WO2018142991A1 - Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device - Google Patents

Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device Download PDF

Info

Publication number
WO2018142991A1
WO2018142991A1 PCT/JP2018/001820 JP2018001820W WO2018142991A1 WO 2018142991 A1 WO2018142991 A1 WO 2018142991A1 JP 2018001820 W JP2018001820 W JP 2018001820W WO 2018142991 A1 WO2018142991 A1 WO 2018142991A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
film
resin film
obliquely stretched
producing
Prior art date
Application number
PCT/JP2018/001820
Other languages
French (fr)
Japanese (ja)
Inventor
充 五十嵐
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018566066A priority Critical patent/JP7063275B2/en
Publication of WO2018142991A1 publication Critical patent/WO2018142991A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for producing an obliquely stretched film, a method for producing a polarizing plate, and a method for producing a liquid crystal display device.
  • an optical member such as a retardation film is used to improve performance.
  • the retardation film is used for antireflection of a mobile device, an organic EL television or the like, or for optical compensation of a liquid crystal display device
  • its slow axis is neither parallel nor perpendicular to the transmission axis of the polarizer. It is required to be at an angle.
  • the transmission axis of the polarizer is usually parallel to the long side direction or the short side direction of the rectangular display surface of the apparatus. Therefore, there is a demand for a rectangular retardation film having a slow axis in an oblique direction with respect to its side.
  • a retardation film has been produced by longitudinally stretching or transversely stretching a long film before stretching.
  • the longitudinal stretching represents stretching in the longitudinal direction of the long film
  • the lateral stretching represents stretching in the width direction of the long film.
  • the film is cut out so that the sides are directed in an oblique direction from the width direction of the long film. Is required.
  • the film is cut so that the sides are oriented diagonally from the width direction of the long film, the amount of film to be discarded becomes large, and it becomes difficult to manufacture roll-to-roll. Lower. Therefore, in order to improve production efficiency, it has been proposed to obliquely stretch a long film before stretching (see, for example, Patent Document 1).
  • thermoplastic resin film In order to efficiently produce an obliquely stretched film, it is preferable to continuously obliquely stretch the continuously conveyed thermoplastic resin film.
  • continuously convey the film for example, joining the leading edge of the subsequent film fed from the second film roll to the trailing edge of the preceding film fed from the first film roll.
  • the film is obliquely stretched. In doing so, the joint portion breaks, and as a result, the obliquely stretched film may not be continuously manufactured.
  • thermoplastic resin film that is transported in advance and is transported downstream.
  • a joining step for joining a thermoplastic resin film via a joining portion, a preheating step for preheating while continuously conveying the thermoplastic resin film joined via the joining portion, and the preheated thermoplastic resin film An obliquely stretching step of obliquely stretching while continuously transporting the film, and a method for producing an obliquely stretched film, wherein the thermoplastic resin film transported in advance and the thermoplastic resin transported downstream The film is the same thermoplastic resin film, the preheating temperature of the joint in the preheating step is T (° C.), and the preheating time of the joint in the preheating step is t (seconds).
  • thermoplastic resin in the thermoplastic resin film was Tg (° C.)
  • Tg glass transition temperature of the thermoplastic resin in the thermoplastic resin film
  • the above formulas (1) and (2) If it satisfies, it can suppress that the junction part of a thermoplastic resin film fractures
  • the preheating temperature T (° C.) of the joint portion was measured by measuring the temperature of a space having a distance of 100 mm in the film normal direction from the joint portion of the thermoplastic resin film using a thermocouple in the preheating step. Adopted as the preheating temperature T (° C.) of the joint in the preheating process. Further, the glass transition temperature Tg of the thermoplastic resin was measured by the measuring method described in JIS K7121. Furthermore, in the present invention, the “same thermoplastic resin film” includes, in addition to the case where the thermoplastic resin films are completely the same in a strict sense, within the range in which the effects of the present invention can be obtained. This includes cases where the composition and thickness are inevitably different due to errors and the like.
  • thermoplastic resin film transported in advance and the thermoplastic resin film transported in the subsequent manner it is preferable to join the thermoplastic resin film transported in advance and the thermoplastic resin film transported in the subsequent manner by thermal fusion.
  • thermoplastic resin film transported in advance and the thermoplastic resin film transported downstream are joined by thermal fusion, the above formulas (1) and (2) are satisfied. This is because the effect of suppressing breakage is excellent.
  • thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are that average thickness is 50 micrometers or more and 300 micrometers or less. preferable.
  • the thermoplastic resin film that is transported in advance and the thermoplastic resin film that is transported in a subsequent manner have an average thickness of 50 ⁇ m or more and 300 ⁇ m or less, so that the joining portion of the thermoplastic resin film can be formed in the oblique stretching step. It can suppress more reliably that it fractures.
  • the average thickness of the thermoplastic resin film transported in advance and the thermoplastic resin film transported downstream is determined by snap gauges at a plurality of points at intervals of 5 cm in the width direction of the thermoplastic resin film. It calculates
  • the glass transition temperature Tg of the thermoplastic resin in the thermoplastic resin film is 100 ° C. or higher and 180 ° C. or lower.
  • the manufacturing method of the polarizing plate of this invention is the diagonally stretched film manufactured with the manufacturing method of the diagonally stretched film mentioned above, and polarized light.
  • a polarizing plate is produced by laminating a child.
  • the manufacturing method of the liquid crystal display device of this invention is a liquid crystal display provided with the polarizing plate manufactured with the manufacturing method of the polarizing plate mentioned above. A device is manufactured. Thus, if the manufacturing method of the polarizing plate mentioned above is used, a polarizing plate can be manufactured efficiently and by extension, a liquid crystal display device can be manufactured efficiently.
  • the manufacturing method of the diagonally stretched film of this invention can be used when manufacturing a diagonally stretched film.
  • the manufacturing method of the polarizing plate of this invention can be used when manufacturing a polarizing plate provided with the diagonally stretched film manufactured by the manufacturing method of the diagonally stretched film of this invention.
  • the manufacturing method of the liquid crystal display device of this invention can be used when manufacturing a liquid crystal display device provided with the polarizing plate manufactured by the manufacturing method of the polarizing plate of this invention.
  • the method for producing an obliquely stretched film of the present invention is a method for producing an obliquely stretched film.
  • the manufacturing method of the diagonally stretched film of this invention is a process (joining process) which joins the thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed behind, via a junction part. ), A step of preheating (preheating step) under predetermined conditions while continuously conveying the thermoplastic resin film bonded through the bonding portion, and obliquely stretching while continuously conveying the preheated thermoplastic resin film
  • a process (oblique stretching process) and optionally further includes other processes.
  • thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are joined via a junction part, The said junction part
  • thermoplastic resin film joined through the film is preheated under predetermined conditions while being continuously conveyed, and obliquely stretched while continuously conveying the preheated thermoplastic resin film
  • the thermoplastic resin is It is possible to continuously manufacture obliquely stretched films while suppressing breakage of the joint portion of the film.
  • thermoplastic resin film transported in advance and the thermoplastic resin film transported in the subsequent way through the joint portion Enables continuous production of obliquely stretched films.
  • thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are the same thermoplastic resin film.
  • the bonding method is not particularly limited, and is heat fusion (sometimes referred to as “thermal welding”), tape bonding, ultrasonic fusion (sometimes referred to as “ultrasonic welding”), laser fusion (“laser”). Sometimes referred to as “welding”).
  • thermal bonding and tape bonding are preferred, and thermal fusion is more preferable in that the effect of suppressing breakage of the bonded portion of the thermoplastic resin film when the bonded portion is preheated under predetermined conditions is particularly excellent. preferable.
  • thermoplastic resin film Although there is no restriction
  • the average thickness of the thermoplastic resin film is within the above range, the joint portion of the thermoplastic resin film can be more reliably suppressed from breaking in the oblique stretching step.
  • thermoplastic resin examples include, for example, alicyclic structure-containing polymer resins such as norbornene resins; polyolefin resins such as polyethylene resins and polypropylene resins; cellulose resins such as diacetyl cellulose resins and triacetyl cellulose resins; Polyimide resin, polyamideimide resin, polyamide resin, polyetherimide resin, polyetheretherketone resin, polyetherketone resin, polyketone sulfide resin, polyethersulfone resin, polysulfone resin, polyphenylene sulfide resin, polyphenylene oxide resin, polyethylene terephthalate resin, Polybutylene terephthalate resin, polyethylene naphthalate resin, polyacetal resin, polycarbonate resin, polyarylate resin, (meth) acrylic resin Other resins such as polyvinyl alcohol resin, polypropylene resin, cellulose resin, epoxy resin, phenol resin; (meth) acrylic acid ester-viny
  • alicyclic structure-containing polymer resins such as norbornene resins are preferable.
  • the details of the alicyclic structure and the norbornene-based resin are as described in Patent Document 1.
  • the weight average molecular weight (Mw) of the thermoplastic resin is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably 80,000 or less, and 50,000 or less. Is particularly preferred.
  • the weight average molecular weight (Mw) of the thermoplastic resin is within the above range, the mechanical strength and molding processability of the obliquely stretched film can be highly balanced.
  • the weight average molecular weight (Mw) of the thermoplastic resin is a weight average molecular weight in terms of polyisoprene measured by gel permeation chromatography using cyclohexane as a solvent.
  • toluene may be used as a solvent when the sample does not dissolve in cyclohexane.
  • the weight average molecular weight in terms of polystyrene is used.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the thermoplastic resin is not particularly limited, but is preferably 1.2 or more, more preferably 1.5 or more, and more preferably 1.8 or more. Particularly preferred is 3.5 or less, more preferred is 3.0 or less, and particularly preferred is 2.7 or less.
  • the amount of low molecular components becomes small, so that relaxation during high temperature exposure can be suppressed and the stability of the obliquely stretched film can be improved.
  • the glass transition temperature Tg of the thermoplastic resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower.
  • heat fusion In the heat fusion, bonding is usually performed using a heat sealer device.
  • the heat sealer is heated (heated) with a heater so as to sandwich a thermoplastic resin film, and is fused (welded).
  • the heater is heated to a predetermined temperature that dissolves the thermoplastic resin film but does not decompose it.
  • a part of the thermoplastic resin film is melted and bonded, and the preceding thermoplastic resin film and the subsequent thermoplastic resin film are joined.
  • the preceding thermoplastic resin film A and the following thermoplastic resin film B are heat-sealed using a heat sealer device 10.
  • the heat sealer device 10 includes an upper welding head 21 and a lower welding head 22 that are provided so as to sandwich the conveyance path of the film 3 vertically.
  • the upper welding head 21 has a heater 23 exposed from the lower surface, and the lower welding head 22 has a heater 24 exposed from the upper surface.
  • the welding heads 21 and 22 are moved between a heating position where the heaters 23 and 24 are brought into contact with the film 3 and a retreat position where the heaters 23 and 24 are separated from the film 3 by a shift mechanism (not shown).
  • the heaters 23 and 24 are temperature controlled by temperature controllers 25 and 26.
  • the procedure for bonding the film using the heat sealer 10 will be described.
  • the leading edge of the trailing film B is superimposed on the trailing edge of the preceding film A.
  • the upper welding head 21 and the lower welding head 22 are moved to the heating position.
  • the temperature of each heater 23 and 24 is set to a predetermined temperature that dissolves the film 3 but does not decompose it.
  • the heaters 23 and 24 are brought into contact with a region where the films A and B are overlapped. A part of the film is melted and bonded by heating with the heaters 23 and 24 for a predetermined time.
  • the heaters 23 and 24 are heated for a predetermined time and then stopped, and the joint portion 28 is naturally cooled in a compressed state.
  • the upper welding head 21 and the lower welding head 22 are moved to the retracted position.
  • thermoplastic resin films A and B joined by thermal fusion are conveyed to the oblique stretching machine 60.
  • thermoplastic resin film B is conveyed to the oblique stretching machine 60 using the roller 10a and the roller 10b.
  • thermoplastic resin film B disappears, the thermoplastic resin film A is joined to the thermoplastic resin film B by heat fusion in the same operation as described above, and the joined thermoplastic films A, B is conveyed to the oblique stretching machine 60, and finally, only the thermoplastic resin film A is conveyed to the oblique stretching machine 60. Moreover, when the thermoplastic resin film A runs out, the operation shown above is performed. By repeating these operations, the thermoplastic resin film can be continuously supplied to the oblique stretching machine 60.
  • tape joining for example, a double-sided tape in which an adhesive layer is provided on both surfaces of a substrate exhibiting substantially the same stretching behavior as a thermoplastic resin film (raw film) in a temperature range of a stretching temperature at which an oblique stretching process is performed.
  • a double-sided tape in which an adhesive layer is provided on both surfaces of a substrate exhibiting substantially the same stretching behavior as a thermoplastic resin film (raw film) in a temperature range of a stretching temperature at which an oblique stretching process is performed.
  • the other is bonded by bonding the other. They can be joined in the same manner as described above.
  • the ultrasonic fusion is a method in which electric energy is converted into mechanical vibration energy, and at the same time, strong frictional heat is generated on the joining surface of the thermoplastic resin film to melt and bond the thermoplastic resin. is there.
  • a thermoplastic resin film can be mechanically vibrated at an amplitude of 0.05 mm and 20,000 to 28,000 times per second to generate heat and be instantly fused (welded).
  • ultrasonic welding is performed using an ultrasonic bonding device (for example, see FIG. 7 of JP 2009-90650 A). Except for joining, joining can be performed in the same manner as described above.
  • a fusion laser beam is irradiated along the joining line from the normal direction of the thermoplastic resin film.
  • the fusion laser beam melts and joins the preceding thermoplastic resin film and the subsequent thermoplastic resin film.
  • the laser fusion apparatus that performs laser fusion irradiates the fusion laser beam with the joining surface of the preceding thermoplastic resin film (the joining surface of the subsequent thermoplastic resin film) as the focal position.
  • the fusion laser beam is irradiated, heat is generated and melted at the joining surface of the preceding thermoplastic resin film, and the heat is transferred to the joining surface of the succeeding thermoplastic resin film and melted.
  • thermoplastic resin film and the subsequent thermoplastic resin film are fused (welded) at the joint.
  • bonding can be performed in the same manner as described above except that laser fusion is performed using a laser fusion device or the like.
  • the joined portion is preheated under the conditions satisfying the following formulas (1) and (2) while continuously transporting the thermoplastic resin film joined through the joined portion. Thereby, it can suppress that the junction part of a thermoplastic resin film fractures
  • parts other than the joint parts consisting only of the thermoplastic resin film A and parts consisting only of the thermoplastic resin film B are subject to conditions other than the following. You may preheat.
  • T in Formula (1) represents the preheating temperature (° C.) of the joint in the preheating step
  • Tg in Formula (1) represents the glass transition temperature (° C.) of the thermoplastic resin in the thermoplastic resin film.
  • T in equation (2) represents the preheating time (seconds) of the joint in the preheating step.
  • the preheating temperature T (° C.) of the joint in the preheating step is not particularly limited as long as it is more than Tg (° C.) and Tg + 60 (° C.), preferably Tg + 10 (° C.) or more, more preferably Tg + 20 (° C.) or more. Tg + 30 (° C.) or higher is particularly preferable, Tg + 50 (° C.) or lower is preferable, and Tg + 40 (° C.) or lower is more preferable.
  • Tg + 60 (° C.) When the preheating temperature T (° C.) of the joint in the preheating step is higher than Tg (° C.), the joint of the thermoplastic resin film can be prevented from breaking in the oblique stretching step, and Tg + 60 (° C.). When it is below, it is possible to prevent the thermoplastic resin film from becoming too soft and hindering the conveyance of the thermoplastic resin film.
  • the preheating time t (second) of the joint in the preheating step is not particularly limited as long as it is 2 seconds or more, preferably 5 seconds or more, more preferably 7 seconds or more, and preferably 20 seconds or less.
  • the preheating time t (seconds) of the joint in the preheating step is set to 2 seconds or more, the joint of the thermoplastic resin film can be prevented from breaking in the oblique stretching step, and in the preheating step.
  • By setting the preheating time t (second) of the bonded portion to 20 seconds or less, it is possible to prevent the productivity of the obliquely stretched film from being lowered.
  • the preheating temperature T (° C.) of the joint in the preheating step is preferably Tg + 10 (° C.) or more, more preferably Tg + 20 (° C.) or more, and Tg + 60 (° C.) or less. Is preferable, Tg + 50 (° C.) or less is more preferable, and Tg + 40 (° C.) or less is particularly preferable.
  • the preheating time t (second) of the joint in the preheating step is preferably 5 (seconds) or more, more preferably 7 (seconds) or more, and preferably 15 (seconds) or less.
  • the preheating temperature T (° C.) of the joint in the preheating step is preferably more than Tg (° C.), more preferably Tg + 10 (° C.) or more, and Tg + 50 (° C.
  • the preheating time t (second) of the joint in the preheating step is preferably 2 (seconds) or more, preferably 12 (seconds) or less, and more preferably 7 (seconds) or less.
  • an obliquely stretched film can be produced by obliquely stretching the preheated thermoplastic resin film while continuously conveying the thermoplastic resin film.
  • the stretching temperature T ′ (° C.) of the joint in the oblique stretching step is not particularly limited, but is preferably Tg + 3 (° C.) or higher, more preferably Tg + 8 (° C.) or higher, further preferably Tg + 10 (° C.) or higher, and Tg + 30. (° C.) or less is preferable, and Tg + 25 (° C.) or less is more preferable.
  • T ′ (° C.) is within the above range, the molecules contained in the thermoplastic resin film can be stably oriented by oblique stretching, and a desired retardation can be obtained.
  • the stretching temperature T ′ (° C.) may be the same as or different from the preheating temperature T (° C.).
  • the stretching temperature T ′ (° C.) of the joint in the oblique stretching step is preferably Tg + 10 (° C.) or more, more preferably Tg + 15 (° C.) or more, and Tg + 40 (° C. ) Or less is preferable, Tg + 30 (° C.) or less is more preferable, and Tg + 25 (° C.) or less is particularly preferable.
  • the stretching temperature T ′ (° C.) of the joint in the oblique stretching process is preferably more than Tg (° C.), more preferably Tg + 10 (° C.) or more, and Tg + 30. (° C.) or less is preferable, and Tg + 20 (° C.) or less is more preferable.
  • the stretching ratio in the oblique stretching step is not particularly limited, but is preferably 1.1 times or more, more preferably 1.2 times or more, particularly preferably 1.3 times or more, and preferably 3.0 times or less. .5 times or less is more preferable, and 2.0 times or less is particularly preferable.
  • the draw ratio is made 3.0 times or less.
  • the obliquely stretched film has a slow axis in a predetermined range on average in the width direction. Specifically, for example, it has a slow axis in an angle range of 5 ° to 85 ° on average with respect to the width direction.
  • the obliquely stretched film has a slow axis in a predetermined range on average with respect to the width direction, which means that the oblique direction of the obliquely stretched film is in the width direction and the slow phase at a plurality of points in the width direction of the obliquely stretched film. This means that when the angles formed with the axes are measured, the average value of the angles measured at those points falls within the predetermined range.
  • the angle formed by the width direction of the obliquely stretched film and the slow axis may be appropriately referred to as “orientation angle”.
  • the average value of the orientation angle ⁇ is sometimes referred to as “average orientation angle” as appropriate.
  • the average orientation angle ⁇ of the obliquely stretched film is not particularly limited, but is usually 5 ° to 85 °, preferably 40 ° or more, and preferably 50 ° or less. Since the slow axis is expressed by stretching the thermoplastic resin film in an oblique direction, the specific value of the average orientation angle ⁇ can be adjusted by the stretching conditions in the manufacturing method described above. .
  • the average orientation angle ⁇ is an average of the orientation angle values measured at each point by measuring the orientation angle using a phase difference meter at a plurality of points at intervals of 5 cm in the width direction of the obliquely stretched film. It can be obtained by calculating the value.
  • the variation in the orientation angle formed by the width direction of the obliquely stretched film and the slow axis is not particularly limited, but is preferably 1.0 ° or less in the longitudinal direction of the obliquely stretched film, It is more preferably at most 0 °, particularly preferably at most 0.3 °, and ideally 0 °.
  • the variation in the orientation angle represents the difference between the maximum value and the minimum value of the orientation angle of the obliquely stretched film.
  • the mechanical strength of the obliquely stretched film can be increased.
  • the average thickness of the obliquely stretched film can be obtained by measuring the thickness at a plurality of points at intervals of 5 cm in the width direction of the film and calculating the average value of the measured values.
  • the width of the obliquely stretched film is not particularly limited, but is preferably 1000 mm or more, more preferably 1330 mm or more, preferably 1800 mm or less, and more preferably 1600 mm or less.
  • the obliquely stretched film can be applied to a large display device (such as an organic EL display device).
  • the average in-plane retardation Re of the obliquely stretched film is not particularly limited, but is preferably 80 nm or more, more preferably 120 nm or more, particularly preferably 140 nm or more, preferably 300 nm or less, more preferably 200 nm or less, and 150 nm or less. Is particularly preferred.
  • a film cut out from the obliquely stretched film can be suitably used as an optical compensation film of a display device.
  • the average in-plane retardation Re of the obliquely stretched film can be arbitrarily set to an appropriate value.
  • the average in-plane retardation Re is measured at in-plane retardation using a phase difference meter at a plurality of points at intervals of 5 cm in the width direction of the obliquely stretched film. It can be obtained by calculating an average value of retardation values.
  • the variation in in-plane retardation of the obliquely stretched film is not particularly limited, but is preferably 10 nm or less, more preferably 5 nm or less, particularly preferably 2 nm or less, and ideally 0 nm.
  • the dispersion of the in-plane retardation means a difference between the maximum value and the minimum value of the in-plane retardation at an arbitrary point of the obliquely stretched film.
  • FIG. 2 is a diagram schematically showing a configuration example of an oblique stretching machine used for carrying out the method for producing an obliquely stretched film according to the present invention.
  • the oblique stretching machine 60 is a so-called tenter stretching machine, and includes two gripping devices 101L and 101R that grip the end portions of the thermoplastic resin film F1 joined by the heat sealer device 10, respectively.
  • the temperature control chamber 70 is a region that keeps the thermoplastic resin film F1 gripped by the gripping means 110 at an appropriate temperature for oblique stretching.
  • This region includes, for example, a preheating zone X, an oblique stretching zone Y, and a heat fixing zone.
  • the temperature of each zone can be adjusted independently.
  • the preheating temperature T (° C.) and the stretching temperature T ′ (° C.) are the same, the preheating zone X and the oblique stretching zone Y do not have to be separated.
  • a preheating process is performed, and in the oblique stretching zone Y, an oblique stretching process is performed.
  • Each gripping device 101L, 101R includes clips 110L, 110R as a plurality of grips for gripping the end portion of the thermoplastic resin film F1, and endless chains 120L, 120R in which the clips 110L, 110R are installed at predetermined intervals (partly (Not shown), a pair of sprockets 12L, 13L, 12R, and 13R over which endless chains 120L and 120R are spanned, a drive mechanism (not shown) that rotates the sprockets 12L and 12R, and a sprocket 12L that is rotated by the drive mechanism.
  • 12R is provided with a rail (not shown) that guides the direction of the clips 110L and 110R that move with rotation.
  • the rotation speed of the sprocket 12L and the rotation speed of the sprocket 12R are adjusted to be the same. For this reason, the moving speeds of the clips 110L and 110R are the same.
  • the gripping device 101L and the gripping device 101R have substantially the same constituent elements, but differ in the arrangement direction and length of the rail.
  • the direction in which the thermoplastic resin film F1 is supplied and the direction in which the obliquely stretched film F2 after oblique stretching is wound are different, that is, the rails proceed in the directions of arrows D1, D2, and D3.
  • the rail on the gripping device 101L side and the rail on the gripping device 101R side are arranged in parallel at a constant interval on the inlet side (first parallel portion: preheating zone X) to which the film is supplied.
  • the interval is gradually widened, and on the exit side (second parallel portion) of the film, it is parallel with a larger interval than the interval of the first parallel portion. Is arranged.
  • the film is arranged so that the traveling direction of the film bends to the left, but may be arranged to bend to the right.
  • the rail length on the gripping device 101R side that is the outside of the bent portion is longer than the rail length on the gripping device 101L side that is on the inside of the bent portion.
  • the pair of clips that simultaneously grips both ends in the width direction of the thermoplastic resin film F1 have a rail length when passing through the bent portion (obliquely extending zone Y). Since the relative position shifts accordingly, the clip on the gripping device 101L side moves ahead of the clip on the gripping device 101R side in the second parallel portion.
  • thermoplastic resin film F1 is obliquely stretched in an oblique direction that is neither the width direction nor the longitudinal direction, and the molecular orientation direction becomes the oblique direction.
  • the obliquely stretched film F2 can be manufactured.
  • thermoplastic resin film F1 When the thermoplastic resin film F1 is supplied to such an oblique stretching machine 60, the thermoplastic resin film F1 is continuously supplied from the upstream (upper left in FIG. 2) to the oblique stretching machine 60 along the direction of the arrow D1.
  • the supplied thermoplastic resin film F1 is gripped by a pair of clips 110L and 110R at both ends in the width direction before entering the temperature control chamber 70.
  • the thermoplastic resin film F1 gripped by the clips 110L and 110R enters the temperature control chamber 70, and in the temperature control chamber 70, by the circular movement along the rail on each side of each clip 110L and 110R, Stretched in the direction.
  • the obliquely stretched film F2 stretched in the oblique direction is released from the temperature control chamber 70 and then released from being gripped by the clips 110L and 110R, and is carried out in the direction of the arrow D3.
  • both end portions in the width direction of the thermoplastic resin film F1 are simultaneously grasped at the time of the dotted line CS1, and are carried into the temperature control chamber 70 to start the preheating process.
  • the oblique stretching process is started from the position where the rail interval starts to widen, and when the position reaches, for example, the dotted line CS2, the film is stretched in the direction of the dotted line CS2.
  • the oblique stretching process is terminated at a position where the rail spacing becomes the same again. Therefore, the conveyance time from the position where the temperature is adjusted into the temperature control chamber 70 to the position where the rail interval begins to increase becomes the preheating time t.
  • the manufacturing method of the polarizing plate of this invention is a method of manufacturing a polarizing plate by laminating
  • the polarizing plate includes an obliquely stretched film manufactured by the above-described method for manufacturing an obliquely stretched film and a polarizer, and may further include an arbitrary member as necessary.
  • the polarizing plate can be manufactured by laminating a long polarizer and a long obliquely stretched film by roll-to-roll with the longitudinal direction thereof being parallel. In bonding, an adhesive may be used as necessary. By producing using a long film, it is possible to efficiently produce a long polarizing plate.
  • the polarizer examples include, for example, a film of a suitable vinyl alcohol polymer such as polyvinyl alcohol and partially formalized polyvinyl alcohol, a dyeing process using an dichroic substance such as iodine and a dichroic dye, a stretching process, and a crosslinking process. And the like, which have been subjected to appropriate processing in an appropriate order and manner.
  • a polarizer is capable of transmitting linearly polarized light when natural light is incident thereon, and in particular, a polarizer excellent in light transmittance and degree of polarization is preferable.
  • the thickness of the polarizer is generally 5 ⁇ m or more and 80 ⁇ m or less, but is not limited thereto.
  • the obliquely stretched film may be provided on both sides of the polarizer or on one side.
  • a protective film has been provided on the surface of the polarizer.
  • the obliquely stretched film can serve as the protective film for the polarizer. Therefore, the polarizing plate provided with the obliquely stretched film and the polarizer in combination can omit the conventionally used protective film and can contribute to thinning.
  • the protective film for protecting a polarizer is mentioned, for example. Any transparent film can be used as the protective film. Among these, a resin film excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
  • the manufacturing method of the liquid crystal display device of this invention is a method of manufacturing a liquid crystal display device using the polarizing plate mentioned above.
  • the liquid crystal display device can be manufactured, for example, by using what is cut out to a predetermined size from the polarizing plate.
  • Examples of the liquid crystal display device include those having liquid crystal cells of various driving methods.
  • Liquid crystal cell driving methods include, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, and hybrid alignment nematic (HAN) Mode, twisted nematic (TN) mode, super twisted nematic (STN) mode, optical compensated bend (OCB) mode, and the like.
  • thermoplastic resin film- Using a snap gauge (“ID-C112BS” manufactured by Mitutoyo Corporation), the thickness was measured at a plurality of points at intervals of 5 cm in the width direction of the thermoplastic resin film. By calculating the average value of these measured values, the average thickness of the thermoplastic resin film was determined. In addition, the thermoplastic resin film conveyed ahead is made into sheet A, and the thermoplastic resin film conveyed behind is made into sheet B.
  • thermoplastic resin film was calculated from the conveyance speed of the thermoplastic resin film and the conveyance distance of the thermoplastic resin film in the preheating zone X.
  • thermoplastic resin film in the preheating zone X conveyed to the oblique stretching machine (tenter stretching machine) 60 of FIG. 2 was measured as follows.
  • the temperature of the space with a distance of 100 mm in the film normal direction from the joint of the thermoplastic resin film in the preheating zone X is measured using a thermocouple, and this is adopted as the preheating temperature T (° C.) of the thermoplastic resin film. did.
  • thermoplastic resin film in the oblique stretching zone Y conveyed to the oblique stretching machine 60 in FIG. 2 was measured as follows.
  • the temperature of the space at a distance of 100 mm in the film normal direction from the joint of the thermoplastic resin film in the oblique stretching zone Y was measured using a thermocouple, and this was measured as the stretching temperature T ′ (° C.) of the thermoplastic resin film. Adopted as.
  • Example 1 A norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) is molded with a T-die type film extruder to produce a long norbornene resin film having a width of 1200 mm and a thickness of 120 ⁇ m. Rolled up into a roll. In this way, two norbornene resin films wound up in a roll shape are prepared, and using a heat sealer, the norbornene resin film (sheet A) transported in advance and the norbornene resin transported downstream. The film (sheet B) was bonded by heat fusion.
  • ZONOR glass transition temperature manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.
  • an oblique stretching machine 60 having the configuration described in the above-described embodiment is prepared, and a norbornene resin film bonded to the oblique stretching machine 60 by the thermal fusion is used as a thermoplastic resin.
  • the film F1 was supplied from the heat sealer device 10.
  • the thermoplastic resin film F1 was preheated or obliquely stretched under the conditions shown in the column of Example 1 in Table 1 below to produce an obliquely stretched film F2.
  • the obliquely stretched film F2 thus obtained was evaluated for breakage, average in-plane retardation Re, and average orientation angle ⁇ by the methods described above. The obtained evaluation results are shown in Table 1.
  • Example 2 In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 2 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 3 In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 3 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 4 In Example 1, instead of producing a long norbornene resin film having a thickness of 120 ⁇ m, a long norbornene resin film having a thickness of 70 ⁇ m was produced. In Example 1, Example 1 in Table 1 below was used. Instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column, Example 1 except that the thermoplastic resin film F1 was preheated or obliquely stretched under the conditions shown in the column of Example 4 in Table 1 below. In the same manner as described above, an obliquely stretched film F2 was produced, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 5 (Example 5) In Example 4, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 4 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 5 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 4, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 6 In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 of Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 6 of Table 1 below.
  • the slanted stretched film F2 was produced in the same manner as in Example 1 except that the slanted stretched film F2 was produced by preheating or obliquely stretching the film, and the obtained slanted stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 7 In Example 6, instead of thermally bonding the norbornene resin film transported in advance and the norbornene resin film transported in the following, the norbornene resin film transported in advance, the norbornene resin film transported in advance, The obliquely stretched film F2 was produced in the same manner as in Example 6 except that the norbornene resin film conveyed in line was tape-joined, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 8 In Example 2, the norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) was changed to another norbornene resin pellet (“ZEONOR manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 163 ° C.)”. Except having done, it carried out similarly to Example 2, manufactured the diagonally stretched film F2, and evaluated about the obtained diagonally stretched film F2. The obtained evaluation results are shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 1 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 2 (Comparative Example 2) In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 2 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 4 (Comparative Example 3) In Example 4, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 4 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 3 in Table 1 below. Except that was preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 4, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Example 7 (Comparative Example 4) In Example 7, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 7 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 4 in Table 1 below. Except that was preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 7, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
  • Comparative Example 5 (Comparative Example 5) In Comparative Example 2, the norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) was changed to another norbornene resin pellet (“ZEONOR manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 163 ° C.)”. Except having done, it carried out similarly to the comparative example 2, and manufactured the diagonally stretched film F2, and evaluated about the obtained diagonally stretched film F2. The obtained evaluation results are shown in Table 1.
  • thermoplasticity in the oblique stretching step It was possible to continuously manufacture obliquely stretched films while suppressing breakage of the joint portion of the resin film.
  • the joining means is heat fusion
  • Example 7 the joining means is a tape
  • the joint portion of the thermoplastic resin film is further prevented from breaking in the oblique stretching step. The obliquely stretched film could be continuously produced more reliably.
  • Comparative Examples 1 and 4 in which the preheating time t in the preheating process was as short as 1.7 seconds, it was not possible to suppress the breakage of the joint portion of the thermoplastic resin film in the oblique stretching process.
  • Comparative Examples 2, 3, and 5 in which the preheating temperature T is the glass transition temperature Tg of the norbornene resin, it was not possible to suppress the breakage of the joint portion of the thermoplastic resin film in the oblique stretching process.

Abstract

Provided is a method for producing an obliquely stretched film, in which there is minimal rupturing in the joining portion of thermoplastic resin films in an oblique stretching step, and obliquely stretched films can be continuously produced. A method for producing an obliquely stretched film comprising a joining step in which a thermoplastic resin film conveyed first and a thermoplastic resin film conveyed subsequently are joined with a joining portion interposed therebetween, a preheating step in which the thermoplastic resin films joined with the joining portion interposed therebetween are preheated while being continuously conveyed, and an oblique stretching step in which the preheated thermoplastic resin films are obliquely stretched while being continuously conveying, wherein the thermoplastic resin film conveyed first and the thermoplastic resin film conveyed subsequently are identical thermoplastic resin films, and formulae (1) and (2) below hold, where T (°C) is the preheating temperature of the joining portion in the preheating step, t (seconds) is the preheating time of the joining portion in the preheating step, and Tg (°C) is the glass transition temperature of the thermoplastic resin in the thermoplastic resin film. Tg < T ≤ Tg + 60 (1) 2≤ t (2)

Description

斜め延伸フィルムの製造方法、偏光板の製造方法、および液晶表示装置の製造方法Manufacturing method of obliquely stretched film, manufacturing method of polarizing plate, and manufacturing method of liquid crystal display device
 本発明は、斜め延伸フィルムの製造方法、偏光板の製造方法、および液晶表示装置の製造方法に関するものである。 The present invention relates to a method for producing an obliquely stretched film, a method for producing a polarizing plate, and a method for producing a liquid crystal display device.
 液晶表示装置には、性能向上のために位相差フィルム等の光学部材が使用されている。位相差フィルムは、例えば、モバイル機器や有機ELテレビ等の反射防止や液晶表示装置の光学補償に用いられる場合には、その遅相軸が、偏光子の透過軸に対し、平行でも垂直でもない角度にあることが求められる。一方、偏光子の透過軸は、通常、装置の矩形の表示面の長辺方向または短辺方向と平行である。したがって、矩形の位相差フィルムであって、その辺に対して斜め方向に遅相軸を有するものが求められている。 In the liquid crystal display device, an optical member such as a retardation film is used to improve performance. For example, when the retardation film is used for antireflection of a mobile device, an organic EL television or the like, or for optical compensation of a liquid crystal display device, its slow axis is neither parallel nor perpendicular to the transmission axis of the polarizer. It is required to be at an angle. On the other hand, the transmission axis of the polarizer is usually parallel to the long side direction or the short side direction of the rectangular display surface of the apparatus. Therefore, there is a demand for a rectangular retardation film having a slow axis in an oblique direction with respect to its side.
 従来、位相差フィルムは、長尺の延伸前フィルムを縦延伸または横延伸することにより製造されていた。ここで、縦延伸とは長尺フィルムの長手方向への延伸を表し、横延伸とは長尺フィルムの幅方向への延伸を表す。縦延伸または横延伸された長尺フィルムから斜め方向に遅相軸を有する矩形の位相差フィルムを得るためには、長尺フィルムの幅方向から斜めの方向に辺が向くようにフィルムを切り出すことが求められる。しかし、長尺フィルムの幅方向から斜めの方向に辺が向くようにフィルムを切り出すと、廃棄するフィルム量が多くなったり、ロール・トゥ・ロールの製造が困難となったりするので、製造効率が低くなる。そこで、製造効率を向上させるため、長尺の延伸前フィルムを、斜め延伸することが提案されている(例えば、特許文献1参照)。 Conventionally, a retardation film has been produced by longitudinally stretching or transversely stretching a long film before stretching. Here, the longitudinal stretching represents stretching in the longitudinal direction of the long film, and the lateral stretching represents stretching in the width direction of the long film. In order to obtain a rectangular retardation film having a slow axis in an oblique direction from a longitudinally stretched or laterally stretched long film, the film is cut out so that the sides are directed in an oblique direction from the width direction of the long film. Is required. However, if the film is cut so that the sides are oriented diagonally from the width direction of the long film, the amount of film to be discarded becomes large, and it becomes difficult to manufacture roll-to-roll. Lower. Therefore, in order to improve production efficiency, it has been proposed to obliquely stretch a long film before stretching (see, for example, Patent Document 1).
 斜め延伸フィルムを効率良く製造するためには、連続搬送された熱可塑性樹脂フィルムを連続的に斜め延伸することが好ましい。ここで、フィルムを連続搬送するために、例えば、第1のフィルムロールから送り出された先行するフィルムの後端に、第2のフィルムロールから送り出された後行するフィルムの先端を接合することが行われている(例えば、特許文献2参照)。 In order to efficiently produce an obliquely stretched film, it is preferable to continuously obliquely stretch the continuously conveyed thermoplastic resin film. Here, in order to continuously convey the film, for example, joining the leading edge of the subsequent film fed from the second film roll to the trailing edge of the preceding film fed from the first film roll. (For example, refer to Patent Document 2).
国際公開第2015/064645号International Publication No. 2015/064645 国際公開第2012/053218号International Publication No. 2012/053218
 しかしながら、フィルムを連続搬送するために、第1のフィルムロールから送り出された先行するフィルムの後端に、第2のフィルムロールから送り出された後行するフィルムの先端を接合しても、斜め延伸する際に、接合部が破断してしまい、ひいては斜め延伸フィルムを連続して製造することができないことがあった。 However, in order to continuously convey the film, even if the leading edge of the subsequent film fed from the second film roll is joined to the trailing edge of the preceding film fed from the first film roll, the film is obliquely stretched. In doing so, the joint portion breaks, and as a result, the obliquely stretched film may not be continuously manufactured.
 そこで、本発明は、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができる斜め延伸フィルムの製造方法、該斜め延伸フィルムの製造方法により製造された斜め延伸フィルムを備える偏光板を製造する偏光板の製造方法、並びに、該偏光板の製造方法により製造された偏光板を備える液晶表示装置を製造する液晶表示装置の製造方法を提供することを目的とする。 Then, this invention suppresses that the junction part of a thermoplastic resin film fractures | ruptures in a diagonal stretch process, The manufacturing method of the diagonal stretch film which can manufacture a diagonal stretch film continuously, Manufacturing method of polarizing plate which manufactures polarizing plate provided with obliquely stretched film manufactured by manufacturing method, and manufacturing method of liquid crystal display device which manufactures liquid crystal display device provided with polarizing plate manufactured by the manufacturing method of this polarizing plate The purpose is to provide.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の斜め延伸フィルムの製造方法は、先行して搬送される熱可塑性樹脂フィルムと、後行して搬送される熱可塑性樹脂フィルムとを、接合部を介して接合する接合工程と、前記接合部を介して接合された熱可塑性樹脂フィルムを連続搬送しながら予熱する予熱工程と、前記予熱された熱可塑性樹脂フィルムを連続搬送しながら斜め延伸する斜め延伸工程と、を含む、斜め延伸フィルムの製造方法であって、前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとは同一の熱可塑性樹脂フィルムであり、前記予熱工程における前記接合部の予熱温度をT(℃)とし、前記予熱工程における前記接合部の予熱時間をt(秒間)とし、前記熱可塑性樹脂フィルムにおける熱可塑性樹脂のガラス転移温度をTg(℃)としたとき、下記式(1)および(2)を満たす、ことを特徴とする。
 Tg<T≦Tg+60      ・・・(1)
 2≦t      ・・・(2)
 このように、前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとは同一の熱可塑性樹脂フィルムである場合に上記式(1)および(2)を満たせば、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができる。
 なお、接合部の予熱温度T(℃)は、予熱工程において、熱可塑性樹脂フィルムの接合部からのフィルム法線方向の距離が100mmの空間の温度を、熱電対を用いて測定し、これを予熱工程における接合部の予熱温度T(℃)として採用する。
 また、熱可塑性樹脂のガラス転移温度Tgは、JIS K7121に記載された測定方法にてガラス転移温度を測定した。
 更に、本発明において、「同一の熱可塑性樹脂フィルム」には、熱可塑性樹脂フィルム同士が厳密な意味で完全に同一である場合以外に、本発明の効果が得られる範囲内で、製造上の誤差等により組成や厚みが不可避的に異なる場合も含まれる。
This invention aims to solve the above-mentioned problem advantageously, and the manufacturing method of the diagonally stretched film of the present invention is followed by the thermoplastic resin film that is transported in advance and is transported downstream. A joining step for joining a thermoplastic resin film via a joining portion, a preheating step for preheating while continuously conveying the thermoplastic resin film joined via the joining portion, and the preheated thermoplastic resin film An obliquely stretching step of obliquely stretching while continuously transporting the film, and a method for producing an obliquely stretched film, wherein the thermoplastic resin film transported in advance and the thermoplastic resin transported downstream The film is the same thermoplastic resin film, the preheating temperature of the joint in the preheating step is T (° C.), and the preheating time of the joint in the preheating step is t (seconds). And, when the glass transition temperature of the thermoplastic resin in the thermoplastic resin film was Tg (° C.), the following equation (1) and satisfying the (2), characterized in that.
Tg <T ≦ Tg + 60 (1)
2 ≦ t (2)
As described above, when the thermoplastic resin film transported in advance and the thermoplastic resin film transported downstream are the same thermoplastic resin film, the above formulas (1) and (2) If it satisfies, it can suppress that the junction part of a thermoplastic resin film fractures | ruptures in a diagonal stretch process, and can manufacture a diagonal stretch film continuously.
In addition, the preheating temperature T (° C.) of the joint portion was measured by measuring the temperature of a space having a distance of 100 mm in the film normal direction from the joint portion of the thermoplastic resin film using a thermocouple in the preheating step. Adopted as the preheating temperature T (° C.) of the joint in the preheating process.
Further, the glass transition temperature Tg of the thermoplastic resin was measured by the measuring method described in JIS K7121.
Furthermore, in the present invention, the “same thermoplastic resin film” includes, in addition to the case where the thermoplastic resin films are completely the same in a strict sense, within the range in which the effects of the present invention can be obtained. This includes cases where the composition and thickness are inevitably different due to errors and the like.
 また、本発明の斜め延伸フィルムの製造方法は、前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとを熱融着により接合することが好ましい。前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとを熱融着により接合した場合には特に、上記式(1)および(2)を満たした際の破断抑制効果が優れているからである。 Further, in the method for producing an obliquely stretched film of the present invention, it is preferable to join the thermoplastic resin film transported in advance and the thermoplastic resin film transported in the subsequent manner by thermal fusion. In particular, when the thermoplastic resin film transported in advance and the thermoplastic resin film transported downstream are joined by thermal fusion, the above formulas (1) and (2) are satisfied. This is because the effect of suppressing breakage is excellent.
 また、本発明の斜め延伸フィルムの製造方法は、前記先行して搬送される熱可塑性樹脂フィルムおよび前記後行して搬送される熱可塑性樹脂フィルムは、平均厚みが50μm以上300μm以下であることが好ましい。前記先行して搬送される熱可塑性樹脂フィルムおよび前記後行して搬送される熱可塑性樹脂フィルムは、平均厚みが50μm以上300μm以下であることにより、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのをより確実に抑制することができることができる。
 なお、前記先行して搬送される熱可塑性樹脂フィルムおよび前記後行して搬送される熱可塑性樹脂フィルムの平均厚みは、熱可塑性樹脂フィルムの幅方向において5cm間隔の複数の地点で厚みをスナップゲージにより測定し、それらの測定値の平均値を計算することにより求める。
Moreover, the manufacturing method of the diagonally stretched film of this invention WHEREIN: The thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are that average thickness is 50 micrometers or more and 300 micrometers or less. preferable. The thermoplastic resin film that is transported in advance and the thermoplastic resin film that is transported in a subsequent manner have an average thickness of 50 μm or more and 300 μm or less, so that the joining portion of the thermoplastic resin film can be formed in the oblique stretching step. It can suppress more reliably that it fractures.
In addition, the average thickness of the thermoplastic resin film transported in advance and the thermoplastic resin film transported downstream is determined by snap gauges at a plurality of points at intervals of 5 cm in the width direction of the thermoplastic resin film. It calculates | requires by calculating by the average value of those measured values.
 また、本発明の斜め延伸フィルムの製造方法は、前記熱可塑性樹脂フィルムにおける熱可塑性樹脂のガラス転移温度Tgが、100℃以上180℃以下であることが好ましい。前記熱可塑性樹脂のガラス転移温度を前記範囲の下限値以上にすることにより、高温環境下におけるフィルムの耐久性を高めることができる。また、前記熱可塑性樹脂のガラス転移温度を前記範囲の上限値以下にすることにより、延伸処理を容易に行うことができる。 In the method for producing an obliquely stretched film of the present invention, it is preferable that the glass transition temperature Tg of the thermoplastic resin in the thermoplastic resin film is 100 ° C. or higher and 180 ° C. or lower. By setting the glass transition temperature of the thermoplastic resin to be equal to or higher than the lower limit of the above range, the durability of the film in a high temperature environment can be enhanced. Moreover, the extending | stretching process can be easily performed by making the glass transition temperature of the said thermoplastic resin below into the upper limit of the said range.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の偏光板の製造方法は、上述した斜め延伸フィルムの製造方法で製造された斜め延伸フィルムと、偏光子とを積層して偏光板を製造する、ことを特徴とする。このように、上述した斜め延伸フィルムの製造方法を使用すれば、斜め延伸フィルムを連続して効率良く製造することができ、ひいては偏光板を効率良く製造することができる。 Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the polarizing plate of this invention is the diagonally stretched film manufactured with the manufacturing method of the diagonally stretched film mentioned above, and polarized light. A polarizing plate is produced by laminating a child. Thus, if the manufacturing method of the diagonally stretched film mentioned above is used, a diagonally stretched film can be manufactured continuously and efficiently, and a polarizing plate can be manufactured efficiently by extension.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の液晶表示装置の製造方法は、上述した偏光板の製造方法で製造された偏光板を備える液晶表示装置を製造する、ことを特徴とする。このように、上述した偏光板の製造方法を使用すれば、偏光板を効率良く製造することができ、ひいては液晶表示装置を効率良く製造することができる。 Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the liquid crystal display device of this invention is a liquid crystal display provided with the polarizing plate manufactured with the manufacturing method of the polarizing plate mentioned above. A device is manufactured. Thus, if the manufacturing method of the polarizing plate mentioned above is used, a polarizing plate can be manufactured efficiently and by extension, a liquid crystal display device can be manufactured efficiently.
 本発明によれば、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができる。 According to the present invention, it is possible to continuously produce obliquely stretched films while suppressing breakage of the joint portion of the thermoplastic resin film in the obliquely stretching step.
本発明に係る斜め延伸フィルムの製造方法を実施するために用いられ得るヒートシーラー装置の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the heat sealer apparatus which can be used in order to implement the manufacturing method of the diagonally stretched film which concerns on this invention. 本発明に係る斜め延伸フィルムの製造方法を実施するために用いられる斜め延伸機の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the diagonal stretch machine used in order to implement the manufacturing method of the diagonal stretch film which concerns on this invention.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の斜め延伸フィルムの製造方法は、斜め延伸フィルムを製造する際に用いることができる。また、本発明の偏光板の製造方法は、本発明の斜め延伸フィルムの製造方法により製造された斜め延伸フィルムを備える偏光板を製造する際に用いることができる。さらに、本発明の液晶表示装置の製造方法は、本発明の偏光板の製造方法により製造された偏光板を備える液晶表示装置を製造する際に用いることができる。
Embodiments of the present invention are described in detail below.
Here, the manufacturing method of the diagonally stretched film of this invention can be used when manufacturing a diagonally stretched film. Moreover, the manufacturing method of the polarizing plate of this invention can be used when manufacturing a polarizing plate provided with the diagonally stretched film manufactured by the manufacturing method of the diagonally stretched film of this invention. Furthermore, the manufacturing method of the liquid crystal display device of this invention can be used when manufacturing a liquid crystal display device provided with the polarizing plate manufactured by the manufacturing method of the polarizing plate of this invention.
(斜め延伸フィルムの製造方法)
 本発明の斜め延伸フィルムの製造方法は、斜め延伸フィルムを製造する方法である。そして、本発明の斜め延伸フィルムの製造方法は、先行して搬送される熱可塑性樹脂フィルムと、後行して搬送される熱可塑性樹脂フィルムとを、接合部を介して接合する工程(接合工程)と、前記接合部を介して接合された熱可塑性樹脂フィルムを連続搬送しながら所定の条件で予熱する工程(予熱工程)と、前記予熱された熱可塑性樹脂フィルムを連続搬送しながら斜め延伸する工程(斜め延伸工程)と、を含み、任意に、その他の工程を更に含む。
(Manufacturing method of obliquely stretched film)
The method for producing an obliquely stretched film of the present invention is a method for producing an obliquely stretched film. And the manufacturing method of the diagonally stretched film of this invention is a process (joining process) which joins the thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed behind, via a junction part. ), A step of preheating (preheating step) under predetermined conditions while continuously conveying the thermoplastic resin film bonded through the bonding portion, and obliquely stretching while continuously conveying the preheated thermoplastic resin film A process (oblique stretching process), and optionally further includes other processes.
 そして、本発明の斜め延伸フィルムの製造方法では、先行して搬送される熱可塑性樹脂フィルムと、後行して搬送される熱可塑性樹脂フィルムとを、接合部を介して接合し、前記接合部を介して接合された熱可塑性樹脂フィルムを連続搬送しながら所定の条件で予熱し、前記予熱された熱可塑性樹脂フィルムを連続搬送しながら斜め延伸することで、斜め延伸する際に、熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができる。 And in the manufacturing method of the diagonally stretched film of this invention, the thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are joined via a junction part, The said junction part When the thermoplastic resin film joined through the film is preheated under predetermined conditions while being continuously conveyed, and obliquely stretched while continuously conveying the preheated thermoplastic resin film, the thermoplastic resin is It is possible to continuously manufacture obliquely stretched films while suppressing breakage of the joint portion of the film.
<接合工程>
 本発明の斜め延伸フィルムの製造方法の接合工程では、先行して搬送される熱可塑性樹脂フィルムと、後行して搬送される熱可塑性樹脂フィルムとを、接合部を介して接合することにより、斜め延伸フィルムの連続生産を可能にする。
 なお、前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとは、同一の熱可塑性樹脂フィルムである。
 前記接合方法としては、特に制限はなく、熱融着(「熱溶着」ということもある)、テープ接合、超音波融着(「超音波溶着」ということもある)、レーザー融着(「レーザー溶着」ということもある)、などが挙げられる。これらの中でも、接合部を所定の条件で予熱した際の熱可塑性樹脂フィルムの接合部の破断抑制効果が特に優れているという点で、熱融着、テープ接合、が好ましく、熱融着がより好ましい。
<Joint process>
In the joining step of the manufacturing method of the obliquely stretched film of the present invention, by joining the thermoplastic resin film transported in advance and the thermoplastic resin film transported in the subsequent way through the joint portion, Enables continuous production of obliquely stretched films.
In addition, the thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream are the same thermoplastic resin film.
The bonding method is not particularly limited, and is heat fusion (sometimes referred to as “thermal welding”), tape bonding, ultrasonic fusion (sometimes referred to as “ultrasonic welding”), laser fusion (“laser”). Sometimes referred to as “welding”). Among these, thermal bonding and tape bonding are preferred, and thermal fusion is more preferable in that the effect of suppressing breakage of the bonded portion of the thermoplastic resin film when the bonded portion is preheated under predetermined conditions is particularly excellent. preferable.
〔熱可塑性樹脂フィルム〕
 前記熱可塑性樹脂フィルムの平均厚みとしては、特に制限はないが、50μm以上が好ましく、100μm以上がより好ましく、300μm以下が好ましく、200μm以下がより好ましい。前記熱可塑性樹脂フィルムの平均厚みが、前記範囲内であることにより、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのをより確実に抑制することができる。
[Thermoplastic resin film]
Although there is no restriction | limiting in particular as average thickness of the said thermoplastic resin film, 50 micrometers or more are preferable, 100 micrometers or more are more preferable, 300 micrometers or less are preferable, and 200 micrometers or less are more preferable. When the average thickness of the thermoplastic resin film is within the above range, the joint portion of the thermoplastic resin film can be more reliably suppressed from breaking in the oblique stretching step.
-熱可塑性樹脂-
 前記熱可塑性樹脂の具体例としては、例えば、ノルボルネン系樹脂等の脂環式構造含有重合体樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ジアセチルセルロース樹脂、トリアセチルセルロース樹脂等のセルロース系樹脂;ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリケトンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキサイド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、(メタ)アクリル樹脂、ポリビニルアルコール樹脂、ポリプロピレン樹脂、セルロース系樹脂、エポキシ樹脂、フェノール樹脂等のその他の樹脂;(メタ)アクリル酸エステル-ビニル芳香族化合物共重合体樹脂、イソブテン/N-メチルマレイミド共重合体樹脂、スチレン/アクリルニトリル共重合体樹脂等の共重合体樹脂;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。これらの中でも、ノルボルネン系樹脂等の脂環式構造含有重合体樹脂が好ましい。
 なお、前記脂環式構造や前記ノルボルネン系樹脂の詳細については、特許文献1に示す通りである。
-Thermoplastic resin-
Specific examples of the thermoplastic resin include, for example, alicyclic structure-containing polymer resins such as norbornene resins; polyolefin resins such as polyethylene resins and polypropylene resins; cellulose resins such as diacetyl cellulose resins and triacetyl cellulose resins; Polyimide resin, polyamideimide resin, polyamide resin, polyetherimide resin, polyetheretherketone resin, polyetherketone resin, polyketone sulfide resin, polyethersulfone resin, polysulfone resin, polyphenylene sulfide resin, polyphenylene oxide resin, polyethylene terephthalate resin, Polybutylene terephthalate resin, polyethylene naphthalate resin, polyacetal resin, polycarbonate resin, polyarylate resin, (meth) acrylic resin Other resins such as polyvinyl alcohol resin, polypropylene resin, cellulose resin, epoxy resin, phenol resin; (meth) acrylic acid ester-vinyl aromatic compound copolymer resin, isobutene / N-methylmaleimide copolymer resin, Copolymer resins such as styrene / acrylonitrile copolymer resins; and the like. One of these may be used alone, or two or more of these may be combined in any ratio. Among these, alicyclic structure-containing polymer resins such as norbornene resins are preferable.
The details of the alicyclic structure and the norbornene-based resin are as described in Patent Document 1.
 前記熱可塑性樹脂の重量平均分子量(Mw)としては、特に制限はないが、10000以上が好ましく、15000以上がより好ましく、20000以上が特に好ましく、100000以下が好ましく、80000以下がより好ましく、50000以下が特に好ましい。前記熱可塑性樹脂の重量平均分子量(Mw)が、前記範囲内であることにより、斜め延伸フィルムの機械的強度および成形加工性を高度にバランスさせることができる。なお、ここで、前記熱可塑性樹脂の重量平均分子量(Mw)は、溶媒としてシクロヘキサンを用いてゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン換算の重量平均分子量である。ただし、前記ゲル・パーミエーション・クロマトグラフィーにおいて、試料がシクロヘキサンに溶解しない場合には溶媒としてトルエンを用いてもよい。溶媒としてトルエンを用いた場合は、ポリスチレン換算の重量平均分子量とする。 The weight average molecular weight (Mw) of the thermoplastic resin is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably 80,000 or less, and 50,000 or less. Is particularly preferred. When the weight average molecular weight (Mw) of the thermoplastic resin is within the above range, the mechanical strength and molding processability of the obliquely stretched film can be highly balanced. Here, the weight average molecular weight (Mw) of the thermoplastic resin is a weight average molecular weight in terms of polyisoprene measured by gel permeation chromatography using cyclohexane as a solvent. However, in the gel permeation chromatography, toluene may be used as a solvent when the sample does not dissolve in cyclohexane. When toluene is used as the solvent, the weight average molecular weight in terms of polystyrene is used.
 前記熱可塑性樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、特に制限はないが、1.2以上が好ましく、1.5以上がより好ましく、1.8以上が特に好ましく、3.5以下が好ましく、3.0以下がより好ましく、2.7以下が特に好ましい。前記熱可塑性樹脂の分子量分布を上記下限値以上にすることで、熱可塑性樹脂の生産性を高め、製造コストを抑制することができる。また、前記熱可塑性樹脂の分子量分布を上記上限値以下にすることで、低分子成分の量が小さくなるので、高温暴露時の緩和を抑制して、斜め延伸フィルムの安定性を高めることができる。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the thermoplastic resin is not particularly limited, but is preferably 1.2 or more, more preferably 1.5 or more, and more preferably 1.8 or more. Particularly preferred is 3.5 or less, more preferred is 3.0 or less, and particularly preferred is 2.7 or less. By setting the molecular weight distribution of the thermoplastic resin to be equal to or higher than the lower limit, the productivity of the thermoplastic resin can be increased and the manufacturing cost can be suppressed. In addition, by making the molecular weight distribution of the thermoplastic resin not more than the above upper limit value, the amount of low molecular components becomes small, so that relaxation during high temperature exposure can be suppressed and the stability of the obliquely stretched film can be improved. .
 前記熱可塑性樹脂のガラス転移温度Tgは、好ましくは100℃以上、より好ましくは110℃以上であり、好ましくは180℃以下、より好ましくは170℃以下である。前記熱可塑性樹脂のガラス転移温度を前記範囲の下限値以上にすることにより、高温環境下におけるフィルムの耐久性を高めることができる。また、前記熱可塑性樹脂のガラス転移温度を前記範囲の上限値以下にすることにより、延伸処理を容易に行うことができる。 The glass transition temperature Tg of the thermoplastic resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower. By setting the glass transition temperature of the thermoplastic resin to be equal to or higher than the lower limit of the above range, the durability of the film in a high temperature environment can be enhanced. Moreover, the extending | stretching process can be easily performed by making the glass transition temperature of the said thermoplastic resin below into the upper limit of the said range.
〔熱融着〕
 前記熱融着では、通常、ヒートシーラー装置を用いて接合する。前記ヒートシーラ装置は、熱可塑性樹脂フィルムを挟むようにしてヒータで加熱して、融着(溶着)させる。ヒータは熱可塑性樹脂フィルムを溶解はするが分解はしない所定の温度まで加熱する。ヒータが熱可塑性樹脂フィルムを重ね合わせた状態で所定時間接触することにより熱可塑性樹脂フィルムの一部が溶けて接着し、先行する熱可塑性樹脂フィルムと後行する熱可塑性樹脂フィルムとを接合することができる。
 より具体的には、例えば、図1に示すように、ヒートシーラー装置10を用いて、先行する熱可塑性樹脂フィルムAと後行する熱可塑性樹脂フィルムBとが熱融着される。
(Heat fusion)
In the heat fusion, bonding is usually performed using a heat sealer device. The heat sealer is heated (heated) with a heater so as to sandwich a thermoplastic resin film, and is fused (welded). The heater is heated to a predetermined temperature that dissolves the thermoplastic resin film but does not decompose it. When the heater is in contact with the thermoplastic resin film for a predetermined period of time, a part of the thermoplastic resin film is melted and bonded, and the preceding thermoplastic resin film and the subsequent thermoplastic resin film are joined. Can do.
More specifically, for example, as shown in FIG. 1, the preceding thermoplastic resin film A and the following thermoplastic resin film B are heat-sealed using a heat sealer device 10.
 図1に示すように、図2で後述する斜め延伸機60(テンター延伸機)に連続したフィルム3を供給するために、先行して送り出された先行フィルムAの後端部と、後行して送り出された後行フィルムBの先端部とを重ね合わせて、ヒートシーラー装置10を用いて熱融着(熱溶着)により接合する。ヒートシーラー装置10は、フィルム3の搬送路を上下に挟むようにして設けられた上溶着ヘッド21及び下溶着ヘッド22を備えている。上溶着ヘッド21は下面から露呈するヒータ23を有し、下溶着ヘッド22は上面から露呈するヒータ24を有する。各溶着ヘッド21,22は、図示しないシフト機構によって、ヒータ23,24をフィルム3に接触させる加熱位置とヒータ23,24をフィルム3から離す退避位置との間で移動する。各ヒータ23,24は、温調器25,26により温度制御される。 As shown in FIG. 1, in order to supply a continuous film 3 to an oblique stretching machine 60 (tenter stretching machine) described later in FIG. The leading end portion of the succeeding film B fed out is overlapped and joined by heat fusion (heat welding) using the heat sealer device 10. The heat sealer device 10 includes an upper welding head 21 and a lower welding head 22 that are provided so as to sandwich the conveyance path of the film 3 vertically. The upper welding head 21 has a heater 23 exposed from the lower surface, and the lower welding head 22 has a heater 24 exposed from the upper surface. The welding heads 21 and 22 are moved between a heating position where the heaters 23 and 24 are brought into contact with the film 3 and a retreat position where the heaters 23 and 24 are separated from the film 3 by a shift mechanism (not shown). The heaters 23 and 24 are temperature controlled by temperature controllers 25 and 26.
 ヒートシーラ装置10を用いてフィルムを接合する手順について説明する。先行フィルムAの後端部に後行フィルムBの先端部を重ね合わせる。上溶着ヘッド21及び下溶着ヘッド22を加熱位置に移動させる。各ヒータ23,24の温度は、フィルム3を溶解はするが分解はしない所定の温度に設定する。各ヒータ23,24はフィルムA、Bを重ね合わせた領域内に接触させる。各ヒータ23,24により所定時間加熱することによりフィルムの一部が溶けて接着される。各ヒータ23,24は所定時間加熱した後に加熱を停止し、接合部28を圧迫状態で自然冷却する。次に、上溶着ヘッド21及び下溶着ヘッド22を退避位置に移動させる。 The procedure for bonding the film using the heat sealer 10 will be described. The leading edge of the trailing film B is superimposed on the trailing edge of the preceding film A. The upper welding head 21 and the lower welding head 22 are moved to the heating position. The temperature of each heater 23 and 24 is set to a predetermined temperature that dissolves the film 3 but does not decompose it. The heaters 23 and 24 are brought into contact with a region where the films A and B are overlapped. A part of the film is melted and bonded by heating with the heaters 23 and 24 for a predetermined time. The heaters 23 and 24 are heated for a predetermined time and then stopped, and the joint portion 28 is naturally cooled in a compressed state. Next, the upper welding head 21 and the lower welding head 22 are moved to the retracted position.
 次に、ローラー10aおよびローラー10bを用いて、熱融着により接合された熱可塑性樹脂フィルムA,Bを斜め延伸機60に搬送する。 Next, using the roller 10a and the roller 10b, the thermoplastic resin films A and B joined by thermal fusion are conveyed to the oblique stretching machine 60.
 最後に、ローラー10aおよびローラー10bを用いて、熱可塑性樹脂フィルムBのみを斜め延伸機60に搬送する。 Finally, only the thermoplastic resin film B is conveyed to the oblique stretching machine 60 using the roller 10a and the roller 10b.
 以降、熱可塑性樹脂フィルムBがなくなった場合は、上述に示す動作と同様の動作で、熱可塑性樹脂フィルムAを熱可塑性樹脂フィルムBに熱融着により接合し、接合された熱可塑性フィルムA,Bを斜め延伸機60に搬送し、最終的には、熱可塑性樹脂フィルムAのみを斜め延伸機60に搬送する。また、熱可塑性樹脂フィルムAがなくなった場合は、上述に示す動作を行う。これらの動作を繰り返すことで、熱可塑性樹脂フィルムを斜め延伸機60へと連続的に供給することができる。 Thereafter, when the thermoplastic resin film B disappears, the thermoplastic resin film A is joined to the thermoplastic resin film B by heat fusion in the same operation as described above, and the joined thermoplastic films A, B is conveyed to the oblique stretching machine 60, and finally, only the thermoplastic resin film A is conveyed to the oblique stretching machine 60. Moreover, when the thermoplastic resin film A runs out, the operation shown above is performed. By repeating these operations, the thermoplastic resin film can be continuously supplied to the oblique stretching machine 60.
[テープ接合]
 前記テープ接合では、例えば、斜め延伸工程を行う延伸温度の温度域で熱可塑性樹脂フィルム(原反フィルム)と略同じ延伸挙動を示す基材の両面に、粘着層が設けられている両面テープを用いて接合する。
 具体的には、ヒートシーラー装置10を用いて熱融着を行う代わりに、熱可塑性樹脂フィルムA,Bの一方に両面テープなどを貼り付けた後、他方を貼り合わせることにより接合すること以外は、上述したのと同様にして接合できる。
[Tape bonding]
In the tape joining, for example, a double-sided tape in which an adhesive layer is provided on both surfaces of a substrate exhibiting substantially the same stretching behavior as a thermoplastic resin film (raw film) in a temperature range of a stretching temperature at which an oblique stretching process is performed. Use to join.
Specifically, instead of performing heat fusion using the heat sealer device 10, after attaching a double-sided tape or the like to one of the thermoplastic resin films A and B, the other is bonded by bonding the other. They can be joined in the same manner as described above.
[超音波融着]
 前記超音波融着は、電気エネルギーを機械的振動エネルギーに変換し、また同時に加圧することにより熱可塑性樹脂フィルムの接合面に強力な摩擦熱を発生させ、熱可塑性樹脂を溶融し結合させる方法である。前記超音波融着では、例えば、熱可塑性樹脂フィルムを振幅0.05mm、毎秒2万~2万8千回で機械的に振動させて発熱させ、瞬時に融着(溶着)することができる。
 具体的には、ヒートシーラー装置10を用いて熱融着を行う代わりに、超音波接合装置(例えば、特開2009-90650号公報の図7参照)などを用いて超音波融着することにより接合すること以外は、上述したのと同様にして接合できる。
[Ultrasonic fusion]
The ultrasonic fusion is a method in which electric energy is converted into mechanical vibration energy, and at the same time, strong frictional heat is generated on the joining surface of the thermoplastic resin film to melt and bond the thermoplastic resin. is there. In the ultrasonic fusion, for example, a thermoplastic resin film can be mechanically vibrated at an amplitude of 0.05 mm and 20,000 to 28,000 times per second to generate heat and be instantly fused (welded).
Specifically, instead of performing heat fusion using the heat sealer device 10, ultrasonic welding is performed using an ultrasonic bonding device (for example, see FIG. 7 of JP 2009-90650 A). Except for joining, joining can be performed in the same manner as described above.
[レーザー融着]
 前記レーザー融着では、例えば、熱可塑性樹脂フィルムの法線方向から接合ラインに沿って融着レーザービームを照射する。融着レーザービームは、先行する熱可塑性樹脂フィルムと後行する熱可塑性樹脂フィルムとを相互に溶かして接合させる。このとき、レーザー融着を行うレーザー融着装置は、先行する熱可塑性樹脂フィルムの接合面(後行する熱可塑性樹脂フィルムの接合面)を焦点位置として融着レーザービームを照射する。融着レーザービームが照射されると先行する熱可塑性樹脂フィルムの接合面で発熱して溶融し、その熱が後行する熱可塑性樹脂フィルムの接合面に伝わって溶融する。これにより、先行する熱可塑性樹脂フィルムと後行する熱可塑性樹脂フィルムとが接合部で融着(溶着)される。
 具体的には、ヒートシーラー装置10を用いて熱融着を行う代わりに、レーザー融着装置などを用いてレーザー融着により接合すること以外は、上述したのと同様にして接合できる。
[Laser welding]
In the laser fusion, for example, a fusion laser beam is irradiated along the joining line from the normal direction of the thermoplastic resin film. The fusion laser beam melts and joins the preceding thermoplastic resin film and the subsequent thermoplastic resin film. At this time, the laser fusion apparatus that performs laser fusion irradiates the fusion laser beam with the joining surface of the preceding thermoplastic resin film (the joining surface of the subsequent thermoplastic resin film) as the focal position. When the fusion laser beam is irradiated, heat is generated and melted at the joining surface of the preceding thermoplastic resin film, and the heat is transferred to the joining surface of the succeeding thermoplastic resin film and melted. As a result, the preceding thermoplastic resin film and the subsequent thermoplastic resin film are fused (welded) at the joint.
Specifically, instead of performing heat fusion using the heat sealer device 10, bonding can be performed in the same manner as described above except that laser fusion is performed using a laser fusion device or the like.
<予熱工程>
 本発明の斜め延伸フィルムの製造方法の予熱工程では、前記接合部を介して接合された熱可塑性樹脂フィルムを連続搬送しながら接合部を下記式(1)および(2)を満たす条件で予熱することにより、後述する斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制することができる。なお、予熱工程では、少なくとも接合部を下記の条件で予熱すれば、接合部以外の部分(熱可塑性樹脂フィルムAのみからなる部分および熱可塑性樹脂フィルムBのみからなる部分)は下記以外の条件で予熱してもよい。但し、斜め延伸フィルムの製造容易性の観点からは接合部と接合部以外の部分とは同一の条件で予熱することが好ましい。
 Tg<T≦Tg+60      ・・・(1)
 2≦t      ・・・(2)
 ここで、式(1)におけるTは、予熱工程における接合部の予熱温度(℃)を表し、式(1)におけるTgは、熱可塑性樹脂フィルムにおける熱可塑性樹脂のガラス転移温度(℃)を表し、式(2)におけるtは、予熱工程における接合部の予熱時間(秒間)を表す。
<Preheating process>
In the preheating step of the manufacturing method of the obliquely stretched film of the present invention, the joined portion is preheated under the conditions satisfying the following formulas (1) and (2) while continuously transporting the thermoplastic resin film joined through the joined portion. Thereby, it can suppress that the junction part of a thermoplastic resin film fractures | ruptures in the diagonal stretch process mentioned later. In the preheating step, if at least the joint is preheated under the following conditions, parts other than the joint (parts consisting only of the thermoplastic resin film A and parts consisting only of the thermoplastic resin film B) are subject to conditions other than the following. You may preheat. However, from the viewpoint of ease of manufacture of the obliquely stretched film, it is preferable to preheat the joint and the portion other than the joint under the same conditions.
Tg <T ≦ Tg + 60 (1)
2 ≦ t (2)
Here, T in Formula (1) represents the preheating temperature (° C.) of the joint in the preheating step, and Tg in Formula (1) represents the glass transition temperature (° C.) of the thermoplastic resin in the thermoplastic resin film. T in equation (2) represents the preheating time (seconds) of the joint in the preheating step.
 前記予熱工程における接合部の予熱温度T(℃)は、Tg(℃)超Tg+60(℃)以下であれば、特に制限はなく、Tg+10(℃)以上が好ましく、Tg+20(℃)以上がより好ましく、Tg+30(℃)以上が特に好ましく、Tg+50(℃)以下が好ましく、Tg+40(℃)以下がより好ましい。
 前記予熱工程における接合部の予熱温度T(℃)は、Tg(℃)超であると、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制することができ、Tg+60(℃)以下であると、熱可塑性樹脂フィルムが柔らかくなり過ぎて熱可塑性樹脂フィルムの搬送に支障が生じてしまうのを防止することができる。
The preheating temperature T (° C.) of the joint in the preheating step is not particularly limited as long as it is more than Tg (° C.) and Tg + 60 (° C.), preferably Tg + 10 (° C.) or more, more preferably Tg + 20 (° C.) or more. Tg + 30 (° C.) or higher is particularly preferable, Tg + 50 (° C.) or lower is preferable, and Tg + 40 (° C.) or lower is more preferable.
When the preheating temperature T (° C.) of the joint in the preheating step is higher than Tg (° C.), the joint of the thermoplastic resin film can be prevented from breaking in the oblique stretching step, and Tg + 60 (° C.). When it is below, it is possible to prevent the thermoplastic resin film from becoming too soft and hindering the conveyance of the thermoplastic resin film.
 前記予熱工程における接合部の予熱時間t(秒間)は、2秒間以上であれば、特に制限はなく、5秒間以上が好ましく、7秒間以上がより好ましく、20秒間以下が好ましい。前記予熱工程における接合部の予熱時間t(秒間)を2秒間以上とすることで、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制することができ、また、前記予熱工程における接合部の予熱時間t(秒間)を20秒間以下とすることで、斜め延伸フィルムの生産性が低下してしまうのを防止することができる。 The preheating time t (second) of the joint in the preheating step is not particularly limited as long as it is 2 seconds or more, preferably 5 seconds or more, more preferably 7 seconds or more, and preferably 20 seconds or less. By setting the preheating time t (seconds) of the joint in the preheating step to 2 seconds or more, the joint of the thermoplastic resin film can be prevented from breaking in the oblique stretching step, and in the preheating step. By setting the preheating time t (second) of the bonded portion to 20 seconds or less, it is possible to prevent the productivity of the obliquely stretched film from being lowered.
 前記熱可塑性樹脂フィルムの厚みが100μm以上と厚い場合、予熱工程における接合部の予熱温度T(℃)は、Tg+10(℃)以上が好ましく、Tg+20(℃)以上がより好ましく、Tg+60(℃)以下が好ましく、Tg+50(℃)以下がより好ましく、Tg+40(℃)以下が特に好ましい。また、予熱工程における接合部の予熱時間t(秒間)は、5(秒間)以上が好ましく、7(秒間)以上がより好ましく、15(秒間)以下が好ましい。
 一方、前記熱可塑性樹脂フィルムの厚みが100μm未満と薄い場合、予熱工程における接合部の予熱温度T(℃)は、Tg(℃)超が好ましく、Tg+10(℃)以上がより好ましく、Tg+50(℃)以下が好ましく、また、予熱工程における接合部の予熱時間t(秒間)は、2(秒間)以上が好ましく、12(秒間)以下が好ましく、7(秒間)以下がより好ましい。
When the thickness of the thermoplastic resin film is as thick as 100 μm or more, the preheating temperature T (° C.) of the joint in the preheating step is preferably Tg + 10 (° C.) or more, more preferably Tg + 20 (° C.) or more, and Tg + 60 (° C.) or less. Is preferable, Tg + 50 (° C.) or less is more preferable, and Tg + 40 (° C.) or less is particularly preferable. Further, the preheating time t (second) of the joint in the preheating step is preferably 5 (seconds) or more, more preferably 7 (seconds) or more, and preferably 15 (seconds) or less.
On the other hand, when the thickness of the thermoplastic resin film is as thin as less than 100 μm, the preheating temperature T (° C.) of the joint in the preheating step is preferably more than Tg (° C.), more preferably Tg + 10 (° C.) or more, and Tg + 50 (° C. In addition, the preheating time t (second) of the joint in the preheating step is preferably 2 (seconds) or more, preferably 12 (seconds) or less, and more preferably 7 (seconds) or less.
<斜め延伸工程>
 本発明の斜め延伸フィルムの製造方法の斜め延伸工程では、前記予熱された熱可塑性樹脂フィルムを連続搬送しながら斜め延伸することにより、斜め延伸フィルムを製造することができる。
<An oblique stretching process>
In the oblique stretching step of the method for producing an obliquely stretched film of the present invention, an obliquely stretched film can be produced by obliquely stretching the preheated thermoplastic resin film while continuously conveying the thermoplastic resin film.
 前記斜め延伸工程における接合部の延伸温度T’(℃)は、特に制限はないが、Tg+3(℃)以上が好ましく、Tg+8(℃)以上がより好ましく、Tg+10(℃)以上がさらに好ましく、Tg+30(℃)以下が好ましく、Tg+25(℃)以下がより好ましい。
 前記延伸温度T’(℃)が、前記範囲内であることにより、熱可塑性樹脂フィルムに含まれる分子を斜め延伸によって安定して配向させ、且つ、所望の位相差を得ることができる。なお、前記延伸温度T’(℃)は、前記予熱温度T(℃)と同じであっても異なっていてもよい。
The stretching temperature T ′ (° C.) of the joint in the oblique stretching step is not particularly limited, but is preferably Tg + 3 (° C.) or higher, more preferably Tg + 8 (° C.) or higher, further preferably Tg + 10 (° C.) or higher, and Tg + 30. (° C.) or less is preferable, and Tg + 25 (° C.) or less is more preferable.
When the stretching temperature T ′ (° C.) is within the above range, the molecules contained in the thermoplastic resin film can be stably oriented by oblique stretching, and a desired retardation can be obtained. The stretching temperature T ′ (° C.) may be the same as or different from the preheating temperature T (° C.).
 前記熱可塑性樹脂フィルムの厚みが100μm以上と厚い場合、斜め延伸工程における接合部の延伸温度T’(℃)は、Tg+10(℃)以上が好ましく、Tg+15(℃)以上がより好ましく、Tg+40(℃)以下が好ましく、Tg+30(℃)以下がより好ましく、Tg+25(℃)以下が特に好ましい。
 一方、前記熱可塑性樹脂フィルムの厚みが100μm未満と薄い場合、斜め延伸工程における接合部の延伸温度T’(℃)は、Tg(℃)超が好ましく、Tg+10(℃)以上がより好ましく、Tg+30(℃)以下が好ましく、Tg+20(℃)以下がより好ましい。
When the thickness of the thermoplastic resin film is as thick as 100 μm or more, the stretching temperature T ′ (° C.) of the joint in the oblique stretching step is preferably Tg + 10 (° C.) or more, more preferably Tg + 15 (° C.) or more, and Tg + 40 (° C. ) Or less is preferable, Tg + 30 (° C.) or less is more preferable, and Tg + 25 (° C.) or less is particularly preferable.
On the other hand, when the thickness of the thermoplastic resin film is as thin as less than 100 μm, the stretching temperature T ′ (° C.) of the joint in the oblique stretching process is preferably more than Tg (° C.), more preferably Tg + 10 (° C.) or more, and Tg + 30. (° C.) or less is preferable, and Tg + 20 (° C.) or less is more preferable.
 前記斜め延伸工程における延伸倍率は、特に制限はないが、1.1倍以上が好ましく、1.2倍以上がより好ましく、1.3倍以上が特に好ましく、3.0倍以下が好ましく、2.5倍以下がより好ましく、2.0倍以下が特に好ましい。前記延伸倍率を1.1倍以上にすることにより斜め延伸フィルムにおける分子の配向の大きさ及び方向を、より正確に制御することができ、また、前記延伸倍率を3.0倍以下にすることにより斜め延伸フィルムの破断を抑制し、斜め方向に遅相軸を有した長尺フィルムを安定的に得ることができる。 The stretching ratio in the oblique stretching step is not particularly limited, but is preferably 1.1 times or more, more preferably 1.2 times or more, particularly preferably 1.3 times or more, and preferably 3.0 times or less. .5 times or less is more preferable, and 2.0 times or less is particularly preferable. By setting the draw ratio to 1.1 times or more, the size and direction of molecular orientation in the obliquely stretched film can be controlled more accurately, and the draw ratio is made 3.0 times or less. Thus, it is possible to stably obtain a long film having a slow axis in an oblique direction by suppressing breakage of the obliquely stretched film.
 前記斜め延伸フィルムは、その幅方向に対して平均で所定範囲に遅相軸を有する。具体的には、例えば、その幅方向に対して平均で5°以上85°以下の角度範囲に遅相軸を有する。ここで、前記斜め延伸フィルムがその幅方向に対して平均で所定範囲に遅相軸を有する、とは、前記斜め延伸フィルムの幅方向の複数の地点において当該斜め延伸フィルムの幅方向と遅相軸とがなす角度を測定した場合に、それらの地点で測定された角度の平均値が、前記の所定範囲に収まることを意味する。前記斜め延伸フィルムの幅方向と遅相軸とがなす角度を、以下、適宜「配向角」と呼ぶことがある。さらに、前記の配向角θの平均値を、以下、適宜「平均配向角」と呼ぶことがある。前記斜め延伸フィルムの平均配向角θは、特に制限はないが、通常、5°以上85°以下であり、40°以上が好ましく、50°以下が好ましい。前記の遅相軸は、熱可塑性樹脂フィルムを斜めの方向に延伸したことによって発現したものであるので、前記の平均配向角θの具体的な値は、上述した製造方法における延伸条件によって調整できる。
 なお、前記平均配向角θは、前記斜め延伸フィルムの幅方向において5cm間隔の複数の地点で、位相差計を用いて配向角を測定し、測定された各地点での配向角の値の平均値を計算することにより求めうる。
The obliquely stretched film has a slow axis in a predetermined range on average in the width direction. Specifically, for example, it has a slow axis in an angle range of 5 ° to 85 ° on average with respect to the width direction. Here, the obliquely stretched film has a slow axis in a predetermined range on average with respect to the width direction, which means that the oblique direction of the obliquely stretched film is in the width direction and the slow phase at a plurality of points in the width direction of the obliquely stretched film. This means that when the angles formed with the axes are measured, the average value of the angles measured at those points falls within the predetermined range. Hereinafter, the angle formed by the width direction of the obliquely stretched film and the slow axis may be appropriately referred to as “orientation angle”. Furthermore, the average value of the orientation angle θ is sometimes referred to as “average orientation angle” as appropriate. The average orientation angle θ of the obliquely stretched film is not particularly limited, but is usually 5 ° to 85 °, preferably 40 ° or more, and preferably 50 ° or less. Since the slow axis is expressed by stretching the thermoplastic resin film in an oblique direction, the specific value of the average orientation angle θ can be adjusted by the stretching conditions in the manufacturing method described above. .
The average orientation angle θ is an average of the orientation angle values measured at each point by measuring the orientation angle using a phase difference meter at a plurality of points at intervals of 5 cm in the width direction of the obliquely stretched film. It can be obtained by calculating the value.
 また、前記斜め延伸フィルムの幅方向と遅相軸とがなす前記の配向角のバラツキは、特に制限はないが、前記斜め延伸フィルムの長手方向において、1.0°以下が好ましく、0.5°以下がより好ましく、0.3°以下が特に好ましく、0°であることが理想的である。ここで、前記配向角のバラツキは、前記斜め延伸フィルムの前記配向角の最大値と最小値との差を表す。前記の配向角のバラツキを前記のように小さくすることにより、この斜め延伸フィルムから切り出したフィルムを液晶表示装置の光学補償フィルムとして用いた場合に、その液晶表示装置のコントラストを向上させることができる。 Further, the variation in the orientation angle formed by the width direction of the obliquely stretched film and the slow axis is not particularly limited, but is preferably 1.0 ° or less in the longitudinal direction of the obliquely stretched film, It is more preferably at most 0 °, particularly preferably at most 0.3 °, and ideally 0 °. Here, the variation in the orientation angle represents the difference between the maximum value and the minimum value of the orientation angle of the obliquely stretched film. By reducing the variation in the orientation angle as described above, the contrast of the liquid crystal display device can be improved when the film cut out from the obliquely stretched film is used as an optical compensation film of the liquid crystal display device. .
 前記斜め延伸フィルムの平均厚みを適宜設定することにより、前記斜め延伸フィルムの機械的強度を高めることができる。
 ここで、前記斜め延伸フィルムの平均厚みは、フィルムの幅方向において5cm間隔の複数の地点で厚みを測定し、それらの測定値の平均値を計算することにより求めうる。
By appropriately setting the average thickness of the obliquely stretched film, the mechanical strength of the obliquely stretched film can be increased.
Here, the average thickness of the obliquely stretched film can be obtained by measuring the thickness at a plurality of points at intervals of 5 cm in the width direction of the film and calculating the average value of the measured values.
 前記斜め延伸フィルムの幅は、特に制限はないが、1000mm以上が好ましく、1330mm以上がより好ましく、1800mm以下が好ましく、1600mm以下がより好ましい。前記斜め延伸フィルムの幅を前記範囲内とすることにより、斜め延伸フィルムを大型の表示装置(有機EL表示装置等)に適用することが可能となる。 The width of the obliquely stretched film is not particularly limited, but is preferably 1000 mm or more, more preferably 1330 mm or more, preferably 1800 mm or less, and more preferably 1600 mm or less. By setting the width of the obliquely stretched film within the above range, the obliquely stretched film can be applied to a large display device (such as an organic EL display device).
 前記斜め延伸フィルムの平均面内レターデーションReは、特に制限はないが、80nm以上が好ましく、120nm以上がより好ましく、140nm以上が特に好ましく、300nm以下が好ましく、200nm以下でがより好ましく、150nm以下が特に好ましい。前記平均面内レターデーションReを、前記範囲内とすることにより、前記斜め延伸フィルムから切り出したフィルムを表示装置の光学補償フィルムとして好適に用いうる。ただし、適用すべき表示装置の構成に応じて、斜め延伸フィルムの平均面内レターデーションReは、適切な値に任意に設定しうる。
 なお、前記平均面内レターデーションReは、前記斜め延伸フィルムの幅方向において5cm間隔の複数の地点で、位相差計を用いて面内レターデーションを測定し、測定された各地点での面内レターデーションの値の平均値を計算することにより求めうる。
The average in-plane retardation Re of the obliquely stretched film is not particularly limited, but is preferably 80 nm or more, more preferably 120 nm or more, particularly preferably 140 nm or more, preferably 300 nm or less, more preferably 200 nm or less, and 150 nm or less. Is particularly preferred. By setting the average in-plane retardation Re within the above range, a film cut out from the obliquely stretched film can be suitably used as an optical compensation film of a display device. However, depending on the configuration of the display device to be applied, the average in-plane retardation Re of the obliquely stretched film can be arbitrarily set to an appropriate value.
The average in-plane retardation Re is measured at in-plane retardation using a phase difference meter at a plurality of points at intervals of 5 cm in the width direction of the obliquely stretched film. It can be obtained by calculating an average value of retardation values.
 前記斜め延伸フィルムの面内レターデーションのバラツキは、特に制限はないが、10nm以下が好ましく、5nm以下がより好ましく、2nm以下が特に好ましく、理想的には0nmである。ここで、前記面内レターデーションのバラツキは、斜め延伸フィルムの任意の地点における面内レターデーションのうち最大値と最小値との差をいう。前記斜め延伸フィルムの面内レターデーションのバラツキを小さくすることにより、前記斜め延伸フィルムから切り出したフィルムを表示装置に適用した場合に、その表示装置の画質を良好にすることができる。 The variation in in-plane retardation of the obliquely stretched film is not particularly limited, but is preferably 10 nm or less, more preferably 5 nm or less, particularly preferably 2 nm or less, and ideally 0 nm. Here, the dispersion of the in-plane retardation means a difference between the maximum value and the minimum value of the in-plane retardation at an arbitrary point of the obliquely stretched film. By reducing variations in in-plane retardation of the obliquely stretched film, when a film cut out from the obliquely stretched film is applied to a display device, the image quality of the display device can be improved.
 上述した予熱工程および斜め延伸工程は、例えば、以下に示す斜め延伸機を用いて行われる。
 図2は、本発明に係る斜め延伸フィルムの製造方法を実施するために用いられる斜め延伸機の構成例を模式的に示す図である。
 図2に示すように、斜め延伸機60は、いわゆるテンター延伸機であり、ヒートシーラー装置10で接合された熱可塑性樹脂フィルムF1の端部をそれぞれ把持する2つの把持装置101L,101Rを含んでなる一対の把持手段110と、一対の把持手段110によって把持された熱可塑性樹脂フィルムF1の温度を調整する温調室70とを備えている。
The preheating process and the oblique stretching process described above are performed using, for example, an oblique stretching machine described below.
FIG. 2 is a diagram schematically showing a configuration example of an oblique stretching machine used for carrying out the method for producing an obliquely stretched film according to the present invention.
As shown in FIG. 2, the oblique stretching machine 60 is a so-called tenter stretching machine, and includes two gripping devices 101L and 101R that grip the end portions of the thermoplastic resin film F1 joined by the heat sealer device 10, respectively. A pair of gripping means 110 and a temperature control chamber 70 for adjusting the temperature of the thermoplastic resin film F1 gripped by the pair of gripping means 110.
 温調室70は、把持手段110により把持された熱可塑性樹脂フィルムF1を斜め延伸に適正な温度に保つ領域であり、この領域は、例えば、予熱ゾーンX、斜め延伸ゾーンY、および熱固定ゾーンの3つのゾーンに分けて、各ゾーンの温度をそれぞれ独立して調整できるようにする。なお、予熱温度T(℃)と延伸温度T’(℃)とが同じである場合には、予熱ゾーンXと斜め延伸ゾーンYとを分けなくてもよい。
 なお、予熱ゾーンXでは予熱工程が実施され、斜め延伸ゾーンYでは斜め延伸工程が実施される。
The temperature control chamber 70 is a region that keeps the thermoplastic resin film F1 gripped by the gripping means 110 at an appropriate temperature for oblique stretching. This region includes, for example, a preheating zone X, an oblique stretching zone Y, and a heat fixing zone. The temperature of each zone can be adjusted independently. When the preheating temperature T (° C.) and the stretching temperature T ′ (° C.) are the same, the preheating zone X and the oblique stretching zone Y do not have to be separated.
In the preheating zone X, a preheating process is performed, and in the oblique stretching zone Y, an oblique stretching process is performed.
 各把持装置101L,101Rは、熱可塑性樹脂フィルムF1の端部を把持する複数の把持子としてのクリップ110L,110Rと、クリップ110L,110Rが所定間隔で設置された無端チェーン120L,120R(一部図示略)と、無端チェーン120L,120Rが掛け渡される一対のスプロケッタ12L,13L,12R,13Rと、スプロケッタ12L,12Rを回転駆動させる駆動機構(図示略)と、前記駆動機構により回転するスプロケッタ12L,12Rの回転に伴って移動するクリップ110L,110Rが周回移動するようにその方向を案内するレール(図示略)とを備えている。なお、本実施形態では、スプロケッタ12Lの回転速度とスプロケッタ12Rの回転速度が同じになるように調整されており、このため、クリップ110L,110Rの移動速度が同じである。なお、把持装置101Lと把持装置101Rとは、その構成要素は略同じであるが、前記レールの配置方向や長さの点で相違している。 Each gripping device 101L, 101R includes clips 110L, 110R as a plurality of grips for gripping the end portion of the thermoplastic resin film F1, and endless chains 120L, 120R in which the clips 110L, 110R are installed at predetermined intervals (partly (Not shown), a pair of sprockets 12L, 13L, 12R, and 13R over which endless chains 120L and 120R are spanned, a drive mechanism (not shown) that rotates the sprockets 12L and 12R, and a sprocket 12L that is rotated by the drive mechanism. , 12R is provided with a rail (not shown) that guides the direction of the clips 110L and 110R that move with rotation. In the present embodiment, the rotation speed of the sprocket 12L and the rotation speed of the sprocket 12R are adjusted to be the same. For this reason, the moving speeds of the clips 110L and 110R are the same. The gripping device 101L and the gripping device 101R have substantially the same constituent elements, but differ in the arrangement direction and length of the rail.
 前記レールは、熱可塑性樹脂フィルムF1が供給される方向と、斜め延伸後の斜め延伸フィルムF2を巻き取る方向とが異なるように、すなわち、矢印D1、矢印D2、矢印D3の方向へ進むように配置されており、具体的には、図2に示すように、フィルムはフィルムの流れ方向の上流から下流を観察した場合、フィルムの進行方向が途中で左方向へ曲折するように配置されている。また、把持装置101L側のレールと把持装置101R側のレールとは、フィルムが供給される入口側(第一の平行部分:予熱ゾーンX)では、一定の間隔を保って平行に配置され、途中の曲折部分(斜め延伸ゾーンY)ではその間隔が徐々に広がるように配置され、また、フィルムの出口側(第二の平行部分)では、前記第一の平行部分の間隔よりも大きな間隔で平行に配置されている。なお、本実施形態では、フィルムの進行方向が左方向へ曲折するように配置したが、右方向へ曲折するように配置してもよい。 In the rail, the direction in which the thermoplastic resin film F1 is supplied and the direction in which the obliquely stretched film F2 after oblique stretching is wound are different, that is, the rails proceed in the directions of arrows D1, D2, and D3. Specifically, as shown in FIG. 2, when the film is observed from upstream to downstream in the flow direction of the film, the film is arranged so that the traveling direction of the film bends to the left in the middle. . Further, the rail on the gripping device 101L side and the rail on the gripping device 101R side are arranged in parallel at a constant interval on the inlet side (first parallel portion: preheating zone X) to which the film is supplied. In the bent portion (diagonal stretching zone Y), the interval is gradually widened, and on the exit side (second parallel portion) of the film, it is parallel with a larger interval than the interval of the first parallel portion. Is arranged. In this embodiment, the film is arranged so that the traveling direction of the film bends to the left, but may be arranged to bend to the right.
 上記のようにレールが配置されているため、曲折部分の外側となる把持装置101R側のレール長さは、曲折部分の内側となる把持装置101L側のレール長さよりも長くなる。このため、第一の平行部分(予熱ゾーンX)において、熱可塑性樹脂フィルムF1の幅方向の両端部を同時に把持した一対のクリップは、曲折部分(斜め延伸ゾーンY)を通過する際にレール長さに応じてその相対位置がずれるため、第二の平行部分には、把持装置101L側のクリップが把持装置101R側のクリップよりも先行して移動することになる。このため、レールの曲折部分を一対のクリップが通過した後には、熱可塑性樹脂フィルムF1が幅方向でも長手方向でもない斜め方向に斜め延伸されることとなり、分子の配向方向が斜め方向となった斜め延伸フィルムF2を製造できる。 Since the rail is arranged as described above, the rail length on the gripping device 101R side that is the outside of the bent portion is longer than the rail length on the gripping device 101L side that is on the inside of the bent portion. For this reason, in the first parallel portion (preheating zone X), the pair of clips that simultaneously grips both ends in the width direction of the thermoplastic resin film F1 have a rail length when passing through the bent portion (obliquely extending zone Y). Since the relative position shifts accordingly, the clip on the gripping device 101L side moves ahead of the clip on the gripping device 101R side in the second parallel portion. For this reason, after the pair of clips pass through the bent portion of the rail, the thermoplastic resin film F1 is obliquely stretched in an oblique direction that is neither the width direction nor the longitudinal direction, and the molecular orientation direction becomes the oblique direction. The obliquely stretched film F2 can be manufactured.
 このような斜め延伸機60に熱可塑性樹脂フィルムF1を供給すると、熱可塑性樹脂フィルムF1は、矢印D1の方向に沿って上流(図2における左上側)から斜め延伸機60に連続的に供給される。供給された熱可塑性樹脂フィルムF1は、温調室70に入る手前で、その幅方向の両端部を一対のクリップ110L,110Rによって同時に把持される。次いで、クリップ110L,110Rによって把持された熱可塑性樹脂フィルムF1は、温調室70内に入り、温調室70内で、各クリップ110L,110Rの各側のレールに沿った周回移動により、斜め方向に延伸される。斜め方向に延伸された斜め延伸フィルムF2は、温調室70から出た後でクリップ110L,110Rによる把持が解放され、矢印D3の方向に搬出される。 When the thermoplastic resin film F1 is supplied to such an oblique stretching machine 60, the thermoplastic resin film F1 is continuously supplied from the upstream (upper left in FIG. 2) to the oblique stretching machine 60 along the direction of the arrow D1. The The supplied thermoplastic resin film F1 is gripped by a pair of clips 110L and 110R at both ends in the width direction before entering the temperature control chamber 70. Next, the thermoplastic resin film F1 gripped by the clips 110L and 110R enters the temperature control chamber 70, and in the temperature control chamber 70, by the circular movement along the rail on each side of each clip 110L and 110R, Stretched in the direction. The obliquely stretched film F2 stretched in the oblique direction is released from the temperature control chamber 70 and then released from being gripped by the clips 110L and 110R, and is carried out in the direction of the arrow D3.
 より具体的には、点線CS1の時点で熱可塑性樹脂フィルムF1の幅方向の両端部を同時に把持し、温調室70に搬入して予熱工程を開始する。続いて、レールの間隔が広がり始める位置から斜め延伸工程を開始して、例えば点線CS2で示される位置に到達するとフィルムは点線CS2方向に延伸される。そして、レールの間隔が再び同一になる位置で斜め延伸工程を終了する。従って、温調室70への搬入位置からレールの間隔が広がり始める位置を通過するまでの搬送時間が予熱時間tになる。クリップ110L,110Rがさらに移動し点線CS3で示される位置に到達すると、延伸倍率はさらに大きくなり、点線CS3方向に分子が配向した光学異方性を有する斜め延伸フィルムF2が得られる。 More specifically, both end portions in the width direction of the thermoplastic resin film F1 are simultaneously grasped at the time of the dotted line CS1, and are carried into the temperature control chamber 70 to start the preheating process. Subsequently, the oblique stretching process is started from the position where the rail interval starts to widen, and when the position reaches, for example, the dotted line CS2, the film is stretched in the direction of the dotted line CS2. Then, the oblique stretching process is terminated at a position where the rail spacing becomes the same again. Therefore, the conveyance time from the position where the temperature is adjusted into the temperature control chamber 70 to the position where the rail interval begins to increase becomes the preheating time t. When the clips 110L and 110R further move and reach the position indicated by the dotted line CS3, the stretch ratio is further increased, and an obliquely stretched film F2 having optical anisotropy in which molecules are oriented in the direction of the dotted line CS3 is obtained.
(偏光板の製造方法)
 本発明の偏光板の製造方法は、上述した斜め延伸フィルムの製造方法により製造された斜め延伸フィルムと偏光子とを積層して偏光板を製造する方法である。
(Production method of polarizing plate)
The manufacturing method of the polarizing plate of this invention is a method of manufacturing a polarizing plate by laminating | stacking the diagonally stretched film manufactured by the manufacturing method of the diagonally stretched film mentioned above, and a polarizer.
<偏光板>
 前記偏光板は、上述した斜め延伸フィルムの製造方法により製造された斜め延伸フィルムと、偏光子とを備え、更に必要に応じて任意の部材を備えうる。
<Polarizing plate>
The polarizing plate includes an obliquely stretched film manufactured by the above-described method for manufacturing an obliquely stretched film and a polarizer, and may further include an arbitrary member as necessary.
 前記偏光板は、長尺の偏光子と長尺の斜め延伸フィルムとを、その長手方向を平行にしてロールトゥロールにて貼り合わせて製造しうる。貼り合わせの際には、必要に応じて、接着剤を用いてもよい。長尺のフィルムを用いて製造することにより、長尺の偏光板を効率的に製造することが可能である。 The polarizing plate can be manufactured by laminating a long polarizer and a long obliquely stretched film by roll-to-roll with the longitudinal direction thereof being parallel. In bonding, an adhesive may be used as necessary. By producing using a long film, it is possible to efficiently produce a long polarizing plate.
〔偏光子〕
 前記偏光子としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切なビニルアルコール系重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したものが挙げられる。このような偏光子は、自然光を入射させると直線偏光を透過させうるものであり、特に、光透過率及び偏光度に優れるものが好ましい。偏光子の厚さは、5μm以上80μm以下が一般的であるが、これに限定されない。
[Polarizer]
Examples of the polarizer include, for example, a film of a suitable vinyl alcohol polymer such as polyvinyl alcohol and partially formalized polyvinyl alcohol, a dyeing process using an dichroic substance such as iodine and a dichroic dye, a stretching process, and a crosslinking process. And the like, which have been subjected to appropriate processing in an appropriate order and manner. Such a polarizer is capable of transmitting linearly polarized light when natural light is incident thereon, and in particular, a polarizer excellent in light transmittance and degree of polarization is preferable. The thickness of the polarizer is generally 5 μm or more and 80 μm or less, but is not limited thereto.
 前記斜め延伸フィルムは、前記偏光子の両面に設けてもよく、片面に設けてもよい。従来、偏光子の表面には保護フィルムが設けられていたが、前記斜め延伸フィルムを偏光子と組み合わせることにより、前記斜め延伸フィルムが前記偏光子の保護フィルムの役目を果たしうる。そのため、前記斜め延伸フィルムと前記偏光子とを組み合わせて備える偏光板は、従来使用していた保護フィルムを省くことができ、薄型化に寄与できる。 The obliquely stretched film may be provided on both sides of the polarizer or on one side. Conventionally, a protective film has been provided on the surface of the polarizer. However, by combining the obliquely stretched film with the polarizer, the obliquely stretched film can serve as the protective film for the polarizer. Therefore, the polarizing plate provided with the obliquely stretched film and the polarizer in combination can omit the conventionally used protective film and can contribute to thinning.
〔任意の部材〕
 前記任意の部材としては、例えば、偏光子を保護するための保護フィルムが挙げられる。前記保護フィルムとしては、任意の透明フィルムを用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルムが好ましい。
[Arbitrary members]
As said arbitrary member, the protective film for protecting a polarizer is mentioned, for example. Any transparent film can be used as the protective film. Among these, a resin film excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
(液晶表示装置の製造方法)
 本発明の液晶表示装置の製造方法は、上述した偏光板を用いて液晶表示装置を製造する方法である。
(Manufacturing method of liquid crystal display device)
The manufacturing method of the liquid crystal display device of this invention is a method of manufacturing a liquid crystal display device using the polarizing plate mentioned above.
<液晶表示装置>
 前記液晶表示装置は、例えば、前記偏光板から所定の大きさに切り出したものを用いることにより製造することができる。
 前記液晶表示装置の例としては、各種の駆動方式の液晶セルを有するものを挙げることができる。液晶セルの駆動方式としては、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モード、などが挙げられる。
<Liquid crystal display device>
The liquid crystal display device can be manufactured, for example, by using what is cut out to a predetermined size from the polarizing plate.
Examples of the liquid crystal display device include those having liquid crystal cells of various driving methods. Liquid crystal cell driving methods include, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, and hybrid alignment nematic (HAN) Mode, twisted nematic (TN) mode, super twisted nematic (STN) mode, optical compensated bend (OCB) mode, and the like.
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。本発明の請求の範囲およびその均等の範囲を逸脱しない範囲において任意に変更して実施し得る。
 以下に説明する操作は、特段の規定がない限り、常温および常圧の条件において行った。また、以下の実施例および比較例において、量を表す「%」および「部」は、特段の規定がない限り、質量基準である。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these Examples. The present invention can be implemented with any modifications without departing from the scope of the claims of the present invention and its equivalent scope.
The operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified. In the following examples and comparative examples, “%” and “parts” representing amounts are based on mass unless otherwise specified.
〔評価方法〕
-熱可塑性樹脂フィルムの平均厚み(μm)の測定方法-
 スナップゲージ(ミツトヨ社製「ID-C112BS」)を用いて、熱可塑性樹脂フィルムの幅方向において5cm間隔の複数の地点で厚みを測定した。それらの測定値の平均値を計算することにより、熱可塑性樹脂フィルムの平均厚みを求めた。なお、先行して搬送される熱可塑性樹脂フィルムをシートAとし、後行して搬送される熱可塑性樹脂フィルムをシートBとした。
〔Evaluation methods〕
-Measurement method of average thickness (μm) of thermoplastic resin film-
Using a snap gauge (“ID-C112BS” manufactured by Mitutoyo Corporation), the thickness was measured at a plurality of points at intervals of 5 cm in the width direction of the thermoplastic resin film. By calculating the average value of these measured values, the average thickness of the thermoplastic resin film was determined. In addition, the thermoplastic resin film conveyed ahead is made into sheet A, and the thermoplastic resin film conveyed behind is made into sheet B.
-熱可塑性樹脂フィルムの予熱時間t(秒間)の算出方法-
 熱可塑性樹脂フィルムの予熱時間t(秒間)は、熱可塑性樹脂フィルムの搬送速度と、予熱ゾーンX内の熱可塑性樹脂フィルムの搬送距離とから算出した。
-Calculation method for preheating time t (seconds) of thermoplastic resin film-
The preheating time t (second) of the thermoplastic resin film was calculated from the conveyance speed of the thermoplastic resin film and the conveyance distance of the thermoplastic resin film in the preheating zone X.
-熱可塑性樹脂フィルムの予熱温度T(℃)の測定方法-
 図2の斜め延伸機(テンター延伸機)60に搬送された予熱ゾーンX内の熱可塑性樹脂フィルムの温度は、次のようにして測定した。
 予熱ゾーンX内の熱可塑性樹脂フィルムの接合部からのフィルム法線方向の距離100mmの空間の温度を、熱電対を用いて測定し、これを熱可塑性樹脂フィルムの予熱温度T(℃)として採用した。
-Measuring method of preheating temperature T (° C) of thermoplastic resin film-
The temperature of the thermoplastic resin film in the preheating zone X conveyed to the oblique stretching machine (tenter stretching machine) 60 of FIG. 2 was measured as follows.
The temperature of the space with a distance of 100 mm in the film normal direction from the joint of the thermoplastic resin film in the preheating zone X is measured using a thermocouple, and this is adopted as the preheating temperature T (° C.) of the thermoplastic resin film. did.
-熱可塑性樹脂フィルムの延伸温度T’(℃)の測定方法-
 図2の斜め延伸機60に搬送された斜め延伸ゾーンY内の熱可塑性樹脂フィルムの温度は、次のようにして測定した。
 斜め延伸ゾーンY内の熱可塑性樹脂フィルムの接合部からのフィルム法線方向の距離100mmの空間の温度を、熱電対を用いて測定し、これを熱可塑性樹脂フィルムの延伸温度T’(℃)として採用した。
-Measurement Method of Stretching Temperature T '(° C) of Thermoplastic Resin Film-
The temperature of the thermoplastic resin film in the oblique stretching zone Y conveyed to the oblique stretching machine 60 in FIG. 2 was measured as follows.
The temperature of the space at a distance of 100 mm in the film normal direction from the joint of the thermoplastic resin film in the oblique stretching zone Y was measured using a thermocouple, and this was measured as the stretching temperature T ′ (° C.) of the thermoplastic resin film. Adopted as.
-破断の評価-
 以下の評価基準により、破断の評価を行った。
○:接合部が起因となる破断が全く発生しない。
△:接合部が起因となる破断が発生しないで連続して運転することができる時間が24時間以上である。
×:接合部が起因となる破断が発生しないで連続して運転することができる時間が24時間未満である。
-Evaluation of fracture-
The fracture was evaluated according to the following evaluation criteria.
○: No fracture caused by the joint occurs at all.
(Triangle | delta): The time which can be continuously drive | operated without the fracture | rupture resulting from a junction part generating is 24 hours or more.
X: The time which can be continuously operated without the occurrence of breakage due to the joint is less than 24 hours.
-斜め延伸フィルムの平均面内レターデーションRe(nm)の測定方法-
 位相差計(オプトサイエンス社製「ミューラマトリクス・ポラリメータ(Axo Sc an)」)を用いて、斜め延伸フィルムの幅方向において5cm間隔の複数の地点での面内レターデーションを測定した。各地点での面内レターデーションの値の平均値を計算し、これを斜め延伸フィルムの平均面内レターデーションReとして求めた。この際、測定波長は590nmとした。
-Measurement method of average in-plane retardation Re (nm) of obliquely stretched film-
In-plane retardation at a plurality of points at intervals of 5 cm in the width direction of the obliquely stretched film was measured using a phase difference meter (“Muula Matrix Polarimeter (Axo Scan)” manufactured by Opt Science). The average value of the in-plane retardation at each point was calculated, and this was determined as the average in-plane retardation Re of the obliquely stretched film. At this time, the measurement wavelength was 590 nm.
-斜め延伸フィルムの平均配向角θ(°)の測定方法-
 位相差計(オプトサイエンス社製「ミューラマトリクス・ポラリメータ(Axo Scan)」)を用いて、斜め延伸フィルムの幅方向の複数の場所において、各地点での遅相軸を測定し、その遅相軸が斜め延伸フィルムの幅方向となす配向角を計算した。各地点での配向角の平均値を計算し、これを斜め延伸フィルムの平均配向角θとして求めた。この際、測定波長は590nmとした。
-Measuring method of average orientation angle θ (°) of obliquely stretched film-
Using a phase difference meter ("Muula Matrix Polarimeter (Axo Scan)" manufactured by Opt Science), the slow axis at each point is measured at a plurality of locations in the width direction of the obliquely stretched film. Calculated the orientation angle formed with the width direction of the obliquely stretched film. The average value of the orientation angles at each point was calculated and obtained as the average orientation angle θ of the obliquely stretched film. At this time, the measurement wavelength was 590 nm.
(実施例1)
 ノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR」、ガラス転移温度Tg 126℃)をTダイ式フィルム押出成形機で成形して、幅1200mm、厚さ120μmの長尺のノルボルネン樹脂フィルムを製造し、ロール状に巻き取った。このように、ロール状に巻き取ったノルボルネン樹脂フィルムを2つ準備し、ヒートシーラー装置を用いて、先行して搬送されるノルボルネン樹脂フィルム(シートA)と、後行して搬送されるノルボルネン樹脂フィルム(シートB)とを熱融着して接合した。
Example 1
A norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) is molded with a T-die type film extruder to produce a long norbornene resin film having a width of 1200 mm and a thickness of 120 μm. Rolled up into a roll. In this way, two norbornene resin films wound up in a roll shape are prepared, and using a heat sealer, the norbornene resin film (sheet A) transported in advance and the norbornene resin transported downstream. The film (sheet B) was bonded by heat fusion.
 次に、図2に示すように、上述した実施形態で説明した構成を有する斜め延伸機60を用意し、この斜め延伸機60に、前記熱融着により接合されたノルボルネン樹脂フィルムを熱可塑性樹脂フィルムF1として、ヒートシーラー装置10から供給した。斜め延伸機60において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸して斜め延伸フィルムF2を製造した。
 こうして得られた斜め延伸フィルムF2について、上述した方法で、破断、平均面内レターデーションRe、平均配向角θを評価した。得られた評価結果を表1に示す。
Next, as shown in FIG. 2, an oblique stretching machine 60 having the configuration described in the above-described embodiment is prepared, and a norbornene resin film bonded to the oblique stretching machine 60 by the thermal fusion is used as a thermoplastic resin. The film F1 was supplied from the heat sealer device 10. In the oblique stretching machine 60, the thermoplastic resin film F1 was preheated or obliquely stretched under the conditions shown in the column of Example 1 in Table 1 below to produce an obliquely stretched film F2.
The obliquely stretched film F2 thus obtained was evaluated for breakage, average in-plane retardation Re, and average orientation angle θ by the methods described above. The obtained evaluation results are shown in Table 1.
(実施例2)
 実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の実施例2の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 2)
In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 2 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例3)
 実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の実施例3の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 3)
In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 3 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例4)
 実施例1において、厚さ120μmの長尺のノルボルネン樹脂フィルムを製造する代わりに、厚さ70μmの長尺のノルボルネン樹脂フィルムを製造し、また、実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の実施例4の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
Example 4
In Example 1, instead of producing a long norbornene resin film having a thickness of 120 μm, a long norbornene resin film having a thickness of 70 μm was produced. In Example 1, Example 1 in Table 1 below was used. Instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column, Example 1 except that the thermoplastic resin film F1 was preheated or obliquely stretched under the conditions shown in the column of Example 4 in Table 1 below. In the same manner as described above, an obliquely stretched film F2 was produced, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例5)
 実施例4において、下記表1の実施例4の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の実施例5の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例4と同様にして、斜め延伸フィルム F2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 5)
In Example 4, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 4 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 5 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 4, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例6)
 実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の実施例6の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸して斜め延伸フィルムF2を製造したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 6)
In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 of Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Example 6 of Table 1 below. The slanted stretched film F2 was produced in the same manner as in Example 1 except that the slanted stretched film F2 was produced by preheating or obliquely stretching the film, and the obtained slanted stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例7)
 実施例6において、先行して搬送されるノルボルネン樹脂フィルムと、後行して搬送されるノルボルネン樹脂フィルムとを熱融着して接合する代わりに、先行して搬送されるノルボルネン樹脂フィルムと、後行して搬送されるノルボルネン樹脂フィルムとをテープ接合したこと以外は、実施例6と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 7)
In Example 6, instead of thermally bonding the norbornene resin film transported in advance and the norbornene resin film transported in the following, the norbornene resin film transported in advance, The obliquely stretched film F2 was produced in the same manner as in Example 6 except that the norbornene resin film conveyed in line was tape-joined, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(実施例8)
 実施例2において、ノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR」、ガラス転移温度Tg 126℃)を別のノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR」、ガラス転移温度Tg 163℃)に変更したこと以外は実施例2と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Example 8)
In Example 2, the norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) was changed to another norbornene resin pellet (“ZEONOR manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 163 ° C.)”. Except having done, it carried out similarly to Example 2, manufactured the diagonally stretched film F2, and evaluated about the obtained diagonally stretched film F2. The obtained evaluation results are shown in Table 1.
(比較例1)
 実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の比較例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Comparative Example 1)
In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 1 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(比較例2)
 実施例1において、下記表1の実施例1の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の比較例2の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例1と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Comparative Example 2)
In Example 1, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 1 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 2 in Table 1 below. Except having been preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 1, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(比較例3)
 実施例4において、下記表1の実施例4の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の比較例3の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例4と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Comparative Example 3)
In Example 4, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 4 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 3 in Table 1 below. Except that was preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 4, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(比較例4)
 実施例7において、下記表1の実施例7の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸する代わりに、下記表1の比較例4の欄に示す条件で熱可塑性樹脂フィルムF1を予熱乃至斜め延伸したこと以外は、実施例7と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Comparative Example 4)
In Example 7, instead of preheating or obliquely stretching the thermoplastic resin film F1 under the conditions shown in the column of Example 7 in Table 1 below, the thermoplastic resin film F1 under the conditions shown in the column of Comparative Example 4 in Table 1 below. Except that was preheated or obliquely stretched, the obliquely stretched film F2 was produced in the same manner as in Example 7, and the obtained obliquely stretched film F2 was evaluated. The obtained evaluation results are shown in Table 1.
(比較例5)
 比較例2において、ノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR」、ガラス転移温度Tg 126℃)を別のノルボルネン樹脂のペレット(日本ゼオン社製「ZEONOR」、ガラス転移温度Tg 163℃)に変更したこと以外は比較例2と同様にして、斜め延伸フィルムF2を製造し、得られた斜め延伸フィルムF2についての評価を行った。得られた評価結果を表1に示す。
(Comparative Example 5)
In Comparative Example 2, the norbornene resin pellet (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 126 ° C.) was changed to another norbornene resin pellet (“ZEONOR manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg 163 ° C.)”. Except having done, it carried out similarly to the comparative example 2, and manufactured the diagonally stretched film F2, and evaluated about the obtained diagonally stretched film F2. The obtained evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、予熱時間tが2秒間以上であり、且つ、予熱温度Tがノルボルネン樹脂のガラス転移温度Tg超Tg+60℃以下である実施例1~8では、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができた。
 また、接合手段がテープである実施例7よりも、接合手段が熱融着である実施例6の方が、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのをより抑制して、より確実に斜め延伸フィルムを連続して製造することができた。
 一方、予熱工程における予熱時間tが1.7秒間と短い比較例1および4では、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制することができなかった。
 また、予熱温度Tがノルボルネン樹脂のガラス転移温度Tgである比較例2、3、および5では、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制することができなかった。
As shown in Table 1, in Examples 1 to 8 in which the preheating time t is 2 seconds or more and the preheating temperature T is more than the glass transition temperature Tg of the norbornene resin Tg + 60 ° C. or less, the thermoplasticity in the oblique stretching step It was possible to continuously manufacture obliquely stretched films while suppressing breakage of the joint portion of the resin film.
In addition, in Example 6 in which the joining means is heat fusion, rather than Example 7 in which the joining means is a tape, the joint portion of the thermoplastic resin film is further prevented from breaking in the oblique stretching step. The obliquely stretched film could be continuously produced more reliably.
On the other hand, in Comparative Examples 1 and 4 in which the preheating time t in the preheating process was as short as 1.7 seconds, it was not possible to suppress the breakage of the joint portion of the thermoplastic resin film in the oblique stretching process.
Moreover, in Comparative Examples 2, 3, and 5 in which the preheating temperature T is the glass transition temperature Tg of the norbornene resin, it was not possible to suppress the breakage of the joint portion of the thermoplastic resin film in the oblique stretching process.
 本発明によれば、斜め延伸工程において熱可塑性樹脂フィルムの接合部が破断するのを抑制して、斜め延伸フィルムを連続して製造することができることができる。 According to the present invention, it is possible to continuously manufacture obliquely stretched films while suppressing breakage of the joint portion of the thermoplastic resin film in the obliquely stretching step.
   3      フィルム
  10      ヒートシーラー装置
 10a      ローラー
 10b      ローラー
 12L      スプロケッタ
 12R      スプロケッタ
 13L      スプロケッタ
 13R      スプロケッタ
  21      上溶着ヘッド
  22      下溶着ヘッド
  23      ヒータ
  24      ヒータ
  25      温調器
  26      温調器
  28      接合部
  60      斜め延伸機
  70      温調室
101L      把持装置
101R      把持装置
 110      把持手段
110L      クリップ
110R      クリップ
120L      無端チェーン
120R      無端チェーン
   A      熱可塑性樹脂フィルム(先行シート)
   B      熱可塑性樹脂フィルム(後行シート)
 CS1      点線
 CS2      点線
 CS3      点線
  D1      矢印
  D2      矢印
  D3      矢印
  F1      熱可塑性樹脂フィルム
  F2      斜め延伸フィルム
   X      予熱ゾーン
   Y      斜め延伸ゾーン
3 Film 10 Heat Sealer 10a Roller 10b Roller 12L Sprocket 12R Sprocket 13L Sprocket 13R Sprocket 21 Upper Welding Head 22 Lower Welding Head 23 Heater 24 Heater 25 Temperature Controller 26 Temperature Controller 28 Joining Section 60 Angle Stretching Machine L 70 Temperature Control Room 70 Gripping device 101R Gripping device 110 Gripping means 110L Clip 110R Clip 120L Endless chain 120R Endless chain A Thermoplastic resin film (preceding sheet)
B Thermoplastic resin film (following sheet)
CS1 dotted line CS2 dotted line CS3 dotted line D1 arrow D2 arrow D3 arrow F1 thermoplastic resin film F2 obliquely stretched film X preheating zone Y obliquely stretched zone

Claims (6)

  1.  先行して搬送される熱可塑性樹脂フィルムと、後行して搬送される熱可塑性樹脂フィルムとを、接合部を介して接合する接合工程と、
     前記接合部を介して接合された熱可塑性樹脂フィルムを連続搬送しながら予熱する予熱工程と、
     前記予熱された熱可塑性樹脂フィルムを連続搬送しながら斜め延伸する斜め延伸工程と、を含む、斜め延伸フィルムの製造方法であって、
     前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとは同一の熱可塑性樹脂フィルムであり、
     前記予熱工程における前記接合部の予熱温度をT(℃)とし、前記予熱工程における前記接合部の予熱時間をt(秒間)とし、前記熱可塑性樹脂フィルムにおける熱可塑性樹脂のガラス転移温度をTg(℃)としたとき、下記式(1)および(2)を満たす、斜め延伸フィルムの製造方法。
     Tg<T≦Tg+60    ・・・(1)
     2≦t           ・・・(2)
    A joining step of joining the thermoplastic resin film transported in advance and the thermoplastic resin film transported in a subsequent manner via a joint portion;
    A preheating step of preheating while continuously transporting the thermoplastic resin film bonded through the bonding portion;
    An oblique stretching step in which the preheated thermoplastic resin film is obliquely stretched while continuously conveyed, and a method for producing an obliquely stretched film,
    The thermoplastic film transported in advance and the thermoplastic resin film transported in succession are the same thermoplastic resin film,
    The preheating temperature of the joint in the preheating step is T (° C.), the preheating time of the joint in the preheating step is t (seconds), and the glass transition temperature of the thermoplastic resin in the thermoplastic resin film is Tg ( C)), a method for producing an obliquely stretched film that satisfies the following formulas (1) and (2).
    Tg <T ≦ Tg + 60 (1)
    2 ≦ t (2)
  2.  前記先行して搬送される熱可塑性樹脂フィルムと、前記後行して搬送される熱可塑性樹脂フィルムとを熱融着により接合する、請求項1に記載の斜め延伸フィルムの製造方法。 The manufacturing method of the diagonally stretched film of Claim 1 which joins the thermoplastic resin film conveyed ahead and the thermoplastic resin film conveyed downstream and carried out by heat sealing | fusion.
  3.  前記先行して搬送される熱可塑性樹脂フィルムおよび前記後行して搬送される熱可塑性樹脂フィルムは、平均厚みが50μm以上300μm以下である、請求項1または2に記載の斜め延伸フィルムの製造方法。 The manufacturing method of the diagonally stretched film of Claim 1 or 2 whose average thickness is 50 micrometers or more and 300 micrometers or less of the thermoplastic resin film conveyed preceding and the thermoplastic resin film conveyed downstream. .
  4.  前記熱可塑性樹脂フィルムにおける熱可塑性樹脂のガラス転移温度Tgが、100℃以上180℃以下である請求項1~3のいずれかに記載の斜め延伸フィルムの製造方法。 The method for producing an obliquely stretched film according to any one of claims 1 to 3, wherein a glass transition temperature Tg of the thermoplastic resin in the thermoplastic resin film is 100 ° C or higher and 180 ° C or lower.
  5.  請求項1から4の何れかに記載の斜め延伸フィルムの製造方法で製造された斜め延伸フィルムと、偏光子とを積層して偏光板を製造する、偏光板の製造方法。 A method for producing a polarizing plate, wherein a polarizing plate is produced by laminating an obliquely stretched film produced by the method for producing an obliquely stretched film according to any one of claims 1 to 4 and a polarizer.
  6.  請求項5に記載の偏光板の製造方法で製造された偏光板を備える液晶表示装置を製造する、液晶表示装置の製造方法。 A method for producing a liquid crystal display device, comprising producing a liquid crystal display device comprising the polarizing plate produced by the method for producing a polarizing plate according to claim 5.
PCT/JP2018/001820 2017-01-31 2018-01-22 Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device WO2018142991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566066A JP7063275B2 (en) 2017-01-31 2018-01-22 A method for manufacturing a diagonally stretched film, a method for manufacturing a polarizing plate, and a method for manufacturing a liquid crystal display device.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015849 2017-01-31
JP2017015849 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142991A1 true WO2018142991A1 (en) 2018-08-09

Family

ID=63040605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001820 WO2018142991A1 (en) 2017-01-31 2018-01-22 Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device

Country Status (3)

Country Link
JP (1) JP7063275B2 (en)
TW (1) TW201829202A (en)
WO (1) WO2018142991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122621A (en) * 2021-03-26 2022-09-30 日东电工株式会社 Method for producing stretched film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160665A (en) * 2002-11-08 2004-06-10 Fuji Photo Film Co Ltd Manufacturing method for optical film
JP2011245624A (en) * 2010-05-21 2011-12-08 Kaneka Corp Method for manufacturing optical film
WO2012053218A1 (en) * 2010-10-21 2012-04-26 コニカミノルタオプト株式会社 CONTINUOUS POLYMER FILM PRODUCTION METHOD, POLYMER FILM, λ/4 PLATE, POLARIZING PLATE, AND LIQUID CRYSTAL DISPLAY DEVICE
WO2015064645A1 (en) * 2013-10-30 2015-05-07 日本ゼオン株式会社 Long stretched film and production method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497916B2 (en) 2014-12-08 2019-04-10 日東電工株式会社 Method for producing retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160665A (en) * 2002-11-08 2004-06-10 Fuji Photo Film Co Ltd Manufacturing method for optical film
JP2011245624A (en) * 2010-05-21 2011-12-08 Kaneka Corp Method for manufacturing optical film
WO2012053218A1 (en) * 2010-10-21 2012-04-26 コニカミノルタオプト株式会社 CONTINUOUS POLYMER FILM PRODUCTION METHOD, POLYMER FILM, λ/4 PLATE, POLARIZING PLATE, AND LIQUID CRYSTAL DISPLAY DEVICE
WO2015064645A1 (en) * 2013-10-30 2015-05-07 日本ゼオン株式会社 Long stretched film and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122621A (en) * 2021-03-26 2022-09-30 日东电工株式会社 Method for producing stretched film

Also Published As

Publication number Publication date
JPWO2018142991A1 (en) 2019-11-14
TW201829202A (en) 2018-08-16
JP7063275B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
TWI780395B (en) Manufacturing method of stretched film
JP4577528B2 (en) Method for producing long oblique stretched film
TW202039218A (en) Method for manufacturing stretched film can reduce the slack generated in an oblique stretched film
JP5233746B2 (en) Method for producing obliquely stretched film, obliquely stretched film, polarizing plate, and liquid crystal display device
JP2005321543A (en) Optical film
JP4512413B2 (en) Manufacturing method of optical film
US9952370B2 (en) Long stretched film and production method therefor
WO2018142991A1 (en) Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device
JP4348232B2 (en) Manufacturing apparatus and manufacturing method for long optical film
JP5098296B2 (en) Manufacturing method of long stretched film
JP5553067B2 (en) Long stretched film, long laminated film, polarizing plate and liquid crystal display device
KR102515374B1 (en) Stretched film and its manufacturing method, circular polarizer, and display device
JP2017197386A (en) Method for conveying resin film
CN115782147B (en) Method for producing stretched film and method for producing optical laminate
JP2003232928A (en) Long optical film, method for manufacturing long optical film, and long elliptic polarizing film
JP2010266723A (en) Method of manufacturing retardation film, retardation film, circularly polarized film, circularly polarized plate, and liquid crystal display device
JP2017197385A (en) Method for conveying resin film
JP2005262677A (en) Plastic film manufacturing method
KR102531541B1 (en) Method for producing stretched film and method for producing optical laminate
JP2007210281A (en) Method for manufacturing long oriented film
TWI783132B (en) Manufacturing method of elongated stretched film and elongated polarizing film
JP2009214441A (en) Production process of stretched film, stretched film, polarizing plate and liquid crystal display
JP6543987B2 (en) Diagonally stretched film
JP2005262678A (en) Plastic film manufacturing method
JP2015068993A (en) Manufacturing method of retardation film and manufacturing method of circularly polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748442

Country of ref document: EP

Kind code of ref document: A1