WO2018143207A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2018143207A1
WO2018143207A1 PCT/JP2018/002996 JP2018002996W WO2018143207A1 WO 2018143207 A1 WO2018143207 A1 WO 2018143207A1 JP 2018002996 W JP2018002996 W JP 2018002996W WO 2018143207 A1 WO2018143207 A1 WO 2018143207A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational force
force
rotating body
gravity
rotation center
Prior art date
Application number
PCT/JP2018/002996
Other languages
French (fr)
Japanese (ja)
Inventor
日吉 藤本
豊 池崎
中村 英明
Fujiko FUJIMOTO (藤本 富士子)
Original Assignee
日吉 藤本
水上 彰澄
豊 池崎
中村 英明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日吉 藤本, 水上 彰澄, 豊 池崎, 中村 英明 filed Critical 日吉 藤本
Publication of WO2018143207A1 publication Critical patent/WO2018143207A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors

Definitions

  • the present invention relates to a power generation device.
  • a typical example of equipment that converts gravity into rotational force is a water wheel.
  • a water turbine uses water that flows down due to gravity as a power source, water must continue to flow into the water turbine. For this reason, the water as a power source was infinitely necessary.
  • the power source is only gravity, and the rotational force continues to be generated without replenishing the power source from other sources. Moreover, it can become a more motive power source by connecting a rotary body.
  • the present invention is positioned as a power generation device that uses gravity as a power source, generates rotational force only by gravity, and supplies the rotational force to other devices.
  • an object of the present invention is to provide a power generation device using gravity.
  • the present invention employs the following means.
  • the power generation device according to the present invention is a power generation device that converts gravity into a rotating force and uses the converted force as a power source, and is adapted to the natural law that attempts to balance gravity. And a mechanism for generating a rotational force for generating rotational energy in the imbalance.
  • the power generation device is characterized in that the power source is an imbalance caused by tilting the position of the mass point by 90 degrees with respect to the vertical direction according to the law of gravity.
  • the power generation device further includes a horizontal holding mechanism that holds the mass point in the horizontal direction according to the law of gravity, and a rotational force addition mechanism that adds an additional rotational force to the rotational force.
  • the present invention uses the principle of a water wheel and a lever such as a seesaw as a classic method.
  • the present invention is characterized in that the two classical methods are used at the same time, and the rotational force generated by making the gravity applied to the mass point unbalanced is used.
  • the portion that generates imbalance according to the present invention since the “balance” of the natural law always occurs, the function to prevent the occurrence of the “balance” is also a feature.
  • the present invention can be used as a power source for equipment that requires rotation. Moreover, since the power generation device according to the present invention does not require another power source, it can be used as a power source considering the environment.
  • FIG. 9 is an explanatory diagram of a state in which the stabilizer is in a natural balance in FIG. 8. It is explanatory drawing of the way of thinking of how to apply the force to a stabilizer, and the balance problem of a stabilizer. It is a front view explaining an example of the mechanism which produces a rotational force. It is sectional drawing which abbreviate
  • FIG. 1 is an explanatory diagram of a generalized model of a mechanism 30 that generates a rotational force in the case of an even number of mass points.
  • FIG. 2 is an explanatory diagram of a generalized model of a mechanism that generates a rotational force in the case of an odd number of mass points.
  • the generalized model having a plurality of mass points m has a direction perpendicular to the vertical direction Z (the direction in which gravity acts) (horizontal direction, the paper surface of FIGS. 1 and 2 spreads).
  • a rotating body center axis O extending in a direction perpendicular to the direction) and a rotating body D having a rotation radius R that rotates about the rotating body center axis O.
  • Rotating body D rotates around a rotating body central axis O when viewed from a reference base (so-called absolute coordinate axis, pedestal B in FIGS. 1 and 2).
  • a reference base so-called absolute coordinate axis, pedestal B in FIGS. 1 and 2.
  • the plurality of rotation center positions P are located at an equal angle with respect to the rotation body center axis O.
  • the plurality of rotation center positions P rotate around the rotation body center axis O as the rotation body D rotates.
  • the two rotation center positions P are positioned in opposite directions with respect to the rotation body center axis O. That is, the angle a is 180 degrees which is a half of 360 degrees.
  • the three rotation center positions P are at a position opened 120 degrees with respect to the rotation body center axis O. That is, the angle a is 120 degrees, which is one third of 360 degrees.
  • the mass point m is located at a distance r from the rotation center position P, and when viewed from the base B, the mass point m is always positioned on the horizontal direction side of the rotation center position P. (In the example shown, it is located on the right side, but may be located on the left side). That is, in the generalized model of the mechanism 30 that generates the rotational force, the position of the mass point m is tilted by 90 degrees with respect to the vertical direction Z according to the law of gravity around the rotation center position P. Thereby, the mass point m is in an unbalanced state and tries to move in the vertical direction Z by gravity.
  • the generalized model of the mechanism 30 that generates the rotational force uses the force to be moved at this time as a power source. Further, the generalized model of the mechanism 30 that generates the rotational force includes one that acts as a horizontal holding mechanism that holds the mass point m in the horizontal direction with respect to the rotation center position P, as will be described later.
  • the mass point m is rotatably supported by the rotating body D so as to rotate around the rotation center position P as viewed from the rotating body D.
  • the mass m is supported by the rotating body D so as to rotate around the rotation center position P as the rotating body D rotates.
  • the mass m is supported by the rotary body D such that when the rotary body D rotates once, the mass point m rotates once relative to the rotary body D.
  • the rotation direction of the mass m with respect to the rotating body D is opposite to the rotating direction of the rotating body D with respect to the base B.
  • the mass point m when viewed from the pedestal B, when the rotating body D rotates around the rotating body central axis O, the mass point m is always located on the same side with respect to the rotating center position P, while the rotating body central axis O Seems to rotate around. That is, for example, when viewed from the pedestal B, when the mass point m is located on the right side in the horizontal direction of the rotation center position P, even if the rotating body D rotates with respect to the pedestal B, the mass point m always rotates. It is located to the right of the center position P in the horizontal direction.
  • the number of mass points m to be rotated may be at least two, and may be an even number or an odd number.
  • the number of mass points m is two, as shown in FIG.
  • the number of mass points m may be three, and as the number of mass points m increases, the rotational force acting on the rotating body D increases as will be described later.
  • FIG. 3 is an explanatory diagram when the mass point is positioned in the horizontal direction in the balance of gravity of the generalized model of the mechanism that generates the rotational force.
  • FIG. 4 is an explanatory diagram when the mass point is going to move in the vertical direction in the balance of gravity in the generalized model of the mechanism that generates the rotational force in FIG.
  • each mass point m since the mass point m rotates around the rotation center position P, each mass point m tries to move to a position that can be balanced according to gravity g. That is, the mass point m tends to move downward in the vertical direction Z as shown in FIG. 4 from the position on the right side in the horizontal direction of the rotation center position P shown in FIG. At this time, since the mass point m is restricted to rotate about the rotation center position P, the mass point m is closer to the rotating body central axis O when viewed from the vertical direction Z as shown in FIG.
  • each mass point m is affected by gravity g in an unbalanced state.
  • FIG. 5 is an explanatory view of the dynamic consideration of the generalized model of the mechanism that generates the rotational force shown in FIGS. 3 and 4.
  • the rotational force (rotation, torque (N ⁇ m)) is the length (m, meter) of the line segment R2 in the direction from the rotating body central axis O to the mass point m1 and the force F1 of the tangential component perpendicular to the line segment R2. (N, Newton) and product.
  • R 1 is the distance between the rotating body central axis O and the mass point m1 in the horizontal direction X, in other words, the Y axis (the axis in the vertical direction Z passing through the rotating body central axis O) and the mass point m1.
  • R 2 is the distance between the rotary body center axis O and the material point m1.
  • ⁇ 2 is an angle formed by a straight line connecting the rotating body central axis O and the mass point m1 and a straight line passing through the mass point m1 and orthogonal to the Y axis (in other words, a horizontal line passing through the mass point m11).
  • R 1 R ⁇ sin ⁇ + r Obviously.
  • is an angle formed by a straight line extending on the upper side of the Y axis passing through the rotating body center axis O and the rotation center position P.
  • the moment M2 of the mass point m2 is obtained. Since the position of the mass point m2 is located on the opposite side of the mass point m1 with respect to the rotating body center axis O (180 degrees), a straight line extending through the rotating body center axis O and extending upward in the vertical direction Z and the rotation center position P Is represented by ⁇ , ⁇ + ⁇ , that is, ⁇ + 180 degrees.
  • FIG. 6 is a schematic diagram of a power generation device including a mechanism that generates a rotational force using a stabilizing plate.
  • the power generation device 10 includes a rotating body central axis O, a plurality of transmission gears 16, a stabilizing plate 18 attached to the transmission gear 16 so as not to be relatively rotatable, and a weight attached to the stabilizing plate 18 so as not to be relatively movable.
  • Mass point m mass point m
  • the rotating body D has an X-shape extending in all directions from the rotating body central axis O as shown in FIG.
  • the rotating body D is rotatably supported by the base B around the rotating body central axis O.
  • Rotating body central axis O rotates with rotating body D.
  • the center gear 14 at the rotation center of the rotating body D is fixed to the base B, it does not rotate with respect to the base B.
  • Each of the plurality of transmission gears 16 is rotatably supported by the rotating body D via a plurality of rotation center shafts 20.
  • the plurality of rotation center shafts 20 are attached to the rotating body D so as not to move relative to each other.
  • a transmission gear 16 that meshes with the central gear 14 and a plurality of transmission gears 16 that mesh with the transmission gear 16 in series are arranged in a row from the rotating body central axis O to the outside. In FIG. 5, four rows are formed.
  • the plurality of transmission gears 16 rotate (revolve) around the rotating body central axis O together with the rotating body D, and rotate (rotate) around the rotation center axis 20 of each transmission gear 16. Become.
  • FIG. 7 is an explanatory diagram of the rotation direction of the transmission gear 16 of the power generation device 10.
  • FIG. 8 is an explanatory diagram of the stabilizer.
  • FIG. 9 is an explanatory diagram of a state in which the stabilizer is in a natural balance in FIG.
  • FIG. 10 is an explanatory diagram of how to apply force to the stabilizer and how to solve the balance problem of the stabilizer.
  • FIG. 7 shows four transmission gears 16 that mesh with the central gear 14, but these four transmission gears 16 are not meshed with each other.
  • the center gear 14 is fixed to the base B, and the transmission gear 16 can freely rotate (rotate) about the rotation center axis 20 of the transmission gear 16.
  • the number which counted the center gear 14 as the 1st gear in order is given to the some transmission gear 16 from the side close
  • the present invention is characterized in that this non-rotating movement is used for posture control.
  • the plurality of transmission gears 16 are the same gears as the central gear 14 (that is, the module and the pitch circle diameter are the same as each other), if the central gear 14 is the first gear, three or more The odd-numbered transmission gear 16 always faces in a certain direction.
  • the odd-numbered transmission gear 16 rotates in the counterclockwise direction CCW with respect to the rotating body D in response to the rotation of the even-numbered transmission gear 16 inside the odd-numbered one (rotation in the clockwise direction CW2). Since the rotating body D rotates in the clockwise direction CW with respect to the pedestal B, when viewed from the pedestal B, the odd-numbered transmission gears 16 are translated while being oriented in a certain direction. That is, when the rotating body D is rotated about the rotating body central axis O with respect to the pedestal B by applying a rotational force to the rotating body D, the odd-numbered transmission gear 16 has a fixed direction with respect to the pedestal B. Around the center axis O of the rotating body.
  • a stabilizing plate 18 is attached to the odd-numbered transmission gear 16 on the outermost side.
  • the stabilizer 18 has a posture control function, that is, a horizontal holding mechanism that holds the mass point m in the horizontal direction in accordance with the law of gravity, and a role of a mechanism 30 that generates a rotational force.
  • a weight (mass point m) for generating a rotational force is attached to the stabilizing plate 18.
  • the stabilizing plate 18 is suspended so as to be swingable to the rotation center shaft 20 of the outermost odd-numbered transmission gear 16.
  • the outermost odd-numbered transmission gear 16 meshes with another transmission gear 16 (even-numbered transmission gear 16). For this reason, the stabilizing plate 18 coincides with the movement of the transmission gear 16 from which the stabilizing plate 18 is suspended.
  • the stabilizing plate 18 When the stabilizing plate 18 is balanced (maintains an equilibrium state), the rotational force around the rotating body central axis O does not act on the outermost transmission gear 16 and thus the rotating body D. That is, the outermost odd-numbered transmission gear 16 attached to the stabilization plate 18 does not rotate with respect to the rotating body D. Therefore, it is important to maintain this balance in an unbalanced state.
  • a suspension shaft for suspending the stabilizer 18 (the same shaft as the rotation center shaft 20 of the transmission gear 16 in FIGS. 8 and 9) and a suspension shaft other than the suspension shaft are provided. If the stabilizing plate 18 can be maintained in an unbalanced state by causing some action at least at one point, the force generated by the unbalance is transmitted to the rotation shaft (hanging shaft), and the rotation shaft (hanging shaft). ) Starts rotating (swinging) in an attempt to balance.
  • the weight (mass point) is such that the position of the center of gravity of the weight (mass point m) is away from the Y axis extending in the vertical direction Z through the suspension axis (rotation center axis 20).
  • the stabilizer 18 rotates around the suspension shaft so that the stabilizer 18 is in a balanced position (right rotation Rr in the case of FIG. 9).
  • a balanced imbalance is created. In the unbalanced state, a force (rotational force) that always tries to shift to the balanced state works.
  • a structure that uses this force to generate a rotational force is a feature of the present invention.
  • a mechanism 30 that generates rotational force in the present invention.
  • the power generation device 10 converts gravity into a rotating force, uses the converted force as a power source, and balances the natural law that tries to balance gravity.
  • a mechanism 30 is created that produces a rotational force that creates an imbalance and is imbalanced to produce rotational energy.
  • FIG. 11 is a front view illustrating an example of a mechanism that generates a rotational force.
  • FIG. 12 is a cross-sectional view in which a part of the mechanism that generates the rotational force shown in FIG. 11 is omitted.
  • FIG. 13 is a schematic explanatory diagram of a power generation device including a rotational force addition mechanism.
  • FIG. 14 is a front view in which a part of the rotational force adding mechanism shown in FIG. 13 is omitted.
  • FIG. 15 is a cross-sectional view in which a part of the rotational force adding mechanism shown in FIG. 14 is omitted.
  • the mechanism 30 that generates the rotational force includes the odd-numbered transmission gear 16, the stabilizing plate 18, the guide plate 19, the support plate 21, the lever bar na, and the lever bar na. And a weight (mass point) m provided at one end na1.
  • the stabilization plate 18 has the same center as that of the rotation center shaft 20 and has a disk shape larger than that of the transmission gear 16, and is attached to the transmission gear 16 by a plurality of screws 16a so as not to move relative thereto. For this reason, the stabilizer 18 rotates with respect to the rotation center shaft 20 together with the transmission gear 16.
  • the guide plate 19 includes a disk-shaped bottom portion 19a and a side surface portion 19b extending in a cylindrical shape in the axial direction of the rotation center shaft 20 from the periphery of the bottom portion 19a. Since the guide plate 19 is attached to the rotation center shaft 20 so as not to be relatively movable, the guide plate 19 rotates about the rotation center shaft 20 with respect to the transmission gear 16.
  • the side surface portion 19b has a cylindrical inner peripheral surface 19c and an outer peripheral surface 19d with the rotation center axis 20 as a central axis.
  • the support plate 21 is a plate member. Three bearings B1, B2, B3 are provided on one surface side of the support plate 21 so that the bearings B1, B2 are kept in contact with the inner peripheral surface 19c and the bearing B3 is kept in contact with the outer peripheral surface 19d. Is attached.
  • the support plate 21 rotates around the rotation center axis 20 while maintaining the state where the bearings B1 and B2 are in contact with the inner peripheral surface 19c and the state where the bearing B3 is in contact with the outer peripheral surface 19d. In other words, the support plate 21 relatively rotates along the guide of the guide plate 19.
  • the lever rod na has a rod shape, has a weight m at one end na1, and a retaining screw SW1 that rotatably supports the support plate 21 and a stabilizer 18 on the other end na2 side.
  • a retaining screw SW2 to be supported is provided. That is, the lever rod na is supported by the stabilizing plate 18 so as to be swingable around the retaining screw SW2, and also supports the support plate 21 so as to be rotatable around the retaining screw SW1.
  • the rotating body D and the stabilizing plate 18 do not move relative to each other. Does not move relative to each other. That is, it can be said that the insulator rod na is the same as being fixed to the stabilizing plate 18. Accordingly, the part that plays a role of releasing the force acting on the retaining screw SW1 is the retaining screw SW2, and the force acting on the retaining screw SW2 is downward in the vertical direction Z.
  • the retaining screw SW2 is fixed to the stabilization plate 18 slightly to the left of the position just below the rotation center shaft 20 (below the vertical direction Z). (Rotational force). However, even if this counterclockwise torque (rotational force) is present, this torque (rotational force) is insignificant, and a sufficient counterclockwise torque (rotational force) cannot be obtained.
  • the torque (rotational force) transmitted from the rotating body central axis O shown in FIG. 6 via the plurality of transmission gears 16 becomes the left rotational force FL as shown in FIG.
  • the ratio between the rotational force FL and the right rotational force FR caused by the weight m being positioned on the right side from the rotation center axis 20 may be considered as 1: 1.
  • the rotational force that promotes rotation is transmitted from the rotating body central axis O via the plurality of transmission gears 16.
  • the rotational force is mechanical friction such as gear meshing. As a result, it attenuates slightly. Assuming that the damping coefficient indicating the slight attenuation rate is roughly 0.9, the ratio between the left rotational force FL acting on the stabilizer 18 and the right rotational force FR acting on the weight m is: 0.9: 1. In this state, the right rotational force FR is greater than the left rotational force FL, and the mechanism that generates the rotational force does not generate the rotational force.
  • a mechanism having an auxiliary function for increasing the rotational force is introduced into the odd-numbered transmission gear 16 between the center gear 14 and the outermost odd-numbered transmission gear 16. To do. Since this is an auxiliary function for adding a rotational force, it will be referred to as a rotational force addition mechanism 40.
  • An example of the rotational force adding mechanism 40 will be described with reference to FIGS. 14 and 15.
  • the rotational force adding mechanism 40 is attached to the odd-numbered transmission gear 16 so as not to be relatively movable.
  • the rotational force adding mechanism 40 includes a stabilizer 42, a support plate 44, a lever bar nb, a weight ma provided at one end nb1 of the lever bar nb, a support member 46, a lever bar nc, and a lever bar nc. And a weight mb provided at one end nc1.
  • the stabilizing plate 42 is a disk member having a radius larger than the radius of the odd-numbered transmission gear 16 to which the rotational force adding mechanism 40 is attached.
  • the stabilizing plate 42 is attached with screws so as not to be relatively movable concentrically with the transmission gear 16.
  • a retaining screw SW15 and a retaining screw SW13 are provided in the vicinity of the circumference of one side surface of the stabilizing plate 42.
  • the retaining screw SW13 is provided below the retaining screw SW15 in the vertical direction Z.
  • the retaining screw SW13 and the retaining screw SW15 are located on the left side of the vertical direction Z of the rotation center shaft 20, and the retaining screw SW15 is located on the left side of the retaining screw SW13.
  • the support plate 44 is a plate-like member and is attached to the rotation center shaft 20 so as to be rotatable about the rotation center shaft 20.
  • the support plate 44 is provided with a retaining screw SW11 and a retaining screw SW14 on the side surface opposite to the stabilizing plate 42.
  • the lower side surface portion of the support plate 44 in the vertical direction Z is in contact with the retaining screw SW15.
  • the support plate 44 is located on the left side of the rotation center shaft 20, and the retaining screws SW 15 support the support plate 44 so that the support plate 44 does not rotate counterclockwise.
  • the retaining screw SW11 and the retaining screw SW14 are generally located on the left side of the rotation center shaft 20 between the rotation center shaft 20 and the retaining screw SW15.
  • a weight mb is provided at one end nc1 of the insulator rod nc, and the other end nc2 is rotatably supported by the rotation center shaft 20. Further, a retaining screw SW14 is in contact with the lower side of the vertical direction Z between the one end nc1 and the other end nc2 of the lever rod nc. That is, the retaining screw SW14 supports the lever bar nc below the lever bar nc.
  • a weight ma is provided at one end nb1 of the insulator rod nb, and the other end nb2 is supported by a support plate 44 so as to be rotatable by a retaining screw SW11.
  • a retaining screw SW11 is provided on the other end nb2 side between the one end nb1 and the other end nb2.
  • the support member 46 is a rod-shaped member having a bent portion, and both ends of the support member 46 are rotatably attached to the retaining screw SW12 and the retaining screw SW13, respectively. As a result, the support member 46 supports the lever bar nb from below the vertical direction Z, and can hold the force from the lever bar nb and transmit it to the screw SW13.
  • the rotational force adding mechanism 40 has a structure in which the weight ma and the weight mb can be placed on the left and right ends. Accordingly, the weight ma acts on the one end nb1 with the downward gravity Fa in the vertical direction Z, and the weight mb acts on the one end nc1 with the downward gravity Fb in the vertical direction Z.
  • the gravity Fb in the vertical direction Z acting on the weight mb acts on one end nc1
  • one end nc1 functions as a power point
  • the rotation center shaft 20 serves as a fulcrum
  • the retaining screw SW14 functions as an action point.
  • the gravity Fb acts on the retaining screw SW15 as a downward force Fc in the vertical direction Z via the support plate 44.
  • the positions of the force Fc and the force Fd that are finally applied are arranged so as to be in the direction FL that promotes rotation.
  • F (n) F (1) x ⁇ (n-1) + FL
  • F (n) > F (1) Each parameter is determined so that If F (n) > F (1) , the force FL that urges the rotation always remains without being canceled (see FIG. 17).
  • the force in the final term of the step-like line is a force that promotes the rotation acting on the stabilizer, and the ratio between the force FL that promotes the revolution on the stabilizer and the force FR that prevents the rotation due to the weight.
  • the force FL that promotes the rotation of the stabilizer plate is greater than the force FR that prevents the rotation due to the weight, a force sufficient to maintain the rotation can be generated.
  • Rotational force according to the present invention can be a power source of equipment having a constant rotational force and mainly rotating.
  • FIG. 18 is a front view in which a part of another rotational force applying mechanism 40a is omitted.
  • another rotational force applying mechanism 40 a omits the weights ma and mb of the rotational force applying mechanism 40 and also has a bar-shaped link member nd, a bar-shaped link member ne, a slide guide bar nf, and a weight W.
  • One end of the link member nd is swingably attached to one end nb1 of the lever bar nb. For this reason, the rod-shaped link member nd extends in the vertical direction Z.
  • One end of the link member ne is swingably attached to one end nc1 of the lever bar nc. For this reason, the rod-shaped link member ne extends in the vertical direction Z.
  • Both ends of the slide guide rod nf are swingably attached to one end of the link member nd and the link member ne so as to extend in a substantially horizontal direction.
  • the weight W is attached so as to be movable in the extending direction (substantially horizontal direction) of the slide guide bar nf, and is attached to an arbitrary position on the slide guide bar nf so as not to be relatively movable by a locking means such as a retaining screw.
  • the downward gravity Fw1 and gravity Fw2 in the vertical direction Z vary depending on the position of the weight W. Therefore, by attaching an arbitrary weight W at an arbitrary position, the gravity Fw1 and the gravity Fw2 of the rotational force applying mechanism 40a can be made the same as the gravity Fa and the gravity Fb of the rotational force applying mechanism 40, respectively.
  • FIG. 19 is an explanatory diagram of the linked operation. In operation, it is preferable to attach 16 stabilizers 18 before and after one rotating body D. In this case, about eight stabilizers 18 are attached to each surface of one rotating body D, which is ideal for operation. Further, by connecting the rotating bodies D in parallel, the rotational force increases by addition.
  • Rotating body O Rotating body central axis P Rotating center position R Rotating radius 10 Power generator 14 Central gear 16 Transmission gear 18 Stabilizing plate 19 Guide plate 20 Rotating center shaft 21 Support plate 30 Mechanism 40, 40a for generating rotational force Addition of rotational force Mechanism 42 Stabilizing plate 44 Support plate 46 Support member

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Toys (AREA)

Abstract

Provided is a power generation device 10 in which it is possible to connect to a machine having rotation as a power source by converting gravitational force to rotational force. A power generation device 10 in which gravitational force is converted to rotational force and the converted force is used as a power source, wherein the power generation device 10 includes a mechanism for producing an imbalance by preventing gravitational equilibrium from being reached with respect to the natural law whereby gravitational equilibrium is sought, and generating rotational force that produces rotational energy due to the imbalance.

Description

動力発生装置Power generator
 本発明は、動力発生装置に関する。 The present invention relates to a power generation device.
 重力を回転の力に変換する代表的な機器として水車などがある。
 しかし、水車は重力で流れ落ちる水を動力源とするので、水を水車に流し続けなければならない。このため、動力源としての水が無限に必要であった。
 本発明では、動力源は重力のみであり、他からの動力源の補給なしに、回転力が発生し続ける。
 また、回転体を連結することでより多くの動力源となりうる。
A typical example of equipment that converts gravity into rotational force is a water wheel.
However, since a water turbine uses water that flows down due to gravity as a power source, water must continue to flow into the water turbine. For this reason, the water as a power source was infinitely necessary.
In the present invention, the power source is only gravity, and the rotational force continues to be generated without replenishing the power source from other sources.
Moreover, it can become a more motive power source by connecting a rotary body.
 本発明は、動力源として重力を利用し、重力のみで回転力を発生させ、その回転力を他の機器へ供給する動力発生装置としての位置づけとなる。 The present invention is positioned as a power generation device that uses gravity as a power source, generates rotational force only by gravity, and supplies the rotational force to other devices.
 よって、本発明は、重力を利用した、動力発生装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a power generation device using gravity.
 本発明は、以下の手段を採用する。
 本発明に係る動力発生装置は、重力を回転する力に変換し、変換された力を動力源として利用する動力発生装置であって、重力の釣り合いをとろうとする自然の法則に対し、前記釣り合いをとらせないようにすることにより不均衡を生じさせ、前記不均衡で、回転のエネルギーを作り出す回転力を生む機構を含むことを特徴とする。
The present invention employs the following means.
The power generation device according to the present invention is a power generation device that converts gravity into a rotating force and uses the converted force as a power source, and is adapted to the natural law that attempts to balance gravity. And a mechanism for generating a rotational force for generating rotational energy in the imbalance.
 本発明に係る動力発生装置は、重力の法則に従った鉛直方向に対して質点の位置を、90度傾けたことによる不均衡を動力源としていることを特徴とする。 The power generation device according to the present invention is characterized in that the power source is an imbalance caused by tilting the position of the mass point by 90 degrees with respect to the vertical direction according to the law of gravity.
 本発明に係る動力発生装置は、さらに、重力の法則に従った水平方向に前記質点を保持する水平保持機構と、前記回転力に追加の回転力を付加する回転力付加機構とを含むことを特徴とする。 The power generation device according to the present invention further includes a horizontal holding mechanism that holds the mass point in the horizontal direction according to the law of gravity, and a rotational force addition mechanism that adds an additional rotational force to the rotational force. Features.
 本発明は、古典的な手法としての、水車と、シーソーのような梃子の原理を利用している。
 そして、本発明は、この2つの古典的な手法を同時に利用し、質点にかかる重力を、左右不均衡にすることで発生する回転力を利用することを特徴とする。
 また、本発明に係る不均衡を発生させる部分に関しては、自然の法則の「釣り合い」が必ず発生するため、その「釣り合い」を発生させないための機能も特徴とする。
The present invention uses the principle of a water wheel and a lever such as a seesaw as a classic method.
The present invention is characterized in that the two classical methods are used at the same time, and the rotational force generated by making the gravity applied to the mass point unbalanced is used.
In addition, regarding the portion that generates imbalance according to the present invention, since the “balance” of the natural law always occurs, the function to prevent the occurrence of the “balance” is also a feature.
 本発明によれば、回転を必要とする機器の動力源としての利用が可能となる。また、本発明に係る動力発生装置は、他の動力源を必要としないので、環境に配慮した動力源として活用することができる。 According to the present invention, it can be used as a power source for equipment that requires rotation. Moreover, since the power generation device according to the present invention does not require another power source, it can be used as a power source considering the environment.
偶数の質点の場合の回転力を生む機構の一般化モデルの説明図である。It is explanatory drawing of the generalized model of the mechanism which produces the rotational force in the case of an even-numbered mass point. 奇数の質点の場合の回転力を生む機構の一般化モデルの説明図である。It is explanatory drawing of the generalized model of the mechanism which produces the rotational force in the case of an odd-numbered mass point. 回転力を生む機構の一般化モデルの重力での釣り合いにおいて、質点が水平方向に位置している際の説明図である。It is explanatory drawing at the time of the mass point being located in the horizontal direction in the balance by gravity of the generalized model of the mechanism which produces a rotational force. 図3において、質点が鉛直方向に移動しようとする際の説明図である。In FIG. 3, it is explanatory drawing when a mass point is going to move to a perpendicular direction. 図3及び図4に示した回転力を生む機構の一般化モデルの力学的考察の説明図である。It is explanatory drawing of the dynamic consideration of the generalized model of the mechanism which produces the rotational force shown in FIG.3 and FIG.4. 安定板を利用した回転力を生む機構を備える動力発生装置の概要図である。It is a schematic diagram of a motive power generator provided with the mechanism which produces the rotational force using a stabilizer. 動力発生装置の伝達歯車の回転方向の説明図である。It is explanatory drawing of the rotation direction of the transmission gear of a motive power generator. 安定板の説明図である。It is explanatory drawing of a stabilizer. 図8において安定板が自然な釣り合いになった状態の説明図である。FIG. 9 is an explanatory diagram of a state in which the stabilizer is in a natural balance in FIG. 8. 安定板への力の掛かり方及び安定板の釣り合い問題の解決の考え方の説明図である。It is explanatory drawing of the way of thinking of how to apply the force to a stabilizer, and the balance problem of a stabilizer. 回転力を生む機構の一例を説明する正面図である。It is a front view explaining an example of the mechanism which produces a rotational force. 図11に示した回転力を生む機構の一部を省略した断面図である。It is sectional drawing which abbreviate | omitted a part of mechanism which produces the rotational force shown in FIG. 回転力付加機構を備えた動力発生装置の概略の説明図である。It is explanatory drawing of the outline of the motive power generator provided with the rotational force addition mechanism. 図13に示した回転力付加機構の一部を省略した正面図である。It is the front view which abbreviate | omitted a part of rotational force addition mechanism shown in FIG. 図14に示した回転力付加機構の一部を省略した断面図である。It is sectional drawing which abbreviate | omitted a part of rotational force addition mechanism shown in FIG. 回転力付加機構がない場合の減衰線図である。It is an attenuation diagram in case there is no torque addition mechanism. 回転力付加機構がある場合の減衰線図である。It is an attenuation diagram in case there is a rotational force addition mechanism. 別の回転力付与機構の一部を省略した正面図である。It is the front view which abbreviate | omitted a part of another rotational force provision mechanism. 連結運用の説明図である。It is explanatory drawing of connection operation.
 本発明について、回転力を生む機構30の一般化モデルを説明し、その後、回転力を生む機構30の一般化モデルを実現する具体的な動力発生装置10を説明する。
 図1は、偶数の質点の場合の回転力を生む機構30の一般化モデルの説明図である。図2は、奇数の質点の場合の回転力を生む機構の一般化モデルの説明図である。
Regarding the present invention, a generalized model of the mechanism 30 that generates the rotational force will be described, and then a specific power generation device 10 that realizes the generalized model of the mechanism 30 that generates the rotational force will be described.
FIG. 1 is an explanatory diagram of a generalized model of a mechanism 30 that generates a rotational force in the case of an even number of mass points. FIG. 2 is an explanatory diagram of a generalized model of a mechanism that generates a rotational force in the case of an odd number of mass points.
 図1及び図2に示すように、複数の質点mを有する一般化モデルは、鉛直方向Z(重力が作用する方向)に対して直角の方向(水平方向、図1及び図2の紙面の広がる方向に垂直となる方向)に伸びる回転体中心軸Oと、回転体中心軸Oを中心に回転する回転半径Rの回転体Dとを有する。 As shown in FIGS. 1 and 2, the generalized model having a plurality of mass points m has a direction perpendicular to the vertical direction Z (the direction in which gravity acts) (horizontal direction, the paper surface of FIGS. 1 and 2 spreads). A rotating body center axis O extending in a direction perpendicular to the direction) and a rotating body D having a rotation radius R that rotates about the rotating body center axis O.
 回転体Dは、基準となるベース(いわゆる絶対座標軸、図1及び図2では、台座B)から見て、回転体中心軸Oを中心に回転する。回転体Dにおいて、回転体中心軸Oから離れる方向に回転半径Rだけ離れた位置に複数の回転中心位置Pがある。複数の回転中心位置Pは、互いに回転体中心軸Oに対して等角度を置いて位置している。複数の回転中心位置Pは、回転体Dの回転とともに、回転体中心軸Oを中心に回転する。 Rotating body D rotates around a rotating body central axis O when viewed from a reference base (so-called absolute coordinate axis, pedestal B in FIGS. 1 and 2). In the rotator D, there are a plurality of rotation center positions P at positions separated from the rotator center axis O by the rotation radius R. The plurality of rotation center positions P are located at an equal angle with respect to the rotation body center axis O. The plurality of rotation center positions P rotate around the rotation body center axis O as the rotation body D rotates.
 図1に示すように、回転中心位置Pの数が2つの場合、2つの回転中心位置Pは回転体中心軸Oに対して互いに反対方向に位置している。すなわち、角度aは、360度の2分の1である180度となる。 As shown in FIG. 1, when the number of rotation center positions P is two, the two rotation center positions P are positioned in opposite directions with respect to the rotation body center axis O. That is, the angle a is 180 degrees which is a half of 360 degrees.
 図2に示すように、回転中心位置Pの数が3つの場合、3つの回転中心位置Pは回転体中心軸Oに対して120度開いた位置にある。すなわち、角度aは、360度の3分の1である120度となる。 As shown in FIG. 2, when the number of rotation center positions P is three, the three rotation center positions P are at a position opened 120 degrees with respect to the rotation body center axis O. That is, the angle a is 120 degrees, which is one third of 360 degrees.
 図1及び図2に示すように、質点mは、回転中心位置Pから距離rだけ離れた位置にあり、台座Bから見て、質点mは、常に、回転中心位置Pの水平方向側に位置する(図示の例では、右側に位置しているが左側に位置してもよい)。すなわち、回転力を生む機構30の一般化モデルは、質点mの位置を、回転中心位置Pを中心に重力の法則に従った鉛直方向Zに対して90度傾けている。これにより、質点mは、不均衡状態となり、重力により、鉛直方向Zに移動をしようとする。回転力を生む機構30の一般化モデルは、このときの移動しようとする力を動力源とする。また、回転力を生む機構30の一般化モデルは、後述するように、回転中心位置Pに対して水平方向に質点mを保持する水平保持機構として作用するものを含む。 As shown in FIGS. 1 and 2, the mass point m is located at a distance r from the rotation center position P, and when viewed from the base B, the mass point m is always positioned on the horizontal direction side of the rotation center position P. (In the example shown, it is located on the right side, but may be located on the left side). That is, in the generalized model of the mechanism 30 that generates the rotational force, the position of the mass point m is tilted by 90 degrees with respect to the vertical direction Z according to the law of gravity around the rotation center position P. Thereby, the mass point m is in an unbalanced state and tries to move in the vertical direction Z by gravity. The generalized model of the mechanism 30 that generates the rotational force uses the force to be moved at this time as a power source. Further, the generalized model of the mechanism 30 that generates the rotational force includes one that acts as a horizontal holding mechanism that holds the mass point m in the horizontal direction with respect to the rotation center position P, as will be described later.
 質点mは、回転体Dから見て、回転中心位置Pを中心に回転するように、回転可能に回転体Dに支持されている。また、質点mは、回転体Dの回転に伴って回転中心位置Pを中心に回転するよう回転体Dに支持されている。台座Bから見て、回転体Dが1回転すると、質点mが回転体Dに対して1回転するよう、質点mは回転体Dに支持されている。回転体Dに対する質点mの回転方向は、台座Bに対する回転体Dの回転方向とは反対方向である。 The mass point m is rotatably supported by the rotating body D so as to rotate around the rotation center position P as viewed from the rotating body D. The mass m is supported by the rotating body D so as to rotate around the rotation center position P as the rotating body D rotates. When viewed from the pedestal B, the mass m is supported by the rotary body D such that when the rotary body D rotates once, the mass point m rotates once relative to the rotary body D. The rotation direction of the mass m with respect to the rotating body D is opposite to the rotating direction of the rotating body D with respect to the base B.
 このため、台座Bから見ると、回転体Dが回転体中心軸Oの周りを回転すると、質点mは、常に、回転中心位置Pに対して同じ側に位置しながら、回転体中心軸Oの周りを回転するように見える。つまり、例えば、台座Bから見て、質点mは、回転中心位置Pの水平方向右側に位置している場合、回転体Dが台座Bに対して回転しても、質点mは、常に、回転中心位置Pの水平方向右側に位置する。 Therefore, when viewed from the pedestal B, when the rotating body D rotates around the rotating body central axis O, the mass point m is always located on the same side with respect to the rotating center position P, while the rotating body central axis O Seems to rotate around. That is, for example, when viewed from the pedestal B, when the mass point m is located on the right side in the horizontal direction of the rotation center position P, even if the rotating body D rotates with respect to the pedestal B, the mass point m always rotates. It is located to the right of the center position P in the horizontal direction.
 なお、図1に示すように、回転する質点mの数は少なくとも2つあればよく、偶数でも奇数でもよい。質点mの数が2つの場合、図1に示すように、回転体中心軸Oに対して左右対称に存在すればよい。 As shown in FIG. 1, the number of mass points m to be rotated may be at least two, and may be an even number or an odd number. When the number of mass points m is two, as shown in FIG.
 また、図2に示すように、質点mの数が3つであってもよく、さらに、質点mの数が多くなればなるほど、後述するように、回転体Dに作用する回転力は増す。 Further, as shown in FIG. 2, the number of mass points m may be three, and as the number of mass points m increases, the rotational force acting on the rotating body D increases as will be described later.
 図3は、回転力を生む機構の一般化モデルの重力での釣り合いにおいて、質点が水平方向に位置している際の説明図である。図4は、図3において、回転力を生む機構の一般化モデルの重力での釣り合いにおいて、質点が鉛直方向に移動しようとする際の説明図である。 FIG. 3 is an explanatory diagram when the mass point is positioned in the horizontal direction in the balance of gravity of the generalized model of the mechanism that generates the rotational force. FIG. 4 is an explanatory diagram when the mass point is going to move in the vertical direction in the balance of gravity in the generalized model of the mechanism that generates the rotational force in FIG.
 図3及び図4に示すように、質点mは、回転中心位置Pを中心に回転するので、各質点mにおいては、重力gに従って釣り合いがとれる位置に移動しようとする。すなわち、質点mは、図3に示す回転中心位置Pの水平方向右側の位置から、図4に示すように、鉛直方向Z下側に移動しようとする。このとき、質点mは回転中心位置Pを中心に回転するよう規制されているので、図4に示すように、質点mは、鉛直方向Zから見ると、回転体中心軸O側に寄る。 3 and 4, since the mass point m rotates around the rotation center position P, each mass point m tries to move to a position that can be balanced according to gravity g. That is, the mass point m tends to move downward in the vertical direction Z as shown in FIG. 4 from the position on the right side in the horizontal direction of the rotation center position P shown in FIG. At this time, since the mass point m is restricted to rotate about the rotation center position P, the mass point m is closer to the rotating body central axis O when viewed from the vertical direction Z as shown in FIG.
 しかし、本発明では、鉛直方向Zへの移動を阻止することで、各質点mが、不均衡状態で、重力gの影響を受けるようにする。 However, in the present invention, by preventing movement in the vertical direction Z, each mass point m is affected by gravity g in an unbalanced state.
 図5は、図3及び図4に示した回転力を生む機構の一般化モデルの力学的考察の説明図である。
 回転力(ローテーション、トルク(N・m))は、回転体中心軸Oから質点m1の方向の線分R2の長さ(m、メートル)と、線分R2に垂直な接線方向成分の力F1(N、ニュートン)との積で得られる。
FIG. 5 is an explanatory view of the dynamic consideration of the generalized model of the mechanism that generates the rotational force shown in FIGS. 3 and 4.
The rotational force (rotation, torque (N · m)) is the length (m, meter) of the line segment R2 in the direction from the rotating body central axis O to the mass point m1 and the force F1 of the tangential component perpendicular to the line segment R2. (N, Newton) and product.
 具体的な計算は以下のようになる。
 質点m1について、質点によるモーメント(トルク)M1を計算する。
 先ず、回転体中心軸Oからの接線方向成分の力F1を求める。
The specific calculation is as follows.
For the mass m1, a moment (torque) M1 due to the mass is calculated.
First, a tangential component force F1 from the rotating body central axis O is obtained.
 F1=m×g×cos(θ2)=m×g×(R/R
 ここで、Rは、水平方向Xにおける、回転体中心軸Oと質点m1との間の距離であり、換言するとY軸(回転体中心軸Oを通り鉛直方向Zの軸)と質点m1との間の距離である。
 Rは、回転体中心軸Oと質点m1との間の距離である。
 θ2は、回転体中心軸Oと質点m1とを結んだ直線と、質点m1を通りY軸と直交する直線(換言すると、質点m11を通る水平線)とのなす角度である。
F1 = m × g × cos (θ2) = m × g × (R 1 / R 2 )
Here, R 1 is the distance between the rotating body central axis O and the mass point m1 in the horizontal direction X, in other words, the Y axis (the axis in the vertical direction Z passing through the rotating body central axis O) and the mass point m1. Is the distance between.
R 2 is the distance between the rotary body center axis O and the material point m1.
θ2 is an angle formed by a straight line connecting the rotating body central axis O and the mass point m1 and a straight line passing through the mass point m1 and orthogonal to the Y axis (in other words, a horizontal line passing through the mass point m11).
 よって、モーメント(トルク)M1を求めると、
 M1=F1×R=m×g×(R/R)×R=m×g×R
 となる。
Therefore, when the moment (torque) M1 is obtained,
M1 = F1 × R 2 = m × g × (R 1 / R 2 ) × R 2 = m × g × R 1
It becomes.
 また、
 R=R×sinθ+r
 であることは明らかである。
 ここで、θは、回転体中心軸Oを通るY軸の上側に伸びる直線と回転中心位置Pとのなす角度である。
Also,
R 1 = R × sin θ + r
Obviously.
Here, θ is an angle formed by a straight line extending on the upper side of the Y axis passing through the rotating body center axis O and the rotation center position P.
 そうすると、
 M1=m×g×(R×sin(θ)+r)
 となる。
Then
M1 = m × g × (R × sin (θ) + r)
It becomes.
 同様に、質点m2のモーメントM2を求める。
 質点m2の位置は、回転体中心軸Oに対して質点m1と反対側に位置している(180度)ので、回転体中心軸Oを通り鉛直方向Zの上側に伸びる直線と回転中心位置Pとのなす角度を、θを用いて示すと、θ+π、すなわち、θ+180度である。
Similarly, the moment M2 of the mass point m2 is obtained.
Since the position of the mass point m2 is located on the opposite side of the mass point m1 with respect to the rotating body center axis O (180 degrees), a straight line extending through the rotating body center axis O and extending upward in the vertical direction Z and the rotation center position P Is represented by θ, θ + π, that is, θ + 180 degrees.
 よって、
 M2=m×g×(R×sin(θ+π)+r)=m×g×(-R×sinθ+r)
 となる。
Therefore,
M2 = m × g × (R × sin (θ + π) + r) = m × g × (−R × sin θ + r)
It becomes.
 2つの質点m1、m2のモーメント力を合成すると、
 M1+M2=m×g×(R×sinθ+r)+m×g×(-R×sinθ+r)=2mgr>0
 となる。
Combining the moment forces of the two mass points m1 and m2,
M1 + M2 = m × g × (R × sin θ + r) + m × g × (−R × sin θ + r) = 2 mgr> 0
It becomes.
 よって、回転力を表すモーメントは必ず正の値をとるので、θがどんな値をとっても、回転力は常に発生することになる。 Therefore, since the moment representing the rotational force always takes a positive value, the rotational force is always generated regardless of the value of θ.
 図6を参照して、回転力を生む機構30の一般化モデルを実現した一例である動力発生装置10の説明をする。動力発生装置10は、重力を回転する力に変換し、変換された力を動力源として利用するものであり、重力の釣り合いをとろうとする自然の法則に対し、釣り合いをとらせないようにすることで、不均衡を生じさせ、生じた不均衡で、回転のエネルギーを作り出す回転力を生む機構を含む。
 図6は、安定板を利用した回転力を生む機構を備える動力発生装置の概要図である。
With reference to FIG. 6, the power generator 10 which is an example which implement | achieved the generalized model of the mechanism 30 which produces a rotational force is demonstrated. The power generation device 10 converts gravity into a rotating force, uses the converted force as a power source, and prevents the natural law that tries to balance gravity from being balanced. And a mechanism for generating a rotational force that creates an imbalance, and the generated imbalance generates rotational energy.
FIG. 6 is a schematic diagram of a power generation device including a mechanism that generates a rotational force using a stabilizing plate.
 動力発生装置10は、回転体中心軸Oと、複数の伝達歯車16と、伝達歯車16の相対的回転不能に取り付けられた安定板18と、安定板18に相対的移動不能に取り付けられた重り(質点m)とを備える。
 回転体Dは、一例として、図6に示すように、回転体中心軸Oから四方に伸びるX字形状を有する。回転体Dは、回転体中心軸Oを中心に、台座Bに回転可能に支持されている。
The power generation device 10 includes a rotating body central axis O, a plurality of transmission gears 16, a stabilizing plate 18 attached to the transmission gear 16 so as not to be relatively rotatable, and a weight attached to the stabilizing plate 18 so as not to be relatively movable. (Mass point m).
As an example, the rotating body D has an X-shape extending in all directions from the rotating body central axis O as shown in FIG. The rotating body D is rotatably supported by the base B around the rotating body central axis O.
 回転体中心軸Oは、回転体Dとともに回転する。他方、回転体Dの回転中心にある中心歯車14は、台座Bに固定されているので、台座Bに対して回転しない。 Rotating body central axis O rotates with rotating body D. On the other hand, since the center gear 14 at the rotation center of the rotating body D is fixed to the base B, it does not rotate with respect to the base B.
 複数の伝達歯車16は、それぞれ、複数の回転中心軸20を介して、回転体Dに回転可能に支持されている。複数の回転中心軸20は、回転体Dに相対的移動不能に取り付けられている。
 複数の伝達歯車16は、中心歯車14に噛み合う伝達歯車16と、その伝達歯車16に直列に噛み合う複数の伝達歯車16とが、回転体中心軸Oから外側に向けて一列に並んでいる。図5では、4つの列が形成されている。
Each of the plurality of transmission gears 16 is rotatably supported by the rotating body D via a plurality of rotation center shafts 20. The plurality of rotation center shafts 20 are attached to the rotating body D so as not to move relative to each other.
In the plurality of transmission gears 16, a transmission gear 16 that meshes with the central gear 14 and a plurality of transmission gears 16 that mesh with the transmission gear 16 in series are arranged in a row from the rotating body central axis O to the outside. In FIG. 5, four rows are formed.
 よって、複数の伝達歯車16は、回転体Dと一緒に、回転体中心軸Oを中心に回転(公転)するとともに、各伝達歯車16の回転中心軸20を中心に回転(自転)することになる。 Therefore, the plurality of transmission gears 16 rotate (revolve) around the rotating body central axis O together with the rotating body D, and rotate (rotate) around the rotation center axis 20 of each transmission gear 16. Become.
 図7は、動力発生装置10の伝達歯車16の回転方向の説明図である。図8は、安定板の説明図である。図9は、図8において安定板が自然な釣り合いになった状態の説明図である。図10は、安定板への力の掛かり方及び安定板の釣り合い問題の解決の考え方の説明図である。なお、図7には、中心歯車14に噛み合う4つの伝達歯車16が示されているが、これら4つの伝達歯車16は、互いには、噛み合っていない。 FIG. 7 is an explanatory diagram of the rotation direction of the transmission gear 16 of the power generation device 10. FIG. 8 is an explanatory diagram of the stabilizer. FIG. 9 is an explanatory diagram of a state in which the stabilizer is in a natural balance in FIG. FIG. 10 is an explanatory diagram of how to apply force to the stabilizer and how to solve the balance problem of the stabilizer. FIG. 7 shows four transmission gears 16 that mesh with the central gear 14, but these four transmission gears 16 are not meshed with each other.
 中心歯車14が台座Bに対して固定であって、伝達歯車16は、その伝達歯車16の回転中心軸20を中心に自由に回転(自転)できるものとする。ここで、複数の伝達歯車16には、中心歯車14に近い側から、順に、中心歯車14を1番目の歯車として数えた番号を与える。
 3以上の奇数番目の伝達歯車16は、回転体Dが回転しても、常に、一定の方向を向く、すなわち、回転しないように見える動きをする。本発明は、この回転していないような動きを、姿勢制御へと利用することに特徴を有する。
The center gear 14 is fixed to the base B, and the transmission gear 16 can freely rotate (rotate) about the rotation center axis 20 of the transmission gear 16. Here, the number which counted the center gear 14 as the 1st gear in order is given to the some transmission gear 16 from the side close | similar to the center gear 14. FIG.
Even if the rotating body D rotates, the odd-numbered transmission gear 16 of 3 or more always moves in a certain direction, that is, moves so as not to rotate. The present invention is characterized in that this non-rotating movement is used for posture control.
 詳細に説明すると、複数の伝達歯車16は、中心歯車14と同じ歯車(すなわち、モジュール、及び、ピッチ円直径が互いに同じ)であるので、中心歯車14を1番目の歯車とすると、3以上の奇数番目の伝達歯車16は、常に、一定方向に向く。 More specifically, since the plurality of transmission gears 16 are the same gears as the central gear 14 (that is, the module and the pitch circle diameter are the same as each other), if the central gear 14 is the first gear, three or more The odd-numbered transmission gear 16 always faces in a certain direction.
 つまり、回転体Dを台座Bに対して時計方向CWに回転させると、中心歯車14は回転しないので、中心歯車14に噛み合っている伝達歯車16(偶数番目の伝達歯車16)は、中心歯車14を中心に台座Bに対して時計方向CW1に回転(公転)するとともに、回転中心軸20を中心に回転体Dに対して時計方向CW2に回転(自転)もする。 That is, when the rotating body D is rotated in the clockwise direction CW with respect to the base B, the central gear 14 does not rotate, so that the transmission gear 16 (even-numbered transmission gear 16) meshed with the central gear 14 is the central gear 14. Rotate (revolve) in the clockwise direction CW1 with respect to the pedestal B, and rotate (rotate) in the clockwise direction CW2 with respect to the rotating body D around the rotation center axis 20.
 他方、奇数番目の伝達歯車16は、その奇数番目の1つ内側の偶数番目の伝達歯車16の回転(時計方向CW2の回転)を受けて回転体Dに対して反時計方向CCWに回転するが、回転体Dは台座Bに対して時計方向CWに回転しているので、台座Bから見ると、奇数番目の伝達歯車16は、一定方向に向いたまま、平行移動することになる。
 すなわち、回転力を回転体Dに作用させることにより、回転体Dを台座Bに対して回転体中心軸Oを中心に回転させると、奇数番目の伝達歯車16は、台座Bに対して一定方向に向いたまま、回転体中心軸Oの周りを回る。また、回転力を奇数番目の伝達歯車16に作用させることにより、奇数番目の伝達歯車16を台座Bに対して一定方向に向かせたまま、回転体中心軸Oの周りを回転させると、回転体Dは、回転体中心軸Oの周りを回る。
On the other hand, the odd-numbered transmission gear 16 rotates in the counterclockwise direction CCW with respect to the rotating body D in response to the rotation of the even-numbered transmission gear 16 inside the odd-numbered one (rotation in the clockwise direction CW2). Since the rotating body D rotates in the clockwise direction CW with respect to the pedestal B, when viewed from the pedestal B, the odd-numbered transmission gears 16 are translated while being oriented in a certain direction.
That is, when the rotating body D is rotated about the rotating body central axis O with respect to the pedestal B by applying a rotational force to the rotating body D, the odd-numbered transmission gear 16 has a fixed direction with respect to the pedestal B. Around the center axis O of the rotating body. In addition, by applying a rotational force to the odd-numbered transmission gear 16, when the odd-numbered transmission gear 16 is rotated around the rotating body central axis O with the odd-numbered transmission gear 16 being directed in a certain direction with respect to the base B, the rotation is performed. The body D rotates around the rotating body central axis O.
 図6に示すように、一番外側にある奇数番目の伝達歯車16には、安定板18が取り付けられている。安定板18は、姿勢制御機能を有する、すなわち、重力の法則に従った水平方向に質点mを保持する水平保持機構と、回転力を生む機構30の役割とを有する。 As shown in FIG. 6, a stabilizing plate 18 is attached to the odd-numbered transmission gear 16 on the outermost side. The stabilizer 18 has a posture control function, that is, a horizontal holding mechanism that holds the mass point m in the horizontal direction in accordance with the law of gravity, and a role of a mechanism 30 that generates a rotational force.
 さらに、回転力を生むための重り(質点m)は、安定板18に取り付けられている。
 具体的には、安定板18は、一番外側の奇数番目の伝達歯車16の回転中心軸20に揺動可能に釣り下げられている。また、一番外側の奇数番目の伝達歯車16は他の伝達歯車16(偶数番目の伝達歯車16)と噛み合っている。このため、安定板18は、安定板18が吊り下げられた伝達歯車16の動きと一致する。
Further, a weight (mass point m) for generating a rotational force is attached to the stabilizing plate 18.
Specifically, the stabilizing plate 18 is suspended so as to be swingable to the rotation center shaft 20 of the outermost odd-numbered transmission gear 16. The outermost odd-numbered transmission gear 16 meshes with another transmission gear 16 (even-numbered transmission gear 16). For this reason, the stabilizing plate 18 coincides with the movement of the transmission gear 16 from which the stabilizing plate 18 is suspended.
 安定板18が釣り合ってしまう(均衡状態を維持する)と、回転体中心軸Oを中心とする回転力は、一番外側の伝達歯車16、ひいては、回転体Dに作用しない。つまり、安定板18に取り付けられた一番外側の奇数番目の伝達歯車16が回転体Dに対して回転しない。
 よって、この釣り合いを、不均衡状態のまま維持することが、重要な点となる。
When the stabilizing plate 18 is balanced (maintains an equilibrium state), the rotational force around the rotating body central axis O does not act on the outermost transmission gear 16 and thus the rotating body D. That is, the outermost odd-numbered transmission gear 16 attached to the stabilization plate 18 does not rotate with respect to the rotating body D.
Therefore, it is important to maintain this balance in an unbalanced state.
 不均衡状態のまま維持することを実現するために、安定板18を吊り下げる吊り下げ軸(図8及び図9では、伝達歯車16の回転中心軸20と同じ軸)と、吊り下げ軸以外の少なくとも1点に何かしらの作用を生じさせることで、安定板18を不均衡な状態に維持できれば、不均衡により生じた力が、回転軸(吊り下げ軸)へと伝わり、回転軸(吊り下げ軸)が釣り合いをとろうとして、回転(揺動)を始める。 In order to realize maintaining the unbalanced state, a suspension shaft for suspending the stabilizer 18 (the same shaft as the rotation center shaft 20 of the transmission gear 16 in FIGS. 8 and 9) and a suspension shaft other than the suspension shaft are provided. If the stabilizing plate 18 can be maintained in an unbalanced state by causing some action at least at one point, the force generated by the unbalance is transmitted to the rotation shaft (hanging shaft), and the rotation shaft (hanging shaft). ) Starts rotating (swinging) in an attempt to balance.
 つまり、図8に示すように、重り(質点m)の重心の位置が、吊り下げ軸(回転中心軸20)を通り鉛直方向Zに伸びるY軸から離れた位置になるように、重り(質点m)を安定板18に取り付けると、安定板18が釣り合いの位置になるように、安定板18は吊り下げ軸を中心に回転をする(図9の場合、右回転Rr)。この回転を「回転力を生む機構」を用い阻止することで、釣り合いの不均衡状態を作り上げる。不均衡状態には、必ず均衡状態へと移行しようとする力(回転力)が働く。この力を利用して、回転力を発生させる構造が、本発明の特徴となる。 That is, as shown in FIG. 8, the weight (mass point) is such that the position of the center of gravity of the weight (mass point m) is away from the Y axis extending in the vertical direction Z through the suspension axis (rotation center axis 20). When m) is attached to the stabilizer 18, the stabilizer 18 rotates around the suspension shaft so that the stabilizer 18 is in a balanced position (right rotation Rr in the case of FIG. 9). By preventing this rotation using a "mechanism that generates rotational force", a balanced imbalance is created. In the unbalanced state, a force (rotational force) that always tries to shift to the balanced state works. A structure that uses this force to generate a rotational force is a feature of the present invention.
 しかし、図10に示すように、安定板18に、直接、重り(質点m)を取り付けると、伝達歯車16から伝わる力(吊り下げ軸を中心とする左回転力FL)と、重り(質点m)から受ける力(吊り下げ軸を中心とする右回転力FR)が、相殺されて、回転力は生まれない。 However, as shown in FIG. 10, when a weight (mass point m) is directly attached to the stabilizer 18, a force transmitted from the transmission gear 16 (left rotational force FL around the suspension shaft) and a weight (mass point m). ) (Right rotational force FR about the suspension axis) is offset and no rotational force is generated.
 そこで、重り(質点m)が受ける力(右回転力FR)を、左回転力FLへと変換し、相殺されていた力関係を、回転する方向の左回転力FLへと変換することで、相殺問題を解決させる。 Therefore, by converting the force (right rotational force FR) received by the weight (mass point m) into the left rotational force FL and converting the canceled force relationship into the left rotational force FL in the rotating direction, Solve the offset problem.
 この、「左回転力>右回転力」である状態を作ることを、本発明では回転力を生む機構30と呼ぶことにする。このように、動力発生装置10は、重力を回転する力に変換し、変換された力を動力源として利用するものであり、重力の釣り合いをとろうとする自然の法則に対し、釣り合いをとらせないようにすることで、不均衡を生じさせ、不均衡で、回転のエネルギーを作り出す回転力を生む機構30を含む。 The creation of this state of “left rotational force> right rotational force” is referred to as a mechanism 30 that generates rotational force in the present invention. As described above, the power generation device 10 converts gravity into a rotating force, uses the converted force as a power source, and balances the natural law that tries to balance gravity. In the absence of such a mechanism, a mechanism 30 is created that produces a rotational force that creates an imbalance and is imbalanced to produce rotational energy.
 図11、図12を参照して、この回転力を生む機構30の一例を説明する。
 図11は、回転力を生む機構の一例を説明する正面図である。図12は、図11に示した回転力を生む機構の一部を省略した断面図である。図13は、回転力付加機構を備えた動力発生装置の概略の説明図である。図14は、図13に示した回転力付加機構の一部を省略した正面図である。図15は、図14に示した回転力付加機構の一部を省略した断面図である。
With reference to FIG. 11 and FIG. 12, an example of the mechanism 30 which produces this rotational force is demonstrated.
FIG. 11 is a front view illustrating an example of a mechanism that generates a rotational force. FIG. 12 is a cross-sectional view in which a part of the mechanism that generates the rotational force shown in FIG. 11 is omitted. FIG. 13 is a schematic explanatory diagram of a power generation device including a rotational force addition mechanism. FIG. 14 is a front view in which a part of the rotational force adding mechanism shown in FIG. 13 is omitted. FIG. 15 is a cross-sectional view in which a part of the rotational force adding mechanism shown in FIG. 14 is omitted.
 図11及び図12に示すように、回転力を生む機構30は、奇数番目の伝達歯車16と、安定板18と、案内板19と、サポート板21と、梃子棒naと、梃子棒naの一端na1に設けられた重り(質点)mと、を含む。 As shown in FIGS. 11 and 12, the mechanism 30 that generates the rotational force includes the odd-numbered transmission gear 16, the stabilizing plate 18, the guide plate 19, the support plate 21, the lever bar na, and the lever bar na. And a weight (mass point) m provided at one end na1.
 回転中心軸20は、回転体Dに相対的に移動不能に取り付けられているので、伝達歯車16は、回転中心軸20に対して回転する。 Since the rotation center shaft 20 is attached to the rotating body D so as not to move relatively, the transmission gear 16 rotates with respect to the rotation center shaft 20.
 安定板18は、中心を回転中心軸20と同じにし、伝達歯車16より大きい円盤形状を有し、例えば、複数のビス16aで伝達歯車16に相対的移動不能に取り付けられている。このため、安定板18は、伝達歯車16とともに、回転中心軸20に対して回転する。 The stabilization plate 18 has the same center as that of the rotation center shaft 20 and has a disk shape larger than that of the transmission gear 16, and is attached to the transmission gear 16 by a plurality of screws 16a so as not to move relative thereto. For this reason, the stabilizer 18 rotates with respect to the rotation center shaft 20 together with the transmission gear 16.
 案内板19は、円盤形状の底部19aと、底部19aの周囲から回転中心軸20の軸方向に円筒形状に伸びる側面部19bとを含む。案内板19は、回転中心軸20に相対的移動不能に取り付けられているので、伝達歯車16に対して回転中心軸20を中心に回転する。側面部19bは、回転中心軸20を中心軸とする円筒の内周面19cと、外周面19dとを有する。 The guide plate 19 includes a disk-shaped bottom portion 19a and a side surface portion 19b extending in a cylindrical shape in the axial direction of the rotation center shaft 20 from the periphery of the bottom portion 19a. Since the guide plate 19 is attached to the rotation center shaft 20 so as not to be relatively movable, the guide plate 19 rotates about the rotation center shaft 20 with respect to the transmission gear 16. The side surface portion 19b has a cylindrical inner peripheral surface 19c and an outer peripheral surface 19d with the rotation center axis 20 as a central axis.
 サポート板21は、板部材である。ベアリングB1、B2が内周面19cに接触する状態を維持し、ベアリングB3が外周面19dに接触する状態を維持するように、サポート板21の一方の表面側に3つのベアリングB1、B2、B3が取り付けられている。サポート板21は、ベアリングB1、B2が内周面19cに接触する状態を維持し、ベアリングB3が外周面19dに接触する状態を維持しつつ、回転中心軸20を中心に、回転移動する。換言すると、サポート板21は、案内板19の案内に沿って相対的に回転移動する。 The support plate 21 is a plate member. Three bearings B1, B2, B3 are provided on one surface side of the support plate 21 so that the bearings B1, B2 are kept in contact with the inner peripheral surface 19c and the bearing B3 is kept in contact with the outer peripheral surface 19d. Is attached. The support plate 21 rotates around the rotation center axis 20 while maintaining the state where the bearings B1 and B2 are in contact with the inner peripheral surface 19c and the state where the bearing B3 is in contact with the outer peripheral surface 19d. In other words, the support plate 21 relatively rotates along the guide of the guide plate 19.
 梃子棒naは、棒形状を有し、一端na1には重りmを有し、他端na2の側には、サポート板21を回転可能に支持する留めビスSW1と、安定板18を回転可能に支持する留めビスSW2とが設けられている。つまり、梃子棒naは、留めビスSW2を中心に揺動可能に安定板18に支持されているとともに、留めビスSW1を中心に回転可能にサポート板21を支持している。 The lever rod na has a rod shape, has a weight m at one end na1, and a retaining screw SW1 that rotatably supports the support plate 21 and a stabilizer 18 on the other end na2 side. A retaining screw SW2 to be supported is provided. That is, the lever rod na is supported by the stabilizing plate 18 so as to be swingable around the retaining screw SW2, and also supports the support plate 21 so as to be rotatable around the retaining screw SW1.
 梃子棒naの一端na1に重りmをぶら下げた場合、重りmの重力が鉛直方向Zの下向きに一端na1に作用するので、一端na1が力点、留めビスSW2が支点となり、作用点である留めビスSW1は上昇(鉛直方向Zの上向き)しようとする。
 しかし、サポート板21は、ベアリングB1、B2、B3によって案内板19の側面部19bを挟みこんでいるので、サポート板21は、回転中心軸20を中心に回転移動はできるが、留めビスSW2を中心に鉛直方向Zの上向きに移動することはできない。また、留めビスSW1は、梃子棒naの他端na2の側をサポート板21に固定している。このため、梃子棒naは、案内板19に対して固定されている状態と同じ状態となる。さらに、回転体Dが台座Bに対して回転体中心軸Oを中心に回転していない状態では、回転体Dと安定板18とは相対的回転移動しないので、案内板19と安定板18とは相対的回転移動しない。つまり、梃子棒naは、安定板18に固定されているのと同様ということもできる。
 よって、留めビスSW1に作用する力を逃がす役割を果たす部位は、留めビスSW2となり、留めビスSW2に作用する力は、鉛直方向Zの下向きである。
When the weight m is hung on one end na1 of the lever bar na, the gravity of the weight m acts on the one end na1 downward in the vertical direction Z. SW1 tries to rise (upward in the vertical direction Z).
However, since the support plate 21 sandwiches the side surface portion 19b of the guide plate 19 with the bearings B1, B2, and B3, the support plate 21 can be rotated about the rotation center axis 20, but the retaining screw SW2 is not attached. It cannot move upward in the vertical direction Z to the center. Further, the retaining screw SW1 fixes the other end na2 side of the lever bar na to the support plate 21. For this reason, the lever bar na is in the same state as the state where it is fixed to the guide plate 19. Further, in a state where the rotating body D does not rotate about the rotating body central axis O with respect to the base B, the rotating body D and the stabilizing plate 18 do not move relative to each other. Does not move relative to each other. That is, it can be said that the insulator rod na is the same as being fixed to the stabilizing plate 18.
Accordingly, the part that plays a role of releasing the force acting on the retaining screw SW1 is the retaining screw SW2, and the force acting on the retaining screw SW2 is downward in the vertical direction Z.
 図11では、留めビスSW2は、回転中心軸20の真下(鉛直方向Zの下側)の位置より、少し左側の安定板18に固定されているため、安定板18は、左回転のトルク(回転力)を持つ。しかし、この左回転のトルク(回転力)があったとしても、このトルク(回転力)は微々たるもので、十分な左回転のトルク(回転力)を得ることができない。 In FIG. 11, the retaining screw SW2 is fixed to the stabilization plate 18 slightly to the left of the position just below the rotation center shaft 20 (below the vertical direction Z). (Rotational force). However, even if this counterclockwise torque (rotational force) is present, this torque (rotational force) is insignificant, and a sufficient counterclockwise torque (rotational force) cannot be obtained.
 図6に示す回転体中心軸Oから複数の伝達歯車16を介して伝達されるトルク(回転力)は、図10に示すように、左回転力FLとなり、安定板18に直接かかる場合の左回転力FLと、重りmが回転中心軸20から右側に位置していることに起因する右回転力FRとの間の比は、1:1と考えてもよい。 The torque (rotational force) transmitted from the rotating body central axis O shown in FIG. 6 via the plurality of transmission gears 16 becomes the left rotational force FL as shown in FIG. The ratio between the rotational force FL and the right rotational force FR caused by the weight m being positioned on the right side from the rotation center axis 20 may be considered as 1: 1.
 図6に示す回転力を生む機構30では、回転体中心軸Oから、複数の伝達歯車16を介して、回転を促す回転力を伝達するが、その回転力は、歯車の噛合等の機械摩擦により、微々減衰する。この微々減衰する割合を示した減衰係数を、大まかに見積もって、0.9とすると、安定板18に作用する左回転力FLと、重りmが作用する右回転力FRとの間の比は、0.9:1と考えることができる。この状態では、右回転力FRが左回転力FLより大きく、回転力を生む機構は、回転力を生まない。 In the mechanism 30 that generates the rotational force shown in FIG. 6, the rotational force that promotes rotation is transmitted from the rotating body central axis O via the plurality of transmission gears 16. The rotational force is mechanical friction such as gear meshing. As a result, it attenuates slightly. Assuming that the damping coefficient indicating the slight attenuation rate is roughly 0.9, the ratio between the left rotational force FL acting on the stabilizer 18 and the right rotational force FR acting on the weight m is: 0.9: 1. In this state, the right rotational force FR is greater than the left rotational force FL, and the mechanism that generates the rotational force does not generate the rotational force.
 さらに、この状態に、図11で説明した微々たる左回転のトルク(回転力)を足したとしても、十分な回転力は得られない。 Furthermore, even if a slight counterclockwise torque (rotational force) described in FIG. 11 is added to this state, sufficient rotational force cannot be obtained.
 そこで、図13に示すように、中心歯車14と一番外側の奇数番目の伝達歯車16との間にある奇数番目の伝達歯車16に、回転力を強くするための補助機能を持つ機構を導入する。回転力を追加する補助機能なので、回転力付加機構40と呼ぶことにする。
 図14及び図15を参照して、回転力付加機構40の一例を説明する。
Therefore, as shown in FIG. 13, a mechanism having an auxiliary function for increasing the rotational force is introduced into the odd-numbered transmission gear 16 between the center gear 14 and the outermost odd-numbered transmission gear 16. To do. Since this is an auxiliary function for adding a rotational force, it will be referred to as a rotational force addition mechanism 40.
An example of the rotational force adding mechanism 40 will be described with reference to FIGS. 14 and 15.
 回転力付加機構40は、奇数番目の伝達歯車16に相対的移動不能に取り付けられている。回転力付加機構40は、安定板42と、サポート板44と、梃子棒nbと、梃子棒nbの一端nb1に設けられた重りmaと、支持部材46と、梃子棒ncと、梃子棒ncの一端nc1に設けられた重りmbとを有する。 The rotational force adding mechanism 40 is attached to the odd-numbered transmission gear 16 so as not to be relatively movable. The rotational force adding mechanism 40 includes a stabilizer 42, a support plate 44, a lever bar nb, a weight ma provided at one end nb1 of the lever bar nb, a support member 46, a lever bar nc, and a lever bar nc. And a weight mb provided at one end nc1.
 安定板42は、回転力付加機構40が取り付けられた奇数番目の伝達歯車16の半径より大きな半径の円盤部材である。安定板42は、伝達歯車16と同心円状に相対的移動不能に、ビスで取り付けられている。安定板42の一方の側面の円周近傍には、留めビスSW15と留めビスSW13とが設けられている。留めビスSW13は、留めビスSW15の鉛直方向Zの下側に設けられている。また、留めビスSW13と留めビスSW15とは、回転中心軸20の鉛直方向Zより左側に位置しており、留めビスSW15は、留めビスSW13より左側に位置している。 The stabilizing plate 42 is a disk member having a radius larger than the radius of the odd-numbered transmission gear 16 to which the rotational force adding mechanism 40 is attached. The stabilizing plate 42 is attached with screws so as not to be relatively movable concentrically with the transmission gear 16. A retaining screw SW15 and a retaining screw SW13 are provided in the vicinity of the circumference of one side surface of the stabilizing plate 42. The retaining screw SW13 is provided below the retaining screw SW15 in the vertical direction Z. The retaining screw SW13 and the retaining screw SW15 are located on the left side of the vertical direction Z of the rotation center shaft 20, and the retaining screw SW15 is located on the left side of the retaining screw SW13.
 サポート板44は、板状部材で、回転中心軸20を中心に回転可能に回転中心軸20に取り付けられている。サポート板44は、安定板42とは反対側の側面に留めビスSW11と留めビスSW14とが設けられている。サポート板44の鉛直方向Zの下側の側面部は、留めビスSW15に当接している。このため、サポート板44は回転中心軸20の左側に位置し、また、サポート板44が左回転しないように、留めビスSW15はサポート板44を支持している。
 留めビスSW11と留めビスSW14とは、おおむね、回転中心軸20と留めビスSW15との間における、回転中心軸20の左側に位置している。
The support plate 44 is a plate-like member and is attached to the rotation center shaft 20 so as to be rotatable about the rotation center shaft 20. The support plate 44 is provided with a retaining screw SW11 and a retaining screw SW14 on the side surface opposite to the stabilizing plate 42. The lower side surface portion of the support plate 44 in the vertical direction Z is in contact with the retaining screw SW15. For this reason, the support plate 44 is located on the left side of the rotation center shaft 20, and the retaining screws SW 15 support the support plate 44 so that the support plate 44 does not rotate counterclockwise.
The retaining screw SW11 and the retaining screw SW14 are generally located on the left side of the rotation center shaft 20 between the rotation center shaft 20 and the retaining screw SW15.
 梃子棒ncの一端nc1に重りmbが設けられ、他端nc2は、回転中心軸20に回転可能に支持されている。また、梃子棒ncの一端nc1と他端nc2との間の鉛直方向Zの下側には、留めビスSW14が当接している。つまり、留めビスSW14は、梃子棒ncの下側で梃子棒ncを支持している。 A weight mb is provided at one end nc1 of the insulator rod nc, and the other end nc2 is rotatably supported by the rotation center shaft 20. Further, a retaining screw SW14 is in contact with the lower side of the vertical direction Z between the one end nc1 and the other end nc2 of the lever rod nc. That is, the retaining screw SW14 supports the lever bar nc below the lever bar nc.
 梃子棒nbの一端nb1に重りmaが設けられ、他端nb2には、留めビスSW11により回転可能にサポート板44に支持されている。また、一端nb1と他端nb2との間における他端nb2側には、留めビスSW11が設けられている。 A weight ma is provided at one end nb1 of the insulator rod nb, and the other end nb2 is supported by a support plate 44 so as to be rotatable by a retaining screw SW11. A retaining screw SW11 is provided on the other end nb2 side between the one end nb1 and the other end nb2.
 支持部材46は、屈曲部を有する棒状部材であり、支持部材46の両端は、それぞれ、留めビスSW12及び留めビスSW13に、回転可能に取り付けられている。これにより、支持部材46は、梃子棒nbを鉛直方向Zの下側から支えることになり、また、梃子棒nbからの力を留めビスSW13に伝達することができる。 The support member 46 is a rod-shaped member having a bent portion, and both ends of the support member 46 are rotatably attached to the retaining screw SW12 and the retaining screw SW13, respectively. As a result, the support member 46 supports the lever bar nb from below the vertical direction Z, and can hold the force from the lever bar nb and transmit it to the screw SW13.
 このように、回転力付加機構40は、左右の両端に重りma及び重りmbを乗せることができる構造を備える。これにより、重りmaにより一端nb1に鉛直方向Zの下向きの重力Faが作用し、また、重りmbにより一端nc1に鉛直方向Zの下向きの重力Fbが作用する。 As described above, the rotational force adding mechanism 40 has a structure in which the weight ma and the weight mb can be placed on the left and right ends. Accordingly, the weight ma acts on the one end nb1 with the downward gravity Fa in the vertical direction Z, and the weight mb acts on the one end nc1 with the downward gravity Fb in the vertical direction Z.
 重りmaに作用する鉛直方向Zの重力Faは一端nb1に作用するので、一端nb1が力点、留めビスSW11が支点、留めビスSW12が作用点として機能する。このため、重力Faは、支持部材46を介して、留めビスSW13に鉛直方向Zの下向きの力Fdとして作用する。 Since gravity Fa in the vertical direction Z acting on the weight ma acts on one end nb1, one end nb1 functions as a power point, the retaining screw SW11 functions as a fulcrum, and the retaining screw SW12 functions as an operating point. For this reason, the gravity Fa acts on the retaining screw SW 13 as a downward force Fd in the vertical direction Z via the support member 46.
 重りmbに作用する鉛直方向Zの重力Fbは一端nc1に作用するので、一端nc1が力点、回転中心軸20が支点、留めビスSW14が作用点として機能する。このため、重力Fbは、サポート板44を介して、留めビスSW15に鉛直方向Zの下向きの力Fcとして作用する。
 この最終的にかかる力Fc及び力Fdの位置を、「回転を促す」方向FLになるように、配置する。
Since the gravity Fb in the vertical direction Z acting on the weight mb acts on one end nc1, one end nc1 functions as a power point, the rotation center shaft 20 serves as a fulcrum, and the retaining screw SW14 functions as an action point. For this reason, the gravity Fb acts on the retaining screw SW15 as a downward force Fc in the vertical direction Z via the support plate 44.
The positions of the force Fc and the force Fd that are finally applied are arranged so as to be in the direction FL that promotes rotation.
 これらの力関係を数学的に説明する。図14に示すように、回転中心軸20を通る水平と垂直の軸で仕切ると、回転中心軸20の右上の領域である第1象限I、回転中心軸20の左上の領域である第2象限II、回転中心軸20の左下の領域である第3象限III、回転中心軸20の右下の領域である第4象限IVを得る。そして、第3象限IIIの部分に、支持点を持ってくることで、回転する力FLを生み出すことができる。
 そこで、この回転力付加機構40を用いて、減衰する回転力を補う。
Let us explain these force relationships mathematically. As shown in FIG. 14, when the horizontal and vertical axes passing through the rotation center axis 20 are partitioned, a first quadrant I that is an upper right area of the rotation center axis 20 and a second quadrant that is an upper left area of the rotation center axis 20. II, the third quadrant III, which is the lower left area of the rotation center axis 20, and the fourth quadrant IV, which is the lower right area of the rotation center axis 20, are obtained. A rotating force FL can be generated by bringing a support point to the third quadrant III.
Therefore, the rotational force adding mechanism 40 is used to compensate for the rotational force that attenuates.
 この伝達歯車16に作用する力F(n)(nは、中心歯車14からの伝達歯車16の数)を、数列的表現をすると、回転力付加機構40を用いない場合は、
(n+1)=(F(n)×0.9)=((F(n-1)×0.9)×0.9)
 となる。
 ここで、初項(n=1の場合)の減衰の比をμとすると、
(n)=F(1)×μ(n-1)
の等比数列として考えることができ、
(n)<(1)
となる減衰線が描ける(図16参照)。
When the force F (n) acting on the transmission gear 16 (n is the number of transmission gears 16 from the central gear 14) is expressed in a sequence, when the rotational force adding mechanism 40 is not used,
F (n + 1) = (F (n) * 0.9) = ((F (n-1) * 0.9) * 0.9)
It becomes.
Here, when the attenuation ratio of the first term (when n = 1) is μ,
F (n) = F (1) × μ (n−1)
Can be thought of as a geometric sequence of
F (n) < F (1)
An attenuation line can be drawn (see FIG. 16).
 ここで、回転力付加機構40を用いると、
(n+1)=(F(n)×μ)=((F(n-1)×μ)×μ)+FL
と表現でき、μの大きさにもよるが、歯車の減衰は最大0.9程度と考えると、
(n)=F(1)×μ(n-1)+FL
となり、
(n)>F(1)
となるよう各パラメータを決める。
(n)>F(1)となれば、必ず回転を促す力FLは、相殺されずに残ることとなる(図17参照)。
Here, when the rotational force addition mechanism 40 is used,
F (n + 1) = (F (n) × μ) = ((F (n−1) × μ) × μ) + FL
Although it depends on the size of μ, if the gear attenuation is considered to be about 0.9,
F (n) = F (1) x μ (n-1) + FL
And
F (n) > F (1)
Each parameter is determined so that
If F (n) > F (1) , the force FL that urges the rotation always remains without being canceled (see FIG. 17).
 図17に示すように、この階段状線の最終項における力は、安定板に作用する回転を促す力となり、安定板にかかる回転を促す力FLと重りによる回転を阻止する力FRとの比が、安定板にかかる回転を促す力FL>重りによる回転を阻止する力FRとなることで、回転を維持するだけの力を生み出すことができる。 As shown in FIG. 17, the force in the final term of the step-like line is a force that promotes the rotation acting on the stabilizer, and the ratio between the force FL that promotes the revolution on the stabilizer and the force FR that prevents the rotation due to the weight. However, since the force FL that promotes the rotation of the stabilizer plate is greater than the force FR that prevents the rotation due to the weight, a force sufficient to maintain the rotation can be generated.
 このように、重りma及び重りmbのそれぞれの大きさを調整する必要はあるが、この回転力付加機構40を用いることで、回転体Dの回転を阻止する力をなくすことが可能となる。そうして、自ら回転を始めた、回転体Dは、各質点の慣性力を利用して、回転を続けることが可能となる。 Thus, although it is necessary to adjust the respective sizes of the weight ma and the weight mb, by using this rotational force addition mechanism 40, it is possible to eliminate the force that prevents the rotation of the rotating body D. Thus, the rotating body D that has started rotating itself can continue to rotate using the inertial force of each mass point.
 本発明による回転力は、一定の回転力を持った、回転を主動力とする機器の動力源となりうる。 Rotational force according to the present invention can be a power source of equipment having a constant rotational force and mainly rotating.
 「一般化モデル」上の力関係と比べた場合、詳細な位置が少しずれるが、実装置上では近似するため、回転する力が、常に、発生する。 When compared with the force relationship on the “generalized model”, the detailed position is slightly shifted, but since it is approximated on an actual device, a rotating force is always generated.
 図18は、別の回転力付与機構40aの一部を省略した正面図である。
 図18に示すように、別の回転力付与機構40aは、回転力付与機構40の重りma、mbを省略するとともに、棒状のリンク部材ndと棒状のリンク部材neとスライド案内棒nfと重りWとを備える。
FIG. 18 is a front view in which a part of another rotational force applying mechanism 40a is omitted.
As shown in FIG. 18, another rotational force applying mechanism 40 a omits the weights ma and mb of the rotational force applying mechanism 40 and also has a bar-shaped link member nd, a bar-shaped link member ne, a slide guide bar nf, and a weight W. With.
 リンク部材ndの一端は梃子棒nbの一端nb1に揺動可能に取り付けられている。このため、棒状のリンク部材ndは、鉛直方向Zに伸びている。
 リンク部材neの一端は梃子棒ncの一端nc1に揺動可能に取り付けられている。このため、棒状のリンク部材neは、鉛直方向Zに伸びている。
One end of the link member nd is swingably attached to one end nb1 of the lever bar nb. For this reason, the rod-shaped link member nd extends in the vertical direction Z.
One end of the link member ne is swingably attached to one end nc1 of the lever bar nc. For this reason, the rod-shaped link member ne extends in the vertical direction Z.
 スライド案内棒nfは、略水平方向に伸びるように、両端を、それぞれ、リンク部材nd及びリンク部材neの一端に揺動可能に取り付けられている。
 重りWは、スライド案内棒nfの伸びる方向(略水平方向)に移動可能に取り付けられ、留めネジ等の係止手段で、スライド案内棒nfにおいて任意の位置に相対的移動不能に取り付けられる。
Both ends of the slide guide rod nf are swingably attached to one end of the link member nd and the link member ne so as to extend in a substantially horizontal direction.
The weight W is attached so as to be movable in the extending direction (substantially horizontal direction) of the slide guide bar nf, and is attached to an arbitrary position on the slide guide bar nf so as not to be relatively movable by a locking means such as a retaining screw.
 鉛直方向Zの下向きの重力Fw1及び重力Fw2は、重りWの位置によって、変わる。そこで、任意の位置に任意の重りWを取り付けることにより、回転力付与機構40aの重力Fw1及び重力Fw2を、それぞれ、回転力付与機構40の重力Fa及び重力Fbと同じにすることができる。 The downward gravity Fw1 and gravity Fw2 in the vertical direction Z vary depending on the position of the weight W. Therefore, by attaching an arbitrary weight W at an arbitrary position, the gravity Fw1 and the gravity Fw2 of the rotational force applying mechanism 40a can be made the same as the gravity Fa and the gravity Fb of the rotational force applying mechanism 40, respectively.
 図19は、連結運用の説明図である。
 運用の際には、1つの回転体Dの前後に16の安定板18を取り付けることが好ましい。この場合、1つの回転体Dの各面に8個程度の安定板18を取り付けることになり、運用上理想的になる。また、回転体Dを並列に接続することで、回転力は、足し算で大きくなっていく。
FIG. 19 is an explanatory diagram of the linked operation.
In operation, it is preferable to attach 16 stabilizers 18 before and after one rotating body D. In this case, about eight stabilizers 18 are attached to each surface of one rotating body D, which is ideal for operation. Further, by connecting the rotating bodies D in parallel, the rotational force increases by addition.
 そこで、実運用の際には、この複数の安定板18と複数の回転体Dとを利用することで、大きな動力源とすることが可能である。 Therefore, in actual operation, a large power source can be obtained by using the plurality of stabilizing plates 18 and the plurality of rotating bodies D.
 回転力を発電用モータへと接続すると、重力による発電が可能となる。数式からも安定的な、動力源としての活用が可能なため、応用範囲は広い。 ∙ When the rotational force is connected to the motor for power generation, power can be generated by gravity. The application range is wide because it can be used as a power source that is stable from the mathematical formula.
D 回転体
O 回転体中心軸
P 回転中心位置
R 回転半径
10 動力発生装置
14 中心歯車
16 伝達歯車
18 安定板
19 案内板
20 回転中心軸
21 サポート板
30 回転力を生む機構
40、40a 回転力付加機構
42 安定板
44 サポート板
46 支持部材
D Rotating body O Rotating body central axis P Rotating center position R Rotating radius 10 Power generator 14 Central gear 16 Transmission gear 18 Stabilizing plate 19 Guide plate 20 Rotating center shaft 21 Support plate 30 Mechanism 40, 40a for generating rotational force Addition of rotational force Mechanism 42 Stabilizing plate 44 Support plate 46 Support member

Claims (3)

  1.  重力を回転する力に変換し、変換された力を動力源として利用する動力発生装置であって、
     重力の釣り合いをとろうとする自然の法則に対し、前記釣り合いをとらせないようにすることにより不均衡を生じさせ、前記不均衡で、回転のエネルギーを作り出す回転力を生む機構を含む、動力発生装置。
    A power generation device that converts gravity into rotating force and uses the converted force as a power source,
    Power generation including a mechanism that generates a rotational force that creates an energy of rotation in the imbalance by causing an imbalance by preventing the balance from occurring in a natural law that tries to balance gravity apparatus.
  2.  重力の法則に従った鉛直方向に対して質点の位置を、90度傾けたことによる不均衡を動力源としている、請求項1に記載の動力発生装置。 The power generation device according to claim 1, wherein the power source is an imbalance caused by tilting the position of the mass point by 90 degrees with respect to the vertical direction according to the law of gravity.
  3.  さらに、重力の法則に従った水平方向に前記質点を保持する水平保持機構と、
     前記回転力に追加の回転力を付加する回転力付加機構とを含む、請求項2に記載の動力発生装置。
    Furthermore, a horizontal holding mechanism that holds the mass point in the horizontal direction according to the law of gravity;
    The power generation device according to claim 2, further comprising a rotational force addition mechanism that adds an additional rotational force to the rotational force.
PCT/JP2018/002996 2017-02-01 2018-01-30 Power generation device WO2018143207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016824 2017-02-01
JP2017016824A JP2020056311A (en) 2017-02-01 2017-02-01 Power generation device

Publications (1)

Publication Number Publication Date
WO2018143207A1 true WO2018143207A1 (en) 2018-08-09

Family

ID=63040672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002996 WO2018143207A1 (en) 2017-02-01 2018-01-30 Power generation device

Country Status (2)

Country Link
JP (1) JP2020056311A (en)
WO (1) WO2018143207A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047177B1 (en) 2021-09-14 2022-04-04 合同会社 からくり研究所 Gravity-based rotating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440948A (en) * 1977-09-06 1979-03-31 Fumio Nakayama Method of obtaining power by descending pressure of heavy weight attached to driving wheel
JP2014190467A (en) * 2013-03-27 2014-10-06 Iwama Toshiko Rotation acceleration device
JP2015036521A (en) * 2013-08-12 2015-02-23 株式会社シンプル東京 Revolution retainer
JP2016160970A (en) * 2015-02-27 2016-09-05 導啓 金濱 Rotation power amplification device, rotation type power generator and dynamo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440948A (en) * 1977-09-06 1979-03-31 Fumio Nakayama Method of obtaining power by descending pressure of heavy weight attached to driving wheel
JP2014190467A (en) * 2013-03-27 2014-10-06 Iwama Toshiko Rotation acceleration device
JP2015036521A (en) * 2013-08-12 2015-02-23 株式会社シンプル東京 Revolution retainer
JP2016160970A (en) * 2015-02-27 2016-09-05 導啓 金濱 Rotation power amplification device, rotation type power generator and dynamo

Also Published As

Publication number Publication date
JP2020056311A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP4372157B2 (en) Gear transmission provided with planetary gear unit
JP5254248B2 (en) Vibration control device for structures
WO2012074096A1 (en) Eccentric rocking type reduction gear
WO2018143207A1 (en) Power generation device
EA018251B1 (en) Gear device and method of providing rotation about at least one output axis
KR101552299B1 (en) Power train test system
JP2007518938A (en) Gear transmission unit with planet carrier
JP2927552B2 (en) Mounting tower for load tower that can be tilted
EP3027902A1 (en) Wind turbine
JP6746219B2 (en) Rotary inertia mass damper
JP2012030765A (en) Variable gravity device
CN102221069A (en) Reducer with less tooth difference
US2831353A (en) Force producing apparatus
US1186856A (en) Gyroscopic apparatus.
US2379255A (en) Vibration damper
WO2008097118A2 (en) The multiple gyroscope power-take-off and a submerged waterproof wave energy converter
JP7284168B2 (en) helicopter kit
Jiao et al. Study on the coupled bending-torsional vibration of unbalanced rotor system with external excitations
JPH05330795A (en) Elevator device
JP6418553B2 (en) Centrifugal processing equipment
US11808333B1 (en) Heterodyne transmission
RU2780246C2 (en) Vibration damping device for helicopter
PT92392A (en) ACTUATOR OF ATTITUDE CONTROL, IN PARTICULAR FOR SPACESHIPS
TW202200896A (en) Driving device whose main body rotates through the torque generated by the counterweight units due to gravity, and the design that the pivot units can swing relative to the fixed parts
JP2020049616A (en) Robot driving mechanism and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18748675

Country of ref document: EP

Kind code of ref document: A1