step S301 the UE 100 receives a specific MBMS service provided from the eNB 200 using SC-PTM transmission.
  • the eNB 200 transmits an interruption notification to the UE 100.
  • the eNB 200 may transmit a suspension notification when the MCE 11 is requested to suspend transmission of a specific MBMS service (specific SC-MTCH).
  • the eNB 200 may determine that service interruption is necessary to perform wireless congestion reduction or priority control of other unicast communication, and may transmit an interruption notification.
  • step S303 the UE 100 that has received the suspension notification suspends reception of the specific MBMS service at the first timing.
  • the eNB 200 periodically transmits an interruption notification.
  • the eNB 200 determines to resume provision of a specific MBMS service
  • the eNB 200 stops transmission of the interruption notification.
  • the UE 100 detects the suspension of transmission of the interruption notification and determines that the provision of the specific MBMS service is resumed.
  • step S305 the UE 100 resumes reception of a specific MBMS service at the second timing.
  • FIG. 20 is a diagram illustrating an operation sequence example 2 according to the third embodiment.
  • Steps S301 to S303 are the same as those in the operation sequence example 1. However, after transmitting the interruption notification in step S302, the eNB 200 may transmit the interruption notification again in consideration of the existence of the UE 100 that has not received the interruption notification.
  • step S311 the eNB 200 transmits a restart notification to the UE 100 when it is determined to restart providing a specific MBMS service.
  • the UE 100 detects the restart notification and determines that the provision of the specific MBMS service is restarted.
  • step S312 the UE 100 resumes reception of a specific MBMS service at the second timing.
  • an MBMS scenario using SC-PTM transmission is mainly assumed, but an MBMS scenario using MBSFN transmission may be assumed.
  • SC-PTM transmission may be read as MBSFN transmission
  • SC-MCCH may be read as MCCH
  • SC-MTCH may be read as MTCH.
  • the UE 100 may perform multicast reception in a connected state such as a connected mode, a light connected state, and an inactive mode. In this case, the UE 100 may perform multicast reception in the connected mode.
  • the UE 100 may determine whether to receive the MBMS service by multicast transmission or unicast transmission instead of determining whether to maintain the idle mode according to the modification of the second embodiment. .
  • firmware distribution is assumed as the MBMS service.
  • group message distribution, group chat message distribution, virus definition file distribution, periodic update file distribution such as weather forecast, irregular file distribution such as breaking news, night file distribution such as video content (off-peak distribution), MBMS services such as audio / video streaming distribution, telephone / video telephone (group communication), live video distribution, and radio audio distribution may be assumed.
  • a program for causing a computer to execute each process performed by the UE 100 and the eNB 200 may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip set including a memory that stores a program for executing each process performed by the UE 100 and the eNB 200 and a processor that executes the program stored in the memory may be provided.
  • the LTE system is exemplified as the mobile communication system.
  • the present disclosure is not limited to LTE systems.
  • the present disclosure may be applied to mobile communication systems other than the LTE system.
  • the 96th RAN2 concludes about direct indication of SC-MCCH change notification to use one bit in DCI scrambled with SC-RNTI for SC-MCCH change notification, and G-RNTI as follows: Agreed to introduce a pair of one-bit indicators in the DCI scrambled with: SC-MCCH change notification (for UEs interested in starting a new session): -For eNB-IoT and feMTC: One bit in DCI is used in PDCCH for SC-MCCH scheduling and SC-RNTI is used.
  • SC-MCCH change notification (for UEs in service): -For eNB-IoT and feMTC: Use one bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether the configuration of SC-MTCH is changed in the next MP.
  • -For eNB-IoT and feMTC Use one additional bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether a new service is scheduled to start in the next MP . For UEs that are in service and interested in starting other new sessions.
  • -RAN2 asks RAN1 whether to accept 2 bits. If only 1 bit is accepted, RAN2 uses 1 bit.
  • the first direct indication in the PDCCH scrambled with SC-RNTI has the same function as the existing SC-MCCH change notification currently indicated in the PDCCH scrambled with SC-N-RNTI.
  • This direct indication is mainly expected to be provided before a new MBMS session starts (ie, the UE stops receiving SC-PTM), according to the agreed future procedure.
  • the eNB gives this direct indication whenever the SC-MCCH is changed at the next SC-MCCH change boundary, ie whether or not it already provides an MBMS session, as illustrated in FIG. It may be assumed to transmit at any time.
  • the current specification specifies that the UE initiates SC-MCCH acquisition within the same subframe in which the SC-MCCH change notification is received, but the SC-MCCH change is the SC-MCCH change boundary. Just happens.
  • the network When the network changes (part of) the SC-MCCH information, the network notifies the UE about the change in the first sub-frame that may be used for SC-MCCH transmission within the repetition period.
  • the least significant bit in the 8-bit bitmap indicates the change of SC-MCCH when '1' is set.
  • the UE interested in receiving the MBMS service transmitted using SC-PTM obtains new SC-MCCH information starting from the same subframe. The UE applies the previously acquired SC-MCCH information until the UE acquires new SC-MCCH information.
  • This UE behavior related to SC-MCCH change notification is one of the MCCH acquisitions for MBSFN, and for the SC-PTM discussed in the following section, ie with respect to the same or the next change boundary. It differs from the recently agreed additional set of direct instructions.
  • Confirmation 1 The eNB notifies a new MBMS session whenever the first MS-CHCH change period has changed from this SC-MCCH change period by the first direct indication in the PDCCH containing the SC-RNTI .
  • the first direct indication will notify the SC-MCCH change in this change period rather than the next change period, so there is no “notification” with a broken line in FIG. Let's go. If the UE receives the first direct notification in the PDCCH scrambled with SC-RNTI, the UE needs to start decoding SC-MCCH immediately on the PDSCH.
  • the second direct indication in the PDCCH scrambled with G-RNTI is intended for UEs receiving an ongoing MBMS session as depicted in FIG. 22, according to the agreed future procedure. It is considered a kind of “SC-MCCH change notification specific to TMGI (of this G-RNTI)”. Since there is SC-MTCH transmission only in the ongoing MBMS session, it may be assumed that the eNB sends this direct indication only in the ongoing MBMS session. In other words, the eNB does not need to send an instruction directly for an MBMS session that has not yet started.
  • Confirmation 2 The second direct indication in the PDCCH for this TMGI is not used to notify the SC-MCCH change for a new MBMS session.
  • the third direct indication in the PDCCH scrambled with G-RNTI may be assumed to be either SC-MCCH change notification (of other G-RNTI) or some kind of SC-MTCH start notification. Although this is somewhat unclear from the agreement, the currently executing CR assumes that this direct indication is one of the SC-MCCH change notifications. This direct indication is intended for UEs that are receiving an ongoing MBMS session as shown in FIG. 23 according to the agreed future procedure, but are interested in other new MBMS sessions. RAN2 should clarify the meaning of the third direct indication first.
  • Proposal 1 RAN2 clarifies whether the third direct indication in the PDCCH for the start of another new MBMS session is a kind of SC-MCCH change notification or SC-MTCH start notification Should.
  • the third direct indication works well when only one new MBMS session starts simultaneously, but it is unclear what happens when two or more new MBMS sessions are about to start. .
  • the third direct indication which contains only one bit, allows two new sessions from the UE perspective, even though one of the two sessions has not actually started at the next SC-MCCH change boundary. It may be assumed that they cannot be distinguished.
  • Observation 1 Using one bit in the PDCCH scrambled with G-RNTI, if more than one MBMS session is about to start, the UE will decide which of the new MBMS sessions is the next SC-MCCH change boundary Cannot distinguish between starting with.
  • the UE when the UE is interested in only one of the new MBMS sessions and a third direct indication for other MBMS services is received before the start of the MBMS session according to USD, The UE will check the SC-MCCH and the UE will be interested in the SC-MCCH (since the third direct indication was directed to another MBMS service that is not of interest to the UE as illustrated in FIG. 24). Since there is no configuration change for a certain MBMS session, return to the ongoing SC-MTCH reception.
  • the SC-MCCH check may interrupt the SC-MTCH reception for the eNB-IoT UE in particular, and the interruption of the SC-MTCH reception is a motivation to introduce a direct indication, ie “service Is inconsistent with the motivation to solve the problem that SC-MTCH that is continuing will be interrupted by SC-MCCH reception for each MP.
  • RAN2 informs TMGI about a problem, eg, a limited number of new MBMS session starts (ie, only one at a time) or start when the eNB wants to start two or more of the new MBMS sessions You should consider how to solve some enhancements.
  • Proposal 2 When RAN2 is interested in only one of several new MBMS services that the UE will be started in the next SC-MCCH change period, the interruption of SC-MTCH reception is SC-MCCH It should be considered how this can be solved by monitoring.
  • the UE may predict when an MBMS service of interest is about to start (according to the “start” information in the USD), but the NW is responsible for the RAN by the SC-PTM.
  • One may decide not to provide an MBMS service, i.e. none of the three direct indications are provided. In this case, the UE needs to receive the MBMS service by unicast.
  • the UE may learn from SIB 15 with a frequency that provides the MBMS service of interest by SC-PTM and SC-MCCH with a cell that provides the SC-PTM of interest. In other words, the UE may notify that the NW does not currently provide the SC-PTM of interest when neither the SIB 15 nor the SC-MCCH includes the corresponding TMGI.
  • the expected UE behavior that the UE should stay in a waiting state and wait for SC-PTM to start is May be obvious.
  • UE may transition to connected state to acquire MBMS service by unicast, but how long should UE stay in a wait state before establishing connection to receive MBMS service of interest by unicast It is unclear whether it is.
  • Proposal 3 RAN2 should consider when a UE is allowed to acquire this MBMS service of interest by unicast if the NW does not provide SC-PTM for MBMS service .
  • -Alternative 2 Based on additional RAN support information, eg, a broadcast list of MBMS services that are not provided by SC-PTM.
  • Alternative 1 is the simplest, even assuming that the UE performs repeated checks of the SC-PTM service up to a delay threshold determined by higher layers, even if the UE power for receiving the MBMS service by SC-PTM Functions normally when consumption is assumed to be less than unicast power consumption. However, this may cause unnecessary receive latency, eg firmware download, even though the service is considered to be delay tolerant.
  • Alternative 2 is a controllable mechanism from the NW point of view and balances performance between reception delay and NW congestion due to multiple connection requests at the end of acceptable MBMS service latency . Further, as seen in Alternative 1 above, if the UE eventually needs to use unicast, it minimizes the UE power consumption due to unnecessary wake-up for SC-PTM check. Will be suppressed. The reason why Alternative 2 only includes MBMS services that are not provided by SC-PTM is that this should rather be an exception when these scheduled services are not provided by SC-PTM Thus, the NW does not need to broadcast this information when it is not needed. However, Alternative 2 requires further standardization activities and it is unclear how the RAN knows when the MBMS service starts (eg in USD).
  • Alternative 2 is intended to avoid UE power consumption and NW congestion, taking into account battery-sensitive applications and high volume devices (ie, mMTC) preferable.
  • Proposal 4 The NW should notify the UE of a list of scheduled MBMS services that will not be provided by SC-PTM by broadcast.
  • SC-PTM transmission for an ongoing MBMS session may be temporarily stopped due to congestion, especially if the session lasts for a long duration.
  • the UE does not change or be removed at least until the next SC-MCCH change boundary, ie the corresponding configuration in the SC-MCCH is changed before the next change boundary.
  • -It is necessary to continue to monitor MTCH. In other words, the UE's battery will still be consumed when the ongoing SC-PTM of interest is stopped. In order to avoid unnecessary power consumption, the UE should be notified when the MBMS session is stopped by the NW.
  • the “S” field used in part of the MBMS service stop and restart functions is “whether the MTCH transmission should be stopped by the eNode B” and “eNB when the stopped MBMS service is restarted. Informs the UE that it should naturally allow transmission from the beginning of the change period indicated by the MCCH update time, where the MCCH update time is equal to the MCCH change period.
  • the current “S” field tells the UE that the ongoing service will be stopped in the near future which is sufficient for the streaming service envisaged for MBSFN.
  • the delivery service envisaged in Release 14 may cause unicast file recovery even if one FLUTE block is missed, so closer synchronization between the eNB and the UE with respect to stop and resume Request. Therefore, the eNB notifies the UE of the exact timing of the stop determined by using, for example, SFN in the DCI or MAC CE, H-SFN, this SC-MTCH transmission, the next SC-MCCH change boundary, etc. There is a need.
  • the NW may decide to stop quite quickly as it may be too late to wait for the next SC-MCCH change period depending on the configuration.
  • Proposal 5 RAN2 should agree that the UE should be notified when SC-PTM transmission for an ongoing MBMS session is stopped.
  • Proposal 5 the expected UE behavior during the outage is to wait for SC-PTM to resume, ie the UE remains in a waiting state as discussed in view 4 of the previous section. Is self-explanatory. This prevents multiple RRC connection requests for MBMS service reception by unicast when the NW stops SC-PTM transmission. The situation will get worse if the outage is done under NW congestion. Therefore, the stopping UE behavior should be specified. However, this behavior should take into account delay requirements at higher layers.
  • Proposal 6 If SC-MTCH stoppage can be agreed, RAN2 will allow the UE to acquire the MBMS of interest by unicast as long as the service delay requirement is satisfied while SC-PTM is stopped It should also be agreed that it is not allowed.
  • this stop for SC-MTCH is continuously indicated using one additional bit in DCI or using an additional configuration in SC-MCCH.
  • SC-PTM ie Proposition 4
  • the UE may decide at any time to wait for SC-PTM to resume if SC-PTM has just been stopped (ie, has not been stopped).
  • Proposal 7 If the SC-MTCH stop can be agreed, RAN2 may prevent the UE from initiating an RRC connection request to acquire the MBMS of interest by unicast, eg, in DCI or SC-MCCH It should be further agreed that the stop indication is broadcast continuously during the stop period.
  • SC-MTCH suspension When SC-MTCH suspension is introduced, it is necessary to restart this SC-MTCH as well.
  • MBSFN transmission was restarted from time to time based on MCCH change boundaries, and the change periods were rf512 and rf1024.
  • the UE may check whether the SC-MTCH is still stopped or restarted only by monitoring the first MBSFN subframe after the MCCH change notification or MCCH change boundary.
  • the SC-PTM of Release 14 has agreed as a baseline to extend the SC-MCCH change period up to the maximum eDRX cycle, ie 2.91 hours. If the NW congestion is alleviated and the NW wants to resume SC-PTM transmission immediately, the resumption will continue until after the next change boundary and if the congestion is mitigated towards the beginning of the current SC-MCCH change period , Possibly not up to approximately 2.91 hours later.
  • SC-MTCH resumption may be delayed up to 2.91 hours if resumption of SC-PTM transmission can only occur occasionally after the next SC-MCCH change boundary.
  • the eNB may indicate whether SC-PTM is still stopped or restarted regardless of the SC-MCCH change period.
  • the restart boundary is assumed to be indicated by the eNB using, for example, SC-MCCH (including hard-coded mapping table), MAC CE or DCI.
  • SC-MCCH including hard-coded mapping table
  • MAC CE MAC CE
  • DCI DCI
  • Proposal 8 Can RAN2 be able to resume a stopped SC-PTM only (implicitly) after the next SC-MCCH change boundary, or (explicitly) at the restart boundary indicated by the eNB You should consider whether.
  • FIG. 25 An example timeline for the MBMS file delivery service is described in FIG. 25 and uses only the SC-MCCH change notification (ie, the first direct indication) using SC-RNTI for clarity only.
  • the figure further integrates the start / stop information described in the USD and RAN level stop instructions agreed at the last meeting.
  • the figure tentatively captures the SC-MTCH stop / resume mechanism discussed in Section 2.3.
  • the SC-MCCH transmission starts from the same SC-MCCH change boundary provided with the SC-MCCH change notification according to the current specification (see green arrow). Subsequently, SC-MTCH transmission is started after the next change boundary (see blue arrow), and SC-MTCH is unpredictable when all UEs complete acquisition of the changed SC-MCCH. It is possible and provides the most robust transmission timeline because it is not preferred that some UEs cannot receive some packets during a file delivery session (ie when not a streaming session).
  • the SC-MCCH change period is configured using an extended value, for example, 2.91 hours
  • the SC-MCCH transmission is significantly more compared to the MBMS session start time (as defined in USD). May be delayed. This delay may be unavoidable if the implementation is allowed by the implementation to send an SC-MCCH change notification one change period ahead.
  • Proposal 9 After the SC-MCCH change is instructed, RAN2 should clarify whether the SC-MTCH transmission is started at the next SC-MCCH change boundary.
  • This disclosure is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This radio terminal uses SC-PTM transmission to receive an MBMS service provided from the base station. The radio terminal is provided with: a receiving unit which, during reception of a specific MBMS service using the aforementioned SC-PTM transmission, receives from the base station an interruption notification indicating that provision of the specific MBMS service is to be interrupted; and a control unit which, in response to receiving the interruption notification, interrupts reception of the specific MBMS service.

Description

無線端末及び基地局Wireless terminal and base station
 本開示は、移動通信システムのための無線端末及び基地局に関する。 The present disclosure relates to a radio terminal and a base station for a mobile communication system.
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)において、無線端末にマルチキャスト/ブロードキャストサービスを提供するMBMS(Multimedia Broadcast Multicast Service)伝送が仕様化されている。MBMSの伝送方式としては、MBSFN(Multicast Broadcast Single Frequency Network)及びSC-PTM(Single Cell Point-To-Multipoint)の2つの伝送方式がある。 In 3GPP (Third Generation Partnership Project), a standardization project for mobile communication systems, MBMS (Multimedia Broadcast Multicast Service) transmission that provides multicast / broadcast services to wireless terminals is specified. There are two MBMS transmission schemes: MBSFN (Multicast Broadcast Single Frequency Network) and SC-PTM (Single Cell Point-To-Multipoint).
 一方、人が介在することなく通信を行うMTC(Machine Type Communication)やIoT(Internet of Things)サービスを対象とした無線端末が検討されている。このような無線端末は、低コスト化、カバレッジ広域化、及び低消費電力化を実現することが求められる。このため、3GPPにおいて、システム送受信帯域の一部のみに送受信帯域幅を制限した新たな無線端末のカテゴリが仕様化されている。このような新たなカテゴリの無線端末には、繰り返し送信(repetition)等を含む強化カバレッジ(enhanced coverage)機能が適用される。 On the other hand, wireless terminals targeting MTC (Machine Type Communication) and IoT (Internet of Things) services that perform communication without human intervention are being studied. Such a wireless terminal is required to realize low cost, wide coverage, and low power consumption. For this reason, in 3GPP, a new category of wireless terminals in which the transmission / reception bandwidth is limited to only a part of the system transmission / reception band is specified. An enhanced coverage function including repetitive transmission (repetition) and the like is applied to such a new category of wireless terminals.
 一実施形態に係る無線端末は、SC-PTM伝送を用いて基地局から提供されるMBMSサービスを受信する無線端末である。前記無線端末は、前記SC-PTM伝送を用いて特定のMBMSサービスを受信中において、前記特定のMBMSサービスの提供が中断されることを示す中断通知を前記基地局から受信する受信部と、前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断する制御部と、を備える。 A wireless terminal according to an embodiment is a wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission. The wireless terminal receives a suspension notification indicating that provision of the specific MBMS service is suspended while receiving a specific MBMS service using the SC-PTM transmission; and A control unit that interrupts reception of the specific MBMS service in response to reception of the suspension notification.
 一実施形態に係る基地局は、SC-PTM伝送を用いてMBMSサービスを提供する。前記基地局は、前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断する制御部と、前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信する送信部と、を備える。 A base station according to an embodiment provides an MBMS service using SC-PTM transmission. The base station determines to interrupt the provision of the specific MBMS service using the SC-PTM transmission, and interrupts the provision of the specific MBMS service before interrupting the provision of the specific MBMS service. A transmission unit that transmits an interruption notification indicating that the communication is to be performed to the wireless terminal.
 一実施形態に係るプロセッサは、SC-PTM伝送を用いて基地局から提供されるMBMSサービスを受信する無線端末のためのプロセッサである。前記プロセッサは、前記SC-PTM伝送を用いて特定のMBMSサービスを受信中において、前記特定のMBMSサービスの提供が中断されることを示す中断通知を前記基地局から受信する処理と、前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断する処理と、を実行する。 A processor according to an embodiment is a processor for a wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission. The processor is configured to receive an interruption notification indicating that provision of the specific MBMS service is interrupted while receiving a specific MBMS service using the SC-PTM transmission, and the interruption notification. In response to the reception of the specific MBMS service.
 一実施形態に係るプロセッサは、SC-PTM伝送を用いてMBMSサービスを提供する基地局のためのプロセッサである。前記プロセッサは、前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断する処理と、前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信する処理と、を実行する。 A processor according to an embodiment is a processor for a base station that provides an MBMS service using SC-PTM transmission. The processor determines to interrupt the provision of a specific MBMS service using the SC-PTM transmission, and interrupts the provision of the specific MBMS service before interrupting the provision of the specific MBMS service. And a process of transmitting an interruption notification indicating that to the wireless terminal.
 一実施形態に係る通信制御方法は、SC-PTM伝送を用いてMBMSサービスを提供する基地局が、前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断するステップと、前記基地局が、前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信するステップと、前記無線端末が、前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断するステップと、を備える。 The communication control method according to an embodiment includes a step of determining that a base station that provides an MBMS service using SC-PTM transmission interrupts the provision of a specific MBMS service using the SC-PTM transmission; Before the station interrupts the provision of the specific MBMS service, the station transmits a suspension notification indicating that the provision of the specific MBMS service is suspended to the wireless terminal; and the wireless terminal receives the suspension notification. And suspending reception of the specific MBMS service.
 一実施形態に係る無線端末は、SC-PTM伝送を用いて提供されるMBMSサービスを受信する。前記無線端末は、現在のSC-MCCH変更周期内で、SC-MTCHを用いて、前記SC-MTCH用の制御情報と第1のMBMSサービスに属するデータとを基地局から受信する受信部と、前記制御情報が所定の通知情報を含むことに応じて、前記第1のMBMSサービスとは異なる第2のMBMSサービスに属するデータの送信が次のSC-MCCH変更周期内で開始されると判断する制御部と、を備える。前記所定の通知情報は、前記次のSC-MCCH変更周期内で前記第2のMBMSサービスに属するデータの送信が開始されることを示す情報である。 A wireless terminal according to an embodiment receives an MBMS service provided using SC-PTM transmission. The radio terminal uses the SC-MTCH within the current SC-MCCH change period to receive control information for the SC-MTCH and data belonging to the first MBMS service from the base station; In response to the control information including predetermined notification information, it is determined that transmission of data belonging to a second MBMS service different from the first MBMS service is started within the next SC-MCCH change period. A control unit. The predetermined notification information is information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period.
 一実施形態に係る基地局は、SC-PTM伝送を用いてMBMSサービスを提供する。前記基地局は、現在のSC-MCCH変更周期内で提供中の第1のMBMSサービスとは異なる第2のMBMSサービスに属するデータの送信を次のSC-MCCH変更周期内で開始すると判断する制御部と、前記現在のSC-MCCH変更周期内で、SC-MTCHを用いて、前記SC-MTCH用の制御情報と前記第1のMBMSサービスに属するデータとを無線端末に送信する送信部と、を備える。前記送信部は、前記次のSC-MCCH変更周期内で前記第2のMBMSサービスに属するデータの送信が開始されることを示す所定の通知情報を含む前記制御情報を送信する。 A base station according to an embodiment provides an MBMS service using SC-PTM transmission. The base station determines that transmission of data belonging to a second MBMS service different from the first MBMS service being provided within the current SC-MCCH change period starts within the next SC-MCCH change period A transmission unit that transmits control information for the SC-MTCH and data belonging to the first MBMS service to the wireless terminal using SC-MTCH within the current SC-MCCH change period; Is provided. The transmission unit transmits the control information including predetermined notification information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period.
 一実施形態に係る無線端末は、SC-PTM伝送を用いて提供されるMBMSサービスを受信する。前記無線端末は、現在のSC-MCCH変更周期内で、SC-MTCHを用いて、前記SC-MTCH用の制御情報と第1のMBMSサービスに属するデータとを基地局から受信する受信部と、前記制御情報に基づいて、前記第1のMBMSサービスとは異なる第2のMBMSサービスの提供が次のSC-MCCH変更周期内で開始されると判断する制御部と、を備える。前記受信部は、前記現在のSC-MCCH変更周期内で、前記第2のMBMSサービスの識別子と関連付けられた所定の通知情報を前記基地局から受信する。前記制御部は、前記所定の通知情報に基づいて、前記第2のMBMSサービスを識別する。 A wireless terminal according to an embodiment receives an MBMS service provided using SC-PTM transmission. The radio terminal uses the SC-MTCH within the current SC-MCCH change period to receive control information for the SC-MTCH and data belonging to the first MBMS service from the base station; A control unit that determines that provision of a second MBMS service different from the first MBMS service is started within the next SC-MCCH change period based on the control information. The receiving unit receives predetermined notification information associated with an identifier of the second MBMS service from the base station within the current SC-MCCH change period. The control unit identifies the second MBMS service based on the predetermined notification information.
 一実施形態に係る基地局は、SC-PTM伝送を用いてMBMSサービスを提供する。前記基地局は、現在のSC-MCCH変更周期内で提供している第1のMBMSサービスとは異なる第2のMBMSサービスの提供を次のSC-MCCH変更周期内で開始すると判断する制御部と、前記現在のSC-MCCH変更周期内で、SC-MTCHを用いて、前記SC-MTCH用の制御情報と前記第1のMBMSサービスに属するデータとを無線端末に送信する送信部と、を備える。前記送信部は、前記現在のSC-MCCH変更周期内で、前記第2のMBMSサービスの識別子と関連付けられた所定の通知情報を前記無線端末に送信する。 A base station according to an embodiment provides an MBMS service using SC-PTM transmission. The base station determines to start providing a second MBMS service different from the first MBMS service provided within the current SC-MCCH change cycle within the next SC-MCCH change cycle; A transmitting unit that transmits control information for the SC-MTCH and data belonging to the first MBMS service to a wireless terminal using SC-MTCH within the current SC-MCCH change period; . The transmission unit transmits predetermined notification information associated with the identifier of the second MBMS service to the wireless terminal within the current SC-MCCH change period.
 一実施形態に係る無線端末は、所定のマルチキャスト/ブロードキャスト伝送方式を用いてネットワークから提供されるMBMSサービスを受信する。前記無線端末は、前記ネットワークから提供される複数のMBMSサービスに関するサービス情報を取得する制御部と、前記所定のマルチキャスト/ブロードキャスト伝送方式を用いて提供されない特定のMBMSサービスの識別情報を前記ネットワークから受信する受信部と、を備える。前記制御部は、前記識別情報に基づいて、前記所定のマルチキャスト/ブロードキャスト伝送方式を用いて提供されない前記特定のMBMSサービスを認識する。 A wireless terminal according to an embodiment receives an MBMS service provided from a network using a predetermined multicast / broadcast transmission scheme. The wireless terminal receives, from the network, identification information of a specific MBMS service that is not provided using the predetermined multicast / broadcast transmission method, and a control unit that acquires service information regarding a plurality of MBMS services provided from the network A receiving unit. The control unit recognizes the specific MBMS service that is not provided using the predetermined multicast / broadcast transmission scheme based on the identification information.
 一実施形態に係る装置は、所定のマルチキャスト/ブロードキャスト伝送方式を用いて無線端末にMBMSサービスを提供するネットワークに含まれる。前記装置は、前記無線端末に提供可能な複数のMBMSサービスのうち、前記所定のマルチキャスト/ブロードキャスト伝送方式を用いて提供されない特定のMBMSサービスを判断する制御部を備える。前記制御部は、前記特定のMBMSサービスの識別情報を前記無線端末に通知する。 An apparatus according to an embodiment is included in a network that provides an MBMS service to a wireless terminal using a predetermined multicast / broadcast transmission scheme. The apparatus includes a control unit that determines a specific MBMS service that is not provided using the predetermined multicast / broadcast transmission method among a plurality of MBMS services that can be provided to the wireless terminal. The control unit notifies the identification information of the specific MBMS service to the wireless terminal.
 一実施形態に係る無線端末は、所定のマルチキャスト/ブロードキャスト伝送方式を用いてネットワークから提供されるMBMSサービスを受信する。前記無線端末は、前記ネットワークから提供される複数のMBMSサービスに関するサービス情報を取得する制御部を備える。前記サービス情報は、各MBMSサービスの提供開始時刻を含む。前記制御部は、前記無線端末が受信に興味を持つ特定のMBMSサービスの提供が前記提供開始時刻において開始されないことに応じて、タイマを開始させる。前記制御部は、前記タイマが動作中である間は、前記特定のMBMSサービスの提供開始を待つ。 A wireless terminal according to an embodiment receives an MBMS service provided from a network using a predetermined multicast / broadcast transmission scheme. The wireless terminal includes a control unit that acquires service information regarding a plurality of MBMS services provided from the network. The service information includes the provision start time of each MBMS service. The control unit starts a timer in response to the provision of a specific MBMS service in which the wireless terminal is interested in reception not being started at the provision start time. The control unit waits for the start of provision of the specific MBMS service while the timer is operating.
 一実施形態に係る無線端末は、SC-PTM伝送を用いて基地局から提供されるMBMSサービスを受信する。前記無線端末は、前記SC-PTM伝送を用いて特定のMBMSサービスを受信中において、前記特定のMBMSサービスの提供が一時的に中断されることを示す中断通知を前記基地局から受信する受信部と、前記中断通知の受信に応じて、第1のタイミングにおいて前記MBMSサービスの受信を中断する制御部と、を備える。前記制御部は、前記SC-MTCHの受信を中断した後、第2のタイミングにおいて前記MBMSサービスの受信を再開する。 A wireless terminal according to an embodiment receives an MBMS service provided from a base station using SC-PTM transmission. The radio terminal receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the base station while receiving the specific MBMS service using the SC-PTM transmission. And a control unit that interrupts reception of the MBMS service at a first timing in response to reception of the suspension notification. The control unit resumes reception of the MBMS service at a second timing after interrupting reception of the SC-MTCH.
 一実施形態に係る基地局は、SC-PTM伝送を用いてMBMSサービスを提供する。前記基地局は、前記SC-PTM伝送を用いた特定のMBMSサービスの提供を一時的に中断すると判断する制御部と、前記特定のMBMSサービスの提供を中断する前に、当該MBMSサービスの提供を一時的に中断することを示す中断通知を無線端末に送信する送信部と、を備える。 A base station according to an embodiment provides an MBMS service using SC-PTM transmission. The base station determines to temporarily interrupt the provision of a specific MBMS service using the SC-PTM transmission, and provides the MBMS service before interrupting the provision of the specific MBMS service. And a transmission unit that transmits an interruption notification indicating interruption temporarily to the wireless terminal.
実施形態に係るLTEシステム(移動通信システム)の構成を示す図である。It is a figure which shows the structure of the LTE system (mobile communication system) which concerns on embodiment. 実施形態に係るMBMSに係るネットワーク構成を示す図である。It is a figure which shows the network structure which concerns on MBMS which concerns on embodiment. 実施形態に係るUE(無線端末)の構成を示す図である。It is a figure which shows the structure of UE (radio | wireless terminal) which concerns on embodiment. 実施形態に係るeNB(基地局)の構成を示す図である。It is a figure which shows the structure of eNB (base station) which concerns on embodiment. 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。It is a figure which shows the protocol stack of the radio | wireless interface in the LTE system which concerns on embodiment. 実施形態に係るLTEシステムの下りリンクのチャネルの構成を示す図である。It is a figure which shows the structure of the channel of the downlink of the LTE system which concerns on embodiment. 実施形態に係るLTEシステムの無線フレームの構成を示す図である。It is a figure which shows the structure of the radio | wireless frame of the LTE system which concerns on embodiment. 実施形態に係るSC-PTMの動作例を示す図である。It is a figure which shows the operation example of SC-PTM which concerns on embodiment. 実施形態に係るSIB20を示す図である。It is a figure showing SIB20 concerning an embodiment. 実施形態に係るSC-MCCH中のMBMS制御情報を示す図である。It is a figure which shows the MBMS control information in SC-MCCH which concerns on embodiment. 実施形態に係るeMTC UE向けの下りリンク物理チャネルを示す図である。It is a figure which shows the downlink physical channel for eMTC UE which concerns on embodiment. 実施形態に係るeMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャを示す図である。It is a figure which shows the random access procedure for eMTC UE and NB-IoT UE which concern on embodiment. 第1実施形態に係る動作例を示す図である。It is a figure which shows the operation example which concerns on 1st Embodiment. 第1実施形態の変更例1に係る第1の方法を示す図である。It is a figure which shows the 1st method which concerns on the example 1 of a change of 1st Embodiment. 第1実施形態の変更例1に係る第3の方法を示す図である。It is a figure which shows the 3rd method which concerns on the example 1 of a change of 1st Embodiment. 第2実施形態に係る動作例を示す図である。It is a figure which shows the operation example which concerns on 2nd Embodiment. 第2実施形態の変更例に係る動作例を示す図である。It is a figure which shows the operation example which concerns on the example of a change of 2nd Embodiment. 第3実施形態に係るUEの動作例を示す図である。It is a figure which shows the operation example of UE which concerns on 3rd Embodiment. 第3実施形態に係る動作シーケンス例1を示す図である。It is a figure which shows the operation sequence example 1 which concerns on 3rd Embodiment. 第3実施形態に係る動作シーケンス例2を示す図である。It is a figure which shows the operation | movement sequence example 2 which concerns on 3rd Embodiment. 付記に係るSC-RNTIを含んでいるPDCCH内の1ビット(SC-MCCH変更通知)を示す図である。It is a figure which shows 1 bit (SC-MCCH change notification) in PDCCH containing SC-RNTI which concerns on attachment. 付記に係るG-RNTIを含んでいるPDCCH内の1ビット(「TMGIに特有の」SC-MCCH変更通知)を示す図である。It is a figure which shows 1 bit ("TM-GI specific" SC-MCCH change notification) in PDCCH containing G-RNTI which concerns on attachment. 付記に係るG-RNTIを含んでいるPDCCH内の別の1ビット(すなわち、新しいセッション開始のための通知)を示す図である。It is a figure which shows another 1 bit (namely, notification for a new session start) in PDCCH containing G-RNTI which concerns on an attachment. 付記に係る2つ1組の新しいMBMSセッションの開始と混同しやすいシナリオを示す図である。It is a figure which shows the scenario which is easy to be confused with the start of a pair of new MBMS session which concerns on an appendix. 付記に係るMBMSファイル配信サービスに対する手順全体の例を示す図である。It is a figure which shows the example of the whole procedure with respect to the MBMS file delivery service concerning an additional remark.
 (移動通信システム)
 実施形態に係る移動通信システムの構成について説明する。実施形態に係る移動通信システムは、3GPPで仕様が策定されているLTE(Long Term Evolution)システムである。図1は、実施形態に係るLTEシステムの構成を示す図である。図2は、MBMSに係るネットワーク構成を示す図である。
(Mobile communication system)
A configuration of the mobile communication system according to the embodiment will be described. The mobile communication system according to the embodiment is an LTE (Long Term Evolution) system whose specifications are defined by 3GPP. FIG. 1 is a diagram illustrating a configuration of an LTE system according to the embodiment. FIG. 2 is a diagram illustrating a network configuration related to MBMS.
 図1に示すように、LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E-UTRAN:Evolved-UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。 As shown in FIG. 1, the LTE system includes a radio terminal (UE: User Equipment) 100, a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10, and a core network (EPC: Evolved Packet Core) 20. Is provided. The E-UTRAN 10 and the EPC 20 constitute an LTE system network.
 UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。 UE 100 is a mobile communication device. The UE 100 performs radio communication with the eNB 200 that manages a cell (serving cell) in which the UE 100 is located.
 E-UTRAN10は、基地局(eNB:evolved Node-B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理している。eNB200は、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。 The E-UTRAN 10 includes a base station (eNB: evolved Node-B) 200. The eNB 200 is connected to each other via the X2 interface. The eNB 200 manages one or a plurality of cells. The eNB 200 performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a wireless communication area. The “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
 EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S-GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。 The EPC 20 includes a mobility management entity (MME) and a serving gateway (S-GW) 300. MME performs various mobility control etc. with respect to UE100. The S-GW performs data transfer control. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
 MBMS向けのネットワークエンティティについて説明する。E-UTRAN10は、MCE(Multi-Cell/Multicast Coordinating Entity)11を含む。MCE11は、M2インターフェイスを介してeNB200と接続される。MCE11は、M3インターフェイスを介してMME300と接続される(図2参照)。MCE11は、MBSFN無線リソース管理・割当等を行う。具体的には、MCE11は、MBSFN伝送のスケジューリングを行う。これに対し、SC-PTM伝送のスケジューリングはeNB200により行われる。 Describes network entities for MBMS. The E-UTRAN 10 includes an MCE (Multi-Cell / Multicast Coordinating Entity) 11. The MCE 11 is connected to the eNB 200 via the M2 interface. The MCE 11 is connected to the MME 300 via the M3 interface (see FIG. 2). The MCE 11 performs MBSFN radio resource management / allocation and the like. Specifically, the MCE 11 performs MBSFN transmission scheduling. On the other hand, scheduling of SC-PTM transmission is performed by the eNB 200.
 EPC20は、MBMS GW(MBMS Gateway)21を含む。MBMS GW21は、M1インターフェイスを介してeNB200と接続される。MBMS GW21は、Smインターフェイスを介してMME300と接続される。MBMS GW21は、SG-mb及びSGi-mbインターフェイスを介してBM-SC22と接続される(図2参照)。MBMS GW21は、eNB200に対してIPマルチキャストのデータ伝送及びセッション制御等を行う。 The EPC 20 includes an MBMS GW (MBMS Gateway) 21. The MBMS GW 21 is connected to the eNB 200 via the M1 interface. The MBMS GW 21 is connected to the MME 300 via the Sm interface. The MBMS GW 21 is connected to the BM-SC 22 via the SG-mb and SGi-mb interfaces (see FIG. 2). The MBMS GW 21 performs IP multicast data transmission, session control, and the like for the eNB 200.
 EPC20は、BM-SC(Broadcast Multicast Service Center)22を含む。BM-SC22は、SG-mb及びSGi-mbインターフェイスを介してMBMS GW21と接続される。EPC20は、SGiインターフェイスを介してP-GW23と接続される(図2参照)。BM-SC22は、TMGI(Temporary Mobile Group Identity)の管理・割当等を行う。 The EPC 20 includes a BM-SC (Broadcast Multicast Service Center) 22. The BM-SC 22 is connected to the MBMS GW 21 via the SG-mb and SGi-mb interfaces. The EPC 20 is connected to the P-GW 23 via the SGi interface (see FIG. 2). The BM-SC 22 performs management / allocation of TMGI (Temporary Mobile Group Identity).
 EPC20の外部のネットワーク(すなわち、インターネット)には、GCS AS(Group Communication Service Application Server)31が設けられてもよい。GCS AS31は、グループ通信用のアプリケーションサーバである。GCS AS31は、MB2-U及びMB2-Cインターフェイスを介してBM-SC22と接続される。GCS AS31は、SGiインターフェイスを介してP-GW23と接続される。GCS AS31は、グループ通信におけるグループの管理及びデータ配信等を行う。 A network outside the EPC 20 (that is, the Internet) may be provided with a GCS AS (Group Communication Service Application Server) 31. GCS AS31 is an application server for group communication. The GCS AS 31 is connected to the BM-SC 22 via MB2-U and MB2-C interfaces. The GCS AS 31 is connected to the P-GW 23 via the SGi interface. The GCS AS 31 performs group management and data distribution in group communication.
 図3は、実施形態に係るUE100(無線端末)の構成を示す図である。図3に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。 FIG. 3 is a diagram illustrating a configuration of the UE 100 (wireless terminal) according to the embodiment. As illustrated in FIG. 3, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。 The receiving unit 110 performs various types of reception under the control of the control unit 130. The receiving unit 110 includes an antenna and a receiver. The receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmission unit 120 performs various transmissions under the control of the control unit 130. The transmission unit 120 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits it from the antenna.
 制御部130は、UE100における各種の制御を行う。制御部130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理を実行する。 The control unit 130 performs various controls in the UE 100. The control unit 130 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor and a CPU (Central Processing Unit). The baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal. The CPU performs various processes by executing programs stored in the memory. The processor may include a codec that performs encoding / decoding of an audio / video signal. The processor executes various processes described later.
 図4は、実施形態に係るeNB200(基地局)の構成を示す図である。図4に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。 FIG. 4 is a diagram illustrating a configuration of the eNB 200 (base station) according to the embodiment. As illustrated in FIG. 4, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmission unit 210 performs various transmissions under the control of the control unit 230. The transmission unit 210 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output from the control unit 230 into a radio signal and transmits it from the antenna.
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。 The receiving unit 220 performs various types of reception under the control of the control unit 230. The receiving unit 220 includes an antenna and a receiver. The receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
 制御部230は、eNB200における各種の制御を行う。制御部230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含む。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する各種の処理を実行する。 The control unit 230 performs various controls in the eNB 200. The control unit 230 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor and a CPU. The baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal. The CPU performs various processes by executing programs stored in the memory. The processor executes various processes described later.
 バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続される。バックホール通信部240は、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。バックホール通信部240は、M1インターフェイス上で行う通信及びM2インターフェイス上で行う通信にも用いられ得る。 The backhaul communication unit 240 is connected to an adjacent eNB via the X2 interface. The backhaul communication unit 240 is connected to the MME / S-GW 300 via the S1 interface. The backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like. The backhaul communication unit 240 can also be used for communication performed on the M1 interface and communication performed on the M2 interface.
 図5は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図5に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されている。第1レイヤは、物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。 FIG. 5 is a diagram showing a protocol stack of a radio interface in the LTE system. As shown in FIG. 5, the radio interface protocol is divided into first to third layers of the OSI reference model. The first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of the UE 100 and the physical layer of the eNB 200, data and control signals are transmitted via a physical channel.
 MACレイヤは、データの優先制御、HARQ(Hybrid ARQ)による再送処理等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMACレイヤは、スケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及びUE100への割当リソースブロックを決定する。 The MAC layer performs data priority control, retransmission processing by HARQ (Hybrid ARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, data and control signals are transmitted via the transport channel. The MAC layer of the eNB 200 includes a scheduler. The scheduler determines the uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and the resource blocks allocated to the UE 100.
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRCレイヤは、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。 The RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected mode. When there is no connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC idle mode.
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理等を行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図6は、LTEシステムの下りリンクのチャネルの構成を示す図である。図6(a)は、論理チャネル(Downlink Logical Channel)とトランポートチャネル(Downlink Transport Channel)との間のマッピングを示す。 FIG. 6 is a diagram illustrating a configuration of a downlink channel of the LTE system. FIG. 6A shows the mapping between the logical channel (Downlink Logical Channel) and the transport channel (Downlink Transport Channel).
 図6(a)に示すように、PCCH(Paging Control Channel)は、ページング情報、及びシステム情報変更を通知するための論理チャネルである。PCCHは、トランスポートチャネルであるPCH(Paging Channel)にマッピングされる。 As shown in FIG. 6A, PCCH (Paging Control Channel) is a logical channel for notifying paging information and system information change. The PCCH is mapped to a PCH (Paging Channel) that is a transport channel.
 BCCH(Broadcast Control Channel)は、システム情報のための論理チャネルである。BCCHは、トランスポートチャネルであるBCH(Broadcast Control Channel)及びDL-SCH(Downlink Shared Channel)にマッピングされる。 BCCH (Broadcast Control Channel) is a logical channel for system information. BCCH is mapped to BCH (Broadcast Control Channel) and DL-SCH (Downlink Shared Channel) which are transport channels.
 CCCH(Common Control Channel)は、UE100とeNB200との間の送信制御情報のための論理チャネルである。CCCHは、UE100がネットワークとの間でRRC接続を有していない場合に用いられる。CCCHは、DL-SCHにマッピングされる。 CCCH (Common Control Channel) is a logical channel for transmission control information between the UE 100 and the eNB 200. The CCCH is used when the UE 100 does not have an RRC connection with the network. CCCH is mapped to DL-SCH.
 DCCH(Dedicated Control Channel)は、UE100とネットワークとの間の個別制御情報を送信するための論理チャネルである。DCCHは、UE100がRRC接続を有する場合に用いられる。DCCHは、DL-SCHにマッピングされる。 DCCH (Dedicated Control Channel) is a logical channel for transmitting individual control information between the UE 100 and the network. The DCCH is used when the UE 100 has an RRC connection. DCCH is mapped to DL-SCH.
 DTCH(Dedicated Traffic Channel)は、データ送信のための個別論理チャネルである。DTCHは、DL-SCHにマッピングされる。 DTCH (Dedicated Traffic Channel) is an individual logical channel for data transmission. DTCH is mapped to DL-SCH.
 SC-MTCH(Single Cell Multicast Traffic Channel)は、SC-PTM伝送のための論理チャネルである。SC-MTCHは、SC-PTM伝送を用いてネットワークからUE100にデータ(MBMS)をマルチキャスト送信するための1対多チャネル(point-to-multipoint downlink channel)である。 SC-MTCH (Single Cell Multicast Traffic Channel) is a logical channel for SC-PTM transmission. SC-MTCH is a point-to-multipoint downlink channel for multicast transmission of data (MBMS) from the network to UE 100 using SC-PTM transmission.
 SC-MCCH(Single Cell Multicast Control Channel)は、SC-PTM伝送のための論理チャネルである。SC-MCCHは、1又は複数のSC-MTCHのためのMBMS制御情報をネットワークからUE100にマルチキャスト送信するための1対多チャネル(point-to-multipoint downlink channel)である。SC-MCCHは、SC-PTM伝送を用いてMBMSを受信する又は受信に興味を持つUE100に用いられる。また、SC-MCCHは、1つのセルに1つのみ存在する。 SC-MCCH (Single Cell Multicast Control Channel) is a logical channel for SC-PTM transmission. The SC-MCCH is a point-to-multipoint downlink channel for multicast transmission of MBMS control information for one or more SC-MTCHs from the network to the UE 100. SC-MCCH is used for UE 100 that receives or is interested in receiving MBMS using SC-PTM transmission. Also, only one SC-MCCH exists in one cell.
 MCCH(Multicast Control Channel)は、MBSFN伝送のための論理チャネルである。MCCHは、ネットワークからUE100へのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、トランスポートチャネルであるMCH(Multicast Channel)にマッピングされる。 MCCH (Multicast Control Channel) is a logical channel for MBSFN transmission. MCCH is used for transmission of MBMS control information for MTCH from the network to UE 100. MCCH is mapped to MCH (Multicast Channel) that is a transport channel.
 MTCH(Multicast Traffic Channel)は、MBSFN伝送のための論理チャネルである。MTCHは、MCHにマッピングされる。 MTCH (Multicast Traffic Channel) is a logical channel for MBSFN transmission. MTCH is mapped to MCH.
 図6(b)は、トランポートチャネル(Downlink Transport Channel)と物理チャネル(Downlink Physical Channel)との間のマッピングを示す。 FIG. 6B shows a mapping between a transport channel (Downlink Transport Channel) and a physical channel (Downlink Physical Channel).
 図6(b)に示すように、BCHは、PBCH(Physical Broadcast Channel)にマッピングされる。 As shown in FIG. 6 (b), BCH is mapped to PBCH (Physical Broadcast Channel).
 MCHは、PMCH(Physical Multicast Channel)にマッピングされる。MCHは、複数のセルによるMBSFN伝送をサポートする。 MCH is mapped to PMCH (Physical Multicast Channel). MCH supports MBSFN transmission by multiple cells.
 PCH及びDL-SCHは、PDSCH(Physical Downlink Shared Channel)にマッピングされる。DL-SCHは、HARQ、リンクアダプテーション、及び動的リソース割当をサポートする。 PCH and DL-SCH are mapped to PDSCH (Physical Downlink Shared Channel). DL-SCH supports HARQ, link adaptation, and dynamic resource allocation.
 PDCCHは、PDSCH(DL-SCH、PCH)のリソース割り当て情報及びDL-SCHに関するHARQ情報等を運搬する。また、PDCCHは、上りリンクのスケジューリンググラントを運ぶ。 PDCCH carries PDSCH (DL-SCH, PCH) resource allocation information, HARQ information related to DL-SCH, and the like. The PDCCH carries an uplink scheduling grant.
 図7は、LTEシステムの無線フレームの構成を示す図である。LTEシステムにおいて、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)が適用される。LTEシステムにおいて、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 7 is a diagram illustrating a configuration of a radio frame of the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink. In the LTE system, SC-FDMA (Single Carrier Frequency Division Multiple Access) is applied to each uplink.
 図7に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含む。各サブフレームは、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。 As shown in FIG. 7, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction. Each subframe includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. One symbol and one subcarrier constitute one resource element (RE). Among radio resources (time / frequency resources) allocated to the UE 100, frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するためのPDCCHとして用いられる領域である。各サブフレームの残りの部分は、主に下りリンクデータを伝送するためのPDSCHとして使用できる領域である。また、下りリンクにおいて、MBSFN伝送向けのサブフレームであるMBSFNサブフレームが設定され得る。 In the downlink, the section of the first few symbols of each subframe is an area mainly used as a PDCCH for transmitting a downlink control signal. The remaining part of each subframe is an area that can be used mainly as a PDSCH for transmitting downlink data. In the downlink, an MBSFN subframe that is a subframe for MBSFN transmission can be set.
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するためのPUCCHとして用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するためのPUSCHとして使用できる領域である。 In the uplink, both ends in the frequency direction in each subframe are regions used mainly as PUCCH for transmitting an uplink control signal. The remaining part in each subframe is an area that can be used mainly as a PUSCH for transmitting uplink data.
 (SC-PTM伝送の概要)
 SC-PTM伝送の概要について説明する。MBMS用の無線伝送方式としては、MBSFN及びSC-PTMの2つの伝送方式がある。MBSFN伝送においては、複数のセルからなるMBSFNエリア単位で、PMCHを介してデータが送信される。これに対し、SC-PTM伝送においては、セル単位で、PDSCHを介してデータが送信される。以下においては、UE100がSC-PTM受信を行うシナリオを主として想定するが、MBSFN伝送を想定してもよい。
(Overview of SC-PTM transmission)
An outline of SC-PTM transmission will be described. There are two MBMSFN and SC-PTM transmission systems as MBMS radio transmission systems. In MBSFN transmission, data is transmitted via the PMCH in units of MBSFN areas composed of a plurality of cells. On the other hand, in SC-PTM transmission, data is transmitted on a cell basis via the PDSCH. In the following, a scenario in which the UE 100 performs SC-PTM reception is mainly assumed, but MBSFN transmission may be assumed.
 UE100は、RRCコネクティッドモードでMBMSサービスを受信してもよい。UE100は、RRCアイドルモードでMBMSサービスを受信してもよい。以下において、UE100がRRCアイドルモードでMBMSサービスを受信するケースを主として想定する。 UE 100 may receive the MBMS service in the RRC connected mode. The UE 100 may receive the MBMS service in the RRC idle mode. In the following, it is mainly assumed that the UE 100 receives the MBMS service in the RRC idle mode.
 図8は、SC-PTM伝送の動作例を示す図である。 FIG. 8 is a diagram showing an operation example of SC-PTM transmission.
 ステップS1において、UE100は、eNB200を介してEPC20からUSD(User Service Description)を取得する。USDは、各MBMSサービスの基本的な情報を提供する。USDは、MBMSサービスごとに、当該MBMSサービスを識別するTMGIと、当該MBMSサービスが提供される周波数と、当該MBMSサービスの提供開始・終了時間と、を含む。 In step S <b> 1, the UE 100 acquires a USD (User Service Description) from the EPC 20 via the eNB 200. USD provides basic information for each MBMS service. The USD includes, for each MBMS service, TMGI for identifying the MBMS service, a frequency at which the MBMS service is provided, and provision start / end times of the MBMS service.
 ステップS2において、UE100は、BCCHを介してeNB200からSIB20を受信する。SIB20は、SC-MCCHの取得に必要な情報(スケジューリング情報)を含む。図9は、SIB20を示す図である。SIB20は、SC-MCCHの内容が変更され得る周期(SC-MCCH変更周期)を示すsc-mcch-ModificationPeriod、SC-MCCHの送信(再送)時間間隔を無線フレーム数で示すsc-mcch-RepetitionPeriod、SC-MCCHがスケジュールされる無線フレームのオフセットを示すsc-mcch-Offset、及びSC-MCCHがスケジュールされるサブフレームを示すsc-mcch-Subframe等を含む。 In step S2, UE100 receives SIB20 from eNB200 via BCCH. The SIB 20 includes information (scheduling information) necessary for acquiring the SC-MCCH. FIG. 9 is a diagram showing the SIB 20. The SIB 20 includes a sc-mcch-ModificationPeriod indicating a period in which the contents of the SC-MCCH can be changed (SC-MCCH change period), a sc-mcch-RepetionPeriod indicating the SC-MCCH transmission (retransmission) time interval in terms of the number of radio frames, Sc-mcch-Offset indicating the offset of the radio frame on which the SC-MCCH is scheduled, sc-mcch-Subframe indicating the subframe on which the SC-MCCH is scheduled, and the like.
 ステップS3において、UE100は、SIB20に基づいて、SC-MCCHを介してeNB200からMBMS制御情報を受信する。MBMS制御情報は、SC-PTM設定情報(SCPTM Configuration)と称されてもよい。物理レイヤにおいてSC-MCCHの送信にはSC-RNTI(Single Cell RNTI)が用いられる。図10は、SC-MCCH中のMBMS制御情報(SC-PTM設定情報)を示す図である。SC-PTM設定情報は、SC-MRB(Single Cell MBMS Point to Multipoint Radio Bearer)を介して送信されるMBMSサービスに適用可能な制御情報を含む。SC-PTM設定情報は、当該情報を送信するセルにおける各SC-MTCHの設定を含むsc-mtch-InfoList、及びSC-MRBを介してMBMSサービスを提供する隣接セルのリストであるscptmNeighbourCellListを含む。sc-mtch-InfoListは、1又は複数のSC-MTCH-Infoを含む。各SC-MTCH-Infoは、SC-MRBを介して送信される進行中のMBMSセッションの情報(mbmsSessionInfo)、当該MBMSセッションに対応するG-RNTI(Group RNTI)、及びSC-MTCHのためのDRX情報であるsc-mtch-schedulingInfoを含む。mbmsSessionInfoは、MBMSサービスを識別するTMGI及びセッションID(sessionId)を含む。G-RNTIは、マルチキャストグループ(具体的には、特定グループ宛てのSC-MTCH)を識別するRNTIである。G-RNTIは、TMGIと1対1でマッピングされる。sc-mtch-schedulingInfoは、onDurationTimerSCPTM、drx-InactivityTimerSCPTM、schedulingPeriodStartOffsetSCPTMを含む。schedulingPeriodStartOffsetSCPTMは、SC-MTCH-SchedulingCycle及びSC-MTCH-SchedulingOffsetを含む。 In step S3, the UE 100 receives MBMS control information from the eNB 200 via the SC-MCCH based on the SIB20. The MBMS control information may be referred to as SC-PTM setting information (SCPTM Configuration). SC-RNTI (Single Cell RNTI) is used for SC-MCCH transmission in the physical layer. FIG. 10 is a diagram showing MBMS control information (SC-PTM setting information) in SC-MCCH. The SC-PTM setting information includes control information applicable to the MBMS service transmitted via SC-MRB (Single Cell MBMS Point to Multipoint Radio Bearer). The SC-PTM setting information includes sc-mtch-InfoList including the setting of each SC-MTCH in the cell that transmits the information, and scptmNeighbourCellList that is a list of neighboring cells that provide the MBMS service via the SC-MRB. The sc-mtch-InfoList includes one or more SC-MTCH-Info. Each SC-MTCH-Info includes information on the MBMS session in progress (mbmsSessionInfo) transmitted via the SC-MRB, a G-RNTI (Group RNTI) corresponding to the MBMS session, and DRX for the SC-MTCH. It contains sc-mtch-schedulingInfo which is information. The mbmsSessionInfo includes a TMGI that identifies the MBMS service and a session ID (sessionId). G-RNTI is an RNTI that identifies a multicast group (specifically, an SC-MTCH addressed to a specific group). G-RNTI is mapped one-to-one with TMGI. sc-mtch-schedulingInfo includes onDurationTimerSCPTM, drx-InactivityTimerSCPTM, schedulingPeriodStartOffsetSCPTM. The schedulingPeriodOffsetSCPTM includes SC-MTCH-SchedulingCycle and SC-MTCH-SchedulingOffset.
 ステップS4において、UE100は、SC-PTM設定情報中のSC-MTCH-SchedulingInfoに基づいて、SC-MTCHを介して、自身が興味のあるTMGIに対応するMBMSサービス(MBMSデータ)を受信する。物理レイヤにおいて、eNB200は、G-RNTIを用いてPDCCHを送信した後、PDSCHを介してMBMSデータを送信する。 In step S4, the UE 100 receives the MBMS service (MBMS data) corresponding to the TMGI that it is interested in via the SC-MTCH based on the SC-MTCH-SchedulingInfo in the SC-PTM setting information. In the physical layer, the eNB 200 transmits the PDCCH using G-RNTI, and then transmits MBMS data via the PDSCH.
 なお、図8に関連して説明した制御信号(シグナリング)は一例である。制御信号は、省電力受信のための最適化等により、一部の制御信号が適宜省略されたり、制御信号の順序が入れ替わったりしてもよい。 The control signal (signaling) described with reference to FIG. 8 is an example. Some of the control signals may be appropriately omitted or the order of the control signals may be changed by optimization for power saving reception or the like.
 (eMTC及びNB-IoTの概要)
 eMTC及びNB-IoTの概要について説明する。実施形態において、新たなカテゴリのUE100が存在するシナリオを想定する。新たなカテゴリのUE100は、システム送受信帯域の一部のみに送受信帯域幅が制限されるUE100である。新たなUEカテゴリは、例えば、カテゴリM1及びNB(Narrow Band)-IoTカテゴリと称される。カテゴリM1は、eMTC(enhanced Machine Type Communications)UEである。NB-IoT UEは、カテゴリNB1である。カテゴリM1は、UE100の送受信帯域幅を1.08MHz(すなわち、6リソースブロックの帯域幅)に制限する。カテゴリM1は、繰り返し送信等を用いた強化カバレッジ(EC:Enhanced Coverage)機能をサポートする。NB-IoTカテゴリは、UE100の送受信帯域幅を180kHz(すなわち、1リソースブロックの帯域幅)にさらに制限する。NB-IoTカテゴリは、強化カバレッジ機能をサポートする。繰り返し送信は、複数のサブフレームを用いて同一の信号を繰り返し送信する技術である。一例として、LTEシステムのシステム帯域幅は10MHzであり、そのうちの送受信帯域幅は9MHz(すなわち、50リソースブロックの帯域幅)である。一方、カテゴリM1のUE100は、6リソースブロックよりも広い帯域幅で送信される下りリンク無線信号を受信することができないため、通常のPDCCHを受信することができない。このため、MTC向けのPDCCHであるMPDCCH(MTC-PDCCH)が導入される。同様な理由で、NB-IoT向けのPDCCHであるNPDCCH(NB-PDCCH)が導入される。
(Outline of eMTC and NB-IoT)
An outline of eMTC and NB-IoT will be described. In the embodiment, a scenario in which a new category of UE 100 exists is assumed. The UE 100 in a new category is a UE 100 whose transmission / reception bandwidth is limited to only a part of the system transmission / reception band. The new UE categories are referred to as, for example, category M1 and NB (Narrow Band) -IoT category. The category M1 is an eMTC (enhanced machine type communications) UE. The NB-IoT UE is category NB1. The category M1 limits the transmission / reception bandwidth of the UE 100 to 1.08 MHz (that is, the bandwidth of 6 resource blocks). The category M1 supports an enhanced coverage (EC) function using repeated transmission or the like. The NB-IoT category further restricts the transmission / reception bandwidth of the UE 100 to 180 kHz (that is, the bandwidth of one resource block). The NB-IoT category supports the enhanced coverage function. Repeat transmission is a technique for repeatedly transmitting the same signal using a plurality of subframes. As an example, the system bandwidth of the LTE system is 10 MHz, of which the transmission / reception bandwidth is 9 MHz (that is, the bandwidth of 50 resource blocks). On the other hand, since the UE 100 of category M1 cannot receive a downlink radio signal transmitted with a bandwidth wider than 6 resource blocks, it cannot receive a normal PDCCH. For this reason, MPDCCH (MTC-PDCCH), which is a PDCCH for MTC, is introduced. For the same reason, NPDCCH (NB-PDCCH), which is a PDCCH for NB-IoT, is introduced.
 強化カバレッジ機能は、同一信号を繰り返し送信する繰り返し送信(Repetition)を含んでもよい。繰り返し送信の回数が多いほど、カバレッジを強化することができる。強化カバレッジ機能は、送信信号の電力密度を上げる電力ブースト(Power boosting)を含んでもよい。一例として、送信信号の周波数帯域幅を狭くする狭帯域送信により電力密度を上げる。送信信号の電力密度を上げるほど、カバレッジを強化することができる。強化カバレッジ機能は、送信信号に用いるMCSを下げる低MCS(Lower MCS)送信を含んでもよい。データレートが低く、誤り耐性の高いMCSを用いて送信を行うことにより、カバレッジを強化することができる。 The enhanced coverage function may include repeated transmission (Repetition) for repeatedly transmitting the same signal. The coverage can be enhanced as the number of repeated transmissions increases. The enhanced coverage function may include a power boost that increases the power density of the transmission signal. As an example, the power density is increased by narrowband transmission that narrows the frequency bandwidth of the transmission signal. The coverage can be enhanced as the power density of the transmission signal is increased. The enhanced coverage function may include low MCS (Lower MCS) transmission that lowers the MCS used for the transmission signal. Coverage can be enhanced by performing transmission using MCS with a low data rate and high error tolerance.
 図11は、eMTC UE向けの下りリンク物理チャネルを示す図である。eNB200は、6リソースブロック以内でMPDCCHを送信する。MPDCCHは、PDSCHを割り当てるためのスケジューリング情報を含む。一例として、MPDCCHは、当該MPDCCHが送信されるサブフレームとは異なるサブフレームのPDSCHを割り当てる。eNB200は、6リソースブロック以内でPDSCHを送信する。eNB200は、同一の信号の繰り返し送信を行うために、複数のサブフレームに亘ってPDSCHを割り当てる。カテゴリM1のUE100は、MPDCCHを受信することで割り当てPDSCHを特定し、割り当てPDSCHで送信されるデータを受信する。 FIG. 11 is a diagram showing a downlink physical channel for eMTC UE. The eNB 200 transmits the MPDCCH within 6 resource blocks. MPDCCH includes scheduling information for allocating PDSCH. As an example, MPDCCH allocates PDSCH of a subframe different from the subframe in which the MPDCCH is transmitted. The eNB 200 transmits the PDSCH within 6 resource blocks. The eNB 200 allocates a PDSCH over a plurality of subframes in order to repeatedly transmit the same signal. The UE 100 of category M1 specifies the assigned PDSCH by receiving the MPDCCH, and receives data transmitted on the assigned PDSCH.
 図12は、eMTC UE及びNB-IoT UE向けのランダムアクセスプロシージャを示す図である。図12の初期状態において、UE100は、RRCアイドルモードにある。UE100は、RRCコネクティッドモードに遷移するためにランダムアクセスプロシージャを実行する。 FIG. 12 is a diagram showing a random access procedure for eMTC UE and NB-IoT UE. In the initial state of FIG. 12, the UE 100 is in the RRC idle mode. The UE 100 executes a random access procedure in order to transition to the RRC connected mode.
 UE100は、eNB200のセルをサービングセルとして選択している。UE100は、通常のカバレッジのための第1のセル選択基準(第1のS-criteria)が満たされず、強化カバレッジのための第2のセル選択基準(第2のS-criteria)が満たされた場合、自身が強化カバレッジに居ると判定してもよい。「強化カバレッジに居るUE」とは、セルにアクセスするために強化カバレッジ機能(強化カバレッジモード)を用いることが必要とされるUEを意味する。なお、eMTC UEは、強化カバレッジモードを用いることが必須である。 UE100 has selected the cell of eNB200 as a serving cell. The UE 100 does not satisfy the first cell selection criterion (first S-criteria) for normal coverage, and satisfies the second cell selection criterion (second S-criteria) for enhanced coverage In this case, it may be determined that the user is in the enhanced coverage. “UE in enhanced coverage” means a UE that is required to use an enhanced coverage function (enhanced coverage mode) to access a cell. Note that eMTC UE must use the enhanced coverage mode.
 ステップS1001において、eNB200は、PRACH(Physical Random Access Channel)関連情報をブロードキャストシグナリング(例えば、SIB)により送信する。PRACH関連情報は、強化カバレッジレベルごとに設けられた各種のパラメータを含む。一例として、強化カバレッジレベルは、強化カバレッジレベル0乃至3の合計4つのレベルが規定される。各種のパラメータは、RSRP(Reference Signal Received Power)閾値、PRACHリソース、及び最大プリアンブル送信回数を含む。PRACHリソースは、無線リソース(時間・周波数リソース)及び信号系列(プリアンブル系列)を含む。UE100は、受信したPRACH関連情報を記憶する。 In step S1001, the eNB 200 transmits PRACH (Physical Random Access Channel) related information by broadcast signaling (for example, SIB). The PRACH related information includes various parameters provided for each enhanced coverage level. As an example, for the enhanced coverage level, a total of four levels of enhanced coverage levels 0 to 3 are defined. Various parameters include an RSRP (Reference Signal Received Power) threshold, a PRACH resource, and the maximum number of preamble transmissions. The PRACH resource includes a radio resource (time / frequency resource) and a signal sequence (preamble sequence). The UE 100 stores the received PRACH related information.
 ステップS1002において、UE100は、eNB200から送信される参照信号に基づいてRSRPを測定する。 In step S1002, UE100 measures RSRP based on the reference signal transmitted from eNB200.
 ステップS1003において、UE100は、測定したRSRPを強化カバレッジレベルごとのRSRP閾値と比較することにより、自身の強化カバレッジレベルを決定する。強化カバレッジレベルは、UE100に必要とされる強化カバレッジの度合いを示す。強化カバレッジレベルは、少なくとも繰り返し送信における送信回数(すなわち、Repetition回数)と関連する。 In step S1003, the UE 100 determines its own enhanced coverage level by comparing the measured RSRP with the RSRP threshold value for each enhanced coverage level. The enhanced coverage level indicates the degree of enhanced coverage required for the UE 100. The enhanced coverage level is associated with at least the number of transmissions (that is, the number of repetitions) in repeated transmission.
 ステップS1004において、UE100は、自身の強化カバレッジレベルに対応するPRACHリソースを選択する。 In step S1004, the UE 100 selects a PRACH resource corresponding to its enhanced coverage level.
 ステップS1005において、UE100は、選択したPRACHリソースを用いてMsg 1(ランダムアクセスプリアンブル)をeNB200に送信する。eNB200は、受信したMsg 1に用いられたPRACHリソースに基づいて、UE100の強化カバレッジレベルを特定する。 In step S1005, the UE 100 transmits Msg 1 (random access preamble) to the eNB 200 using the selected PRACH resource. The eNB 200 specifies the enhanced coverage level of the UE 100 based on the PRACH resource used for the received Msg 1.
 ステップS1006において、eNB200は、UE100に割り当てたPUSCHリソースを示すスケジューリング情報を含むMsg 2(ランダムアクセス応答)をUE100に送信する。UE100は、Msg 2を正常に受信するまで、自身の強化カバレッジレベルに対応する最大プリアンブル送信回数までMsg 1を複数回送信し得る。 In step S1006, the eNB 200 transmits Msg 2 (random access response) including scheduling information indicating the PUSCH resource allocated to the UE 100 to the UE 100. The UE 100 can transmit Msg 1 a plurality of times up to the maximum number of preamble transmissions corresponding to its own enhanced coverage level until it normally receives Msg 2.
 ステップS1007において、UE100は、スケジューリング情報に基づいて、Msg 3をeNB200に送信する。Msg 3は、RRC Connection Requestメッセージであってもよい。 In step S1007, the UE 100 transmits Msg 3 to the eNB 200 based on the scheduling information. Msg 3 may be an RRC Connection Request message.
 ステップS1008において、eNB200は、Msg 4をUE100に送信する。 In step S1008, the eNB 200 transmits Msg 4 to the UE 100.
 ステップS1009において、UE100は、Msg 4の受信に応じてRRCコネクティッドモードに遷移する。その後、eNB200は、特定した強化カバレッジレベルに基づいて、UE100への繰り返し送信等を制御する。 In step S1009, the UE 100 transitions to the RRC connected mode in response to reception of Msg 4. Thereafter, the eNB 200 controls repeated transmission to the UE 100 based on the identified enhanced coverage level.
 (第1実施形態)
 上述したような移動通信システムを前提として、第1実施形態について説明する。第1実施形態は、上述した新たなカテゴリのUE(eMTC UE又はNB-IoT UE)100に対して、SC-PTM伝送によりファームウェア等の一括配信を行うシナリオを想定する。また、RRCアイドルモードのUE100がSC-PTM伝送により提供されるMBMSサービスを受信するケースを主として想定する。
(First embodiment)
The first embodiment will be described on the premise of the mobile communication system as described above. The first embodiment assumes a scenario in which firmware or the like is distributed collectively by SC-PTM transmission to the above-described new category UE (eMTC UE or NB-IoT UE) 100. Further, it is assumed that the UE 100 in the RRC idle mode mainly receives an MBMS service provided by SC-PTM transmission.
 eNB200は、論理チャネルであるSC-MCCHを用いてMBMS制御情報(SC-PTM設定情報)をUE100に送信する。SC-MCCHは、物理チャネルであるPDSCHにマッピングされる。当該PDSCHは、SC-RNTIを用いて送信されるMPDCCH又はNPDCCH(適宜「(M/N)PDCCH」と表記する)によりスケジューリングされる。eNB200は、論理チャネルであるSC-MTCHを用いて、MBMSサービスに属するデータ(MBMSデータ)をUE100に送信する。SC-MTCHは、物理チャネルであるPDSCHにマッピングされる。当該PDSCHは、G-RNTIを用いて送信される(M/N)PDCCHによりスケジューリングされる。 ENB 200 transmits MBMS control information (SC-PTM setting information) to UE 100 using SC-MCCH, which is a logical channel. SC-MCCH is mapped to PDSCH which is a physical channel. The PDSCH is scheduled by MPDCCH or NPDCCH (referred to as “(M / N) PDCCH” as appropriate) transmitted using SC-RNTI. The eNB 200 transmits data (MBMS data) belonging to the MBMS service to the UE 100 using SC-MTCH which is a logical channel. SC-MTCH is mapped to PDSCH, which is a physical channel. The PDSCH is scheduled by (M / N) PDCCH transmitted using G-RNTI.
 このような前提下において、(M/N)PDCCHにより新たなカテゴリのUE100向けの通知として、以下の3種類の通知が検討されている。 Under such a premise, the following three types of notifications are being considered as notifications for UE 100 of a new category by (M / N) PDCCH.
 第1の通知は、SC-RNTIを用いて送信される(M/N)PDCCH中の1ビットである。第1の通知は、SC-MCCHの変更の有無を示す。 The first notification is one bit in the (M / N) PDCCH transmitted using SC-RNTI. The first notification indicates whether the SC-MCCH has been changed.
 第2の通知は、G-RNTIを用いて送信される(M/N)PDCCH中の1ビットである。第2の通知は、当該G-RNTIに対応するMBMSサービス(TMGI)のSC-MTCHの設定が次のSC-MCCH変更周期内で変更されるか否かを示す。「次のSC-MCCH変更周期内で変更される」とは、次のSC-MCCH変更境界(Modification Boundary)から変更されることと同義である。 The second notification is one bit in the (M / N) PDCCH transmitted using G-RNTI. The second notification indicates whether the SC-MTCH setting of the MBMS service (TMGI) corresponding to the G-RNTI is changed within the next SC-MCCH change period. “Changed within the next SC-MCCH change period” is synonymous with changing from the next SC-MCCH change boundary (Modification Boundary).
 第3の通知は、G-RNTIを用いて送信される(M/N)PDCCH中の1ビットである。第3の通知は、新たなMBMSサービスが次のSC-MCCH変更周期内で開始されるか否かを示す。第3の通知は、進行中のMBMSサービスを受信中のUE100が、他のMBMSサービスが開始されることを検知するために用いられてもよい。 3rd notification is 1 bit in (M / N) PDCCH transmitted using G-RNTI. The third notification indicates whether a new MBMS service is started within the next SC-MCCH change period. The third notification may be used for the UE 100 receiving the ongoing MBMS service to detect that another MBMS service is started.
 第1乃至第3の通知は、「Direct indication」と称されてもよい。当該通知が1ビットで構成される一例を説明したが、当該通知が複数ビットで構成されてもよい。 The first to third notifications may be referred to as “Direct indication”. Although an example in which the notification is configured with 1 bit has been described, the notification may be configured with a plurality of bits.
 第1実施形態は、新たなMBMSサービスが次のSC-MCCH変更周期内で開始されるか否かを示す通知(第3の通知)に関する実施形態である。MBMSサービスをMBMSセッションと読み替えてもよい。 The first embodiment is an embodiment relating to a notification (third notification) indicating whether or not a new MBMS service is started within the next SC-MCCH change period. An MBMS service may be read as an MBMS session.
 第1実施形態に係るeNB200は、SC-PTM伝送を用いてMBMSサービスを提供する。eNB200の制御部230は、現在のSC-MCCH変更周期内で提供中の第1のMBMSサービスとは異なる第2のMBMSサービスに属するデータの送信を次のSC-MCCH変更周期内で開始すると判断する。eNB200の送信部210は、現在のSC-MCCH変更周期内で、SC-MTCHを用いて、SC-MTCH用の制御情報(DCI:Downlink Control Information)と第1のMBMSサービスに属するデータとをUE100に送信する。具体的には、eNB200の送信部210は、G-RNTIを用いる(M/N)PDCCHによりSC-MTCH用の制御情報を送信する。eNB200の送信部210は、当該(M/N)PDCCHにより示されるPDSCHによりMBMSデータを送信する。第1実施形態において、eNB200の送信部210は、次のSC-MCCH変更周期内で第2のMBMSサービスに属するデータの送信が開始されることを示す所定の通知情報を含む制御情報を送信する。この場合、所定の通知情報は、SC-MTCH開始通知とみなすことができる。所定の通知情報は、第2のMBMSサービスに起因してSC-MCCH(SC-PTM設定情報)が変更されることを示す情報であってもよい。この場合、所定の通知情報は、SC-MCCH変更通知とみなすことができる。 The eNB 200 according to the first embodiment provides an MBMS service using SC-PTM transmission. The control unit 230 of the eNB 200 determines that transmission of data belonging to the second MBMS service different from the first MBMS service being provided within the current SC-MCCH change cycle starts within the next SC-MCCH change cycle. To do. The transmission unit 210 of the eNB 200 uses the SC-MTCH within the current SC-MCCH change period to transmit control information (DCI: Downlink Control Information) for SC-MTCH and data belonging to the first MBMS service to the UE 100. Send to. Specifically, the transmission unit 210 of the eNB 200 transmits control information for SC-MTCH using the (M / N) PDCCH using G-RNTI. The transmission unit 210 of the eNB 200 transmits MBMS data using the PDSCH indicated by the (M / N) PDCCH. In the first embodiment, the transmission unit 210 of the eNB 200 transmits control information including predetermined notification information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period. . In this case, the predetermined notification information can be regarded as an SC-MTCH start notification. The predetermined notification information may be information indicating that SC-MCCH (SC-PTM configuration information) is changed due to the second MBMS service. In this case, the predetermined notification information can be regarded as an SC-MCCH change notification.
 第1実施形態に係るUE100は、SC-PTM伝送を用いて提供されるMBMSサービスを受信する。UE100の受信部110は、現在のSC-MCCH変更周期内で、SC-MTCHを用いて、SC-MTCH用の制御情報と第1のMBMSサービスに属するデータとをeNB200から受信する。UE100の制御部130は、制御情報が所定の通知情報を含むことに応じて、第1のMBMSサービスとは異なる第2のMBMSサービスに属するデータの送信が次のSC-MCCH変更周期内で開始されると判断する。所定の通知情報は、次のSC-MCCH変更周期内で第2のMBMSサービスに属するデータの送信が開始されることを示す情報(すなわち、SC-MTCH開始通知)である。所定の通知情報は、第2のMBMSサービス(すなわち、新たなMBMSサービス)に起因してSC-MCCH(SC-PTM設定情報)が変更されることを示す情報(すなわち、SC-MCCH変更通知)であってもよい。所定の通知情報は、1ビットで構成されてもよい。 The UE 100 according to the first embodiment receives an MBMS service provided using SC-PTM transmission. The receiving unit 110 of the UE 100 receives SC-MTCH control information and data belonging to the first MBMS service from the eNB 200 using SC-MTCH within the current SC-MCCH change period. The control unit 130 of the UE 100 starts transmission of data belonging to the second MBMS service different from the first MBMS service within the next SC-MCCH change period in response to the control information including predetermined notification information. Judge that it will be. The predetermined notification information is information indicating that transmission of data belonging to the second MBMS service is started within the next SC-MCCH change period (that is, SC-MTCH start notification). The predetermined notification information is information indicating that the SC-MCCH (SC-PTM configuration information) is changed due to the second MBMS service (that is, a new MBMS service) (that is, SC-MCCH change notification). It may be. The predetermined notification information may be composed of 1 bit.
 所定の通知情報がSC-MTCH開始通知である場合、次のSC-MCCH modification boundaryからSC-MTCHの送信が開始される。 If the predetermined notification information is SC-MTCH start notification, transmission of SC-MTCH is started from the next SC-MCCH modification boundary.
 所定の通知情報がSC-MCCH変更通知である場合、以下の第1及び第2の動作の2通りが考えられる。 When the predetermined notification information is an SC-MCCH change notification, the following first and second operations can be considered.
 第1の動作において、SC-MTCHは、次のSC-MCCH modification boundaryの次のSC-MCCH modification boundary(つまり、2つ後のSC-MCCH modification boundary)から送信開始される。次のmodification boundaryでは変更されたSC-MCCHの送信が開始されるが、これが全UEに行きわたるまでには、最長で1SC-MCCH変更周期(1 modification period)が必要となり得る。このため、eNB200は、1SC-MCCH変更周期分だけ待った後にSC-MTCHの送信を開始する。同様に、UE100は、1SC-MCCH変更周期分だけ待った後にSC-MTCHの受信を開始する。 In the first operation, the SC-MTCH starts transmission from the next SC-MCCH modification boundary (that is, the second SC-MCCH modification boundary) of the next SC-MCCH modification boundary. In the next modification boundary, transmission of the modified SC-MCCH is started, but it may take up to 1 SC-MCCH change period (1 modification period) before it reaches all UEs. For this reason, eNB 200 starts transmission of SC-MTCH after waiting for one SC-MCCH change period. Similarly, UE 100 starts receiving SC-MTCH after waiting for one SC-MCCH change period.
 第2の動作において、SC-MTCHは、次のSC-MCCH modification boundaryから送信開始される。次のmodification boundaryでは変更されたSC-MCCHの送信が開始され、UE100が当該SC-MCCHを受信することが前提となる。SC-MTCHの送信開始前にSC-MCCHの送信を開始するルールを定めることにより、次のSC-MCCH modification boundaryからSC-MTCHの送受信が可能となる。 In the second operation, transmission of SC-MTCH is started from the next SC-MCCH modification boundary. In the next modification boundary, transmission of the modified SC-MCCH is started, and it is assumed that the UE 100 receives the SC-MCCH. By defining a rule for starting SC-MCCH transmission before the start of SC-MTCH transmission, SC-MTCH transmission / reception can be performed from the next SC-MCCH modification boundary.
 このように、UE100が第1のMBMSサービス(すなわち、進行中のMBMSサービス)を受信中である場合において、UE100の制御部130は、所定の通知情報に基づいて、次のSC-MCCH変更周期内で他のMBMSサービスが開始されることを検知することができる。UE100の制御部130は、進行中のMBMSサービス以外のMBMSサービスに興味を持つ場合に、次のSC-MCCH変更周期内でSC-MCCHの受信を試みてもよい。 As described above, when the UE 100 is receiving the first MBMS service (that is, the ongoing MBMS service), the control unit 130 of the UE 100 performs the next SC-MCCH change cycle based on the predetermined notification information. It can be detected that another MBMS service is started. The control unit 130 of the UE 100 may attempt to receive the SC-MCCH within the next SC-MCCH change period when interested in an MBMS service other than the ongoing MBMS service.
 図13は、第1実施形態に係る動作例を示す図である。図13は論理チャネルに着目した図であり、物理レイヤにおける繰り返し送信については図示していない。 FIG. 13 is a diagram illustrating an operation example according to the first embodiment. FIG. 13 is a diagram focusing on the logical channel, and repeated transmission in the physical layer is not shown.
 SC-MCCH変更周期T1は、SC-MCCH変更境界(SC-MCCH modification boundary)t1から開始する。eNB200は、SC-MCCH変更周期T1内で、第1のMBMSサービス(On-going session)に対応するSC-MTCHを複数回(図13に示す例では、3回)送信する。UE100は、SC-MTCHを受信する。eNB200は、第2のMBMSサービス(New session)の開始をUE100に通知すると判断する。 The SC-MCCH change cycle T1 starts from an SC-MCCH change boundary (SC-MCCH modification boundary) t1. The eNB 200 transmits the SC-MTCH corresponding to the first MBMS service (On-going session) a plurality of times (three times in the example shown in FIG. 13) within the SC-MCCH change period T1. The UE 100 receives the SC-MTCH. The eNB 200 determines to notify the UE 100 of the start of the second MBMS service (New session).
 SC-MCCH変更周期T2は、SC-MCCH変更境界t2から開始する。eNB200は、SC-MCCH変更周期T2内で、第1のMBMSサービス(On-going session)に対応するSC-MTCHを複数回送信する。SC-MTCH送信に伴い、eNB200は、G-RNTIを用いる(M/N)PDCCHによりSC-MTCH用の制御情報(DCI)を送信する。eNB200は、当該制御情報に所定の通知情報を含めることにより、第2のMBMSサービス(New session)が次のSC-MCCH変更周期T3内で開始されることをUE100に通知する(図13中の「Notify」)。但し、UE100は、新たなMBMSサービスが開始されることを把握可能であるが、どのMBMSサービスが開始されるかを把握することはできないことに留意すべきである。 The SC-MCCH change period T2 starts from the SC-MCCH change boundary t2. The eNB 200 transmits the SC-MTCH corresponding to the first MBMS service (On-going session) a plurality of times within the SC-MCCH change period T2. Along with the SC-MTCH transmission, the eNB 200 transmits SC-MTCH control information (DCI) using the (M / N) PDCCH using G-RNTI. The eNB 200 notifies the UE 100 that the second MBMS service (New session) is started within the next SC-MCCH change cycle T3 by including predetermined notification information in the control information (in FIG. 13). “Notify”). However, it should be noted that the UE 100 can grasp that a new MBMS service is started, but cannot know which MBMS service is started.
 SC-MCCH変更周期T3は、SC-MCCH変更境界t3から開始する。eNB200は、SC-MCCH変更周期T3内で、変更されたSC-MCCH(SC-MCCH changed)を送信する。変更されたSC-MCCHは、第2のMBMSサービス(New session)のSC-MTCH設定を含む。eNB200は、SC-MCCH変更周期T3内で、第1のMBMSサービスのSC-MTCHの送信を継続しつつ、第2のMBMSサービスのSC-MTCHの送信を開始する。eNB200は、SC-MCCH変更周期T3の次のSC-MCCH変更周期内で、第2のMBMSサービスのSC-MTCHの送信を開始してもよい。 The SC-MCCH change period T3 starts from the SC-MCCH change boundary t3. The eNB 200 transmits the changed SC-MCCH (SC-MCCH changed) within the SC-MCCH change period T3. The changed SC-MCCH includes the SC-MTCH setting of the second MBMS service (New session). The eNB 200 starts transmitting the SC-MTCH of the second MBMS service while continuing to transmit the SC-MTCH of the first MBMS service within the SC-MCCH change period T3. The eNB 200 may start the SC-MTCH transmission of the second MBMS service within the SC-MCCH change period next to the SC-MCCH change period T3.
 (第1実施形態の変更例1)
 第1実施形態の変更例1について、第1実施形態との相違点を主として説明する。
(Modification 1 of the first embodiment)
Difference 1 from the first embodiment will be mainly described in the first modification of the first embodiment.
 第1実施形態において説明したように、UE100は、新たなMBMSサービスが開始されることを1ビットの所定の通知情報に基づいて把握可能であるが、どのMBMSサービスが開始されるかを把握することは必ずしも容易ではない。特に、新たなMBMSサービスが複数同時に(又は連続的に)開始される場合、どのMBMSサービスが開始されるかを把握することは極めて困難である。このため、UE100は、次のSC-MCCH変更周期内で新たなMBMSサービス(New session)の受信を試みても、当該新たなMBMSサービスは、UE100の興味の無いMBMSサービスであり得る。このような場合、UE100の消費電力を無駄に消費したり、第1のMBMSサービス(On-going session)の受信を阻害したりする問題がある。 As described in the first embodiment, the UE 100 can grasp that a new MBMS service is started based on predetermined 1-bit notification information, but grasps which MBMS service is started. That is not always easy. In particular, when a plurality of new MBMS services are started simultaneously (or continuously), it is extremely difficult to grasp which MBMS service is started. Therefore, even if the UE 100 attempts to receive a new MBMS service (New session) within the next SC-MCCH change period, the new MBMS service may be an MBMS service that the UE 100 is not interested in. In such a case, there is a problem that the power consumption of the UE 100 is wasted or reception of the first MBMS service (On-going session) is hindered.
 第1実施形態の変更例1は、このような問題を解決しようとする変更例である。第1実施形態の変更例1に係るeNB200は、SC-PTM伝送を用いてMBMSサービスを提供する。eNB200の制御部230は、現在のSC-MCCH変更周期内で提供している第1のMBMSサービスとは異なる第2のMBMSサービスの提供を次のSC-MCCH変更周期内で開始すると判断する。eNB200の送信部210は、現在のSC-MCCH変更周期内で、SC-MTCHを用いて、SC-MTCH用の制御情報と第1のMBMSサービスに属するデータとをUE100に送信する。送信部210は、現在のSC-MCCH変更周期内で、第2のMBMSサービスの識別子と関連付けられた所定の通知情報をUE100に送信する。 Modification 1 of the first embodiment is a modification that attempts to solve such a problem. The eNB 200 according to the first modification of the first embodiment provides an MBMS service using SC-PTM transmission. The control unit 230 of the eNB 200 determines to start providing a second MBMS service different from the first MBMS service provided within the current SC-MCCH change cycle within the next SC-MCCH change cycle. The transmission unit 210 of the eNB 200 transmits SC-MTCH control information and data belonging to the first MBMS service to the UE 100 using SC-MTCH within the current SC-MCCH change period. Transmitting section 210 transmits predetermined notification information associated with the identifier of the second MBMS service to UE 100 within the current SC-MCCH change period.
 第1実施形態の変更例1に係るUE100は、SC-PTM伝送を用いて提供されるMBMSサービスを受信する。UE100の受信部110は、現在のSC-MCCH変更周期内で、SC-MTCH用の制御情報と第1のMBMSサービスに属するデータとをeNB200から受信する。UE100の制御部130は、制御情報に基づいて、第1のMBMSサービスとは異なる第2のMBMSサービスの提供が次のSC-MCCH変更周期内で開始されると判断する。受信部110は、現在のSC-MCCH変更周期内で、第2のMBMSサービスの識別子と関連付けられた所定の通知情報をeNB200から受信する。制御部130は、所定の通知情報に基づいて、第2のMBMSサービスを識別する。 The UE 100 according to the first modification of the first embodiment receives an MBMS service provided using SC-PTM transmission. The receiving unit 110 of the UE 100 receives control information for SC-MTCH and data belonging to the first MBMS service from the eNB 200 within the current SC-MCCH change period. Based on the control information, the control unit 130 of the UE 100 determines that provision of a second MBMS service different from the first MBMS service is started within the next SC-MCCH change period. The receiving unit 110 receives predetermined notification information associated with the identifier of the second MBMS service from the eNB 200 within the current SC-MCCH change period. The controller 130 identifies the second MBMS service based on the predetermined notification information.
 第1実施形態の変更例1に係る所定の通知情報は、第1実施形態とは異なり、次のSC-MCCH変更周期内で開始するMBMSサービス(New session)を識別可能な態様で送信される。MBMSサービスを識別可能な態様で所定の通知情報を送信する方法としては、以下の第1乃至第3の方法がある。 Unlike the first embodiment, the predetermined notification information according to the first modification of the first embodiment is transmitted in a manner that can identify the MBMS service (New session) that starts within the next SC-MCCH change cycle. . There are the following first to third methods for transmitting the predetermined notification information in a manner capable of identifying the MBMS service.
 第1の方法について説明する。第1の方法において、所定の通知情報の送信タイミングは、第2のMBMSサービス(New session)の識別子と関連付けられている。eNB200の送信部210は、第2のMBMSサービスの識別子と関連付けられた送信タイミングで、所定の通知情報を含む制御情報(DCI)を送信する。UE100の制御部130は、所定の通知情報を含む制御情報の受信タイミングに基づいて、第2のMBMSサービスを識別する。 The first method will be described. In the first method, the transmission timing of the predetermined notification information is associated with the identifier of the second MBMS service (New session). The transmission unit 210 of the eNB 200 transmits control information (DCI) including predetermined notification information at a transmission timing associated with the identifier of the second MBMS service. The control unit 130 of the UE 100 identifies the second MBMS service based on the reception timing of control information including predetermined notification information.
 図14は、第1実施形態の変更例1に係る第1の方法を示す図である。ステップS101において、eNB200は、第2のMBMSサービスの識別子(TMGI)とタイミングとの対応関係を示すマッピング情報をUE100に送信する。UE100は、マッピング情報に基づいて、タイミングとTMGIとの対応関係を把握する。 FIG. 14 is a diagram illustrating a first method according to the first modification of the first embodiment. In step S101, the eNB 200 transmits mapping information indicating a correspondence relationship between the identifier (TMGI) of the second MBMS service and the timing to the UE 100. UE100 grasps | ascertains the correspondence of a timing and TMGI based on mapping information.
 タイミングは、フレーム番号により表現されてもよい。フレーム番号は、システムフレーム番号(SFN)、サブフレーム番号、ハイパーシステムフレーム番号(H-SFN)のうち少なくとも1つであり得る。タイミングは、SC-MCCH変更境界を基準とした相対的なタイミングにより表現されてもよい。例えば、SC-MCCH変更境界を基準として、DRXサイクルにおけるPDCCHモニタ期間(On duration)の回数によりタイミングを定義してもよい。 The timing may be expressed by a frame number. The frame number may be at least one of a system frame number (SFN), a subframe number, and a hyper system frame number (H-SFN). The timing may be expressed by a relative timing based on the SC-MCCH change boundary. For example, the timing may be defined by the number of PDCCH monitoring periods (On duration) in the DRX cycle on the basis of the SC-MCCH change boundary.
 eNB200は、マッピング情報をSIB(例えば、SIB20)又はSC-MCCHにより送信してもよい。eNB200以外の装置がマッピング情報をUE100に通知してもよい。例えば、BM-SC22(又はMME300)は、マッピング情報を含むUSDをUE100に提供してもよい。 The eNB 200 may transmit the mapping information by SIB (for example, SIB20) or SC-MCCH. A device other than the eNB 200 may notify the UE 100 of mapping information. For example, the BM-SC 22 (or MME 300) may provide the UE 100 with the USD including the mapping information.
 マッピング情報にTMGIを含めることに代えて、TMGIのインデックスをマッピング情報に含めてもよい。当該インデックスは、SC-MCCH中のTMGIリストのインデックスであってもよい。当該インデックスは、SIBタイプ15(SIB15)中のSAI(Service Area Identity)のインデックスであってもよい。USDにおいてSAIはTMGIと対応付けられているため、SAIのインデックスを用いてTMGIを間接的に示すことができる。 Instead of including TMGI in the mapping information, a TMGI index may be included in the mapping information. The index may be an index of a TMGI list in SC-MCCH. The index may be an index of SAI (Service Area Identity) in SIB type 15 (SIB15). Since SAI is associated with TMGI in the USD, it is possible to indirectly indicate TMGI using the SAI index.
 ステップS102において、eNB200は、第2のMBMSサービス(New session)のTMGIに基づいて、所定の通知情報の送信タイミングを決定する。ステップS103において、eNB200は、決定したタイミングにおいて、所定の通知情報を含む制御情報を(M/N)PDCCHによりUE100に送信する。ステップS104において、UE100は、所定の通知情報を含む制御情報の受信タイミングに基づいて、第2のMBMSサービスのTMGIを把握する。 In step S102, the eNB 200 determines the transmission timing of the predetermined notification information based on the TMGI of the second MBMS service (New session). In step S103, the eNB 200 transmits control information including predetermined notification information to the UE 100 via the (M / N) PDCCH at the determined timing. In step S104, the UE 100 grasps the TMGI of the second MBMS service based on the reception timing of control information including predetermined notification information.
 第2の方法について説明する。第1の方法においては所定の通知情報が1ビットで構成されることを想定していたが、第2の方法においては所定の通知情報を複数ビットで構成する。第2の方法において、所定の通知情報は、第2のMBMSサービスのTMGI又は当該TMGIのインデックスである。eNB200の送信部210は、所定の通知情報を含む制御情報(DCI)を送信する。インデックスは、第1の方法と同様な方法で定義されてもよい。よって、UE100は、所定の通知情報を含む制御情報を(M/N)PDCCHにより受信することにより、所定の通知情報に基づいて第2のMBMSサービスのTMGIを把握することができる。TMGIのインデックスと、通知情報を構成するビット列の各ビットが紐付いていてもよい。すなわち、通知情報中の各ビット位置がTMGI又はそのインデックスを示す。この場合、eNB200は、TMGI又はそのインデックスとビット位置との対応関係を示すマッピング情報をUE100に送信する。例えば、通知情報が3ビットであり、最初のビットがTMGI A、次のビットがTMGI B、その次のビットがTMGI Cにそれぞれ対応付けられていると仮定する。このような前提下において、eNB200は、TMGI BのMBMSサービスの提供を開始する場合、通知情報として「010」を送信する。UE100は、通知情報とマッピング情報とに基づいて、TMGI BのMBMSサービスの提供が開始されると認識する。 The second method will be described. In the first method, it is assumed that the predetermined notification information is composed of 1 bit, but in the second method, the predetermined notification information is composed of a plurality of bits. In the second method, the predetermined notification information is a TMGI of the second MBMS service or an index of the TMGI. The transmission unit 210 of the eNB 200 transmits control information (DCI) including predetermined notification information. The index may be defined in a manner similar to the first method. Therefore, UE100 can grasp | ascertain TMGI of a 2nd MBMS service based on predetermined | prescribed notification information by receiving the control information containing predetermined | prescribed notification information by (M / N) PDCCH. The TMGI index may be associated with each bit of the bit string constituting the notification information. That is, each bit position in the notification information indicates TMGI or its index. In this case, the eNB 200 transmits mapping information indicating a correspondence relationship between TMGI or an index thereof and a bit position to the UE 100. For example, it is assumed that the notification information is 3 bits, the first bit is associated with TMGI A, the next bit is associated with TMGI B, and the next bit is associated with TMGI C. Under such a premise, when starting to provide the TMGI B MBMS service, the eNB 200 transmits “010” as the notification information. The UE 100 recognizes that provision of the TMGI B MBMS service is started based on the notification information and the mapping information.
 第3の方法について説明する。第3の方法は、第2のMBMSサービス(New session)のTMGI又は当該TMGIのインデックスをPDSCHにより送信する方法である。具体的には、制御情報(DCI)中の1ビットで第2のMBMSサービスの開始がある旨を通知し、当該制御情報が指し示すPDSCHで伝送されるMAC制御エレメント(MAC CE)によって、該当するTMGIを示す。当該MAC CEで示されるTMGIは、複数(リスト形状)であってもよい。 The third method will be described. The third method is a method of transmitting the TMGI of the second MBMS service (New session) or the index of the TMGI by PDSCH. Specifically, one bit in the control information (DCI) notifies that the second MBMS service is started, and is applicable by the MAC control element (MAC CE) transmitted on the PDSCH indicated by the control information. TMGI is shown. The TMGI indicated by the MAC CE may be plural (list shape).
 図15は、第1実施形態の変更例1に係る第3の方法を示す図である。ステップS131において、eNB200は、新たなMBMSサービスが次のSC-MCCH変更周期内で開始されることを示す1ビットの通知を含む制御情報を(M/N)PDCCHによりUE100に送信する。制御情報は、PDSCHの割り当てを示すスケジューリング情報を含む。UE100は、1ビットの通知に基づいて新たなMBMSサービスが次のSC-MCCH変更周期内で開始されると判断する。また、UE100は、スケジューリング情報に基づいてPDSCHの割り当てを把握する。 FIG. 15 is a diagram illustrating a third method according to the first modification of the first embodiment. In step S131, the eNB 200 transmits control information including a 1-bit notification indicating that a new MBMS service is started within the next SC-MCCH change period to the UE 100 using the (M / N) PDCCH. The control information includes scheduling information indicating PDSCH allocation. The UE 100 determines that a new MBMS service is started within the next SC-MCCH change period based on the 1-bit notification. Moreover, UE100 grasps | assigns allocation of PDSCH based on scheduling information.
 ステップS132において、eNB200は、第2のMBMSサービス(New session)のTMGI又は当該TMGIのインデックスを含むMAC CEをPDSCHによりUE100に送信する。UE100は、MAC CEに基づいて、第2のMBMSサービスのTMGIを把握する。 In step S132, the eNB 200 transmits the TMGI of the second MBMS service (New session) or the MAC CE including the index of the TMGI to the UE 100 through the PDSCH. The UE 100 grasps the TMGI of the second MBMS service based on the MAC CE.
 (第1実施形態の変更例2)
 第1実施形態の変更例1に係る動作を、第1実施形態で説明した第1の通知に適用してもよい。第1の通知は、SC-RNTIを用いる(M/N)PDCCHで送信され、SC-MCCHの変更の有無を示す通知である。第1実施形態の変更例1に係る動作を第1の通知に適用することにより、UE100は、第1の通知に基づいて、SC-MCCHの変更に係るMBMSサービス(TMGI)を把握することができる。
(Modification 2 of the first embodiment)
The operation according to the first modification of the first embodiment may be applied to the first notification described in the first embodiment. The first notification is a notification transmitted on the (M / N) PDCCH using SC-RNTI and indicating whether or not the SC-MCCH has been changed. By applying the operation according to the first modification of the first embodiment to the first notification, the UE 100 can grasp the MBMS service (TMGI) related to the SC-MCCH change based on the first notification. it can.
 (第2実施形態)
 第2実施形態について、第1実施形態との相違点を主として説明する。
(Second Embodiment)
The second embodiment will be described mainly with respect to differences from the first embodiment.
 図8を用いて説明したように、USDは、各MBMSサービスの提供開始時刻(MBMSセッション開始時刻)を含む。UE100は、USDに基づいて、自身が受信に興味を持つ特定のMBMSサービスの提供開始時刻を把握する。しかしながら、ネットワークは、SC-PTM伝送を用いる特定のMBMSサービスの提供を中止することがあり得る。 As described with reference to FIG. 8, the USD includes a provision start time (MBMS session start time) of each MBMS service. Based on the USD, the UE 100 grasps the provision start time of a specific MBMS service that it is interested in receiving. However, the network may cease providing certain MBMS services using SC-PTM transmission.
 このような場合において、RRCアイドルモードのUE100が特定のMBMSサービスの受信に興味を持つと仮定する。UE100は、特定のMBMSサービスの提供開始時刻において、特定のMBMSサービスが提供されないことを認識する。しかしながら、UE100は、SC-PTM伝送を用いる特定のMBMSサービスの提供をネットワークが中止したか否かの知識を持たない。このため、MBMSサービスの提供が開始されるまで待つ(すなわち、RRCアイドルモードを維持する)か、又はユニキャストでのMBMSサービスの受信を試みる(すなわち、RRCコネクティッドモードに遷移する)かの判断を行うことが難しい。UE100の消費電力及び無線リソースの利用効率の観点からは、UE100がRRCアイドルモードを維持したままSC-PTMでMBMSサービスを受信することが望ましい。 In such a case, it is assumed that the UE 100 in the RRC idle mode is interested in receiving a specific MBMS service. The UE 100 recognizes that the specific MBMS service is not provided at the provision start time of the specific MBMS service. However, the UE 100 has no knowledge of whether the network has stopped providing a specific MBMS service using SC-PTM transmission. Therefore, it is determined whether to wait until the provision of the MBMS service is started (that is, to maintain the RRC idle mode) or to try to receive the MBMS service by unicast (that is, to transit to the RRC connected mode). Difficult to do. From the viewpoint of the power consumption of UE 100 and the utilization efficiency of radio resources, it is desirable that UE 100 receives an MBMS service by SC-PTM while maintaining the RRC idle mode.
 第2実施形態は、このような問題を解決しようとする実施形態である。第2実施形態に係る装置は、SC-PTM伝送(所定のマルチキャスト/ブロードキャスト伝送方式)を用いてUE100にMBMSサービスを提供するネットワークに含まれる。当該装置は、eNB200、BM-SC22、又はMME300であってもよい。以下において、当該装置がeNB200である一例について説明する。eNB200の制御部230は、UE100に提供可能な複数のMBMSサービスのうち、SC-PTM伝送を用いて提供されない特定のMBMSサービスを判断する。eNB200の制御部230は、当該特定のMBMSサービスの識別情報をUE100に通知する。識別情報は、TMGIであってもよい。識別情報は、TMGIのインデックスであってもよい。 The second embodiment is an embodiment that attempts to solve such a problem. The apparatus according to the second embodiment is included in a network that provides an MBMS service to the UE 100 using SC-PTM transmission (predetermined multicast / broadcast transmission scheme). The device may be the eNB 200, the BM-SC 22, or the MME 300. Hereinafter, an example in which the apparatus is the eNB 200 will be described. The control unit 230 of the eNB 200 determines a specific MBMS service that is not provided using SC-PTM transmission among a plurality of MBMS services that can be provided to the UE 100. The control unit 230 of the eNB 200 notifies the UE 100 of identification information of the specific MBMS service. The identification information may be TMGI. The identification information may be a TMGI index.
 第2実施形態に係るUE100は、SC-PTM伝送を用いてネットワークから提供されるMBMSサービスを受信する。UE100の制御部130は、ネットワークから提供される複数のMBMSサービスに関するサービス情報(USD)を取得する。UE100の受信部110は、SC-PTM伝送を用いて提供されない特定のMBMSサービスの識別情報をネットワークから受信する。UE100の制御部130は、受信した識別情報に基づいて、当該特定のMBMSサービスがSC-PTM伝送を用いて提供されないと判断する。 The UE 100 according to the second embodiment receives an MBMS service provided from the network using SC-PTM transmission. The control unit 130 of the UE 100 acquires service information (USD) related to a plurality of MBMS services provided from the network. The receiving unit 110 of the UE 100 receives identification information of a specific MBMS service that is not provided using SC-PTM transmission from the network. Based on the received identification information, the control unit 130 of the UE 100 determines that the specific MBMS service is not provided using SC-PTM transmission.
 図16は、第2実施形態に係る動作例を示す図である。図16に示す動作に先立ち、UE100は、EPC20(例えば、BM-SC22)からサービス情報(USD)を取得している。 FIG. 16 is a diagram illustrating an operation example according to the second embodiment. Prior to the operation illustrated in FIG. 16, the UE 100 acquires service information (USD) from the EPC 20 (for example, BM-SC 22).
 図16に示すように、ステップS201において、eNB200は、SC-PTM伝送を用いて提供されないMBMSサービスを判断する。一例として、MCE11がMBMS SESSION STARTを拒否したケースを想定する。MCE11は、当該拒否に係るMBMSサービスの識別情報(例えば、TMGI)をeNB200に通知する。eNB200は、MCE11からの通知に基づいて、SC-PTM伝送を用いて提供されないMBMSサービスを判断する。 As shown in FIG. 16, in step S201, the eNB 200 determines an MBMS service that is not provided using SC-PTM transmission. As an example, a case is assumed in which MCE 11 rejects MBMS SESSION START. The MCE 11 notifies the eNB 200 of identification information (for example, TMGI) of the MBMS service related to the rejection. Based on the notification from the MCE 11, the eNB 200 determines an MBMS service that is not provided using SC-PTM transmission.
 ステップS202において、eNB200は、SC-PTM伝送を用いて提供されないMBMSサービスの識別情報をブロードキャストする。eNB200は、当該識別情報をSIB(例えば、SIB20)に含めてもよい。SC-PTM伝送を用いて提供されないMBMSサービスが複数存在する場合、eNB200は、複数のMBMSサービスのTMGIを含むリストをブロードキャストしてもよい。eNB200は、SC-PTM伝送を用いて提供されない特定のMBMSサービスについて、当該特定のMBMSサービスの本来の提供開始時刻(MBMSセッション開始時刻)において識別情報をブロードキャストしてもよい。eNB200は、当該特定のMBMSサービスの本来の提供開始時刻の前及び/又は後において識別情報をブロードキャストしてもよい。eNB200は、ある一定期間にわたって識別情報を複数回送信してもよい。 In step S202, the eNB 200 broadcasts identification information of an MBMS service that is not provided using SC-PTM transmission. eNB200 may include the said identification information in SIB (for example, SIB20). When there are a plurality of MBMS services that are not provided using SC-PTM transmission, the eNB 200 may broadcast a list including TMGIs of the plurality of MBMS services. For a specific MBMS service that is not provided using SC-PTM transmission, the eNB 200 may broadcast identification information at the original provision start time (MBMS session start time) of the specific MBMS service. The eNB 200 may broadcast the identification information before and / or after the original provision start time of the specific MBMS service. The eNB 200 may transmit the identification information a plurality of times over a certain period.
 ステップS203において、RRCアイドルモードのUE100は、eNB200から受信した識別情報に基づいて、SC-PTM伝送を用いて提供されないMBMSサービスを認識する。UE100は、自身が受信に興味を持つMBMSサービスがSC-PTM伝送を用いて提供されないと判断した場合に、当該MBMSサービスをユニキャストで受信するためにRRCコネクティッドモードに遷移してもよい。UE100は、自身が受信に興味を持つMBMSサービスがSC-PTM伝送を用いて提供されると判断した場合、当該MBMSサービスの提供がUSD中の提供開始時刻において開始されなくても、MBMSサービスの提供が開始されるまで待つためにRRCアイドルモードを維持してもよい。 In step S203, the UE 100 in the RRC idle mode recognizes an MBMS service that is not provided using SC-PTM transmission based on the identification information received from the eNB 200. When the UE 100 determines that the MBMS service that it is interested in receiving is not provided using SC-PTM transmission, the UE 100 may transition to the RRC connected mode in order to receive the MBMS service by unicast. If the UE 100 determines that the MBMS service that it is interested in receiving is provided using SC-PTM transmission, even if the provision of the MBMS service is not started at the provision start time in the USD, the UE 100 The RRC idle mode may be maintained to wait until provisioning is started.
 図16は、SC-PTM伝送を用いて提供されないMBMSサービスの識別情報をeNB200以外の装置がUE100に通知してもよい。例えば、当該識別情報(リストであり得る)を含むUSDをEPC20(例えば、BM-SC22)からUE100に提供してもよい。 In FIG. 16, an apparatus other than the eNB 200 may notify the UE 100 of identification information of an MBMS service that is not provided using SC-PTM transmission. For example, the USD including the identification information (which may be a list) may be provided from the EPC 20 (for example, BM-SC 22) to the UE 100.
 (第2実施形態の変更例)
 第2実施形態の変更例について、第2実施形態との相違点を主として説明する。
(Modification of the second embodiment)
Differences from the second embodiment will be mainly described in the modification of the second embodiment.
 上述したように、RRCアイドルモードのUE100は、自身が受信に興味を持つ特定のMBMSサービスの提供開始時刻においてサービス提供が開始されない場合、RRCコネクティッドモードに遷移し得る。しかしながら、ネットワーク内の処理遅延等に起因して、サービス提供の開始が多少遅延するだけである場合には、直ちにRRCコネクティッドモードに遷移することは好ましくない。 As described above, the UE 100 in the RRC idle mode may transition to the RRC connected mode when the service provision is not started at the provision start time of the specific MBMS service in which the UE 100 is interested in reception. However, if the start of service provision is only slightly delayed due to processing delay in the network, it is not preferable to immediately switch to the RRC connected mode.
 第2実施形態の変更例は、このような問題を解決しようとする実施形態である。第2実施形態の変更例は、第2実施形態と個別に実施されてもよいし、第2実施形態と併用されてもよい。 The modified example of the second embodiment is an embodiment that attempts to solve such a problem. The modified example of the second embodiment may be implemented separately from the second embodiment or may be used in combination with the second embodiment.
 第2実施形態の変更例に係るUE100は、所定のマルチキャスト/ブロードキャスト伝送方式を用いてネットワークから提供されるMBMSサービスを受信する。UE100の制御部130は、ネットワークから提供される複数のMBMSサービスに関するサービス情報(USD)を取得する。サービス情報は、各MBMSサービスの提供開始時刻を含む。UE100の制御部130は、UE100が受信に興味を持つ特定のMBMSサービスの提供が当該提供開始時刻において開始されないことに応じて、タイマを開始させる。タイマは、許容開始遅延タイマと称されてもよい。UE100の制御部130は、タイマが動作中である間は、特定のMBMSサービスの提供開始を待つ。 The UE 100 according to the modification of the second embodiment receives an MBMS service provided from the network using a predetermined multicast / broadcast transmission scheme. The control unit 130 of the UE 100 acquires service information (USD) related to a plurality of MBMS services provided from the network. The service information includes the provision start time of each MBMS service. The control unit 130 of the UE 100 starts a timer in response to the provision of a specific MBMS service in which the UE 100 is interested in reception not being started at the provision start time. The timer may be referred to as an allowable start delay timer. The control unit 130 of the UE 100 waits for the start of provision of a specific MBMS service while the timer is operating.
 第2実施形態の変更例において、UE100の制御部130は、タイマが動作中である間は、RRCアイドルモードにおいて、特定のMBMSサービスの提供開始を待つ。UE100の制御部130は、タイマが満了したことに応じて、ユニキャスト伝送を用いて特定のMBMSサービスを受信するためにRRCアイドルモードからRRCコネクティッドモードに遷移する。 In the modification of the second embodiment, the control unit 130 of the UE 100 waits for the start of provision of a specific MBMS service in the RRC idle mode while the timer is operating. In response to the expiration of the timer, the control unit 130 of the UE 100 transitions from the RRC idle mode to the RRC connected mode in order to receive a specific MBMS service using unicast transmission.
 第2実施形態の変更例において、UE100の受信部110は、タイマに設定すべきタイマ値(許容開始遅延時間)をネットワークから受信してもよい。制御部130は、ネットワークから受信したタイマ値をタイマに設定する。タイマ値は、eNB200からブロードキャスト又はマルチキャストされてもよい。タイマ値は、SIB13、SIB15、SIB20、又はSC-MCCHに含まれてもよい。タイマ値は、MBMSサービス(TMGI)ごとに個別に設定されてもよいし、全MBMSサービスで共通の値であってもよい。或いは、UE100において、ASレイヤは、上位レイヤからタイマ値を取得してもよい。この場合、タイマ値は、USDに含まれてもよい。或いは、タイマ値は、予め決められた固定値であってもよい。 In the modification of the second embodiment, the receiving unit 110 of the UE 100 may receive a timer value (allowable start delay time) to be set in the timer from the network. The control unit 130 sets the timer value received from the network in the timer. The timer value may be broadcast or multicast from the eNB 200. The timer value may be included in SIB13, SIB15, SIB20, or SC-MCCH. The timer value may be set individually for each MBMS service (TMGI), or may be a value common to all MBMS services. Alternatively, in the UE 100, the AS layer may acquire a timer value from the upper layer. In this case, the timer value may be included in the USD. Alternatively, the timer value may be a predetermined fixed value.
 図17は、第2実施形態の変更例に係る動作例を示す図である。図17に示す動作に先立ち、UE100は、EPC20(例えば、BM-SC22)からサービス情報(USD)を取得している。UE100は、タイマに設定すべきタイマ値(許容開始遅延時間)をネットワークから受信していてもよい。 FIG. 17 is a diagram illustrating an operation example according to a modification of the second embodiment. Prior to the operation illustrated in FIG. 17, the UE 100 obtains service information (USD) from the EPC 20 (for example, the BM-SC 22). The UE 100 may receive a timer value (allowable start delay time) to be set in the timer from the network.
 ステップS251において、RRCアイドルモードのUE100は、USDに基づいて、自身が受信に興味を持つ特定のMBMSサービスの提供開始時刻になったか否かを判断する。当該提供開始時刻になった場合(ステップS251:YES)、ステップS252において、UE100は、当該特定のMBMSサービスの提供が開始されたか否かを判断する。当該特定のMBMSサービスの提供が開始された場合(ステップS252:YES)、ステップS253において、UE100は、RRCアイドルモードにおいて、SC-PTM伝送を用いて提供されるMBMSサービスを受信する。 In step S251, the UE 100 in the RRC idle mode determines whether or not the provision start time of a specific MBMS service in which the UE 100 is interested in reception has come based on the USD. When the provision start time comes (step S251: YES), in step S252, the UE 100 determines whether or not provision of the specific MBMS service has been started. When the provision of the specific MBMS service is started (step S252: YES), in step S253, the UE 100 receives the MBMS service provided using SC-PTM transmission in the RRC idle mode.
 当該提供開始時刻において当該特定のMBMSサービスの提供が開始されない場合(ステップS252:NO)、ステップS254において、UE100は、タイマを開始させるとともに、RRCアイドルモードを維持して当該特定のMBMSサービスの提供が開始されるのを待つ。タイマの動作中に、当該特定のMBMSサービスの提供が開始された場合(ステップS255:YES)、UE100は、タイマを停止させ(ステップS256)、RRCアイドルモードにおいて、SC-PTM伝送を用いて提供されるMBMSサービスを受信する(ステップS253)。 When provision of the specific MBMS service is not started at the provision start time (step S252: NO), in step S254, the UE 100 starts a timer and maintains the RRC idle mode to provide the specific MBMS service. Wait for it to start. If provision of the specific MBMS service is started during the operation of the timer (step S255: YES), the UE 100 stops the timer (step S256) and provides it using SC-PTM transmission in the RRC idle mode. The received MBMS service is received (step S253).
 タイマの動作中に、該特定のMBMSサービスの提供が開始されずにタイマが満了した場合(ステップS257:YES)、ステップS258において、UE100は、ランダムアクセスプロシージャを行い、RRCコネクティッドモードに遷移する。そして、UE100は、RRCコネクティッドモードにおいて、当該特定のMBMSサービスをユニキャストで受信する。 When the timer expires without starting the provision of the specific MBMS service during the operation of the timer (step S257: YES), in step S258, the UE 100 performs a random access procedure and transitions to the RRC connected mode. . And UE100 receives the said specific MBMS service by unicast in RRC connected mode.
 (第3実施形態)
 第3実施形態について、第1及び第2実施形態との相違点を主として説明する。
(Third embodiment)
The third embodiment will be described mainly with respect to differences from the first and second embodiments.
 第3実施形態において、ネットワークが、SC-PTM伝送を用いるMBMSサービスの提供を一時的に中断するシナリオを想定する。例えば、ネットワークは、輻輳発生時又はハードウェア高負荷時等の期間においてSC-PTM伝送を中断し、当該期間の経過後にSC-PTM伝送を再開できることが望まれる。しかしながら、現状、SC-PTM伝送の一時的な中断を可能とするメカニズムが存在しない。また、SC-PTM伝送を用いたファイルダウンロード等のユースケースを想定すると、ファイルの完全性が要求される。よって、パケットロスが発生した場合、RRCアイドルモードのUE100は、RRCコネクティッドモードに遷移して当該ファイルをユニキャストで受信する必要が生じ得る。したがって、パケットロスの発生を抑制しつつ、SC-PTM伝送の一時的な中断を可能とすることが望まれる。 In the third embodiment, a scenario is assumed in which the network temporarily interrupts the provision of the MBMS service using SC-PTM transmission. For example, the network is desired to be able to interrupt SC-PTM transmission in a period such as when congestion occurs or when the hardware is heavily loaded, and to resume SC-PTM transmission after the period has elapsed. However, there is currently no mechanism that allows temporary interruption of SC-PTM transmission. Also, assuming use cases such as file download using SC-PTM transmission, file integrity is required. Therefore, when packet loss occurs, the UE 100 in the RRC idle mode may need to change to the RRC connected mode and receive the file by unicast. Therefore, it is desirable to enable temporary interruption of SC-PTM transmission while suppressing the occurrence of packet loss.
 第3実施形態は、SC-PTM伝送の一時的な中断を可能とするための実施形態である。 The third embodiment is an embodiment for enabling temporary interruption of SC-PTM transmission.
 第3実施形態に係るeNB200は、SC-PTM伝送を用いてMBMSサービスを提供する。eNB200の制御部230は、SC-PTM伝送を用いる特定のMBMSサービスの提供を一時的に中断すると判断する。eNB200の送信部210は、当該特定のMBMSサービスの提供を中断する前に、当該MBMSサービスの提供を一時的に中断することを示す中断通知(Suspend indication)をUE100に送信する。中断通知は、SC-MTCH送信又はSC-MCCH送信に付随する制御情報(DCI)、SC-MTCHにより送信されるMAC CE、SC-MCCH、SIB20のうち少なくとも1つによって伝送される。 The eNB 200 according to the third embodiment provides an MBMS service using SC-PTM transmission. The control unit 230 of the eNB 200 determines to temporarily interrupt the provision of a specific MBMS service using SC-PTM transmission. The transmission unit 210 of the eNB 200 transmits an interruption notification (Suspend indication) indicating that the provision of the MBMS service is temporarily suspended to the UE 100 before the provision of the specific MBMS service is suspended. The interruption notification is transmitted by at least one of SC-MTCH transmission or control information (DCI) associated with SC-MCCH transmission, MAC CE transmitted by SC-MTCH, SC-MCCH, and SIB20.
 第3実施形態に係るUE100は、SC-PTM伝送を用いてeNB200から提供されるMBMSサービスを受信する。UE100の受信部110は、SC-PTM伝送を用いて特定のMBMSサービスを受信中において、特定のMBMSサービスの提供が一時的に中断されることを示す中断通知をeNB200から受信する。UE100の制御部130は、中断通知の受信に応じて、第1のタイミングにおいてMBMSサービスの受信を中断する。UE100の制御部130は、SC-MTCHの受信を中断した後、第2のタイミングにおいてMBMSサービスの受信を再開する。UE100の受信部110は、第1のタイミング及び/又は第2のタイミングを示すタイミング情報をeNB200から受信してもよい。 The UE 100 according to the third embodiment receives the MBMS service provided from the eNB 200 using SC-PTM transmission. The receiving unit 110 of the UE 100 receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the eNB 200 while receiving the specific MBMS service using SC-PTM transmission. The control unit 130 of the UE 100 interrupts reception of the MBMS service at the first timing in response to reception of the suspension notification. The control unit 130 of the UE 100 resumes the reception of the MBMS service at the second timing after interrupting the reception of the SC-MTCH. The receiving unit 110 of the UE 100 may receive timing information indicating the first timing and / or the second timing from the eNB 200.
 図18は、第3実施形態に係るUE100の動作例を示す図である。UE100は、RRCアイドルモードである。 FIG. 18 is a diagram illustrating an operation example of the UE 100 according to the third embodiment. The UE 100 is in the RRC idle mode.
 ステップS31において、UE100は、SC-PTM伝送を用いてeNB200から提供される特定のMBMSサービスを受信する。 In step S31, the UE 100 receives a specific MBMS service provided from the eNB 200 using SC-PTM transmission.
 ステップS32において、UE100は、当該特定のMBMSサービスの提供が一時的に中断されることを示す中断通知をeNB200から受信する。 In step S32, the UE 100 receives an interruption notification indicating that provision of the specific MBMS service is temporarily interrupted from the eNB 200.
 ステップS33において、UE100は、第1のタイミングにおいて、当該特定のMBMSサービスの受信を中断する。具体的には、UE100は、特定のMBMSサービスの提供(特定のSC-MTCH)がスケジューリングされている期間における(M/N)PDCCH)の受信が必要とされない。また、UE100は、サービス中断中の状態において、ユニキャストによるMBMSサービス受信が制限され得る。例えば、UE100は、サービス中断中において、MBMSサービス受信のためにRRCコネクティッドモードに遷移することが許可されない。このような制限は、上位レイヤから通知された許容遅延時間の範囲内においてのみ有効としてもよい。すなわち、サービス中断時間が許容遅延時間を超えた場合には、MBMSサービス受信のためにRRCコネクティッドモードに遷移することが許可されてもよい。 In step S33, the UE 100 interrupts reception of the specific MBMS service at the first timing. Specifically, the UE 100 is not required to receive (M / N) PDCCH) during a period in which provision of a specific MBMS service (specific SC-MTCH) is scheduled. Further, the UE 100 may be restricted from receiving the MBMS service by unicast while the service is suspended. For example, the UE 100 is not permitted to transition to the RRC connected mode for MBMS service reception during service interruption. Such a restriction may be effective only within the allowable delay time notified from the upper layer. That is, when the service interruption time exceeds the allowable delay time, it may be permitted to transition to the RRC connected mode for MBMS service reception.
 第1のタイミングは、中断通知を受信したタイミングであってもよい。SC-MTCHを用いて中断通知を伝送する場合、第1のタイミングは、中断通知を含むSC-MTCHが送信されたタイミングであってもよい。具体的には、SC-MTCHに付随する(M/N)PDCCHの送信サブフレーム又はSC-MTCHに対応するPDSCHの送信サブフレームに基づいて第1のタイミングが定められてもよい。繰り返し送信が適用される場合、繰り返し送信の最終送信サブフレームに基づいて第1のタイミングが定められてもよい。 The first timing may be the timing at which the interruption notification is received. When transmitting the interruption notification using the SC-MTCH, the first timing may be a timing at which the SC-MTCH including the interruption notification is transmitted. Specifically, the first timing may be determined based on a (M / N) PDCCH transmission subframe associated with SC-MTCH or a PDSCH transmission subframe corresponding to SC-MTCH. When repetitive transmission is applied, the first timing may be determined based on the final transmission subframe of repetitive transmission.
 第1のタイミングは、中断通知を受信したSC-MCCH変更周期と次のSC-MCCH変更周期との間のSC-MCCH変更境界(SC-MCCH modification boundary)のタイミングであってもよい。すなわち、第1のタイミングは、中断通知を受信したタイミングの後の最初のSC-MCCH変更境界のタイミングである。 The first timing may be the timing of the SC-MCCH modification boundary between the SC-MCCH change period at which the interruption notification is received and the next SC-MCCH change period. That is, the first timing is the timing of the first SC-MCCH change boundary after the timing when the interruption notification is received.
 第1のタイミングは、中断通知が送信された時点を基準として定められる相対的なタイミングであってもよい。例えば、中断通知が送信された時点からの経過時間(タイマ時間)により第1のタイミングが定められてもよい。当該経過時間は、予め定められた時間であってもよいし、eNB200から設定された時間であってもよい。 The first timing may be a relative timing determined on the basis of the time when the interruption notification is transmitted. For example, the first timing may be determined by the elapsed time (timer time) from the time when the interruption notification is transmitted. The elapsed time may be a predetermined time or may be a time set by the eNB 200.
 第1のタイミングは、時刻、サブフレーム番号、SFN、H-SFNで定義される絶対的なタイミングであってもよい。当該タイミングは、eNB200から設定されてもよい。 The first timing may be an absolute timing defined by time, subframe number, SFN, and H-SFN. The said timing may be set from eNB200.
 第1のタイミングは、複数の中断候補タイミングのうち、中断通知を受信したタイミングの後の最初の中断候補タイミングであってもよい。このような中断候補タイミングは、「suspension boundary」と称されてもよい。中断候補タイミングは、以下の条件のうち少なくとも1つを用いて定義される。 The first timing may be the first interruption candidate timing after the timing at which the interruption notification is received among the plurality of interruption candidate timings. Such a suspension candidate timing may be referred to as “suspension boundary”. The interruption candidate timing is defined using at least one of the following conditions.
 ・「SFN=0」、「H-SFN=0又は256」など、フレーム番号に基づいて予め規定された固定値。 ・ Fixed values specified in advance based on the frame number, such as “SFN = 0” and “H-SFN = 0 or 256”.
 ・午前0時、午後3時など、時刻情報に基づいて予め規定された固定値。 ・ Fixed values specified in advance based on time information, such as midnight or 3pm.
 ・eNB200から設定された値(サイクル、オフセット等)。例えば、「H-SFN mod Cycle = Offset」を満たすH-SFNを中断候補タイミングとしてもよい。 ・ Value set from eNB200 (cycle, offset, etc.). For example, H-SFN that satisfies “H-SFN mod Cycle = Offset” may be set as the suspension candidate timing.
 中断候補タイミングは、SC-MCCH変更境界に基づいて定義されてもよい。中断候補タイミングは、1つのSC-MCCH変更周期を複数の期間に等分割して得られたものであってもよい。中断候補タイミングの基準点(開始点)は、SC-MCCH変更境界と同じタイミング(サブフレーム等)であってもよい。 The suspension candidate timing may be defined based on the SC-MCCH change boundary. The suspension candidate timing may be obtained by equally dividing one SC-MCCH change period into a plurality of periods. The reference point (start point) of the suspension candidate timing may be the same timing (subframe or the like) as the SC-MCCH change boundary.
 中断候補タイミングは、MBMSサービス(TMGI)ごとに設定されてもよい。 The suspension candidate timing may be set for each MBMS service (TMGI).
 上述したような第1のタイミングに関する情報は、中断通知に含まれていてもよい。DCI(複数ビット)やMAC CEを用いる場合、eNB200は、マッピングテーブルに基づいた識別子としてUE100に通知してもよい。当該マッピングテーブルにおいて、例えば、識別子「0101」は、第1のタイミング「Cycle=20・Offset=0」と対応付けられる。当該マッピングテーブルは、UE100に事前設定されたテーブルであってもよい。当該マッピングテーブルは、eNB200からSC-MCCH等を用いてUE100に通知されてもよい。 The information related to the first timing as described above may be included in the interruption notification. When using DCI (multiple bits) or MAC CE, the eNB 200 may notify the UE 100 as an identifier based on the mapping table. In the mapping table, for example, the identifier “0101” is associated with the first timing “Cycle = 20 · Offset = 0”. The mapping table may be a table preset in the UE 100. The mapping table may be notified from the eNB 200 to the UE 100 using SC-MCCH or the like.
 ステップS34において、UE100は、中断された特定のMBMSサービスの提供が再開されると判断する。 In step S34, the UE 100 determines that the provision of the interrupted specific MBMS service is resumed.
 eNB200は、特定のMBMSサービスの提供が中断されている間、中断通知を継続的に送信してもよい。UE100は、特定のMBMSサービスの提供が中断されている間、中断通知を継続的に受信する。UE100は、中断通知が受信されなくなったことに応じて、MBMSサービスの提供が再開されると判断してもよい。 The eNB 200 may continuously transmit a suspension notification while the provision of a specific MBMS service is suspended. The UE 100 continuously receives the interruption notification while the provision of the specific MBMS service is interrupted. The UE 100 may determine that the provision of the MBMS service is resumed when the interruption notification is not received.
 eNB200は、MBMSサービスの提供が再開されることを示す再開通知をUE100に送信してもよい。再開通知は、SC-MTCH送信又はSC-MCCH送信に付随する制御情報(DCI)、SC-MTCHにより送信されるMAC CE、SC-MCCH、SIB20のうち少なくとも1つによって伝送される。UE100は、再開通知の受信に応じて、MBMSサービスの提供が再開されると判断する。 The eNB 200 may transmit a restart notification indicating that the provision of the MBMS service is restarted to the UE 100. The restart notification is transmitted by at least one of SC-MTCH transmission or control information (DCI) accompanying the SC-MCCH transmission, MAC CE transmitted by SC-MTCH, SC-MCCH, and SIB20. The UE 100 determines that the provision of the MBMS service is resumed in response to receiving the resume notification.
 ステップS35において、UE100は、第2のタイミングにおいて、特定のMBMSサービスの受信を再開する。 In step S35, the UE 100 resumes reception of a specific MBMS service at the second timing.
 第2のタイミングは、第1のタイミングと同様な方法で定義されてもよい。第2のタイミングは、複数の再開候補タイミングのうち、SC-MTCHの受信再開を決定した後の最初の再開候補タイミングであってもよい。再開候補タイミングは、「Resumption boundary」と称されてもよい。再開候補タイミングは、上述した中断候補タイミングと同様な方法で定義される。再開候補タイミングは、中断候補タイミングと同じであってもよい。この場合、再開/中断候補タイミングは、「Suspension/resumption boundary」と称されてもよい。MBMSサービスの受信再開に関する設定及び通知等は、TMGIごとに実施されてもよい。 The second timing may be defined in the same way as the first timing. The second timing may be the first resuming candidate timing after determining the resuming of SC-MTCH reception among the plurality of resuming candidate timings. The restart candidate timing may be referred to as “Resumption boundary”. The resume candidate timing is defined by the same method as the suspension candidate timing described above. The resume candidate timing may be the same as the suspension candidate timing. In this case, the resume / suspend candidate timing may be referred to as “Suspension / resumption boundary”. Settings and notifications related to the resumption of MBMS service reception may be performed for each TMGI.
 図19は、第3実施形態に係る動作シーケンス例1を示す図である。 FIG. 19 is a diagram illustrating an operation sequence example 1 according to the third embodiment.
 ステップS301において、UE100は、SC-PTM伝送を用いてeNB200から提供される特定のMBMSサービスを受信する。 In step S301, the UE 100 receives a specific MBMS service provided from the eNB 200 using SC-PTM transmission.
 ステップS302において、eNB200は、中断通知をUE100に送信する。eNB200は、MCE11から特定のMBMSサービス(特定のSC-MTCH)の送信中断を要求された場合に、中断通知を送信してもよい。eNB200は、無線の混雑緩和又は他のユニキャスト通信の優先制御などを行うためにサービス中断が必要と判断し、中断通知を送信してもよい。 In step S302, the eNB 200 transmits an interruption notification to the UE 100. The eNB 200 may transmit a suspension notification when the MCE 11 is requested to suspend transmission of a specific MBMS service (specific SC-MTCH). The eNB 200 may determine that service interruption is necessary to perform wireless congestion reduction or priority control of other unicast communication, and may transmit an interruption notification.
 ステップS303において、中断通知を受信したUE100は、第1のタイミングにおいて特定のMBMSサービスの受信を中断する。 In step S303, the UE 100 that has received the suspension notification suspends reception of the specific MBMS service at the first timing.
 ステップS304-1乃至S304-nにおいて、eNB200は、中断通知を周期的に送信する。eNB200は、特定のMBMSサービスの提供再開を決定した場合、中断通知の送信を停止する。UE100は、中断通知の送信停止を検知し、特定のMBMSサービスの提供が再開されると判断する。 In steps S304-1 to S304-n, the eNB 200 periodically transmits an interruption notification. When the eNB 200 determines to resume provision of a specific MBMS service, the eNB 200 stops transmission of the interruption notification. The UE 100 detects the suspension of transmission of the interruption notification and determines that the provision of the specific MBMS service is resumed.
 ステップS305において、UE100は、第2のタイミングにおいて、特定のMBMSサービスの受信を再開する。 In step S305, the UE 100 resumes reception of a specific MBMS service at the second timing.
 図20は、第3実施形態に係る動作シーケンス例2を示す図である。 FIG. 20 is a diagram illustrating an operation sequence example 2 according to the third embodiment.
 ステップS301乃至S303は、動作シーケンス例1と同様である。但し、eNB200は、ステップS302で中断通知を送信した後、当該中断通知を受信できなかったUE100の存在を考慮して中断通知を改めて送信してもよい。 Steps S301 to S303 are the same as those in the operation sequence example 1. However, after transmitting the interruption notification in step S302, the eNB 200 may transmit the interruption notification again in consideration of the existence of the UE 100 that has not received the interruption notification.
 ステップS311において、eNB200は、特定のMBMSサービスの提供再開を決定した場合、再開通知をUE100に送信する。UE100は、再開通知を検知し、特定のMBMSサービスの提供が再開されると判断する。 In step S311, the eNB 200 transmits a restart notification to the UE 100 when it is determined to restart providing a specific MBMS service. The UE 100 detects the restart notification and determines that the provision of the specific MBMS service is restarted.
 ステップS312において、UE100は、第2のタイミングにおいて、特定のMBMSサービスの受信を再開する。 In step S312, the UE 100 resumes reception of a specific MBMS service at the second timing.
 (その他の実施形態)
 上述した実施形態において、SC-PTM伝送を用いたMBMSのシナリオを主として想定したが、MBSFN伝送を用いたMBMSのシナリオを想定してもよい。一例として、上述した実施形態において、SC-PTM伝送をMBSFN伝送と読み替え、SC-MCCHをMCCHと読み替え、SC-MTCHをMTCHと読み替えてもよい。
(Other embodiments)
In the above-described embodiment, an MBMS scenario using SC-PTM transmission is mainly assumed, but an MBMS scenario using MBSFN transmission may be assumed. As an example, in the above-described embodiment, SC-PTM transmission may be read as MBSFN transmission, SC-MCCH may be read as MCCH, and SC-MTCH may be read as MTCH.
 上述した実施形態において、UE100がアイドルモードにおいてマルチキャスト受信を行うシナリオを主として想定したが、これに限らない。UE100は、コネクティッドモード、ライトコネクテッド状態、インアクティブモード等の接続状態においてマルチキャスト受信を行ってもよい。この場合、UE100は、コネクティッドモードでマルチキャスト受信を行ってもよい。UE100は、第2実施形態の変更例に係るアイドルモードを維持するか否かの判断に代えて、MBMSサービスをマルチキャスト伝送で受信するか、又はユニキャスト伝送で受信するかを判断してもよい。 In the above-described embodiment, a scenario is mainly assumed in which the UE 100 performs multicast reception in the idle mode, but the present invention is not limited to this. The UE 100 may perform multicast reception in a connected state such as a connected mode, a light connected state, and an inactive mode. In this case, the UE 100 may perform multicast reception in the connected mode. The UE 100 may determine whether to receive the MBMS service by multicast transmission or unicast transmission instead of determining whether to maintain the idle mode according to the modification of the second embodiment. .
 上述した各実施形態を別個独立に実施する場合に限らず、2以上の実施形態を組み合わせて実施してもよい。例えば、一の実施形態に係る一部の処理を他の実施形態に追加してもよい。或いは、一の実施形態に係る一部の処理を他の実施形態の一部の構成と置換してもよい。 Not only when each embodiment mentioned above is implemented independently, you may implement combining two or more embodiments. For example, some processes according to one embodiment may be added to another embodiment. Alternatively, a part of processing according to one embodiment may be replaced with a part of the configuration of another embodiment.
 上述した実施形態において、MBMSサービスとしてファームウェア配信を想定していた。しかしながら、グループメッセージ配信、グループチャットメッセージ配信、ウィルス定義ファイルの配信、天気予報のような定期更新ファイルの配信、ニュース速報のような不定期ファイル配信、映像コンテンツ等の夜間ファイル配信(オフピーク配信)、音声/映像ストリーミング配信、電話/ビデオ電話(グループ通信)、ライブ映像配信、ラジオ音声配信等のMBMSサービスを想定してもよい。 In the above-described embodiment, firmware distribution is assumed as the MBMS service. However, group message distribution, group chat message distribution, virus definition file distribution, periodic update file distribution such as weather forecast, irregular file distribution such as breaking news, night file distribution such as video content (off-peak distribution), MBMS services such as audio / video streaming distribution, telephone / video telephone (group communication), live video distribution, and radio audio distribution may be assumed.
 UE100及びeNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。 A program for causing a computer to execute each process performed by the UE 100 and the eNB 200 may be provided. The program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM. A chip set including a memory that stores a program for executing each process performed by the UE 100 and the eNB 200 and a processor that executes the program stored in the memory may be provided.
 上述した実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本開示はLTEシステムに限定されない。LTEシステム以外の移動通信システムに本開示を適用してもよい。 In the above-described embodiment, the LTE system is exemplified as the mobile communication system. However, the present disclosure is not limited to LTE systems. The present disclosure may be applied to mobile communication systems other than the LTE system.
 (付記)
(1.前書き)
 第96回RAN2は、SC-MCCH変更通知のためSC-RNTIでスクランブルされたDCI内の1ビットを使用するためにSC-MCCH変更通知の直接指示について結論に達し、以下の通り、G-RNTIでスクランブルされたDCI内に2つ1組の1ビットインジケータを導入することに合意した:
 SC-MCCH変更通知(新しいセッション開始に関心があるUEに対して):
  -eNB-IoTおよびfeMTCに対して:SC-MCCHスケジューリングのためPDCCHにおいてDCI内の1ビットを使用し、SC-RNTIが使用される。
(Appendix)
(1. Introduction)
The 96th RAN2 concludes about direct indication of SC-MCCH change notification to use one bit in DCI scrambled with SC-RNTI for SC-MCCH change notification, and G-RNTI as follows: Agreed to introduce a pair of one-bit indicators in the DCI scrambled with:
SC-MCCH change notification (for UEs interested in starting a new session):
-For eNB-IoT and feMTC: One bit in DCI is used in PDCCH for SC-MCCH scheduling and SC-RNTI is used.
 SC-MCCH変更通知(サービス継続中のUEに対して):
 -eNB-IoTおよびfeMTCに対して:SC-MTCHの構成が次のMPで変更されるか否かを指示するために、SC-MTCHスケジューリングのためPDCCHにおいてDCI内の1ビットを使用する。
SC-MCCH change notification (for UEs in service):
-For eNB-IoT and feMTC: Use one bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether the configuration of SC-MTCH is changed in the next MP.
 -eNB-IoTおよびfeMTCに対して:新しいサービスが次のMPで開始する予定であるか否かを指示するために、SC-MTCHスケジューリングのためPDCCHにおいてDCI内の1個の付加ビットを使用する。サービスを継続中であり、他の新しいセッション開始に関心があるUEに関して。 -For eNB-IoT and feMTC: Use one additional bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether a new service is scheduled to start in the next MP . For UEs that are in service and interested in starting other new sessions.
 -RAN2は、2ビットを承認するか否かをRAN1に質問する。1ビットしか受け入れられない場合、RAN2は、1ビットを使用する。 -RAN2 asks RAN1 whether to accept 2 bits. If only 1 bit is accepted, RAN2 uses 1 bit.
 本付記において、これらの直接指示と停止/再開メカニズムの必要性とに関するUE挙動の潜在的な問題点が考察されている。 In this appendix, the potential issues of UE behavior regarding these direct indications and the need for a stop / resume mechanism are discussed.
(2.考察)
(2.1.SC-MCCH変更通知の直接指示)
 RAN2は、以下の3つの直接指示に合意した。
(2. Discussion)
(2.1. Direct indication of SC-MCCH change notification)
RAN2 agreed to the following three direct instructions.
 -「eNB-IoTおよびfeMTCに対して:SC-MCCHスケジューリングのためPDCCHにおいてDCI内の1ビットを使用し、SC-RNTIが使用される」
 -「eNB-IoTおよびfeMTCに対して:SC-MTCHの構成が次のMPで変更されるか否かを指示するために、SC-MTCHスケジューリングのためPDCCHにおいてDCI内の1ビットを使用する」
 -「eNB-IoTおよびfeMTCに対して:新しいサービスが次のMPで開始する予定であるか否かを指示するために、SC-MTCHスケジューリングのためPDCCHにおいてDCI内の1個の付加ビットを使用する。サービスを継続中であり、他の新しいセッション開始に関心があるUEに関して。」
-"For eNB-IoT and feMTC: 1 bit in DCI is used in PDCCH for SC-MCCH scheduling and SC-RNTI is used"
-"For eNB-IoT and feMTC: Use 1 bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether SC-MTCH configuration will be changed in next MP"
“For eNB-IoT and feMTC: use one additional bit in DCI in PDCCH for SC-MTCH scheduling to indicate whether a new service is scheduled to start in the next MP For UEs that are in service and interested in starting another new session. "
 以下のセクションでは、これらの指示の説明および問題点が特定されている。 The following sections identify these instructions and identify problems.
 (2.1.1.SC-RNTIでスクランブルされたDCI内の1ビット指示)
 SC-RNTIでスクランブルされたPDCCH内の第1の直接指示は、SC-N-RNTIでスクランブルされたPDCCH内に現在指示されている既存のSC-MCCH変更通知と機能が同じである。この直接指示は、合意された今後の進め方によれば、新しいMBMSセッションが開始する(すなわち、UEがSC-PTMを受信しなくなる)前に提供されることが主に期待されている。eNBは、図21に例示されている通り、SC-MCCHが次のSC-MCCH変更境界で変更されるときはいつでも、すなわち、既にMBMSセッションを提供するか否かとは無関係に、この直接指示をいつでも送信することが仮定されることもある。
(2.1.1. 1-bit indication in DCI scrambled with SC-RNTI)
The first direct indication in the PDCCH scrambled with SC-RNTI has the same function as the existing SC-MCCH change notification currently indicated in the PDCCH scrambled with SC-N-RNTI. This direct indication is mainly expected to be provided before a new MBMS session starts (ie, the UE stops receiving SC-PTM), according to the agreed future procedure. The eNB gives this direct indication whenever the SC-MCCH is changed at the next SC-MCCH change boundary, ie whether or not it already provides an MBMS session, as illustrated in FIG. It may be assumed to transmit at any time.
 さらに、現行の仕様は、SC-MCCH変更通知が受信されたのと同じサブフレーム内でUEがSC-MCCH取得を開始することを規定するが、SC-MCCHの変更は、SC-MCCH変更境界だけで起こる。現行の仕様は以下である。
「5.8a.1.3   SC-MCCH情報有効性および変更の通知
 SC-MCCH情報の変更は、特定の無線フレームだけで行われ、すなわち、変更期間の概念が使用される。変更期間の範囲内で、同一のSC-MCCH情報が、(繰り返し周期に基づく)これのスケジューリングによって規定された通りに、何回も伝送されることがある。変更期間境界は、mが変更期間を構成する無線フレームの数であるとして、SFN mod m=0となるSFN値によって規定される。変更期間は、システム情報ブロックタイプ20を用いて構成されている。
 ネットワークがSC-MCCH情報(の一部)を変更するとき、ネットワークは、繰り返し周期内のSC-MCCH伝送のため使用され得る第1のサブルレーム内の変更に関してUEに通知する。8ビットのビットマップ内の最下位ビットは、‘1’がセットされたとき、SC-MCCHの変更を指示する。変更通知を受信し次第、SC-PTMを使用して伝送されたMBMSサービスを受信することに関心があるUEは、同一のサブフレームから始まる新しいSC-MCCH情報を取得する。UEは、UEが新しいSC-MCCH情報を取得するまで、事前に取得されたSC-MCCH情報を適用する。」
 注釈:SC-MCCH変更通知に関連したこのUE挙動は、MBSFNに対するMCCH取得のうちの1つ、および、以下のセクションで、すなわち、同一または次の変更境界に関して検討されたSC-PTMに対して最近合意した2つ1組の付加的な直接指示とは異なる。
In addition, the current specification specifies that the UE initiates SC-MCCH acquisition within the same subframe in which the SC-MCCH change notification is received, but the SC-MCCH change is the SC-MCCH change boundary. Just happens. The current specifications are as follows.
“5.8a.1.3 Notification of SC-MCCH Information Validity and Change SC-MCCH information is changed only in a specific radio frame, that is, the concept of change period is used. Within the same SC-MCCH information may be transmitted many times as defined by its scheduling (based on repetition period), the change period boundary is the radio with m constituting the change period The number of frames is defined by the SFN value at which SFN mod m = 0, and the change period is configured using the system information block type 20.
When the network changes (part of) the SC-MCCH information, the network notifies the UE about the change in the first sub-frame that may be used for SC-MCCH transmission within the repetition period. The least significant bit in the 8-bit bitmap indicates the change of SC-MCCH when '1' is set. Upon receiving the change notification, the UE interested in receiving the MBMS service transmitted using SC-PTM obtains new SC-MCCH information starting from the same subframe. The UE applies the previously acquired SC-MCCH information until the UE acquires new SC-MCCH information. "
Note: This UE behavior related to SC-MCCH change notification is one of the MCCH acquisitions for MBSFN, and for the SC-PTM discussed in the following section, ie with respect to the same or the next change boundary. It differs from the recently agreed additional set of direct instructions.
 確認1:eNBは、SC-MCCHが新しいMBMSセッションに対して、このSC-MCCH変更期間から変更されたときはいつでも、SC-RNTIを含んでいるPDCCH内の第1の直接指示によっていつでも通知する。 Confirmation 1: The eNB notifies a new MBMS session whenever the first MS-CHCH change period has changed from this SC-MCCH change period by the first direct indication in the PDCCH containing the SC-RNTI .
 確認1が意味をなす場合、第1の直接指示が次の変更期間ではなくこの変更期間にSC-MCCH変更を通知するので、図21において破線付きの「通知」は、そこに存在しないであろう。UEがSC-RNTIでスクランブルされたPDCCH内で第1の直接通知を受信した場合、UEは、PDSCH上で直ちにSC-MCCHの復号を開始することが必要である。 If confirmation 1 makes sense, the first direct indication will notify the SC-MCCH change in this change period rather than the next change period, so there is no “notification” with a broken line in FIG. Let's go. If the UE receives the first direct notification in the PDCCH scrambled with SC-RNTI, the UE needs to start decoding SC-MCCH immediately on the PDSCH.
 (2.1.2.本サービスのためのG-RNTIでスクランブルされたDCI内の1ビット指示)
 G-RNTIでスクランブルされたPDCCH内の第2の直接指示は、合意された今後の進め方によれば、図22に描かれている通り継続中のMBMSセッションを受信しているUEを対象としたある種の「(このG-RNTIの)TMGIに特有のSC-MCCH変更通知」であると見なされる。継続中のMBMSセッションだけにSC-MTCH伝送があるので、eNBは、継続中のMBMSセッションに限りこの直接指示を送信する、と仮定してもよい。言い換えれば、eNBは、未だ開始していないMBMSセッションのため直接指示を送信する必要がない。
(2.1.2. 1-bit indication in DCI scrambled with G-RNTI for this service)
The second direct indication in the PDCCH scrambled with G-RNTI is intended for UEs receiving an ongoing MBMS session as depicted in FIG. 22, according to the agreed future procedure. It is considered a kind of “SC-MCCH change notification specific to TMGI (of this G-RNTI)”. Since there is SC-MTCH transmission only in the ongoing MBMS session, it may be assumed that the eNB sends this direct indication only in the ongoing MBMS session. In other words, the eNB does not need to send an instruction directly for an MBMS session that has not yet started.
 確認2:このTMGIのためのPDCCH内の第2の直接指示は、新しいMBMSセッションのためSC-MCCHの変更を通知するために使用されることがない。 Confirmation 2: The second direct indication in the PDCCH for this TMGI is not used to notify the SC-MCCH change for a new MBMS session.
 (2.1.3.他のサービスのためのG-RNTIでスクランブルされたDCI内の1ビット指示)
 G-RNTIでスクランブルされたPDCCH内の第3の直接指示は、(他のG-RNTIの)SC-MCCH変更通知またはある種のSC-MTCH開始通知のいずれかであると想定されることがあるが、このことは、合意からはやや不明確であり、現在実行中のCRは、この直接指示がSC-MCCH変更通知のうちの1つであると想定する。この直接指示は、合意された今後の進め方によれば、図23に表された通り継続中のMBMSセッションを受信しているが、他の新しいMBMSセッションに関心があるUEも対象とする。RAN2は、先に第3の直接指示の意味を明確にすべきである。
(2.1.3. 1-bit indication in DCI scrambled with G-RNTI for other services)
The third direct indication in the PDCCH scrambled with G-RNTI may be assumed to be either SC-MCCH change notification (of other G-RNTI) or some kind of SC-MTCH start notification. Although this is somewhat unclear from the agreement, the currently executing CR assumes that this direct indication is one of the SC-MCCH change notifications. This direct indication is intended for UEs that are receiving an ongoing MBMS session as shown in FIG. 23 according to the agreed future procedure, but are interested in other new MBMS sessions. RAN2 should clarify the meaning of the third direct indication first.
 提案1:RAN2は、他の新しいMBMSセッション開始のためのPDCCH内の第3の直接指示がある種のSC-MCCH変更通知であるか、または、SC-MTCH開始通知であるかを明確にすべきである。 Proposal 1: RAN2 clarifies whether the third direct indication in the PDCCH for the start of another new MBMS session is a kind of SC-MCCH change notification or SC-MTCH start notification Should.
 (2.1.3.1.複数のMBMSセッション開始に関する問題点)
 第3の直接指示は、1つ限りの新しいMBMSセッションが同時に開始するときに巧く機能するが、2つ以上の新しいMBMSセッションがまさに開始しようとしているときに何が起こるかは不明確である。1ビットしか含んでいない第3の直接指示は、2つのセッションのうちの一方が次のSC-MCCH変更境界で実際には開始されていないとしても、UEの視点からは、2つの新しいセッションを区別できないと想定されることがある。
(2.1.3.1. Problems related to the start of multiple MBMS sessions)
The third direct indication works well when only one new MBMS session starts simultaneously, but it is unclear what happens when two or more new MBMS sessions are about to start. . The third direct indication, which contains only one bit, allows two new sessions from the UE perspective, even though one of the two sessions has not actually started at the next SC-MCCH change boundary. It may be assumed that they cannot be distinguished.
 観察1:G-RNTIでスクランブルされたPDCCH内の1ビットを使って、UEは、2つ以上のMBMSセッションがまさに開始しようとしている場合、新しいMBMSセッションのうちどれが次のSC-MCCH変更境界で開始するかを区別できない。 Observation 1: Using one bit in the PDCCH scrambled with G-RNTI, if more than one MBMS session is about to start, the UE will decide which of the new MBMS sessions is the next SC-MCCH change boundary Cannot distinguish between starting with.
 たとえば、UEは、UEが新しいMBMSセッションのうちの1つだけに関心があり、かつ、他のMBMSサービスのための第3の直接指示がUSDに従ってMBMSセッションの開始前に受信されたときに、SC-MCCHをチェックすることになり、UEは、(図24に例示されている通り、第3の直接指示がUEにとって関心のない別のMBMSサービスに向けられていたため)SC-MCCH内の関心のあるMBMSセッションに対する構成変更がないので、継続中のSC-MTCH受信に戻る。しかし、SC-MCCHのチェックは、特に、eNB-IoT UEのためのSC-MTCH受信を中断することがあり、SC-MTCH受信を中断することは、直接指示を導入する動機、すなわち、「サービスを継続中であるSC-MTCHは、MP毎にSC-MCCH受信によって中断されるであろう」という問題を解決する動機と一致していない。したがって、RAN2は、eNBが新しいMBMSセッションのうちの2つ以上を開始したいときに、問題、たとえば、新しいMBMSセッション開始の数の制限(すなわち、同時に1つだけ)または開始に関してTMGIに通知するための何らかの強化を解決する方法を考察すべきである。 For example, when the UE is interested in only one of the new MBMS sessions and a third direct indication for other MBMS services is received before the start of the MBMS session according to USD, The UE will check the SC-MCCH and the UE will be interested in the SC-MCCH (since the third direct indication was directed to another MBMS service that is not of interest to the UE as illustrated in FIG. 24). Since there is no configuration change for a certain MBMS session, return to the ongoing SC-MTCH reception. However, the SC-MCCH check may interrupt the SC-MTCH reception for the eNB-IoT UE in particular, and the interruption of the SC-MTCH reception is a motivation to introduce a direct indication, ie “service Is inconsistent with the motivation to solve the problem that SC-MTCH that is continuing will be interrupted by SC-MCCH reception for each MP. Thus, RAN2 informs TMGI about a problem, eg, a limited number of new MBMS session starts (ie, only one at a time) or start when the eNB wants to start two or more of the new MBMS sessions You should consider how to solve some enhancements.
 提案2:RAN2は、UEが次のSC-MCCH変更期間に開始されることになる複数の新しいMBMSサービスのうちの1つだけに関心があるときに、SC-MTCH受信の中断がSC-MCCHモニタリングによってどのように解決され得るかを考察すべきである。 Proposal 2: When RAN2 is interested in only one of several new MBMS services that the UE will be started in the next SC-MCCH change period, the interruption of SC-MTCH reception is SC-MCCH It should be considered how this can be solved by monitoring.
 (2.2.MBMSセッション開始時に直接指示がない場合のUE挙動)
 (2.2.1.問題記述)
 別のシナリオとして、UEは、(USD内の「開始」情報に従って)関心のあるMBMSサービスが開始しそうなときを予測することもあるかもしれないが、NWは、RANの責務としてSC-PTMによってMBMSサービスを提供しないこと、すなわち、3つの直接指示のうちのいずれも提供されないことに決定することがある。この事例では、UEは、ユニキャストによってMBMSサービスを受信する必要がある。
(2.2 UE behavior when there is no direct instruction at the start of an MBMS session)
(2.2.1. Problem description)
As another scenario, the UE may predict when an MBMS service of interest is about to start (according to the “start” information in the USD), but the NW is responsible for the RAN by the SC-PTM. One may decide not to provide an MBMS service, i.e. none of the three direct indications are provided. In this case, the UE needs to receive the MBMS service by unicast.
 観察2:UEは、NWがSC-PTMによって対応するサービスを提供しないことに決定した場合、ユニキャストによって関心のあるMBMSサービスを受信するためにRRC接続を確立する必要がある。 Observation 2: If the NW decides not to provide a corresponding service by SC-PTM, it needs to establish an RRC connection to receive the MBMS service of interest by unicast.
 対応するSC-PTMがそもそも提供されるかどうか、または、単に遅れているかどうかがUEに分からない場合、UEがユニキャストによってサービスを取得するか否か、および、サービスを取得するときを決定することは難しい。このことは、リリース13では、想定される主アプリケーションは、ストリーミングサービスであったため、問題点ではなかったが、ファイル配信サービスは、リリース14の目的である。リリース13では、UEは、SC-PTMによって関心のあるMBMSサービスを提供する周波数を持つSIB 15、および、関心のあるSC-PTMを提供するセルを持つSC-MCCHから学ぶことがある。言い換えれば、UEは、SIB 15もSC-MCCHも対応するTMGIを含まないとき、NWが関心のあるSC-PTMを現時点で提供しないことを通知することがある。これらの2つの指示は、組み合わさって、ストリーミングサービスの受信のための適切な知能を提供し、UEは、関心のあるMBMSサービスを獲得するために、すなわち、サービス継続性のためユニキャストを直ちに確立することができる。論点は、これがリリース14における配信サービスにそのまま適用できるか否かである。前述の2つの指示は、サービスが近い将来にSC-PTMを用いてNWによって提供されることになるか否かをUEに伝えないことに留意すべきである。したがって、UEが関心のあるMBMSサービスを受信するためにRRC接続要求を開始することにいつ決定するかは不明確である。 If the UE does not know whether the corresponding SC-PTM is provided in the first place or simply being late, determine whether and when the UE obtains the service by unicast It ’s difficult. This is not a problem in Release 13 because the assumed main application was a streaming service, but the file distribution service is the purpose of Release 14. In Release 13, the UE may learn from SIB 15 with a frequency that provides the MBMS service of interest by SC-PTM and SC-MCCH with a cell that provides the SC-PTM of interest. In other words, the UE may notify that the NW does not currently provide the SC-PTM of interest when neither the SIB 15 nor the SC-MCCH includes the corresponding TMGI. These two indications combine to provide the proper intelligence for reception of streaming services, and the UE immediately unicasts to acquire the MBMS service of interest, ie for service continuity. Can be established. The issue is whether this is directly applicable to the distribution service in Release 14. It should be noted that the above two indications do not tell the UE whether the service will be provided by the NW using SC-PTM in the near future. Therefore, it is unclear when the UE decides to initiate an RRC connection request to receive the MBMS service of interest.
 観察3:eNBが関心のあるサービスのブロードキャスティングを将来の時点に先延ばしすることができないという要件はないので、UEは、このことがSIB 15およびSC-MCCH内に現時点で指示されていないというだけで、関心のあるサービスがSC-PTMによって提供されるかどうかを判定できない。 Observation 3: There is no requirement that the eNB cannot defer broadcasting of the service of interest to a future point in time, so the UE does not indicate that this is currently indicated in SIB 15 and SC-MCCH Alone, it cannot be determined whether the service of interest is provided by SC-PTM.
 続いて、NWが最終的にはマルチキャストによってUEの関心のあるMBMSサービスを提供する限り、UEは、待機状態にとどまり、SC-PTMが開始するのを待つべきであるという期待されるUE挙動は、自明であるかもしれない。UEは、ユニキャストによってMBMSサービスを獲得するために接続状態に移行することがあるが、UEがユニキャストによって関心のあるMBMSサービスを受信するために接続を確立する前にどのくらい待機状態にとどまるべきであるかは不明確である。 Subsequently, as long as the NW finally provides the MBMS service of interest of the UE by multicast, the expected UE behavior that the UE should stay in a waiting state and wait for SC-PTM to start is May be obvious. UE may transition to connected state to acquire MBMS service by unicast, but how long should UE stay in a wait state before establishing connection to receive MBMS service of interest by unicast It is unclear whether it is.
 観察4:UEがユニキャストによって関心のあるMBMSサービスを受信するために接続を確立する前にどのくらいRRC_IDLEにとどまるべきであるかは不明確である。 Observation 4: It is unclear how long the UE should stay in RRC_IDLE before establishing a connection to receive the MBMS service of interest by unicast.
 提案3:RAN2は、NWがMBMSサービスのためのSC-PTMを提供していない場合、UEがユニキャストによって関心のあるこのMBMSサービスを獲得することをいつ許可されるかについて考察すべきである。 Proposal 3: RAN2 should consider when a UE is allowed to acquire this MBMS service of interest by unicast if the NW does not provide SC-PTM for MBMS service .
 (2.2.2.可能な解決策)
 2つの代替案が以下の通り考えられる。UEは、ユニキャストによるMBMSサービスの受信のためRRC接続要求を開始することに決定する。そのために、
 -代替案1:UE実装までそのままにする、たとえば、上位層によって定められた遅延閾値までSC-PTMを待ち受ける。
(2.2.2. Possible solutions)
Two alternatives are considered as follows. The UE decides to initiate an RRC connection request for reception of the MBMS service by unicast. for that reason,
Alternative 1: Leave as it is until UE implementation, for example, wait for SC-PTM to delay threshold defined by higher layers.
 -代替案2:付加的なRAN支援情報、たとえば、SC-PTMによって提供されることはないMBMSサービスのブロードキャストされたリストに基づく。 -Alternative 2: Based on additional RAN support information, eg, a broadcast list of MBMS services that are not provided by SC-PTM.
 代替案1は、最も簡単であり、UEが上位層により定められた遅延閾値までSC-PTMサービスの繰り返しチェックを行うと仮定したとしても、SC-PTMによるMBMSサービスの受信のためのUEの電力消費がユニキャストによる電力消費より少ないと想定される場合に、正常に機能する。しかしながら、このことは、サービスが耐遅延性であると考えられるにもかかわらず、不必要な受信レイテンシ、たとえば、ファームウェアダウンロードを生じさせることがある。 Alternative 1 is the simplest, even assuming that the UE performs repeated checks of the SC-PTM service up to a delay threshold determined by higher layers, even if the UE power for receiving the MBMS service by SC-PTM Functions normally when consumption is assumed to be less than unicast power consumption. However, this may cause unnecessary receive latency, eg firmware download, even though the service is considered to be delay tolerant.
 代替案2は、NWの観点からは、制御可能なメカニズムであり、許容可能なMBMSサービスのレイテンシの最後での多数の接続要求に起因した受信遅延とNW輻輳との間で性能のバランスを保つ。さらに、前述の代替案1において見られるように、UEが最終的にユニキャストを使用する必要がある場合、SC-PTMチェックのための不必要なウェイクアップに起因したUEの電力消費を最小限に抑えるであろう。代替案2がSC-PTMによって提供されることがないMBMSサービスだけを含んでいる理由は、これは、これらの予定サービスがSC-PTMによって提供されないとき、どちらかというと例外であるべきであり、したがって、NWは、必要がない場合にこの情報をブロードキャストする必要がない、ということである。しかしながら、代替案2は、さらなる標準化活動を必要とし、(たとえば、USDにおいて)MBMSサービスが開始するときがどのようにしてRANに分かるかが不明確である。GCS ASと連携しているグループ通信に適合させられたリリース13のSC-PTMとは異なり、リリース14のSC-PTMを考慮するため適したメカニズムは存在しない。考慮に入れることがなくても、NWが輻輳している場合、サービスは緊急を要するとは考えられないので、eNBは、しばらくの間、SC-PTMをブロードキャストすることを避ける。しかし、NWは、多くのUEがユニキャストによるサービスを試行し、受信するために、RRC接続要求を実行することを望んでいないので、代替案2は、UEがこのような要求を行うことを防ぐために優れたメカニズムであろう。 Alternative 2 is a controllable mechanism from the NW point of view and balances performance between reception delay and NW congestion due to multiple connection requests at the end of acceptable MBMS service latency . Further, as seen in Alternative 1 above, if the UE eventually needs to use unicast, it minimizes the UE power consumption due to unnecessary wake-up for SC-PTM check. Will be suppressed. The reason why Alternative 2 only includes MBMS services that are not provided by SC-PTM is that this should rather be an exception when these scheduled services are not provided by SC-PTM Thus, the NW does not need to broadcast this information when it is not needed. However, Alternative 2 requires further standardization activities and it is unclear how the RAN knows when the MBMS service starts (eg in USD). Unlike Release 13 SC-PTM, which is adapted for group communications linked to GCS AS, there is no suitable mechanism to consider Release 14 SC-PTM. Without taking into account, if the NW is congested, the eNB avoids broadcasting SC-PTM for some time because the service is not considered urgent. However, since NW does not want many UEs to perform RRC connection requests to try and receive unicast services, Alternative 2 allows the UE to make such requests. It would be an excellent mechanism to prevent.
 代替案の間には賛否両論があるが、代替案2は、バッテリの影響を受けやすいアプリケーションおよび多量の装置(すなわち、mMTC)を考慮して、UEの電力消費およびNW輻輳を回避するために好ましい。 While there are pros and cons between alternatives, Alternative 2 is intended to avoid UE power consumption and NW congestion, taking into account battery-sensitive applications and high volume devices (ie, mMTC) preferable.
 提案4:NWは、ブロードキャストによってUEに、SC-PTMによって提供されることがない予定MBMSサービスのリストを通知すべきである。 Proposal 4: The NW should notify the UE of a list of scheduled MBMS services that will not be provided by SC-PTM by broadcast.
 (2.3.SC-MTCH停止/再開メカニズム)
 前述の通りMBMSセッション開始での考慮に加えて、継続中のMBMSセッションの事例も考慮されるであろう。ファームウェアダウンロードは、これが完了する前により長い持続期間を必要とすることがある。たとえば、NB-IoTのDLスループットは50kbpsであると想定されることがあり、これは、(本実施例では、64回である)繰り返しによって低減されることがあり、ファームウェアのサイズが1MBであると想定すると、ファームウェアダウンロードセッションは、およそ2.8時間続くことがある。このようなより長い持続期間中に、NWは、輻輳に直面することがあり、一旦輻輳が起こると、NWは、たとえば、他のユニキャストサービスが優先される必要があるとき、SC-PTM伝送を一時的に停止することに決める必要がある。
(2.3. SC-MTCH stop / resume mechanism)
In addition to consideration at the start of an MBMS session as described above, the case of an ongoing MBMS session will also be considered. Firmware downloads may require a longer duration before this is completed. For example, the DL throughput of NB-IoT may be assumed to be 50 kbps, which may be reduced by iteration (in this example, 64 times) and the firmware size is 1 MB. Assuming that, the firmware download session may last approximately 2.8 hours. During such longer durations, the NW may encounter congestion, and once congestion occurs, the NW may, for example, SC-PTM transmit when other unicast services need to be prioritized. It is necessary to decide to stop temporarily.
 観察5:継続中のMBMSセッションのためのSC-PTM伝送は、特に、セッションが長い持続期間にわたって続く場合、輻輳のために一時的に停止されることがある。 Observation 5: SC-PTM transmission for an ongoing MBMS session may be temporarily stopped due to congestion, especially if the session lasts for a long duration.
 停止期間中に、UEは、少なくとも次のSC-MCCH変更境界まで、すなわち、SC-MCCH内の対応する構成が次の変更境界より前に、変化することも除去されることもないので、SC-MTCHを監視し続ける必要がある。言い換えれば、UEのバッテリは、関心のある継続中のSC-PTMが停止されたとき、それでもなお消費されたままである。不必要な電力消費を回避するために、UEは、MBMSセッションがNWにより停止されたときを通知されるべきである。 During the outage period, the UE does not change or be removed at least until the next SC-MCCH change boundary, ie the corresponding configuration in the SC-MCCH is changed before the next change boundary. -It is necessary to continue to monitor MTCH. In other words, the UE's battery will still be consumed when the ongoing SC-PTM of interest is stopped. In order to avoid unnecessary power consumption, the UE should be notified when the MBMS session is stopped by the NW.
 観察6:UEは、対応するSC-PTM伝送が既に停止されているとしてもSC-MTCHを監視し続ける必要がある。 Observation 6: The UE needs to continue monitoring the SC-MTCH even if the corresponding SC-PTM transmission has already been stopped.
 類似するが、同一ではないメカニズム、すなわち、拡張MCHスケジューリング情報MAC CE内の「S」フィールドが既存の仕様において利用できる。MBMSサービス停止および再開機能の一部で用いられる「S」フィールドは、「MTCHの伝送がeNode Bによって停止されるべきであるか否か」および「停止されたMBMSサービスが再開されたとき、eNBは、MCCH更新時間によって指示された変更期間の初めから当然伝送を可能にするべきであること」についてUEに通知し、このときには、MCCH更新時間がMCCH変更期間に等しい。 A similar but not identical mechanism, ie the “S” field in the extended MCH scheduling information MAC CE is available in the existing specification. The “S” field used in part of the MBMS service stop and restart functions is “whether the MTCH transmission should be stopped by the eNode B” and “eNB when the stopped MBMS service is restarted. Informs the UE that it should naturally allow transmission from the beginning of the change period indicated by the MCCH update time, where the MCCH update time is equal to the MCCH change period.
 観察7:MBSFN伝送に対して、現在停止/再開メカニズムを利用できる。 Observation 7: A current stop / resume mechanism can be used for MBSFN transmission.
 現行の「S」フィールドは、継続中のサービスが、MBSFNのため想定されるストリーミングサービスのため十分である近い将来に停止されることをUEに伝える。しかしながら、リリース14において想定される配信サービスは、1つのFLUTEブロックが見逃されているとしてもユニキャスト・ファイル・リカバリを引き起こすことがあるので、停止および再開に関してeNBとUEとの間により密接な同期を要求する。したがって、eNBは、たとえば、DCIまたはMAC CE内のSFN、H-SFN、このSC-MTCH伝送、次のSC-MCCH変更境界などを用いて定められた、停止の厳密なタイミングをUEに通知する必要がある。 The current “S” field tells the UE that the ongoing service will be stopped in the near future which is sufficient for the streaming service envisaged for MBSFN. However, the delivery service envisaged in Release 14 may cause unicast file recovery even if one FLUTE block is missed, so closer synchronization between the eNB and the UE with respect to stop and resume Request. Therefore, the eNB notifies the UE of the exact timing of the stop determined by using, for example, SFN in the DCI or MAC CE, H-SFN, this SC-MTCH transmission, the next SC-MCCH change boundary, etc. There is a need.
 留意すべきことは、NWは、構成次第で次のSC-MCCH変更期間を待ち受けるのでは遅すぎるかもしれないので、かなり早急に停止を決めることがあることである。 Note that the NW may decide to stop quite quickly as it may be too late to wait for the next SC-MCCH change period depending on the configuration.
 提案5:RAN2は、継続中のMBMSセッションに対するSC-PTM伝送が停止されるときがUEに通知されるべきであることに合意すべきである。 Proposal 5: RAN2 should agree that the UE should be notified when SC-PTM transmission for an ongoing MBMS session is stopped.
 提案5が合意できる場合、停止期間中に予想されるUE挙動は、SC-PTMの再開を待ち受けること、すなわち、前のセクションの見解4における考察と同様にUEが待機状態にとどまることであることは自明である。これは、NWがSC-PTM伝送を停止したとき、ユニキャストによるMBMSサービスの受信のための多数のRRC接続要求を防ぐ。状況は、停止がNW輻輳の下で行われた場合、悪化するであろう。したがって、停止中のUE挙動は、指定されるべきである。しかしながら、この挙動は、上位層における遅延要件を考慮に入れるべきである。 If Proposal 5 can be agreed, the expected UE behavior during the outage is to wait for SC-PTM to resume, ie the UE remains in a waiting state as discussed in view 4 of the previous section. Is self-explanatory. This prevents multiple RRC connection requests for MBMS service reception by unicast when the NW stops SC-PTM transmission. The situation will get worse if the outage is done under NW congestion. Therefore, the stopping UE behavior should be specified. However, this behavior should take into account delay requirements at higher layers.
 提案6:SC-MTCHの停止が合意できる場合、RAN2は、SC-PTMが停止されている間に、サービスの遅延要件が満たされる限り、UEがユニキャストによって関心のあるMBMSを獲得することを許可されないことにも合意すべきである。 Proposal 6: If SC-MTCH stoppage can be agreed, RAN2 will allow the UE to acquire the MBMS of interest by unicast as long as the service delay requirement is satisfied while SC-PTM is stopped It should also be agreed that it is not allowed.
 加えて、このSC-MTCHに対する停止は、DCI内の1個の付加ビットを使って、または、SC-MCCH内の付加構成を使って継続的に指示される。代替的に、SC-PTMによって提供されることがない予定MBMSサービスのリストを再利用すること、すなわち、提案4が考えられることがある。いずれの情報でも、UEは、SC-PTMが停止されたばかりである(すなわち、中止されていない)場合、SC-PTMの再開を待ち受けることをいつでも決定することがある。 In addition, this stop for SC-MTCH is continuously indicated using one additional bit in DCI or using an additional configuration in SC-MCCH. Alternatively, reuse of a list of scheduled MBMS services that are not provided by SC-PTM, ie Proposition 4, may be considered. With any information, the UE may decide at any time to wait for SC-PTM to resume if SC-PTM has just been stopped (ie, has not been stopped).
 提案7:SC-MTCHの停止が合意できる場合、RAN2は、UEがユニキャストによって関心のあるMBMSを獲得するためRRC接続要求を開始することを防ぐために、たとえば、DCIまたはSC-MCCH内で、停止指示が停止期間中に継続的にブロードキャストされることにさらに合意すべきである。 Proposal 7: If the SC-MTCH stop can be agreed, RAN2 may prevent the UE from initiating an RRC connection request to acquire the MBMS of interest by unicast, eg, in DCI or SC-MCCH It should be further agreed that the stop indication is broadcast continuously during the stop period.
 SC-MTCHの停止が導入された場合、このSC-MTCHの再開が同様に必要である。既存のメカニズムでは、MBSFN伝送がMCCH変更境界に基づいて時々再開され、この変更期間は、rf512およびrf1024であった。UEは、MCCH変更通知またはMCCH変更境界の後の最初のMBSFNサブフレームを監視することだけによって、SC-MTCHが今もなお停止されているか、または、再開されているかをチェックすることがある。 When SC-MTCH suspension is introduced, it is necessary to restart this SC-MTCH as well. In the existing mechanism, MBSFN transmission was restarted from time to time based on MCCH change boundaries, and the change periods were rf512 and rf1024. The UE may check whether the SC-MTCH is still stopped or restarted only by monitoring the first MBSFN subframe after the MCCH change notification or MCCH change boundary.
 観察8:MBSFNのための現行の再開メカニズムでは、再開は、MCCH変更境界に関連付けられたときに許可されることがある。 Observation 8: With the current resumption mechanism for MBSFN, resumption may be allowed when associated with an MCCH change boundary.
 しかしながら、リリース14のSC-PTMでは、eDRXの最大サイクルまで、すなわち、2.91時間までSC-MCCH変更期間を延長することをベースラインとして合意している。NWの輻輳が緩和され、NWがSC-PTM伝送を直ぐに再開したい場合、再開は、次の変更境界の後まで、そして、輻輳が現在のSC-MCCH変更期間の初めに向けて緩和された場合、ことによると、最大でおよそ2.91時間後まで行われ得ない。 However, the SC-PTM of Release 14 has agreed as a baseline to extend the SC-MCCH change period up to the maximum eDRX cycle, ie 2.91 hours. If the NW congestion is alleviated and the NW wants to resume SC-PTM transmission immediately, the resumption will continue until after the next change boundary and if the congestion is mitigated towards the beginning of the current SC-MCCH change period , Possibly not up to approximately 2.91 hours later.
 観察9:SC-MTCHの再開は、SC-PTM伝送の再開が次のSC-MCCH変更境界の後に時々しか起こり得ない場合、最大で2.91時間まで遅延されることがある。 Observation 9: SC-MTCH resumption may be delayed up to 2.91 hours if resumption of SC-PTM transmission can only occur occasionally after the next SC-MCCH change boundary.
 別の可能性として、サービスの再開のための新しい機会がSC-MCCH変更期間中、たとえば、再開境界中であっても定めることができるか否かが検討されることがある。再開境界では、eNBは、SC-MCCH変更期間とは無関係に、SC-PTMが今もなお停止されているか、または、再開されているかを指示することがある。再開境界は、たとえば、(ハードコード化されたマッピングテーブルを含んでいる)SC-MCCH、MAC CEまたはDCIを用いてeNBによって指示されることが想定される。しかしながら、UEは、各再開境界において少なくとも1回これをチェックする必要がある。したがって、このような再開境界がサポートされるべきか否かを考察する価値がある。 Another possibility is to consider whether a new opportunity for service resumption can be established during the SC-MCCH change period, for example even during the resumption boundary. At the restart boundary, the eNB may indicate whether SC-PTM is still stopped or restarted regardless of the SC-MCCH change period. The restart boundary is assumed to be indicated by the eNB using, for example, SC-MCCH (including hard-coded mapping table), MAC CE or DCI. However, the UE needs to check this at least once at each restart boundary. It is therefore worth considering whether such a restart boundary should be supported.
 提案8:RAN2は、停止されたSC-PTMの再開が(非明示的に)次のSC-MCCH変更境界の後、または、(明示的に)eNBによって指示された再開境界に限り起こり得るかどうかを考察すべきである。 Proposal 8: Can RAN2 be able to resume a stopped SC-PTM only (implicitly) after the next SC-MCCH change boundary, or (explicitly) at the restart boundary indicated by the eNB You should consider whether.
 (2.4.手順全体のタイムライン)
 MBMSファイル配信サービスに対するタイムラインの実施例は、図25に記載され、分かりやすくするためだけに、SC-RNTIを使ったSC-MCCH変更通知(すなわち、第1の直接指示)だけを使用する。同図は、最後の会合において合意したUSDおよびRANレベルの中止指示に記載された開始/中止情報をさらに統合する。付加的に、同図は、セクション2.3において考察されたSC-MTCH停止/再開メカニズムを暫定的に捉える。
(2.4. Timeline of the entire procedure)
An example timeline for the MBMS file delivery service is described in FIG. 25 and uses only the SC-MCCH change notification (ie, the first direct indication) using SC-RNTI for clarity only. The figure further integrates the start / stop information described in the USD and RAN level stop instructions agreed at the last meeting. In addition, the figure tentatively captures the SC-MTCH stop / resume mechanism discussed in Section 2.3.
 図25では、SC-MCCH伝送は、現行の仕様に準拠して、SC-MCCH変更通知が提供された同一のSC-MCCH変更境界から開始される(緑色矢印を参照のこと)。続いて、SC-MTCH伝送が次の変更境界の後に開始され(青色の矢印を参照のこと)、SC-MTCHは、全てのUEが変更されたSC-MCCHの獲得を完了するときは予測不可能であり、かつ、一部のUEがファイル配信セッション中(すなわち、ストリーミングセッションではないとき)に一部のパケットを受信できないことが好ましくないので、最もロバストな伝送タイムラインを提供する。 In FIG. 25, the SC-MCCH transmission starts from the same SC-MCCH change boundary provided with the SC-MCCH change notification according to the current specification (see green arrow). Subsequently, SC-MTCH transmission is started after the next change boundary (see blue arrow), and SC-MTCH is unpredictable when all UEs complete acquisition of the changed SC-MCCH. It is possible and provides the most robust transmission timeline because it is not preferred that some UEs cannot receive some packets during a file delivery session (ie when not a streaming session).
 この場合、SC-MCCH変更期間が延長された値、たとえば、2.91時間を使って構成されている場合、SC-MCCH伝送は、(USDにおいて定められた)MBMSセッション開始時点と比べると著しく遅延されることがある。この遅延は、NWが1変更期間先にSC-MCCH変更通知を送信することを実装によって許可される場合、避けられないことがある。しかしながら、タイムラインについてのRAN2の共通理解を確認することが必要である。 In this case, if the SC-MCCH change period is configured using an extended value, for example, 2.91 hours, the SC-MCCH transmission is significantly more compared to the MBMS session start time (as defined in USD). May be delayed. This delay may be unavoidable if the implementation is allowed by the implementation to send an SC-MCCH change notification one change period ahead. However, it is necessary to confirm a common understanding of RAN2 about the timeline.
 提案9:RAN2は、SC-MCCH変更が指示された後に、SC-MTCH伝送が次のSC-MCCH変更境界で開始されるか否かを明確にすべきである。 Proposal 9: After the SC-MCCH change is instructed, RAN2 should clarify whether the SC-MTCH transmission is started at the next SC-MCCH change boundary.
 米国仮出願第62/454172号(2017年2月3日出願)の全内容が、参照により、本願明細書に組み込まれている。 The entire contents of US Provisional Application No. 62/454172 (filed on Feb. 3, 2017) are incorporated herein by reference.
 本開示は移動通信分野において有用である。 This disclosure is useful in the mobile communication field.

Claims (14)

  1.  SC-PTM伝送を用いて基地局から提供されるMBMSサービスを受信する無線端末であって、
     前記SC-PTM伝送を用いて特定のMBMSサービスを受信中において、前記特定のMBMSサービスの提供が中断されることを示す中断通知を前記基地局から受信する受信部と、
     前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断する制御部と、を備える
     無線端末。
    A wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission,
    A receiving unit for receiving an interruption notification indicating that provision of the specific MBMS service is interrupted while receiving a specific MBMS service using the SC-PTM transmission;
    A wireless terminal comprising: a control unit that interrupts reception of the specific MBMS service in response to reception of the suspension notification.
  2.  前記制御部は、前記中断指示の受信に応じて、前記特定のMBMSサービスに対応するPDCCHのモニタリングを中断する
     請求項1に記載の無線端末。
    The radio terminal according to claim 1, wherein the control unit interrupts monitoring of PDCCH corresponding to the specific MBMS service in response to reception of the interruption instruction.
  3.  前記中断指示は、MAC制御エレメントによって伝送される
     請求項1に記載の無線端末。
    The wireless terminal according to claim 1, wherein the interruption instruction is transmitted by a MAC control element.
  4.  前記中断指示は、前記特定のMBMSサービスに対応するG-RNTIに関連付けられる
     請求項1に記載の無線端末。
    The wireless terminal according to claim 1, wherein the interruption instruction is associated with a G-RNTI corresponding to the specific MBMS service.
  5.  前記制御部は、
      前記中断指示の受信に応じて、第1のタイミングにおいて前記特定のMBMSサービスの受信を中断し、
      前記特定のMBMSサービスの受信を中断した後、第2のタイミングにおいて前記特定のMBMSサービスの受信を再開する
     請求項1に記載の無線端末。
    The controller is
    In response to receiving the suspension instruction, the reception of the specific MBMS service is suspended at a first timing;
    The wireless terminal according to claim 1, wherein reception of the specific MBMS service is resumed at a second timing after the reception of the specific MBMS service is interrupted.
  6.  前記受信部は、前記第1のタイミング及び/又は前記第2のタイミングに関するタイミング情報を前記基地局からさらに受信する
     請求項5に記載の無線端末。
    The radio terminal according to claim 5, wherein the reception unit further receives timing information related to the first timing and / or the second timing from the base station.
  7.  前記第1のタイミングは、
     前記中断通知を受信したタイミング、
     前記中断通知を受信したタイミングの後の最初のSC-MCCH変更境界タイミング、
     前記中断通知を受信したタイミングから所定時間経過後のタイミング、又は
     複数の中断候補タイミングのうち、前記中断通知を受信した後の最初の中断候補タイミングである
     請求項5に記載の無線端末。
    The first timing is:
    The timing of receiving the interruption notification;
    The first SC-MCCH change boundary timing after the timing of receiving the interruption notification;
    The wireless terminal according to claim 5, wherein the wireless terminal is a timing after a lapse of a predetermined time from a timing at which the interruption notification is received, or a first interruption candidate timing after receiving the interruption notification among a plurality of interruption candidate timings.
  8.  前記受信部は、前記MBMSサービスの提供が中断されている間、前記中断通知を継続的に受信し、
     前記制御部は、前記中断通知が受信されなくなったことに応じて、前記MBMSサービスの提供が再開されると判断する
     請求項1に記載の無線端末。
    The receiving unit continuously receives the interruption notification while the provision of the MBMS service is interrupted,
    The wireless terminal according to claim 1, wherein the control unit determines that provision of the MBMS service is resumed in response to the suspension notification not being received.
  9.  前記受信部は、前記MBMSサービスの提供が再開されることを示す再開通知をさらに受信し、
     前記制御部は、前記再開通知の受信に応じて、前記MBMSサービスの提供が再開されると判断する
     請求項1に記載の無線端末。
    The receiving unit further receives a restart notification indicating that the provision of the MBMS service is restarted;
    The wireless terminal according to claim 1, wherein the control unit determines that provision of the MBMS service is resumed in response to reception of the resume notification.
  10.  前記第2のタイミングは、複数の再開候補タイミングのうち、前記SC-MTCHの受信再開を決定した後の最初の再開候補タイミングである
     請求項5に記載の無線端末。
    The radio terminal according to claim 5, wherein the second timing is a first restart candidate timing after determining to resume reception of the SC-MTCH among a plurality of restart candidate timings.
  11.  SC-PTM伝送を用いてMBMSサービスを提供する基地局であって、
     前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断する制御部と、
     前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信する送信部と、を備える
     基地局。
    A base station that provides an MBMS service using SC-PTM transmission,
    A controller that determines to interrupt the provision of a specific MBMS service using the SC-PTM transmission;
    A transmission unit that transmits to the wireless terminal a suspension notification indicating that the provision of the specific MBMS service is suspended before the provision of the specific MBMS service is suspended.
  12.  SC-PTM伝送を用いて基地局から提供されるMBMSサービスを受信する無線端末のためのプロセッサであって、
     前記プロセッサは、
      前記SC-PTM伝送を用いて特定のMBMSサービスを受信中において、前記特定のMBMSサービスの提供が中断されることを示す中断通知を前記基地局から受信する処理と、
     前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断する処理と、を実行する
     プロセッサ。
    A processor for a wireless terminal that receives an MBMS service provided from a base station using SC-PTM transmission,
    The processor is
    A process of receiving an interruption notification from the base station indicating that provision of the specific MBMS service is interrupted while receiving the specific MBMS service using the SC-PTM transmission;
    And a process of interrupting reception of the specific MBMS service in response to reception of the interruption notification.
  13.  SC-PTM伝送を用いてMBMSサービスを提供する基地局のためのプロセッサであって、
     前記プロセッサは、
      前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断する処理と、
      前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信する処理と、を実行する
     プロセッサ。
    A processor for a base station providing MBMS service using SC-PTM transmission,
    The processor is
    A process of determining to interrupt the provision of a specific MBMS service using the SC-PTM transmission;
    A process of transmitting an interruption notification indicating that the provision of the specific MBMS service is interrupted to the wireless terminal before interrupting the provision of the specific MBMS service.
  14.  SC-PTM伝送を用いてMBMSサービスを提供する基地局が、前記SC-PTM伝送を用いた特定のMBMSサービスの提供を中断すると判断するステップと、
     前記基地局が、前記特定のMBMSサービスの提供を中断する前に、前記特定のMBMSサービスの提供を中断することを示す中断通知を無線端末に送信するステップと、
     前記無線端末が、前記中断通知の受信に応じて、前記特定のMBMSサービスの受信を中断するステップと、を備える
     通信制御方法。
    Determining that a base station providing an MBMS service using SC-PTM transmission interrupts the provision of a specific MBMS service using the SC-PTM transmission;
    Before the base station interrupts the provision of the specific MBMS service, and transmits a suspension notification indicating that the provision of the specific MBMS service is suspended to the wireless terminal;
    A step of suspending reception of the specific MBMS service in response to reception of the suspension notification.
PCT/JP2018/003137 2017-02-03 2018-01-31 Radio terminal and base station WO2018143246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762454172P 2017-02-03 2017-02-03
US62/454,172 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143246A1 true WO2018143246A1 (en) 2018-08-09

Family

ID=63039762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003137 WO2018143246A1 (en) 2017-02-03 2018-01-31 Radio terminal and base station

Country Status (1)

Country Link
WO (1) WO2018143246A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511940A (en) * 2004-02-11 2007-05-10 エルジー エレクトロニクス インコーポレイティド Discontinuous transmission / reception method of MBMS data in a mobile communication system
WO2009131087A1 (en) * 2008-04-22 2009-10-29 シャープ株式会社 Communication device and communication method
US20130215761A1 (en) * 2011-03-21 2013-08-22 Zte Corporation Method and Device for Determining Resumption of Suspended Multimedia Broadcast Multicast Service, and User Equipment
WO2016070764A1 (en) * 2014-11-06 2016-05-12 Qualcomm Incorporated Embms session suspend/stop notification
WO2016119640A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511940A (en) * 2004-02-11 2007-05-10 エルジー エレクトロニクス インコーポレイティド Discontinuous transmission / reception method of MBMS data in a mobile communication system
WO2009131087A1 (en) * 2008-04-22 2009-10-29 シャープ株式会社 Communication device and communication method
US20130215761A1 (en) * 2011-03-21 2013-08-22 Zte Corporation Method and Device for Determining Resumption of Suspended Multimedia Broadcast Multicast Service, and User Equipment
WO2016070764A1 (en) * 2014-11-06 2016-05-12 Qualcomm Incorporated Embms session suspend/stop notification
WO2016119640A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Support of transmission mode and impact on pdcch blind decodes of ptm (point-to-multipoint) transmission

Similar Documents

Publication Publication Date Title
JP6766169B2 (en) Wireless terminals and base stations
JP6506887B2 (en) Wireless terminal and base station
JP6741969B2 (en) Mobile communication system
JP6303059B2 (en) Base station, user terminal and processor
JP6689933B2 (en) Wireless terminal and network device
JP6812530B2 (en) Wireless terminals, processors, and methods
JP6732206B2 (en) Wireless terminal and base station
US11310631B2 (en) Radio terminal and base station
US10505650B2 (en) Radio terminal and network apparatus
WO2018143246A1 (en) Radio terminal and base station
JP7425259B2 (en) Communication control method and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18748057

Country of ref document: EP

Kind code of ref document: A1