WO2018142855A1 - Shaft sealing apparatus and vertical shaft pump provided with same - Google Patents

Shaft sealing apparatus and vertical shaft pump provided with same Download PDF

Info

Publication number
WO2018142855A1
WO2018142855A1 PCT/JP2018/000281 JP2018000281W WO2018142855A1 WO 2018142855 A1 WO2018142855 A1 WO 2018142855A1 JP 2018000281 W JP2018000281 W JP 2018000281W WO 2018142855 A1 WO2018142855 A1 WO 2018142855A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
shaft
casing
seal body
liquid
Prior art date
Application number
PCT/JP2018/000281
Other languages
French (fr)
Japanese (ja)
Inventor
康 川井
廣川 一人
平田 和也
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Publication of WO2018142855A1 publication Critical patent/WO2018142855A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings

Definitions

  • the present invention relates to a shaft seal device that prevents liquid from leaking from a shaft penetrating portion of a container through which a rotating shaft passes.
  • the present invention also relates to a vertical shaft pump provided with this shaft seal device.
  • a shaft seal device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotating shaft that extends through the container.
  • the rotating shaft that rotates the impeller of the vertical shaft extends through the pump casing, and the shaft penetrating portion is provided by a shaft sealing device so that liquid does not leak from the shaft penetrating portion through which the rotating shaft passes. Sealed.
  • the container is a pump casing
  • the high-pressure fluid is a liquid flowing inside the pump casing
  • the low-pressure fluid is the atmosphere outside the pump casing.
  • Such a shaft seal device generally employs a seal mechanism such as a gland packing, a mechanical seal, or a floating seal.
  • the mechanical seal has a rotating ring that rotates integrally with the rotating shaft and a fixing ring that is fixed to a stationary member such as a housing. The rotating ring and the fixing ring maintain contact with each other to prevent liquid leakage.
  • the floating seal has a sleeve fixed to the outer peripheral surface of the rotating shaft, and a seal ring facing the sleeve. An extremely minute gap is formed between the seal ring and the sleeve, and only a minute amount of liquid is allowed to leak.
  • the gland packing Since the gland packing is always in contact with the rotating shaft (this contact state is referred to as “sliding contact”), the gland packing gradually wears. Therefore, periodic maintenance or replacement of the gland packing is necessary. In addition, since the frictional heat is generated in the gland packing in sliding contact with the rotating shaft, it is necessary to cool the gland packing. If the liquid to be handled is fresh water, the gland packing can be cooled with that liquid. However, if the liquid contains a solid such as slurry, a separate one is provided so that the solid does not get caught between the gland packing and the rotating shaft. It is necessary to supply the liquid from the water injection device to the gland packing, or to surround the rotating shaft with a protective tube for preventing solids from entering.
  • the rotating ring of the mechanical seal is always in sliding contact with the fixed ring, so the rotating ring and the fixed ring are gradually worn. Therefore, periodic maintenance or replacement of the rotating ring and the fixing ring is required.
  • the mechanical seal needs an auxiliary facility for injecting a cooling flushing liquid. Further, since the contact surface between the rotating ring and the fixing ring is precisely finished, when the rotating ring and the fixing ring are maintained or exchanged, accurate assembly of the rotating ring and the fixing ring is required.
  • the floating seal has a minute gap formed between the seal ring and the sleeve, and is therefore a non-contact shaft seal device that does not include any components that make sliding contact. Therefore, the maintenance required by gland packing or mechanical seal is essentially unnecessary.
  • the seal ring may come into contact with the sleeve when a whirling or vibration occurs on the rotating shaft. For this reason, in order to allow such a contact, it is necessary to use a highly hard material having high wear resistance for the seal ring and / or the sleeve, and the floating seal tends to be expensive.
  • the floating seal allows a certain amount of liquid to pass through, the floating seal is not suitable for preventing leakage of liquid containing solid such as slurry.
  • liquid containing solid such as slurry.
  • the handled fluid may leak from the shaft seal device depending on the pressure of the fluid to be handled (for example, liquid in the pump casing of the vertical shaft pump). . More specifically, when the pressure of the fluid handled is very high, liquid may leak from the shaft seal device.
  • a shaft seal device in which a plurality of seal mechanisms are arranged in series is used, fluid can be prevented from leaking from the shaft seal device.
  • the shaft seal device and its associated equipment increase in size, and the maintenance frequency and maintenance cost increase significantly. For example, the maintenance frequency and maintenance cost in the shaft seal device in which two floating seals are arranged in series are twice the maintenance frequency and maintenance cost in the shaft seal device in which one floating seal is arranged.
  • the present invention has been made in view of the above circumstances, and is capable of greatly reducing the maintenance frequency and supplying a liquid such as cooling water without leaking the fluid even when the pressure of the fluid to be handled is high. It is an object of the present invention to provide a shaft seal device that does not require additional equipment and that does not require special finishing of components. Moreover, an object of this invention is to provide the vertical shaft pump provided with this shaft seal device.
  • one aspect of the present invention is a shaft seal device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotary shaft that extends through the container.
  • a seal casing having a plurality of casing structures disposed along an axial direction of the rotating shaft, a plurality of seal chambers formed inside each of the plurality of casing structures, and the plurality of seal chambers
  • Each of the plurality of disc-shaped sealing bodies that rotate integrally with the rotation shaft and have an annular surface perpendicular to the axis of the rotation shaft, each of the plurality of casing structures.
  • a plurality of radially extending grooves are formed on the annular surface of at least one of the plurality of seal bodies, and the width of the groove is outside the inner end of the groove. It is constant to the end.
  • a plurality of radially extending grooves are formed on the annular surface of at least one of the plurality of seal bodies, and the width of the grooves is directed toward the outer ends of the grooves. It is characterized by gradually increasing.
  • the through hole of the seal structure located on the uppermost side of the plurality of seal structures and the rotation above the seal body located on the uppermost side of the plurality of seal bodies.
  • a non-contact type upper seal structure for sealing a gap with the shaft is further provided.
  • the upper seal structure is a labyrinth seal or a flat seal, and a leak cover is provided that is fixed to an upper portion of the seal casing so as to surround the upper seal structure.
  • the cover is provided with an opening that communicates the internal space of the leak cover and the outside of the leak cover, and a leak pipe is connected to the opening.
  • a through hole of a lowermost seal structure among the plurality of seal structures is provided below the lowermost seal body of the plurality of seal bodies.
  • a non-contact type lower seal structure that seals a gap with the rotating shaft is further provided.
  • the lower seal structure is a Rabin rinse seal or a flat seal.
  • the seal casing is provided with at least one opening that communicates at least one of the plurality of seal chambers with the outside of the seal casing, and the opening includes a drain.
  • a tube is connected.
  • Another aspect of the present invention is a shaft sealing device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid, and that seals a shaft penetration portion of a rotating shaft that extends through the container, the axial direction of the rotating shaft
  • a seal casing having a plurality of casing structures disposed along the plurality of casing structures, a plurality of seal chambers formed inside each of the plurality of casing structures, and the rotation accommodated in each of the plurality of seal chambers
  • a plurality of disc-shaped seal bodies that rotate integrally with a shaft, and each of the plurality of casing structures has a through-hole that communicates with the seal chamber while passing through the rotation shaft,
  • the seal body has an upper surface that is inclined downward with respect to a plane perpendicular to the axis of the rotary shaft, and is opposed to the upper surface of the seal body and forms the seal chamber of the casing structure.
  • the inner surface A shaft sealing device, characterized in that extending along the top surface of the
  • Another aspect of the present invention includes an impeller, a rotating shaft to which the impeller is fixed, a pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes, and the shaft penetrating portion.
  • a shaft seal device for sealing the seal casing wherein the shaft seal device has a plurality of casing structures disposed along an axial direction of the rotating shaft, and each of the plurality of casing structures.
  • Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber, and is opposed to the annular surface of the seal body, and Shape the sealing chamber An inner surface of said casing structure which is a vertical shaft pump, wherein the a plane perpendicular to the axis of the rotating shaft.
  • Another aspect of the present invention includes an impeller, a rotating shaft to which the impeller is fixed, a pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes, and the shaft penetrating portion.
  • a shaft seal device for sealing the seal casing wherein the shaft seal device has a plurality of casing structures disposed along an axial direction of the rotating shaft, and each of the plurality of casing structures.
  • said seal The inner surface of the casing structure of the opposing the annular surface, and to form the seal chamber is a vertical shaft pump, characterized in that extending along the top surface of the seal body.
  • the shaft seal device of the present invention fluid is prevented from leaking from the shaft seal device by a plurality of seal bodies that are arranged in series in the axial direction of the rotation shaft and rotate integrally with the rotation shaft. Therefore, even when the pressure of the fluid to handle is high, the fluid leakage from the shaft seal device can be prevented. Furthermore, since this shaft seal device is a non-contact shaft seal device in which each seal body does not slidably contact other members, the seal body does not wear. Therefore, the maintenance frequency of the shaft seal device can be greatly reduced. In addition, since each sealing body exhibits a sealing function in a non-contact manner, the frictional heat generated in the liquid flowing on each sealing body is negligible compared to a shaft sealing device including constituent members that are in sliding contact with each other.
  • FIG. 1 is a schematic diagram showing a vertical shaft pump provided with a shaft seal device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the shaft seal device shown in FIG.
  • FIG. 3A is a top view showing an embodiment of the first seal body.
  • 3B is a cross-sectional view taken along line AA in FIG. 3A.
  • FIG. 4A is a top view showing another embodiment of the first seal body. 4B is a cross-sectional view taken along the line BB of FIG. 4A.
  • FIG. 5A is a top view showing still another embodiment of the first seal body. 5B is a cross-sectional view taken along the line CC of FIG. 5A.
  • FIG. 6A is a top view showing still another embodiment of the first seal body.
  • FIG. 6B is a cross-sectional view taken along the line DD of FIG. 6A.
  • FIG. 7 is a cross-sectional view of a shaft seal device according to another embodiment.
  • FIG. 8 is a cross-sectional view showing a modification of the shaft seal device shown in FIG.
  • FIG. 9 is a cross-sectional view of a shaft seal device according to still another embodiment.
  • FIG. 10 is a cross-sectional view of a shaft seal device according to still another embodiment.
  • FIG. 11 is a cross-sectional view of a shaft seal device according to yet another embodiment.
  • FIG. 12 is a cross-sectional view of a shaft seal device according to still another embodiment.
  • FIG. 1 is a schematic diagram showing a vertical shaft pump provided with a shaft seal device 30 according to an embodiment of the present invention.
  • the vertical shaft pump is connected to an impeller casing 1 having a suction bell mouth 1 a and a discharge bowl 1 b, a pumping pipe 3 for suspending the impeller casing 1 in a suction water tank 5, and an upper end of the pumping pipe 3.
  • a discharge elbow pipe 4 an impeller 10 accommodated in the impeller casing 1, and a rotating shaft 6 to which the impeller 10 is fixed.
  • the pumping pipe 3 extends downward through an insertion port 24 formed in the pump installation floor 22 at the upper part of the suction water tank 5, and is fixed to the pump installation floor 22 via an installation base 23 provided at the upper end of the pumping pipe 3.
  • the rotary shaft 6 extends in the vertical direction through the discharge elbow pipe 4, the pumping pipe 3, and the impeller casing 1.
  • the pump casing 2 includes an impeller casing 1, a pumping pipe 3, and a discharge elbow pipe 4.
  • the suction bell mouth 1a opens downward, and the upper end of the suction bell mouth 1a is connected to the lower end of the discharge bowl 1b.
  • the impeller 10 is fixed to the lower end of the rotating shaft 6, and the impeller 10 and the rotating shaft 6 rotate integrally.
  • a plurality of guide vanes 14 are arranged above the impeller 10 (discharge side). These guide vanes 14 are fixed to the inner peripheral surface of the discharge bowl 1b.
  • the rotating shaft 6 is rotatably supported by an outer bearing 11, an intermediate bearing 15, and an underwater bearing 12.
  • the underwater bearing 12 is accommodated in the discharge bowl 1 b and is disposed above the impeller 10.
  • the support member 7 that supports the underwater bearing 12 is fixed to the inner surface of the bowl bush 13, and the bowl bush 13 is supported by the impeller casing 1 via a guide vane 14.
  • the outer bearing 11 is a rolling bearing such as a ball bearing or a sliding bearing, and the underwater bearing 12 and the intermediate bearing 15 are sliding bearings.
  • the rotary shaft 6 extends upward through the discharge elbow pipe 4 and is connected to a drive source 18.
  • the drive source 18 is fixed on a gantry 19 fixed to the pump installation floor 22.
  • the impeller 10 is located below the liquid level in the suction water tank 5.
  • the vertical shaft pump transfers the liquid in the suction water tank 5 to the discharge water tank 100. That is, when the impeller 10 is rotated through the rotating shaft 6 by operating the drive source 18, the liquid in the suction water tank 5 is sucked from the suction bell mouth 1a, and the discharge bowl 1b, the pumping pipe 3, and the discharge elbow pipe. 4, and the discharge water tank 100 through the discharge pipe 20.
  • the discharge pipe 20 extends from the discharge elbow pipe 4 to the discharge water tank 100.
  • the liquid level of the discharge water tank 100 is located above the discharge elbow pipe 4.
  • a gate valve 25 is arranged in the middle of the discharge pipe 20, and the gate valve 25 is opened during normal operation of the vertical shaft pump.
  • the gate valve 25 When the vertical pump is stopped, the gate valve 25 is closed to prevent the liquid from flowing back from the discharge water tank 100 to the suction water tank 5 through the discharge pipe 20.
  • a check valve may be provided.
  • a flap valve may be arranged at the discharge end of the discharge pipe 20.
  • a shaft seal device 30 As shown in FIG. 1, a shaft seal device 30 according to an embodiment of the present invention is disposed in a shaft penetrating portion where the rotating shaft 6 penetrates the discharge elbow pipe 4 of the pump casing 2.
  • the shaft seal device 30 prevents liquid from leaking out of the vertical shaft pump.
  • the shaft seal device 30 will be described with reference to FIG.
  • the shaft seal device 30 is a vertical shaft pump as long as it is fixed to a container that separates the lower high-pressure fluid and the upper low-pressure fluid, and seals the shaft penetration portion of the rotating shaft that extends through the container. It can be applied to other than.
  • the container is the pump casing 2
  • the high-pressure fluid is a liquid flowing inside the pump casing 2
  • the low-pressure fluid is the atmosphere outside the pump casing 2.
  • FIG. 2 is a cross-sectional view of the shaft seal device 30 according to an embodiment of the present invention.
  • the shaft seal device 30 is fixed on the shaft seal device mounting surface 4 a of the discharge elbow pipe 4 so as to close the through hole 4 b formed in the discharge elbow pipe 4.
  • the rotating shaft 6 extends in the vertical direction through the through hole 4b.
  • the shaft seal device 30 includes a plurality of (two in FIG. 2) disk-shaped seal bodies 31 and 51 fixed to the rotary shaft 6 and a plurality (two in FIG. 2) casing structures 33 and 53. And a sealing casing 70 having Inside the casing structure 33, a seal chamber 33a for accommodating the seal body 31 is formed. Inside the casing structure 53, a seal chamber 53a for accommodating the seal body 51 is formed.
  • the seal body 31 is referred to as a first seal body 31, the seal body 51 is referred to as a second seal body 51, the casing structure 33 is referred to as a first casing structure 33, and the casing structure 53 is referred to as a second. This is referred to as a casing structure 53.
  • a seal chamber 33a that is formed inside the first casing structure 33 and accommodates the first seal body 31 is referred to as a first seal chamber 33a, is formed inside the second casing structure 53, and is a second seal body.
  • the seal chamber 53a that houses 51 is referred to as a second seal chamber 53a.
  • the rotation shaft 6 and the inner peripheral surface of the first seal body 31 are in close contact with each other, the inner surfaces of the rotation shaft 6 and the first seal body 31 Liquid does not pass between the peripheral surfaces.
  • the gap between the rotating shaft 6 and the inner peripheral surface of the first seal body 31 may be sealed with a seal member such as an O-ring.
  • the rotating shaft 6 and the inner peripheral surface of the second seal body 51 are in close contact with each other, so that no liquid passes between the rotating shaft 6 and the inner peripheral surface of the second seal body 51.
  • a gap between the rotary shaft 6 and the inner peripheral surface of the second seal body 51 may be sealed with a seal member such as an O-ring.
  • the center of the first seal body 31 and the center of the second seal body 51 coincide with the axis of the rotary shaft 6, and the two seal bodies 31 and 51 rotate integrally with the rotary shaft 6.
  • the first casing structure 33 includes a first upper casing 35 having a first through hole 35a through which the rotary shaft 6 passes, and a first intermediate casing 36 that supports the first upper casing 35.
  • the center line of the first through hole 35 a coincides with the axis of the rotation shaft 6.
  • the first intermediate casing 36 has a cylindrical inner peripheral surface 36a.
  • the center line of the inner peripheral surface 36 a coincides with the axis of the rotary shaft 6 and the center of the first seal body 31.
  • the first intermediate casing 36 of the first casing structure 33 is sandwiched between the shaft sealing device mounting surface 4a of the discharge elbow pipe 4 and the first upper casing 35, and is attached to the first upper casing 35 and the shaft sealing device. It is fixed to the surface 4a. Thereby, a first seal chamber 33 a in which the first seal body 31 is accommodated is formed in the first casing structure 33.
  • the second casing structure 53 has the same configuration as the first casing structure 33. More specifically, the second casing structure 53 includes a second upper casing 55 having a second through hole 55a through which the rotary shaft 6 passes, and a second intermediate casing 56 that supports the second upper casing 55. .
  • the center line of the second through hole 55 a coincides with the axis of the rotation shaft 6.
  • the second intermediate casing 56 has a cylindrical inner peripheral surface 56a. The center line of the inner peripheral surface 56 a coincides with the axis of the rotary shaft 6 and the center of the second seal body 51.
  • the first casing structure 33 and the second casing structure 53 are arranged in series along the axial direction of the rotating shaft 6.
  • the second intermediate casing 56 of the second casing structure 53 is sandwiched between the first upper casing 35 of the first casing structure 33 and the second upper casing 55 of the second casing structure 53.
  • the first upper casing 35 and the second upper casing 55 are fixed.
  • a second seal chamber 53 a in which the second seal body 51 is accommodated is formed in the second casing structure 53.
  • the second intermediate casing 56 of the second casing structure 53 shown in FIG. 2 has the same outer diameter as that of the first intermediate casing 36 of the first casing structure 33.
  • the diameter of the peripheral surface 56 a is the same as the diameter of the inner peripheral surface 36 a of the first intermediate casing 36.
  • the second intermediate casing 56 of the second casing structure 33 may have an outer diameter different from the outer diameter of the first intermediate casing 36 of the first casing structure 33. Furthermore, the diameter of the inner peripheral surface 56 a of the second intermediate casing 56 may be different from the diameter of the inner peripheral surface 36 a of the first intermediate casing 36. In any case, the center line of the inner peripheral surface 56 a of the second intermediate casing 56 coincides with the axis of the rotary shaft 6 and the center of the second seal body 51.
  • the outer diameter of the second intermediate casing 56 of the second casing structure 33 is equal to the first casing structure.
  • the outer diameter of the first intermediate casing 36 of the body 33 may be the same or different.
  • the diameter of the inner peripheral surface 56a of the second intermediate casing 56 may be the same as or different from the diameter of the inner peripheral surface 36a of the first intermediate casing 36.
  • the through hole 4 b formed in the discharge elbow pipe 4 is formed along the inner peripheral surface 36 a of the first intermediate casing 36. That is, the through hole 4b has the same shape and the same size as the inner peripheral surface 36a of the first intermediate casing 36, and is connected to the inner peripheral surface 36a.
  • the first seal chamber 33 a of the first casing structure 33 is open downward and communicates with the inside of the discharge elbow pipe 4 through a through hole 4 b formed in the discharge elbow pipe 4.
  • the first seal chamber 33 a is formed inside the first casing structure 33. More specifically, a first seal chamber 33 a is formed by the lower surface 35 b of the first upper casing 35 and the inner peripheral surface 36 a of the first intermediate casing 36.
  • the first seal body 31 is fixed to the rotating shaft 6 in the first seal chamber 33a.
  • the lower surface 35 b of the first upper casing 35 is a plane perpendicular to the axis of the rotation shaft 6.
  • the inner peripheral surface 36 a of the first intermediate casing 36 is concentric with the outer peripheral surface of the rotating shaft 6.
  • the first seal chamber 33a communicates with the first through hole 35a and is located below the first through hole 35a.
  • the rotary shaft 6 extends in the vertical direction through the first seal chamber 33a and the first through hole 35a.
  • the first seal body 31 has an upper surface 31 a that is an annular surface perpendicular to the axis of the rotary shaft 6.
  • the upper surface 31 a is configured as a surface that can give a suitable centrifugal force to the liquid flowing on the upper surface 31 a by the rotation of the first seal body 31.
  • a plurality of radially extending grooves 37 are formed on the upper surface 31a.
  • the upper surface 31a of the first seal body 31 faces the lower surface 35b of the first upper casing 35, which is one of the inner surfaces of the first casing structure 33 forming the first seal chamber 33a, with a gap therebetween.
  • the clearance between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is such that a necessary and sufficient centrifugal force field is generated in the clearance by the rotation of the first seal body 31.
  • 31 is set in consideration of the rotational speed of 31, the diameter of the first seal body 31, and the kinematic viscosity of the liquid.
  • FIG. 3A is a top view showing an embodiment of the first seal body 31, and FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A.
  • a through hole 31 b into which the rotary shaft 6 is inserted is formed at the center of the first seal body 31.
  • a plurality of grooves 37 extending radially from the inner peripheral surface of the first seal body 31 (that is, the through hole 31 b) to the outer peripheral surface of the first seal body 31 are formed on the upper surface 31 a of the first seal body 31.
  • 24 grooves 37 are formed, but the number of grooves 37 may be more or less than 24.
  • the groove 37 extends linearly, and the width of the groove 37 is constant from the inner end to the outer end.
  • the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Furthermore, the width of the groove 37 may not be constant.
  • centrifugal force is generated in the liquid on the upper surface 31 a of the first seal body 31 and the liquid in the groove 37. To do. As a result, the liquid on the upper surface 31 a and the liquid in the groove 37 are pushed back toward the radially outer side of the first seal body 31. Furthermore, since the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 has a suitable dimension, centrifugal force can be applied to the liquid present in the gap.
  • the inertial force (acceleration a) generated in a unit mass liquid having a circumferential velocity component (angular velocity component) generated by the rotation of the second seal body 51 described later can also be expressed by the above formula (1).
  • r is the radius of the second seal body 51
  • is the angular velocity of the second seal body 51.
  • the rotating first seal body 31 Since the rotating first seal body 31 generates a circumferential velocity component in the liquid present below the first seal body 31, centrifugal force acts on the liquid present in the first seal chamber 33a, and the liquid Increased static pressure.
  • the difference between the static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 and the static pressure of the liquid existing in the first seal chamber 33a is reduced.
  • the liquid easily passes through the first through hole 35 a and leaks to the outside of the first casing structure 33.
  • the through-hole 4b formed in the discharge elbow pipe 4 is formed along the inner peripheral surface 36a of the first intermediate casing 36, the first seal chamber 33a is provided inside the discharge elbow pipe 4. It is open.
  • the volume of the liquid existing below the first seal body 31 is sufficiently larger than the volume of the gap formed by the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35.
  • the circumferential velocity component of the liquid existing below the first seal body 31 can be sufficiently reduced. As a result, it can be assumed that the liquid present in the first seal chamber 33a is not affected by the rotation of the first seal body 31 or is influenced very slightly.
  • the rotating first seal body 31 causes the first seal body 31 to rotate.
  • the static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is balanced with the static pressure of the liquid existing in the first seal chamber 33a. Larger than that.
  • the seal casing 70 of the shaft seal device 30 includes a second casing structure 53 disposed on the upper side of the first casing structure 33, and the second seal body 51 is provided inside the second casing structure 53. A second seal chamber 53a for accommodating is formed.
  • the second casing structure 53 is directly fixed to the first upper casing 35 of the first casing structure 33.
  • the second casing structure 53 may be fixed to the first upper casing 35 of the first casing structure 33 via a spacer member having a cylindrical shape.
  • the second casing structure 53 has the same configuration as the first casing structure 33
  • the second seal body 51 has the same configuration as the first seal body 31.
  • the liquid leaked from the first through hole 35a of the first casing structure 33 flows into the second seal chamber 53a formed inside the second casing structure 53, but is stored in the second seal chamber 53a and rotated.
  • the second seal body 51 that rotates with the shaft 6 prevents liquid from leaking from the second casing structure 53 (that is, from the shaft seal device 30).
  • the second seal chamber 53 a is formed inside the second casing structure 53. More specifically, the second seal chamber 53a is formed by the lower surface 55b of the second upper casing 55, the inner peripheral surface 56a of the second intermediate casing 56, and the upper surface of the first upper casing 35 of the first casing structure 33. It is formed.
  • the second seal body 51 is fixed to the rotating shaft 6 in the second seal chamber 53a.
  • the lower surface 55 b of the second upper casing 55 is a plane perpendicular to the axis of the rotation shaft 6.
  • the inner peripheral surface 56 a of the second intermediate casing 56 is concentric with the outer peripheral surface of the rotating shaft 6.
  • the second seal chamber 53a communicates with the second through hole 55a and is located below the second through hole 55a. Further, the second seal chamber 53a communicates with the first seal chamber 33a via the first through hole 35a, and is located above the first through hole 35a.
  • the rotating shaft 6 extends in the vertical direction through the second seal chamber 53a and the second through hole 55a.
  • the second seal body 51 of the present embodiment has the same configuration as the first seal body 31. More specifically, the second seal body 51 has a disk shape and has an upper surface 51 a that is an annular surface perpendicular to the axis of the rotating shaft 6.
  • the upper surface 51 a is configured as a surface that can give a suitable centrifugal force to the liquid flowing on the upper surface 51 a by the rotation of the second seal body 51.
  • a plurality of grooves 37 described with reference to FIGS. 3A and 3B are formed on the upper surface 51a of the second seal body 51 shown in FIG.
  • the upper surface 51a of the second seal body 51 is opposed to the lower surface 55b of the second upper casing 55, which is one of the inner surfaces of the second casing structure 53 that forms the second seal chamber 53a, with a gap therebetween.
  • the gap between the upper surface 51 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55 is such that a necessary and sufficient centrifugal force field is generated in the gap by the rotation of the second seal body 51.
  • the rotational speed of 51, the diameter of the second seal body 51, and the kinematic viscosity of the liquid are set.
  • the number of grooves 37 formed on the upper surface of the second seal body 51 can be arbitrarily set. Further, the groove 37 may extend linearly or may be inclined with respect to the radial direction of the second seal body 51. Or the groove
  • the liquid that has passed through the first through hole 35 a of the first casing structure 33 flows into the second seal chamber 53 a of the second casing structure 53. Further, the liquid passes through the groove 37 formed on the upper surface 51 a of the second seal body 51 and the gap between the upper surface 31 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55, and then the second seal. It tends to flow in the radial direction of the second seal body 51 toward the center of the body 51 (that is, toward the rotating shaft 6). However, since a circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating second seal body 51, centrifugal force is generated in the liquid on the upper surface 51 a of the second seal body 51 and the liquid in the groove 37.
  • the centrifugal force field is formed in the gap between the second seal body 51 and the lower surface 55b of the second upper casing 55 by the rotation of the second seal body 51 having the groove 37, it exists in this gap.
  • the static pressure of the liquid that rises increases outward in the radial direction of the upper surface 51 a of the second seal body 51.
  • the second seal body 51 is rotated by the second seal body 51.
  • the static pressure of the liquid generated in the gap between the upper surface 51a of the two seal body 51 and the lower surface 55b of the second upper casing 55 is balanced with the static pressure of the liquid existing in the second seal chamber 53a. Larger than that.
  • the static pressure of the liquid flowing into the second seal chamber 53a from the first seal chamber 33a through the first through hole 35a is reduced by the first seal body 31 rotating in the first seal chamber 33a. That is, the static pressure of the liquid in the second seal chamber 53a is lower than the static pressure of the liquid in the first seal chamber 33a.
  • the static pressure of the liquid flowing into the second seal chamber 53a is reduced by the rotating first seal body 31, and the static pressure reduced by the rotating second seal body 51 is further reduced.
  • the liquid having pressure is prevented from leaking from the second casing structure 53. Therefore, the object of the present invention can be achieved by designing the first seal body 31 and the second seal body 51 into shapes and dimensions that satisfy such conditions.
  • the radius of the first seal body 31 and the radius of the second seal body 51 are suitable for the pump specifications and operating conditions.
  • various pumps and use conditions can be obtained. It is possible to respond.
  • the upper surface 31a of the first seal body 31 causes centrifugal force to be applied to the liquid flowing in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 by the rotation of the first seal body 31.
  • the upper surface 31 a of the first seal body 31 may be a flat surface without the groove 37.
  • the upper surface 51 a of the second seal body 51 is converted into a liquid that flows in the gap between the upper surface 51 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55 by the rotation of the second seal body 51.
  • the upper surface 51 a of 51 may be a flat surface without the groove 37.
  • the groove 37 may be formed only on either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51.
  • the diameter of the first seal body 31 and the diameter of the second seal body 51 can be designed according to the pump specifications and operating conditions. Therefore, in the embodiment shown in FIG. 2, the diameter of the second seal body 51 is the same as the diameter of the first seal body 31, but the diameter of the second seal body 51 is the same as the diameter of the first seal body 31. May be different. Similarly in the embodiments shown in FIGS. 7, 8, 9, 10, 11, and 12 described later, the diameter of the second seal body 51 is the same as the diameter of the first seal body 31. It may be different or different.
  • the shaft seal device 30 shown in FIG. 2 includes a seal casing 70 having two casing structures 33 and 53 arranged along the axial direction of the rotating shaft 6, and the inside of each of the two casing structures 33 and 53. Are provided with two seal chambers 33a and 53a, and two seal bodies 31 and 51 accommodated in the two seal chambers 33a and 53a, respectively.
  • the shaft seal device 30 includes a seal casing having three or more casing structures arranged along the axial direction of the rotating shaft 6, and 3 formed inside each of the three or more casing structures. You may have three or more seal bodies accommodated in each of one or more seal chambers and three or more seal chambers.
  • the shaft seal device 30 includes a seal casing having a plurality of casing structures arranged along the axial direction of the rotating shaft, a plurality of seal chambers formed inside each of the plurality of casing structures, A plurality of seal bodies accommodated in each of the seal chambers.
  • the plurality of seal structures and the plurality of seal bodies are arranged in series along the axial direction of the rotating shaft 6.
  • the number of seal structures and the number of seal bodies can be set according to the pump specifications and operating conditions.
  • the shaft seal device 30 has a plurality of casing structures arranged along the axial direction of the rotation shaft.
  • a seal casing having a body, a plurality of seal chambers formed inside each of the plurality of casing structures, and a plurality of seal bodies accommodated in each of the plurality of seal chambers may be included.
  • the liquid is axially arranged by the plurality of seal bodies 31 and 51 that are arranged in series in the axial direction of the rotary shaft 6 and rotate integrally with the rotary shaft 6. Leaking from the sealing device 30 is prevented. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
  • the shaft seal device 30 is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat
  • FIG. 4A is a top view showing another embodiment of the first seal body 31, and FIG. 4B is a cross-sectional view taken along the line BB of FIG. 4A.
  • the upper surface 31 a of the first seal body 31 has a plurality of grooves extending radially from the inner peripheral surface (that is, the through hole 31 b) of the seal body 31 to the outer peripheral surface of the seal body 31. 37 is formed. In the embodiment shown in FIG. 4A, 24 grooves 37 are formed, but the number of grooves 37 may be more or less than 24.
  • the groove 37 extends radially, and the width of the groove 37 gradually increases toward the radially outer side of the first seal body 31.
  • the first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31.
  • a centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap.
  • the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Further, the width of the groove 37 may not gradually increase toward the outside in the radial direction. Note that the groove 37 shown in FIGS. 4A and 4B may be formed in the upper surface 51 a of the second seal body 51.
  • FIG. 5A is a top view showing still another embodiment of the first seal body 31, and FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the first seal body 31 illustrated in FIGS. 3A and 3B, and thus redundant description thereof is omitted.
  • a plurality of radially extending grooves 37 are formed on the upper surface 31a of the first seal body 31, and the inner end 37a of the groove 37 is the inner peripheral surface of the first seal body 31 (that is, the through hole). 31b) has not been reached.
  • the inner end 37 a of the groove 37 of this embodiment is located between the inner peripheral surface and the outer peripheral surface of the first seal body 31.
  • the width of the groove 37 is constant from the inner end 37a to the outer end.
  • the first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31. A centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap.
  • the groove 37 is formed in the radial direction of the first seal body 31. May be inclined with respect to, or may not extend linearly. Furthermore, the width of the groove 37 may not be constant. Note that the groove 37 shown in FIGS. 5A and 5B may be formed in the upper surface 51 a of the second seal body 51.
  • FIG. 6A is a top view showing still another embodiment of the first seal body 31, and FIG. 6B is a cross-sectional view taken along the line DD of FIG. 6A.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the first seal body 31 illustrated in FIGS. 4A and 4B, and thus redundant description thereof is omitted.
  • a plurality of radially extending grooves 37 are formed on the upper surface 31a of the first seal body 31, and the inner end 37a of the groove 37 is the inner peripheral surface of the first seal body 31 (that is, the through hole). 31b) has not been reached. That is, the inner end 37 a of the groove 37 of this embodiment is located between the inner peripheral surface and the outer peripheral surface of the first seal body 31.
  • the width of the groove 37 gradually increases toward the outer side in the radial direction of the first seal body 31.
  • the first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31.
  • a centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap.
  • the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Further, the width of the groove 37 may not gradually increase toward the outside in the radial direction. Note that the groove 37 shown in FIGS. 6A and 6B may be formed in the upper surface 51 a of the second seal body 51.
  • FIG. 7 is a cross-sectional view showing a shaft seal device 30 according to another embodiment.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • the first seal body 31 of the shaft seal device 30 shown in FIG. 7 has an upper surface (annular surface) 31 a that is inclined downward toward the radially outer side of the first seal body 31.
  • the second seal body 51 has an upper surface (annular surface) 51 a that is inclined downward toward the radially outer side of the second seal body 51. That is, the upper surface 31 a of the first seal body 31 and the upper surface 51 a of the second seal body 51 are inclined downward with respect to a plane perpendicular to the axis of the rotation shaft 6.
  • the upper surface 31a of the first seal body 31 and the upper surface 51a of the second seal body 51 are inclined linearly. More specifically, the upper surface 31 a of the first seal body 31 and the upper surface 51 a of the second seal body 51 are inclined linearly when viewed in a cross section parallel to the axis of the rotation shaft 6.
  • a lower surface 35b of the first upper casing 35 that faces the upper surface 31a of the first seal body 31 via a gap extends along the upper surface 31a of the first seal body 31, and is spaced from the upper surface 51a of the second seal body 51.
  • the lower surface 55 b of the second upper casing 55 that opposes the second upper casing 55 extends along the upper surface 51 a of the second seal body 51.
  • the lower surface 35b of the first upper casing 35 is parallel to the upper surface 31a of the first seal body 31 when viewed in a cross section parallel to the axis of the rotary shaft 6, and has the same inclination angle.
  • the size of the gap formed between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 that is, the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35). The distance between them is constant.
  • the lower surface 55b of the second upper casing 55 is parallel to the upper surface 51a of the second seal body 51 when viewed in a cross section parallel to the axis of the rotary shaft 6, and has the same inclination angle.
  • the size of the gap formed between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 (that is, the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55). The distance between them is constant.
  • a plurality of grooves 37 are formed in the upper surface 31a of the first seal body 31 and the upper surface 51a of the second seal body 51, respectively.
  • the grooves 37 of the first seal body 31 shown in FIG. 7 extend radially from the inner peripheral surface (that is, the through hole 31 b) of the first seal body 31 to the outer peripheral surface of the first seal body 31.
  • the groove 37 of the second seal body 51 shown in FIG. 7 extends radially from the inner peripheral surface of the second seal body 51 to the outer peripheral surface of the second seal body 51.
  • the width of the groove 37 of the first seal body 31 and the second seal body 51 may be constant from the inner end to the outer end, As described with reference to FIG.
  • the seal bodies 31 and 51 may gradually increase toward the outer side in the radial direction.
  • the inner end 37a of the groove 37 is located between the inner peripheral surface and the outer peripheral surface of each seal body 31, 51. It may be.
  • a necessary and sufficient centrifugal force field is generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 by the rotation of the first seal body 31.
  • the rotational speed of the first seal body 31, the diameter of the first seal body 31, and the kinematic viscosity of the liquid are set.
  • the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 is such that a necessary and sufficient centrifugal force field is generated in the gap by the rotation of the second seal body 51.
  • the rotational speed of the two seal bodies 51, the diameter of the second seal body 51, and the kinematic viscosity of the liquid are set.
  • the circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating first seal body 31, the liquid on the upper surface 31 a of the first seal body 31 and the liquid in the groove 37 are centrifuged. Force is generated. Furthermore, since the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is set to a suitable size, centrifugal force can be applied to the liquid present in the gap. . Similarly, since the circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating second seal body 51, the liquid on the upper surface 51a of the second seal body 51 and the liquid in the groove 37 have a centrifugal force. appear. Furthermore, since the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 is set to a suitable size, centrifugal force can be applied to the liquid present in the gap. .
  • the groove 37 may not be formed on the upper surface 31 a of the one seal body 31.
  • the second seal body 51 and the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 are set to suitable dimensions.
  • the second seal The groove 37 may not be formed on the upper surface 51 a of the body 51.
  • the groove 37 may be formed only on either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51.
  • the second seal body 51 has the same configuration as the first seal body 31.
  • either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51 shown in FIG. 7 may be configured as an annular surface perpendicular to the axis of the rotating shaft 6. (See FIG. 2).
  • FIG. 8 is a sectional view showing a modification of the shaft seal device 30 shown in FIG.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • the first seal body 31 of the shaft seal device 30 shown in FIG. 8 also has an upper surface (annular surface) 31a that is inclined downward toward the radially outer side of the first seal body 31, and this upper surface 31a is curved. is doing. More specifically, the upper surface 31 a of the first seal body 31 is inclined in a curved shape when viewed in a cross section parallel to the axis of the rotary shaft 6.
  • the second seal body 51 has a configuration similar to that of the first seal body 31.
  • the second seal body 51 also has an upper surface (annular surface) 51 a that is inclined downward toward the radially outer side of the second seal body 51, and the upper surface 51 a is parallel to the axis of the rotating shaft 6. When viewed in cross section, it is inclined in a curved line.
  • the curvature of the upper surface 31a may be constant or may change gradually.
  • the upper surface 31a extends in an arc shape.
  • the curvature of the upper surface 31a may gradually increase from the inner peripheral surface of the first seal body 31 to the outer peripheral surface of the first seal body 31 or gradually decrease. May be.
  • a lower surface 35 b of the first upper casing 35 that faces the upper surface 31 a of the first seal body 31 via a gap extends along the upper surface 31 a of the first seal body 31.
  • the size of the gap formed between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 that is, the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35.
  • the lower surface 35b of the first upper casing 35 is formed so that the distance between the first upper casing 35 and the second casing 35 is constant.
  • the curvature of the upper surface 51a may be constant or may gradually change.
  • the upper surface 51a extends in an arc shape.
  • the curvature of the upper surface 51a may gradually increase from the inner peripheral surface of the second seal body 51 to the outer peripheral surface of the second seal body 51, or gradually decrease. May be.
  • a lower surface 55b of the second upper casing 55 facing the upper surface 51a of the second seal body 51 with a gap extends along the upper surface 51a of the second seal body 51.
  • the size of the gap formed between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 that is, the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55.
  • the lower surface 55b of the second upper casing 55 is formed so that the distance between the upper casing 55 and the second casing 55 is constant.
  • the second seal body 51 has the same configuration as the first seal body 31.
  • either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51 shown in FIG. 8 may be configured as an annular surface perpendicular to the axis of the rotating shaft 6. However, it may be inclined linearly downward (see FIG. 7) outward in the radial direction.
  • the shaft seal device 30 shown in FIG. 7 or 8 is also arranged in series in the axial direction of the rotary shaft 6, and the liquid is sealed by the plurality of seal bodies 31, 51 that rotate integrally with the rotary shaft 6. Prevent leakage from 30. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
  • the shaft seal device 30 is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat
  • FIG. 9 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • a shaft seal device 30 shown in FIG. 9 is a non-contact type upper seal structure 45 that seals a gap between the rotary shaft 6 and the second through hole 55a provided above the second seal body 51. Is further provided.
  • the second upper casing 55 has an extension portion 55 c that extends upward along the longitudinal direction of the rotating shaft 6.
  • the extension part 55 c has a cylindrical shape and surrounds the rotation shaft 6.
  • the 2nd through-hole 55a which the rotating shaft 6 penetrates is formed of the whole internal peripheral surface of the 2nd upper casing 55 containing the extension part 55c.
  • a sleeve 47 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 47 extends in the vertical direction through the second through hole 55 a of the second upper casing 55.
  • a gap is formed between the outer peripheral surface of the sleeve 47 and the second through hole 55a.
  • the non-contact type upper seal structure 45 of the present embodiment is a labyrinth seal constituted by an extension portion 55c of the second upper casing 55 and a sleeve 47.
  • the non-contact type upper seal structure 45 may be a flat seal that does not have a labyrinth structure.
  • the labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the second through hole 55a.
  • the plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 47, or may be formed on both the second through hole 55a and the outer peripheral surface of the sleeve 47.
  • the plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the second through hole 55 a and / or the sleeve 47.
  • the spacing between adjacent parallel grooves may be equal or different.
  • the cross-sectional shape of the top of the parallel groove is arbitrary.
  • the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the groove constituting the labyrinth structure may be a thread groove extending spirally on the outer peripheral surface of the second through hole 55a and / or the sleeve 47.
  • the rotational direction of the spirally extending thread groove is preferably a direction that exerts a pumping action to push the liquid back to the second seal chamber 53a when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6.
  • the pitch of the thread groove and the number of threads are arbitrary.
  • one screw groove may be formed on the outer peripheral surface of the second through hole 55a and / or the sleeve 47 at an unequal pitch, and multiple threads are formed in the second through hole 55a and / or the sleeve 47. You may form on the outer peripheral surface.
  • the shape of the top of the thread groove is arbitrary.
  • the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the shaft seal device 30 has a liquid leakage cover 48 surrounding the upper seal structure 45.
  • the leak cover 48 is fixed to the upper surface of the second upper casing 55. That is, it is fixed to the upper part of the seal casing 70.
  • the side wall of the liquid leakage cover 48 is provided with an opening 48b that allows the internal space 48a of the liquid leakage cover 48 to communicate with the outside, and the internal space 48a communicates with the outside of the liquid leakage cover 48 through the opening 48b.
  • a leakage pipe 49 is connected to the opening 48b.
  • the leakage pipe 49 extends into the suction water tank 5 (see FIG. 1), and the tip of the leakage pipe 49 is located above the liquid level in the suction water tank 5.
  • the tip of the leak pipe 49 may be located above a gutter (not shown) formed in the pump installation floor 22 (see FIG. 1).
  • the liquid that has flowed from the leak pipe 49 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown).
  • the liquid leakage cover 48 may be provided with a plurality of openings 48b. In this case, a leak pipe 49 is connected to each opening 48b.
  • the pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51 by the rotation of the second seal body 51.
  • the centrifugal force applied to the liquid existing in the gap is higher, the liquid reaches the upper seal structure 45. In this case, the liquid is decompressed when passing through the upper seal structure 45 and flows into the internal space 48 a of the leak cover 48.
  • the inner space 48a of the leak cover 48 is connected to the leak pipe 49 through the opening 48b, and the tip of the leak pipe 49 communicates with the atmosphere in the suction water tank 5, and therefore leaked into the inner space 48a.
  • the liquid is returned to the suction water tank 5. Therefore, the liquid is prevented from leaking from the leak cover 48.
  • the tip of the leak pipe 49 is located above a side groove (not shown) formed in the pump installation floor 22 (see FIG. 1), the tip of the leak pipe 49 is exposed to the atmosphere above the side groove. Because of the communication, the liquid leaking into the internal space 48a is returned to the suction water tank 5 through the side groove or is collected in the collection tank.
  • the drain plate 50 may be fixed to the rotary shaft 6 in the internal space 48 a of the leak cover 48.
  • the drain plate 50 is disposed above the upper seal structure 45.
  • the moving direction of the liquid can be changed to the side or downward.
  • the upper seal structure 45 is a non-contact type seal in which the sleeve 47 that rotates integrally with the rotary shaft 6 does not contact the second upper casing 55. Therefore, the sleeve 47 and the second upper casing 55 are not worn, and the maintenance frequency of the upper seal structure 45 can be greatly reduced. Further, since the upper seal structure 45 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquid such as cooling water and flushing liquid to the upper seal structure 45.
  • the static pressure of the liquid generated in the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 by the rotating second seal body 51 is increased in the second seal chamber. Even when it is smaller than the static pressure of the liquid existing in 53 a, it functions as an auxiliary seal that prevents the liquid from leaking outside the shaft seal device 30.
  • the amount of liquid passing through the upper seal structure 45 may be adjusted by appropriately designing the shape and size of the second seal body 51 and / or the shape of the upper seal structure 45. .
  • the upper seal structure 45 is , And disposed above the uppermost seal body. More specifically, the upper seal structure 45 is composed of an extension provided in the upper casing of the uppermost casing structure and a sleeve fixed to the rotary shaft 6 and is located on the uppermost side. A gap between the through hole of the casing structure and the rotary shaft 6 is sealed.
  • FIG. 10 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • a first casing structure 33 of the shaft seal device 30 shown in FIG. 10 includes a lower casing 34 as well as the first upper casing 35 and the first intermediate casing 36 described above.
  • the lower casing 34 has a lower through hole 34 a through which the rotary shaft 6 passes, and the center line of the lower through hole 34 a coincides with the axis of the rotary shaft 6.
  • the first intermediate casing 36 has a cylindrical inner peripheral surface 36a. The first intermediate casing 36 is fixed to the lower casing 34 and the first upper casing 35 while being sandwiched between the lower casing 34 and the first upper casing 35. Thereby, a first seal chamber 33 a in which the first seal body 31 is accommodated is formed in the first casing structure 33.
  • the first seal chamber 33a is formed by the lower surface 35b of the first upper casing 35, the inner peripheral surface 36a of the first intermediate casing 36, and the upper surface 34b of the lower casing 34.
  • the first seal body 31 is fixed to the rotary shaft 6 inside the first seal chamber 33a.
  • the lower surface 35 b of the first upper casing 35 and the upper surface 34 b of the lower casing 34 are planes perpendicular to the rotation shaft 6, and the inner peripheral surface 36 a of the first intermediate casing 36 is concentric with the outer peripheral surface of the rotation shaft 6. is there.
  • the first seal chamber 33a communicates with the lower through hole 34a and the first through hole 35a, and the first seal chamber 33a is located between the lower through hole 34a and the first through hole 35a.
  • the rotating shaft 6 extends in the vertical direction through the lower through hole 34a, the first seal chamber 33a, and the first through hole 35a.
  • the lower casing 34 has a lower extension 34 c that extends downward along the longitudinal direction of the rotating shaft 6.
  • the lower extension 34 c has a cylindrical shape and surrounds the rotation shaft 6.
  • the lower through hole 34a through which the rotary shaft 6 passes is formed by the entire inner peripheral surface of the lower casing 34 including the extension 34c.
  • the shaft seal device 30 is fixed on the shaft seal device mounting surface 4a of the discharge elbow pipe 4 so as to close the through hole 4b formed in the discharge elbow pipe 4.
  • the lower surface of the lower casing 34 is connected to the shaft seal device mounting surface 4a.
  • a sleeve 41 is fixed to the outer peripheral surface of the rotary shaft 6, and the sleeve 41 extends in the vertical direction through the lower through hole 34 a of the lower casing 34.
  • a gap is formed between the outer peripheral surface of the sleeve 41 and the lower through hole 34a.
  • the lower seal structure 40 is configured by the lower extension 34 c of the lower casing 34 and the sleeve 41.
  • the lower seal structure 40 may be a labyrinth seal having a labyrinth structure or a flat seal not having a labyrinth structure.
  • the labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the lower through hole 34a.
  • the plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 41, or may be formed on both the lower through hole 34 a and the outer peripheral surface of the sleeve 41.
  • the plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the lower through hole 34 a and / or the sleeve 41.
  • the spacing between adjacent parallel grooves may be equal or different.
  • the cross-sectional shape of the top of the parallel groove is arbitrary.
  • the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the groove constituting the labyrinth structure may be a screw groove that extends spirally on the outer peripheral surface of the lower through hole 34a and / or the sleeve 41.
  • the direction of rotation of the spirally extending thread groove is preferably a direction that exerts a pumping action that pushes the liquid back to the through-hole 4b formed in the discharge elbow pipe 4 when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6.
  • the pitch of the thread groove and the number of threads are arbitrary.
  • one screw groove may be formed at an unequal pitch on the outer peripheral surface of the lower through hole 34a and / or the sleeve 41, and multiple thread grooves may be formed at the lower through hole 34a and / or the sleeve 41. You may form on the outer peripheral surface.
  • the shape of the top of the thread groove is arbitrary.
  • the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the side wall of the first casing structure 33 more specifically, the first intermediate casing 36 has an opening 33b communicating with the first seal chamber 33a.
  • the opening 33b extends from the first seal chamber 33a to the outer surface of the first casing structure 33 (that is, the outer surface of the first intermediate casing 36).
  • the opening 33 b shown in FIG. 10 extends in the radial direction of the rotating shaft 6. In one embodiment, the opening 33 b may extend upward or downward with respect to the radial direction of the rotating shaft 6. Alternatively, the opening 33 b may extend obliquely with respect to the radial direction of the rotating shaft 6.
  • a first drain pipe 43 is connected to the opening 33b.
  • the first drain pipe 43 extends into the suction water tank 5 (see FIG. 1), and the tip of the first drain pipe 43 is located above the liquid level in the suction water tank 5.
  • the tip of the first drain pipe 43 may be located above a side groove (not shown) formed in the pump installation floor 22 (see FIG. 1).
  • the liquid that has flowed from the first drain pipe 43 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown).
  • a plurality of openings 33b may be provided.
  • the interval between the adjacent openings 33b is arbitrary.
  • two openings 33b separated by 180 ° in the circumferential direction of the inner peripheral surface 36a of the first casing structure 33 may be provided on the side wall of the first casing structure 33, or the inner periphery of the first casing structure 33 may be provided.
  • Four openings 33b that are 90 ° apart from each other in the circumferential direction of the surface 36a may be provided on the side wall of the first casing structure 33.
  • the first drain tube 43 is connected to each opening 33b.
  • produce the 1st seal body 31 becomes lower than embodiment shown in FIG.
  • the pressure of the liquid flowing into the second seal chamber 53a of the second casing structure 53 is also reduced, the liquid that should be generated by the second seal body 51 to prevent liquid leakage from the shaft seal device 30.
  • the shaft seal device 30 of the present embodiment can prevent leakage of higher pressure liquid as compared with the shaft seal device 30 shown in FIG.
  • the diameters of the first seal body 31 and the second seal body 51 can be reduced.
  • the size of 30 (in particular, the size of the shaft seal device 30 in the direction perpendicular to the axis of the rotating shaft 6) can be reduced.
  • the pressure of the liquid in the first seal chamber 33a can be adjusted by changing the number of the openings 33b and / or the size of the diameter of the openings 33b. Therefore, by appropriately designing the number of openings 33b and / or the size of the diameter of the openings 33b, the first through holes 35a of the first casing structure 33 are passed through the second casing structures 53. The pressure of the liquid flowing into the two-seal chamber 53a can be adjusted.
  • the rotating first seal body 31 also generates a circumferential velocity component in the liquid present below the first seal body 31 in the first seal chamber 33a. Accordingly, centrifugal force also acts on the liquid existing below the first seal body 31 in the first seal chamber 33a, and the static pressure of the liquid in the first seal chamber 33a increases.
  • the difference between the static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 and the static pressure of the liquid existing in the first seal chamber 33a is reduced. The amount of liquid flowing into the second seal chamber 53a of the second casing structure 53 increases.
  • the volume of the liquid existing below the first seal body 31 is made sufficiently larger than the volume of the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35. Is preferred.
  • the volume of the liquid existing below the first seal body 31 can be increased by increasing the distance between the lower surface of the first seal body 31 and the upper surface 34 b of the lower casing 34.
  • the lower seal structure 40 is a non-contact type seal in which the sleeve 41 that rotates integrally with the rotary shaft 6 does not contact the lower casing 34. Therefore, the sleeve 41 and the lower casing 34 are not worn, and the maintenance frequency of the lower seal structure 40 can be greatly reduced. Furthermore, since the lower seal structure 40 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquids such as cooling water and flushing liquid to the lower seal structure 40.
  • an opening 53 b communicating with the second seal chamber 53 a may be formed in the side wall of the second casing structure 53, more specifically, in the second intermediate casing 56.
  • the opening 53b extends from the second seal chamber 53a to the outer surface of the second casing structure 53 (that is, the outer surface of the second intermediate casing 56).
  • the opening 53 b shown in FIG. 10 extends in the radial direction of the rotating shaft 6. In one embodiment, the opening 53 b may extend upward or downward with respect to the radial direction of the rotation shaft 6. Alternatively, the opening 53 b may extend obliquely with respect to the radial direction of the rotation shaft 6.
  • a second drain pipe 54 is connected to the opening 53b.
  • the second drain pipe 54 extends into the suction water tank 5 (see FIG. 1), and the tip of the second drain pipe 54 is located above the liquid level in the suction water tank 5.
  • the tip of the second drain pipe 54 may be located above a gutter (not shown) formed in the pump installation floor 22 (see FIG. 1).
  • the liquid that has flowed from the second drain pipe 54 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown).
  • a plurality of openings 53b may be provided. Similar to the opening 33b described above, the interval between the adjacent openings 53b is arbitrary. When a plurality of openings 53b are provided, the second drain pipe 54 is connected to each opening 53b.
  • the shaft seal device 30 has not only the opening 33b provided on the side wall of the first casing structure 33 but also the opening 53b provided on the side wall of the second casing structure 53, the liquid from the shaft seal device 30 In order to prevent leakage, the pressure of the liquid that should be generated by the first seal body 31 and the second seal body 51 can be further reduced. As a result, the shaft seal device 30 of this embodiment can effectively prevent leakage of high-pressure liquid. Furthermore, since the diameters of the first seal body 31 and the second seal body 51 can be further reduced, the size of the shaft seal device 30 (particularly, the shaft seal device in the direction perpendicular to the axis of the rotary shaft 6). 30 size) can be reduced.
  • the opening 33b provided on the side wall of the first casing structure 33 and the first drain pipe 43 connected to the opening 33b may be omitted.
  • the shaft seal device 30 has only the opening 53b provided on the side wall of the second casing structure 53 and the second drain pipe 54 connected to the opening 53b.
  • the first seal body 31 is provided on the side wall of the first casing structure 33.
  • the opening 33b and the opening 53b provided on the side wall of the second casing structure 53 may be omitted.
  • the first drain pipe 43 connected to the opening 33 b provided on the side wall of the first casing structure 33 and the second drain pipe connected to the opening 53 b provided on the side wall of the second casing structure 53. 54 is also omitted.
  • the lower seal structure 40 is used. Is disposed below the lowermost seal body. More specifically, the lower seal structure 40 includes a lower extension provided in the lower casing of the lowermost casing structure, and a sleeve fixed to the rotary shaft 6. The gap between the through hole of the casing structure located on the lowermost side and the rotating shaft 6 is sealed.
  • the seal casing 70 of the shaft seal device 30 has three or more casing structures (that is, three or more seal chambers), at least one seal chamber communicates with the outside of the seal chamber.
  • One opening may be provided. That is, the seal casing 70 only needs to have at least one opening that communicates at least one seal chamber of the plurality of seal chambers with the outside of the seal casing 70. Also in this case, a drain pipe is connected to the opening.
  • the seal casing 70 may not have the at least one opening by appropriately designing the shapes and dimensions of the plurality of seal bodies and the shape of the lower seal structure 40.
  • FIG. 11 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • the upper seal structure 45 described with reference to FIG. 9 is attached to the shaft seal device 30 shown in FIG. 10. Therefore, the configuration of the upper seal structure 45 of the present embodiment is the same as the configuration of the upper seal structure 45 shown in FIG. 9, and thus detailed description of the upper seal structure 45 is omitted.
  • the extension 55c of the second upper casing 53 is referred to as the upper extension 55c.
  • the first casing structure 33 of the shaft seal device 30 of the present embodiment is also sandwiched between the first upper casing 35, the lower casing 34, and the first upper casing 35 and the lower casing 35.
  • a first intermediate casing 36 is provided.
  • the first seal body 31 rotates inside a first seal chamber 33a formed by a lower surface 35b of the first upper casing 35, an inner peripheral surface 36a of the first intermediate casing 36, and an upper surface 34b of the lower casing 34. It is fixed to the shaft 6.
  • the lower casing 34 of the first casing structure 33 has a lower extension 34 c that extends downward along the longitudinal direction of the rotating shaft 6, and the lower through-hole 34 a through which the rotating shaft 6 passes is a lower extension. It is formed by the entire inner peripheral surface of the lower casing 34 including the portion 34c.
  • a sleeve 41 is fixed to the outer peripheral surface of the rotary shaft 6, and the sleeve 41 extends in the vertical direction through the lower through hole 34 a of the lower casing 34.
  • a gap is formed between the outer peripheral surface of the sleeve 41 and the lower through hole 34a.
  • the non-contact type lower seal structure 40 of the present embodiment is a labyrinth seal or a flat seal constituted by the lower extension 34 c of the lower casing 34 and the sleeve 41.
  • the rotating shaft 6 extends in the vertical direction through the lower through hole 34a, the first seal chamber 33a, and the first through hole 35a.
  • the second upper casing 55 of the second casing structure 53 has an upper extension 55c that extends upward along the longitudinal direction of the rotary shaft 6, and the second through hole 55a through which the rotary shaft 6 passes is an upper extension. It is formed by the entire inner peripheral surface of the second upper casing 55 including 55c.
  • a sleeve 47 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 47 extends in the vertical direction through the second through hole 55 a of the second upper casing 55.
  • a gap is formed between the outer peripheral surface of the sleeve 47 and the second through hole 55a.
  • the non-contact type upper seal structure 45 of the present embodiment is a labyrinth seal or a flat seal configured by the upper extension 55 c of the second upper casing 55 and the sleeve 47.
  • the liquid that has passed through the lower seal structure 40 and has flowed into the first seal chamber 33a is decompressed when passing through the lower seal structure 40. Furthermore, a part of the liquid that has passed through the lower seal structure 40 and reached the first seal chamber 33a flows into the drain pipe 43 through the opening 33b provided in the side wall of the first casing structure 33, It is returned to the suction tank 5. Since a part of the liquid reaching the first seal chamber 33a is returned to the suction water tank 5 through the drain pipe 43 communicating with the atmosphere, the pressure of the liquid in the first seal chamber 33a of the first casing structure 33 decreases. To do. Therefore, the pressure of the liquid that should be generated by the first seal body 31 and the second seal body 51 in order to prevent leakage of the liquid from the shaft seal device 30 can be reduced.
  • the side wall of the second casing structure 53 may be provided with an opening 53b (see FIG. 10) communicating with the second seal chamber 53a.
  • the first seal body 31 and the second seal body 51 are generated in order to prevent leakage of the liquid from the shaft seal device 30.
  • the pressure of the liquid to be reduced can be further reduced.
  • the side wall of the first casing structure 33 is obtained.
  • the opening 33b provided on the side wall and the opening 53b provided on the side wall of the second casing structure 53 may be omitted.
  • the pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused by the rotation of the second seal body 51 between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51. Even if it is higher than the centrifugal force applied to the liquid existing in the gap, the liquid is further depressurized when passing through the upper seal structure 45 and flows into the internal space 48 a of the leak cover 48. However, the liquid that has flowed into the internal space 48 a of the leak cover 48 is returned to the suction water tank 5 via the leak pipe 49. Therefore, the shaft seal device 30 can reliably prevent the liquid from leaking from the shaft seal device 30.
  • the upper seal structure 45 You may adjust the quantity of the liquid which passes.
  • the upper seal structure 45 is , And disposed above the uppermost seal body. More specifically, the upper seal structure 45 is composed of an upper extension provided in the upper casing of the uppermost casing structure and a sleeve fixed to the rotary shaft 6, and is located at the uppermost position. The gap between the through hole of the casing structure and the rotating shaft 6 is sealed. Further, the lower seal structure 40 is disposed below the lowermost seal body. More specifically, the lower seal structure 40 includes a lower extension provided in the lower casing of the lowermost casing structure, and a sleeve fixed to the rotary shaft 6. The clearance gap between the through-hole of the casing structure located in the lowest side and a rotating shaft is sealed.
  • the seal casing 70 of the shaft seal device 30 has three or more casing structures (that is, three or more seal chambers), at least one seal chamber communicates with the outside of the seal chamber.
  • One opening may be provided. That is, the seal casing 70 only needs to have at least one opening that communicates at least one seal chamber of the plurality of seal chambers with the outside of the seal casing 70. Also in this case, a drain pipe is connected to the opening.
  • the seal casing 70 may not have the at least one opening by appropriately designing the shapes and dimensions of the plurality of seal bodies and the shape of the lower seal structure 40.
  • the shaft seal device 30 is also arranged in series in the axial direction of the rotary shaft 6, and liquid leaks from the shaft seal device 30 by the plurality of seal bodies 31 and 51 that rotate integrally with the rotary shaft 6. To prevent. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
  • the shaft seal device 30 is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat
  • the upper seal structure 45 is a non-contact type seal in which the sleeve 47 that rotates integrally with the rotary shaft 6 does not contact the upper casing 35.
  • the lower seal structure 40 is a non-contact type seal in which the sleeve 41 that rotates integrally with the rotary shaft 6 does not contact the lower casing 34. Therefore, the maintenance frequency of the upper seal structure 45 and the lower seal structure 40 can be greatly reduced. Furthermore, since the upper seal structure 45 and the lower seal structure 40 exhibit a sealing function in a non-contact manner, frictional heat due to contact does not occur, and liquids such as cooling water and flushing liquid can be supplied to the upper seal structure 45 and There is no need to supply the lower seal structure 40.
  • FIG. 12 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment.
  • the configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG.
  • the shaft seal device 30 shown in FIG. 12 includes a non-contact type intermediate seal structure 60 that seals a gap between the rotary shaft 6 and the first through hole 35a.
  • the shaft seal device 30 shown in FIG. 12 includes the liquid leakage cover 48 described with reference to FIG. 9, and an inner space 48 a of the liquid leakage cover 48 is provided on the side wall of the liquid leakage cover 48. There is provided at least one opening 48b communicating with the.
  • the above-described leakage pipe 49 is connected to the opening 48b.
  • the above-described draining plate 50 may be fixed to the rotating shaft 6 in the internal space 48 a of the leak cover 48.
  • At least one opening 53b described with reference to FIG. 10 is provided on the side wall of the second casing structure 53 of the shaft seal device 30, and the second drain described above is provided in the opening 53b.
  • a tube 54 is connected.
  • a sleeve 61 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 61 is formed in the first through-hole formed in the first upper casing 35 of the first casing structure 33. It extends in the vertical direction through the hole 35a. A gap is formed between the sleeve 61 and the first through hole 35a.
  • the first seal chamber 33a of the first casing structure 33 communicates with the second seal chamber 53a of the second casing structure 53 through a gap formed between the sleeve 61 and the first through hole 35a.
  • the non-contact type intermediate seal structure 60 of the present embodiment is a labyrinth seal constituted by a first through hole 35a formed in the first upper casing 35 and a sleeve 61.
  • the non-contact type intermediate seal structure 60 may be a flat seal that does not have a labyrinth structure.
  • the labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the first through hole 35a.
  • the plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 61, or may be formed on both the first through hole 35 a and the outer peripheral surface of the sleeve 61.
  • the plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the first through hole 35 a and / or the sleeve 61.
  • the spacing between adjacent parallel grooves may be equal or different.
  • the cross-sectional shape of the top of the parallel groove is arbitrary.
  • the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the groove constituting the labyrinth structure may be a thread groove extending spirally on the outer peripheral surface of the first through hole 35a and / or the sleeve 61.
  • the rotational direction of the spirally extending thread groove is preferably a direction that exerts a pumping action that pushes the liquid back to the first seal chamber 33a when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6.
  • the pitch of the thread groove and the number of threads are arbitrary.
  • one screw groove may be formed on the outer peripheral surface of the first through hole 35a and / or the sleeve 61 at an unequal pitch, and multiple thread grooves may be formed in the first through hole 35a and / or the sleeve 61. You may form on the outer peripheral surface.
  • the shape of the top of the thread groove is arbitrary.
  • the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape.
  • the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
  • the shaft seal device 30 of the present embodiment can prevent leakage of higher pressure liquid as compared with the shaft seal device 30 shown in FIG. Further, when the shaft seal device 30 of the present embodiment is compared with the shaft seal device 30 shown in FIG. 2, the diameters of the first seal body 31 and the second seal body 51 can be reduced. The size of 30 (in particular, the size of the shaft seal device 30 in the direction perpendicular to the axis of the rotating shaft 6) can be reduced.
  • the pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51 by the rotation of the second seal body 51.
  • the centrifugal force applied to the liquid existing in the gap is higher, the liquid flows into the internal space 48a of the leak cover 48 through the second through hole 55a.
  • the liquid that has flowed into the internal space 48 a of the leak cover 48 is returned to the suction water tank 5 via the leak pipe 49. Therefore, the shaft seal device 30 can reliably prevent the liquid from leaking from the shaft seal device 30.
  • the shaft seal device 30 has an opening 53 b provided on the side wall of the second casing structure 53 or an opening 48 b provided on the side wall of the leak cover 48. Need to have one. More specifically, the opening 53b provided on the side wall of the second casing structure 53 can be omitted.
  • the liquid leakage cover 48 is fixed to the upper surface of the upper casing 53 of the second casing structure 53, At least one opening 48 b is provided on the side wall of the leak cover 48.
  • the leak cover 48 fixed to the upper surface of the upper casing 53 of the second casing structure 53 and at least one opening 48b provided on the side wall of the leak cover 48 can be omitted.
  • An opening 53 b is provided on the side wall of the second casing structure 53.
  • the upper seal structure 45 described with reference to FIGS. 9 and 11 may be provided in the shaft seal device 30 shown in FIG. In this case, the upper seal structure 45 can reduce the pressure of the liquid flowing into the internal space 48 a of the leak cover 48.
  • the shaft seal device 30 is also arranged in series in the axial direction of the rotary shaft 6, and liquid leaks from the shaft seal device 30 by the plurality of seal bodies 31 and 51 that rotate integrally with the rotary shaft 6. To prevent. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
  • the shaft seal device 30 is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat
  • the intermediate seal structure 60 is a non-contact type seal in which the sleeve 61 that rotates integrally with the rotary shaft 6 does not contact the first upper casing 35. Therefore, the sleeve 61 and the first upper casing 35 are not worn, and the maintenance frequency of the intermediate seal structure 60 can be greatly reduced. Further, since the intermediate seal structure 60 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquids such as cooling water and flushing liquid to the intermediate seal structure 60.
  • the intermediate seal structure 60 seals the gap between the first through hole 35a that connects the adjacent first seal chamber 33a and second seal chamber 53a to each other and the rotary shaft 6.
  • the shaft seal device 30 is It is only necessary to have at least one intermediate seal structure 60. More specifically, the shaft seal device 30 includes at least one intermediate seal structure that seals a gap between at least one through hole among a plurality of through holes that allow adjacent seal chambers to communicate with each other and the rotary shaft 6.
  • the body 60 may be included.
  • the shaft seal device 30 includes at least one opening provided in a side wall of at least one casing structure and / or a liquid leakage cover 48 fixed to the upper surface of the upper casing of the uppermost casing structure. At least one opening 48b provided on the side wall.
  • intermediate seal structure 60 shown in FIG. 12 may be provided in the shaft seal device 30 shown in FIGS. 7, 8, 9, and 11.
  • the seal body 51 may be inclined downward and radially curved toward the outer side in the radial direction (see FIG. 8).
  • the plurality of seal bodies 31 and 51 of the shaft seal device 30 do not come into contact with other members, so that no abrasion powder is generated from each seal body 31 and 51.
  • the upper seal structure 45, the lower seal structure 40, and the intermediate seal structure 61 are also non-contact type seals, the upper seal structure 45, the lower seal structure 40, and the intermediate seal structure No wear powder is generated from 61. Therefore, the shaft seal device 30 according to the above-described embodiment can be attached to a vertical shaft pump that transfers a liquid (for example, drinking water) that requires strict quality.
  • the present invention can be used for a shaft seal device that prevents liquid from leaking from a shaft penetration portion of a container through which a rotating shaft penetrates. Further, the present invention can be used for a vertical shaft pump provided with this shaft seal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

The present invention pertains to a shaft sealing apparatus that prevents leakage of a liquid from the shaft penetration part of a container penetrated by a rotary shaft. A shaft sealing apparatus (30) is provided with: a seal casing (70) that has a plurality of casing structures (33, 53) arranged along the axial direction of a rotary shaft (6); a plurality of seal chambers (33a, 53a) that are formed inside the respective casing structures; and a plurality of disk-shaped seal bodies (51) that have annular surfaces (31a, 51a) vertical to the shaft center of the rotary shaft, that are respectively housed in the seal chambers, and that rotate integrally with the rotary shaft. The casing structure have through-holes (35a, 55a) through which the rotary shaft passes and which are connected with the seal chambers, and the inner surfaces of the casing structures opposed to the annular surfaces of the seal bodies are planes vertical to the shaft center of the rotary shaft.

Description

軸封装置およびこの軸封装置を備えた立軸ポンプShaft seal device and vertical shaft pump equipped with the shaft seal device
 本発明は、回転軸が貫通する容器の軸貫通部から液体が漏洩するのを防止する軸封装置に関する。また、本発明は、この軸封装置を備えた立軸ポンプに関する。 The present invention relates to a shaft seal device that prevents liquid from leaking from a shaft penetrating portion of a container through which a rotating shaft passes. The present invention also relates to a vertical shaft pump provided with this shaft seal device.
 一般に、高圧流体と低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置が知られている。例えば、立軸ポンプの羽根車を回転させる回転軸は、ポンプケーシングを貫通して延びており、回転軸が貫通する軸貫通部から液体が漏れないように、該軸貫通部は、軸封装置によってシールされる。立軸ポンプでは、容器は、ポンプケーシングであり、高圧流体はポンプケーシングの内部を流れる液体であり、低圧流体は、ポンプケーシングの外部の大気である。このような軸封装置は、一般に、グランドパッキン、メカニカルシール、またはフローティングシールなどのシール機構を採用している。 Generally, a shaft seal device is known that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotating shaft that extends through the container. For example, the rotating shaft that rotates the impeller of the vertical shaft extends through the pump casing, and the shaft penetrating portion is provided by a shaft sealing device so that liquid does not leak from the shaft penetrating portion through which the rotating shaft passes. Sealed. In the vertical pump, the container is a pump casing, the high-pressure fluid is a liquid flowing inside the pump casing, and the low-pressure fluid is the atmosphere outside the pump casing. Such a shaft seal device generally employs a seal mechanism such as a gland packing, a mechanical seal, or a floating seal.
 グランドパッキンは、回転軸の外周面に接触して、その接触圧力で液体の漏洩を防止する。メカニカルシールは、回転軸と一体に回転する回転リングと、ハウジングなどの静止部材に固定された固定リングとを有し、回転リングと固定リングとが互いに接触を保つことで、液体の漏洩を防止する。フローティングシールは、回転軸の外周面に固定されたスリーブと、該スリーブに対向するシールリングとを有する。シールリングとスリーブとの間には極めて微小な隙間が構成されており、微量な液体の漏洩のみを許容する。 ¡Gland packing is in contact with the outer peripheral surface of the rotating shaft and prevents liquid leakage by the contact pressure. The mechanical seal has a rotating ring that rotates integrally with the rotating shaft and a fixing ring that is fixed to a stationary member such as a housing. The rotating ring and the fixing ring maintain contact with each other to prevent liquid leakage. To do. The floating seal has a sleeve fixed to the outer peripheral surface of the rotating shaft, and a seal ring facing the sleeve. An extremely minute gap is formed between the seal ring and the sleeve, and only a minute amount of liquid is allowed to leak.
 グランドパッキンは、回転する回転軸に常に接触している(この接触状態を、「摺接する」と称する)ので、グランドパッキンが徐々に摩耗する。したがって、グランドパッキンの定期的なメンテナンスまたは交換が必要となる。また、グランドパッキンには、回転軸との摺接に伴い摩擦熱が発生するため、グランドパッキンの冷却が必要となる。取り扱う液体が清水であれば、その液体でグランドパッキンを冷却できるが、液体がスラリーなどの固体を含む場合には、グランドパッキンと回転軸との間に固体が噛み込まないように、別途設けた注水装置からグランドパッキンに液体を供給するか、または固体の侵入を防ぐための保護管で回転軸を囲む必要がある。 Since the gland packing is always in contact with the rotating shaft (this contact state is referred to as “sliding contact”), the gland packing gradually wears. Therefore, periodic maintenance or replacement of the gland packing is necessary. In addition, since the frictional heat is generated in the gland packing in sliding contact with the rotating shaft, it is necessary to cool the gland packing. If the liquid to be handled is fresh water, the gland packing can be cooled with that liquid. However, if the liquid contains a solid such as slurry, a separate one is provided so that the solid does not get caught between the gland packing and the rotating shaft. It is necessary to supply the liquid from the water injection device to the gland packing, or to surround the rotating shaft with a protective tube for preventing solids from entering.
 メカニカルシールの回転リングは、固定リングに常に摺接するので、回転リングおよび固定リングは徐々に摩耗する。したがって、回転リングおよび固定リングの定期的なメンテナンスまたは交換が必要となる。また、回転リングと固定リングの摺接により摩擦熱が発生するために、メカニカルシールには、冷却用のフラッシング液を注入するための付帯設備が必要である。さらに、回転リングと固定リングとの接触面は精密に仕上げ加工されているため、回転リングおよび固定リングをメンテナンスまたは交換するときには、回転リングおよび固定リングの正確な組立が要求される。 ∙ The rotating ring of the mechanical seal is always in sliding contact with the fixed ring, so the rotating ring and the fixed ring are gradually worn. Therefore, periodic maintenance or replacement of the rotating ring and the fixing ring is required. In addition, since frictional heat is generated due to the sliding contact between the rotating ring and the fixed ring, the mechanical seal needs an auxiliary facility for injecting a cooling flushing liquid. Further, since the contact surface between the rotating ring and the fixing ring is precisely finished, when the rotating ring and the fixing ring are maintained or exchanged, accurate assembly of the rotating ring and the fixing ring is required.
 フローティングシールは、摺接するグランドパッキンやメカニカルシールと異なり、シールリングとスリーブとの間に微小な隙間が形成されているので、摺接する構成部材を含まない非接触の軸封装置とされる。したがって、グランドパッキンまたはメカニカルシールで必要とされるメンテナンスは原則的に不要である。しかしながら、回転軸に振れ回りや振動が発生すると、シールリングはスリーブと接触することがある。このため、このような接触を許容するために、シールリングおよび/またはスリーブに耐摩耗性の高い高硬度材料を用いる必要があり、フローティングシールは高価になりやすい。また、フローティングシールは、液体のある程度の通過を許容するため、スラリーなどの固体を含む液体の漏洩防止には適さない。また、フローティングシールでは、取り扱う液体が海水である場合には、その腐食性のために高硬度材料が使用できないことが多い。 フ ロ ー テ ィ ン グ Unlike the gland packing and mechanical seal that make sliding contact, the floating seal has a minute gap formed between the seal ring and the sleeve, and is therefore a non-contact shaft seal device that does not include any components that make sliding contact. Therefore, the maintenance required by gland packing or mechanical seal is essentially unnecessary. However, the seal ring may come into contact with the sleeve when a whirling or vibration occurs on the rotating shaft. For this reason, in order to allow such a contact, it is necessary to use a highly hard material having high wear resistance for the seal ring and / or the sleeve, and the floating seal tends to be expensive. Further, since the floating seal allows a certain amount of liquid to pass through, the floating seal is not suitable for preventing leakage of liquid containing solid such as slurry. In the case of a floating seal, when the liquid to be handled is seawater, it is often impossible to use a high hardness material due to its corrosiveness.
 さらに、軸封装置が一つのシール機構のみを有している場合は、取り扱う流体(例えば、立軸ポンプのポンプケーシング内の液体)の圧力次第で、取り扱う流体が軸封装置から漏洩する場合がある。より具体的には、取り扱う流体の圧力が非常に高い場合は、液体が軸封装置から漏洩することがある。複数のシール機構が直列に配置された軸封装置を用いると、流体が軸封装置から漏洩することを防止することができる。しかしながら、シール機構の数が増加すると、軸封装置およびその付帯設備が大型化すると共に、メンテナンス頻度およびメンテナンスコストが大幅に増加する。例えば、2つのフローティングシールが直列に配置された軸封装置におけるメンテナンス頻度およびメンテナンスコストは、1つのフローティングシールが配置された軸封装置におけるメンテナンス頻度およびメンテナンスコストの2倍である。 Furthermore, when the shaft seal device has only one seal mechanism, the handled fluid may leak from the shaft seal device depending on the pressure of the fluid to be handled (for example, liquid in the pump casing of the vertical shaft pump). . More specifically, when the pressure of the fluid handled is very high, liquid may leak from the shaft seal device. When a shaft seal device in which a plurality of seal mechanisms are arranged in series is used, fluid can be prevented from leaking from the shaft seal device. However, when the number of seal mechanisms increases, the shaft seal device and its associated equipment increase in size, and the maintenance frequency and maintenance cost increase significantly. For example, the maintenance frequency and maintenance cost in the shaft seal device in which two floating seals are arranged in series are twice the maintenance frequency and maintenance cost in the shaft seal device in which one floating seal is arranged.
 本発明は、上述の事情に鑑みてなされたもので、取り扱う流体の圧力が高い場合でも、流体を漏洩させずに、メンテナンス頻度を大幅に低減させるとともに、冷却水などの液体を供給するための付帯設備を別途設ける必要がなく、さらに構成部品の特殊な仕上げ加工が不要な軸封装置を提供することを目的とする。また、本発明は、この軸封装置を備えた立軸ポンプを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of greatly reducing the maintenance frequency and supplying a liquid such as cooling water without leaking the fluid even when the pressure of the fluid to be handled is high. It is an object of the present invention to provide a shaft seal device that does not require additional equipment and that does not require special finishing of components. Moreover, an object of this invention is to provide the vertical shaft pump provided with this shaft seal device.
 上述した目的を達成するために、本発明の一態様は、高圧流体と低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置であって、前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転し、前記回転軸の軸心に垂直な環状面を有する複数の円板状のシール体と、を備え、前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記回転軸の軸心に垂直な平面であることを特徴とする軸封装置である。 In order to achieve the above-described object, one aspect of the present invention is a shaft seal device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotary shaft that extends through the container. A seal casing having a plurality of casing structures disposed along an axial direction of the rotating shaft, a plurality of seal chambers formed inside each of the plurality of casing structures, and the plurality of seal chambers Each of the plurality of disc-shaped sealing bodies that rotate integrally with the rotation shaft and have an annular surface perpendicular to the axis of the rotation shaft, each of the plurality of casing structures. The inner surface of the casing structure that has a through hole that passes through the rotating shaft and communicates with the seal chamber, is opposed to the annular surface of the seal body, and forms the seal chamber, of A shaft seal device which is a plane perpendicular to the heart.
 本発明の好ましい態様は、前記複数のシール体のうちの少なくとも一つのシール体の前記環状面には、放射状に延びる複数の溝が形成され、前記溝の幅は、前記溝の内端から外端まで一定であることを特徴とする。
 本発明の好ましい態様は、前記複数のシール体のうちの少なくとも一つのシール体の前記環状面には、放射状に延びる複数の溝が形成され、前記溝の幅は、前記溝の外端に向かって徐々に大きくなることを特徴とする。
In a preferred aspect of the present invention, a plurality of radially extending grooves are formed on the annular surface of at least one of the plurality of seal bodies, and the width of the groove is outside the inner end of the groove. It is constant to the end.
In a preferred aspect of the present invention, a plurality of radially extending grooves are formed on the annular surface of at least one of the plurality of seal bodies, and the width of the grooves is directed toward the outer ends of the grooves. It is characterized by gradually increasing.
 本発明の好ましい態様は、前記複数のシール体のうちの最も上側に位置するシール体の上方には、前記複数のシール構造体のうちの最も上側に位置するシール構造体の貫通孔と前記回転軸との隙間を封止する非接触式の上側シール構造体がさらに設けられていることを特徴とする。
 本発明の好ましい態様は、前記上側シール構造体は、ラビリンスシールまたはフラットシールであり、前記上側シール構造体を取り囲むように前記シールケーシングの上部に固定される漏液カバーが設けられ、前記漏液カバーには、前記漏液カバーの内部空間と前記漏液カバーの外部とを連通する開口が設けられ、前記開口には、漏液管が接続されていることを特徴とする。
In a preferred aspect of the present invention, the through hole of the seal structure located on the uppermost side of the plurality of seal structures and the rotation above the seal body located on the uppermost side of the plurality of seal bodies. A non-contact type upper seal structure for sealing a gap with the shaft is further provided.
In a preferred aspect of the present invention, the upper seal structure is a labyrinth seal or a flat seal, and a leak cover is provided that is fixed to an upper portion of the seal casing so as to surround the upper seal structure. The cover is provided with an opening that communicates the internal space of the leak cover and the outside of the leak cover, and a leak pipe is connected to the opening.
 本発明の好ましい態様は、前記複数のシール体のうちの最も下側に位置するシール体の下方には、前記複数のシール構造体のうちの最も下側に位置するシール構造体の貫通孔と前記回転軸との隙間を封止する非接触式の下側シール構造体がさらに設けられていることを特徴とする。
 本発明の好ましい態様は、前記下側シール構造体は、ラビンリンスシールまたはフラットシールであることを特徴とする。
 本発明の好ましい態様は、前記シールケーシングには、前記複数のシール室のうちの少なくとも一つのシール室と前記シールケーシングの外部とを連通する少なくとも1つの開口が設けられ、前記開口には、ドレイン管が接続されていることを特徴とする。
According to a preferred aspect of the present invention, a through hole of a lowermost seal structure among the plurality of seal structures is provided below the lowermost seal body of the plurality of seal bodies. A non-contact type lower seal structure that seals a gap with the rotating shaft is further provided.
In a preferred aspect of the present invention, the lower seal structure is a Rabin rinse seal or a flat seal.
In a preferred aspect of the present invention, the seal casing is provided with at least one opening that communicates at least one of the plurality of seal chambers with the outside of the seal casing, and the opening includes a drain. A tube is connected.
 本発明の他の態様は、高圧流体と低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置であって、前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転する複数の円板状のシール体と、を備え、前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、前記シール体は、前記回転軸の軸心と垂直な面に対して下方に傾斜する上面を有しており、前記シール体の前記上面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記シール体の前記上面に沿って延びることを特徴とする軸封装置である。
 本発明の好ましい態様は、前記シール体の前記上面は、湾曲していることを特徴とする。
Another aspect of the present invention is a shaft sealing device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid, and that seals a shaft penetration portion of a rotating shaft that extends through the container, the axial direction of the rotating shaft A seal casing having a plurality of casing structures disposed along the plurality of casing structures, a plurality of seal chambers formed inside each of the plurality of casing structures, and the rotation accommodated in each of the plurality of seal chambers A plurality of disc-shaped seal bodies that rotate integrally with a shaft, and each of the plurality of casing structures has a through-hole that communicates with the seal chamber while passing through the rotation shaft, The seal body has an upper surface that is inclined downward with respect to a plane perpendicular to the axis of the rotary shaft, and is opposed to the upper surface of the seal body and forms the seal chamber of the casing structure. The inner surface A shaft sealing device, characterized in that extending along the top surface of the serial seal member.
In a preferred aspect of the present invention, the upper surface of the seal body is curved.
 本発明の他の態様は、羽根車と、前記羽根車が固定された回転軸と、前記羽根車を収容し、かつ前記回転軸が貫通する軸貫通部を有するポンプケーシングと、前記軸貫通部をシールするための軸封装置と、を備え、前記軸封装置は、前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転し、前記回転軸の軸心に垂直な環状面を有する複数の円板状のシール体と、を備え、前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記回転軸の軸心に垂直な平面であることを特徴とする立軸ポンプである。 Another aspect of the present invention includes an impeller, a rotating shaft to which the impeller is fixed, a pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes, and the shaft penetrating portion. A shaft seal device for sealing the seal casing, wherein the shaft seal device has a plurality of casing structures disposed along an axial direction of the rotating shaft, and each of the plurality of casing structures. A plurality of seal chambers formed inside each of the plurality of seal chambers, and a plurality of disk-shaped members that are accommodated in each of the plurality of seal chambers, rotate integrally with the rotation shaft, and have an annular surface perpendicular to the axis of the rotation shaft Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber, and is opposed to the annular surface of the seal body, and Shape the sealing chamber An inner surface of said casing structure which is a vertical shaft pump, wherein the a plane perpendicular to the axis of the rotating shaft.
 本発明の他の態様は、羽根車と、前記羽根車が固定された回転軸と、前記羽根車を収容し、かつ前記回転軸が貫通する軸貫通部を有するポンプケーシングと、前記軸貫通部をシールするための軸封装置と、を備え、前記軸封装置は、前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転する複数の円板状のシール体と、を備え、前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、前記シール体は、前記回転軸の軸心と垂直な面に対して下方に傾斜する上面を有しており、前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記シール体の前記上面に沿って延びることを特徴とする立軸ポンプである。 Another aspect of the present invention includes an impeller, a rotating shaft to which the impeller is fixed, a pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes, and the shaft penetrating portion. A shaft seal device for sealing the seal casing, wherein the shaft seal device has a plurality of casing structures disposed along an axial direction of the rotating shaft, and each of the plurality of casing structures. A plurality of sealing chambers formed therein, and a plurality of disc-shaped sealing bodies that are housed in the plurality of sealing chambers and rotate integrally with the rotation shaft, respectively, and the plurality of casing structures Each of which has a through hole through which the rotary shaft passes and communicates with the seal chamber, and the seal body has an upper surface which is inclined downward with respect to a plane perpendicular to the axis of the rotary shaft. And said seal The inner surface of the casing structure of the opposing the annular surface, and to form the seal chamber is a vertical shaft pump, characterized in that extending along the top surface of the seal body.
 本発明の軸封装置によれば、回転軸の軸方向に直列に配置され、該回転軸と一体的に回転する複数のシール体によって、流体が軸封装置から漏洩することを防止する。したがって、取り扱う流体の圧力が高い場合でも、軸封装置からの流体の漏洩を防止することができる。さらに、この軸封装置は、各シール体が他の部材に摺接しない非接触の軸封装置であるため、シール体が摩耗しない。したがって、軸封装置のメンテナンス頻度を大幅に低減させることができる。また、各シール体は、非接触でシール機能を発揮するので、互いに摺接する構成部材を含む軸封装置と比較して、各シール体上を流動する液体に生じる摩擦熱は極く僅かであり、冷却水、もしくはフラッシング液などの液体を軸封装置に供給するための付帯設備を別途設ける必要がない。さらに、メカニカルシールのように、回転リングと固定リング等の構成部材の表面を精密に仕上げ加工する必要がなく、正確な組立が要求されることもない。 According to the shaft seal device of the present invention, fluid is prevented from leaking from the shaft seal device by a plurality of seal bodies that are arranged in series in the axial direction of the rotation shaft and rotate integrally with the rotation shaft. Therefore, even when the pressure of the fluid to handle is high, the fluid leakage from the shaft seal device can be prevented. Furthermore, since this shaft seal device is a non-contact shaft seal device in which each seal body does not slidably contact other members, the seal body does not wear. Therefore, the maintenance frequency of the shaft seal device can be greatly reduced. In addition, since each sealing body exhibits a sealing function in a non-contact manner, the frictional heat generated in the liquid flowing on each sealing body is negligible compared to a shaft sealing device including constituent members that are in sliding contact with each other. In addition, it is not necessary to separately provide ancillary equipment for supplying liquid such as cooling water or flushing liquid to the shaft seal device. Further, unlike the mechanical seal, it is not necessary to precisely finish the surface of the constituent members such as the rotating ring and the fixed ring, and accurate assembly is not required.
図1は、本発明の一実施形態に係る軸封装置が設けられた立軸ポンプを示す模式図である。FIG. 1 is a schematic diagram showing a vertical shaft pump provided with a shaft seal device according to an embodiment of the present invention. 図2は、図1に示される軸封装置の断面図である。FIG. 2 is a cross-sectional view of the shaft seal device shown in FIG. 図3Aは、第1シール体の一実施形態を示す上面図である。FIG. 3A is a top view showing an embodiment of the first seal body. 図3Bは、図3AのA-A線断面図である。3B is a cross-sectional view taken along line AA in FIG. 3A. 図4Aは、第1シール体の別の実施形態を示す上面図である。FIG. 4A is a top view showing another embodiment of the first seal body. 図4Bは、図4AのB-B線断面図である。4B is a cross-sectional view taken along the line BB of FIG. 4A. 図5Aは、第1シール体のさらに別の実施形態を示す上面図である。FIG. 5A is a top view showing still another embodiment of the first seal body. 図5Bは、図5AのC-C線断面図である。5B is a cross-sectional view taken along the line CC of FIG. 5A. 図6Aは、第1シール体のさらに別の実施形態を示す上面図である。FIG. 6A is a top view showing still another embodiment of the first seal body. 図6Bは、図6AのD-D線断面図である。6B is a cross-sectional view taken along the line DD of FIG. 6A. 図7は、別の実施形態に係る軸封装置の断面図である。FIG. 7 is a cross-sectional view of a shaft seal device according to another embodiment. 図8は、図7に示される軸封装置の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a modification of the shaft seal device shown in FIG. 図9は、さらに別の実施形態に係る軸封装置の断面図である。FIG. 9 is a cross-sectional view of a shaft seal device according to still another embodiment. 図10は、さらに別の実施形態に係る軸封装置の断面図である。FIG. 10 is a cross-sectional view of a shaft seal device according to still another embodiment. 図11は、さらに別の実施形態に係る軸封装置の断面図である。FIG. 11 is a cross-sectional view of a shaft seal device according to yet another embodiment. 図12は、さらに別の実施形態に係る軸封装置の断面図である。FIG. 12 is a cross-sectional view of a shaft seal device according to still another embodiment.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態に係る軸封装置30が設けられた立軸ポンプを示す模式図である。図1に示すように、立軸ポンプは、吸込ベルマウス1a及び吐出ボウル1bを有するインペラケーシング1と、インペラケーシング1を吸込水槽5内に吊り下げる揚水管3と、揚水管3の上端に接続される吐出エルボ管4と、インペラケーシング1内に収容される羽根車10と、羽根車10が固定される回転軸6とを備えている。揚水管3は、吸込水槽5の上部のポンプ据付床22に形成された挿通口24を通して下方に延び、揚水管3の上端に設けられた据付用ベース23を介してポンプ据付床22に固定される。回転軸6は、吐出エルボ管4、揚水管3、及びインペラケーシング1内を通って鉛直方向に延びている。ポンプケーシング2は、インペラケーシング1、揚水管3、及び吐出エルボ管4により構成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing a vertical shaft pump provided with a shaft seal device 30 according to an embodiment of the present invention. As shown in FIG. 1, the vertical shaft pump is connected to an impeller casing 1 having a suction bell mouth 1 a and a discharge bowl 1 b, a pumping pipe 3 for suspending the impeller casing 1 in a suction water tank 5, and an upper end of the pumping pipe 3. A discharge elbow pipe 4, an impeller 10 accommodated in the impeller casing 1, and a rotating shaft 6 to which the impeller 10 is fixed. The pumping pipe 3 extends downward through an insertion port 24 formed in the pump installation floor 22 at the upper part of the suction water tank 5, and is fixed to the pump installation floor 22 via an installation base 23 provided at the upper end of the pumping pipe 3. The The rotary shaft 6 extends in the vertical direction through the discharge elbow pipe 4, the pumping pipe 3, and the impeller casing 1. The pump casing 2 includes an impeller casing 1, a pumping pipe 3, and a discharge elbow pipe 4.
 吸込ベルマウス1aは下方を向いて開口し、吸込ベルマウス1aの上端は吐出ボウル1bの下端に接続されている。羽根車10は回転軸6の下端に固定されており、羽根車10と回転軸6とは一体的に回転する。この羽根車10の上方(吐出側)には複数のガイドベーン14が配置されている。これらのガイドベーン14は吐出ボウル1bの内周面に固定されている。回転軸6は、外軸受11、中間軸受15、および水中軸受12により回転自在に支持されている。水中軸受12は吐出ボウル1b内に収容されており、羽根車10の上方に配置されている。水中軸受12を支持する支持部材7はボウルブッシュ13の内面に固定されており、さらに、ボウルブッシュ13はガイドベーン14を介してインペラケーシング1に支持されている。外軸受11はボールベアリングなどの転がり軸受、または滑り軸受であり、水中軸受12および中間軸受15は、滑り軸受である。 The suction bell mouth 1a opens downward, and the upper end of the suction bell mouth 1a is connected to the lower end of the discharge bowl 1b. The impeller 10 is fixed to the lower end of the rotating shaft 6, and the impeller 10 and the rotating shaft 6 rotate integrally. A plurality of guide vanes 14 are arranged above the impeller 10 (discharge side). These guide vanes 14 are fixed to the inner peripheral surface of the discharge bowl 1b. The rotating shaft 6 is rotatably supported by an outer bearing 11, an intermediate bearing 15, and an underwater bearing 12. The underwater bearing 12 is accommodated in the discharge bowl 1 b and is disposed above the impeller 10. The support member 7 that supports the underwater bearing 12 is fixed to the inner surface of the bowl bush 13, and the bowl bush 13 is supported by the impeller casing 1 via a guide vane 14. The outer bearing 11 is a rolling bearing such as a ball bearing or a sliding bearing, and the underwater bearing 12 and the intermediate bearing 15 are sliding bearings.
 回転軸6は吐出エルボ管4を貫通して上方に延び、駆動源18に連結されている。駆動源18は、ポンプ据付床22に固定された架台19上に固定されている。立軸ポンプの運転時には、羽根車10は、吸込水槽5内の液面より下に位置している。 The rotary shaft 6 extends upward through the discharge elbow pipe 4 and is connected to a drive source 18. The drive source 18 is fixed on a gantry 19 fixed to the pump installation floor 22. During operation of the vertical pump, the impeller 10 is located below the liquid level in the suction water tank 5.
 立軸ポンプは、吸込水槽5内の液体を吐出水槽100まで移送する。すなわち、駆動源18を運転することにより回転軸6を介して羽根車10を回転させると、吸込水槽5内の液体が吸込ベルマウス1aから吸い込まれ、吐出ボウル1b、揚水管3、吐出エルボ管4、および吐出配管20を通って吐出水槽100に移送される。吐出配管20は、吐出エルボ管4から吐出水槽100まで延びている。吐出水槽100の液面は、吐出エルボ管4よりも上方に位置する。吐出配管20の途中には、仕切弁25が配置されており、この仕切弁25は、立軸ポンプの通常運転時には開かれている。立軸ポンプの停止時には仕切弁25が閉じられ、液体が吐出水槽100から吐出配管20を通じて吸込水槽5へ逆流することを防止する。仕切弁25の代わりに、逆止弁を設けてもよい。また、吐出配管20の吐出末端に、フラップ弁を配置してもよい。 The vertical shaft pump transfers the liquid in the suction water tank 5 to the discharge water tank 100. That is, when the impeller 10 is rotated through the rotating shaft 6 by operating the drive source 18, the liquid in the suction water tank 5 is sucked from the suction bell mouth 1a, and the discharge bowl 1b, the pumping pipe 3, and the discharge elbow pipe. 4, and the discharge water tank 100 through the discharge pipe 20. The discharge pipe 20 extends from the discharge elbow pipe 4 to the discharge water tank 100. The liquid level of the discharge water tank 100 is located above the discharge elbow pipe 4. A gate valve 25 is arranged in the middle of the discharge pipe 20, and the gate valve 25 is opened during normal operation of the vertical shaft pump. When the vertical pump is stopped, the gate valve 25 is closed to prevent the liquid from flowing back from the discharge water tank 100 to the suction water tank 5 through the discharge pipe 20. Instead of the gate valve 25, a check valve may be provided. Further, a flap valve may be arranged at the discharge end of the discharge pipe 20.
 図1に示されるように、回転軸6がポンプケーシング2の吐出エルボ管4を貫通する軸貫通部には、本発明の一実施形態に係る軸封装置30が配置されている。この軸封装置30により、液体が立軸ポンプの外部に漏洩することが防止される。以下、図2を参照して、この軸封装置30を説明する。 As shown in FIG. 1, a shaft seal device 30 according to an embodiment of the present invention is disposed in a shaft penetrating portion where the rotating shaft 6 penetrates the discharge elbow pipe 4 of the pump casing 2. The shaft seal device 30 prevents liquid from leaking out of the vertical shaft pump. Hereinafter, the shaft seal device 30 will be described with reference to FIG.
 なお、軸封装置30は、下方の高圧流体と上方の低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置であれば、立軸ポンプ以外にも適用することができる。立軸ポンプでは、容器は、ポンプケーシング2であり、高圧流体はポンプケーシング2の内部を流れる液体であり、低圧流体は、ポンプケーシング2の外部の大気である。 The shaft seal device 30 is a vertical shaft pump as long as it is fixed to a container that separates the lower high-pressure fluid and the upper low-pressure fluid, and seals the shaft penetration portion of the rotating shaft that extends through the container. It can be applied to other than. In the vertical shaft pump, the container is the pump casing 2, the high-pressure fluid is a liquid flowing inside the pump casing 2, and the low-pressure fluid is the atmosphere outside the pump casing 2.
 図2は、本発明の一実施形態に係る軸封装置30の断面図である。図2に示されるように、軸封装置30は、吐出エルボ管4に形成された通孔4bを塞ぐように、吐出エルボ管4の軸封装置取付面4a上に固定される。回転軸6は、通孔4bを通って鉛直方向に延びる。軸封装置30は、回転軸6に固定された複数の(図2では、2つの)円板状のシール体31,51と、複数の(図2では、2つの)ケーシング構造体33,53を有するシールケーシング70とを備えている。ケーシング構造体33の内部には、シール体31を収容するシール室33aが形成されており、ケーシング構造体53の内部には、シール体51が収容されるシール室53aが形成されている。以下の説明では、シール体31を第1シール体31と称し、シール体51を第2シール体51と称し、ケーシング構造体33を第1ケーシング構造体33と称し、ケーシング構造体53を第2ケーシング構造体53と称する。さらに、第1ケーシング構造体33の内部に形成され、第1シール体31を収容するシール室33aを第1シール室33aと称し、第2ケーシング構造体53の内部に形成され、第2シール体51を収容するシール室53aを第2シール室53aと称する。 FIG. 2 is a cross-sectional view of the shaft seal device 30 according to an embodiment of the present invention. As shown in FIG. 2, the shaft seal device 30 is fixed on the shaft seal device mounting surface 4 a of the discharge elbow pipe 4 so as to close the through hole 4 b formed in the discharge elbow pipe 4. The rotating shaft 6 extends in the vertical direction through the through hole 4b. The shaft seal device 30 includes a plurality of (two in FIG. 2) disk-shaped seal bodies 31 and 51 fixed to the rotary shaft 6 and a plurality (two in FIG. 2) casing structures 33 and 53. And a sealing casing 70 having Inside the casing structure 33, a seal chamber 33a for accommodating the seal body 31 is formed. Inside the casing structure 53, a seal chamber 53a for accommodating the seal body 51 is formed. In the following description, the seal body 31 is referred to as a first seal body 31, the seal body 51 is referred to as a second seal body 51, the casing structure 33 is referred to as a first casing structure 33, and the casing structure 53 is referred to as a second. This is referred to as a casing structure 53. Further, a seal chamber 33a that is formed inside the first casing structure 33 and accommodates the first seal body 31 is referred to as a first seal chamber 33a, is formed inside the second casing structure 53, and is a second seal body. The seal chamber 53a that houses 51 is referred to as a second seal chamber 53a.
 回転軸6と第1シール体31の内周面(後述の図3A及び図3Bに示される貫通孔31b)とは、緊密に接触しているため、回転軸6と第1シール体31の内周面との間を液体は通過しない。図示はしないが、Oリングなどのシール部材により、回転軸6と第1シール体31の内周面との間の隙間をシールしてもよい。同様に、回転軸6と第2シール体51の内周面とは、緊密に接触しているため、回転軸6と第2シール体51の内周面との間を液体は通過しない。Oリングなどのシール部材により、回転軸6と第2シール体51の内周面との間の隙間をシールしてもよい。第1シール体31の中心、および第2シール体51の中心は、回転軸6の軸心に一致し、2つのシール体31,51は、回転軸6と一体的に回転する。 Since the rotation shaft 6 and the inner peripheral surface of the first seal body 31 (through holes 31b shown in FIGS. 3A and 3B described later) are in close contact with each other, the inner surfaces of the rotation shaft 6 and the first seal body 31 Liquid does not pass between the peripheral surfaces. Although not shown, the gap between the rotating shaft 6 and the inner peripheral surface of the first seal body 31 may be sealed with a seal member such as an O-ring. Similarly, the rotating shaft 6 and the inner peripheral surface of the second seal body 51 are in close contact with each other, so that no liquid passes between the rotating shaft 6 and the inner peripheral surface of the second seal body 51. A gap between the rotary shaft 6 and the inner peripheral surface of the second seal body 51 may be sealed with a seal member such as an O-ring. The center of the first seal body 31 and the center of the second seal body 51 coincide with the axis of the rotary shaft 6, and the two seal bodies 31 and 51 rotate integrally with the rotary shaft 6.
 第1ケーシング構造体33は、回転軸6が貫通する第1貫通孔35aを有する第1上側ケーシング35と、第1上側ケーシング35を支持する第1中間ケーシング36とを有する。第1貫通孔35aの中心線は、回転軸6の軸心に一致する。第1中間ケーシング36は、円筒形状の内周面36aを有している。この内周面36aの中心線は、回転軸6の軸心および第1シール体31の中心と一致する。第1ケーシング構造体33の第1中間ケーシング36は、吐出エルボ管4の軸封装置取付面4aと第1上側ケーシング35とに挟まれた状態で、該第1上側ケーシング35と軸封装置取付面4aに固定される。これにより、第1シール体31が収容される第1シール室33aが第1ケーシング構造体33内に形成される。 The first casing structure 33 includes a first upper casing 35 having a first through hole 35a through which the rotary shaft 6 passes, and a first intermediate casing 36 that supports the first upper casing 35. The center line of the first through hole 35 a coincides with the axis of the rotation shaft 6. The first intermediate casing 36 has a cylindrical inner peripheral surface 36a. The center line of the inner peripheral surface 36 a coincides with the axis of the rotary shaft 6 and the center of the first seal body 31. The first intermediate casing 36 of the first casing structure 33 is sandwiched between the shaft sealing device mounting surface 4a of the discharge elbow pipe 4 and the first upper casing 35, and is attached to the first upper casing 35 and the shaft sealing device. It is fixed to the surface 4a. Thereby, a first seal chamber 33 a in which the first seal body 31 is accommodated is formed in the first casing structure 33.
 本実施形態では、第2ケーシング構造体53は、第1ケーシング構造体33と同様の構成を有する。より具体的には、第2ケーシング構造体53は、回転軸6が貫通する第2貫通孔55aを有する第2上側ケーシング55と、第2上側ケーシング55を支持する第2中間ケーシング56とを有する。第2貫通孔55aの中心線は、回転軸6の軸心に一致する。第2中間ケーシング56は、円筒形状の内周面56aを有している。この内周面56aの中心線は、回転軸6の軸心および第2シール体51の中心と一致する。 In the present embodiment, the second casing structure 53 has the same configuration as the first casing structure 33. More specifically, the second casing structure 53 includes a second upper casing 55 having a second through hole 55a through which the rotary shaft 6 passes, and a second intermediate casing 56 that supports the second upper casing 55. . The center line of the second through hole 55 a coincides with the axis of the rotation shaft 6. The second intermediate casing 56 has a cylindrical inner peripheral surface 56a. The center line of the inner peripheral surface 56 a coincides with the axis of the rotary shaft 6 and the center of the second seal body 51.
 第1ケーシング構造体33と第2ケーシング構造体53とは、回転軸6の軸方向に沿って直列に配置されている。本実施形態では、第2ケーシング構造体53の第2中間ケーシング56は、第1ケーシング構造体33の第1上側ケーシング35と第2ケーシング構造体53の第2上側ケーシング55との間に挟まれた状態で、該第1上側ケーシング35と第2上側ケーシング55に固定される。これにより、第2シール体51が収容される第2シール室53aが第2ケーシング構造体53内に形成される。図2に示される第2ケーシング構造体53の第2中間ケーシング56は、第1ケーシング構造体33の第1中間ケーシング36の外径と同一の外径を有し、第2中間ケーシング56の内周面56aの直径は、第1中間ケーシング36の内周面36aの直径と同一である。 The first casing structure 33 and the second casing structure 53 are arranged in series along the axial direction of the rotating shaft 6. In the present embodiment, the second intermediate casing 56 of the second casing structure 53 is sandwiched between the first upper casing 35 of the first casing structure 33 and the second upper casing 55 of the second casing structure 53. In this state, the first upper casing 35 and the second upper casing 55 are fixed. Thereby, a second seal chamber 53 a in which the second seal body 51 is accommodated is formed in the second casing structure 53. The second intermediate casing 56 of the second casing structure 53 shown in FIG. 2 has the same outer diameter as that of the first intermediate casing 36 of the first casing structure 33. The diameter of the peripheral surface 56 a is the same as the diameter of the inner peripheral surface 36 a of the first intermediate casing 36.
 図示はしないが、第2ケーシング構造体33の第2中間ケーシング56は、第1ケーシング構造体33の第1中間ケーシング36の外径と異なる外径を有していてもよい。さらに、第2中間ケーシング56の内周面56aの直径は、第1中間ケーシング36の内周面36aの直径と異なっていてもよい。いずれの場合も、第2中間ケーシング56の内周面56aの中心線は、回転軸6の軸心および第2シール体51の中心と一致する。 Although not shown, the second intermediate casing 56 of the second casing structure 33 may have an outer diameter different from the outer diameter of the first intermediate casing 36 of the first casing structure 33. Furthermore, the diameter of the inner peripheral surface 56 a of the second intermediate casing 56 may be different from the diameter of the inner peripheral surface 36 a of the first intermediate casing 36. In any case, the center line of the inner peripheral surface 56 a of the second intermediate casing 56 coincides with the axis of the rotary shaft 6 and the center of the second seal body 51.
 後述する図7、図8、図9、図10、図11、および図12に示される実施形態でも同様に、第2ケーシング構造体33の第2中間ケーシング56の外径は、第1ケーシング構造体33の第1中間ケーシング36の外径と同一であってもよいし、異なっていてもよい。さらに、第2中間ケーシング56の内周面56aの直径は、第1中間ケーシング36の内周面36aの直径と同一であってもよいし、異なっていてもよい。 Similarly in the embodiments shown in FIGS. 7, 8, 9, 10, 11, and 12 described later, the outer diameter of the second intermediate casing 56 of the second casing structure 33 is equal to the first casing structure. The outer diameter of the first intermediate casing 36 of the body 33 may be the same or different. Furthermore, the diameter of the inner peripheral surface 56a of the second intermediate casing 56 may be the same as or different from the diameter of the inner peripheral surface 36a of the first intermediate casing 36.
 吐出エルボ管4に形成された通孔4bは、第1中間ケーシング36の内周面36aに沿って形成されている。すなわち、通孔4bは、第1中間ケーシング36の内周面36aと同じ形状および同程度の大きさを有し、内周面36aに接続されている。第1ケーシング構造体33の第1シール室33aは、下方に開放されており、吐出エルボ管4に形成された通孔4bを通じて、吐出エルボ管4の内部に連通する。 The through hole 4 b formed in the discharge elbow pipe 4 is formed along the inner peripheral surface 36 a of the first intermediate casing 36. That is, the through hole 4b has the same shape and the same size as the inner peripheral surface 36a of the first intermediate casing 36, and is connected to the inner peripheral surface 36a. The first seal chamber 33 a of the first casing structure 33 is open downward and communicates with the inside of the discharge elbow pipe 4 through a through hole 4 b formed in the discharge elbow pipe 4.
 第1シール室33aは、第1ケーシング構造体33の内部に形成される。より具体的には、第1上側ケーシング35の下面35bと、第1中間ケーシング36の内周面36aと、により第1シール室33aが形成される。第1シール体31は、第1シール室33aにおいて回転軸6に固定される。第1上側ケーシング35の下面35bは、回転軸6の軸心に垂直な平面である。第1中間ケーシング36の内周面36aは、回転軸6の外周面と同心状にある。第1シール室33aは、第1貫通孔35aに連通しており、第1貫通孔35aの下側に位置している。回転軸6は、第1シール室33aおよび第1貫通孔35aを通って鉛直方向に延びている。 The first seal chamber 33 a is formed inside the first casing structure 33. More specifically, a first seal chamber 33 a is formed by the lower surface 35 b of the first upper casing 35 and the inner peripheral surface 36 a of the first intermediate casing 36. The first seal body 31 is fixed to the rotating shaft 6 in the first seal chamber 33a. The lower surface 35 b of the first upper casing 35 is a plane perpendicular to the axis of the rotation shaft 6. The inner peripheral surface 36 a of the first intermediate casing 36 is concentric with the outer peripheral surface of the rotating shaft 6. The first seal chamber 33a communicates with the first through hole 35a and is located below the first through hole 35a. The rotary shaft 6 extends in the vertical direction through the first seal chamber 33a and the first through hole 35a.
 第1シール体31は、回転軸6の軸心に垂直な環状面である上面31aを有している。この上面31aは、第1シール体31の回転により、該上面31a上を流動する液体に対して、好適な遠心力を与えることができる表面として構成される。例えば、上面31aには、放射状に延びる複数の溝37が形成されている。第1シール体31の上面31aは、第1シール室33aを形成する第1ケーシング構造体33の内面の1つである、第1上側ケーシング35の下面35bと隙間を介して対向している。 The first seal body 31 has an upper surface 31 a that is an annular surface perpendicular to the axis of the rotary shaft 6. The upper surface 31 a is configured as a surface that can give a suitable centrifugal force to the liquid flowing on the upper surface 31 a by the rotation of the first seal body 31. For example, a plurality of radially extending grooves 37 are formed on the upper surface 31a. The upper surface 31a of the first seal body 31 faces the lower surface 35b of the first upper casing 35, which is one of the inner surfaces of the first casing structure 33 forming the first seal chamber 33a, with a gap therebetween.
 第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間は、第1シール体31の回転により、該隙間に必要十分な遠心力場が生じるように第1シール体31の回転速度、第1シール体31の直径、および液体の動粘性を考慮して設定される。 The clearance between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is such that a necessary and sufficient centrifugal force field is generated in the clearance by the rotation of the first seal body 31. 31 is set in consideration of the rotational speed of 31, the diameter of the first seal body 31, and the kinematic viscosity of the liquid.
 図3Aは、第1シール体31の一実施形態を示す上面図であり、図3Bは、図3AのA-A線断面図である。図3Aおよび図3Bに示されるように、第1シール体31の中央部には回転軸6が嵌挿される貫通孔31bが形成されている。この第1シール体31の上面31aには、第1シール体31の内周面(すなわち、貫通孔31b)から第1シール体31の外周面まで放射状に延びる複数の溝37が形成される。図3Aに示す実施形態では、溝37は24本形成されているが、溝37の数は24本よりも多くてもよいし、少なくてもよい。図3Aおよび図3Bに示される実施形態では、溝37は直線状に延びており、溝37の幅は、その内端から外端まで一定である。言及するまでもないが、第1シール体31の上面31aは、該上面31a上を流動する液体へ遠心力を付加する目的を有するため、溝37は、第1シール体31の半径方向に対して傾斜してもよいし、直線状に延びていなくてもよい。さらに、溝37の幅は、一定でなくてもよい。 FIG. 3A is a top view showing an embodiment of the first seal body 31, and FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A. As shown in FIGS. 3A and 3B, a through hole 31 b into which the rotary shaft 6 is inserted is formed at the center of the first seal body 31. A plurality of grooves 37 extending radially from the inner peripheral surface of the first seal body 31 (that is, the through hole 31 b) to the outer peripheral surface of the first seal body 31 are formed on the upper surface 31 a of the first seal body 31. In the embodiment shown in FIG. 3A, 24 grooves 37 are formed, but the number of grooves 37 may be more or less than 24. In the embodiment shown in FIGS. 3A and 3B, the groove 37 extends linearly, and the width of the groove 37 is constant from the inner end to the outer end. Needless to say, since the upper surface 31 a of the first seal body 31 has the purpose of applying centrifugal force to the liquid flowing on the upper surface 31 a, the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Furthermore, the width of the groove 37 may not be constant.
 吐出エルボ管4(図1参照)を吐出配管20に向かって流れる液体の一部は、通孔4bを通って、第1ケーシング構造体33の第1シール室33aに流入する。さらに、液体は、第1シール体31の上面31aに形成された溝37、および第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間を通って、第1シール体31の中心に向かって(すなわち、回転軸6に向かって)、第1シール体31の半径方向に流れようとする。しかしながら、回転する第1シール体31の溝37の作用により液体には周方向速度成分が生じるため、第1シール体31の上面31a上の液体、および溝37内の液体には遠心力が発生する。その結果、上面31a上の液体、および溝37内の液体は、第1シール体31の半径方向外側に向けて押し返される。さらに、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間が好適な寸法であるので、該隙間に存在する液体に遠心力を作用させることができる。その結果、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間に存在する液体、および溝37内に存在する液体の全てに、半径方向外側への力が生じることになる。 A part of the liquid flowing through the discharge elbow pipe 4 (see FIG. 1) toward the discharge pipe 20 flows into the first seal chamber 33a of the first casing structure 33 through the through hole 4b. Further, the liquid passes through the groove 37 formed on the upper surface 31 a of the first seal body 31 and the gap between the upper surface 31 a of the first seal body 31 and the lower surface 35 b of the first upper casing 35, and thereby the first seal. It tends to flow in the radial direction of the first seal body 31 toward the center of the body 31 (that is, toward the rotating shaft 6). However, since a circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating first seal body 31, centrifugal force is generated in the liquid on the upper surface 31 a of the first seal body 31 and the liquid in the groove 37. To do. As a result, the liquid on the upper surface 31 a and the liquid in the groove 37 are pushed back toward the radially outer side of the first seal body 31. Furthermore, since the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 has a suitable dimension, centrifugal force can be applied to the liquid present in the gap. As a result, a radially outward force is generated in all of the liquid existing in the gap between the upper surface 31 a of the first seal body 31 and the lower surface 35 b of the first upper casing 35 and the liquid existing in the groove 37. It will be.
 このように、溝37を有する第1シール体31の回転により、第1シール体31と第1上側ケーシング35の下面35bとの間の隙間に遠心力場が形成されるため、この隙間に存在する液体の静圧は、第1シール体31の上面31aの半径方向外側へ向かって上昇する。以下に、第1シール体31の回転により発生した周方向速度成分(角速度成分)を持つ単位質量の液体に生じる慣性力(加速度a)を表す式(1)を示す。
   a=rω   ・・・(1)
 ただし、rは第1シール体31の半径であり、ωは第1シール体31の角速度である。
Thus, since the centrifugal force field is formed in the gap between the first seal body 31 and the lower surface 35b of the first upper casing 35 by the rotation of the first seal body 31 having the groove 37, it exists in this gap. The static pressure of the liquid that rises increases outward in the radial direction of the upper surface 31 a of the first seal body 31. In the following, Expression (1) representing an inertial force (acceleration a) generated in a unit mass of liquid having a circumferential velocity component (angular velocity component) generated by the rotation of the first seal body 31 is shown.
a = rω 2 (1)
Here, r is the radius of the first seal body 31, and ω is the angular velocity of the first seal body 31.
 なお、後述する第2シール体51の回転により発生した周方向速度成分(角速度成分)を持つ単位質量の液体に生じる慣性力(加速度a)も、上記式(1)で表すことができる。この場合、rは第2シール体51の半径であり、ωは第2シール体51の角速度である。 The inertial force (acceleration a) generated in a unit mass liquid having a circumferential velocity component (angular velocity component) generated by the rotation of the second seal body 51 described later can also be expressed by the above formula (1). In this case, r is the radius of the second seal body 51, and ω is the angular velocity of the second seal body 51.
 回転する第1シール体31によって、第1シール体31よりも下側に存在する液体にも周方向速度成分が生じるので、第1シール室33a内に存在する液体に遠心力が作用し、液体の静圧が上昇する。第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間に発生する液体の静圧と、第1シール室33a内に存在する液体の静圧との差が小さくなると、液体が第1貫通孔35aを通過して第1ケーシング構造体33の外部に漏洩しやすくなる。本実施形態では、吐出エルボ管4に形成された通孔4bが第1中間ケーシング36の内周面36aに沿って形成されているため、第1シール室33aは、吐出エルボ管4の内部に開放されている。したがって、第1シール体31よりも下側に存在する液体の体積は、第1シール体31の上面31aと第1上側ケーシング35の下面35bにより形成された隙間の体積に対して十分に大きいとみなすことができ、第1シール体31の下側に存在する液体の周方向速度成分を十分に小さくすることができる。その結果、第1シール室33aに存在する液体は、第1シール体31の回転によって影響を受けないか、もしくは極めて僅かに影響を受けると仮定することが可能である。 Since the rotating first seal body 31 generates a circumferential velocity component in the liquid present below the first seal body 31, centrifugal force acts on the liquid present in the first seal chamber 33a, and the liquid Increased static pressure. When the difference between the static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 and the static pressure of the liquid existing in the first seal chamber 33a is reduced. The liquid easily passes through the first through hole 35 a and leaks to the outside of the first casing structure 33. In the present embodiment, since the through-hole 4b formed in the discharge elbow pipe 4 is formed along the inner peripheral surface 36a of the first intermediate casing 36, the first seal chamber 33a is provided inside the discharge elbow pipe 4. It is open. Therefore, the volume of the liquid existing below the first seal body 31 is sufficiently larger than the volume of the gap formed by the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35. The circumferential velocity component of the liquid existing below the first seal body 31 can be sufficiently reduced. As a result, it can be assumed that the liquid present in the first seal chamber 33a is not affected by the rotation of the first seal body 31 or is influenced very slightly.
 液体が第1ケーシング構造体33の第1貫通孔35aを通過すること、すなわち液体が第1ケーシング構造体33の外部に漏洩することを防止するためには、回転する第1シール体31によって第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間に発生する液体の静圧が、第1シール室33a内に存在する液体の静圧と均衡するか、もしくはそれよりも大きければよい。 In order to prevent the liquid from passing through the first through hole 35 a of the first casing structure 33, that is, to prevent the liquid from leaking to the outside of the first casing structure 33, the rotating first seal body 31 causes the first seal body 31 to rotate. The static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is balanced with the static pressure of the liquid existing in the first seal chamber 33a. Larger than that.
 しかしながら、吐出エルボ管4を流れる液体の圧力が非常に高い場合は、液体が第1貫通孔35aを通って第1ケーシング構造体33から漏洩することがある。あるいは、軸封装置30の周囲に立軸ポンプの他の構成部材があるために、様々なポンプおよび運転条件に応じて、第1シール体31の直径を十分大きく設定できない場合がある。この場合も、液体が第1貫通孔35aを通って第1ケーシング構造体33から漏洩することがある。そのため、軸封装置30のシールケーシング70は、第1ケーシング構造体33の上側に配置された第2ケーシング構造体53を備え、第2ケーシング構造体53の内部には、第2シール体51を収容する第2シール室53aが形成されている。図2に示される軸封装置30では、第2ケーシング構造体53は、第1ケーシング構造体33の第1上側ケーシング35に直接固定されている。図示はしないが、第2ケーシング構造体53は、円筒形状を有するスペーサー部材を介して第1ケーシング構造体33の第1上側ケーシング35に固定されてもよい。 However, when the pressure of the liquid flowing through the discharge elbow pipe 4 is very high, the liquid may leak from the first casing structure 33 through the first through hole 35a. Alternatively, since there are other components of the vertical shaft pump around the shaft seal device 30, the diameter of the first seal body 31 may not be set sufficiently large depending on various pumps and operating conditions. Also in this case, the liquid may leak from the first casing structure 33 through the first through hole 35a. Therefore, the seal casing 70 of the shaft seal device 30 includes a second casing structure 53 disposed on the upper side of the first casing structure 33, and the second seal body 51 is provided inside the second casing structure 53. A second seal chamber 53a for accommodating is formed. In the shaft seal device 30 shown in FIG. 2, the second casing structure 53 is directly fixed to the first upper casing 35 of the first casing structure 33. Although not shown, the second casing structure 53 may be fixed to the first upper casing 35 of the first casing structure 33 via a spacer member having a cylindrical shape.
 本実施形態では、第2ケーシング構造体53は第1ケーシング構造体33と同様の構成を有し、第2シール体51は第1シール体31と同様の構成を有する。第1ケーシング構造体33の第1貫通孔35aから漏洩した液体は、第2ケーシング構造体53の内部に形成された第2シール室53aに流入するが、第2シール室53aに収容され、回転軸6とともに回転する第2シール体51によって、第2ケーシング構造体53から(すなわち、軸封装置30から)液体が漏洩することが防止される。 In the present embodiment, the second casing structure 53 has the same configuration as the first casing structure 33, and the second seal body 51 has the same configuration as the first seal body 31. The liquid leaked from the first through hole 35a of the first casing structure 33 flows into the second seal chamber 53a formed inside the second casing structure 53, but is stored in the second seal chamber 53a and rotated. The second seal body 51 that rotates with the shaft 6 prevents liquid from leaking from the second casing structure 53 (that is, from the shaft seal device 30).
 第2シール室53aは、第2ケーシング構造体53の内部に形成される。より具体的には、第2上側ケーシング55の下面55bと、第2中間ケーシング56の内周面56aと、第1ケーシング構造体33の第1上側ケーシング35の上面とにより第2シール室53aが形成される。第2シール体51は、第2シール室53aにおいて回転軸6に固定される。第2上側ケーシング55の下面55bは、回転軸6の軸心に垂直な平面である。第2中間ケーシング56の内周面56aは、回転軸6の外周面と同心状にある。第2シール室53aは、第2貫通孔55aに連通しており、第2貫通孔55aの下側に位置している。さらに、第2シール室53aは、第1貫通孔35aを介して第1シール室33aに連通しており、第1貫通孔35aの上側に位置している。回転軸6は、第2シール室53aおよび第2貫通孔55aを通って鉛直方向に延びている。 The second seal chamber 53 a is formed inside the second casing structure 53. More specifically, the second seal chamber 53a is formed by the lower surface 55b of the second upper casing 55, the inner peripheral surface 56a of the second intermediate casing 56, and the upper surface of the first upper casing 35 of the first casing structure 33. It is formed. The second seal body 51 is fixed to the rotating shaft 6 in the second seal chamber 53a. The lower surface 55 b of the second upper casing 55 is a plane perpendicular to the axis of the rotation shaft 6. The inner peripheral surface 56 a of the second intermediate casing 56 is concentric with the outer peripheral surface of the rotating shaft 6. The second seal chamber 53a communicates with the second through hole 55a and is located below the second through hole 55a. Further, the second seal chamber 53a communicates with the first seal chamber 33a via the first through hole 35a, and is located above the first through hole 35a. The rotating shaft 6 extends in the vertical direction through the second seal chamber 53a and the second through hole 55a.
 上述したように、本実施形態の第2シール体51は、第1シール体31と同様の構成を有する。より具体的には、第2シール体51は、円板形状を有し、かつ回転軸6の軸心に垂直な環状面である上面51aを有している。この上面51aは、第2シール体51の回転により、該上面51a上を流動する液体に対して、好適な遠心力を与えることができる表面として構成される。図2に示される第2シール体51の上面51aには、図3Aおよび図3Bを参照して説明された複数の溝37が形成されている。第2シール体51の上面51aは、第2シール室53aを形成する第2ケーシング構造体53の内面の1つである、第2上側ケーシング55の下面55bと隙間を介して対向している。 As described above, the second seal body 51 of the present embodiment has the same configuration as the first seal body 31. More specifically, the second seal body 51 has a disk shape and has an upper surface 51 a that is an annular surface perpendicular to the axis of the rotating shaft 6. The upper surface 51 a is configured as a surface that can give a suitable centrifugal force to the liquid flowing on the upper surface 51 a by the rotation of the second seal body 51. A plurality of grooves 37 described with reference to FIGS. 3A and 3B are formed on the upper surface 51a of the second seal body 51 shown in FIG. The upper surface 51a of the second seal body 51 is opposed to the lower surface 55b of the second upper casing 55, which is one of the inner surfaces of the second casing structure 53 that forms the second seal chamber 53a, with a gap therebetween.
 第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間は、第2シール体51の回転により、該隙間に必要十分な遠心力場が生じるように第2シール体51の回転速度、第2シール体51の直径、および液体の動粘性を考慮して設定される。第2シール体51の上面に形成される溝37の数を任意に設定することができる。さらに、溝37は直線状に延びていてもよいし、第2シール体51の半径方向に対して傾斜してもよい。あるいは、溝37は、直線状に延びていなくてもよい。さらに、溝37の幅は、一定であってもよいし、一定でなくてもよい。 The gap between the upper surface 51 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55 is such that a necessary and sufficient centrifugal force field is generated in the gap by the rotation of the second seal body 51. The rotational speed of 51, the diameter of the second seal body 51, and the kinematic viscosity of the liquid are set. The number of grooves 37 formed on the upper surface of the second seal body 51 can be arbitrarily set. Further, the groove 37 may extend linearly or may be inclined with respect to the radial direction of the second seal body 51. Or the groove | channel 37 does not need to extend linearly. Further, the width of the groove 37 may be constant or may not be constant.
 第1ケーシング構造体33の第1貫通孔35aを通過した液体は、第2ケーシング構造体53の第2シール室53aに流入する。さらに、液体は、第2シール体51の上面51aに形成された溝37、および第2シール体51の上面31aと第2上側ケーシング55の下面55bとの間の隙間を通って、第2シール体51の中心に向かって(すなわち、回転軸6に向かって)、第2シール体51の半径方向に流れようとする。しかしながら、回転する第2シール体51の溝37の作用により液体には周方向速度成分が生じるため、第2シール体51の上面51a上の液体、および溝37内の液体には遠心力が発生する。その結果、第2シール体51の上面51a上の液体、および溝37内の液体は、第2シール体51の半径方向外側に向けて押し返される。さらに、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間が好適な寸法であるので、該隙間に存在する液体に遠心力を作用させることができる。その結果、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間に存在する液体、および溝37内に存在する液体の全てに、半径方向外側への力が生じることになる。このように、溝37を有する第2シール体51の回転により、第2シール体51と第2上側ケーシング55の下面55bとの間の隙間に遠心力場が形成されるため、この隙間に存在する液体の静圧は、第2シール体51の上面51aの半径方向外側へ向かって上昇する。 The liquid that has passed through the first through hole 35 a of the first casing structure 33 flows into the second seal chamber 53 a of the second casing structure 53. Further, the liquid passes through the groove 37 formed on the upper surface 51 a of the second seal body 51 and the gap between the upper surface 31 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55, and then the second seal. It tends to flow in the radial direction of the second seal body 51 toward the center of the body 51 (that is, toward the rotating shaft 6). However, since a circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating second seal body 51, centrifugal force is generated in the liquid on the upper surface 51 a of the second seal body 51 and the liquid in the groove 37. To do. As a result, the liquid on the upper surface 51 a of the second seal body 51 and the liquid in the groove 37 are pushed back toward the radially outer side of the second seal body 51. Furthermore, since the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 has a suitable size, centrifugal force can be applied to the liquid present in the gap. As a result, a radially outward force is generated in all of the liquid existing in the gap between the upper surface 51 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55 and the liquid existing in the groove 37. It will be. As described above, since the centrifugal force field is formed in the gap between the second seal body 51 and the lower surface 55b of the second upper casing 55 by the rotation of the second seal body 51 having the groove 37, it exists in this gap. The static pressure of the liquid that rises increases outward in the radial direction of the upper surface 51 a of the second seal body 51.
 液体が第2ケーシング構造体53の第2貫通孔55aを通過すること、すなわち液体が第2ケーシング構造体53の外部に漏洩することを防止するためには、回転する第2シール体51によって第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間に発生する液体の静圧が、第2シール室53a内に存在する液体の静圧と均衡するか、もしくはそれよりも大きければよい。 In order to prevent the liquid from passing through the second through hole 55 a of the second casing structure 53, that is, to prevent the liquid from leaking to the outside of the second casing structure 53, the second seal body 51 is rotated by the second seal body 51. The static pressure of the liquid generated in the gap between the upper surface 51a of the two seal body 51 and the lower surface 55b of the second upper casing 55 is balanced with the static pressure of the liquid existing in the second seal chamber 53a. Larger than that.
 第1シール室33aから第1貫通孔35aを通って第2シール室53aに流入する液体の静圧は、第1シール室33a内で回転する第1シール体31によって低減されている。すなわち、第2シール室53a内の液体の静圧は、第1シール室33a内の液体の静圧よりも低い。本実施形態に係る軸封装置30では、回転する第1シール体31によって第2シール室53aに流入する液体の静圧を低減し、さらに、回転する第2シール体51によってこの低減された静圧を有する液体が第2ケーシング構造体53から漏洩することを防止する。したがって、第1シール体31および第2シール体51を、このような条件を満たす形状・寸法に設計することにより本発明の目的を達成することが可能である。第1シール体31および第2シール体51の回転速度はポンプの運転条件に依存するため、第1シール体31の半径および第2シール体51の半径をポンプの仕様および運転条件に対して好適に設計し、さらに、液体が第1シール体31および第2シール体51の回転に伴って回転しやすい表面形状を上面31aおよび上面51aにそれぞれ形成することにより、様々なポンプ、および使用条件に対応することが可能である。 The static pressure of the liquid flowing into the second seal chamber 53a from the first seal chamber 33a through the first through hole 35a is reduced by the first seal body 31 rotating in the first seal chamber 33a. That is, the static pressure of the liquid in the second seal chamber 53a is lower than the static pressure of the liquid in the first seal chamber 33a. In the shaft seal device 30 according to the present embodiment, the static pressure of the liquid flowing into the second seal chamber 53a is reduced by the rotating first seal body 31, and the static pressure reduced by the rotating second seal body 51 is further reduced. The liquid having pressure is prevented from leaking from the second casing structure 53. Therefore, the object of the present invention can be achieved by designing the first seal body 31 and the second seal body 51 into shapes and dimensions that satisfy such conditions. Since the rotational speeds of the first seal body 31 and the second seal body 51 depend on the operating conditions of the pump, the radius of the first seal body 31 and the radius of the second seal body 51 are suitable for the pump specifications and operating conditions. In addition, by forming surface shapes on the upper surface 31a and the upper surface 51a that allow the liquid to rotate with the rotation of the first seal body 31 and the second seal body 51, respectively, various pumps and use conditions can be obtained. It is possible to respond.
 第1シール体31の上面31aは、該第1シール体31の回転により、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間を流動する液体に遠心力を与えることができる表面として構成される。したがって、様々なポンプおよび運転条件に応じて、第1シール体31の半径、および第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間が好適な寸法に設定されている場合には、第1シール体31の上面31aは、溝37がない平面であってもよい。 The upper surface 31a of the first seal body 31 causes centrifugal force to be applied to the liquid flowing in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 by the rotation of the first seal body 31. Configured as a surface that can be applied. Therefore, according to various pumps and operating conditions, the radius of the first seal body 31 and the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 are set to suitable dimensions. In this case, the upper surface 31 a of the first seal body 31 may be a flat surface without the groove 37.
 同様に、第2シール体51の上面51aは、該第2シール体51の回転により、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間を流動する液体に遠心力を与えることができる表面として構成される。したがって、第2シール体51の半径、および第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間が好適な寸法に設定されている場合には、第2シール体51の上面51aは、溝37がない平面であってもよい。一実施形態では、第1シール体31の上面31aまたは第2シール体51の上面51aのいずれか一方にのみ溝37を形成してもよい。 Similarly, the upper surface 51 a of the second seal body 51 is converted into a liquid that flows in the gap between the upper surface 51 a of the second seal body 51 and the lower surface 55 b of the second upper casing 55 by the rotation of the second seal body 51. Configured as a surface capable of applying centrifugal force. Therefore, when the radius of the second seal body 51 and the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 are set to suitable dimensions, the second seal body The upper surface 51 a of 51 may be a flat surface without the groove 37. In one embodiment, the groove 37 may be formed only on either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51.
 さらに、第1シール体31の直径および第2シール体51の直径をポンプの仕様および運転条件に応じて設計することができる。したがって、図2に示される実施形態では、第2シール体51の直径は、第1シール体31の直径と同一であるが、第2シール体51の直径は、第1シール体31の直径と異なっていてもよい。後述する図7、図8、図9、図10、図11、および図12に示される実施形態でも同様に、第2シール体51の直径は、第1シール体31の直径と同一であってもよいし、異なっていてもよい。 Furthermore, the diameter of the first seal body 31 and the diameter of the second seal body 51 can be designed according to the pump specifications and operating conditions. Therefore, in the embodiment shown in FIG. 2, the diameter of the second seal body 51 is the same as the diameter of the first seal body 31, but the diameter of the second seal body 51 is the same as the diameter of the first seal body 31. May be different. Similarly in the embodiments shown in FIGS. 7, 8, 9, 10, 11, and 12 described later, the diameter of the second seal body 51 is the same as the diameter of the first seal body 31. It may be different or different.
 図2に示される軸封装置30は、回転軸6の軸方向に沿って配置された2つのケーシング構造体33,53を有するシールケーシング70と、2つのケーシング構造体33,53のそれぞれの内部に形成された2つのシール室33a,53aと、2つのシール室33a,53aのそれぞれに収容される2つのシール体31,51を備えている。しかしながら、軸封装置30は、回転軸6の軸方向に沿って配置された3つ以上のケーシング構造体を有するシールケーシングと、該3つ以上のケーシング構造体のそれぞれの内部に形成された3つ以上のシール室と、3つ以上のシール室のそれぞれに収容される3つ以上のシール体を有していてもよい。すなわち、軸封装置30は、回転軸の軸方向に沿って配置された複数のケーシング構造体を有するシールケーシングと、複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、複数のシール室のそれぞれに収容される複数のシール体とを有していてもよい。複数のシール構造体および複数のシール体は、回転軸6の軸方向に沿って直列に配置される。シール構造体の数、およびシール体の数を、ポンプの仕様および運転条件に応じて設定することができる。 The shaft seal device 30 shown in FIG. 2 includes a seal casing 70 having two casing structures 33 and 53 arranged along the axial direction of the rotating shaft 6, and the inside of each of the two casing structures 33 and 53. Are provided with two seal chambers 33a and 53a, and two seal bodies 31 and 51 accommodated in the two seal chambers 33a and 53a, respectively. However, the shaft seal device 30 includes a seal casing having three or more casing structures arranged along the axial direction of the rotating shaft 6, and 3 formed inside each of the three or more casing structures. You may have three or more seal bodies accommodated in each of one or more seal chambers and three or more seal chambers. That is, the shaft seal device 30 includes a seal casing having a plurality of casing structures arranged along the axial direction of the rotating shaft, a plurality of seal chambers formed inside each of the plurality of casing structures, A plurality of seal bodies accommodated in each of the seal chambers. The plurality of seal structures and the plurality of seal bodies are arranged in series along the axial direction of the rotating shaft 6. The number of seal structures and the number of seal bodies can be set according to the pump specifications and operating conditions.
 後述する図7、図8、図9、図10、図11、および図12に示される実施形態でも同様に、軸封装置30は、回転軸の軸方向に沿って配置された複数のケーシング構造体を有するシールケーシングと、複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、複数のシール室のそれぞれに収容される複数のシール体とを有していてもよい。 Similarly, in the embodiments shown in FIGS. 7, 8, 9, 10, 11, and 12 described later, the shaft seal device 30 has a plurality of casing structures arranged along the axial direction of the rotation shaft. A seal casing having a body, a plurality of seal chambers formed inside each of the plurality of casing structures, and a plurality of seal bodies accommodated in each of the plurality of seal chambers may be included.
 上述したように、本実施形態に係る軸封装置30では、回転軸6の軸方向に直列に配置され、該回転軸6と一体的に回転する複数のシール体31,51によって、液体が軸封装置30から漏洩することを防止する。したがって、立軸ポンプの吐出エルボ管4を流れる液体の圧力が高い場合でも、軸封装置30から液体が漏洩することを防止することができる。さらに、立軸ポンプの他の構成部材が軸封装置30の周囲に存在していることにより、シール体31,51の直径を大きくできない場合でも、複数のシール体31,51によって液体が軸封装置30から漏洩することを効果的に防止することができる。 As described above, in the shaft seal device 30 according to this embodiment, the liquid is axially arranged by the plurality of seal bodies 31 and 51 that are arranged in series in the axial direction of the rotary shaft 6 and rotate integrally with the rotary shaft 6. Leaking from the sealing device 30 is prevented. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
 さらに、本実施形態に係る軸封装置30は、複数のシール体31,51が他の部材に摺接しない非接触の軸封装置であるため、複数のシール体31,51が摩耗しない。したがって、軸封装置30のメンテナンス頻度を大幅に低減させることができる。また、各シール体31,51は、非接触でシール機能を発揮するので、流体せん断力による熱のみが軸封装置30で発生する。したがって、互いに摺接する構成部材を含む軸封装置と比較して、軸封装置30で発生する熱量は極く僅かであり、冷却水、もしくはフラッシング液などの液体を軸封装置に供給するための付帯設備を別途設ける必要がない。さらに、メカニカルシールのように、回転リングと固定リング等の構成部材の表面を精密に仕上げ加工する必要がなく、正確な組立が要求されることもない。 Furthermore, since the shaft seal device 30 according to the present embodiment is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat | fever by a fluid shear force generate | occur | produces in the shaft seal device 30. FIG. Therefore, the amount of heat generated in the shaft seal device 30 is very small compared to a shaft seal device including components that are in sliding contact with each other, and a liquid such as cooling water or flushing liquid is supplied to the shaft seal device. There is no need to install additional facilities. Further, unlike the mechanical seal, it is not necessary to precisely finish the surface of the constituent members such as the rotating ring and the fixed ring, and accurate assembly is not required.
 図4Aは、第1シール体31の別の実施形態を示す上面図であり、図4Bは、図4AのB-B線断面図である。図4Aおよび図4Bに示されるように、第1シール体31の上面31aには、シール体31の内周面(すなわち、貫通孔31b)からシール体31の外周面まで放射状に延びる複数の溝37が形成される。図4Aに示す実施形態では、溝37は24本形成されているが、溝37の数は24本よりも多くてもよいし、少なくてもよい。溝37は、放射状に延びており、溝37の幅は、第1シール体31の半径方向外側へ向かうほど徐々に大きくなっている。このような溝37が形成された第1シール体31も、該第1シール体31の回転により第1上側ケーシング35の下面35bと第1シール体31の上面31aとの間の隙間に存在する液体に効率的に遠心力を与え、該隙間に大きな遠心力場を形成することができる。言及するまでもないが、第1シール体31の上面31aは、該上面31a上を流動する液体へ遠心力を付加する目的を有するため、溝37は、第1シール体31の半径方向に対して傾斜してもよいし、直線状に延びていなくてもよい。さらに、溝37の幅は、半径方向外側へ向かって徐々に大きくならなくてもよい。なお、図4Aおよび図4Bに示される溝37を、第2シール体51の上面51aに形成してもよい。 FIG. 4A is a top view showing another embodiment of the first seal body 31, and FIG. 4B is a cross-sectional view taken along the line BB of FIG. 4A. As shown in FIGS. 4A and 4B, the upper surface 31 a of the first seal body 31 has a plurality of grooves extending radially from the inner peripheral surface (that is, the through hole 31 b) of the seal body 31 to the outer peripheral surface of the seal body 31. 37 is formed. In the embodiment shown in FIG. 4A, 24 grooves 37 are formed, but the number of grooves 37 may be more or less than 24. The groove 37 extends radially, and the width of the groove 37 gradually increases toward the radially outer side of the first seal body 31. The first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31. A centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap. Needless to say, since the upper surface 31 a of the first seal body 31 has the purpose of applying centrifugal force to the liquid flowing on the upper surface 31 a, the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Further, the width of the groove 37 may not gradually increase toward the outside in the radial direction. Note that the groove 37 shown in FIGS. 4A and 4B may be formed in the upper surface 51 a of the second seal body 51.
 図5Aは、第1シール体31のさらに別の実施形態を示す上面図であり、図5Bは、図5AのC-C線断面図である。本実施形態で特に説明しない構成は、図3Aおよび図3Bに示す第1シール体31の構成と同様であるため、その重複する説明を省略する。本実施形態でも、放射状に延びる複数の溝37が第1シール体31の上面31aに形成されるが、該溝37の内端37aは、第1シール体31の内周面(すなわち、貫通孔31b)に到達していない。すなわち、本実施形態の溝37の内端37aは、第1シール体31の内周面と外周面との間に位置する。溝37の幅は、その内端37aから外端まで一定である。このような溝37が形成された第1シール体31も、該第1シール体31の回転により第1上側ケーシング35の下面35bと第1シール体31の上面31aとの間の隙間に存在する液体に効率的に遠心力を与え、該隙間に大きな遠心力場を形成することができる。言及するまでもないが、第1シール体31の上面31aは、該第1上面31a上を流動する液体へ遠心力を付加する目的を有するため、溝37は、第1シール体31の半径方向に対して傾斜してもよいし、直線状に延びていなくてもよい。さらに、溝37の幅は、一定でなくてもよい。なお、図5Aおよび図5Bに示される溝37を、第2シール体51の上面51aに形成してもよい。 FIG. 5A is a top view showing still another embodiment of the first seal body 31, and FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A. The configuration that is not particularly described in the present embodiment is the same as the configuration of the first seal body 31 illustrated in FIGS. 3A and 3B, and thus redundant description thereof is omitted. Also in the present embodiment, a plurality of radially extending grooves 37 are formed on the upper surface 31a of the first seal body 31, and the inner end 37a of the groove 37 is the inner peripheral surface of the first seal body 31 (that is, the through hole). 31b) has not been reached. That is, the inner end 37 a of the groove 37 of this embodiment is located between the inner peripheral surface and the outer peripheral surface of the first seal body 31. The width of the groove 37 is constant from the inner end 37a to the outer end. The first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31. A centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap. Needless to say, since the upper surface 31a of the first seal body 31 has the purpose of applying centrifugal force to the liquid flowing on the first upper surface 31a, the groove 37 is formed in the radial direction of the first seal body 31. May be inclined with respect to, or may not extend linearly. Furthermore, the width of the groove 37 may not be constant. Note that the groove 37 shown in FIGS. 5A and 5B may be formed in the upper surface 51 a of the second seal body 51.
 図6Aは、第1シール体31のさらに別の実施形態を示す上面図であり、図6Bは、図6AのD-D線断面図である。本実施形態で特に説明しない構成は、図4Aおよび図4Bに示す第1シール体31の構成と同様であるため、その重複する説明を省略する。本実施形態でも、放射状に延びる複数の溝37が第1シール体31の上面31aに形成されるが、該溝37の内端37aは、第1シール体31の内周面(すなわち、貫通孔31b)に到達していない。すなわち、本実施形態の溝37の内端37aは、第1シール体31の内周面と外周面との間に位置する。溝37の幅は、第1シール体31の半径方向外側へ向かうほど徐々に大きくなっている。このような溝37が形成された第1シール体31も、該第1シール体31の回転により第1上側ケーシング35の下面35bと第1シール体31の上面31aとの間の隙間に存在する液体に効率的に遠心力を与え、該隙間に大きな遠心力場を形成することができる。言及するまでもないが、第1シール体31の上面31aは、該上面31a上を流動する液体へ遠心力を付加する目的を有するため、溝37は、第1シール体31の半径方向に対して傾斜してもよいし、直線状に延びていなくてもよい。さらに、溝37の幅は、半径方向外側へ向かって徐々に大きくならなくてもよい。なお、図6Aおよび図6Bに示される溝37を、第2シール体51の上面51aに形成してもよい。 6A is a top view showing still another embodiment of the first seal body 31, and FIG. 6B is a cross-sectional view taken along the line DD of FIG. 6A. The configuration that is not particularly described in the present embodiment is the same as the configuration of the first seal body 31 illustrated in FIGS. 4A and 4B, and thus redundant description thereof is omitted. Also in the present embodiment, a plurality of radially extending grooves 37 are formed on the upper surface 31a of the first seal body 31, and the inner end 37a of the groove 37 is the inner peripheral surface of the first seal body 31 (that is, the through hole). 31b) has not been reached. That is, the inner end 37 a of the groove 37 of this embodiment is located between the inner peripheral surface and the outer peripheral surface of the first seal body 31. The width of the groove 37 gradually increases toward the outer side in the radial direction of the first seal body 31. The first seal body 31 in which such a groove 37 is formed also exists in a gap between the lower surface 35 b of the first upper casing 35 and the upper surface 31 a of the first seal body 31 due to the rotation of the first seal body 31. A centrifugal force can be efficiently applied to the liquid, and a large centrifugal force field can be formed in the gap. Needless to say, since the upper surface 31 a of the first seal body 31 has the purpose of applying centrifugal force to the liquid flowing on the upper surface 31 a, the groove 37 is formed in the radial direction of the first seal body 31. May be inclined or may not extend linearly. Further, the width of the groove 37 may not gradually increase toward the outside in the radial direction. Note that the groove 37 shown in FIGS. 6A and 6B may be formed in the upper surface 51 a of the second seal body 51.
 図7は、別の実施形態に係る軸封装置30を示す断面図である。本実施形態で特に説明しない構成は、図2に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図7に示される軸封装置30の第1シール体31は、該第1シール体31の半径方向外側に向かって下方に傾斜する上面(環状面)31aを有する。同様に、第2シール体51は、該第2シール体51の半径方向外側に向かって下方に傾斜する上面(環状面)51aを有する。すなわち、第1シール体31の上面31aおよび第2シール体51の上面51aは、回転軸6の軸心に垂直な面に対して下方に傾斜する。 FIG. 7 is a cross-sectional view showing a shaft seal device 30 according to another embodiment. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. The first seal body 31 of the shaft seal device 30 shown in FIG. 7 has an upper surface (annular surface) 31 a that is inclined downward toward the radially outer side of the first seal body 31. Similarly, the second seal body 51 has an upper surface (annular surface) 51 a that is inclined downward toward the radially outer side of the second seal body 51. That is, the upper surface 31 a of the first seal body 31 and the upper surface 51 a of the second seal body 51 are inclined downward with respect to a plane perpendicular to the axis of the rotation shaft 6.
 本実施形態では、第1シール体31の上面31aおよび第2シール体51の上面51aは、直線状に傾斜している。より具体的には、第1シール体31の上面31aおよび第2シール体51の上面51aは、回転軸6の軸心と平行な断面で見たときに、直線状に傾斜する。第1シール体31の上面31aと隙間を介して対向する第1上側ケーシング35の下面35bは、第1シール体31の上面31aに沿って延びており、第2シール体51の上面51aと隙間を介して対向する第2上側ケーシング55の下面55bは、第2シール体51の上面51aに沿って延びている。より具体的には、第1上側ケーシング35の下面35bは、回転軸6の軸心と平行な断面で見たときに、第1シール体31の上面31aと平行であり、同一の傾斜角度を有する。したがって、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間に形成される隙間の大きさ(すなわち、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の距離)は一定である。同様に、第2上側ケーシング55の下面55bは、回転軸6の軸心と平行な断面で見たときに、第2シール体51の上面51aと平行であり、同一の傾斜角度を有する。したがって、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間に形成される隙間の大きさ(すなわち、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の距離)は一定である。 In the present embodiment, the upper surface 31a of the first seal body 31 and the upper surface 51a of the second seal body 51 are inclined linearly. More specifically, the upper surface 31 a of the first seal body 31 and the upper surface 51 a of the second seal body 51 are inclined linearly when viewed in a cross section parallel to the axis of the rotation shaft 6. A lower surface 35b of the first upper casing 35 that faces the upper surface 31a of the first seal body 31 via a gap extends along the upper surface 31a of the first seal body 31, and is spaced from the upper surface 51a of the second seal body 51. The lower surface 55 b of the second upper casing 55 that opposes the second upper casing 55 extends along the upper surface 51 a of the second seal body 51. More specifically, the lower surface 35b of the first upper casing 35 is parallel to the upper surface 31a of the first seal body 31 when viewed in a cross section parallel to the axis of the rotary shaft 6, and has the same inclination angle. Have. Accordingly, the size of the gap formed between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 (that is, the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35). The distance between them is constant. Similarly, the lower surface 55b of the second upper casing 55 is parallel to the upper surface 51a of the second seal body 51 when viewed in a cross section parallel to the axis of the rotary shaft 6, and has the same inclination angle. Therefore, the size of the gap formed between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 (that is, the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55). The distance between them is constant.
 図7に示されるように、第1シール体31の上面31aおよび第2シール体51の上面51aには、複数の溝37がそれぞれ形成される。図7に示される第1シール体31の溝37は、第1シール体31の内周面(すなわち、貫通孔31b)から第1シール体31の外周面まで放射状に延びる。同様に、図7に示される第2シール体51の溝37は、第2シール体51の内周面から第2シール体51の外周面まで放射状に延びる。図3Aおよび図3Bを参照して説明されたように、第1シール体31および第2シール体51の溝37の幅はその内端から外端まで一定であってもよいし、図4Aおよび図4Bを参照して説明されたように、各シール体31,51の半径方向外側へ向かうほど徐々に大きくなってもよい。あるいは、図5Aおよび図5B、または図6Aおよび図6Bを参照して説明されたように、溝37の内端37aが各シール体31,51の内周面と外周面との間に位置していてもよい。 7, a plurality of grooves 37 are formed in the upper surface 31a of the first seal body 31 and the upper surface 51a of the second seal body 51, respectively. The grooves 37 of the first seal body 31 shown in FIG. 7 extend radially from the inner peripheral surface (that is, the through hole 31 b) of the first seal body 31 to the outer peripheral surface of the first seal body 31. Similarly, the groove 37 of the second seal body 51 shown in FIG. 7 extends radially from the inner peripheral surface of the second seal body 51 to the outer peripheral surface of the second seal body 51. As described with reference to FIGS. 3A and 3B, the width of the groove 37 of the first seal body 31 and the second seal body 51 may be constant from the inner end to the outer end, As described with reference to FIG. 4B, the seal bodies 31 and 51 may gradually increase toward the outer side in the radial direction. Alternatively, as described with reference to FIG. 5A and FIG. 5B or FIG. 6A and FIG. 6B, the inner end 37a of the groove 37 is located between the inner peripheral surface and the outer peripheral surface of each seal body 31, 51. It may be.
 本実施形態でも、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間は、第1シール体31の回転により、該隙間に必要十分な遠心力場が生じるように第1シール体31の回転速度、第1シール体31の直径、および液体の動粘性を考慮して設定される。同様に、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間は、第2シール体51の回転により、該隙間に必要十分な遠心力場が生じるように第2シール体51の回転速度、第2シール体51の直径、および液体の動粘性を考慮して設定される。 Also in the present embodiment, a necessary and sufficient centrifugal force field is generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 by the rotation of the first seal body 31. The rotational speed of the first seal body 31, the diameter of the first seal body 31, and the kinematic viscosity of the liquid are set. Similarly, the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 is such that a necessary and sufficient centrifugal force field is generated in the gap by the rotation of the second seal body 51. The rotational speed of the two seal bodies 51, the diameter of the second seal body 51, and the kinematic viscosity of the liquid are set.
 本実施形態では、回転する第1シール体31の溝37の作用により液体には周方向速度成分が生じるため、第1シール体31の上面31a上の液体、および溝37内の液体には遠心力が発生する。さらに、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間が好適な寸法に設定されているので、該隙間に存在する液体に遠心力を作用させることができる。同様に、回転する第2シール体51の溝37の作用により液体には周方向速度成分が生じるため、第2シール体51の上面51a上の液体、および溝37内の液体には遠心力が発生する。さらに、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間が好適な寸法に設定されているので、該隙間に存在する液体に遠心力を作用させることができる。 In the present embodiment, since the circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating first seal body 31, the liquid on the upper surface 31 a of the first seal body 31 and the liquid in the groove 37 are centrifuged. Force is generated. Furthermore, since the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 is set to a suitable size, centrifugal force can be applied to the liquid present in the gap. . Similarly, since the circumferential velocity component is generated in the liquid by the action of the groove 37 of the rotating second seal body 51, the liquid on the upper surface 51a of the second seal body 51 and the liquid in the groove 37 have a centrifugal force. appear. Furthermore, since the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 is set to a suitable size, centrifugal force can be applied to the liquid present in the gap. .
 上述したように、第1シール体31の半径、および第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間が好適な寸法に設定されている場合には、第1シール体31の上面31aには、溝37が形成されなくてもよい。同様に、第2シール体51の半径、および第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間が好適な寸法に設定されている場合には、第2シール体51の上面51aには、溝37が形成されなくてもよい。あるいは、第1シール体31の上面31aまたは第2シール体51の上面51aのいずれか一方にのみ、溝37を形成してもよい。 As described above, when the radius of the first seal body 31 and the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 are set to suitable dimensions, The groove 37 may not be formed on the upper surface 31 a of the one seal body 31. Similarly, when the radius of the second seal body 51 and the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 are set to suitable dimensions, the second seal The groove 37 may not be formed on the upper surface 51 a of the body 51. Alternatively, the groove 37 may be formed only on either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51.
 図7に示される軸封装置30では、第2シール体51は、第1シール体31と同様の構成を有する。図示はしないが、図7に示される第1シール体31の上面31aまたは第2シール体51の上面51aのいずれか一方を、回転軸6の軸心に垂直な環状面として構成してもよい(図2参照)。 In the shaft seal device 30 shown in FIG. 7, the second seal body 51 has the same configuration as the first seal body 31. Although not shown, either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51 shown in FIG. 7 may be configured as an annular surface perpendicular to the axis of the rotating shaft 6. (See FIG. 2).
 図8は、図7に示される軸封装置30の変形例を示す断面図である。本実施形態で特に説明しない構成は、図7に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図8に示される軸封装置30の第1シール体31も、該第1シール体31の半径方向外側に向かって下方に傾斜する上面(環状面)31aを有するが、この上面31aは、湾曲している。より具体的には、第1シール体31の上面31aは、回転軸6の軸心と平行な断面で見たときに、曲線状に傾斜する。図8に示される軸封装置では、第2シール体51は、第1シール体31の構成と同様の構成を有する。すなわち、第2シール体51も、該第2シール体51の半径方向外側に向かって下方に傾斜する上面(環状面)51aを有し、この上面51aは、回転軸6の軸心と平行な断面で見たときに、曲線状に傾斜する。 FIG. 8 is a sectional view showing a modification of the shaft seal device 30 shown in FIG. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. The first seal body 31 of the shaft seal device 30 shown in FIG. 8 also has an upper surface (annular surface) 31a that is inclined downward toward the radially outer side of the first seal body 31, and this upper surface 31a is curved. is doing. More specifically, the upper surface 31 a of the first seal body 31 is inclined in a curved shape when viewed in a cross section parallel to the axis of the rotary shaft 6. In the shaft seal device shown in FIG. 8, the second seal body 51 has a configuration similar to that of the first seal body 31. That is, the second seal body 51 also has an upper surface (annular surface) 51 a that is inclined downward toward the radially outer side of the second seal body 51, and the upper surface 51 a is parallel to the axis of the rotating shaft 6. When viewed in cross section, it is inclined in a curved line.
 上面31aの曲率は一定であってもよいし、徐々に変化してもよい。上面31aの曲率が一定である場合は、上面31aは円弧状に延びる。上面31aの曲率が徐々に変化する場合は、上面31aの曲率は、第1シール体31の内周面から第1シール体31の外周面まで徐々に大きくなってもよいし、徐々に小さくなってもよい。第1シール体31の上面31aと隙間を介して対向する第1上側ケーシング35の下面35bは、第1シール体31の上面31aに沿って延びている。すなわち、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間に形成される隙間の大きさ(すなわち、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の距離)が一定となるように、第1上側ケーシング35の下面35bは形成される。 The curvature of the upper surface 31a may be constant or may change gradually. When the curvature of the upper surface 31a is constant, the upper surface 31a extends in an arc shape. When the curvature of the upper surface 31a gradually changes, the curvature of the upper surface 31a may gradually increase from the inner peripheral surface of the first seal body 31 to the outer peripheral surface of the first seal body 31 or gradually decrease. May be. A lower surface 35 b of the first upper casing 35 that faces the upper surface 31 a of the first seal body 31 via a gap extends along the upper surface 31 a of the first seal body 31. That is, the size of the gap formed between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 (that is, the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35). The lower surface 35b of the first upper casing 35 is formed so that the distance between the first upper casing 35 and the second casing 35 is constant.
 同様に、上面51aの曲率は一定であってもよいし、徐々に変化してもよい。上面51aの曲率が一定である場合は、上面51aは円弧状に延びる。上面51aの曲率が徐々に変化する場合は、上面51aの曲率は、第2シール体51の内周面から第2シール体51の外周面まで徐々に大きくなってもよいし、徐々に小さくなってもよい。第2シール体51の上面51aと隙間を介して対向する第2上側ケーシング55の下面55bは、第2シール体51の上面51aに沿って延びている。すなわち、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間に形成される隙間の大きさ(すなわち、第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の距離)が一定となるように、第2上側ケーシング55の下面55bは形成される。 Similarly, the curvature of the upper surface 51a may be constant or may gradually change. When the curvature of the upper surface 51a is constant, the upper surface 51a extends in an arc shape. When the curvature of the upper surface 51a gradually changes, the curvature of the upper surface 51a may gradually increase from the inner peripheral surface of the second seal body 51 to the outer peripheral surface of the second seal body 51, or gradually decrease. May be. A lower surface 55b of the second upper casing 55 facing the upper surface 51a of the second seal body 51 with a gap extends along the upper surface 51a of the second seal body 51. That is, the size of the gap formed between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 (that is, the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55). The lower surface 55b of the second upper casing 55 is formed so that the distance between the upper casing 55 and the second casing 55 is constant.
 図8に示される軸封装置30では、第2シール体51は、第1シール体31と同様の構成を有する。図示はしないが、図8に示される第1シール体31の上面31aまたは第2シール体51の上面51aのいずれか一方を、回転軸6の軸心に垂直な環状面として構成してもよいし(図2参照)、半径方向外側に向かって下方に直線状に傾斜させてもよい(図7参照)。 In the shaft seal device 30 shown in FIG. 8, the second seal body 51 has the same configuration as the first seal body 31. Although not shown, either the upper surface 31 a of the first seal body 31 or the upper surface 51 a of the second seal body 51 shown in FIG. 8 may be configured as an annular surface perpendicular to the axis of the rotating shaft 6. However, it may be inclined linearly downward (see FIG. 7) outward in the radial direction.
 図7または図8に示される軸封装置30も、回転軸6の軸方向に直列に配置され、該回転軸6と一体的に回転する複数のシール体31,51によって、液体が軸封装置30から漏洩することを防止する。したがって、立軸ポンプの吐出エルボ管4を流れる液体の圧力が高い場合でも、軸封装置30から液体が漏洩することを防止することができる。さらに、立軸ポンプの他の構成部材が軸封装置30の周囲に存在していることにより、シール体31,51の直径を大きくできない場合でも、複数のシール体31,51によって液体が軸封装置30から漏洩することを効果的に防止することができる。 The shaft seal device 30 shown in FIG. 7 or 8 is also arranged in series in the axial direction of the rotary shaft 6, and the liquid is sealed by the plurality of seal bodies 31, 51 that rotate integrally with the rotary shaft 6. Prevent leakage from 30. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
 さらに、本実施形態に係る軸封装置30は、複数のシール体31,51が他の部材に摺接しない非接触の軸封装置であるため、複数のシール体31,51が摩耗しない。したがって、軸封装置30のメンテナンス頻度を大幅に低減させることができる。また、各シール体31,51は、非接触でシール機能を発揮するので、流体せん断力による熱のみが軸封装置30で発生する。したがって、互いに摺接する構成部材を含む軸封装置と比較して、軸封装置30で発生する熱量は極く僅かであり、冷却水、もしくはフラッシング液などの液体を軸封装置に供給するための付帯設備を別途設ける必要がない。さらに、メカニカルシールのように、回転リングと固定リング等の構成部材の表面を精密に仕上げ加工する必要がなく、正確な組立が要求されることもない。 Furthermore, since the shaft seal device 30 according to the present embodiment is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat | fever by a fluid shear force generate | occur | produces in the shaft seal device 30. FIG. Therefore, the amount of heat generated in the shaft seal device 30 is very small compared to a shaft seal device including components that are in sliding contact with each other, and a liquid such as cooling water or flushing liquid is supplied to the shaft seal device. There is no need to install additional facilities. Further, unlike the mechanical seal, it is not necessary to precisely finish the surface of the constituent members such as the rotating ring and the fixed ring, and accurate assembly is not required.
 図9は、さらに別の実施形態に係る軸封装置30を示す断面図である。本実施形態で特に説明しない構成は、図2に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図9に示される軸封装置30は、第2シール体51の上方に設けられた、回転軸6と第2貫通孔55aとの間の隙間を封止する非接触式の上側シール構造体45をさらに備えている。 FIG. 9 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. A shaft seal device 30 shown in FIG. 9 is a non-contact type upper seal structure 45 that seals a gap between the rotary shaft 6 and the second through hole 55a provided above the second seal body 51. Is further provided.
 図9に示されるように、第2上側ケーシング55は、回転軸6の長手方向に沿って上方に延びる延長部55cを有する。延長部55cは、円筒形状を有しており、回転軸6を取り囲んでいる。回転軸6が貫通する第2貫通孔55aは、延長部55cを含む第2上側ケーシング55の内周面全体によって形成される。回転軸6の外周面にはスリーブ47が固定されており、このスリーブ47は、第2上側ケーシング55の第2貫通孔55aを通って鉛直方向に延びている。スリーブ47の外周面と第2貫通孔55aとの間には、隙間が形成される。 As shown in FIG. 9, the second upper casing 55 has an extension portion 55 c that extends upward along the longitudinal direction of the rotating shaft 6. The extension part 55 c has a cylindrical shape and surrounds the rotation shaft 6. The 2nd through-hole 55a which the rotating shaft 6 penetrates is formed of the whole internal peripheral surface of the 2nd upper casing 55 containing the extension part 55c. A sleeve 47 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 47 extends in the vertical direction through the second through hole 55 a of the second upper casing 55. A gap is formed between the outer peripheral surface of the sleeve 47 and the second through hole 55a.
 本実施形態の非接触式の上側シール構造体45は、第2上側ケーシング55の延長部55cとスリーブ47とで構成されるラビリンスシールである。非接触式の上側シール構造体45は、ラビリンス構造を有しないフラットシールであってもよい。 The non-contact type upper seal structure 45 of the present embodiment is a labyrinth seal constituted by an extension portion 55c of the second upper casing 55 and a sleeve 47. The non-contact type upper seal structure 45 may be a flat seal that does not have a labyrinth structure.
 ラビリンスシールのラビリンス構造は、例えば、第2貫通孔55aに形成された複数の平行溝(図示せず)である。ラビリンス構造を構成する複数の平行溝は、スリーブ47の外周面に形成されてもよいし、第2貫通孔55aおよびスリーブ47の外周面の両方に形成されてもよい。複数の平行溝は、互いに平行であり、各平行溝は、第2貫通孔55aおよび/またはスリーブ47の外周面上で回転軸6の軸心と垂直な面内を延びる。隣接する平行溝の間の間隔は、等しくてもよいし、異なっていてもよい。さらに、平行溝の頂部の断面形状は任意である。例えば、平行溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、平行溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the second through hole 55a. The plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 47, or may be formed on both the second through hole 55a and the outer peripheral surface of the sleeve 47. The plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the second through hole 55 a and / or the sleeve 47. The spacing between adjacent parallel grooves may be equal or different. Furthermore, the cross-sectional shape of the top of the parallel groove is arbitrary. For example, the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 ラビリンス構造を構成する溝は、第2貫通孔55aおよび/またはスリーブ47の外周面上で螺旋状に延びるねじ溝であってもよい。螺旋状に延びるねじ溝の回転方向は、好ましくは、回転軸6を回転させたときに、液体を第2シール室53aに押し返すポンプ作用を発揮する方向である。すなわち、ねじ溝は、回転軸6の回転方向とは反対方向に螺旋状に延びるのが好ましい。ねじ溝のピッチ、および条数は任意である。例えば、1本のねじ溝を第2貫通孔55aおよび/またはスリーブ47の外周面上に不等ピッチで形成してもよいし、多条のねじ溝を第2貫通孔55aおよび/またはスリーブ47の外周面上に形成してもよい。ねじ溝の頂部の形状は任意である。例えば、ねじ溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、ねじ溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The groove constituting the labyrinth structure may be a thread groove extending spirally on the outer peripheral surface of the second through hole 55a and / or the sleeve 47. The rotational direction of the spirally extending thread groove is preferably a direction that exerts a pumping action to push the liquid back to the second seal chamber 53a when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6. The pitch of the thread groove and the number of threads are arbitrary. For example, one screw groove may be formed on the outer peripheral surface of the second through hole 55a and / or the sleeve 47 at an unequal pitch, and multiple threads are formed in the second through hole 55a and / or the sleeve 47. You may form on the outer peripheral surface. The shape of the top of the thread groove is arbitrary. For example, the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 さらに、軸封装置30は、上側シール構造体45を取り囲む漏液カバー48を有する。漏液カバー48は、第2上側ケーシング55の上面に固定される。すなわち、シールケーシング70の上部に固定される。漏液カバー48の側壁には、該漏液カバー48の内部空間48aを外部に連通させる開口48bが設けられ、この開口48bによって、内部空間48aと漏液カバー48の外部とが連通する。さらに、この開口48bには、漏液管49が接続される。漏液管49は、吸込水槽5(図1参照)内にまで延びており、漏液管49の先端は吸込水槽5内の液面の上方に位置している。一実施形態では、漏液管49の先端はポンプ据付床22(図1参照)に形成された側溝(図示せず)の上方に位置していてもよい。漏液管49から側溝に流れた液体は、該側溝を介して吸込水槽5に戻されてもよいし、図示しないタンクなどの回収容器に回収されてもよい。漏液カバー48に、複数の開口48bを設けてもよい。この場合、各開口48bに漏液管49が接続される。 Furthermore, the shaft seal device 30 has a liquid leakage cover 48 surrounding the upper seal structure 45. The leak cover 48 is fixed to the upper surface of the second upper casing 55. That is, it is fixed to the upper part of the seal casing 70. The side wall of the liquid leakage cover 48 is provided with an opening 48b that allows the internal space 48a of the liquid leakage cover 48 to communicate with the outside, and the internal space 48a communicates with the outside of the liquid leakage cover 48 through the opening 48b. Further, a leakage pipe 49 is connected to the opening 48b. The leakage pipe 49 extends into the suction water tank 5 (see FIG. 1), and the tip of the leakage pipe 49 is located above the liquid level in the suction water tank 5. In one embodiment, the tip of the leak pipe 49 may be located above a gutter (not shown) formed in the pump installation floor 22 (see FIG. 1). The liquid that has flowed from the leak pipe 49 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown). The liquid leakage cover 48 may be provided with a plurality of openings 48b. In this case, a leak pipe 49 is connected to each opening 48b.
 第2ケーシング構造体53の第2シール室53a内に存在する液体の圧力が、第2シール体51の回転によって第2上側ケーシング55の下面55bと第2シール体51の上面51aとの間の隙間に存在する液体へ与える遠心力よりも高い場合は、液体は上側シール構造体45まで到達する。この場合、液体は、上側シール構造体45を通過する際に減圧され、漏液カバー48の内部空間48aに流入する。 The pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51 by the rotation of the second seal body 51. When the centrifugal force applied to the liquid existing in the gap is higher, the liquid reaches the upper seal structure 45. In this case, the liquid is decompressed when passing through the upper seal structure 45 and flows into the internal space 48 a of the leak cover 48.
 漏液カバー48の内部空間48aは、開口48bを介して漏液管49に接続され、漏液管49の先端は、吸込水槽5内で大気に連通しているので、内部空間48aに漏れた液体は、吸込水槽5に戻される。したがって、漏液カバー48から液体が漏洩することが防止される。漏液管49の先端がポンプ据付床22(図1参照)に形成された側溝(図示せず)の上方に位置している場合は、漏液管49の先端は、側溝の上方で大気に連通しているので、内部空間48aに漏れた液体は、側溝を介して吸込水槽5に戻されるか、または回収タンクに回収される。 The inner space 48a of the leak cover 48 is connected to the leak pipe 49 through the opening 48b, and the tip of the leak pipe 49 communicates with the atmosphere in the suction water tank 5, and therefore leaked into the inner space 48a. The liquid is returned to the suction water tank 5. Therefore, the liquid is prevented from leaking from the leak cover 48. When the tip of the leak pipe 49 is located above a side groove (not shown) formed in the pump installation floor 22 (see FIG. 1), the tip of the leak pipe 49 is exposed to the atmosphere above the side groove. Because of the communication, the liquid leaking into the internal space 48a is returned to the suction water tank 5 through the side groove or is collected in the collection tank.
 図9に示されるように、漏液カバー48の内部空間48a内で、回転軸6に水切板50を固定してもよい。水切板50は上側シール構造体45の上方に配置されている。上側シール構造体45を通過した液体が水切板50に衝突することにより、液体の移動方向を側方または下方に変更させることができる。 As shown in FIG. 9, the drain plate 50 may be fixed to the rotary shaft 6 in the internal space 48 a of the leak cover 48. The drain plate 50 is disposed above the upper seal structure 45. When the liquid that has passed through the upper seal structure 45 collides with the draining plate 50, the moving direction of the liquid can be changed to the side or downward.
 上側シール構造体45は、回転軸6と一体的に回転するスリーブ47が第2上側ケーシング55に接触しない非接触型シールである。したがって、スリーブ47および第2上側ケーシング55は摩耗せず、上側シール構造体45のメンテナンス頻度を大幅に下げることができる。さらに、上側シール構造体45は非接触でシール機能を発揮するので、摩擦熱が発生せず、冷却水およびフラッシング液などの液体を上側シール構造体45に供給する必要もない。 The upper seal structure 45 is a non-contact type seal in which the sleeve 47 that rotates integrally with the rotary shaft 6 does not contact the second upper casing 55. Therefore, the sleeve 47 and the second upper casing 55 are not worn, and the maintenance frequency of the upper seal structure 45 can be greatly reduced. Further, since the upper seal structure 45 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquid such as cooling water and flushing liquid to the upper seal structure 45.
 上側シール構造体45は、回転する第2シール体51によって第2シール体51の上面51aと第2上側ケーシング55の下面55bとの間の隙間に発生する液体の静圧が、第2シール室53a内に存在する液体の静圧よりも小さい場合でも、液体が軸封装置30の外部に漏洩することを防止する補助シールとして機能する。一実施形態では、第2シール体51の形状・寸法、および/または上側シール構造体45の形状を適切に設計することにより、上側シール構造体45を通過する液体の量を調整してもよい。 In the upper seal structure 45, the static pressure of the liquid generated in the gap between the upper surface 51a of the second seal body 51 and the lower surface 55b of the second upper casing 55 by the rotating second seal body 51 is increased in the second seal chamber. Even when it is smaller than the static pressure of the liquid existing in 53 a, it functions as an auxiliary seal that prevents the liquid from leaking outside the shaft seal device 30. In one embodiment, the amount of liquid passing through the upper seal structure 45 may be adjusted by appropriately designing the shape and size of the second seal body 51 and / or the shape of the upper seal structure 45. .
 軸封装置30が3つ以上のケーシング構造体と、該ケーシング構造体のそれぞれに形成されたシール室に収容される3つ以上のシール体を有している場合は、上側シール構造体45は、最も上側に位置するシール体の上方に配置される。より具体的には、上側シール構造体45は、最も上側に位置するケーシング構造体の上側ケーシングに設けられた延長部と、回転軸6に固定されたスリーブとで構成され、最も上側に位置するケーシング構造体の貫通孔と回転軸6との間の隙間を封止する。 When the shaft seal device 30 has three or more casing structures and three or more seal bodies accommodated in seal chambers formed in the casing structures, the upper seal structure 45 is , And disposed above the uppermost seal body. More specifically, the upper seal structure 45 is composed of an extension provided in the upper casing of the uppermost casing structure and a sleeve fixed to the rotary shaft 6 and is located on the uppermost side. A gap between the through hole of the casing structure and the rotary shaft 6 is sealed.
 図10は、さらに別の実施形態に係る軸封装置30を示す断面図である。本実施形態で特に説明しない構成は、図2に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図10に示される軸封装置30の第1ケーシング構造体33は、上述した第1上側ケーシング35と第1中間ケーシング36だけでなく、下側ケーシング34を備える。 FIG. 10 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. A first casing structure 33 of the shaft seal device 30 shown in FIG. 10 includes a lower casing 34 as well as the first upper casing 35 and the first intermediate casing 36 described above.
 下側ケーシング34は、回転軸6が貫通する下側貫通孔34aを有しており、下側貫通孔34aの中心線は、回転軸6の軸心に一致する。第1中間ケーシング36は、円筒形状の内周面36aを有している。第1中間ケーシング36は、下側ケーシング34と第1上側ケーシング35とに挟まれた状態で、該下側ケーシング34と第1上側ケーシング35に固定される。これにより、第1シール体31が収容される第1シール室33aが第1ケーシング構造体33内に形成される。 The lower casing 34 has a lower through hole 34 a through which the rotary shaft 6 passes, and the center line of the lower through hole 34 a coincides with the axis of the rotary shaft 6. The first intermediate casing 36 has a cylindrical inner peripheral surface 36a. The first intermediate casing 36 is fixed to the lower casing 34 and the first upper casing 35 while being sandwiched between the lower casing 34 and the first upper casing 35. Thereby, a first seal chamber 33 a in which the first seal body 31 is accommodated is formed in the first casing structure 33.
 本実施形態では、第1シール室33aは、第1上側ケーシング35の下面35bと、第1中間ケーシング36の内周面36aと、下側ケーシング34の上面34bとにより形成される。第1シール体31は、第1シール室33aの内部で回転軸6に固定される。第1上側ケーシング35の下面35bおよび下側ケーシング34の上面34bは、回転軸6に垂直な平面であり、第1中間ケーシング36の内周面36aは、回転軸6の外周面と同心状にある。第1シール室33aは、下側貫通孔34aおよび第1貫通孔35aに連通しており、第1シール室33aは下側貫通孔34aと第1貫通孔35aとの間に位置している。回転軸6は、下側貫通孔34a、第1シール室33a、および第1貫通孔35aを通って鉛直方向に延びている。 In the present embodiment, the first seal chamber 33a is formed by the lower surface 35b of the first upper casing 35, the inner peripheral surface 36a of the first intermediate casing 36, and the upper surface 34b of the lower casing 34. The first seal body 31 is fixed to the rotary shaft 6 inside the first seal chamber 33a. The lower surface 35 b of the first upper casing 35 and the upper surface 34 b of the lower casing 34 are planes perpendicular to the rotation shaft 6, and the inner peripheral surface 36 a of the first intermediate casing 36 is concentric with the outer peripheral surface of the rotation shaft 6. is there. The first seal chamber 33a communicates with the lower through hole 34a and the first through hole 35a, and the first seal chamber 33a is located between the lower through hole 34a and the first through hole 35a. The rotating shaft 6 extends in the vertical direction through the lower through hole 34a, the first seal chamber 33a, and the first through hole 35a.
 本実施形態では、下側ケーシング34は、回転軸6の長手方向に沿って下方に延びる下側延長部34cを有する。下側延長部34cは、円筒形状を有しており、回転軸6を取り囲んでいる。回転軸6が貫通する下側貫通孔34aは、延長部34cを含む下側ケーシング34の内周面全体によって形成される。 In the present embodiment, the lower casing 34 has a lower extension 34 c that extends downward along the longitudinal direction of the rotating shaft 6. The lower extension 34 c has a cylindrical shape and surrounds the rotation shaft 6. The lower through hole 34a through which the rotary shaft 6 passes is formed by the entire inner peripheral surface of the lower casing 34 including the extension 34c.
 図10に示されるように、軸封装置30は、吐出エルボ管4に形成された通孔4bを塞ぐように、吐出エルボ管4の軸封装置取付面4a上に固定される。本実施形態では、下側ケーシング34の下面が軸封装置取付面4aに連結される。 As shown in FIG. 10, the shaft seal device 30 is fixed on the shaft seal device mounting surface 4a of the discharge elbow pipe 4 so as to close the through hole 4b formed in the discharge elbow pipe 4. In the present embodiment, the lower surface of the lower casing 34 is connected to the shaft seal device mounting surface 4a.
 さらに、回転軸6の外周面にはスリーブ41が固定されており、このスリーブ41は、下側ケーシング34の下側貫通孔34aを通って鉛直方向に延びている。スリーブ41の外周面と下側貫通孔34aとの間には、隙間が形成される。 Furthermore, a sleeve 41 is fixed to the outer peripheral surface of the rotary shaft 6, and the sleeve 41 extends in the vertical direction through the lower through hole 34 a of the lower casing 34. A gap is formed between the outer peripheral surface of the sleeve 41 and the lower through hole 34a.
 本実施形態では、下側ケーシング34の下側延長部34cとスリーブ41とで、下側シール構造体40が構成される。下側シール構造体40は、ラビリンス構造を有するラビリンスシールであってもよいし、ラビリンス構造を有しないフラットシールであってもよい。 In the present embodiment, the lower seal structure 40 is configured by the lower extension 34 c of the lower casing 34 and the sleeve 41. The lower seal structure 40 may be a labyrinth seal having a labyrinth structure or a flat seal not having a labyrinth structure.
 ラビリンスシールのラビリンス構造は、例えば、下側貫通孔34aに形成された複数の平行溝(図示せず)である。ラビリンス構造を構成する複数の平行溝は、スリーブ41の外周面に形成されてもよいし、下側貫通孔34aおよびスリーブ41の外周面の両方に形成されてもよい。複数の平行溝は、互いに平行であり、各平行溝は、下側貫通孔34aおよび/またはスリーブ41の外周面上で回転軸6の軸心と垂直な面内を延びる。隣接する平行溝の間の間隔は、等しくてもよいし、異なっていてもよい。さらに、平行溝の頂部の断面形状は任意である。例えば、平行溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、平行溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the lower through hole 34a. The plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 41, or may be formed on both the lower through hole 34 a and the outer peripheral surface of the sleeve 41. The plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the lower through hole 34 a and / or the sleeve 41. The spacing between adjacent parallel grooves may be equal or different. Furthermore, the cross-sectional shape of the top of the parallel groove is arbitrary. For example, the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 ラビリンス構造を構成する溝は、下側貫通孔34aおよび/またはスリーブ41の外周面上で螺旋状に延びるねじ溝であってもよい。螺旋状に延びるねじ溝の回転方向は、好ましくは、回転軸6を回転させたときに、液体を吐出エルボ管4に形成された通孔4bに押し返すポンプ作用を発揮する方向である。すなわち、ねじ溝は、回転軸6の回転方向とは反対方向に螺旋状に延びるのが好ましい。ねじ溝のピッチ、および条数は任意である。例えば、1本のねじ溝を下側貫通孔34aおよび/またはスリーブ41の外周面上に不等ピッチで形成してもよいし、多条のねじ溝を下側貫通孔34aおよび/またはスリーブ41の外周面上に形成してもよい。ねじ溝の頂部の形状は任意である。例えば、ねじ溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、ねじ溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The groove constituting the labyrinth structure may be a screw groove that extends spirally on the outer peripheral surface of the lower through hole 34a and / or the sleeve 41. The direction of rotation of the spirally extending thread groove is preferably a direction that exerts a pumping action that pushes the liquid back to the through-hole 4b formed in the discharge elbow pipe 4 when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6. The pitch of the thread groove and the number of threads are arbitrary. For example, one screw groove may be formed at an unequal pitch on the outer peripheral surface of the lower through hole 34a and / or the sleeve 41, and multiple thread grooves may be formed at the lower through hole 34a and / or the sleeve 41. You may form on the outer peripheral surface. The shape of the top of the thread groove is arbitrary. For example, the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 本実施形態では、第1ケーシング構造体33の側壁、より具体的には、第1中間ケーシング36には、第1シール室33aに連通する開口33bが形成されている。この開口33bは、第1シール室33aから第1ケーシング構造体33の外面(すなわち、第1中間ケーシング36の外面)まで延びている。図10に示される開口33bは、回転軸6の径方向に延びている。一実施形態では、開口33bは、回転軸6の径方向に対して上方または下方に延びてもよい。あるいは、開口33bは、回転軸6の径方向に対して斜めに延びてもよい。この開口33bによって、第1シール室33aと第1ケーシング構造体33の外部とが連通する。開口33bには、第1ドレイン管43が接続されている。第1ドレイン管43は、吸込水槽5(図1参照)内にまで延びており、第1ドレイン管43の先端は吸込水槽5内の液面の上方に位置している。 In the present embodiment, the side wall of the first casing structure 33, more specifically, the first intermediate casing 36 has an opening 33b communicating with the first seal chamber 33a. The opening 33b extends from the first seal chamber 33a to the outer surface of the first casing structure 33 (that is, the outer surface of the first intermediate casing 36). The opening 33 b shown in FIG. 10 extends in the radial direction of the rotating shaft 6. In one embodiment, the opening 33 b may extend upward or downward with respect to the radial direction of the rotating shaft 6. Alternatively, the opening 33 b may extend obliquely with respect to the radial direction of the rotating shaft 6. Through the opening 33b, the first seal chamber 33a communicates with the outside of the first casing structure 33. A first drain pipe 43 is connected to the opening 33b. The first drain pipe 43 extends into the suction water tank 5 (see FIG. 1), and the tip of the first drain pipe 43 is located above the liquid level in the suction water tank 5.
 一実施形態では、第1ドレイン管43の先端はポンプ据付床22(図1参照)に形成された側溝(図示せず)の上方に位置していてもよい。第1ドレイン管43から側溝に流れた液体は、該側溝を介して吸込水槽5に戻されてもよいし、図示しないタンクなどの回収容器に回収されてもよい。 In one embodiment, the tip of the first drain pipe 43 may be located above a side groove (not shown) formed in the pump installation floor 22 (see FIG. 1). The liquid that has flowed from the first drain pipe 43 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown).
 複数の開口33bを設けてもよい。この場合、隣接する開口33bの間の間隔は、任意である。例えば、第1ケーシング構造体33の内周面36aの周方向に180°離れた2つの開口33bを第1ケーシング構造体33の側壁に設けてもよいし、第1ケーシング構造体33の内周面36aの周方向に90°離れた4つの開口33bを第1ケーシング構造体33の側壁に設けてもよい。複数の開口33bが設けられる場合は、各開口33bに第1ドレイン管43が接続される。 A plurality of openings 33b may be provided. In this case, the interval between the adjacent openings 33b is arbitrary. For example, two openings 33b separated by 180 ° in the circumferential direction of the inner peripheral surface 36a of the first casing structure 33 may be provided on the side wall of the first casing structure 33, or the inner periphery of the first casing structure 33 may be provided. Four openings 33b that are 90 ° apart from each other in the circumferential direction of the surface 36a may be provided on the side wall of the first casing structure 33. When a plurality of openings 33b are provided, the first drain tube 43 is connected to each opening 33b.
 吐出エルボ管4(図1参照)を吐出配管20に向かって流れる液体の一部は、通孔4bを通って、下側シール構造体40に流入する。さらに、液体は、下側シール構造体40を通過して第1シール室33aに流入する。液体は、下側シール構造体40を通過する際に減圧される。下側シール構造体40を通過して第1シール室33aに到達した液体は、第1ケーシング構造体33の側壁に設けられた開口33bを通って第1ドレイン管43に流入し、吸込水槽5に戻される。第1シール室33aに到達した液体は、大気と連通する第1ドレイン管43を通って吸込水槽5に戻されるので、第1ケーシング構造体33の第1シール室33a内の液体の圧力は低下する。したがって、第1シール体31が発生すべき液体の圧力は、図2に示した実施形態よりも低くなる。さらに、第2ケーシング構造体53の第2シール室53aへ流入する液体の圧力も低減されるので、軸封装置30からの液体の漏洩を防止するために第2シール体51が発生すべき液体の圧力は、図2に示した実施形態よりも低くなる。その結果、本実施形態の軸封装置30は、図2に示した軸封装置30と比較して、より高圧の液体の漏洩を防止することができる。さらに、本実施形態の軸封装置30と、図2に示した軸封装置30とを比較すると、第1シール体31および第2シール体51の直径を小さくすることができるので、軸封装置30の大きさ(特に、回転軸6の軸心に対して垂直な方向における軸封装置30の大きさ)を減少させることができる。 A part of the liquid flowing through the discharge elbow pipe 4 (see FIG. 1) toward the discharge pipe 20 flows into the lower seal structure 40 through the through hole 4b. Further, the liquid passes through the lower seal structure 40 and flows into the first seal chamber 33a. The liquid is depressurized as it passes through the lower seal structure 40. The liquid that has passed through the lower seal structure 40 and reached the first seal chamber 33a flows into the first drain pipe 43 through the opening 33b provided in the side wall of the first casing structure 33, and the suction water tank 5 Returned to Since the liquid reaching the first seal chamber 33a is returned to the suction water tank 5 through the first drain pipe 43 communicating with the atmosphere, the pressure of the liquid in the first seal chamber 33a of the first casing structure 33 is lowered. To do. Therefore, the pressure of the liquid which should generate | occur | produce the 1st seal body 31 becomes lower than embodiment shown in FIG. Further, since the pressure of the liquid flowing into the second seal chamber 53a of the second casing structure 53 is also reduced, the liquid that should be generated by the second seal body 51 to prevent liquid leakage from the shaft seal device 30. Is lower than that of the embodiment shown in FIG. As a result, the shaft seal device 30 of the present embodiment can prevent leakage of higher pressure liquid as compared with the shaft seal device 30 shown in FIG. Further, when the shaft seal device 30 of the present embodiment is compared with the shaft seal device 30 shown in FIG. 2, the diameters of the first seal body 31 and the second seal body 51 can be reduced. The size of 30 (in particular, the size of the shaft seal device 30 in the direction perpendicular to the axis of the rotating shaft 6) can be reduced.
 本実施形態では、開口33bの数、および/または開口33bの直径の大きさを変更することにより、第1シール室33a内の液体の圧力を調整することができる。したがって、開口33bの数、および/または開口33bの直径の大きさを適切に設計することにより、第1ケーシング構造体33の第1貫通孔35aを通過して、第2ケーシング構造体53の第2シール室53aに流入する液体の圧力を調節することができる。 In the present embodiment, the pressure of the liquid in the first seal chamber 33a can be adjusted by changing the number of the openings 33b and / or the size of the diameter of the openings 33b. Therefore, by appropriately designing the number of openings 33b and / or the size of the diameter of the openings 33b, the first through holes 35a of the first casing structure 33 are passed through the second casing structures 53. The pressure of the liquid flowing into the two-seal chamber 53a can be adjusted.
 本実施形態では、回転する第1シール体31によって、第1シール室33a内で第1シール体31よりも下側に存在する液体にも周方向速度成分が生じる。したがって、第1シール室33a内で第1シール体31よりも下側に存在する液体にも遠心力が作用し、第1シール室33a内の液体の静圧が上昇する。第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間に発生する液体の静圧と、第1シール室33a内に存在する液体の静圧との差が小さくなると、第2ケーシング構造体53の第2シール室53aに流入する液体の量が増加する。したがって、第1シール体31よりも下側に存在する液体の体積を、第1シール体31の上面31aと第1上側ケーシング35の下面35bとの間の隙間の体積よりも十分に大きくするのが好ましい。例えば、第1シール体31の下面と下側ケーシング34の上面34bとの間の距離を増加させることにより、第1シール体31よりも下側に存在する液体の体積を増加させることができる。 In the present embodiment, the rotating first seal body 31 also generates a circumferential velocity component in the liquid present below the first seal body 31 in the first seal chamber 33a. Accordingly, centrifugal force also acts on the liquid existing below the first seal body 31 in the first seal chamber 33a, and the static pressure of the liquid in the first seal chamber 33a increases. When the difference between the static pressure of the liquid generated in the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35 and the static pressure of the liquid existing in the first seal chamber 33a is reduced. The amount of liquid flowing into the second seal chamber 53a of the second casing structure 53 increases. Therefore, the volume of the liquid existing below the first seal body 31 is made sufficiently larger than the volume of the gap between the upper surface 31a of the first seal body 31 and the lower surface 35b of the first upper casing 35. Is preferred. For example, the volume of the liquid existing below the first seal body 31 can be increased by increasing the distance between the lower surface of the first seal body 31 and the upper surface 34 b of the lower casing 34.
 下側シール構造体40は、回転軸6と一体的に回転するスリーブ41が下側ケーシング34に接触しない非接触型シールである。したがって、スリーブ41および下側ケーシング34は摩耗せず、下側シール構造体40のメンテナンス頻度を大幅に下げることができる。さらに、下側シール構造体40は非接触でシール機能を発揮するので、摩擦熱が発生せず、冷却水およびフラッシング液などの液体を下側シール構造体40に供給する必要もない。 The lower seal structure 40 is a non-contact type seal in which the sleeve 41 that rotates integrally with the rotary shaft 6 does not contact the lower casing 34. Therefore, the sleeve 41 and the lower casing 34 are not worn, and the maintenance frequency of the lower seal structure 40 can be greatly reduced. Furthermore, since the lower seal structure 40 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquids such as cooling water and flushing liquid to the lower seal structure 40.
 図10に示されるように、第2ケーシング構造体53の側壁、より具体的には、第2中間ケーシング56に、第2シール室53aに連通する開口53bを形成してもよい。この開口53bは、第2シール室53aから第2ケーシング構造体53の外面(すなわち、第2中間ケーシング56の外面)まで延びている。図10に示される開口53bは、回転軸6の径方向に延びている。一実施形態では、開口53bは、回転軸6の径方向に対して上方または下方に延びてもよい。あるいは、開口53bは、回転軸6の径方向に対して斜めに延びてもよい。この開口53bによって、第2シール室53aと第2ケーシング構造体53の外部とが連通する。開口53bには、第2ドレイン管54が接続されている。第2ドレイン管54は、吸込水槽5(図1参照)内にまで延びており、第2ドレイン管54の先端は吸込水槽5内の液面の上方に位置している。 As shown in FIG. 10, an opening 53 b communicating with the second seal chamber 53 a may be formed in the side wall of the second casing structure 53, more specifically, in the second intermediate casing 56. The opening 53b extends from the second seal chamber 53a to the outer surface of the second casing structure 53 (that is, the outer surface of the second intermediate casing 56). The opening 53 b shown in FIG. 10 extends in the radial direction of the rotating shaft 6. In one embodiment, the opening 53 b may extend upward or downward with respect to the radial direction of the rotation shaft 6. Alternatively, the opening 53 b may extend obliquely with respect to the radial direction of the rotation shaft 6. Through the opening 53b, the second seal chamber 53a communicates with the outside of the second casing structure 53. A second drain pipe 54 is connected to the opening 53b. The second drain pipe 54 extends into the suction water tank 5 (see FIG. 1), and the tip of the second drain pipe 54 is located above the liquid level in the suction water tank 5.
 一実施形態では、第2ドレイン管54の先端はポンプ据付床22(図1参照)に形成された側溝(図示せず)の上方に位置していてもよい。第2ドレイン管54から側溝に流れた液体は、該側溝を介して吸込水槽5に戻されてもよいし、図示しないタンクなどの回収容器に回収されてもよい。 In one embodiment, the tip of the second drain pipe 54 may be located above a gutter (not shown) formed in the pump installation floor 22 (see FIG. 1). The liquid that has flowed from the second drain pipe 54 into the side groove may be returned to the suction water tank 5 through the side groove, or may be collected in a collection container such as a tank (not shown).
 複数の開口53bを設けてもよい。上述した開口33bと同様に、隣接する開口53bの間の間隔は、任意である。複数の開口53bが設けられる場合は、各開口53bに第2ドレイン管54が接続される。 A plurality of openings 53b may be provided. Similar to the opening 33b described above, the interval between the adjacent openings 53b is arbitrary. When a plurality of openings 53b are provided, the second drain pipe 54 is connected to each opening 53b.
 第1シール室33aから第1貫通孔35aを通過して第2シール室53aに到達した液体は、第2ケーシング構造体53の側壁に設けられた開口53bを通って第2ドレイン管54に流入し、吸込水槽5に戻される。第2シール室53aに到達した液体は、大気と連通する第2ドレイン管54を通って吸込水槽5に戻されるので、第2ケーシング構造体53の第2シール室53a内の液体の圧力は低下する。軸封装置30が第1ケーシング構造体33の側壁に設けられた開口33bだけでなく、第2ケーシング構造体53の側壁に設けられた開口53bを有する場合は、軸封装置30からの液体の漏洩を防止するために第1シール体31および第2シール体51が発生すべき液体の圧力をさらに低減することができる。その結果、本実施形態の軸封装置30は、高圧の液体の漏洩を効果的に防止することができる。さらに、第1シール体31および第2シール体51の直径をさらに小さくすることができるので、軸封装置30の大きさ(特に、回転軸6の軸心に対して垂直な方向における軸封装置30の大きさ)を減少させることができる。 The liquid that has passed through the first through hole 35a from the first seal chamber 33a and reached the second seal chamber 53a flows into the second drain pipe 54 through the opening 53b provided in the side wall of the second casing structure 53. And returned to the suction water tank 5. Since the liquid reaching the second seal chamber 53a is returned to the suction water tank 5 through the second drain pipe 54 communicating with the atmosphere, the pressure of the liquid in the second seal chamber 53a of the second casing structure 53 decreases. To do. When the shaft seal device 30 has not only the opening 33b provided on the side wall of the first casing structure 33 but also the opening 53b provided on the side wall of the second casing structure 53, the liquid from the shaft seal device 30 In order to prevent leakage, the pressure of the liquid that should be generated by the first seal body 31 and the second seal body 51 can be further reduced. As a result, the shaft seal device 30 of this embodiment can effectively prevent leakage of high-pressure liquid. Furthermore, since the diameters of the first seal body 31 and the second seal body 51 can be further reduced, the size of the shaft seal device 30 (particularly, the shaft seal device in the direction perpendicular to the axis of the rotary shaft 6). 30 size) can be reduced.
 図示はしないが、第1ケーシング構造体33の側壁に設けられた開口33bおよびこの開口33bに接続される第1ドレイン管43を省略してもよい。この場合、軸封装置30は、第2ケーシング構造体53の側壁に設けられた開口53bおよびこの開口53bに接続される第2ドレイン管54のみを有する。 Although not shown, the opening 33b provided on the side wall of the first casing structure 33 and the first drain pipe 43 connected to the opening 33b may be omitted. In this case, the shaft seal device 30 has only the opening 53b provided on the side wall of the second casing structure 53 and the second drain pipe 54 connected to the opening 53b.
 さらに、第1シール体31の形状・寸法、第2シール体51の形状・寸法、および下側シール構造体40の形状を適切に設計することにより、第1ケーシング構造体33の側壁に設けられた開口33b、および第2ケーシング構造体53の側壁に設けられた開口53bを省略してもよい。この場合、第1ケーシング構造体33の側壁に設けられた開口33bに接続される第1ドレイン管43、および第2ケーシング構造体53の側壁に設けられた開口53bに接続される第2ドレイン管54も省略される。 Furthermore, by appropriately designing the shape / dimension of the first seal body 31, the shape / dimension of the second seal body 51, and the shape of the lower seal structure body 40, the first seal body 31 is provided on the side wall of the first casing structure 33. The opening 33b and the opening 53b provided on the side wall of the second casing structure 53 may be omitted. In this case, the first drain pipe 43 connected to the opening 33 b provided on the side wall of the first casing structure 33 and the second drain pipe connected to the opening 53 b provided on the side wall of the second casing structure 53. 54 is also omitted.
 軸封装置30が3つ以上のケーシング構造体と、該ケーシング構造体のそれぞれに形成されたシール室に収容される3つ以上のシール体を有している場合は、下側シール構造体40は、最も下側に位置するシール体の下方に配置される。より具体的には、下側シール構造体40は、最も下側に位置するケーシング構造体の下側ケーシングに設けられた下側延長部と、回転軸6に固定されたスリーブとで構成され、最も下側に位置するケーシング構造体の貫通孔と回転軸6との間の隙間を封止する。 When the shaft seal device 30 has three or more casing structures and three or more seal bodies accommodated in seal chambers formed in the casing structures, the lower seal structure 40 is used. Is disposed below the lowermost seal body. More specifically, the lower seal structure 40 includes a lower extension provided in the lower casing of the lowermost casing structure, and a sleeve fixed to the rotary shaft 6. The gap between the through hole of the casing structure located on the lowermost side and the rotating shaft 6 is sealed.
 さらに、軸封装置30のシールケーシング70が3つ以上のケーシング構造体(すなわち、3つ以上のシール室)を有する場合は、少なくとも一つのシール室と該シール室の外部とを連通する少なくとも一つの開口を設ければよい。すなわち、シールケーシング70は、複数のシール室のうちの少なくとも一つのシール室とシールケーシング70の外部とを連通する少なくとも1つの開口を有していればよい。この場合も、開口には、ドレイン管が接続される。あるいは、複数のシール体の形状・寸法、および下側シール構造体40の形状を適切に設計することにより、シールケーシング70は、上記少なくとも一つの開口を有していなくてもよい。 Furthermore, when the seal casing 70 of the shaft seal device 30 has three or more casing structures (that is, three or more seal chambers), at least one seal chamber communicates with the outside of the seal chamber. One opening may be provided. That is, the seal casing 70 only needs to have at least one opening that communicates at least one seal chamber of the plurality of seal chambers with the outside of the seal casing 70. Also in this case, a drain pipe is connected to the opening. Alternatively, the seal casing 70 may not have the at least one opening by appropriately designing the shapes and dimensions of the plurality of seal bodies and the shape of the lower seal structure 40.
 図11は、さらに別の実施形態に係る軸封装置30を示す断面図である。本実施形態で特に説明しない構成は、図10に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図11に示される軸封装置30では、図10に示される軸封装置30に、図9を参照して説明された上側シール構造体45が取り付けられている。したがって、本実施形態の上側シール構造体45の構成は、図9に示される上側シール構造体45の構成と同様であるため、上側シール構造体45の詳細な説明を省略する。なお、以下の説明では、第2上側ケーシング53の延長部55cを上側延長部55cと称する。 FIG. 11 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. In the shaft seal device 30 shown in FIG. 11, the upper seal structure 45 described with reference to FIG. 9 is attached to the shaft seal device 30 shown in FIG. 10. Therefore, the configuration of the upper seal structure 45 of the present embodiment is the same as the configuration of the upper seal structure 45 shown in FIG. 9, and thus detailed description of the upper seal structure 45 is omitted. In the following description, the extension 55c of the second upper casing 53 is referred to as the upper extension 55c.
 図11に示されるように、本実施形態の軸封装置30の第1ケーシング構造体33も、第1上側ケーシング35、下側ケーシング34、および第1上側ケーシング35と下側ケーシング35に挟まれる第1中間ケーシング36を備える。第1シール体31は、第1上側ケーシング35の下面35bと、第1中間ケーシング36の内周面36aと、下側ケーシング34の上面34bとによって形成される第1シール室33aの内部で回転軸6に固定される。 As shown in FIG. 11, the first casing structure 33 of the shaft seal device 30 of the present embodiment is also sandwiched between the first upper casing 35, the lower casing 34, and the first upper casing 35 and the lower casing 35. A first intermediate casing 36 is provided. The first seal body 31 rotates inside a first seal chamber 33a formed by a lower surface 35b of the first upper casing 35, an inner peripheral surface 36a of the first intermediate casing 36, and an upper surface 34b of the lower casing 34. It is fixed to the shaft 6.
 第1ケーシング構造体33の下側ケーシング34は、回転軸6の長手方向に沿って下方に延びる下側延長部34cを有し、回転軸6が貫通する下側貫通孔34aは、下側延長部34cを含む下側ケーシング34の内周面全体によって形成されている。回転軸6の外周面にはスリーブ41が固定されており、このスリーブ41は、下側ケーシング34の下側貫通孔34aを通って鉛直方向に延びている。スリーブ41の外周面と下側貫通孔34aとの間には、隙間が形成される。上述したように、本実施形態の非接触式の下側シール構造体40は、下側ケーシング34の下側延長部34cとスリーブ41とで構成されるラビリンスシール、またはフラットシールである。回転軸6は、下側貫通孔34a、第1シール室33a、および第1貫通孔35aを通って鉛直方向に延びている。 The lower casing 34 of the first casing structure 33 has a lower extension 34 c that extends downward along the longitudinal direction of the rotating shaft 6, and the lower through-hole 34 a through which the rotating shaft 6 passes is a lower extension. It is formed by the entire inner peripheral surface of the lower casing 34 including the portion 34c. A sleeve 41 is fixed to the outer peripheral surface of the rotary shaft 6, and the sleeve 41 extends in the vertical direction through the lower through hole 34 a of the lower casing 34. A gap is formed between the outer peripheral surface of the sleeve 41 and the lower through hole 34a. As described above, the non-contact type lower seal structure 40 of the present embodiment is a labyrinth seal or a flat seal constituted by the lower extension 34 c of the lower casing 34 and the sleeve 41. The rotating shaft 6 extends in the vertical direction through the lower through hole 34a, the first seal chamber 33a, and the first through hole 35a.
 第2ケーシング構造体53の第2上側ケーシング55は、回転軸6の長手方向に沿って上方に延びる上側延長部55cを有し、回転軸6が貫通する第2貫通孔55aは、上側延長部55cを含む第2上側ケーシング55の内周面全体によって形成されている。回転軸6の外周面にはスリーブ47が固定されており、このスリーブ47は、第2上側ケーシング55の第2貫通孔55aを通って鉛直方向に延びている。スリーブ47の外周面と第2貫通孔55aとの間には、隙間が形成される。上述したように、本実施形態の非接触式の上側シール構造体45は、第2上側ケーシング55の上側延長部55cとスリーブ47とで構成されるラビリンスシール、またはフラットシールである。 The second upper casing 55 of the second casing structure 53 has an upper extension 55c that extends upward along the longitudinal direction of the rotary shaft 6, and the second through hole 55a through which the rotary shaft 6 passes is an upper extension. It is formed by the entire inner peripheral surface of the second upper casing 55 including 55c. A sleeve 47 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 47 extends in the vertical direction through the second through hole 55 a of the second upper casing 55. A gap is formed between the outer peripheral surface of the sleeve 47 and the second through hole 55a. As described above, the non-contact type upper seal structure 45 of the present embodiment is a labyrinth seal or a flat seal configured by the upper extension 55 c of the second upper casing 55 and the sleeve 47.
 本実施形態によれば、下側シール構造体40を通過して第1シール室33aに流入した液体は、下側シール構造体40を通過する際に減圧される。さらに、下側シール構造体40を通過して第1シール室33aに到達した液体の一部は、第1ケーシング構造体33の側壁に設けられた開口33bを通ってドレイン管43に流入し、吸込水槽5に戻される。第1シール室33aに到達した液体の一部が大気と連通するドレイン管43を通って吸込水槽5に戻されるので、第1ケーシング構造体33の第1シール室33a内の液体の圧力は低下する。したがって、軸封装置30からの液体の漏洩を防止するために第1シール体31および第2シール体51が発生すべき液体の圧力を低下させることができる。 According to the present embodiment, the liquid that has passed through the lower seal structure 40 and has flowed into the first seal chamber 33a is decompressed when passing through the lower seal structure 40. Furthermore, a part of the liquid that has passed through the lower seal structure 40 and reached the first seal chamber 33a flows into the drain pipe 43 through the opening 33b provided in the side wall of the first casing structure 33, It is returned to the suction tank 5. Since a part of the liquid reaching the first seal chamber 33a is returned to the suction water tank 5 through the drain pipe 43 communicating with the atmosphere, the pressure of the liquid in the first seal chamber 33a of the first casing structure 33 decreases. To do. Therefore, the pressure of the liquid that should be generated by the first seal body 31 and the second seal body 51 in order to prevent leakage of the liquid from the shaft seal device 30 can be reduced.
 一実施形態では、第2ケーシング構造体53の側壁に、第2シール室53aに連通する開口53b(図10参照)を設けてもよい。この場合、第2シール室53a内の液体の圧力をさらに低減することができるので、軸封装置30からの液体の漏洩を防止するために第1シール体31および第2シール体51が発生すべき液体の圧力をさらに低下させることができる。 In one embodiment, the side wall of the second casing structure 53 may be provided with an opening 53b (see FIG. 10) communicating with the second seal chamber 53a. In this case, since the pressure of the liquid in the second seal chamber 53a can be further reduced, the first seal body 31 and the second seal body 51 are generated in order to prevent leakage of the liquid from the shaft seal device 30. The pressure of the liquid to be reduced can be further reduced.
 上述したように、第1シール体31の形状・寸法、第2シール体51の形状・寸法、および下側シール構造体40の形状を適切に設計することにより、第1ケーシング構造体33の側壁に設けられた開口33b、および第2ケーシング構造体53の側壁に設けられた開口53bを省略してもよい。 As described above, by appropriately designing the shape / dimension of the first seal body 31, the shape / dimension of the second seal body 51, and the shape of the lower seal structure 40, the side wall of the first casing structure 33 is obtained. The opening 33b provided on the side wall and the opening 53b provided on the side wall of the second casing structure 53 may be omitted.
 さらに、第2ケーシング構造体53の第2シール室53a内に存在する液体の圧力が、第2シール体51の回転によって第2上側ケーシング55の下面55bと第2シール体51の上面51aとの間の隙間に存在する液体へ与える遠心力よりも高くても、液体は、上側シール構造体45を通過する際にさらに減圧され、漏液カバー48の内部空間48aに流入する。しかしながら、漏液カバー48の内部空間48aに流入した液体は、漏液管49を介して吸込水槽5に戻される。したがって、この軸封装置30によって、該軸封装置30から液体が漏洩することを確実に防止することができる。一実施形態では、第1シール体31の形状・寸法、第2シール体51の形状・寸法、上側シール構造体45の形状、および下側シール構造体40の形状を適切に設計することにより、液体が第2ケーシング構造体53の第2貫通孔55aを通過することを防止することができる。あるいは、シール体31の形状・寸法、第2シール体51の形状・寸法、上側シール構造体45の形状、および下側シール構造体40の形状を適切に設計することにより、上側シール構造体45を通過する液体の量を調整してもよい。 Furthermore, the pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused by the rotation of the second seal body 51 between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51. Even if it is higher than the centrifugal force applied to the liquid existing in the gap, the liquid is further depressurized when passing through the upper seal structure 45 and flows into the internal space 48 a of the leak cover 48. However, the liquid that has flowed into the internal space 48 a of the leak cover 48 is returned to the suction water tank 5 via the leak pipe 49. Therefore, the shaft seal device 30 can reliably prevent the liquid from leaking from the shaft seal device 30. In one embodiment, by appropriately designing the shape and dimensions of the first seal body 31, the shape and dimensions of the second seal body 51, the shape of the upper seal structure 45, and the shape of the lower seal structure 40, The liquid can be prevented from passing through the second through hole 55a of the second casing structure 53. Alternatively, by appropriately designing the shape and dimensions of the seal body 31, the shape and dimensions of the second seal body 51, the shape of the upper seal structure 45, and the shape of the lower seal structure 40, the upper seal structure 45 You may adjust the quantity of the liquid which passes.
 軸封装置30が3つ以上のケーシング構造体と、該ケーシング構造体のそれぞれに形成されたシール室に収容される3つ以上のシール体を有している場合は、上側シール構造体45は、最も上側に位置するシール体の上方に配置される。より具体的には、上側シール構造体45は、最も上側に位置するケーシング構造体の上側ケーシングに設けられた上側延長部と、回転軸6に固定されたスリーブとで構成され、最も上側に位置するケーシング構造体の貫通孔と回転軸6との間の隙間を封止する。さらに、下側シール構造体40は、最も下側に位置するシール体の下方に配置される。より具体的には、下側シール構造体40は、最も下側に位置するケーシング構造体の下側ケーシングに設けられた下側延長部と、回転軸6に固定されたスリーブとで構成され、最も下側に位置するケーシング構造体の貫通孔と回転軸との間の隙間を封止する。 When the shaft seal device 30 has three or more casing structures and three or more seal bodies accommodated in seal chambers formed in the casing structures, the upper seal structure 45 is , And disposed above the uppermost seal body. More specifically, the upper seal structure 45 is composed of an upper extension provided in the upper casing of the uppermost casing structure and a sleeve fixed to the rotary shaft 6, and is located at the uppermost position. The gap between the through hole of the casing structure and the rotating shaft 6 is sealed. Further, the lower seal structure 40 is disposed below the lowermost seal body. More specifically, the lower seal structure 40 includes a lower extension provided in the lower casing of the lowermost casing structure, and a sleeve fixed to the rotary shaft 6. The clearance gap between the through-hole of the casing structure located in the lowest side and a rotating shaft is sealed.
 さらに、軸封装置30のシールケーシング70が3つ以上のケーシング構造体(すなわち、3つ以上のシール室)を有する場合は、少なくとも一つのシール室と該シール室の外部とを連通する少なくとも一つの開口を設ければよい。すなわち、シールケーシング70は、複数のシール室のうちの少なくとも一つのシール室とシールケーシング70の外部とを連通する少なくとも1つの開口を有していればよい。この場合も、開口には、ドレイン管が接続される。あるいは、複数のシール体の形状・寸法、および下側シール構造体40の形状を適切に設計することにより、シールケーシング70は、上記少なくとも一つの開口を有していなくてもよい。 Furthermore, when the seal casing 70 of the shaft seal device 30 has three or more casing structures (that is, three or more seal chambers), at least one seal chamber communicates with the outside of the seal chamber. One opening may be provided. That is, the seal casing 70 only needs to have at least one opening that communicates at least one seal chamber of the plurality of seal chambers with the outside of the seal casing 70. Also in this case, a drain pipe is connected to the opening. Alternatively, the seal casing 70 may not have the at least one opening by appropriately designing the shapes and dimensions of the plurality of seal bodies and the shape of the lower seal structure 40.
 本実施形態に係る軸封装置30も、回転軸6の軸方向に直列に配置され、該回転軸6と一体的に回転する複数のシール体31,51によって、液体が軸封装置30から漏洩することを防止する。したがって、立軸ポンプの吐出エルボ管4を流れる液体の圧力が高い場合でも、軸封装置30から液体が漏洩することを防止することができる。さらに、立軸ポンプの他の構成部材が軸封装置30の周囲に存在していることにより、シール体31,51の直径を大きくできない場合でも、複数のシール体31,51によって液体が軸封装置30から漏洩することを効果的に防止することができる。 The shaft seal device 30 according to the present embodiment is also arranged in series in the axial direction of the rotary shaft 6, and liquid leaks from the shaft seal device 30 by the plurality of seal bodies 31 and 51 that rotate integrally with the rotary shaft 6. To prevent. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
 さらに、本実施形態に係る軸封装置30は、複数のシール体31,51が他の部材に摺接しない非接触の軸封装置であるため、複数のシール体31,51が摩耗しない。したがって、軸封装置30のメンテナンス頻度を大幅に低減させることができる。また、各シール体31,51は、非接触でシール機能を発揮するので、流体せん断力による熱のみが軸封装置30で発生する。したがって、互いに摺接する構成部材を含む軸封装置と比較して、軸封装置30で発生する熱量は極く僅かであり、冷却水、もしくはフラッシング液などの液体を軸封装置に供給するための付帯設備を別途設ける必要がない。さらに、メカニカルシールのように、回転リングと固定リング等の構成部材の表面を精密に仕上げ加工する必要がなく、正確な組立が要求されることもない。 Furthermore, since the shaft seal device 30 according to the present embodiment is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat | fever by a fluid shear force generate | occur | produces in the shaft seal device 30. FIG. Therefore, the amount of heat generated in the shaft seal device 30 is very small compared to a shaft seal device including components that are in sliding contact with each other, and a liquid such as cooling water or flushing liquid is supplied to the shaft seal device. There is no need to install additional facilities. Further, unlike the mechanical seal, it is not necessary to precisely finish the surface of the constituent members such as the rotating ring and the fixed ring, and accurate assembly is not required.
 さらに、上側シール構造体45は、回転軸6と一体的に回転するスリーブ47が上側ケーシング35に接触しない非接触型シールである。同様に、下側シール構造体40は、回転軸6と一体的に回転するスリーブ41が下側ケーシング34に接触しない非接触型シールである。したがって、上側シール構造体45および下側シール構造体40のメンテナンス頻度を大幅に下げることができる。さらに、上側シール構造体45および下側シール構造体40は、非接触でシール機能を発揮するので、接触による摩擦熱が発生せず、冷却水およびフラッシング液などの液体を上側シール構造体45および下側シール構造体40に供給する必要もない。 Furthermore, the upper seal structure 45 is a non-contact type seal in which the sleeve 47 that rotates integrally with the rotary shaft 6 does not contact the upper casing 35. Similarly, the lower seal structure 40 is a non-contact type seal in which the sleeve 41 that rotates integrally with the rotary shaft 6 does not contact the lower casing 34. Therefore, the maintenance frequency of the upper seal structure 45 and the lower seal structure 40 can be greatly reduced. Furthermore, since the upper seal structure 45 and the lower seal structure 40 exhibit a sealing function in a non-contact manner, frictional heat due to contact does not occur, and liquids such as cooling water and flushing liquid can be supplied to the upper seal structure 45 and There is no need to supply the lower seal structure 40.
 図12は、さらに別の実施形態に係る軸封装置30を示す断面図である。本実施形態で特に説明しない構成は、図2に示す軸封装置30の構成と同様であるため、その重複する説明を省略する。図12に示される軸封装置30は、回転軸6と第1貫通孔35aとの間の隙間を封止する非接触式の中間シール構造体60を備える。 FIG. 12 is a cross-sectional view showing a shaft seal device 30 according to still another embodiment. The configuration that is not particularly described in the present embodiment is the same as the configuration of the shaft seal device 30 illustrated in FIG. The shaft seal device 30 shown in FIG. 12 includes a non-contact type intermediate seal structure 60 that seals a gap between the rotary shaft 6 and the first through hole 35a.
 さらに、図12に示される軸封装置30は、図9を参照して説明された漏液カバー48を備え、この漏液カバー48の側壁には、該漏液カバー48の内部空間48aを外部に連通させる少なくとも一つの開口48bが設けられる。開口48bには、上述した漏液管49が接続されている。図12に示されるように、漏液カバー48の内部空間48a内で、回転軸6に上述した水切板50を固定してもよい。 Further, the shaft seal device 30 shown in FIG. 12 includes the liquid leakage cover 48 described with reference to FIG. 9, and an inner space 48 a of the liquid leakage cover 48 is provided on the side wall of the liquid leakage cover 48. There is provided at least one opening 48b communicating with the. The above-described leakage pipe 49 is connected to the opening 48b. As shown in FIG. 12, the above-described draining plate 50 may be fixed to the rotating shaft 6 in the internal space 48 a of the leak cover 48.
 さらに、この軸封装置30の第2ケーシング構造体53の側壁には、図10を参照して説明された少なくとも一つの開口53bが設けられており、この開口53bには、上述した第2ドレイン管54が接続されている。 Furthermore, at least one opening 53b described with reference to FIG. 10 is provided on the side wall of the second casing structure 53 of the shaft seal device 30, and the second drain described above is provided in the opening 53b. A tube 54 is connected.
 図12に示される軸封装置30では、回転軸6の外周面にスリーブ61が固定されており、このスリーブ61は、第1ケーシング構造体33の第1上側ケーシング35に形成された第1貫通孔35aを通って鉛直方向に延びている。スリーブ61と第1貫通孔35aとの間には隙間が形成される。第1ケーシング構造体33の第1シール室33aは、スリーブ61と第1貫通孔35aとの間に形成された隙間を介して第2ケーシング構造体53の第2シール室53aに連通する。 In the shaft seal device 30 shown in FIG. 12, a sleeve 61 is fixed to the outer peripheral surface of the rotating shaft 6, and the sleeve 61 is formed in the first through-hole formed in the first upper casing 35 of the first casing structure 33. It extends in the vertical direction through the hole 35a. A gap is formed between the sleeve 61 and the first through hole 35a. The first seal chamber 33a of the first casing structure 33 communicates with the second seal chamber 53a of the second casing structure 53 through a gap formed between the sleeve 61 and the first through hole 35a.
 本実施形態の非接触式の中間シール構造体60は、第1上側ケーシング35に形成された第1貫通孔35aとスリーブ61とで構成されるラビリンスシールである。非接触式の中間シール構造体60は、ラビリンス構造を有しないフラットシールであってもよい。 The non-contact type intermediate seal structure 60 of the present embodiment is a labyrinth seal constituted by a first through hole 35a formed in the first upper casing 35 and a sleeve 61. The non-contact type intermediate seal structure 60 may be a flat seal that does not have a labyrinth structure.
 ラビリンスシールのラビリンス構造は、例えば、第1貫通孔35aに形成された複数の平行溝(図示せず)である。ラビリンス構造を構成する複数の平行溝は、スリーブ61の外周面に形成されてもよいし、第1貫通孔35aおよびスリーブ61の外周面の両方に形成されてもよい。複数の平行溝は、互いに平行であり、各平行溝は、第1貫通孔35aおよび/またはスリーブ61の外周面上で回転軸6の軸心と垂直な面内を延びる。隣接する平行溝の間の間隔は、等しくてもよいし、異なっていてもよい。さらに、平行溝の頂部の断面形状は任意である。例えば、平行溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、平行溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The labyrinth structure of the labyrinth seal is, for example, a plurality of parallel grooves (not shown) formed in the first through hole 35a. The plurality of parallel grooves constituting the labyrinth structure may be formed on the outer peripheral surface of the sleeve 61, or may be formed on both the first through hole 35 a and the outer peripheral surface of the sleeve 61. The plurality of parallel grooves are parallel to each other, and each parallel groove extends in a plane perpendicular to the axis of the rotation shaft 6 on the outer peripheral surface of the first through hole 35 a and / or the sleeve 61. The spacing between adjacent parallel grooves may be equal or different. Furthermore, the cross-sectional shape of the top of the parallel groove is arbitrary. For example, the tops of the parallel grooves may have a triangular cross-sectional shape, a quadrangular cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the parallel groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 ラビリンス構造を構成する溝は、第1貫通孔35aおよび/またはスリーブ61の外周面上で螺旋状に延びるねじ溝であってもよい。螺旋状に延びるねじ溝の回転方向は、好ましくは、回転軸6を回転させたときに、液体を第1シール室33aに押し返すポンプ作用を発揮する方向である。すなわち、ねじ溝は、回転軸6の回転方向とは反対方向に螺旋状に延びるのが好ましい。ねじ溝のピッチ、および条数は任意である。例えば、1本のねじ溝を第1貫通孔35aおよび/またはスリーブ61の外周面上に不等ピッチで形成してもよいし、多条のねじ溝を第1貫通孔35aおよび/またはスリーブ61の外周面上に形成してもよい。ねじ溝の頂部の形状は任意である。例えば、ねじ溝の頂部は、三角形の断面形状を有していてもよいし、四角形の断面形状を有していてもよいし、台形の断面形状を有していてもよい。あるいは、ねじ溝の頂部は、丸められた断面形状(例えば、半球の断面形状)を有していてもよい。 The groove constituting the labyrinth structure may be a thread groove extending spirally on the outer peripheral surface of the first through hole 35a and / or the sleeve 61. The rotational direction of the spirally extending thread groove is preferably a direction that exerts a pumping action that pushes the liquid back to the first seal chamber 33a when the rotating shaft 6 is rotated. That is, it is preferable that the thread groove extends spirally in the direction opposite to the rotation direction of the rotation shaft 6. The pitch of the thread groove and the number of threads are arbitrary. For example, one screw groove may be formed on the outer peripheral surface of the first through hole 35a and / or the sleeve 61 at an unequal pitch, and multiple thread grooves may be formed in the first through hole 35a and / or the sleeve 61. You may form on the outer peripheral surface. The shape of the top of the thread groove is arbitrary. For example, the top of the thread groove may have a triangular cross-sectional shape, a square cross-sectional shape, or a trapezoidal cross-sectional shape. Alternatively, the top of the thread groove may have a rounded cross-sectional shape (for example, a hemispherical cross-sectional shape).
 吐出エルボ管4(図1参照)を吐出配管20に向かって流れる液体の一部は、通孔4bを通って、第1シール室33aに流入する。第1シール室33aから第1貫通孔35aを通って第2シール室53aに流入する液体の静圧は、第1シール室33a内で回転する第1シール体31によって低減され、さらに、中間シール構造体60を通過する際に低減される。さらに、第2シール室53aに到達した液体は、第2ケーシング構造体53の側壁に設けられた開口53bを通って第2ドレイン管54に流入し、吸込水槽5に戻される。したがって、第2ケーシング構造体53の第2シール室53a内の液体の圧力はさらに低下する。したがって、軸封装置30からの液体の漏洩を防止するために第1シール体31および第2シール体51が発生すべき液体の圧力を低下させることができる。その結果、本実施形態の軸封装置30は、図2に示した軸封装置30と比較して、より高圧の液体の漏洩を防止することができる。さらに、本実施形態の軸封装置30と、図2に示した軸封装置30とを比較すると、第1シール体31および第2シール体51の直径を小さくすることができるので、軸封装置30の大きさ(特に、回転軸6の軸心に対して垂直な方向における軸封装置30の大きさ)を減少させることができる。 Part of the liquid flowing through the discharge elbow pipe 4 (see FIG. 1) toward the discharge pipe 20 flows into the first seal chamber 33a through the through hole 4b. The static pressure of the liquid flowing into the second seal chamber 53a from the first seal chamber 33a through the first through hole 35a is reduced by the first seal body 31 rotating in the first seal chamber 33a, and further, the intermediate seal Reduced when passing through the structure 60. Further, the liquid that has reached the second seal chamber 53 a flows into the second drain pipe 54 through the opening 53 b provided on the side wall of the second casing structure 53, and is returned to the suction water tank 5. Accordingly, the pressure of the liquid in the second seal chamber 53a of the second casing structure 53 further decreases. Therefore, the pressure of the liquid that should be generated by the first seal body 31 and the second seal body 51 in order to prevent leakage of the liquid from the shaft seal device 30 can be reduced. As a result, the shaft seal device 30 of the present embodiment can prevent leakage of higher pressure liquid as compared with the shaft seal device 30 shown in FIG. Further, when the shaft seal device 30 of the present embodiment is compared with the shaft seal device 30 shown in FIG. 2, the diameters of the first seal body 31 and the second seal body 51 can be reduced. The size of 30 (in particular, the size of the shaft seal device 30 in the direction perpendicular to the axis of the rotating shaft 6) can be reduced.
 第2ケーシング構造体53の第2シール室53a内に存在する液体の圧力が、第2シール体51の回転によって第2上側ケーシング55の下面55bと第2シール体51の上面51aとの間の隙間に存在する液体へ与える遠心力よりも高い場合は、液体は第2貫通孔55aを通って、漏液カバー48の内部空間48aに流入する。しかしながら、漏液カバー48の内部空間48aに流入した液体は、漏液管49を介して吸込水槽5に戻される。したがって、この軸封装置30によって、該軸封装置30から液体が漏洩することを確実に防止することができる。 The pressure of the liquid existing in the second seal chamber 53 a of the second casing structure 53 is caused between the lower surface 55 b of the second upper casing 55 and the upper surface 51 a of the second seal body 51 by the rotation of the second seal body 51. When the centrifugal force applied to the liquid existing in the gap is higher, the liquid flows into the internal space 48a of the leak cover 48 through the second through hole 55a. However, the liquid that has flowed into the internal space 48 a of the leak cover 48 is returned to the suction water tank 5 via the leak pipe 49. Therefore, the shaft seal device 30 can reliably prevent the liquid from leaking from the shaft seal device 30.
 軸封装置30が中間シール構造体60を有する場合は、軸封装置30は、第2ケーシング構造体53の側壁に設けられた開口53b、または漏液カバー48の側壁に設けられた開口48bのいずれかを有する必要がある。より具体的には、第2ケーシング構造体53の側壁に設けられた開口53bを省略できるが、この場合、第2ケーシング構造体53の上側ケーシング53の上面には漏液カバー48が固定され、この漏液カバー48の側壁には少なくとも一つの開口48bが設けられる。あるいは、第2ケーシング構造体53の上側ケーシング53の上面に固定された漏液カバー48、および該漏液カバー48の側壁に設けられた少なくとも一つの開口48bを省略することができるが、この場合、第2ケーシング構造体53の側壁には、開口53bが設けられる。 When the shaft seal device 30 has the intermediate seal structure 60, the shaft seal device 30 has an opening 53 b provided on the side wall of the second casing structure 53 or an opening 48 b provided on the side wall of the leak cover 48. Need to have one. More specifically, the opening 53b provided on the side wall of the second casing structure 53 can be omitted. In this case, the liquid leakage cover 48 is fixed to the upper surface of the upper casing 53 of the second casing structure 53, At least one opening 48 b is provided on the side wall of the leak cover 48. Alternatively, the leak cover 48 fixed to the upper surface of the upper casing 53 of the second casing structure 53 and at least one opening 48b provided on the side wall of the leak cover 48 can be omitted. An opening 53 b is provided on the side wall of the second casing structure 53.
 図示はしないが、図9および図11を参照して説明された上側シール構造体45を、図12に示される軸封装置30に設けてもよい。この場合は、上側シール構造体45によって、漏液カバー48の内部空間48aに流入する液体の圧力を低減することができる。 Although not shown, the upper seal structure 45 described with reference to FIGS. 9 and 11 may be provided in the shaft seal device 30 shown in FIG. In this case, the upper seal structure 45 can reduce the pressure of the liquid flowing into the internal space 48 a of the leak cover 48.
 本実施形態に係る軸封装置30も、回転軸6の軸方向に直列に配置され、該回転軸6と一体的に回転する複数のシール体31,51によって、液体が軸封装置30から漏洩することを防止する。したがって、立軸ポンプの吐出エルボ管4を流れる液体の圧力が高い場合でも、軸封装置30から液体が漏洩することを防止することができる。さらに、立軸ポンプの他の構成部材が軸封装置30の周囲に存在していることにより、シール体31,51の直径を大きくできない場合でも、複数のシール体31,51によって液体が軸封装置30から漏洩することを効果的に防止することができる。 The shaft seal device 30 according to the present embodiment is also arranged in series in the axial direction of the rotary shaft 6, and liquid leaks from the shaft seal device 30 by the plurality of seal bodies 31 and 51 that rotate integrally with the rotary shaft 6. To prevent. Therefore, even when the pressure of the liquid flowing through the discharge elbow pipe 4 of the vertical shaft pump is high, the liquid can be prevented from leaking from the shaft seal device 30. Further, since the other components of the vertical shaft pump exist around the shaft seal device 30, even when the diameter of the seal bodies 31, 51 cannot be increased, the liquid is sealed by the plurality of seal bodies 31, 51. Leakage from 30 can be effectively prevented.
 さらに、本実施形態に係る軸封装置30は、複数のシール体31,51が他の部材に摺接しない非接触の軸封装置であるため、複数のシール体31,51が摩耗しない。したがって、軸封装置30のメンテナンス頻度を大幅に低減させることができる。また、各シール体31,51は、非接触でシール機能を発揮するので、流体せん断力による熱のみが軸封装置30で発生する。したがって、互いに摺接する構成部材を含む軸封装置と比較して、軸封装置30で発生する熱量は極く僅かであり、冷却水、もしくはフラッシング液などの液体を軸封装置に供給するための付帯設備を別途設ける必要がない。さらに、メカニカルシールのように、回転リングと固定リング等の構成部材の表面を精密に仕上げ加工する必要がなく、正確な組立が要求されることもない。 Furthermore, since the shaft seal device 30 according to the present embodiment is a non-contact shaft seal device in which the plurality of seal bodies 31 and 51 are not in sliding contact with other members, the plurality of seal bodies 31 and 51 are not worn. Therefore, the maintenance frequency of the shaft seal device 30 can be greatly reduced. Moreover, since each sealing body 31 and 51 exhibits a sealing function in non-contact, only the heat | fever by a fluid shear force generate | occur | produces in the shaft seal device 30. FIG. Therefore, the amount of heat generated in the shaft seal device 30 is very small compared to a shaft seal device including components that are in sliding contact with each other, and a liquid such as cooling water or flushing liquid is supplied to the shaft seal device. There is no need to install additional facilities. Further, unlike the mechanical seal, it is not necessary to precisely finish the surface of the constituent members such as the rotating ring and the fixed ring, and accurate assembly is not required.
 さらに、中間シール構造体60は、回転軸6と一体的に回転するスリーブ61が第1上側ケーシング35に接触しない非接触型シールである。したがって、スリーブ61および第1上側ケーシング35は摩耗せず、中間シール構造体60のメンテナンス頻度を大幅に下げることができる。さらに、中間シール構造体60は非接触でシール機能を発揮するので、摩擦熱が発生せず、冷却水およびフラッシング液などの液体を中間シール構造体60に供給する必要もない。 Furthermore, the intermediate seal structure 60 is a non-contact type seal in which the sleeve 61 that rotates integrally with the rotary shaft 6 does not contact the first upper casing 35. Therefore, the sleeve 61 and the first upper casing 35 are not worn, and the maintenance frequency of the intermediate seal structure 60 can be greatly reduced. Further, since the intermediate seal structure 60 exhibits a sealing function without contact, frictional heat is not generated, and it is not necessary to supply liquids such as cooling water and flushing liquid to the intermediate seal structure 60.
 本実施形態では、中間シール構造体60は、隣接する第1シール室33aおよび第2シール室53aを互いに連通させる第1貫通孔35aと回転軸6との間の隙間を封止する。軸封装置30が3つ以上のケーシング構造体と、該ケーシング構造体のそれぞれに形成されたシール室に収容される3つ以上のシール体を有している場合は、軸封装置30は、少なくとも一つの中間シール構造体60を有していればよい。より具体的には、軸封装置30は、隣接するシール室を互いに連通させる複数の貫通孔のうちの少なくとも一つの貫通孔と回転軸6と間の隙間を封止する少なくとも一つの中間シール構造体60を有していてもよい。この場合、軸封装置30は、少なくとも一つのケーシング構造体の側壁に設けられた少なくとも一つの開口、および/または最も上側に位置するケーシング構造体の上側ケーシングの上面に固定された漏液カバー48の側壁に設けられた少なくとも一つの開口48bを有する。 In the present embodiment, the intermediate seal structure 60 seals the gap between the first through hole 35a that connects the adjacent first seal chamber 33a and second seal chamber 53a to each other and the rotary shaft 6. When the shaft seal device 30 has three or more casing structures and three or more seal bodies accommodated in seal chambers formed in the casing structures, the shaft seal device 30 is It is only necessary to have at least one intermediate seal structure 60. More specifically, the shaft seal device 30 includes at least one intermediate seal structure that seals a gap between at least one through hole among a plurality of through holes that allow adjacent seal chambers to communicate with each other and the rotary shaft 6. The body 60 may be included. In this case, the shaft seal device 30 includes at least one opening provided in a side wall of at least one casing structure and / or a liquid leakage cover 48 fixed to the upper surface of the upper casing of the uppermost casing structure. At least one opening 48b provided on the side wall.
 図示はしないが、図12に示される中間シール構造体60を、図7、図8、図9、および図11に示される軸封装置30に設けてもよい。 Although not shown, the intermediate seal structure 60 shown in FIG. 12 may be provided in the shaft seal device 30 shown in FIGS. 7, 8, 9, and 11.
 図示はしないが、図9、図10、図11、および図12に示される第1シール体31の上面31aおよび/または第2シール体51の上面51aを、該第1シール体31および/または第2シール体51の半径方向外側に向かって下方に傾斜させてもよい(図7参照)。同様に、図9、図10、図11、および図12に示される第1シール体31の上面31aおよび/または第2シール体51の上面51aを、該第1シール体31および/または第2シール体51の半径方向外側に向かって下方に傾斜させるとともに、湾曲させてもよい(図8参照)。 Although not shown, the upper surface 31a of the first seal body 31 and / or the upper surface 51a of the second seal body 51 shown in FIG. 9, FIG. 10, FIG. 11, and FIG. You may make it incline below toward the radial direction outer side of the 2nd seal body 51 (refer FIG. 7). Similarly, the upper surface 31a of the first seal body 31 and / or the upper surface 51a of the second seal body 51 shown in FIG. 9, FIG. 10, FIG. 11, and FIG. The seal body 51 may be inclined downward and radially curved toward the outer side in the radial direction (see FIG. 8).
 上述した実施形態において、軸封装置30の複数のシール体31,51は、他の部材に接触しないので、各シール体31,51から摩耗粉が発生しない。同様に、上側シール構造体45、下側シール構造体40、および中間シール構造体61も非接触型のシールであるため、上側シール構造体45、下側シール構造体40、および中間シール構造体61から摩耗粉が発生しない。したがって、上述した実施形態に係る軸封装置30を、厳しい品質が要求される液体(例えば、飲料水)を移送する立軸ポンプに取り付けることができる。 In the above-described embodiment, the plurality of seal bodies 31 and 51 of the shaft seal device 30 do not come into contact with other members, so that no abrasion powder is generated from each seal body 31 and 51. Similarly, since the upper seal structure 45, the lower seal structure 40, and the intermediate seal structure 61 are also non-contact type seals, the upper seal structure 45, the lower seal structure 40, and the intermediate seal structure No wear powder is generated from 61. Therefore, the shaft seal device 30 according to the above-described embodiment can be attached to a vertical shaft pump that transfers a liquid (for example, drinking water) that requires strict quality.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in the widest scope according to the technical idea defined by the claims.
 本発明は、回転軸が貫通する容器の軸貫通部から液体が漏洩するのを防止する軸封装置に利用可能である。また、本発明は、この軸封装置を備えた立軸ポンプに利用可能である。 The present invention can be used for a shaft seal device that prevents liquid from leaking from a shaft penetration portion of a container through which a rotating shaft penetrates. Further, the present invention can be used for a vertical shaft pump provided with this shaft seal device.
   1  インペラケーシング
   2  ポンプケーシング
   3  揚水管
   4  吐出エルボ管
   5  吸込水槽
   6  回転軸
  10  羽根車
  11  外軸受
  12  水中軸受
  15  中間軸受
  20  吐出配管
  22  ポンプ据付床
  23  据付用ベース
  25  仕切弁
  30  軸封装置
  31  第1シール体
  33  第1ケーシング構造体
  34  下側ケーシング
  35  第1上側ケーシング
  36  第1中間ケーシング
  37  溝
  40  下側シール構造体
  41  スリーブ
  43  ドレイン管
  45  上側シール構造体
  47  スリーブ
  48  漏液カバー
  49  漏液管
  50  水切板
  51  第2シール体
  53  第2ケーシング構造体
  55  第2上側ケーシング
  56  第2中間ケーシング
  70  シールケーシング
 100  吐出水槽
DESCRIPTION OF SYMBOLS 1 Impeller casing 2 Pump casing 3 Pumped pipe 4 Discharge elbow pipe 5 Suction water tank 6 Rotating shaft 10 Impeller 11 Outer bearing 12 Underwater bearing 15 Intermediate bearing 20 Discharge piping 22 Pump installation floor 23 Installation base 25 Gate valve 30 Shaft seal device 31 First seal body 33 First casing structure 34 Lower casing 35 First upper casing 36 First intermediate casing 37 Groove 40 Lower seal structure 41 Sleeve 43 Drain pipe 45 Upper seal structure 47 Sleeve 48 Leakage cover 49 Leakage Liquid pipe 50 Drain plate 51 Second seal body 53 Second casing structure 55 Second upper casing 56 Second intermediate casing 70 Seal casing 100 Discharge water tank

Claims (12)

  1.  高圧流体と低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置であって、
     前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、
     前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、
     前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転し、前記回転軸の軸心に垂直な環状面を有する複数の円板状のシール体と、を備え、
     前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、
     前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記回転軸の軸心に垂直な平面であることを特徴とする軸封装置。
    A shaft seal device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotating shaft that extends through the container,
    A sealed casing having a plurality of casing structures disposed along the axial direction of the rotating shaft;
    A plurality of seal chambers formed inside each of the plurality of casing structures;
    A plurality of disk-shaped sealing bodies that are housed in each of the plurality of seal chambers, rotate integrally with the rotation shaft, and have an annular surface perpendicular to the axis of the rotation shaft;
    Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber;
    A shaft seal device, wherein an inner surface of the casing structure that faces the annular surface of the seal body and forms the seal chamber is a plane perpendicular to the axis of the rotation shaft.
  2.  前記複数のシール体のうちの少なくとも一つのシール体の前記環状面には、放射状に延びる複数の溝が形成され、
     前記溝の幅は、前記溝の内端から外端まで一定であることを特徴とする請求項1に記載の軸封装置。
    A plurality of radially extending grooves are formed in the annular surface of at least one of the plurality of seal bodies,
    The shaft seal device according to claim 1, wherein the width of the groove is constant from the inner end to the outer end of the groove.
  3.  前記複数のシール体のうちの少なくとも一つのシール体の前記環状面には、放射状に延びる複数の溝が形成され、
     前記溝の幅は、前記溝の外端に向かって徐々に大きくなることを特徴とする請求項1に記載の軸封装置。
    A plurality of radially extending grooves are formed in the annular surface of at least one of the plurality of seal bodies,
    The shaft seal device according to claim 1, wherein the width of the groove gradually increases toward an outer end of the groove.
  4.  前記複数のシール体のうちの最も上側に位置するシール体の上方には、前記複数のシール構造体のうちの最も上側に位置するシール構造体の貫通孔と前記回転軸との隙間を封止する非接触式の上側シール構造体がさらに設けられていることを特徴とする請求項1乃至3のいずれか一項に記載の軸封装置。 Above the seal body located at the uppermost side of the plurality of seal bodies, a gap between the through hole of the seal structure body located at the uppermost side of the plurality of seal structures and the rotary shaft is sealed. The shaft seal device according to any one of claims 1 to 3, further comprising a non-contact upper seal structure.
  5.  前記上側シール構造体は、ラビリンスシールまたはフラットシールであり、
     前記上側シール構造体を取り囲むように前記シールケーシングの上部に固定される漏液カバーが設けられ、
     前記漏液カバーには、前記漏液カバーの内部空間と前記漏液カバーの外部とを連通する開口が設けられ、
     前記開口には、漏液管が接続されていることを特徴とする請求項4に記載の軸封装置。
    The upper seal structure is a labyrinth seal or a flat seal,
    A liquid leakage cover fixed to an upper portion of the seal casing so as to surround the upper seal structure is provided;
    The leak cover is provided with an opening that communicates the internal space of the leak cover with the outside of the leak cover,
    The shaft seal device according to claim 4, wherein a leak pipe is connected to the opening.
  6.  前記複数のシール体のうちの最も下側に位置するシール体の下方には、前記複数のシール構造体のうちの最も下側に位置するシール構造体の貫通孔と前記回転軸との隙間を封止する非接触式の下側シール構造体がさらに設けられていることを特徴とする請求項1乃至5のいずれか一項に記載の軸封装置。 Below the lowermost seal body of the plurality of seal bodies, there is a gap between the through hole of the lowermost seal structure body of the plurality of seal structures and the rotating shaft. The shaft seal device according to any one of claims 1 to 5, further comprising a non-contact-type lower seal structure for sealing.
  7.  前記下側シール構造体は、ラビンリンスシールまたはフラットシールであることを特徴とする請求項6に記載の軸封装置。 The shaft seal device according to claim 6, wherein the lower seal structure is a rabin rinse seal or a flat seal.
  8.  前記シールケーシングには、前記複数のシール室のうちの少なくとも一つのシール室と前記シールケーシングの外部とを連通する少なくとも1つの開口が設けられ、
     前記開口には、ドレイン管が接続されていることを特徴とする請求項6または7に記載の軸封装置。
    The seal casing is provided with at least one opening that communicates at least one seal chamber of the plurality of seal chambers with the outside of the seal casing;
    The shaft seal device according to claim 6 or 7, wherein a drain pipe is connected to the opening.
  9.  高圧流体と低圧流体を分離する容器に固定され、該容器を貫通して延びる回転軸の軸貫通部をシールする軸封装置であって、
     前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、
     前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、
     前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転する複数の円板状のシール体と、を備え、
     前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、
     前記シール体は、前記回転軸の軸心と垂直な面に対して下方に傾斜する上面を有しており、
     前記シール体の前記上面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記シール体の前記上面に沿って延びることを特徴とする軸封装置。
    A shaft seal device that is fixed to a container that separates a high-pressure fluid and a low-pressure fluid and seals a shaft penetration portion of a rotating shaft that extends through the container,
    A sealed casing having a plurality of casing structures disposed along the axial direction of the rotating shaft;
    A plurality of seal chambers formed inside each of the plurality of casing structures;
    A plurality of disc-shaped seal bodies that are housed in each of the plurality of seal chambers and rotate integrally with the rotation shaft,
    Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber;
    The seal body has an upper surface that is inclined downward with respect to a plane perpendicular to the axis of the rotating shaft,
    The shaft seal device, wherein an inner surface of the casing structure that faces the upper surface of the seal body and forms the seal chamber extends along the upper surface of the seal body.
  10.  前記シール体の前記上面は、湾曲していることを特徴とする請求項9に記載の軸封装置。 The shaft seal device according to claim 9, wherein the upper surface of the seal body is curved.
  11.  羽根車と、
     前記羽根車が固定された回転軸と、
     前記羽根車を収容し、かつ前記回転軸が貫通する軸貫通部を有するポンプケーシングと、
     前記軸貫通部をシールするための軸封装置と、を備え、
     前記軸封装置は、
     前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、
     前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、
     前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転し、前記回転軸の軸心に垂直な環状面を有する複数の円板状のシール体と、を備え、
     前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、
     前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記回転軸の軸心に垂直な平面であることを特徴とする立軸ポンプ。
    Impeller,
    A rotating shaft to which the impeller is fixed;
    A pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes;
    A shaft sealing device for sealing the shaft penetrating portion,
    The shaft seal device is
    A sealed casing having a plurality of casing structures disposed along the axial direction of the rotating shaft;
    A plurality of seal chambers formed inside each of the plurality of casing structures;
    A plurality of disk-shaped sealing bodies that are housed in each of the plurality of seal chambers, rotate integrally with the rotation shaft, and have an annular surface perpendicular to the axis of the rotation shaft;
    Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber;
    The vertical shaft pump, wherein an inner surface of the casing structure that faces the annular surface of the seal body and forms the seal chamber is a plane perpendicular to the axis of the rotation shaft.
  12.  羽根車と、
     前記羽根車が固定された回転軸と、
     前記羽根車を収容し、かつ前記回転軸が貫通する軸貫通部を有するポンプケーシングと、
     前記軸貫通部をシールするための軸封装置と、を備え、
     前記軸封装置は、
     前記回転軸の軸方向に沿って配置される複数のケーシング構造体を有するシールケーシングと、
     前記複数のケーシング構造体のそれぞれの内部に形成された複数のシール室と、
     前記複数のシール室のそれぞれに収容され、前記回転軸と一体に回転する複数の円板状のシール体と、を備え、
     前記複数のケーシング構造体のそれぞれは、前記回転軸が貫通するとともに、前記シール室と連通する貫通孔を有し、
     前記シール体は、前記回転軸の軸心と垂直な面に対して下方に傾斜する上面を有しており、
     前記シール体の前記環状面に対向し、かつ前記シール室を形成する前記ケーシング構造体の内面は、前記シール体の前記上面に沿って延びることを特徴とする立軸ポンプ。
    Impeller,
    A rotating shaft to which the impeller is fixed;
    A pump casing that houses the impeller and has a shaft penetrating portion through which the rotating shaft passes;
    A shaft sealing device for sealing the shaft penetrating portion,
    The shaft seal device is
    A sealed casing having a plurality of casing structures disposed along the axial direction of the rotating shaft;
    A plurality of seal chambers formed inside each of the plurality of casing structures;
    A plurality of disc-shaped seal bodies that are housed in each of the plurality of seal chambers and rotate integrally with the rotation shaft,
    Each of the plurality of casing structures has a through hole through which the rotating shaft passes and communicates with the seal chamber;
    The seal body has an upper surface that is inclined downward with respect to a plane perpendicular to the axis of the rotating shaft,
    An upright shaft pump characterized in that an inner surface of the casing structure which faces the annular surface of the seal body and forms the seal chamber extends along the upper surface of the seal body.
PCT/JP2018/000281 2017-02-03 2018-01-10 Shaft sealing apparatus and vertical shaft pump provided with same WO2018142855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018786A JP2018123947A (en) 2017-02-03 2017-02-03 Shaft seal device and vertical shaft pump including shaft seal device
JP2017-018786 2017-08-31

Publications (1)

Publication Number Publication Date
WO2018142855A1 true WO2018142855A1 (en) 2018-08-09

Family

ID=63039614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000281 WO2018142855A1 (en) 2017-02-03 2018-01-10 Shaft sealing apparatus and vertical shaft pump provided with same

Country Status (2)

Country Link
JP (1) JP2018123947A (en)
WO (1) WO2018142855A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925948U (en) * 1972-06-15 1974-03-05
JPS5937369A (en) * 1982-08-04 1984-02-29 Nuclear Fuel Ind Ltd Self sealing device of rotary shaft
JPH0193397U (en) * 1987-12-11 1989-06-20
JPH01252377A (en) * 1988-03-31 1989-10-09 Shibaura Eng Works Co Ltd Power tool
JPH0213200U (en) * 1988-07-01 1990-01-26
JP2001241555A (en) * 2000-02-29 2001-09-07 Nsk Ltd Spindle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925948U (en) * 1972-06-15 1974-03-05
JPS5937369A (en) * 1982-08-04 1984-02-29 Nuclear Fuel Ind Ltd Self sealing device of rotary shaft
JPH0193397U (en) * 1987-12-11 1989-06-20
JPH01252377A (en) * 1988-03-31 1989-10-09 Shibaura Eng Works Co Ltd Power tool
JPH0213200U (en) * 1988-07-01 1990-01-26
JP2001241555A (en) * 2000-02-29 2001-09-07 Nsk Ltd Spindle

Also Published As

Publication number Publication date
JP2018123947A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN104334938A (en) Sliding part
CA2912288C (en) Auxiliary face seal for submersible well pump seal section
WO2017022851A1 (en) Shaft-sealing device and vertical shaft pump equipped with shaft-sealing device
EP2745017B1 (en) Bearing assembly for a vertical turbine pump
US2573425A (en) Seal for centrifugal machines
WO2018142855A1 (en) Shaft sealing apparatus and vertical shaft pump provided with same
CN109630458A (en) Stationary seal ring, moving sealing ring and sealing device and turbine pump
JP2018123948A (en) Shaft seal device and vertical shaft pump including shaft seal device
CN108591473A (en) Mechanically-sealing apparatus
JP2017032118A (en) Shaft sealing device and rotary machine
KR101128828B1 (en) Bearing unit
CN108626162A (en) Oil seal structure and compression device including oil seal structure
RU2187727C2 (en) Pulse end seal
JP2801722B2 (en) Pump device
RU2597719C2 (en) Device for transfer of fluid medium
US735692A (en) High-speed rotary pump.
KR101083725B1 (en) Pump sealing construction using return flow
JP7158256B2 (en) Vertical shaft pump
KR102087831B1 (en) Sleeve structure of pump
US1831571A (en) Packer for centrifugal pumps
JP2016130491A (en) Rotary shaft mechanism and pump
KR200399868Y1 (en) pump
KR830002042Y1 (en) Leakage Backflow Type Mechanical Seal
KR20060074338A (en) Apparatus for preventing leakage of fluid in pump
US1422588A (en) Deep-well pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747166

Country of ref document: EP

Kind code of ref document: A1